
OpenTP1 Version 7
Tester and UAP Trace User's Guide

3000-3-D57-20(E)

Relevant program products
Note: In the program products listed below, those marked with an asterisk (*) might be released later than the other program
products.
For AIX 5L V5.1, AIX 5L V5.2, AIX 5L V5.3, and AIX V6.1
P-1M64-2131 uCosminexus TP1/Server Base 07-03*
P-1M64-2331 uCosminexus TP1/FS/Direct Access 07-03*
P-1M64-2431 uCosminexus TP1/FS/Table Access 07-03*
P-1M64-2531 uCosminexus TP1/Client/W 07-02
P-1M64-2631 uCosminexus TP1/Offline Tester 07-00
P-1M64-2731 uCosminexus TP1/Online Tester 07-00
P-1M64-2831 uCosminexus TP1/Multi 07-00
P-1M64-2931 uCosminexus TP1/High Availability 07-00
P-1M64-3131 uCosminexus TP1/Message Control 07-03
P-1M64-3231 uCosminexus TP1/NET/Library 07-04
P-1M64-8131 uCosminexus TP1/Shared Table Access 07-00
P-1M64-8331 uCosminexus TP1/Resource Manager Monitor 07-00
P-1M64-8531 uCosminexus TP1/Extension 1 07-00
P-1M64-C371 uCosminexus TP1/Message Queue 07-01
P-1M64-C771 uCosminexus TP1/Message Queue - Access 07-01
P-F1M64-31311 uCosminexus TP1/Message Control/Tester 07-00
P-F1M64-32311 uCosminexus TP1/NET/User Agent 07-00
P-F1M64-32312 uCosminexus TP1/NET/HDLC 07-00
P-F1M64-32313 uCosminexus TP1/NET/X25 07-00
P-F1M64-32314 uCosminexus TP1/NET/OSI-TP 07-00
P-F1M64-32315 uCosminexus TP1/NET/XMAP3 07-01
P-F1M64-32316 uCosminexus TP1/NET/HSC 07-00
P-F1M64-32317 uCosminexus TP1/NET/NCSB 07-00
P-F1M64-32318 uCosminexus TP1/NET/OSAS-NIF 07-01
P-F1M64-3231B uCosminexus TP1/NET/Secondary Logical Unit - TypeP2 07-00
P-F1M64-3231C uCosminexus TP1/NET/TCP/IP 07-02
P-F1M64-3231D uCosminexus TP1/NET/High Availability 07-00
P-F1M64-3231U uCosminexus TP1/NET/User Datagram Protocol 07-00
R-1M45F-31 uCosminexus TP1/Web 07-00
For AIX 5L V5.3 and AIX V6.1
P-1M64-1111 uCosminexus TP1/Server Base(64) 07-03*
P-1M64-1311 uCosminexus TP1/FS/Direct Access(64) 07-03*
P-1M64-1411 uCosminexus TP1/FS/Table Access(64) 07-03*
P-1M64-1911 uCosminexus TP1/High Availability(64) 07-00
P-1M64-1L11 uCosminexus TP1/Extension 1(64) 07-00
For HP-UX 11i V1 (PA-RISC) and HP-UX 11i V2 (PA-RISC)
P-1B64-3F31 uCosminexus TP1/NET/High Availability 07-00
P-1B64-8531 uCosminexus TP1/Extension 1 07-00
P-1B64-8931 uCosminexus TP1/High Availability 07-00
R-18451-41K uCosminexus TP1/Client/W 07-00
R-18452-41K uCosminexus TP1/Server Base 07-00

R-18453-41K uCosminexus TP1/FS/Direct Access 07-00
R-18454-41K uCosminexus TP1/FS/Table Access 07-00
R-18455-41K uCosminexus TP1/Message Control 07-03*
R-18456-41K uCosminexus TP1/NET/Library 07-04*
R-18459-41K uCosminexus TP1/Offline Tester 07-00
R-1845A-41K uCosminexus TP1/Online Tester 07-00
R-1845C-41K uCosminexus TP1/Shared Table Access 07-00
R-1845D-41K uCosminexus TP1/Resource Manager Monitor 07-00
R-1845E-41K uCosminexus TP1/Multi 07-00
R-1845F-41K uCosminexus TP1/Web 07-00
R-F18455-411K uCosminexus TP1/Message Control/Tester 07-00
R-F18456-411K uCosminexus TP1/NET/User Agent 07-00
R-F18456-415K uCosminexus TP1/NET/XMAP3 07-01*
R-F18456-41CK uCosminexus TP1/NET/TCP/IP 07-02*
For HP-UX 11i V2 (IPF) and HP-UX 11i V3 (IPF)
P-1J64-3F21 uCosminexus TP1/NET/High Availability 07-00
P-1J64-4F11 uCosminexus TP1/NET/High Availability(64) 07-00
P-1J64-8521 uCosminexus TP1/Extension 1 07-00
P-1J64-8611 uCosminexus TP1/Extension 1(64) 07-00
P-1J64-8921 uCosminexus TP1/High Availability 07-00
P-1J64-8A11 uCosminexus TP1/High Availability(64) 07-00
P-1J64-C371 uCosminexus TP1/Message Queue 07-01
P-1J64-C571 uCosminexus TP1/Message Queue(64) 07-01
P-1J64-C871 uCosminexus TP1/Message Queue - Access(64) 07-00
R-18451-21J uCosminexus TP1/Client/W 07-02
R-18452-21J uCosminexus TP1/Server Base 07-03*
R-18453-21J uCosminexus TP1/FS/Direct Access 07-03*
R-18454-21J uCosminexus TP1/FS/Table Access 07-03*
R-18455-21J uCosminexus TP1/Message Control 07-03*
R-18456-21J uCosminexus TP1/NET/Library 07-04*
R-18459-21J uCosminexus TP1/Offline Tester 07-00
R-1845A-21J uCosminexus TP1/Online Tester 07-00
R-1845C-21J uCosminexus TP1/Shared Table Access 07-00
R-1845D-21J uCosminexus TP1/Resource Manager Monitor 07-00
R-1845E-21J uCosminexus TP1/Multi 07-00
R-1845F-21J uCosminexus TP1/Web 07-00
R-1B451-11J uCosminexus TP1/Client/W(64) 07-02
R-1B452-11J uCosminexus TP1/Server Base(64) 07-03*
R-1B453-11J uCosminexus TP1/FS/Direct Access(64) 07-03*
R-1B454-11J uCosminexus TP1/FS/Table Access(64) 07-03*
R-1B455-11J uCosminexus TP1/Message Control(64) 07-03*
R-1B456-11J uCosminexus TP1/NET/Library(64) 07-04*
R-F18455-211J uCosminexus TP1/Message Control/Tester 07-00
R-F18456-215J uCosminexus TP1/NET/XMAP3 07-01*

R-F18456-21CJ uCosminexus TP1/NET/TCP/IP 07-02*
R-F1B456-11CJ uCosminexus TP1/NET/TCP/IP(64) 07-02*
For Solaris 8, Solaris 9, and Solaris 10
P-9D64-3F31 uCosminexus TP1/NET/High Availability 07-00
P-9D64-8531 uCosminexus TP1/Extension 1 07-00
P-9D64-8931 uCosminexus TP1/High Availability 07-00
R-19451-216 uCosminexus TP1/Client/W 07-00
R-19452-216 uCosminexus TP1/Server Base 07-00
R-19453-216 uCosminexus TP1/FS/Direct Access 07-00
R-19454-216 uCosminexus TP1/FS/Table Access 07-00
R-19455-216 uCosminexus TP1/Message Control 07-03*
R-19456-216 uCosminexus TP1/NET/Library 07-04*
R-19459-216 uCosminexus TP1/Offline Tester 07-00
R-1945A-216 uCosminexus TP1/Online Tester 07-00
R-1945C-216 uCosminexus TP1/Shared Table Access 07-00
R-1945D-216 uCosminexus TP1/Resource Manager Monitor 07-00
R-1945E-216 uCosminexus TP1/Multi 07-00
R-F19456-2156 uCosminexus TP1/NET/XMAP3 07-01*
R-F19456-21C6 uCosminexus TP1/NET/TCP/IP 07-02*
For Red Hat Enterprise Linux AS 4 (AMD64 & Intel EM64T), Red Hat Enterprise Linux AS 4 (x86), Red Hat Enterprise Linux ES
4 (AMD64 & Intel EM64T), and Red Hat Enterprise Linux ES 4 (x86)
P-9S64-2161 uCosminexus TP1/Server Base 07-00
P-9S64-2351 uCosminexus TP1/FS/Direct Access 07-00
P-9S64-2451 uCosminexus TP1/FS/Table Access 07-00
P-9S64-2551 uCosminexus TP1/Client/W 07-00
P-9S64-3151 uCosminexus TP1/Message Control 07-00
P-9S64-3251 uCosminexus TP1/NET/Library 07-00
P-9S64-C371 uCosminexus TP1/Message Queue 07-01
P-F9S64-3251C uCosminexus TP1/NET/TCP/IP 07-00
P-F9S64-3251U uCosminexus TP1/NET/User Datagram Protocol 07-00
R-1845F-A15 uCosminexus TP1/Web 07-00
For Red Hat Enterprise Linux AS 4 (AMD64 & Intel EM64T), Red Hat Enterprise Linux AS 4 (x86), Red Hat Enterprise Linux ES
4 (AMD64 & Intel EM64T), Red Hat Enterprise Linux ES 4 (x86), Red Hat Enterprise Linux 5 (AMD/Intel 64), Red Hat Enterprise
Linux 5 (x86), Red Hat Enterprise Linux 5 Advanced Platform (AMD/Intel 64), and Red Hat Enterprise Linux 5 Advanced Platform
(x86)
P-9S64-2951 uCosminexus TP1/High Availability 07-00
P-9S64-8551 uCosminexus TP1/Extension 1 07-00
P-9S64-C771 uCosminexus TP1/Message Queue - Access 07-01
P-F9S64-3251D uCosminexus TP1/NET/High Availability 07-00
For Red Hat Enterprise Linux 5 (AMD/Intel 64), Red Hat Enterprise Linux 5 (x86), Red Hat Enterprise Linux 5 Advanced Platform
(AMD/Intel 64), and Red Hat Enterprise Linux 5 Advanced Platform (x86)
P-9S64-2171 uCosminexus TP1/Server Base 07-03
P-9S64-2361 uCosminexus TP1/FS/Direct Access 07-03
P-9S64-2461 uCosminexus TP1/FS/Table Access 07-03
P-9S64-2561 uCosminexus TP1/Client/W 07-02
P-9S64-3161 uCosminexus TP1/Message Control 07-03*

P-9S64-3261 uCosminexus TP1/NET/Library 07-04*
P-9S64-C571 uCosminexus TP1/Message Queue 07-01
P-F9S64-32611 uCosminexus TP1/NET/User Agent 07-00
P-F9S64-3261C uCosminexus TP1/NET/TCP/IP 07-02
P-F9S64-3261U uCosminexus TP1/NET/User Datagram Protocol 07-00
For Red Hat Enterprise Linux 5 (AMD/Intel 64) and Red Hat Enterprise Linux 5 Advanced Platform (AMD/Intel 64)
P-9W64-2111 uCosminexus TP1/Server Base(64) 07-03
P-9W64-2311 uCosminexus TP1/FS/Direct Access(64) 07-03
P-9W64-2411 uCosminexus TP1/FS/Table Access(64) 07-03
P-9W64-2911 uCosminexus TP1/High Availability(64) 07-02
P-9W64-8511 uCosminexus TP1/Extension 1(64) 07-02
For Red Hat Enterprise Linux AS 4 (IPF)
P-9V64-2121 uCosminexus TP1/Server Base 07-00
P-9V64-2321 uCosminexus TP1/FS/Direct Access 07-00
P-9V64-2421 uCosminexus TP1/FS/Table Access 07-00
P-9V64-2521 uCosminexus TP1/Client/W 07-00
P-9V64-3121 uCosminexus TP1/Message Control 07-00
P-9V64-3221 uCosminexus TP1/NET/Library 07-00
P-9V64-C371 uCosminexus TP1/Message Queue(64) 07-01
P-9V64-C771 uCosminexus TP1/Message Queue - Access(64) 07-00
P-F9V64-3221C uCosminexus TP1/NET/TCP/IP 07-00
P-F9V64-3221U uCosminexus TP1/NET/User Datagram Protocol 07-00
For Red Hat Enterprise Linux AS 4 (IPF), Red Hat Enterprise Linux 5 (Intel Itanium), and Red Hat Enterprise Linux 5 Advanced
Platform (Intel Itanium)
P-9V64-2921 uCosminexus TP1/High Availability 07-00
P-9V64-8521 uCosminexus TP1/Extension 1 07-00
P-F9V64-3221D uCosminexus TP1/NET/High Availability 07-00
For Red Hat Enterprise Linux 5 (Intel Itanium) and Red Hat Enterprise Linux 5 Advanced Platform (Intel Itanium)
P-9V64-2131 uCosminexus TP1/Server Base 07-02
P-9V64-2331 uCosminexus TP1/FS/Direct Access 07-02
P-9V64-2431 uCosminexus TP1/FS/Table Access 07-02
P-9V64-2531 uCosminexus TP1/Client/W 07-02
P-9V64-3131 uCosminexus TP1/Message Control 07-03*
P-9V64-3231 uCosminexus TP1/NET/Library 07-04*
P-F9V64-3231C uCosminexus TP1/NET/TCP/IP 07-02*
P-F9V64-3231U uCosminexus TP1/NET/User Datagram Protocol 07-00
For Windows 2000, Windows Server 2003, Windows Server 2003 x64 Editions, Windows Server 2003 R2, Windows Server 2003
R2 x64 Editions, Windows XP, Windows Vista, and Windows Vista x64
P-2464-2144 uCosminexus TP1/Client/P 07-02
For Windows 2000, Windows Server 2003, Windows Server 2003 x64 Editions, Windows Server 2003 R2, Windows Server 2003
R2 x64 Editions, and Windows XP
R-1845F-8134 uCosminexus TP1/Web 07-00
For Windows 2000, Windows Server 2003, Windows Server 2003 x64 Editions, Windows Server 2003 R2, Windows Server 2003
R2 x64 Editions, Windows XP, Windows Vista, Windows Vista x64, Windows Server 2008, and Windows Server 2008 x64
P-2464-7824 uCosminexus TP1/Client for .NET Framework 07-03

R-15451-21 uCosminexus TP1/Connector for .NET Framework 07-03
For Windows Server 2003, Windows Server 2003 x64 Editions, Windows Server 2003 R2, Windows Server 2003 R2 x64 Editions,
Windows XP, Windows Vista, Windows Vista x64, Windows Server 2008, and Windows Server 2008 x64
P-2464-2274 uCosminexus TP1/Server Base 07-03*
P-2464-2374 uCosminexus TP1/FS/Direct Access 07-03*
P-2464-2474 uCosminexus TP1/FS/Table Access 07-03*
P-2464-2544 uCosminexus TP1/Extension 1 07-00
P-2464-3154 uCosminexus TP1/Message Control 07-03*
P-2464-3254 uCosminexus TP1/NET/Library 07-04*
P-2464-3354 uCosminexus TP1/Messaging 07-00
P-2464-C374 uCosminexus TP1/Message Queue 07-01
P-2464-C774 uCosminexus TP1/Message Queue - Access 07-00
P-F2464-3254C uCosminexus TP1/NET/TCP/IP 07-02*
R-15452-21 uCosminexus TP1/Extension for .NET Framework 07-00
R-1945B-24 uCosminexus TP1/LiNK 07-02
For Windows Server 2003, Windows Server 2003 x64 Editions, Windows Server 2003 R2, Windows Server 2003 R2 x64 Editions,
and Windows XP
P-F2464-32545 uCosminexus TP1/NET/XMAP3 07-01*
For Windows Server 2003, Windows Server 2003 x64 Editions, Windows Server 2003 R2, Windows Server 2003 R2 x64 Editions,
Windows Server 2008, and Windows Server 2008 x64
P-2464-2934 uCosminexus TP1/High Availability 07-00
P-F2464-3254D uCosminexus TP1/NET/High Availability 07-00
For Java VM
P-2464-7394 uCosminexus TP1/Client/J 07-02
P-2464-73A4 uCosminexus TP1/Client/J 07-02
This manual can be used for products other than the products shown above. For details, see the Release Notes.
This product was developed under a quality management system that has received ISO9001 and TickIT certification.

Trademarks
AIX is a trademark of International Business Machines Corporation in the United States, other countries, or both.
AIX 5L is a trademark of International Business Machines Corporation in the United States, other countries, or both.
AMD, AMD Opteron, and combinations thereof, are trademarks of Advanced Micro Devices, Inc.
HP-UX is a product name of Hewlett-Packard Company.
Itanium is a trademark of Intel Corporation in the United States and other countries.
Java is either a registered trademark or a trademark of Oracle and/or its affiliates.
Linux(R) is the registered trademark of Linus Torvalds in the U.S. and other countries.
Microsoft is either a registered trademark or a trademark of Microsoft Corporation in the United States and/or other countries.
MS-DOS is a registered trademark of Microsoft Corp. in the U.S. and other countries.
ORACLE is either a registered trademark or a trademark of Oracle and/or its affiliates.
Oracle is either a registered trademark or a trademark of Oracle Corporation and/or its affiliates.
Oracle and Oracle 10g are either registered trademarks or trademarks of Oracle and/or its affiliates.
Oracle and Oracle9i are either registered trademarks or trademarks of Oracle and/or its affiliates.
Red Hat is a trademark or a registered trademark of Red Hat Inc. in the United States and other countries.
Solaris is either a registered trademark or a trademark of Oracle and/or its affiliates.
UNIX is a registered trademark of The Open Group in the United States and other countries.
Windows is either a registered trademark or a trademark of Microsoft Corporation in the United States and/or other countries.

Windows Server is either a registered trademark or a trademark of Microsoft Corporation in the United States and/or other countries.
Windows Vista is either a registered trademark or a trademark of Microsoft Corporation in the United States and/or other countries.
X/Open is a registered trademark of The Open Group in the U.K. and other countries.
Portions of this document are extracted from X/Open CAE Specification System Interfaces and Headers, Issue4, (C202 ISBN
1-872630-47-2) Copyright (C) July 1992, X/Open Company Limited with the permission of X/Open; part of which is based on IEEE
Std 1003.1-1990, (C) 1990 Institute of Electrical and Electronics Engineers, Inc., and IEEE Std 1003.2/D12, (C) 1992 Institute of
Electrical and Electronics Engineers, Inc.
No further reproduction of this material is permitted without the prior permission of the copyright owners.
Other product and company names mentioned in this document may be the trademarks of their respective owners. Throughout this
document Hitachi has attempted to distinguish trademarks from descriptive terms by writing the name with the capitalization used
by the manufacturer, or by writing the name with initial capital letters. Hitachi cannot attest to the accuracy of this information. Use
of a trademark in this document should not be regarded as affecting the validity of the trademark.

Restrictions
Information in this document is subject to change without notice and does not represent a commitment on the part of Hitachi. The
software described in this manual is furnished according to a license agreement with Hitachi. The license agreement contains all of
the terms and conditions governing your use of the software and documentation, including all warranty rights, limitations of liability,
and disclaimers of warranty.
Material contained in this document may describe Hitachi products not available or features not available in your country.
No part of this material may be reproduced in any form or by any means without permission in writing from the publisher.
Printed in Japan.

Edition history
Edition 1 (3000-3-D57(E)): June 2006
Edition 3 (3000-3-D57-20(E)): October 2010

Copyright
All Rights Reserved. Copyright (C) 2006, 2010, Hitachi, Ltd.

Summary of amendments
The following table lists changes in this manual (3000-3-D57-20(E)) and product
changes related to this manual for uCosminexus TP1/Server Base 07-03, uCosminexus
TP1/Server Base(64) 07-03, uCosminexus TP1/Message Control 07-03, uCosminexus
TP1/Message Control(64) 07-03, uCosminexus TP1/NET/Library 07-04, and
uCosminexus TP1/NET/Library(64) 07-04.

In addition to the above changes, minor editorial corrections have been made.

The following table lists changes in the manual (3000-3-D57-10(E)) and product
changes related to that manual.

Changes Location

UAP traces (UAP trace data files) can now be collected for processes even if the
process is not aborted.
Along with this change, the -f option has been added to the uatdump command.

1.1, 1.3, 15.1, 15.1.1,
15.2.2(1), 15.2.2(2), 15.2.3

Change

An explanation of specifying an environment variable in a path name for the rpc_trace_name definition operand
has been added.

i

Preface

This manual describes how to use the testers and UAP trace facility of the Distributed
Transaction Processing Facility OpenTP1.

Products described in this manual, other than those for which the manual is released,
may not work with OpenTP1 Version 7 products. You need to confirm that the products
you want to use work with OpenTP1 Version 7 products.

Intended readers
This manual is intended for system managers, system designers, programmers, and
operators.

This manual consists of five parts and an appendix, as outlined below.

Readers should first look at the manual OpenTP1 Description which introduces
OpenTP1.

Organization of this manual
This manual is organized into the following parts and chapters:

PART 1. Overview of Testers and UAP Traces
1. Overview

This chapter describes the types of testers and introduces UAP traces.

PART 2. Online Tester (TP1/Online Tester)
2. Facilities

This chapter describes the facilities of the online tester TP1/Online Tester for
TP1/Server Base.

3. Setting the Test Environment
This chapter describes the definitions for setting the test environment to execute
TP1/Online Tester.

4. Test Execution
This chapter describes how to create a test UAP, request services, and edit test
information.

5. Operating Commands
This chapter describes the test operating commands.

ii

6. Error Recovery
This chapter describes TP1/Online Tester errors and how to handle them.

PART 3. Online Tester (TP1/Message Control/Tester)
7. Facilities

This chapter describes the facilities of the online tester TP1/Message Control/
Tester for TP1/Message Control.

8. Test Execution
This chapter describes how to start and end a test, how duplicate test mode
specifications are handled, and how to inherit test mode information and edit test
information.

9. Operating Commands
This chapter describes the test operating commands.

PART 4. Offline Tester
10. Facilities

This chapter describes the facilities of the offline tester TP1/Offline Tester.

11. Setting the Test Environment
This chapter describes the definitions for setting the test environment to execute
TP1/Offline Tester, the files that the user creates, and the files that TP1/Offline
Tester creates.

12. Test Execution
This chapter describes how to create a test UAP, start and end a test, activate and
terminate UAPs, request services, and edit trace information collected by the
offline tester.

13. Operating Commands
This chapter describes the test operating commands and subcommands.

14. Simulation Functions
This chapter lists the processing and return values of the functions for simulating
OpenTP1 functions.

PART 5. UAP Traces
15. How to Use UAP Traces

This chapter describes how to use UAP traces.

iii

Related publications
This manual is part of a related set of manuals. The manuals in the set are listed below
(with the manual numbers):
OpenTP1 products

• OpenTP1 Version 7 Description (3000-3-D50(E))

• OpenTP1 Version 7 Programming Guide (3000-3-D51(E))

• OpenTP1 Version 7 System Definition (3000-3-D52(E))

• OpenTP1 Version 7 Operation (3000-3-D53(E))

• OpenTP1 Version 7 Programming Reference C Language (3000-3-D54(E))

• OpenTP1 Version 7 Programming Reference COBOL Language
(3000-3-D55(E))

• OpenTP1 Version 7 Messages (3000-3-D56(E))

• OpenTP1 Version 7 Tester and UAP Trace User's Guide (3000-3-D57(E))

• OpenTP1 Version 7 TP1/Client User's Guide TP1/Client/W, TP1/Client/P
(3000-3-D58(E))

• OpenTP1 Version 7 TP1/Client User's Guide TP1/Client/J (3000-3-D59(E))

• OpenTP1 Version 7 TP1/LiNK User's Guide (3000-3-D60(E))#

• OpenTP1 Version 7 Protocol TP1/NET/TCP/IP (3000-3-D70(E))

• OpenTP1 Version 7 TP1/Message Queue User's Guide (3000-3-D90(E))#

• OpenTP1 Version 7 TP1/Message Queue Messages (3000-3-D91(E))#

• OpenTP1 Version 7 TP1/Message Queue Application Programming Guide
(3000-3-D92(E))#

• OpenTP1 Version 7 TP1/Message Queue Application Programming Reference
(3000-3-D93(E))#

Other OpenTP1 products

• TP1/Web User's Guide and Reference (3000-3-D62(E))#

Other related products

• Indexed Sequential Access Method ISAM (3000-3-046(E))

• XP/W (3000-3-047(E))

• Extended Mapping Service 2/Workstation XMAP2/W DESCRIPTION/USER'S
GUIDE (3000-7-421(E))

iv

• SEWB 3 General Information (3000-7-450(E))

• Job Management Partner 1/Base User's Guide (3020-3-K06(E))

• Job Management Partner 1/Base Messages (3020-3-K07(E))

• Job Management Partner 1/Base Software Developer's Guide (3020-3-K08(E))

For OpenTP1 protocol manuals, please check whether English versions are available.

#

If you want to use this manual, confirm that it has been published. (Some of these
manuals might not have been published yet.)

Conventions: Abbreviations for product names
This manual uses the following abbreviations for product names:

Abbreviation Full name or meaning

AIX AIX 5L V5.1

AIX 5L V5.2

AIX 5L V5.3

AIX V6.1

Client .NET TP1/Client for .NET
Framework

uCosminexus TP1/Client for .NET Framework

Connector .NET TP1/Connector for
.NET Framework

uCosminexus TP1/Connector for .NET Framework

DPM JP1/ServerConductor/Deployment Manager

HI-UX/WE2 HI-UX/workstation Extended Version 2

HP-UX HP-UX (IPF) HP-UX 11i V2 (IPF)

HP-UX 11i V3 (IPF)

HP-UX (PA-RISC) HP-UX 11i V1 (PA-RISC)

HP-UX 11i V2 (PA-RISC)

IPF Itanium(R) Processor Family

Java JavaTM

JP1 JP1/AJS2 JP1/AJS2 - Agent JP1/Automatic Job Management System 2 - Agent

JP1/AJS2 -
Manager

JP1/Automatic Job Management System 2 - Manager

v

JP1/AJS2 - View JP1/Automatic Job Management System 2 - View

JP1/AJS2 -
Scenario
Operation

JP1/AJS2 - Scenario
Operation Manager

JP1/Automatic Job Management System 2 - Scenario
Operation Manager

JP1/AJS2 - Scenario
Operation View

JP1/Automatic Job Management System 2 - Scenario
Operation View

JP1/NETM/Audit JP1/NETM/Audit - Manager

Linux Linux(R)

Linux (AMD64/Intel EM64T/x86) Red Hat Enterprise Linux AS 4 (AMD64 & Intel EM64T)

Red Hat Enterprise Linux AS 4 (x86)

Red Hat Enterprise Linux ES 4 (AMD64 & Intel EM64T)

Red Hat Enterprise Linux ES 4 (x86)

Red Hat Enterprise Linux 5 (AMD/Intel 64)

Red Hat Enterprise Linux 5 (x86)

Red Hat Enterprise Linux 5 Advanced Platform (AMD/Intel
64)

Red Hat Enterprise Linux 5 Advanced Platform (x86)

Linux (IPF) Red Hat Enterprise Linux AS 4 (IPF)

Red Hat Enterprise Linux 5 (Intel Itanium)

Red Hat Enterprise Linux 5 Advanced Platform (Intel
Itanium)

MS-DOS Microsoft(R) MS-DOS(R)

NETM/DM JP1/NETM/DM Client

JP1/NETM/DM Manager

JP1/NETM/DM SubManager

Oracle Oracle 10g

Oracle9i

Solaris Solaris 8

Solaris 9

Abbreviation Full name or meaning

vi

Solaris 10

TP1/Client TP1/Client/J uCosminexus TP1/Client/J

TP1/Client/P uCosminexus TP1/Client/P

TP1/Client/W uCosminexus TP1/Client/W

uCosminexus TP1/Client/W(64)

TP1/EE uCosminexus TP1/Server Base Enterprise Option

uCosminexus TP1/Server Base Enterprise Option(64)

TP1/Extension 1 uCosminexus TP1/Extension 1

uCosminexus TP1/Extension 1(64)

TP1/FS/Direct Access uCosminexus TP1/FS/Direct Access

uCosminexus TP1/FS/Direct Access(64)

TP1/FS/Table Access uCosminexus TP1/FS/Table Access

uCosminexus TP1/FS/Table Access(64)

TP1/High Availability uCosminexus TP1/High Availability

uCosminexus TP1/High Availability(64)

TP1/LiNK uCosminexus TP1/LiNK

TP1/Message Control uCosminexus TP1/Message Control

uCosminexus TP1/Message Control(64)

TP1/Message Control/Tester uCosminexus TP1/Message Control/Tester

TP1/Message Queue uCosminexus TP1/Message Queue

uCosminexus TP1/Message Queue(64)

TP1/Message Queue - Access uCosminexus TP1/Message Queue - Access

uCosminexus TP1/Message Queue - Access(64)

TP1/Messaging uCosminexus TP1/Messaging

TP1/Multi uCosminexus TP1/Multi

TP1/NET/HDLC uCosminexus TP1/NET/HDLC

TP1/NET/High Availability uCosminexus TP1/NET/High Availability

Abbreviation Full name or meaning

vii

uCosminexus TP1/NET/High Availability(64)

TP1/NET/HSC uCosminexus TP1/NET/HSC

TP1/NET/Library uCosminexus TP1/NET/Library

uCosminexus TP1/NET/Library(64)

TP1/NET/NCSB uCosminexus TP1/NET/NCSB

TP1/NET/OSAS-NIF uCosminexus TP1/NET/OSAS-NIF

TP1/NET/OSI-TP uCosminexus TP1/NET/OSI-TP

TP1/NET/SLU -
TypeP2

TP1/NET/
Secondary Logical
Unit - TypeP2

uCosminexus TP1/NET/Secondary Logical Unit - TypeP2

TP1/NET/TCP/IP uCosminexus TP1/NET/TCP/IP

uCosminexus TP1/NET/TCP/IP(64)

TP1/NET/UDP uCosminexus TP1/NET/User Datagram Protocol

TP1/NET/User Agent uCosminexus TP1/NET/User Agent

TP1/NET/X25 uCosminexus TP1/NET/X25

TP1/NET/X25-Extended uCosminexus TP1/NET/X25-Extended

TP1/NET/XMAP3 uCosminexus TP1/NET/XMAP3

TP1/Offline Tester uCosminexus TP1/Offline Tester

TP1/Online Tester uCosminexus TP1/Online Tester

TP1/Resource Manager Monitor uCosminexus TP1/Resource Manager Monitor

TP1/Server Base uCosminexus TP1/Server Base

uCosminexus TP1/Server Base(64)

TP1/Shared Table Access uCosminexus TP1/Shared Table Access

TP1/Web uCosminexus TP1/Web

Windows 2000 Microsoft(R) Windows(R) 2000 Advanced Server Operating
System

Microsoft(R) Windows(R) 2000 Datacenter Server Operating
System

Abbreviation Full name or meaning

viii

Microsoft(R) Windows(R) 2000 Professional Operating
System

Microsoft(R) Windows(R) 2000 Server Operating System

Windows Server 2003 Microsoft(R) Windows Server(R) 2003, Datacenter Edition

Microsoft(R) Windows Server(R) 2003, Enterprise Edition

Microsoft(R) Windows Server(R) 2003, Standard Edition

Windows Server 2003 R2 Microsoft(R) Windows Server(R) 2003 R2, Enterprise Edition

Microsoft(R) Windows Server(R) 2003 R2, Standard Edition

Windows Server 2003 x64 Editions Microsoft(R) Windows Server(R) 2003, Datacenter x64 Edition

Microsoft(R) Windows Server(R) 2003, Enterprise x64 Edition

Microsoft(R) Windows Server(R) 2003, Standard x64 Edition

Windows Server 2003 R2 x64 Editions Microsoft(R) Windows Server(R) 2003 R2, Enterprise x64
Edition

Microsoft(R) Windows Server(R) 2003 R2, Standard x64
Edition

Windows Server 2008 Microsoft(R) Windows Server(R) 2008 Datacenter (x86)

Microsoft(R) Windows Server(R) 2008 Enterprise (x86)

Microsoft(R) Windows Server(R) 2008 Standard (x86)

Windows Server 2008 x64 Editions Microsoft(R) Windows Server(R) 2008 Datacenter (x64)

Microsoft(R) Windows Server(R) 2008 Enterprise (x64)

Microsoft(R) Windows Server(R) 2008 Standard (x64)

Windows Vista Microsoft(R) Windows Vista(R) Business (x86)

Microsoft(R) Windows Vista(R) Enterprise (x86)

Microsoft(R) Windows Vista(R) Ultimate (x86)

Windows Vista x64 Editions Microsoft(R) Windows Vista(R) Business (x64)

Abbreviation Full name or meaning

ix

• If there is no difference in OS functionality, the term Windows is used to indicate
Windows 2000, Windows Server 2003, Windows Server 2008, Windows XP, and
Windows Vista.

• The term UNIX is used to indicate AIX, HP-UX, Linux, and Solaris.

Conventions: Acronyms
This manual also uses the following acronyms:

Microsoft(R) Windows Vista(R) Enterprise (x64)

Microsoft(R) Windows Vista(R) Ultimate (x64)

Windows XP Microsoft(R) Windows(R) XP Professional Operating System

Acronym Full name or meaning

ACL Access Control List

ANSI American National Standards Institute

AP Application Program

API Application Programming Interface

C/S Client/Server

CRM Communication Resource Manager

CUP Client User Program

DAM Direct Access Method

DBMS Database Management System

DML Data Manipulation Language

DNS Domain Name System

FEP Front End Processor

GUI Graphical User Interface

HA High Availability

HI-ODTP Hitachi - Open Distributed Transaction Processing Adapter

ISAM Indexed Sequential Access Method

IST Internode Shared Table

Abbreviation Full name or meaning

x

Conventions: Diagrams
This manual uses the following conventions in diagrams:

LAN Local Area Network

MCF Message Control Facility

MHP Message Handling Program

MQA Message Queue Access

MQI Message Queue Interface

NIF/HNA Network Interface Feature/Hitachi Network Architecture

NIF/OSI Network Interface Feature/OSI

OS Operating System

OSI Open Systems Interconnection

OSI TP Open Systems Interconnection Transaction Processing

PC Personal Computer

PRF Performance

RM Resource Manager

RPC Remote Procedure Call

SPP Service Providing Program

STDL Structured Transaction Definition Language

SUP Service Using Program

TAM Table Access Method

TCP/IP Transmission Control Protocol/Internet Protocol

TM Transaction Manager

UAP User Application Program

UOC User Own Coding

WAN Wide Area Network

WS Workstation

Acronym Full name or meaning

xi

Conventions: Differences in installation directory paths
This manual uses the notation /BeTRAN to indicate the OpenTP1 installation directory.
The actual installation directory differs depending on the operating system. Use the
following table to determine the actual installation directory for your OS.

Conventions: Fonts and symbols
The following table explains the fonts used in this manual:

As written in
this manual

Actual directory for each OS

AIX, HP-UX, and Solaris Linux Windows

/BeTRAN /BeTRAN /opt/OpenTP1 The directory in which
OpenTP1 was installed

xii

The following table explains the symbols used in this manual:

Font Convention

Bold Bold type indicates text on a window, other than the window title. Such text includes
menus, menu options, buttons, radio box options, or explanatory labels. For example:
• From the File menu, choose Open.
• Click the Cancel button.
• In the Enter name entry box, type your name.

Italics Italics are used to indicate a placeholder for some actual text to be provided by the user
or system. For example:
• Write the command as follows:

copy source-file target-file
• The following message appears:

A file was not found. (file = file-name)
Italics are also used for emphasis. For example:
• Do not delete the configuration file.

Code font A code font indicates text that the user enters without change, or text (such as
messages) output by the system. For example:
• At the prompt, enter dir.
• Use the send command to send mail.
• The following message is displayed:

The password is incorrect.

SD Bold code-font characters indicate the abbreviation for a command.

perm Underlined characters indicate the default value.

Symbol Convention

| In syntax explanations, a vertical bar separates multiple items, and has the
meaning of OR. For example:
A|B|C means A, or B, or C.

{ } In syntax explanations, curly brackets indicate that only one of the enclosed items
is to be selected. For example:
{A|B|C} means only one of A, or B, or C.

[] In syntax explanations, square brackets indicate that the enclosed item or items
are optional. For example:
[A] means that you can specify A or nothing.
[B|C] means that you can specify B, or C, or nothing.

xiii

Conventions for permitted characters

In most cases, only the following characters are permitted as syntax elements (if other
characters are permitted, the manual will state this explicitly):

Conventions: KB, MB, GB, and TB
This manual uses the following conventions:

• 1 KB (kilobyte) is 1,024 bytes.

... In coding, an ellipsis (...) indicates that one or more lines of coding are not shown
for purposes of brevity.
In syntax explanations, an ellipsis indicates that the immediately preceding item
can be repeated as many times as necessary. For example:
A, B, B, ... means that, after you specify A, B, you can specify B as many
times as necessary.

~ The item preceding this symbol must be specified according to the rule given in
the angle brackets (< >) following this symbol.

<< >> Default value assumed when a specification is omitted.

< > Information between these symbols indicates the syntax of the item.

(()) Range of specifiable values.

Type Definition

Upper-case alphabetic characters A to Z

Lower-case alphabetic characters a to z

Alphabetic characters A to Z, a to z

Numeric characters 0 to 9

Alphanumeric characters A to Z, a to z, 0 to 9

Unsigned integer Numeric values 0 to 9

Hexadecimal Numeric values 0 to 9, A to F, and a to f

Identifier String of alphanumeric characters, beginning with an alphabetic
character A to Z or a to z

Symbolic name String of alphanumeric symbols, beginning with an alphabetic
symbol

Pathname Symbolic names, slashes (/), and periods (.), depending on the
operating system

Symbol Convention

xiv

• 1 MB (megabyte) is 1,0242 bytes.

• 1 GB (gigabyte) is 1,0243 bytes.

• 1 TB (terabyte) is 1,0244 bytes.

Conventions: Platform-specific notational differences
For the Windows version of OpenTP1, there are some notational differences from the
description in the manual. The following table describes these differences.

Conventions: Version numbers
The version numbers of Hitachi program products are usually written as two sets of
two digits each, separated by a hyphen. For example:

• Version 1.00 (or 1.0) is written as 01-00.

• Version 2.05 is written as 02-05.

• Version 2.50 (or 2.5) is written as 02-50.

• Version 12.25 is written as 12-25.

The version number might be shown on the spine of a manual as Ver. 2.00, but the same
version number would be written in the program as 02-00.

Important note on this manual
Please check the availability of the products and manuals for HAmonitor,
ServerConductor/DeploymentManager, Cosminexus, and Job Management Partner 1/
Automatic Job Management System 2.

Item Description in the manual Change to:

Environment variable $aaaaaa
Example: $DCDIR

%aaaaaa%
Example: %DCDIR%

Path name separator Colon (:) Semicolon (;)

Directory name separator Slash (/) Backslash (\)

Absolute path name A path from the root directory
Example: /tmp

A path name from a drive letter and the
root directory
Example: C:\tmp

Executable file name File name only (without an
extension)
Example: mcfmngrd

File name with an extension
Example: mcfmngrd.exe

make command make nmake

xv

Contents

Preface i

Intended readers ...i
Organization of this manual ...i
Related publications .. iii
Conventions: Abbreviations for product names...iv
Conventions: Acronyms...ix
Conventions: Diagrams ...x
Conventions: Differences in installation directory paths ...xi
Conventions: Fonts and symbols..xi
Conventions: KB, MB, GB, and TB ... xiii
Conventions: Platform-specific notational differences ..xiv
Conventions: Version numbers...xiv
Important note on this manual..xiv

PART 1: Overview of Testers and UAP Traces
1. Overview 1

1.1 Testers and UAP traces...2
1.2 Overview of testers...3

1.2.1 Online testers...3
1.2.2 Offline tester (TP1/Offline Tester) ..6

1.3 Overview of UAP traces...9

PART 2: Online Tester (TP1/Online Tester)
2. Facilities 11

2.1 Facilities of the online tester...12
2.2 Simulating a client UAP...13

2.2.1 Simulating a client UAP with an RPC interface ...13
2.2.2 Simulating a client UAP with an XATMI interface14

2.3 Simulating a server UAP ..18
2.3.1 Simulating a server UAP with an RPC interface ..18
2.3.2 Simulating a server UAP with an XATMI interface19

2.4 Simulating the MCF ...22
2.4.1 MCF simulation functions...22
2.4.2 Simulating message send/receive..22
2.4.3 Simulating continuous inquiry responses..23

xvi

2.4.4 Simulating application program startup requests ... 25
2.4.5 Simulating synchronous point processing .. 27

2.5 Disabling resource updating .. 28
2.6 Simulating operating commands ... 29
2.7 Creating and outputting tester files .. 31

2.7.1 Creating tester files ... 31
2.7.2 Editing and outputting tester files... 33

2.8 Collecting test information .. 34
2.8.1 Collecting UAP trace information.. 34
2.8.2 Merging, editing, and outputting UAP trace information............................. 35
2.8.3 Editing send messages .. 39

2.9 Interlocking the debugger .. 40

3. Setting the Test Environment 43

3.1 System definitions for the online tester ... 44
3.1.1 System service configuration definition ... 44
3.1.2 Tester service definition.. 44
3.1.3 Tester service definition (command format)... 47
3.1.4 User service definition.. 48
3.1.5 Setting the typed buffer .. 54
3.1.6 Setting send/receive procedures ... 56

3.2 Setting environment variables ... 59
3.3 User-created files ... 60

3.3.1 Service request data files .. 62
3.3.2 Service response data files.. 65
3.3.3 XATMI receive data file ... 68
3.3.4 MCF receive message files... 71
3.3.5 Operating command result data file.. 81

3.4 Creating files.. 84
3.4.1 Test directory .. 84
3.4.2 Test data definition file ... 84
3.4.3 Files created by the online tester .. 95

4. Test Execution 99

4.1 Creating UAPs ... 100
4.2 Service requests to an SPP... 102

4.2.1 Client UAP simulator ... 102
4.2.2 Server UAP simulator... 102

4.3 Service requests to an MHP... 103
4.4 Creating tester files .. 104

4.4.1 Creating tester files using the test data definition file 104
4.4.2 Creating tester files using operating command output data 105

4.5 Editing test information ... 107
4.5.1 Displaying test status .. 107

xvii

4.5.2 Collecting UAP trace information...107
4.5.3 Merging and outputting UAP trace information ...108
4.5.4 UAP traces for MCF simulation functions..109
4.5.5 Editing and outputting send messages ..109
4.5.6 Checking UAP response data ..110
4.5.7 Checking UAP send data...110

5. Operating Commands 111

5.1 Operating commands for running tests... 112
5.1.1 utodbgstop (termination of a UAP interlocked with the debugger)112
5.1.2 utodebug (activation of a UAP interlocked with the debugger)..................113
5.1.3 utofilcre (tester file creation)...115
5.1.4 utofilout (edited output of the tester file content)116
5.1.5 utols (test status display) ...129
5.1.6 utomhpsvc (service requests to an MHP)..130
5.1.7 utomsgout (edited output of send messages)...131
5.1.8 utosppsvc (service requests to an RPC interface SPP)................................136
5.1.9 utotrcmrg (merger of UAP trace information) ..137
5.1.10 utotrcout (edited output of UAP trace information)..................................138
5.1.11 utoxsppsvc (service requests to an XATMI interface SPP).......................150

6. Error Recovery 153

6.1 Handling online tester errors ..154
6.1.1 Error conditions and causes...154
6.1.2 Online tester errors ..155
6.1.3 File errors ..156
6.1.4 UAP errors...156

PART 3: Online Tester (TP1/Message Control/Tester)
7. Facilities 159

7.1 MHP testing..160
7.1.1 Disabling updating of non-MCF resources ...160
7.1.2 Invalidating send messages ...160
7.1.3 Invalidating application startup messages...161
7.1.4 Suppressing error events ...161
7.1.5 Suppressing MHP automatic shutdown ..162

7.2 Collecting test information ...164
7.2.1 Collecting UAP trace information...164

8. Test Execution 165

8.1 Starting and ending a test..166
8.1.1 Starting a test and setting the test environment...166

xviii

8.1.2 Ending a test ... 167
8.2 Duplicate test mode specifications .. 168
8.3 Inheriting test mode information ... 169
8.4 Editing test information ... 170

8.4.1 Displaying test mode information .. 170
8.4.2 Collecting UAP trace information.. 170
8.4.3 Merging and outputting UAP trace information... 170

9. Operating Commands 173

9.1 Operating commands for running tests .. 174
9.1.1 mcfutfst (MCF online tester use declaration) ... 174
9.1.2 mcflsutf (display of MCF online tester status) ... 174

9.2 Operating commands for testing a logical terminal... 176
9.2.1 mcftulsle (display of test mode information for a logical terminal)........... 176
9.2.2 mcftules (start of a logical terminal test) .. 178
9.2.3 mcftulee (termination of a logical terminal test) .. 180

9.3 Operating commands for testing an application .. 181
9.3.1 mcfaulsap (display of test mode information for an application)............... 181
9.3.2 mcfauaps (start of an application test) .. 184
9.3.3 mcfauape (termination of an application test) .. 187

9.4 Operating commands for testing a service group .. 189
9.4.1 mcftulssg (display of test mode information for a service group).............. 189
9.4.2 mcftusgs (start of a service group test) ... 191
9.4.3 mcftusge (termination of a service group test) ... 193

PART 4: Offline Tester
10. Facilities 195

10.1 Facilities of the offline tester ... 196
10.2 Simulating a client UAP .. 197

10.2.1 Simulating a client UAP with an RPC interface....................................... 197
10.2.2 Simulating a client UAP with an XATMI interface 198
10.2.3 Simulating a client UAP with a TxRPC interface 198

10.3 Simulating a server UAP ... 199
10.3.1 Simulating a server UAP with an RPC interface...................................... 200
10.3.2 Simulating a server UAP with an XATMI interface................................. 200
10.3.3 Simulating a server UAP with a TxRPC interface 200

10.4 Simulating the MCF... 202
10.5 Simulating file services.. 203

10.5.1 Simulating the DAM service .. 203
10.5.2 Simulating the TAM service... 204

10.6 Simulating OpenTP1 functions.. 206
10.7 Simulating operating commands ... 207

xix

10.8 Creating tester files...208
10.9 Continuous command execution ..209
10.10 Debugger connection..210
10.11 Collecting test information ...211

10.11.1 Collecting offline tester trace information ..211

11. Setting the Test Environment 213

11.1 System definitions for the offline tester..214
11.1.1 Offline tester environment definition ..214
11.1.2 User service definition...231
11.1.3 Setting function return values..232
11.1.4 Setting continuous execution commands ..236
11.1.5 Creating stubs ..238

11.2 User-created files ..239
11.2.1 Service request data files ...240
11.2.2 Service response data files...244
11.2.3 XATMI receive data file..248
11.2.4 MCF receive message files..250
11.2.5 DAM file ...255
11.2.6 TAM file ..256
11.2.7 Operating command result data file ..257

11.3 Creating files...259
11.3.1 Test data definition file ..259
11.3.2 Files created by the offline tester...270

12. Test Execution 271

12.1 Creating UAPs..272
12.1.1 Creating UAP execution format programs..272

12.2 Starting and ending an offline test ..277
12.3 Activating and terminating UAPs ..278
12.4 Service requests ..279
12.5 Creating tester files...280
12.6 Continuous command execution ..281
12.7 Debugger connection..282
12.8 Editing offline tester trace information ..283
12.9 Notes on running tests ..284

12.9.1 Notes on the offline tester ...284
12.9.2 Notes on files...288
12.9.3 Notes on UAPs ..289

13. Operating Commands 291

13.1 Operating commands for running tests...292
13.1.1 utfdamcre (creation of offline tester DAM file) ..292
13.1.2 utffilcre (tester file creation)..293

xx

13.1.3 utfstart (offline tester startup) ... 293
13.1.4 utftamcre (creation of offline tester TAM files) 295
13.1.5 utftrcpic (retrieval of offline tester trace information) 296

13.2 Subcommands for running tests... 302
13.2.1 call (service request) ... 302
13.2.2 cmdauto (continuous command execution).. 303
13.2.3 end (offline tester termination) ... 304
13.2.4 ps (test status display)... 304
13.2.5 read (input of tester file name to offline tester) .. 305
13.2.6 start (service group activation) ... 306
13.2.7 stop (service group termination)... 307
13.2.8 write (input of tester file name to offline tester)....................................... 308

14. Simulation Functions 309

14.1 List of simulation functions and processing .. 310
14.2 List of return values for simulation functions.. 326
14.3 List of functions not supported by the simulation feature 342

PART 5: UAP Traces
15. How to Use UAP Traces 347

15.1 Collecting UAP traces ... 348
15.1.1 UAP trace collection units .. 348
15.1.2 Trace area definition ... 348
15.1.3 Information to collect ... 348

15.2 Editing and outputting UAP traces .. 349
15.2.1 UAP trace output units ... 349
15.2.2 UAP trace output methods.. 350
15.2.3 uatdump (edited output of UAP trace) ... 352
15.2.4 UAP trace output format... 354

Index 359

xxi

List of figures

Figure 1-1: OpenTP1 testers ...3
Figure 1-2: Overview of online tester...5
Figure 1-3: Overview of MCF online tester ...6
Figure 1-4: Overview of offline tester ..8
Figure 2-1: Simulating a client UAP with an RPC interface ..14
Figure 2-2: Simulating a client UAP for request/response service paradigm...........................15
Figure 2-3: Simulating a client UAP for conversational service paradigm..............................17
Figure 2-4: Simulating a server UAP with an RPC interface ...19
Figure 2-5: Simulating a server UAP for request/response service paradigm..........................20
Figure 2-6: Simulating a server UAP for conversational service paradigm21
Figure 2-7: Simulating message send/receive ..23
Figure 2-8: Simulating continuous inquiry responses ..24
Figure 2-9: Simulating an application program startup request ...26
Figure 2-10: Replacing command execution results...30
Figure 2-11: Result of merging UAP trace information ...36
Figure 2-12: Collecting, merging, editing, and outputting UAP trace information..................38
Figure 2-13: Interlocking the debugger ..41
Figure 3-1: Receive data and tester files...70
Figure 7-1: Example of transaction processing from message receive to message send........162
Figure 10-1: Simulating a client UAP ..197
Figure 10-2: Simulating a server UAP ...200
Figure 10-3: Simulating an MCF..202
Figure 10-4: Simulating the DAM service ...204
Figure 10-5: Simulating the TAM service ..205
Figure 10-6: Simulating UAP operating commands...207
Figure 10-7: Continuous command execution..209
Figure 10-8: Debugger connection ...210
Figure 10-9: Collecting offline tester trace information ...212
Figure 12-1: Procedure for creating UAP execution format program with the RPC or XATMI

interface...273
Figure 12-2: Procedure for creating UAP execution format program with the TxRPC

interface...275
Figure 12-3: Recursive calls using the offline tester ..287
Figure 15-1: Inter-UAP communication and collected UAP traces349
Figure 15-2: Overview of automatic edit and output of UAP trace..351
Figure 15-3: Overview of editing and outputting UAP trace to standard output by a

command ...352

xxii

List of tables

Table 2-1: Tester files created by tester file creation facility ... 31
Table 2-2: Kinds of tester files to be created, available data extraction commands, and available

data ... 32
Table 2-3: Tester files available for edit and output with the tester file edit and output

facility... 33
Table 2-4: Functions that can use the complete I/O data trace collection facility 34
Table 3-1: test_mode specifications and available test facilities.. 50
Table 3-2: Relationships between calling UAP and called UAP when requesting services 50
Table 3-3: List of tester files to be created by the user .. 60
Table 3-4: Names for user-created tester files.. 61
Table 3-5: Keywords and input data formats for RPC request data files................................. 90
Table 3-6: Keywords and input data formats for XATMI request data files............................ 90
Table 3-7: Keywords and input data formats for RPC response data files 91
Table 3-8: Keywords and input data formats for XATMI response data files 91
Table 3-9: Keywords and input data formats for XATMI receive data files............................ 92
Table 3-10: Keywords and input data formats for asynchronous receive message files.......... 93
Table 3-11: Keywords and input data formats for synchronous receive message files 93
Table 3-12: Keywords and input data formats for operating command result data file........... 95
Table 3-13: List of files created by online tester .. 95
Table 3-14: Names for tester files created by the online tester .. 96
Table 4-1: Dummy values and non-collectable trace information ... 109
Table 5-1: List of operating commands...112
Table 6-1: Online tester errors and causes ... 154
Table 6-2: Time-out error events caused by a debugger-interlocked UAP and related

definitions ... 157
Table 8-1: Duplicate test mode specifications.. 168
Table 8-2: Inheritance of test mode information.. 169
Table 9-1: List of operating commands.. 174
Table 9-2: Operating commands for running tests on a logical terminal 176
Table 9-3: Operating commands for running tests on an application 181
Table 9-4: IDs to be specified when testing ERREVT (mcfauaps command)....................... 184
Table 9-5: IDs to be specified when testing ERREVT (mcfauape command)....................... 187
Table 9-6: Operating commands for running tests on an application 189
Table 10-1: Tester files created by tester file creation facility ... 208
Table 11-1: Format errors and validity of definitions .. 215
Table 11-2: List of user-created files.. 239
Table 11-3: RPC request data file keywords and input data formats 265
Table 11-4: XATMI request data file keywords and corresponding input data formats 265
Table 11-5: TxRPC request data file keywords and corresponding input data format 266
Table 11-6: RPC response data file keywords and corresponding input data formats........... 266

xxiii

Table 11-7: XATMI response data file keywords and corresponding input data formats267
Table 11-8: TxRPC response data file keywords and corresponding input data format.........267
Table 11-9: XATMI receive data file keywords and input data formats.................................267
Table 11-10: MCF receive message file keywords and corresponding input data formats268
Table 11-11: Operation command result data file keywords and corresponding input data

formats...269
Table 11-12: List of files created by offline tester ..270
Table 12-1: Upper limits of offline tester..285
Table 13-1: List of operating commands for offline testing ...292
Table 13-2: List of subcommands for offline testing..302
Table 14-1: List of offline tester simulation functions..310
Table 14-2: List of return values for simulation functions ...326
Table 14-3: List of functions not supported by the simulation feature (for C)342
Table 14-4: List of functions not supported by the simulation feature (for COBOL)343
Table 15-1: Directories and file names of core file and UAP trace output file350

1

PART 1: Overview of Testers and UAP Traces

Chapter

1. Overview

This chapter introduces the testers and UAP traces provided by OpenTP1.

This chapter contains the following sections:

1.1 Testers and UAP traces
1.2 Overview of testers
1.3 Overview of UAP traces

1. Overview

2

1.1 Testers and UAP traces

OpenTP1 provides test support programs (testers) for checking UAP operation.
OpenTP1 also provides a troubleshooting facility, the UAP trace facility, for
troubleshooting UAP operation.

The OpenTP1 testers include online testers which operate in an online environment
with TP1/Server Base or TP1/Message Control and an offline tester used in an offline
environment.

The UAP trace facility can be used with TP1/Server Base.

Each tester requires a different program product, as follows:

TP1/Online Tester

For using the TP1/Server Base online tester

TP1/Message Control/Tester

For using the TP1/Message Control online tester

TP1/Offline Tester

For using the offline tester

1. Overview

3

1.2 Overview of testers

Figure 1-1 shows the OpenTP1 testers.

Figure 1-1: OpenTP1 testers

1.2.1 Online testers
(1) Online tester (TP1/Online Tester)

The online tester for TP1/Server Base (hereafter called the online tester) performs the
following (see Part II for details):

• Simulates client and server UAPs

• Simulates the MCF

1. Overview

4

• Disables resource updating

• Simulates operating commands issued from the UAP

• Creates, edits, and outputs tester files (data files used in tests)

• Collects, edits, and outputs UAP trace information

• Collects and edits UAP send messages

• Runs with the debugger

Using the online tester, you can test and check the operation of an SUP, SPP, or MHP
in an online environment.

TP1/Server Base must be installed to use the online tester.

Figure 1-2 shows how the online tester is structured.

1. Overview

5

Figure 1-2: Overview of online tester

1. Overview

6

(2) Online tester (TP1/Message Control/Tester)
The online tester for TP1/Message Control (hereafter called the MCF online tester)
performs the following (see Part III for details):

• Disables updating of non-MCF resources

• Invalidates send messages

• Invalidates application startup messages

• Suppresses error events

• Suppresses MHP automatic shutdown

• Collects UAP trace information

The online tester (TP1/Online Tester) is required for collecting UAP trace information.
Otherwise, the MCF online tester can be used without installing TP1/Online Tester.

When an MHP is specified as a test program for both the online tester and the MCF
online tester, the MCF online tester specification takes precedence.

Figure 1-3 shows how the MCF online tester is structured.

Figure 1-3: Overview of MCF online tester

1.2.2 Offline tester (TP1/Offline Tester)
The offline tester performs the following (see Part IV for details):

• Simulates client and server UAPs

• Simulates the MCF

1. Overview

7

• Simulates file services

• Simulates operating commands issued from the UAP

• Creates tester files (data files used in tests)

• Executes commands continuously

• Runs with the debugger

• Collects offline tester trace information

Using the offline tester, you can test and check the operation of an SPP or MHP in an
offline environment.

Depending on the functions used during testing, the UAP may need to be compiled
using the header files provided by the following program products:

• TP1/Server Base

When using functions provided by TP1/Server Base

• TP1/Message Control

When using message send/receive functions

• TP1/FS/Direct Access

When using DAM service functions

• TP1/FS/Table Access

When using TAM service functions

• TP1/Shared Table Access

When using IST service functions

Also, the OpenTP1 stbmake command is required when creating a UAP for offline
tester use. At UAP creation, copy the OpenTP1 command file containing the stbmake
command.

Figure 1-4 shows how the offline tester is structured.

1. Overview

8

Figure 1-4: Overview of offline tester

1. Overview

9

1.3 Overview of UAP traces

As an aid to handling possible UAP errors, OpenTP1 collects a log of the library
functions used by the UAP. This information shows which functions returned an error
and which resources the UAP attempted to access. By editing and outputting this
information, the user can analyze the cause of UAP errors and then correct the UAP or
rebuild the system. This facility is called the UAP trace facility.

UAP traces are collected for each SUP, SPP, or MHP process.

If either of the following files is available when a UAP terminates abnormally, the
UAP traces are automatically edited and output to that file.

• UAP trace data file

• Core file

If a UAP terminates abnormally and a core file exists, the UAP trace is automatically
edited and output to a file. The user can edit and output the UAP trace to the standard
output by using the uatdump command of TP1/Server Base. See Subsection 15.2.2
UAP trace output methods for details of the uatdump command.

UAP traces can also be collected when using an online or offline tester to test a UAP.
Such information is useful for analyzing the processing flow in a UAP test.

For the online tester, UAP traces are collected for TP1/Server Base. For the offline
tester, specialized trace information is collected.

11

PART 2: Online Tester (TP1/Online Tester)

Chapter

2. Facilities

This chapter describes the test facilities available with the online tester.

This chapter contains the following sections:

2.1 Facilities of the online tester
2.2 Simulating a client UAP
2.3 Simulating a server UAP
2.4 Simulating the MCF
2.5 Disabling resource updating
2.6 Simulating operating commands
2.7 Creating and outputting tester files
2.8 Collecting test information
2.9 Interlocking the debugger

2. Facilities

12

2.1 Facilities of the online tester

The online tester provides the following facilities for testing UAPs:

1. Client UAP simulator

Simulates client UAP processing so that a server UAP can be tested without a
client UAP.

2. Server UAP simulator

Simulates server UAP processing so that a client UAP can be tested without a
server UAP.

3. MCF simulator

Simulates message send and receive processing controlled by TP1/Message
Control so that an MHP or an SPP called by service requests from the MHP can
be tested without TP1/Message Control.

4. Disabling resource update

Disables update processing of resources so that the test UAP does not update
resources used by applications.

5. Operating command simulator

Simulates the processing of operating commands issued by a test UAP.

6. Tester file creation and editing

Creates tester files needed for each simulation and outputs them in an edited
format.

7. UAP trace collection

Collects UAP trace information for the UAP being tested.

8. Merger and editing of UAP trace information

Merges UAP trace information collected in multiple files and edits the
information for output.

9. Send message editing

Collects send messages from test UAPs and edits the messages for output.

10. Debugger interlocking

Executes a UAP to be tested under control of the debugger.

2. Facilities

13

2.2 Simulating a client UAP

The online tester can take the place of a client UAP in requesting services from a server
UAP. This allows the user to test the server UAP without needing a client UAP. This
facility is called the client UAP simulator.

An online tester command is used to simulate a client UAP. Before executing the
command, the user must first create the processing data to be passed to the server UAP.
This data is created in a service request data file. The response data from the server
UAP is saved to the service response data file specified in the command.

There are two types of service request data files which are used according to the client
interface:

• RPC request data file (for simulating a UAP that has an RPC interface)

• XATMI request data file (for simulating a UAP that has an XATMI interface)

There are also two types of service response data files, selected according to the type
of simulated client UAP:

• RPC response data file (for simulating a UAP that has an RPC interface)

• XATMI response data file (for simulating a UAP that has an XATMI interface)

To test a server UAP using the client UAP simulator, the user must first define the
server UAP as a test-only UAP in a user service definition. A test-only UAP is a UAP
that runs in test mode. All of the facilities of the online tester are available for a
test-only UAP.

Instead of defining the server UAP as a test-only UAP, the server UAP can be defined
as a usable UAP in the user service definition. A usable UAP is a SPP that runs in test
mode only when the UAP being tested makes a service request.

2.2.1 Simulating a client UAP with an RPC interface
To simulate a client UAP that uses an RPC interface to send service requests, the user
must first create an RPC request data file with the processing data to be passed to the
server UAP. The response data from the server UAP is saved to the RPC response data
file specified in the online tester command.

Figure 2-1 illustrates the client UAP simulator for an RPC interface.

2. Facilities

14

Figure 2-1: Simulating a client UAP with an RPC interface

2.2.2 Simulating a client UAP with an XATMI interface
The client UAP simulator is also available when using the online tester for service
requests (the request/response service paradigm and the conversational service
paradigm) in an XATMI interface.

(1) Request/response service paradigm
To simulate a client UAP that sends the request/response service paradigm, the user
must first create an XATMI request data file with the processing data to be passed to
the server UAP. The response data from the server UAP is saved to the XATMI
response data file specified in the online tester command.

The user must also set the typed buffer information, needed for using the XATMI, in
the typed buffer definition file.

Also, the types of functions to be used in the request/response service paradigm must
be set as headers in the XATMI request data file.

Figure 2-2 illustrates the client UAP simulator for the request/response service
paradigm.

2. Facilities

15

Figure 2-2: Simulating a client UAP for request/response service paradigm

(2) Conversational service paradigm
To simulate a client UAP that sends the conversational service paradigm, the user must
first create an XATMI request data file with the processing data to be passed to the
server UAP. The types of functions to be used in the conversational service paradigm
must be set as the file headers. The response data from the server UAP is saved to the
XATMI response data file specified in the online tester command.

The user must also set the typed buffer information, needed for accessing the XATMI,
in the typed buffer definition file.

Also, the send/receive procedures must be set in a send/receive control file. The user
creates an XATMI receive data file with the data received by the test server UAP when
a service is requested. The name of this file is specified in the send/receive control file.
Data sent by the server UAP is saved to the XATMI response data file in the same way
as response data.

The server UAP's response data and send data, which the client UAP simulator saved
to the XATMI response data file, can be used by the server UAP simulator as the
request data and receive data sent to a client UAP. To enable the server UAP simulator

2. Facilities

16

to access the response data and send data, first use the binary editor to recreate the
XATMI response data file as an XATMI request data file and XATMI receive data file.

Figure 2-3 illustrates the client UAP simulator for the conversational service
paradigm.

2. Facilities

17

Figure 2-3: Simulating a client UAP for conversational service paradigm

2. Facilities

18

2.3 Simulating a server UAP

The online tester can take the place of a server UAP in executing services requested by
a client UAP. This allows the user to test the client UAP without needing a server UAP.
This facility is called the server UAP simulator.

To simulate a server UAP, the user activates the server UAP (dummy) and then
executes an OpenTP1 command. Before executing the command, the user must create
the response data to be passed to the client UAP. This data is created in a service
response data file. When the client UAP sends a service request, the online tester reads
the response data from the file and passes it to the client UAP.

There are two types of service response data files which are used according to the UAP
interface:

• RPC response data file (for simulating a UAP that has an RPC interface)

• XATMI response data file (for simulating a UAP that has an XATMI interface)

To test a client UAP using the server UAP simulator, the user must first define the
server UAP as a dummy SPP in a user service definition. A dummy SPP is an SPP that
does not actually generate processes when activated by the server UAP simulator. The
dummy SPP must be activated before entering the command to start testing.

2.3.1 Simulating a server UAP with an RPC interface
To simulate a server UAP that uses an RPC interface for accepting service requests,
the user must first create an RPC response data file with the response data to be
returned to the client UAP. When the client UAP sends a service request, the online
tester reads the response data from the file and returns it to the client UAP.

Figure 2-4 illustrates the server UAP simulator for an RPC interface.

2. Facilities

19

Figure 2-4: Simulating a server UAP with an RPC interface

2.3.2 Simulating a server UAP with an XATMI interface
The server UAP simulator is also available when using the online tester for service
requests (request/response service paradigm and conversational service paradigm) in
an XATMI interface.

(1) Request/response service paradigm
To simulate a server UAP that accepts request/response service paradigm, the user
must first create an XATMI response data file with the response data to be returned to
the client UAP. When the client UAP sends a service request, the online tester reads
the response data from the file and returns it to the client UAP.

Figure 2-5 illustrates the server UAP simulator for the request/response service
paradigm

2. Facilities

20

Figure 2-5: Simulating a server UAP for request/response service paradigm

(2) Conversational service paradigm
To simulate a server UAP that accepts the conversational service paradigm, the user
must first create an XATMI receive data file and XATMI response data file containing
the data to be received by the client UAP. When a receive request is sent from the client
UAP, the online tester reads an item of receive data from the XATMI receive data file
and returns it to the client UAP. If a further receive request is made after all the data in
the XATMI receive data file has been returned, the online tester reads response data
from the XATMI response data file and returns it to the client UAP.

The data sent by the client UAP is saved to the XATMI send data file created by the
online tester according to the specification in the user service definition.

Figure 2-6 illustrates the server UAP simulator for the conversational service
paradigm.

2. Facilities

21

Figure 2-6: Simulating a server UAP for conversational service paradigm

2. Facilities

22

2.4 Simulating the MCF

The online tester can take the place of the MCF in exchanging messages with an MHP.
This allows the user to test the MHP, or the SPP to which the MHP sends service
requests, without needing the MCF. This facility is called the MCF simulator.

An online tester command is used to start the MHP application. Before executing the
command, the user must first create an MCF receive message file with the messages to
be passed to the MHP. The messages sent from the MHP and SPP are saved to an MCF
send message file created by the online tester.

Send messages can be edited by online tester command. Also, specific send messages
can be recreated in the MCF receive message file and used again.

When an MHP uses the MCF simulator, the online tester manages that MHP. The MHP
is not managed by the actual MCF, even if active. Therefore, operating commands
provided by the MCF are not available for the MHP.

2.4.1 MCF simulation functions
At execution, the MCF simulator links the MHP to the online tester library rather than
to the library provided by the MCF. At linkage to the online tester, the functions used
by the MHP are replaced by functions for the online tester. These functions are called
MCF simulation functions.

To use the MCF simulator, the user must first write a user service definition, defining
the MHP for which functions are to be replaced as a simulate MHP. A simulate MHP
is an MHP that uses MCF simulation functions and runs in test mode (that is, all the
facilities of the online tester can be used). A simulate MHP is managed as an SPP by
the online tester.

The online tester cannot be used to test a normal MHP (linked to the MCF-supplied
library).

2.4.2 Simulating message send/receive
MCF simulation functions simulate message send and receive. Receive messages are
created in different MCF receive message files, depending on whether messages are
sent and received synchronously or asynchronously.

Asynchronous type receive message files are for simulating asynchronous message
send/receive. A single logical message is stored in an asynchronous type receive
message file.

Synchronous type receive message files are for simulating synchronous message send/
receive. All the logical messages received synchronously during execution of one
service are stored in a synchronous type receive message file.

2. Facilities

23

Figure 2-7 outlines simulation of message send/receive.

Figure 2-7: Simulating message send/receive

2.4.3 Simulating continuous inquiry responses
Simulation of continuous inquiry responses is executed by online tester command.
Temporary memory data is collected in a temporary memory data file created by the
online tester. This file is automatically deleted when continuous inquiry responses
terminate.

Figure 2-8 outlines simulation of continuous inquiry responses.

2. Facilities

24

Figure 2-8: Simulating continuous inquiry responses

2. Facilities

25

2.4.4 Simulating application program startup requests
Online tester commands can be used to simulate an application program startup
request. When a UAP requests startup of an application program, the application
program does not actually start, but the data to be passed is saved in an MCF send
message file created by the online tester. To send this data and start the application
program, the user enters an online tester command to download the data to another file.
Then, the user starts the application program by command input, using this file as the
MCF receive message file. In this way, a startup request can be simulated for an
application program that was not actually started by the UAP.

Figure 2-9 outlines simulation of an application program startup request.

2. Facilities

26

Figure 2-9: Simulating an application program startup request

2. Facilities

27

2.4.5 Simulating synchronous point processing
When a commit request or rollback request is issued by the MHP being tested, the
function is actually executed by the online tester. For a commit request, however, the
user service definition determines whether a commit or rollback is performed.

Also, even if process termination or re-scheduling occurs during a rollback request, the
rollback function is completed and returned.

The online tester cannot handle process termination or re-scheduling. Include such
processing within the MHP to be tested.

2. Facilities

28

2.5 Disabling resource updating

The online tester can restore the resources updated during a test. This is called
disabling resource updating.

Updated resources are restored by rollback at normal termination of the transaction.
Whether a commit or rollback is performed at normal termination is determined for the
global transaction according to the user service definition for the UAP in which the
root transaction branch occurred. When two or more transaction branches occur, the
specification for the UAP in which the root transaction branch occurred takes effect,
regardless of the specifications for the individual UAPs.

Transaction-dependent journals collected for a transaction being tested can be edited
for output in the same way as normal journals, using the jnledit OpenTP1
command.

2. Facilities

29

2.6 Simulating operating commands

The online tester can simulate command execution requested by the
dc_adm_call_command function issued in a UAP. This facility is called the
operating command simulator.

In the user service definition, the user can specify for each UAP whether to use the
operating command simulator. The following two options are available:

(1) Skipping command execution
Operating commands are skipped instead of being executed. The following default
information is set as the command execution result (return information of the
dc_adm_call_command function):

• Shell termination code: 0

• Data output to standard output or standard error output: Null character

• Output data length (standard output or standard error output): 0

(2) Replacing command execution results
Instead of the operating command being executed, the data in the operating command
result data file is set as the command execution result. When the UAP issues a
dc_adm_call_command function, the online tester reads the execution result data
from the file and returns the data to the UAP.

An operating command result data file must be created for each service. Set the
execution result data in this file before running a test.

If the dc_adm_call_command function is issued more than once in a service, the user
must create the data to be returned at each function call. This also applies to the main
function in the SPP and to functions issued from an SUP.

Figure 2-10 shows how the data in the operating command result data file is used to
replace the actual execution result.

2. Facilities

30

Figure 2-10: Replacing command execution results

2. Facilities

31

2.7 Creating and outputting tester files

The online tester uses a number of different simulators, so a dedicated-use data file
must be created for each one. These data files are called tester files.

This section describes how tester files are created, edited, and output.

2.7.1 Creating tester files
Each tester file is written in a specific data format. However, the user can easily create
the tester files by command input, using the online tester. This is called the tester file
creation facility.

Table 2-1 lists the tester files that can be created with the tester file creation facility.

Table 2-1: Tester files created by tester file creation facility

The tester file creation facility is used to create tester files with one of following two
methods:

• Using the test data definition file

Creation of a tester file can use data from the test data definition file created by
the user. The user can create the test data definition file using a text editor. This
file can contain data for multiple tester files.

• Using journal data

Creation of a tester file can use record data from an unload journal file or trace

Tester files Creator Simulator using the tester file

Service request
data files

RPC request data file User Client UAP simulator

XATMI request data file User Client UAP simulator

Service
response data
files

RPC response data file User Server UAP simulator

Online tester Client UAP simulator

XATMI response data file User Server UAP simulator

Online tester Client UAP simulator

XATMI receive data file User Client UAP simulator

MCF receive
message files

Asynchronous receive message file User MCF simulator

Synchronous receive message file User MCF simulator

Operating command result data file User Operating command simulator

2. Facilities

32

data from an RPC trace file. To use journal data, extract it using an operating
command.

Commands for extracting data and data types depend on kinds of tester files to be
created. Using journal data disallows creation of an operating command result
data file. Table 2-2 lists the kinds of tester files to be created, corresponding data
extraction commands, and available data.

Table 2-2: Kinds of tester files to be created, available data extraction
commands, and available data

Legend:

--: No files are created from journal data or trace data.

Tester file name Data extraction
command

Available data

RPC request data file rpcdump • First effective RPC request send data out of RPC
trace data extracted by the rpcdump command.

XATMI request data file rpcdump • First effective tpcall or tpacall function data
out of XATMI request/response request send data
in RPC trace data extracted by the rpcdump
command.

• First effective tpconnect function data out of
XATMI interactive request send data in RPC trace
data extracted by the rpcdump command.

RPC response data file rpcdump • First effective RPC request send data out of RPC
trace data extracted by the rpcdump command.

XATMI response data file rpcdump • First effective tpreturn function data out of
XATMI request/response and interactive request
send data in RPC trace data extracted by the
rpcdump command.

XATMI receive data file rpcdump • All tprecv function data out of XATMI
interactive receive data in RPC trace data extracted
by the rpcdump command.

Asynchronous receive
message file

jnlrput • ij record data and mj record input message data in
unload journal files extracted by the jnlrput
command. When two or more record data entries
are available, the system accepts data entries whose
order identifier begins with s or l.

Synchronous receive
message file

jnlrput • Input message data in mj records from unload
journal files extracted by the jnlrput command.

Operating command result
data file

-- --

2. Facilities

33

2.7.2 Editing and outputting tester files
The online tester can edit and output contents of the created tester file. This is called
the tester file edit and output facility.

To use this facility, execute an online tester command. Entering the command edits
data in a specified tester file based on the format of the specified tester file kind and
outputs the edited data to the standard output.

Table 2-3 shows tester files available for edit and output with the tester file edit and
output facility.

Table 2-3: Tester files available for edit and output with the tester file edit and
output facility

Tester files Creator Simulator using the tester file

Service request
data files

RPC request data file User Client UAP simulator

XATMI request data file User Client UAP simulator

Service
response data
files

RPC response data file User Server UAP simulator

Online tester Client UAP simulator

XATMI response data file User Server UAP simulator

Online tester Client UAP simulator

XATMI send/
receive data
files

XATMI send data file Online tester Client UAP simulator

Server UAP simulator

XATMI receive data file User Client UAP simulator

MCF receive
message files

Asynchronous receive message file User MCF simulator

Synchronous receive message file User MCF simulator

Operating command result data file User Operating command simulator

2. Facilities

34

2.8 Collecting test information

2.8.1 Collecting UAP trace information
The online tester collects UAP trace information for the UAP running in test mode at
the entrance and exit of each OpenTP1 function. This is called collecting UAP trace
information.

The functions provided by OpenTP1 that access a user server, an RPC function, a
DAM file, or a TAM file can use an online tester facility that collects a trace of all the
I/O data specified in the function. This is called collecting of the complete I/O data
trace.

Table 2-4 shows the functions that can use an online tester facility that collects the
complete I/O data trace.

Table 2-4: Functions that can use the complete I/O data trace collection facility

Facility Function name

C format COBOL format

User server Service function start Service program start

Service function end Service program end

Service function start
(at retry)

Service program start (at retry)

Service function end (at
retry)

Service program end (at retry)

Remote procedure call dc_rpc_call CBLDCRPC('CALL ')

dc_rpc_cltsend CBLDCRPC('CLTSEND ')

DAM file service dc_dam_read CBLDCDAM('DCDAMSVC', 'READ')

dc_dam_rewrite CBLDCDAM('DCDAMSVC', 'REWT')

dc_dam_write CBLDCDAM('DCDAMSVC', 'WRIT')

TAM file service dc_tam_read CBLDCTAM('FxxR')('FxxU')

dc_tam_rewrite CBLDCTAM('MFY ')('MFYS')('STR ')

dc_tam_write

IST service dc_ist_read CBLDCIST('DCISTSVC', 'READ')

dc_ist_write CBLDCIST('DCISTSVC', 'WRIT')

2. Facilities

35

The complete I/O data trace is collected at different times depending on the function,
as shown below.

• User server functions

Collect input data at startup and collect output data at termination.

• Data send/receive functions

Collect the send data on service requests and the CUP notification data at the start
of the function. Also, collect the receive data on service responses at the exit of
the function.

• File data read functions

Collects the trace at the exit of the function.

• File data write functions

Collects the trace at the start of the function.

UAP trace information is collected in trace files. A trace file is created automatically
for each OpenTP1 system when the online tester collects the first trace information.
When full, the trace file is swapped with another file.

Trace information for a number of OpenTP1 functions is collected in one file at
completion of a service function, for example. Also, if the UAP terminates abnormally,
trace information is extracted from the core file and saved in the trace file. For this
reason, trace information may not be collected if the online tester is immediately
terminated during UAP execution or if no core file is collected at abnormal UAP
termination.

2.8.2 Merging, editing, and outputting UAP trace information
The online tester can merge UAP trace information from a number of trace files into a
single file and edit the file contents for output. This is called merging and editing UAP
trace information.

Trace information is merged by entering an online tester command. The user specifies
two or more trace files and the trace information is merged in a single file, following
the service sequence. This facility can be used for saving the trace information from a
number of OpenTP1 systems in collection sequence for each global transaction. The
facility can also be used for merging the contents of a trace file and swap file.

Figure 2-11 shows the result of merging UAP trace information.

User journal collection dc_jnl_ujput CBLDCJNL('UJPUT ')

Facility Function name

C format COBOL format

2. Facilities

36

Figure 2-11: Result of merging UAP trace information

Trace information can be edited for output by online tester command. The user can

2. Facilities

37

specify the log date and time to set the output range.

Two output formats are available:

• All the trace information in a trace file

• Part of the trace information (function names, for example) in a trace file

Figure 2-12 gives an overview of collecting, merging, editing, and outputting UAP
trace information.

2. Facilities

38

Figure 2-12: Collecting, merging, editing, and outputting UAP trace
information

2. Facilities

39

2.8.3 Editing send messages
The send messages collected in the MCF send message file when using the MCF
simulator can be edited for output. This is called editing send messages.

Send messages are edited by entering an online tester command. The data in the MCF
send message file is edited and output to the file specified in the command or to
standard output.

2. Facilities

40

2.9 Interlocking the debugger

The online tester can online test test-only UAPs such as SUP, SPP, and MHP by
interlocking with the debugger. This facility is called debugger interlocking.

Specify debugger interlocking for each UAP in the user service definition and execute
the online tester command. The main function in the UAP activates the debugger.
Interlocking the debugger easily provides step-by-step debugging or batch debugging.

The available debugger is:

• dbx

• cbltd (COBOL85/TD)

• cblcv (COBOL85/TD)

Before testing a UAP online by interlocking the debugger, test that UAP is offline. Do
not let more than one user interlock the debugger on the same node to perform a test.
This is a guard against an effect on the OpenTP1 system when the UAP interlocked to
the debugger terminates abnormally.

The user can collect trace information about a UAP interacting with the debugger in
the same manner as a UAP that operates independently of the debugger. However, part
or all of the trace information may be unavailable depending on the timing when the
online tester writes trace information. Figure 2-13 outlines how debugger interlocking
works.

2. Facilities

41

Figure 2-13: Interlocking the debugger

43

Chapter

3. Setting the Test Environment

This chapter explains how to set the environment for running tests with the online
tester.

This chapter contains the following sections:

3.1 System definitions for the online tester
3.2 Setting environment variables
3.3 User-created files
3.4 Creating files

3. Setting the Test Environment

44

3.1 System definitions for the online tester

The system definitions for running the online tester are described below. See the
manual OpenTP1 System Definition for information on definition structure and rules.

3.1.1 System service configuration definition
Add the following definition to the OpenTP1 system service configuration definition
(definition file name: $DCCONFPATH/sysconf).

(1) Syntax
(a) set format

(b) Command format
None.

(2) Function
Defines whether to start the online tester at system startup.

(3) Explanation
(a) set format

Operands
uto_conf=Y|N ~<<N>>

Specify whether to use the online tester at this node.

Y

Use the online tester.

N

Do not use the online tester.

(b) Command format
None.

3.1.2 Tester service definition
Create the definition file $DCCONFPATH/uto, then define in this file the tester service
definition.

[set uto_conf=Y|N]

3. Setting the Test Environment

45

(1) Syntax
(a) set format

(b) Command format

(2) Function
Defines the environment for executing online tester services.

(3) Explanation
(a) set format

Operands
uto_server_count ~<unsigned integer> ((0-240)) <<64>>

Specify the maximum number of user servers that can be activated for testing by
the online tester.

max_trace_file_size ~<unsigned integer> ((0-2000000)) <<64>> (unit:
Kbytes)

Specify the maximum size of each trace file for storing UAP trace information.
As the header (management information) in a trace file is 128 bytes, add 128 bytes
to the value you wish to specify.

When zero is specified, the online tester does not collect UAP trace information.

Up to two trace files are created for each tester user ID. This prevents erasure of
the trace information when a trace file becomes full.

Whenever a trace file becomes full, the trace information must be backed up, and
then the full trace file is deleted. Prevent the trace file from becoming full by
specifying sufficient size.

The maximum trace file size that can be specified for an OpenTP1system is given

[set uto_server_count=maximum no. of test user servers]
[set max_trace_file_size=maximum size of trace files]
[set max_message_file_size=maximum size of MCF send
 message file]
[set watch_time=max reply wait time]
[set rpc_trace=Y|N]
[set rpc_trace_name="name of the file for collecting RPC
 trace information"]
[set rpc_trace_size=size of the file for collecting RPC
 trace information]

{{[<INDEXWORD PRONOUNCE="utoterm" INDEXITEM="utoterm" PARENTPRONOUNCE="Tester Service
Definition" PARENTITEM="Tester Service Definition">utoterm</INDEXWORD> [-p
OSITP|other] logical-terminal-name]}}

3. Setting the Test Environment

46

by the following equation:

Maximum size of trace file =

(value specified in max_trace_file_size operand) x 2 x (number of
users) x 1,024 bytes

max_message_file_size ~<unsigned integer> ((0-2000000)) <<64>> (unit:
Kbytes)

Specify the maximum size of the MCF send message file for storing messages
sent by the following functions when the online tester's MCF simulator is used:

• dc_mcf_send function

• dc_mcf_reply function

• dc_mcf_sendsync function

• dc_mcf_sendrecv function

• dc_mcf_execap function

As the management information data in each send message is 128 bytes, and the
header (management information) in the MCF send message file is 128 bytes, add
128 bytes to the value you wish to specify.

When zero is specified, the online tester does not collect send messages.

An MCF send message file is created for each test user ID. The maximum size
that can be specified for a MCF send message file in an OpenTP1 system is given
by the following equation:

Maximum size of MCF send message file =

(value specified in max_message_file_size operand) x (number of
users) x 1,024 bytes

watch_time ~<unsigned integer> ((0-62535)) (unit: seconds)

When using remote procedure calls (RPCs) for inter-process communication,
specify the maximum wait time for return of a service reply after a service request
is sent.

OpenTP1 may suspend termination processing for the length of time specified in
this operand. Therefore, if you specify a large value, the termination processing
of OpenTP1 may take some time.

If no reply has been received when the specified time elapses, the RPC returns a
send/receive timeout error.

When zero is specified, the system remains in wait state indefinitely.

When you specify zero, OpenTP1 may not terminate.

3. Setting the Test Environment

47

When specification is omitted, the value specified in the watch_time operand of
the system common definition is assumed.

rpc_trace=Y|N ~<<N>>

Specify whether to collect RPC traces.

Y

Collect RPC traces.

N

Do not collect RPC traces.

When specification is omitted, the value specified in the rpc_trace operand in
the system common definition is assumed.

rpc_trace_name ~<pathname> <<$DCDIR/spool/rpctr>>

Specify the pathname of the file for collecting RPC traces.

In the pathname, the maximum length of the name of the file for acquiring the
RPC trace is 13 characters. The default file name is rpctr.

To specify an environment variable in a pathname, make sure that the pathname
begins with the environment variable (example: $DCDIR/tmp/file-name).

When specification is omitted, the value specified in the rpc_trace_name
operand in the system common definition is assumed.

rpc_trace_size ~<unsigned integer> ((1024-2147483648)) <<4096>> (Unit:
bytes)

Specify the size of the file for collecting RPC traces.

When specification is omitted, the value specified in the rpc_trace_size
operand in the system common definition is assumed.

(b) Command format
See below.

3.1.3 Tester service definition (command format)
(1) utoterm (specification of logical terminal information)

Syntax

Function

Defines information for each logical terminal when using the MCF simulator for
testing an MHP created in the data manipulation language (DML).

{{[utoterm [-p OSITP|other] logical-terminal-name]}}

3. Setting the Test Environment

48

When a name already specified is respecified as the logical terminal name, a
warning message is displayed and the repeat specification is ignored.

Options

-p OSITP|other ~<<other>>

Specify the protocol type. Specify this option when testing an MHP created in the
DML.

OSITP

OSI TP protocol

other

Protocol other than OSI TP

logical-terminal-name ~<identifier of 1-8 characters>

Specify the logical terminal name.

3.1.4 User service definition
Add the following definitions to the OpenTP1 user service definition (definition file
name: $DCCONFPATH/user-server-name).

(1) Syntax
(a) set format

(b) Command format
None.

(2) Function
Enables execution of the online tester at the user server. Add the definitions to each
service group in the OpenTP1 user service definition.

(3) Explanation
(a) set format

Operands
test_mode=target|usable|dmyspp|simmhp|no ~<<no>>

Specify whether the UAP is to be tested when the online tester is activated.

[set test_mode=target|usable|dmyspp|simmhp|no]
[set test_transaction_commit=Y|N]
[set test_adm_call_command=do|skip|file]
[set test_xatmi_send_file=Y|N]
[set test_debugger="{dbx|cbltd|cblcv}[command-argument]"]
[set test_data_trace=Y|N]

3. Setting the Test Environment

49

target

Test-only UAP

Specify this option to set the UAP as a test-only UAP. All the facilities of the
online tester (disabling resources updating, collecting UAP trace
information, and so on) are used in testing the UAP.

Service requests cannot be made from a test-only UAP to a non-test UAP, or
from a non-test UAP to a test-only UAP.

usable

Usable UAP

Specify this option to set the UAP as an SPP to which service requests are
sent from the UAP being tested.

A usable UAP runs in test mode when the UAP being tested makes a service
request. The facilities of the online tester, such as disabling resources
updating, can be used.

When a service request is made from a non-test UAP, the usable UAP runs
in non-test mode and the online tester facilities are not available.

dmyspp

Dummy SPP

Specify this option to use the online tester's server UAP simulator to simulate
the SPP without actually activating it.

simmhp

Simulate MHP

Specify this option to use the online tester's MCF simulator and link
simulation functions to the MHP.

no

Non-test UAP

Specify this option to exclude the UAP from testing. Service requests cannot
be made from a test UAP to a UAP with the no specification.

The following tables show the relationships between the test_mode operands
and the online tester facilities that can be used for UAPs, as well as the
relationships between a calling UAP and a called UAP when a service is
requested.

3. Setting the Test Environment

50

Table 3-1: test_mode specifications and available test facilities

Legend:

Y: Available.

Y/N: May be available, depending on the type of function.

Main function

 Not available.

Service function

 Available when using the client UAP simulator for service requests. In other
cases, the test facility is available if it can be used with the calling UAP (or with
the UAP that makes the first request when a service extends over multiple UAPs).

N: Not available.

--: Not applicable.

#: The UAP must be linked to the MCF simulation functions provided by the online
tester.

Table 3-2: Relationships between calling UAP and called UAP when requesting
services

Available test facility target usable dmyspp simmhp no

Client UAP simulator Y Y -- -- N

Server UAP simulator Y Y/N -- Y N

MCF simulator Y# Y/N -- Y# N

Disabling the resources update process Y Y/N -- Y N

Operating command simulator Y Y/N -- Y N

Collecting UAP trace information Y Y/N -- Y N

Debugger interlocking Y N -- Y N

Calling UAP Called UAP

target usable dmyspp simmhp no

target Y Y Y -- N

usable Test mode Y Y Y -- N

Non-test mode N Y N -- Y

3. Setting the Test Environment

51

Legend:

Y: Service requests can be made.

N: Service requests cannot be made.

--: Not applicable.

test_transaction_commit=Y|N ~<<N>>

Specify whether a commit or rollback is performed at a synchronous point when
a transaction running in test mode occurs in this UAP.

Y

Commit

N

Rollback

test_adm_call_command=do|skip|file ~<<do>>

Specify whether to simulate operating command execution when a
dc_adm_call_command function is issued in this UAP.

do

Execute operating commands.

skip

Instead of executing the command, use the default result.

This option is valid only when target or simmhp is set in the test_mode
operand, or when usable is specified and the UAP is running in test mode.

file

Instead of executing the command, use the data in the operating command
result data file as the execution result.

This option is valid only when target or simmhp is set in the test_mode
operand, or when usable is specified and the UAP is running in test mode.

dmyspp -- -- -- -- --

simmhp Y Y Y -- N

no N Y N -- Y

Calling UAP Called UAP

target usable dmyspp simmhp no

3. Setting the Test Environment

52

test_xatmi_send_file=Y|N ~<<N>>

Specify whether the data sent to the simulated UAP by the server UAP simulator
is to be output to the XATMI send data file when a conversational service is
requested in an XATMI interface.

Y

Outputs the send data to the file.

N

Does not output the send data to the file.

This option is ignored if specified for a UAP other than a simulated UAP (dmyspp
specified in the test_mode operand).

test_debugger="{dbx|cbltd|cblcv}[command-argument]"
When activating the UAP by interlocking the debugger, specify the necessary
debugger command name and a command argument for that debugger command.

When a UAP is given this definition, executing the utodebug command
activates this UAP together with the specified debugger.

Inadvertently executing the dcsvstart or dcstart command for a UAP with
this definition causes the command to fail, outputting an error message.

To terminate the UAP that was activated with the utodebug command, execute
the utodbgstop command from a window other than that was used to execute
the utodebug command.

If the UAP is terminated with a command other than the utodbgstop command,
the OpenTP1 system and the online tester may provide different UAP states. The
executed command must wait until the debugger terminates.

It is impossible to re-activate a UAP process that was activated with the debugger.
After termination of the UAP process that is interlocked to the debugger,
reexecuting this UAP needs to stop the debugger, then reexecute the utodebug
command.

The UAP with this definition can be active in a single process regardless of the
parallel_count operand value specified in the user service definition of the
corresponding UAP.

It is impossible to enable or disable shutdown for the UAP that was activated with
the debugger.

test_data_trace=Y|N ~<<N>>

Specify whether the complete I/O data issued in this UAP for the function is to be
collected as trace information. For the function that can use a facility that collects
the complete I/O data trace information, see Subsection 2.8.1 Collecting UAP

3. Setting the Test Environment

53

trace information.

Y

Collects the complete I/O data as UAP trace information.

This option is valid only when a value of 1 or greater is specified in the
max_trace_file_size operand of the tester service definition to use the
UAP as the test target.

N

Collects a part of the I/O data as UAP trace information.

This option is valid only when a value of 1 or greater is specified in the
max_trace_file_size operand of the tester service definition to use a
UAP as the test target.

(b) Command format
None.

(4) Notes
• When specifying simmhp in the test_mode operand, match all the other

specifications in the user service definition with the SPP specifications.

Example:

Also, specify queue in the receive_from operand.

• User service default definitions cannot be specified as online tester definitions in
the user service definition. This prevents a real job UAP from being run in error
in a test environment.

• When using the MCF simulator, specify Y in the atomic_update operand of the
user service definition if a transaction MHP is to be executed.

• The schedule priority of a test UAP depends on value specified in the
schedule_priority operand of the user service definition. When executing a
test UAP concurrently with a real job UAP, consider the effect on the performance
of the job UAP when specifying the priority of the test UAP.

• If zero is specified in the uap_trace_max operand of the user service definition
(even if a value of 1 or higher is specified in the max_trace_file_size
operand of the tester service definition), a warning message output, indicating that
UAP trace information cannot be collected.

• When the online tester is not being used, the dc_rpc_open function returns an
error code at activation of a UAP that has a value other than no specified in the

type=other

3. Setting the Test Environment

54

test_mode operand. This prevents a test UAP from being run in error as a real
job UAP.

• To interlock a UAP to the debugger, specify file or skip for the
test_adm_call_command operand. When the UAP is interlocked to the
debugger by specifying do for the test_adm_call_command operand, issuing
the dc_adm_call_command function lets the UAP wait for a response, disabling
debugger control. To solve this, issue the utodbgstop command to terminate the
UAP, then terminate the debugger.

• Do not issue a fork system call or system(3C) function to a UAP interlocked
with the debugger. Issuing these functions lets the UAP wait for a response,
disabling debugger control. To solve this, issue the utodbgstop command to
terminate the UAP, then terminate the debugger.

• Debugger interlocking is unavailable when running under the multi-node
environment.

• If possible, avoid testing a UAP interlocked with the debugger under the
OpenTP1 system where a real job UAP is active. This is to prevent a system
failure caused by normal or abnormal termination of the UAP interlocked with the
debugger under the OpenTP1 system where the UAP is operating.

• Consider debugger interlocking operations and operation times when specifying
monitoring time values in the user service definition for the UAP interlocked with
the debugger. A thoughtlessly specified value may frequently cause a time-out
error.

• When do is specified for the test_adm_call_command operand for a UAP to
start another UAP in the test mode using the dcsvstart command set in the
argument of the dc_adm_call_command function, specify the environment
variable DCUTOKEY in the user service definition of the UAP that issues the
function.

3.1.5 Setting the typed buffer
Typed buffer information must be set to simulate a UAP that uses the XATMI
interface. Typed buffer information is stored in a typed buffer definition file (any file
name).

(1) Syntax

Legend:

0

One or more spaces or tab codes (or none)

zueng020.tif0type zueng020.tif1subtype zueng020.tif1buffer-length

3. Setting the Test Environment

55

1

One or more spaces or tab codes

(2) Operands
type ~<8 upper-case alphabetics>

Specify either of the following buffer types:

• X_COMMON

• X_C_TYPE

subtype ~<1-16 alphanumerics>

Specify the buffer subtype. When the specification exceeds 16 characters, only
the first 16 are valid.

Up to 512 subtypes can be defined for X_COMMON or X_C_TYPE. When more than
512 subtypes are defined, an error occurs and the utoxsppsvc command is
terminated.

When a subtype is duplicated, the first definition is valid. The second and
subsequent definitions result in an error and an error message is output. No error
message is output, however, when identical contents are defined for the
duplicated subtypes.

buffer-length ~<decimal digit>

Specify the buffer length. Check the buffer length by referring to the stub source
created by the TP1/Server Base stbmake command and an output result created
by the stbmake command with the -p option specified.

(3) Definition example

(4) Notes
• Specify one subtype name per line.

• A line can be up to 512 bytes in length, including the line feed code.

• Write # at the start of a comment. Only a space or tab code may be written before
#.

Do not write a comment at the end of the typed buffer definition.

• No error occurs for the file when no valid definitions exist. However, an error

typed-buffer-definition
X_COMMON subtype1 256
X_COMMON subtype2 128
X_C_TYPE subtype3 128
#

3. Setting the Test Environment

56

occurs when the typed buffer is allocated when, for example, a service is
requested.

3.1.6 Setting send/receive procedures
Send/receive procedures must be set when using the conversational service paradigm
with a simulated UAP that uses the XATMI interface. Send/receive procedures are
stored in a send/receive control file (any file name).

In the send/receive control file, define a send statement for sending data to the test
SPP and a recv statement for receiving data from the test SPP.

Always create a send/receive control file when using the conversational service
paradigm, even if no data is actually sent or received.

(1) Syntax
(a) send statement

Legend:

0

One or more spaces or tab codes (or none)

1

One or more spaces or tab codes

(b) recv statement

Legend:

0

One or more spaces or tab codes (or none)

1

One or more spaces or tab codes

(2) Operands
(a) send statement

send

Specify the send keyword as the definition name.

zueng020.tif0send [zueng020.tif1XATMI-receive-data-file-name]

0recv 1type 1subtype or buffer-length [1flag [,flag...]]

3. Setting the Test Environment

57

XATMI-receive-data-file-name ~<pathname>

Specify the name of the XATMI receive data file containing the data received by
the test SPP.

When specification is omitted, the data in the XATMI receive data file specified
in the preceding send statement is used. An error occurs if specification is
omitted for the first send statement.

(b) recv statement
recv

Specify the recv keyword as the definition name.

type ~<8 upper-case alphabetics>

Specify one of the following receive buffer types:

• X_OCTET

• X_COMMON

• X_C_TYPE

subtype ~<1-31 alphanumerics>

Specify the receive buffer subtype when specifying X_COMMON or X_C_TYPE in
type.

buffer-length ~<decimal digit>

Specify the receive buffer length when specifying X_OCTET in type.

flag
Specify one or more of the following flags set for a receive request (tprecv
function):

• TPNOCHANGE

• TPNOBLOCK

• TPNOTIME

• TPSIGRSTRT

Do not specify a flag unless required.

When setting multiple flags, delimit each flag with a comma (,). Do not insert a
space or tab code before or after the comma.

3. Setting the Test Environment

58

(3) Definition example

(4) Notes
• A line can be up to 512 bytes in length, including the line feed code.

• Write # at the start of a comment. Only a space or tab code may be written before
#.

Do not write a comment at the end of the send/receive procedure definition.

• No error occurs if no send statement or receive statement is defined. However,
processing is terminated if a connection is established during execution of the
utoxsppsvc command.

• During execution of the utoxsppsvc command, the tpsend and tprecv
functions are issued for the conversational service paradigm according to the
specifications in the send/receive control file. If a TPEV_SVCSUCC or
TPEV_SVCFAIL event occurs, subsequent send and recv statements are ignored
and the command terminates normally.

• The definition in the recv statement is related to the XATMI functions issued by
the utoxsppsvc command as follows.

Example:

If the recv statement is defined as: recv X_COMMON subtype1
TPNOCHANGE

Then:

1. type

2. subtype

3. flag

send/receive procedure definition
interactive service name: service01
send sendfile1
recv X_OCTET 128 TPNOCHANGE
send sendfile2
recv X_COMMON subtype1 TPNOTIME,TPSIGRSTRT
#

3. Setting the Test Environment

59

3.2 Setting environment variables

If two or more users run tests on the same OpenTP1 system, the trace information may
be mixed and the test results may be difficult to verify. To prevent this risk, a test user
ID is set for each user of the online tester. The online tester assigns output files for trace
information and MCF send messages, using the test user IDs.

Set a unique test user ID for each user, subject to the following conditions:

Setting test user IDs means that trace files and MCF send message files can be created
and used by each test user ID.

Test user IDs are obtained at the following times:

• At UAP startup by the OpenTP1 dcsvstart command

• At specification of the dcsvstart command in the user service configuration
definition

• At a service request to an SPP by the online tester's utosppsvc or utoxsppsvc
command

• At a service request to an MHP by the online tester's utomhpsvc command

The test user ID may be assumed as _uto when the OpenTP1 system is restarted after
forced termination (-f option in the dcsvstop command) or after a system shutdown
during normal termination processing of a test UAP. A message is output, reporting
that the system was restarted with the assumed test user ID. If necessary, re-enter the
dcsvstart command to restart the OpenTP1 system after UAP termination.

Environment variable Value attribute Number of
characters

DCUTOKEY 1-byte alphanumerics (a-z, A-Z, and 0-9) Up to 4

3. Setting the Test Environment

60

3.3 User-created files

The following tables list the types and names of the tester files that the user must create
in order to use the online tester.

For creating a test directory, see Subsection 3.4.1 Test directory.

Table 3-3: List of tester files to be created by the user

Note

Tester file type Use and contents Time of
creation

Delet
ed by

Time of
deletion

Service
request data
files

RPC
request
data file

Stores request data passed to the
server UAP when using the client
UAP simulator with an RPC
interface.

Before service
request

User Any

XATMI
request
data file

Stores request data passed to the
server UAP when using the client
UAP simulator with an XATMI
interface.

Before service
request

User Any

Service
response data
files

RPC
response
data file

Stores data returned as the service
result when using the server UAP
simulator with an RPC interface.

At activation of
the simulate SPP

User Any

XATMI
response
data file

Stores data returned as the service
result when using the server UAP
simulator with an XATMI
interface.

At activation of
the simulate SPP

User Any

XATMI receive data file Stores data received by the tprecv
function in the UAP when the
conversational service paradigm is
made via an XATMI interface.

Before service
request or at
activation of the
simulate SPP#

User Any

MCF receive
message files

Asynchron
ous receive
message
file

Stores messages passed to the
MHP by the dc_mcf_receive
function when using the MCF
simulator.

Before service
request

User Any

Synchrono
us receive
message
file

Stores messages passed to the UAP
by the dc_mcf_recvsync and
dc_mcf_sendrecv functions
when using the MCF simulator.

Before service
request

User Any

Operating command result
data file

Stores data returned to the UAP as
the execution result when using the
operating command simulator.

Before service
request

User Any

3. Setting the Test Environment

61

All user-created files for the offline tester can be used without modification,
except the following:

 XATMI receive data file

 Synchronous receive message file

 Operating command result data file

However, these three files can be used by the offline tester if you use the cat
command to consolidate several offline tester data files into a single file.

#: The user creates an XATMI receive data file before a service request is made when
using the client UAP simulator, or at activation of the simulate SPP when using the
server UAP simulator.

Table 3-4: Names for user-created tester files

#1: When the service name exceeds 11 characters, the first five and last six characters
are combined as the service name.

Example:Service name uapservice0001 uapsece0001

Tester file type File name

Service request data files RPC request data file Any

XATMI request data file

Service response data
files

RPC response data file $DCDIR/spool/uto/test-user-ID/
user-server-name/svc-service-name#1

XATMI response data file $DCDIR/spool/uto/test-user-ID/
user-server-name/xsv-service-name#1

XATMI receive data file $DCDIR/spool/uto/test-user-ID/
user-server-name/xrv-service-name#1, #2, #3

MCF receive message
files

Asynchronous receive message file $DCDIR/spool/uto/test-user-ID/
xx....xx(xx....xx can be any name)

Synchronous receive message file $DCDIR/spool/uto/test-user-ID/
recv-logical-terminal-name#4

(Header segment file: $DCDIR/spool/uto
/test-user-ID/recvh-logical-terminal-name)

Operating command
result data files

For SPP service functions $DCDIR/spool/uto/test-user-ID/
user-server-name/cmd-service-name#1

For SUP and SPP main functions $DCDIR/spool/uto/test-user-ID/
user-server-name/cmd

3. Setting the Test Environment

62

#2: When the service name exceeds 15 characters, the first five and the 10th to 15th
characters are combined as the service name.

Example:Service name uapxatmiservice0001 uapxaervice

#3: Any name when using the client UAP simulator.

#4: Logical terminal name set as the argument of the dc_mcf_recvsync or
dc_mcf_sendrecv function.

3.3.1 Service request data files
(1) RPC request data file

An RPC request data file stores the data passed to the service function for the service
specified by the utosppsvc command when using the client UAP simulator with an
RPC interface. A single file contains one set of data.

(a) File structure

(b) File contents

(c) Notes
• The items in the RPC request data file are related to the service function

arguments as follows:

1. Data

2. Data length

3. Response area length

• An RPC request data file for the offline tester can also be used.

Item Position Length (bytes) Contents

Data length 0 4 Length of the data to be passed to the service function. (1 to
specified value of DCRPC_MAX_MESSAGE_SIZE)

Response area
length

4 4 Length of the response area to be passed to the service
function. (1 to specified value of
DCRPC_MAX_MESSAGE_SIZE)

Data 8 n Data to be passed to the service function.

3. Setting the Test Environment

63

• An error occurs when the specified data is less than the specified data length. Data
that exceeds the data length is ignored.

(2) XATMI request data file
An XATMI request data file stores the data passed to the service function for a
requested service when using the client UAP simulator with an XATMI interface. A
single file contains one set of data.

(a) File structure

(b) File contents
Item Position Length (bytes) Contents

Call type 0 8 Type of function calling a service:
call

call from tpcall function
acall

call from tpacall function
connect

call from tpconnect function

Buffer type 8 8 Buffer type, specified as one of the following character
strings:
• X_OCTET

• X_COMMON

• X_C_TYPE

Buffer
subtype

16 16 Buffer subtype, specified as a string of up to 16 characters.
Specify a null character when specifying X_OCTET as the
buffer type.

3. Setting the Test Environment

64

(c) Notes
• The items in the XATMI request data file are related to the service function

arguments as follows:

1. Address at which the data mapped to the buffer type and subtype is stored

2. Length of the data shown by data

• The items in the XATMI request data file are related to the XATMI functions
issued by the utoxsppsvc command as follows.

Flags 32 4 Flags to be passed to the service function, specified as a
hexadecimal and restricted by the specified call type:
0x00000000

0 (for call and acall only)
0x00000004

TPNOREPLY (for acall only)
0x00000008

TPNOTRAN

0x00000100
TPNOCHANGE (for call and acall only)

0x00000800
TPSENDONLY (for connect only)

0x00001000
TPRECVONLY (for connect only)

TPNOTIME and TPSIGRSTRT are always set at service
requests. TPNOBLOCK is not set.

Data length 36 4 Length of the data to be passed to the service function
(0-524288).
Specify zero when no data is passed. The buffer type and
subtype specifications are ignored when zero is specified.

Data 40 n Data to be passed to the service function

void tpservice(svcinf)
 TPSVCINFO *svcinf;

 struct TPSVCINFO {
 char name[32];
 char *data; 1.
 long len; 2.
 long flags;
 int cd;
 }

Item Position Length (bytes) Contents

3. Setting the Test Environment

65

1. XATMI function corresponding to the call type

2. Buffer type name

3. Buffer subtype name

4. Data length

5. Flags (specified as the actual flag values of the specified flags)

• An XATMI request data file for the offline tester can also be used.

• An error occurs when the specified data is less than the specified data length. Data
that exceeds the data length is ignored.

• When the subtype name is less than 16 characters, add null characters to the end
of the name.

• For buffer types other than X_OCTET, the data in the XATMI request data file is
illegal when the subtype data length specified in the file differs from the subtype
data length specified in the utoxsppsvc command.

• TPNOCHANGE can be specified in flag, but the specification is ignored.

• When the buffer type and subtype are specified, the values specified for the data
length and data must be the same as the data structure value defined for the stubs.

Boundary alignment is performed for the data structure defined for the stubs (the
total length is an integer multiple of 4). For this reason, the user must consider the
alignment portion when creating an XATMI request data file.

Check boundary alignment details in the stub source created by the stbmake
command and an output result created by the stbmake command with the -p
option specified.

3.3.2 Service response data files
(1) RPC response data file

When using the server UAP simulator with an RPC interface, the RPC response data
file stores the response data returned to the UAP making the service request to the
simulate SPP. A single file contains one set of service data.

When using the client UAP simulator, the RPC response data file stores the response

idata=tpalloc(type,subtype,ilen);
 2. 3. 4.
 tpcall(svc, idata,ilen,odata,olen,flags);
 1. 4. 5.
 tpacall(svc, idata,ilen,flags);
 1. 4. 5.
 tpconnect(svc, idata,ilen,flags);
 1. 4. 5.

3. Setting the Test Environment

66

data returned from the test UAP.

(a) File structure

(b) File contents

(c) Notes
• The items in the RPC response data file are related to the arguments of the service

request function (dc_rpc_call function) of the UAP making the service request
as follows:

1. Data

• An RPC response data file for the offline tester can also be used.

• An error occurs when the specified data is less than the specified data length. Data
that exceeds the data length is ignored.

(2) XATMI response data file
When using the server UAP simulator with an XATMI interface, the XATMI response
data file stores the response data returned to the UAP making the service request to the
simulate SPP. A single file can contain one or more sets of data.

(a) File structure

Item Position Length (bytes) Contents

Data length 0 4 Length of the data to be returned to the UAP making the
service request. (0-2147483647)

Data 4 n Data to be returned to the UAP making the service request.

dc_rpc_call(.....,in,in_len,out,out_len)
 1.

3. Setting the Test Environment

67

(b) File contents

(c) Notes
• The items in the XATMI response data file are related to the arguments of the

service termination function (tpreturn function) as follows:

1. Service termination code

2. Return code

3. Data stored in the buffer allocated by buffer type and subtype

4. Data length

• An XATMI response data file for the offline tester can also be used.

• An error occurs when the specified data is less than the specified data length. Data
that exceeds the data length is ignored.

• When the buffer type and subtype are specified, the values specified for the data

Item Position Length (bytes) Contents

Buffer type 0 8 Buffer type, specified as one of the following character
strings:
• X_OCTET

• X_COMMON

• X_C_TYPE

Buffer
subtype

8 16 Buffer subtype, specified as a string of up to 16 characters.
Specify a null character when specifying X_OCTET as the
buffer type.

Service
termination
code

24 4 One of the following hexadecimal values of rval in the
tpreturn function. The value is set in the tperrno area.
0x04000000

TPSUCCESS

0x20000000
TPFAIL

Return code 28 4 Hexadecimal value of rcode in the tpreturn function.
The value is set in the tpurcode area.

Data length 32 4 Length of the data to be returned to the UAP making a
service request (0-524288).
Specify zero when no data is passed. The buffer type and
subtype specifications are ignored when zero is specified.

Data 36 n Data to be returned to the UAP making the service request.

tpreturn(rval,rcode,data,len,.....)
 1. 2. 3. 4.

3. Setting the Test Environment

68

length and data must be the same as the data structure value defined for the stubs.

Boundary alignment is performed for the data structure defined for the stubs (the
total length is an integer multiple of 4). For this reason, the user must consider the
alignment portion when creating an XATMI response data file.

Check boundary alignment details in the stub source created by the stbmake
command and an output result crated by the stbmake command with the -p
option specified.

3.3.3 XATMI receive data file
An XATMI receive data file stores the messages received by the UAP in the tprecv
function when making the conversational service paradigm. A single file can contain
a number of data items which are passed consecutively to the tprecv function.

Create an XATMI receive data file for each service.

(1) File structure

(2) File contents
Item Position Length (bytes) Contents

Common area 0 36 Area shared with the XATMI send data file. Specify a space
or null character.

Buffer type 36 8 • Buffer type, specified as one of the following character
strings:

• X_OCTET

• X_COMMON

• X_C_TYPE

Buffer
subtype

44 16 Buffer subtype, specified as a string of up to 16 characters.
Specify a null character when specifying X_OCTET as the
buffer type.

3. Setting the Test Environment

69

(3) Notes
• The items in the XATMI receive data file are related to the arguments of the

message receive function (tprecv function) as follows:

1. Data stored in the buffer allocated by buffer type and subtype

2. Data length

3. Event flag

• Figure 3-1 shows the relationships between the data passed to the tprecv
function and the XATMI receive data and XATMI response data files when using
the server UAP simulator.

Event flag 60 4 One of the following hexadecimal values as the event flag to
be passed to the tprecv function:
0x00000000

0
0x00000001

TPEV_DISCONIMM

0x00000002
TPEV_SVCERR

0x00000004
TPEV_SVCFAIL

0x00000008
TPEV_SVCSUCC

0x00000020
TPEV_SENDONLY

Data length 64 4 Length of the data to be passed to the tprecv function
(0-524288).
Specify zero when no data is passed. The buffer type and
subtype specifications are ignored when zero is specified.

Data 68 n Data to be passed to the tprecv function

tprecv(.....,data,len,.....,revent)
 1. 2. 3.

Item Position Length (bytes) Contents

3. Setting the Test Environment

70

Figure 3-1: Receive data and tester files

• When using the server UAP simulator, create the receive data in execution units.
If the tprecv function is issued more than once in a service, create all the data
required for the number of executions. However, the data passed to the final
tprecv function can be stored in an XATMI response data file.

If the tprecv function is executed more times than the number of data items, the
system assumes that data from the tpreturn function was received and an error
occurs at each execution that exceeds the number of data items.

The XATMI receive data file opens and closes by service unit.

• XATMI receive data files for the offline tester cannot be used. However, the cat
command can be used to edit a number of XATMI receive data files into a single
file for use with the online tester.

• An XATMI send data file containing the send data to be output when using the
server UAP simulator can be used without modification as an XATMI receive
data file.

• An error occurs when the specified data is less than the specified data length. Data
that exceeds the data length is ignored.

• If a value other than TPEV_SENDONLY is specified as the event flag when using
the server UAP simulator, the tprecv function issued by the client UAP receives
events that cannot be continued interactively any further. Therefore, the
remaining data items cannot be used. Zero is set in the global variable tpurcode
when an event occurs.

3. Setting the Test Environment

71

• 0 and TPEV_SENDONLY are the only valid specifications for the event flag when
using the client UAP simulator. Other specifications are ignored.

• When the buffer type and subtype are specified, the values specified for the data
length and data must be the same as the data structure value defined for the stubs.

Boundary alignment is performed for the data structure defined for the stubs (the
total length is an integer multiple of 4). For this reason, the user must consider the
alignment portion when creating an XATMI receive data file.

Check boundary alignment details in the stub source created by the stbmake
command and an output result crated by the stbmake command with the -p
option specified.

3.3.4 MCF receive message files
A logical message can contain one or more segments. A segment consists of a header
part containing the segment information and a data part which is the message text.

There are five types of segments:

• Single segment

Segment in a logical message consisting of one segment only

• First segment

First segment in a logical message consisting of multiple segments

• Middle segment

One of the middle segments in a logical message consisting of multiple segments

• Last segment

Last segment in a logical message consisting of multiple segments

• Header segment

Segment prefixed to two concatenated messages

Specify the segment type in the header part.

(1) Asynchronous receive message file
An asynchronous receive message file stores the messages received by the UAP in an
MCF function (dc_mcf_receive function). Create one logical message per file.

3. Setting the Test Environment

72

When a header segment is used, the data is prefixed to the message.

(a) File structure
Logical message consisting of one segment only

Logical message consisting of multiple segments

Header segment

3. Setting the Test Environment

73

(b) File contents

(c) Notes
• The following shows how the items in an asynchronous receive message file are

related to message receive requests from a UAP via an MCF function.

Item Position Length
(bytes)

Contents

Header Input/output
logical terminal
name

0 9 Logical terminal name (including final null character) to
be passed to MCF functions. Specify the same name for
each segment of a multiple-segment message.

Map name 9 9 Map name (including final null character). Specify the
same name for each segment of a multiple-segment
message.
This specification is valid only for functions that return
a map name.

Reserved 18 9 Null character

Segment type 27 1 One of the following characters:
F

First segment
M

Middle segment
L

Last segment
O

Single segment
H

Header segment

Message length 28 4 Message length (0-2147483647)

Data Message 32 n The data in the segment, of the specified message length

3. Setting the Test Environment

74

• By concatenating header segments, data created in another file can be combined
with the first or single segment and passed together to the UAP. The following
shows how a header segment is related to a message receive request from a UAP
by an MCF function.

• Segment types F (first segment) and M (middle segment) are handled in the same
way. Also, segment types L (last segment) and O (single segment) are handled in
the same way. For example, a file consisting of the three segment types F, M, and
L is handled in the same way as a file consisting of segment types M, M, and O.

• The following shows the relationships between the segment type specified in the
segment header for message send/receive with an MHP and the file type at
execution. If the segment type is incorrectly specified, the receive request
function returns an error at the first message receive.

3. Setting the Test Environment

75

Asynchronous receive message file containing segments other than
header segments
When segment type L or O is specified for a message, the MHP regards the message as
completed and ignores any subsequent segments.

Legend:

X: Specification other than F, M, L, or O.

#1: At the third receive request, the MHP assumes that one logical message has been
received and an error code is returned.

#2: The middle and subsequent segments are ignored.

#3: A message reports that the segment type is invalid and the receive request function
returns an error code.

Asynchronous receive message file containing a header segment
Only the first segments in the file are valid.

Legend:

X: Specification other than H.

#1: However, the segment is passed in concatenated format with F, M, L, or O.

Segment type Segments received by MHP

First segment Middle
segment

Last segment

F M L F, M, L

F L X F, L#1

L X X L#2

X M L No segments received.#3

F X L

Segment type Segments received by MHP

H H#1

H + X

X No segments received.#2

X + H

3. Setting the Test Environment

76

#2: A message reports that the segment type is invalid and the receive request function
returns an error code.

(2) Synchronous receive message file
A synchronous receive message file stores the synchronous messages received by the
UAP via MCF functions (dc_mcf_recvsync and dc_mcf_sendrecv functions). A
single file can contain a number of logical messages. When a header segment is used,
the data is prefixed to the message.

(a) File structure
Logical message consisting of one segment only

Logical message consisting of multiple segments

Header segment

3. Setting the Test Environment

77

(b) File contents

(c) Notes
• The following shows how the items in a synchronous receive message file are

related to message receive requests from a UAP by an MCF function.

Item Position Length
(bytes)

Contents

Header Input/output
logical terminal
name

0 9 Logical terminal name (including final null character) to
be passed to MCF functions. Specify the same name for
each segment of a multiple-segment logical message.

Map name 9 9 Map name (including final null character). Specify the
same name for each segment of a multiple-segment
message.
This specification is valid only for functions that return
a map name.

Reserved 18 9 Null character

Segment type 27 1 One of the following characters:
F

First segment
M

Middle segment
L

Last segment
O

Single segment
H

Header segment

Message length 28 4 Message length (0-2147483647)

Data Message 32 n The data in the segment, of the specified message length

3. Setting the Test Environment

78

• By concatenating header segments, data created in another file can be combined
with the first or single segment and passed together to the UAP. The following
shows how a header segment is related to a message receive request from a UAP
by an MCF function.

3. Setting the Test Environment

79

• When the MCF simulator is used and the UAP receives a number of logical
messages synchronously, associate the header segment prefixed to each receive
message with the appropriate logical message. If no header segment is required
for any of the logical messages, set a dummy header segment, specifying 0 as the
message length. If none of the logical messages require a header segment, there
is no need to create a header segment file.

The following shows the relationships between the header segment and the
message receive requests from the UAP via MCF functions.

3. Setting the Test Environment

80

• Segment types F (first segment) and M (middle segment) are handled in the same
way. Also, segment types L (last segment) and O (single segment) are handled in
the same way. For example, a file consisting of the three segment types F, M, and
L is handled in the same way as a file consisting of segment types M, M, and O.

• The following shows the relationships between the segment types specified in the
segment headers for message send/receive with an MHP and the file types at
execution. If a segment type is incorrectly specified, the receive request function
returns an error at the first message receive.

Synchronous receive message file containing segments other than
header segments
When segment type L or O is specified for a message, the MHP regards the message as
completed and ignores any subsequent segments.

Segment type Segments received by MHP

First segment Middle
segment

Last segment

F M L (F, M, L)

M M L (M, M, L)

O O O (O), (O), (O)

F L M (F, L), (M)

3. Setting the Test Environment

81

Legend:

X: Specification other than F, M, L, or O.

(): One logical message

#: A message reports that the segment type is invalid and the receive request function
returns an error code.

Synchronous receive message file containing a header segment
All the header segments in the file are valid.

Legend:

X: Specification other than H.

#1: However, the segment is passed in concatenated format with F, M, L, or O.

#2: A message reports that the segment type is invalid and the receive request function
returns an error code.

3.3.5 Operating command result data file
An operating command result data file stores the data returned to the UAP as the
command execution result when using the operating command simulator. A single file
contains all the data required for the number of executions of the
dc_adm_call_command function in one service.

Create an operating command result data file for each service.

X M L No segments received.#

F X L

Segment type Segments received by MHP

H H#1

H + H H, H#1

H + X No segments received.#2

X

X + H

Segment type Segments received by MHP

First segment Middle
segment

Last segment

3. Setting the Test Environment

82

(a) File structure

(b) File contents

Legend:

--: Not applicable

(c) Notes
• An operating command result data file for the offline tester can also be used.

However, when the dc_adm_call_command function is issued more than once
in a service, all the data (files) for the number of executions must be edited into a
single file by the cat command.

• Add a null character to the end of the character strings for standard output and

Item Position Length
(bytes)

Contents

Header Operating
command result
code

0 4 Result code value set in the stat argument of the
dc_adm_call_command function

Character string
length for
standard output

4 4 Length of character strings (including null characters)
output to standard output (0-2147483647)

Character string
length for
standard error
output

8 4 Length of character strings (including null characters)
output to standard error output (0-2147483647)

Character string for standard
output

12 n Value set in the outmsg argument of the
dc_adm_call_command function. (Includes the final
null character. If no null characters are added, the last
character is replaced with a null character.)
The specified value is ignored when zero is specified as
the character string length for standard output.

Character string for standard
error output

-- n Value set in the errmsg argument of the
dc_adm_call_command function. (Includes the final
null character. If no null characters are added, the last
character is replaced with a null character.)
The specified value is ignored when zero is specified as
the character string length for standard error output.

3. Setting the Test Environment

83

standard error output. If no null character is specified, the last character in the
string is replaced with a null character. If 0 is specified as the character string
length, the specified string is ignored.

• When issuing operating commands by SEND statement in a DML, specify the data
part as follows:

Character string length for standard output:

Specify 0.

Character string length for standard error output:

Specify 0 (when standard error output is not available).

3. Setting the Test Environment

84

3.4 Creating files

This section provides details about how the directory used for storing tester files is
created, and how the user can create test data definition files to simplify later creation
of tester files. This section also provides a list of the files that the online tester creates.

3.4.1 Test directory
The $DCDIR/spool/uto directory for storing tester files is created by OpenTP1 in
mode 0777 at installation of the online tester.

Also, if no $DCDIR/spool/uto/test-user-ID directory exists at creation of a trace
file or MCF send message file during UAP execution, the online tester creates the
directory in mode 0777.

The user must create the $DCDIR/spool/uto/test-user-ID directory (or $DCDIR/
spool/uto/test-user-ID/user-server-name directory if required) when creating a
MCF send message file or other online tester file prior to testing. Set the mode to
enable creation of the above files during UAP execution.

3.4.2 Test data definition file
By creating a test data definition file, the user can easily create tester files using the
tester file creation facility.

A test data definition file can have any name. The following tester files can be created
from a test data definition file:

• RPC request data file

• XATMI request data file

• RPC response data file

• XATMI response data file

• XATMI receive data file

• Asynchronous receive message file

• Synchronous receive message file

• Operating command result data file

To create a test data definition file:

1. Use a text editor to create a test data definition file.

2. Check the contents of the file and close the file.

3. Specify the created test data definition file in the utofilcre command and
execute the command.

3. Setting the Test Environment

85

A tester file is created.

(1) Syntax

Note that the italicized numbers above correspond to the numbers under (3)
Explanation below.

(2) Function
Enables tester files to be created by tester file creation command from the test data
defined in the definition file.

One line in the definition file can be up to 512 bytes in length, including the line feed
code.

(3) Explanation
1. Comment statement

comment
Write a one-line comment beginning with #.

2. start statement

Declares the start of the input data for one tester file. Write a start statement
before the input data for each tester file.

When a test data definition file contains input data for two or more tester files,
write an end statement at the end of input data in each tester file.

• tester-file-identifier ~<up to 14 alphanumerics>

Specify an identifier for each set of the tester file data created in the test data
definition file. The identifiers must be unique within a definition file. Use
alphanumerics a-z, A-Z, and 0-9 for an identifier.

• tester-file-kind
Specify the tester file kind as one of the following:

RRQ

comment 1.
start tester-file-identifier tester-file-type output-file-name 2.
keyword = input-data 5.
keyword = input-data
sep 3.
keyword = input-data
 : :
 : :
keyword = input-data
end 4.

3. Setting the Test Environment

86

RPC request data file

XRQ

XATMI request data file

RRT

RPC response data file

XRT

XATMI response data file

XRV

XATMI receive data file

NRV

Asynchronous receive message file

SRV

Synchronous receive message file

COM

Operating command result data file

• output-file-name ~<pathname>

Specify the name of the tester file to be created from the input data.

When creating input data for two or more tester file kinds in one definition
file, specify different output file names for each file kind.

If the same output file name is specified for input data items for different
tester file kinds, the test data is added to the specified file when the file is
created. No error occurs, but the tester file created from the data may not be
usable for a test.

When an existing file name is specified, the test data is added to the specified
file when the file is created.

3. sep statement

Delimits input data items when a tester file is to contain multiple data items. sep
statements can be specified when creating the following tester files:

• XATMI receive data file

• Synchronous receive message file

• Operating command result data file

4. end statement

3. Setting the Test Environment

87

Declares the end of the input data for one tester file. Write an end statement after
the input data for each tester file.

5. Input data definition statement

Defines the input data for each tester file.

Input data can consist of fixed-information data which can be set in advance and
user data (data keyword) which can be any information set by the user. Write all
the fixed-information data before the user data for a tester file.

Input data cannot be duplicated within the test data for a tester file. The exception
is an operating command result data file, for which user data must be specified
twice (character string data for standard output and for standard error output).

For details about the input data formats for specifying fixed information data, see
the tables in (5) Formats for the input data corresponding to the keywords of
tester files, below.

• keyword
Specify keywords to identify the data specific to each tester file. Space
characters and tab codes before or after a keyword are ignored.

• input-data
Specify the input data for each keyword. Space characters and tab codes
before or after the input data are ignored.

(4) Required settings for specifying user data as input data
The formats of user input data are described below.

(a) Setting user data length
Set the data length of user data as fixed-information data in the following format:

If the user data exceeds the value set in data_len, the message is truncated at output.
If the user data is less than the value set in data_len, no further data can be set.

Example:

data_len=bytes

3. Setting the Test Environment

88

(b) Initializing user data
Use the tester file creation command to initialize the user data in the specified data
length.

(c) Setting character data
Set character data in the following format:

Do not add a null character to the end of character data.

Example:

(d) Setting binary data
Set binary data in the following format:

Data can be written in decimal and hexadecimal notation, as follows:

• Decimal

Set numeric values as is.

• Hexadecimal

Prefix 0x to numeric values.

Example:

data=5 Data: 5 in decimal notation

data=0x05 Data: 5 in hexadecimal notation

Binary data is set as the int datatype.

(e) Setting special characters
Line feed codes, tab codes, null characters, apostrophes ('), and the \ symbol are
handled as special characters in character data. Specify these characters as follows:

data='data'

data=data

Special character Coding format

Line feed code \n

Tab code \t

Null character \0

3. Setting the Test Environment

89

(f) Loading user data from a file
To load user data from a file, set the data in the following format:

Example:

data=(file)/tmp/datafile Data in /tmp/datafile is set.

(g) Setting the starting position of user data
User data can be set from any position, using the following format:

Example:

(h) Setting multiple data types
When using two or more data types, set the user data in the following format:

Example:

data=0x00000001 Data: First

 ='ABCDEF' Data: Second

(i) Aligning boundaries
When different data types are specified, the tester file creation command automatically
sets the second data at the boundary of the first data. However, boundary alignment is
not performed when:

• User data is loaded from a file

• The starting position of the user data is set

' \'

\ \\

data=(file) file-pathname

data=[offset-from-start-of-user-data] data

data=data
 =data
 :
 :

Special character Coding format

3. Setting the Test Environment

90

Example:

(5) Formats for the input data corresponding to the keywords of tester files
The following tables list the keywords and formats of the corresponding input data for
each tester file.

For details about the type of information to be specified, see the description of each
tester file in Section 3.3 User-created files.

Table 3-5: Keywords and input data formats for RPC request data files

Table 3-6: Keywords and input data formats for XATMI request data files

Keyword Information Explanation

out_len Response area
length

Length of the response area for the dc_rpc_call function. Specify a decimal
or hexadecimal. Set before data.

data_len Data length Length of the user data to be passed to the server UAP by the dc_rpc_call
function. Specify a decimal or hexadecimal. Set before data.

data Data User data to be passed to the server UAP by the dc_rpc_call function.

Keyword Information Explanation

call_kind Call type Type of service request function. Set one of the following character strings:
• call

• acall

• connect

Set before data.

buff_type Buffer type Set one of the following character strings:
• X_OCTET

• X_COMMON

• X_C_TYPE

Set before data.

sub_type Buffer
subtype

Specify a string of up to 16 characters.
Example:

sub_type=subtype01

Set before data.

3. Setting the Test Environment

91

Table 3-7: Keywords and input data formats for RPC response data files

Table 3-8: Keywords and input data formats for XATMI response data files

flag Flags One or more flags to be passed to the service function. Set any of the following
character strings and delimit with vertical lines (|):
• 0

• TPNOREPLY

• TPNOTRAN

• TPNOCHANGE

• TPSENDONLY

• TPRECVONLY

Set before data.

data_len Data length Length of the user data to be passed to the server UAP by the tpcall,
tpacall, or tpconnect function. Specify a decimal or hexadecimal. Set
before data.

data Data User data to be passed to the server UAP by the tpcall, tpacall, or
tpconnect function.

Keyword Information Explanation

data_len Data length Length of the user data to be returned to the client UAP at completion of a
service. Specify a decimal or hexadecimal. Set before data.

data Data User data to be returned to the client UAP at completion of a service.

Keyword Information Explanation

buff_type Buffer type Set one of the following character strings:
• X_OCTET

• X_COMMON

• X_C_TYPE

Set before data.

sub_type Buffer
subtype

Specify a string of up to 16 characters.
Example:

sub_type=subtype01

Set before data.

rval Service
termination
code

Specify one of the following character strings:
• TPSUCCESS

• TPFAIL

Set before data.

rcode Return code Specify a decimal or hexadecimal. Set before data.

Keyword Information Explanation

3. Setting the Test Environment

92

Table 3-9: Keywords and input data formats for XATMI receive data files

Note
When coding data for a number of services, repeat the data specifications from
buff_type onwards.

data_len Data length Length of the user data to be returned to the client UAP at completion of a
service. Specify a decimal or hexadecimal.
Set before data.

data Data User data to be returned to the client UAP at completion of a service.

Keyword Information Explanation

buff_type Buffer type Set one of the following character strings:
• X_OCTET

• X_COMMON

• X_C_TYPE

Set before data.

sub_type Buffer
subtype

Specify a string of up to 16 characters.
Example:

sub_type=subtype01

Set before data.

event Event flag Event flag to be passed to the tprecv function.
Specify one of the following character strings:
• 0

• TPEV_DISCONIMM

• TPEV_SVCERR

• TPEV_SVCFAIL

• TPEV_SVCSUCC

• TPEV_SENDONLY

Set before data.

data_len Data length Length of the user data to be passed to the tprecv function. Specify a decimal
or hexadecimal. Set before data.

data Data User data to be passed to the tprecv function.

sep sep statement Write at the end of the data for one service when coding data for a number of
services.
Do not set at the end of the final data.

Keyword Information Explanation

3. Setting the Test Environment

93

Table 3-10: Keywords and input data formats for asynchronous receive message
files

Note
When setting data for a number of segments, repeat the data specifications from
seg_kind onwards.

Table 3-11: Keywords and input data formats for synchronous receive message
files

Keyword Information Explanation

termname Input/output
logical
terminal name

Name of the I/O logical terminal to be passed to the dc_mcf_receive
function.
Specify a string of up to 8 characters. Set before data.

mapname Map name Map name to be passed to the dc_mcf_receive function. Specify a string of
up to 8 characters. Set before data.

seg_kind Segment type Segment type to be passed to the dc_mcf_receive function.
Specify one of the following characters:
• F

• M

• L

• O

• H

To set data for multiple segments, use any of the following sequences:
• F...M...L
• F...F...L
• M...M...L
• L

• H

• O

Set before data.

data_len Message
length

Length of the user data in the segment to be passed to the dc_mcf_receive
function.
Specify a decimal or hexadecimal. Set before data.

data Message User data in the segment to be passed to the dc_mcf_receive function.

Keyword Information Explanation

termname Input/output logical
terminal name

Name of the I/O logical terminal to be passed to the
dc_mcf_recvsync and dc_mcf_sendrecv functions. Specify a
string of up to 8 characters. Set before data.

mapname Map name Map name to be passed to the dc_mcf_recvsync and
dc_mcf_sendrecv functions. Specify a string of up to 8
characters. Set before data.

3. Setting the Test Environment

94

Notes
1. When setting data for a number of messages, repeat the data specifications from
termname onwards.

2. When setting data for a number of segments, repeat the data specifications from
seg_kind to data.

seg_kind Segment type Segment type to be passed to the dc_mcf_recvsync and
dc_mcf_sendrecv functions.Specify one of the following
characters:
• F

• M

• L

• O

• H

To set data for multiple segments, use any of the following
sequences:
• F...M...L
• F...F...L
• M...M...L
• F...M...L...F...M...L
• F...F...L...M...M...L
• M...M...L...M...M...L
• L

• H

• O

• L...L...F...M...L...L
• O...O...F...M...L...O
• H...H...H

Set before data.

data_len Message length Length of the user data in the segment to be passed to the
dc_mcf_recvsync or dc_mcf_sendrecv function. Specify a
decimal or hexadecimal. Set before data.

data Message User data in the segment to be passed to the dc_mcf_recvsync
or dc_mcf_sendrecv function.

sep sep statement Write at the end of the data for one message when coding data for
a number of messages. Do not set at the end of the final data.

Keyword Information Explanation

3. Setting the Test Environment

95

Table 3-12: Keywords and input data formats for operating command result data
file

Note
When coding data for a number of commands, repeat the data keywords and items
from status_code onwards.

3.4.3 Files created by the online tester
The following tables list the types and names of files that the online tester creates when
it is used.

Table 3-13: List of files created by online tester

Keyword Information Explanation

status_cod
e

Operating
command result
code

Specify a result code returned from the operating command in decimal or
hexadecimal.
Set before data.

outsize Message length
for standard
output

Length of the message output by operating command to standard output.
Specify a decimal or hexadecimal.
Set before data.

errsize Message length
for standard
error output

Length of the message output by operating command to standard error
output.
Specify a decimal or hexadecimal.
Set before data.

data Character string
for standard
output

Message output by operating command to standard output. Set character
data.

data Character string
for standard
error output

Message output by operating command to standard error output. Set
character data.

sep sep statement Write at the end of the data for one command when coding data for a number
of commands.
Do not set at the end of the final data.

File type Use and contents Time of
creation

Delet
ed by

Time of
deletion

Service
response
data files

RPC
response
data file

Stores data returned as the service result
when using the client UAP simulator
with an RPC interface.

At return of the
service
request#1

User Any

XATMI
response
data file

Stores data returned as the service result
when using the client UAP simulator
with an XATMI interface.

At return of the
service
request#1

User Any

3. Setting the Test Environment

96

#1: If the file already exists, the existing data is overwritten by the new input data.
#2: If the file already exists, the new input data is added to the file.
#3: When not running a UAP that issues the dc_mcf_contend function, the user can
delete the file at any time.
#4: The user can delete the file when full after backup to another file.

Table 3-14: Names for tester files created by the online tester

XATMI send data file Stores data sent by the tpsend function
when using a UAP simulator for making
interactive service requests with an
XATMI interface.

In the tpsend
function#2

User Any

MCF send message file Stores messages send by the following
functions when using the MCF
simulator:
• dc_mcf_reply

• dc_mcf_send

• dc_mcf_sendsync

• dc_mcf_sendrecv

• dc_mcf_execap

In the functions
listed at left#2

User Any

Temporary memory data
file

Stores data updated by the
dc_mcf_tempput function and
acquired by the dc_mcf_tempget
function in the UAP when using the
MCF simulator.

In the
dc_mcf_tempp
ut and
dc_mcf_tempg

et functions#1

Online
tester#

3

At
execution
of the
dc_mcf_
contend
function

Trace file Collects UAP trace information for an
OpenTP1 function.

When the online
tester (UAP)
collects the first
trace
information.

User Any#4

Tester file type File name

Service response data files RPC response
data file

File name specified by the utosppsvc command

XATMI
response data
file

File name specified by the utoxsppsvc command

XATMI send data file $DCDIR/spool/uto/test-user-ID/user-server-name/
xsd-service-name#

File type Use and contents Time of
creation

Delet
ed by

Time of
deletion

3. Setting the Test Environment

97

#: When the service name exceeds 11 characters, the first five and last six characters
are combined as the service name.

Example: Service name uapservice0001 uapsece0001

When the service name exceeds 15 characters, the first five and the 10th to 15th
characters are combined as the service name.

Example: Service name uapxatmiservice0001 uapxaervice

MCF send message file $DCDIR/spool/uto/test-user-ID/sendmsg

Temporary memory data file $DCDIR/spool/uto/test-user-ID/
utotmp-logical-terminal-name

Trace files File 1 $DCDIR/spool/uto/test-user-ID/trace1

File 2 $DCDIR/spool/uto/test-user-ID/trace2

Tester file type File name

99

Chapter

4. Test Execution

This chapter explains how to run a test with the online tester.

This chapter contains the following sections:

4.1 Creating UAPs
4.2 Service requests to an SPP
4.3 Service requests to an MHP
4.4 Creating tester files
4.5 Editing test information

4. Test Execution

100

4.1 Creating UAPs

To create a UAP that does not use the MCF simulator, follow the same procedure as
for a job UAP. See the manual OpenTP1 Programming Guide for details.

To create a UAP that uses the MCF simulator, use the simulation functions library
provided by the online tester. The creation procedure differs depending on whether
TP1/Message Control is cataloged in the Resource Manager.

If TP1/Message Control is not cataloged in the Resource Manager, link the UAP to the
online tester's MCF simulation functions library (libmuto.a) rather than to the TP1/
Message Control library (libmcf.a).

Specify -lmuto to link the UAP to the MCF simulation functions library. There is no
need to specify -lmcf to link the UAP to the TP1/Message Control library.

For a UAP created in COBOL or in a data manipulation language (DML), specify
-lmuto instead of -lmcf in the same way.

If TP1/Message Control is cataloged in the Resource Manager, link the UAP first to
the MCF simulation functions library (libmuto.a) and then to the TP1/Message
Control library (libmcf.a).

The command for compiling a UAP that uses the MCF simulator is shown below.

TP1/Message Control not cataloged in the Resource Manager

Legend:

exmain.c: Main function

exsv1.c: Service function 1

exsv2.c: Service function 2

ex_sstb.c: Stub source created by the stub

TP1/Message Control cataloged in the Resource Manager

Legend:

exmain.c

cc -go example exmain.c exsv1.c exsv2.c ex_sstb.c
 -l$DCDIR/include -L$DCDIR/lib -Wl, -B,immediate -Wl,
 -a,default -lmuto -lbetran -L/usr/lib -ltactk -lbsd -lc

cc -go example exmain.c exsv1.c exsv2.c ex_sstb.c
 -l$DCDIR/include -L$DCDIR/lib -Wl, -B,immediate -Wl,
 -a,default -lmuto -lmcf -lbetran -L/usr/lib -ltactk -lbsd -lc

4. Test Execution

101

Main function

exsv1.c

Service function 1

exsv2.c

Service function 2

ex_sstb.c

Stub source created by the stub

4. Test Execution

102

4.2 Service requests to an SPP

This section describes how service requests are issued to an SPP when a client UAP or
a server UAP is being simulated.

4.2.1 Client UAP simulator
(1) Simulating a client UAP with an RPC interface

Execute the utosppsvc command to simulate a client UAP that uses an RPC
interface. Service requests can be sent to the SPP by issuing the dc_rpc_call
function during command processing.

(2) Simulating a client UAP with an XATMI interface
Execute the utoxsppsvc command to simulate a client UAP that uses an XATMI
interface. Service requests can be sent to the SPP by issuing the following functions
during command processing:

• tpcall or tpacall function for the request/response service paradigm

• tpconnect function for the conversational service paradigm

4.2.2 Server UAP simulator
(1) Simulating a server UAP with an RPC interface

To simulate a server UAP that uses an RPC interface, activate the SPP (to which
service requests are sent) as a dummy SPP. Specify dmyspp in the test_mode
operand of the user service definition to create the dummy SPP.

To activate the dummy SPP, enter the OpenTP1 dcsvstart command. To send a
service request to the dummy SPP, issue the dc_rpc_call function.

Execute the OpenTP1 dcsvstop or dcstop command to terminate the dummy SPP.

(2) Simulating a server UAP with an XATMI interface
To simulate a server UAP that uses an XATMI interface, activate the SPP (to which
service requests are sent) as a dummy SPP. Specify dmyspp in the test_mode
operand of the user service definition to create the dummy SPP.

Execute the OpenTP1 dcsvstart command to activate the dummy SPP and the
dcsvstop or dcstop command to terminate the dummy SPP.

When the conversational service paradigm is sent to the server UAP simulator, the
table that manages conversational status remains in the tester daemon if the process or
service in the client UAP terminates without receiving an event flag indicating service
completion in the tprecv function. In this case, terminate and then restart the dummy
SPP.

4. Test Execution

103

4.3 Service requests to an MHP

To use the MCF simulator, activate the test MHP as a simulate MHP. Specify simmhp
in the test_mode operand of the user service definition to create the simulate MHP.

To activate the simulate MHP, execute the OpenTP1 dcsvstart command or specify
dcsvstart in the user service configuration definition.

To send a service request to the MHP, enter the utomhpsvc command. If a service
request is sent in any other way, the online tester outputs an error message and skips
execution of the requested service. In this case, the dc_rpc_call function terminates
normally because the online tester accepts the service request, but response data for the
service is not guaranteed.

The simulate MHP is activated as an SPP. This means that SPP commands must be
used to run the simulate MHP. However, the utosppsvc command cannot be used.

To terminate the simulate MHP, execute the OpenTP1 dcsvstop command or
dcstop command.

4. Test Execution

104

4.4 Creating tester files

Enter the utofilcre command to create a tester file.

In tester file creation, how to create a tester file or enter a command depends on
whether to use the test data definition file or to use data output from the operating
command.

4.4.1 Creating tester files using the test data definition file
The following shows how to create tester files using the test data definition file.

Example:

To create an RPC response data file and an operating command result data file:

1. Open the test data definition file using a text editor.

2. Set the input data for the RPC response data file and operating command
result data file.

4. Test Execution

105

3. Check the coding, then close the test data definition file.

4. Execute the utofilcre command, specifying the test data definition file.

4.4.2 Creating tester files using operating command output data
The following shows how to create tester files using operating command output data.

Example:

To create an RPC request data file:

1. Determine trace data used as test data for editing and outputting an RPC trace
data file. In this example, use data with trace number 6.

4. Test Execution

106

2. Output the intended RPC trace data in the trace data file format to create a
file.

3. Execute the utofilcre command by specifying the tester file name, tester
file kind, and a file that contains the RPC trace data.

4. Test Execution

107

4.5 Editing test information

4.5.1 Displaying test status
Execute the utols command to display test status when using the online tester. The
following information can be displayed:

• Test mode of the UAP (value specified in the test_mode operand of the user
service definition)

• Test user ID for the user who started the UAP

• Server name

• Service group name

See Section 5.1 Operating commands for running tests in this part of the manual for
the contents displayed.

4.5.2 Collecting UAP trace information
The online tester collects the same UAP trace information as OpenTP1. However,
trace information specific to the online tester (tester information) can also be collected
at the entrance to each OpenTP1 function.

To collect tester information, perform one of the following:

• Specify target or simmhp in the test_mode operand of the user service
definition, or specify usable and activate the UAP in test mode.

• Specify 1 or a higher value in the uap_trace_max operand of the user service
definition (or omit specification).

• Activate the UAP for which traces are to be collected by executing the OpenTP1
dcsvstart command or by specifying dcsvstart in the user service
configuration definition.

Trace information is grouped by the online tester and output to a trace file at the times
shown below. Tester information is output once only when the trace information is
output to the trace file.

• At the start of the dc_rpc_mainloop function

• At the start of the dc_mcf_mainloop function

• At the start of the dc_rpc_call function

• At completion of the dc_rpc_close function

• At completion of an RPC service function

• At the start of the tpcall function

4. Test Execution

108

• At the start of the tpacall function

• At the start of the tpconnect function

• At completion of an XATMI service function

When the information for a group fills the UAP trace area, the information is output to
the trace file. The UAP trace area is then reused from the beginning.

A trace file is created for each OpenTP1 system and for each test user ID. Therefore,
if a number of UAPs that output trace information are executed in parallel, the UAP
trace information is mixed and difficult to check. Parallel execution also results in
waiting for release of locks and a timeout condition may occur before a reply can be
made to a service request. For these reasons, parallel execution should be avoided
when using the online tester.

A swap message is output when the size of one of the two trace files exceeds the value
specified in the max_trace_file_size operand of the tester service definition.
UAP traces are then collected in the other trace file. When both trace files are full, no
further UAP trace information can be collected.

To prevent this situation, the user must copy the full trace file to another file when the
swap message is output, and then delete the full trace file. If the second trace file
subsequently becomes full, create a new file, specifying the name of the deleted trace
file, and continue collecting trace information.

Do not delete a trace file while traces are still being collected. Deletion during trace
collection means that no further information can be collected.

Note also that trace information for the dc_trn_info function is not collected.

4.5.3 Merging and outputting UAP trace information
To merge UAP trace information, execute the utotrcmrg command.

At input of the utotrcmrg command, the data in the specified trace files is ordered
by service execution sequence in each group and is output to the specified file (trace
merge file). If the specified output file already exists, its contents are deleted before the
new merged data is written to the file.

Trace merge files have a different file type but the same format as trace files.
Therefore, trace merge files can also be merged. Also, trace files can be merged during
trace collection.

To edit and output UAP trace information, execute the utotrcout command. At
command input, the data in the specified trace file or trace merge file is edited and
output to standard output.

The following trace information can be output by executing the utotrcout
command:

4. Test Execution

109

• Trace information for specific services

• Trace information for a specific server

• Trace information on function names and other selected items

• Trace information ordered in actual collection sequence

• Trace information collected within a specified time frame

See Section 5.1 Operating commands for running tests in this part of the manual for
details on output formats.

4.5.4 UAP traces for MCF simulation functions
UAP trace information is also collected for the MCF simulation functions. However,
when information that the online tester cannot analyze is required (such as an MCF
application definition), the trace information cannot be collected. In such cases, the
online tester sets a dummy value.

Table 4-1 lists the dummy values set for trace information that the online tester cannot
collect.

Table 4-1: Dummy values and non-collectable trace information

The MCF simulation function dc_mcf_mainloop uses the dc_rpc_mainloop
function. Therefore, trace information for dc_rpc_mainloop is also output when the
dc_mcf_mainloop function is issued.

4.5.5 Editing and outputting send messages
To edit the send messages collected when using the MCF simulator, execute the
utomsgout command. At command input, the data in the specified MCF send
message file is edited and output to standard output or to a specified file.

The following trace information can be output by executing the utomsgout
command:

• A list of abbreviated send messages

• Messages output in MCF receive message file format

• Messages not output in the MCF receive message file format

Function name Non-collectable information Dummy value

dc_mcf_mainloop (at start) Application name ********

Name of logical terminal where input ********

Application type 0

dc_mcf_mainloop (at return) Application name ********

4. Test Execution

110

• Oldest send message

• Most recent send message

• Messages collected for a specific function

• Selected messages from a send message file

• Messages sent in a specific service

See Section 5.1 Operating commands for running tests in this part of the manual for
details on output formats.

4.5.6 Checking UAP response data
The data in the RPC and XATMI response data files output by the client UAP
simulator can be output as an edited dump so that the file contents can be verified.

See Section 3.3 User-created files in this part of the manual for details on the formats
of the output data.

4.5.7 Checking UAP send data
The data in the XATMI send data files output by the server UAP simulator can be
output as an edited dump so that the file contents can be verified.

See Section 3.3 User-created files in this part of the manual for details on the formats
of the output data.

The contents of the common area are as follows:

Item Position Length
(bytes)

Contents

Commo
n area

Service name 0 32 Stores the service names at the send destinations.

Call descriptors 32 4 Stores the call descriptors used when sending service
requests.

111

Chapter

5. Operating Commands

This chapter explains how to use the operating commands of the online tester.

This chapter contains the following section:

5.1 Operating commands for running tests

5. Operating Commands

112

5.1 Operating commands for running tests

The following pages explain the online tester's operating commands. For information
on command Syntax and rules, see the manual OpenTP1 Operation.

Table 5-1 lists the operating commands for running tests.

Table 5-1: List of operating commands

5.1.1 utodbgstop (termination of a UAP interlocked with the
debugger)
(1) Syntax

(2) Function
Requests to terminate a UAP that interlocks the debugger.

Execute the utodbgstop command in a window except one that was used to execute
the utodebug command on the machine where the OpenTP1 system is operating.

After terminating the UAP using the utodbgstop command, also terminate the
debugger as soon as possible. Until the debugger terminates, the utodbgstop or
utodebug command remains in a response wait state.

Command name Function

utodbgstop Termination of a UAP interlocked with the debugger

utodebug Activation of a UAP interlocked with the debugger

utofilcre Tester file creation

utofilout Edited output of the tester file content

utols Test status display

utomhpsvc Service requests to an MHP

utomsgout Edited output of send messages

utosppsvc Service requests to an RPC interface SPP

utotrcmrg Merger of UAP trace information

utotrcout Edited output of UAP trace information

utoxsppsvc Service requests to an XATMI interface SPP

utodbgstop [-f] server-name

5. Operating Commands

113

When the utodbgstop command terminates the UAP, this UAP cannot restart with a
debugger command.

If the specified server does not interlock the debugger, the command fails. The
utodbgstop command is available only when the tester service is active.

(3) Option
-f

Forcibly terminate the specified server. When this specification is omitted, the
corresponding server terminates normally.

(4) Command arguments
server-name ~<identifier of 1-8 characters>

Specify the name of the server corresponding to the debugger-interlocked UAP to
be terminated.

(5) Notes
• Entering the command may issue the following message and condition codes,

which can be ignored.

Message ID

KFCA01844-E

Reason Code
 STATUS
 EXIT
 ABORTING
 ABORT

• When entering the command issues the following message and condition code, be
sure to stop the debugger. No other actions are needed.

Message ID

KFCA01844-E

Reason Code
 CRITICAL

5.1.2 utodebug (activation of a UAP interlocked with the debugger)
(1) Syntax
utodebug server-name

5. Operating Commands

114

(2) Function
Requests to activate a debugger-interlocked UAP and identifies the window used to
execute the utodebug command as an I/O interface with the debugger.

When executing the utodebug command, add $DCDIR/bin, /usr/bin, and /bin
to the search path name when specifying the prcsvpath operand for the process
service definition or the prcpath command.

Execute the utodebug command in a window on the machine where the OpenTP1
system is operating. One window allows to test one UAP interlocked with the
debugger. The other commands are unexecutable in this window until the debugger
terminates.

The command fails if neither target nor simmhp is specified for the test_mode
operand in the user service definition on the specified server. The command also fails
if the specified server is already active.

The utodebug command is available only when the tester service is active.

(3) Command arguments
server-name ~<identifier of 1-8 characters>

Specify the name of the server corresponding to the UAP to be tested by
interlocking the debugger.

(4) Notes
• When the debugger-interlocked UAP terminates normally or abnormally, be sure

to terminate the debugger.

• If a debugger process is terminated forcibly with the debugger interlocked, the
debugger-interlocked UAP process may terminate incompletely, leaving part of
the process unprocessed. Terminate the remaining process using the command.

• If the utodebug command is terminated forcibly while the debugger is
interlocked, I/O operations for the debugger process coexist with I/O operations
for the shell, disabling debugger control. To solve this, forcibly terminate the
debugger process and the debugger-interlocked UAP process.

• If the debugger becomes uncontrollable during a test interlocked to the debugger,
forcibly terminate the utodebug command process, the debugger process, and
the UAP process interlocked to the debugger. If necessary, reexecute the
utodebug command. Executing the prcls command shows the ID of the UAP
process interlocked to the debugger process.

5. Operating Commands

115

5.1.3 utofilcre (tester file creation)
(1) Syntax

(2) Function
Creates a tester file using the specified test data definition file or record data from the
unload journal file or RPC trace data retrieved by the operating command.

(3) Options
-e test-data-definition-file-name ~<pathname>

Specify the test data definition file that defines input data for a tester file to be
created.

This option cannot be specified concurrently with the -o, -k, or -i option.

-o tester-file-name ~<pathname>

Specify the name of a tester file consisting of data that is extracted by the
operating command. When specifying this option, also specify the -k option.

The -o option cannot be specified concurrently with the -e option.

-k tester-file-kind
Specify the kind of a tester file consisting of data that is extracted by the operating
command. Specifiable file kinds are:

RRQ

RPC request data file

RRT

RPC response data file

XRQ

XATMI request data file

XRT

XATMI response data file

XRV

XATMI receive data file

NRV

utofilcre{-e test-data-definition-file-name|
 -o tester-file-name|-k tester-file-kind
 [-i input-data-file-name]}

5. Operating Commands

116

Asynchronous receive message file

SRV

Synchronous receive message file

The operating command result data file cannot be made of data extracted by a
command. Accordingly the -k option cannot specify the operating command
result data file.

When specifying this option, also specify the -o option.

The -k option cannot be specified concurrently with the -e option.

-i input-data-file-name ~<pathname>

Specify the name of an input data file that stores data extracted by the operating
command. When specifying this option, also specify the -o option.

When the -o option is specified and the -i option is omitted, the standard input
is assumed.

The -i option cannot be specified concurrently with the -e option.

(4) Notes
• When the -o option is specified and the -i option is omitted, the standard input

is assumed. This time, specify an input file using a pipe or redirection. When no
input file is specified, the command waits for an input. To solve this, forcibly
terminate the command.

• No map name is contained in mj record data of the unload journal file. When the
-o option is specified to create an asynchronous receive message file or
synchronous receive message file, specifying mj record data as input data
assumes UTOMAP to be a map name by default.

5.1.4 utofilout (edited output of the tester file content)
(1) Syntax

(2) Function
Edits the contents of the specified tester file in a data format of the specified tester file
kind and outputs the edited file to the standard output.

The tester file kind must be of a tester file to be edited and output. If a different tester
file kind is specified, its data format is used for editing data. If the data is editable, the
edited result is output. If the data cannot be edited, the command fails.

utofilout -k tester-file-kind tester-file-name

5. Operating Commands

117

(3) Option
-k tester-file-kind
Specify the kind of a tester file to be edited and output. Specifiable tester file kinds
are:

RRQ

RPC request data file

RRT

RPC response data file

XRQ

XATMI request data file

XRT

XATMI response data file

XRV

XATMI receive data file and XATMI send data file

NRV

MCF receive message file (asynchronous receive message file and
synchronous receive message file)

COM

Operating command result data file

(4) Command arguments
tester-file-name ~<pathname>

Specify the name of the tester file to be edited.

5. Operating Commands

118

(5) Output format (-k option = RRQ)

Legend:

1. File information

2. Data number

3. Specific information data

4. User data

The same data is displayed as follows.

(First matched data location) - (last matched data location) : SAME DATA

5. User data location

6. Hexadecimal representation of user data

7. ASCII representation of user data

Description

file kind
Tester file kind for the RPC request data file.

file name
Specified tester file path name (up to 64 characters).

data number
Sequential data number from the beginning of file (up to 10 digits).

response area size
Response area size (bytes in decimal) specified for the RPC request data file
header.

data length

5. Operating Commands

119

Data length (bytes in decimal) specified for the RPC request data file header.

Output example with -k option = RRQ

(6) Output format (-k option = RRT)

Legend:

1. File information

2. Data number

3. Specific information data

4. User data

The same data is displayed as follows.

(First matched data location) - (last matched data location) : SAME DATA

5. User data location

6. Hexadecimal representation of user data

7. ASCII representation of user data

Description:

file kind

5. Operating Commands

120

Tester file kind for the RPC response data file.

file name
Specified tester file path name (up to 64 characters).

data number
Sequential data number (up to 10 digits) from the beginning of file.

data length
Data length (bytes in decimal) specified for the RPC response data file
header.

Output example with -k option = RRT

(7) Output format (-k option = XRQ)

Legend:

1. File information

2. Data number

3. Specific information data

5. Operating Commands

121

4. User data

The same data is displayed as follows.

(First matched data location) - (last matched data location) : SAME DATA

5. User data location

6. Hexadecimal representation of user data

7. ASCII representation of user data

Description:

file kind
Tester file kind for the XATMI request data file.

file name
Specified tester file path name (up to 64 characters).

data number
Sequential data number (up to 10 digits) from the beginning of file.

call kind
Call kind (up to 7 characters) specified for the XATMI request data file
header.

**** is displayed if no character string is specified.

flag
Flag (8 digits) specified for the XATMI request data file header.

type
Buffer type (up to 8 characters) specified for the XATMI request data file
header.

**** is displayed if no character string is specified.

subtype
Buffer subtype (up to 16 characters) specified for the XATMI request data
file header.

**** is displayed if no character string is specified.

data length
Data length (bytes in decimal) specified for the XATMI request data file
header.

Output example with -k option = XRQ

5. Operating Commands

122

(8) Output format (-k option = XRT)

Legend:

1. File information

2. Data number

3. Specific information data

4. User data

The same data is displayed as follows.

(First matched data location) - (last matched data location) : SAME DATA

5. User data location

6. Hexadecimal representation of user data

7. ASCII representation of user data

Description:

5. Operating Commands

123

file kind
Tester file kind for the XATMI response data file.

file name
Specified tester file path name (up to 64 characters).

data number
Sequential data number (up to 10 digits) from the beginning of file.

type
Buffer type (up to 8 characters) specified for the XATMI response data file
header.

**** is displayed if no character string is specified.

subtype
Buffer subtype (up to 16 characters) specified for the XATMI response data
file header.

**** is displayed if no character string is specified.

rval
Service termination code (8 digits) specified XATMI response data file
header.

rcode
Return code (up to 11 digits in decimal) specified for the XATMI response
data file header.

data length
Data length (bytes in decimal) specified for the XATMI response data file
header.

Output example with -k option = XRT

5. Operating Commands

124

(9) Output format (-k option = XRV)

Legend:

1. File information

2. Data number

3. Specific information data

4. User data

The same data is displayed as follows.

(First matched data location) - (last matched data location) : SAME DATA

5. User data location

6. Hexadecimal representation of user data

7. ASCII representation of user data

Description:

file kind
Tester file kind for the XATMI receive data file and the XATMI send data
file.

file name
Specified tester file path name (up to 64 characters).

data number
Sequential data number (up to 10 digits) from the beginning of file.

type
Buffer type (up to 8 characters) specified for the XATMI receive data file

5. Operating Commands

125

header and the XATMI send data file header.

**** is displayed if no character string is specified.

subtype
Buffer subtype (up to 16 characters) specified for the XATMI receive data
file header and the XATMI send data file header.

**** is displayed if no character string is specified.

event flag
Event flag (8 digits) specified for the XATMI receive data file header and the
XATMI send data file header.

data length
Data length (bytes in decimal) specified for the XATMI receive data file
header and the XATMI send data file header.

Output example with -k option = XRV

(10) Output format (-k option = NRV)

5. Operating Commands

126

Legend:

1. File information

2. Data number

3. Specific information data

4. User data

The same data is displayed as follows.

(First matched data location) - (last matched data location) : SAME DATA

5. User data location

6. Hexadecimal representation of user data

7. ASCII representation of user data

Description:

file kind
Tester file kind for the MCF receive message file.

file name
Specified tester file path name (up to 64 characters).

data number
Sequential data number (up to 10 digits) from the beginning of file.

logical terminal name
Logical terminal name (up to 8 characters) specified for the MCF receive
message file.

**** is displayed if no character string is specified.

map name
Map name (up to 8 characters) specified for the MCF receive message file
header.

segment type
Segment type (1 character) specified for the MCF receive message file
header.

**** is displayed if no character string is specified.

data length
Data length (bytes in decimal) specified for the MCF receive message file
header.

5. Operating Commands

127

Output example with -k option = NRV

(11) Output format (-k option = COM)

Legend:

1. File information

2. Data number

3. Specific information data

4. Standard output data (user data)

The same data is displayed as follows.

5. Operating Commands

128

(First matched data location) - (last matched data location) : SAME DATA

5. Standard error output data (user data)

The same data is displayed as follows.

(First matched data location) - (last matched data location) : SAME DATA

6. User data location

7. Hexadecimal representation of user data

8. ASCII representation of user data

Description:

file kind
Tester file kind for the operating command result data file.

file name
Specified tester file path name (up to 64 characters).

data number
Sequential data number (up to 10 digits) from the beginning of file.

command result code
Command result code (up to 11 digits in decimal) specified for the operating
command result data file.

standard out data length
Length (bytes in decimal) of a standard output character string specified for
the operating command result data file.

standard error data length
Length (bytes in decimal) of a standard error output character string
specified for the operating command result data file.

Output example with -k option = COM

5. Operating Commands

129

5.1.5 utols (test status display)
(1) Syntax

(2) Function
Outputs the status of the test UAP managed by the tester service to standard output.
Nothing is output if no test UAP exists.

The utols command can only be used when the tester service is active.

(3) Command arguments
server-name ~<identifier of 1-8 characters>

Specify the name of the user server for which test status is to be displayed.

When specification is omitted, the status of all the user servers being tested is
displayed.

(4) Output format

1. One of the following is displayed as the test mode information for the UAP (value
specified in the test_mode operand of the user service definition):

utols [server-name [server-name] ...]

5. Operating Commands

130

target

test_mode=target specified at startup

usable

test_mode=usable specified at startup

dmyspp

test_mode=dmyspp specified at startup

simmhp

test_mode=simmhp specified at startup

2. Test user ID of the user who started the UAP.

**** is displayed when the UAP test mode is usable.

3. Server name (up to 8 characters)

4. Service group name (up to 31 characters).

Nothing is displayed when no service groups are specified.

5. Name (up to 8 characters) of the debugger interlocked to the UAP.

Nothing is displayed when the UAP is not interlocked to the debugger.

(5) Note
If the OpenTP1 system is immediately shut down or if the test UAP is forcibly
terminated while active or inactive, information may be displayed for the inactive or
terminated UAP. To display information correctly, restart the UAP for which
information was displayed in error.

5.1.6 utomhpsvc (service requests to an MHP)
(1) Syntax

(2) Function
Requests the MHP to execute a specified service when using the MCF simulator. The
MHP that provides the service must be activated as a simulate MHP linked to the MCF
simulation functions library provided by the online tester.

The MHP must be started in test mode; otherwise, a command error occurs. Also,
operation is not guaranteed if the service request is made to an SPP running in test
mode.

utomhpsvc [-t MCF-receive-message-header-file-name] [-n]
 service-group-name service-name
 MCF-receive-message-file-name

5. Operating Commands

131

If no reply to the service request is received within the RPC maximum reply-wait time
(value specified in the watch_time operand in the system common definition), a
send/receive timeout condition occurs and the command is not accepted.

(3) Options
-t MCF-receive-message-header-file-name ~<1-14 alphanumerics>

Specify the name of the MCF receive message file containing the header segment
to be prefixed to the receive message.

When specification is omitted, no header segment is prefixed to the receive
message.

-n

Executes the specified service as a non-transaction MHP. When this option is
omitted, the service is executed as a transaction MHP.

(4) Command arguments
service-group-name ~<identifier of 1-31 characters>

Specify the name of the service group to which the service to be executed belongs.

service-name ~<identifier of 1-31 characters>

Specify the name of the service to be executed.

MCF-receive-message-file-name ~<1-14 alphanumerics>

Specify the name of the MCF receive message file containing the receive
message.

5.1.7 utomsgout (edited output of send messages)
(1) Syntax

(2) Function
Edits the send message information output by the online tester and outputs the
information to standard output. Or, outputs the information to the specified file when
the -r option is specified.

A command error occurs if the command is entered while OpenTP1 is writing send
messages to the specified MCF send message file.

There are two types of options:

utomsgout [{ -i|-r output-file-name }] [-w][{ -o|-l }]
 [-f function-name] [-n number]
 [-t logical-terminal-name]
 [-s service-group-name [,service-name]...]
 MCF-send-message-file-name

5. Operating Commands

132

• Options for changing the output format:

-i and -r

• Options for selecting output message files:

-f, -l, -n, -o, -s, -t, and -w

When an option with a flag argument is specified more than once, the last specified
option is valid.

(3) Options
-i

Lists send messages in abbreviated form.

This option cannot be specified with the -r option.

-r output-file-name ~<pathname>

Specify the name of the file to which the specified messages are to be output. The
messages are output in the data format of an MCF receive message file.
Therefore, the output file can be used without modification as an MCF receive
message file.

This option cannot be specified with the -i option. If the -r and -i options are
both omitted, segment information and send message information are output to
standard output.

-w

Edits and outputs only the messages that are not output by the -r option.

When this option is omitted, all messages are edited and output.

-o

Outputs only the oldest message among the editable messages.

This option cannot be specified with the -l option. If the -o and -l options are
both omitted, all messages are output.

-l

Outputs the most recent message among the editable messages.

This option cannot be specified with the -o option. If the -l and -o options are
both omitted, all messages are output.

-f function-name
Outputs messages collected for the specified function. The following function
names can be specified:

send

5. Operating Commands

133

dc_mcf_send function

reply

dc_mcf_reply function

execap

dc_mcf_execap function

sendrecv

dc_mcf_sendrecv function

sendsync

dc_mcf_sendsync function

The dc_mcf_resend function cannot be specified in this option because send
messages are not resent (rewritten) by the dc_mcf_resend function when the
MCF simulator is used.

-n number
Selects output messages by number. To check message numbers, specify the -i
option to display an abbreviated listing of all send messages.

This option takes precedence when specified with options other than -i or -r.

-t logical-terminal-name ~<identifier of 1-8 characters>

Outputs messages sent to the specified logical terminal.

-s service-group-name ~<identifier of 1-31 characters>

 service-name ~<identifier of 1-31 characters>

Outputs messages sent in a specified service. Specify both the service group name
and service name, delimiting the two names with a comma (,).

Two or more services can be specified for a service group. Delimit the service
names with commas. Do not insert a space or symbol before or after the comma.

Both the service group name and service name must be specified. If no service
name is specified, the send message information of all the services in the specified
service group is edited and output.

When this option is omitted, send message information is output for all services
in all the service groups.

(4) Command argument
MCF-send-message-file-name ~<pathname>

Specify the name of the MCF send message file containing the send messages.

5. Operating Commands

134

(5) Output format
(a) -i and -r options omitted

1. Information on the edited and output send messages:

• Time at which the messages were collected (hour:minute:second)

• Message size (up to 10 digits)

• Logical terminal name (up to 8 characters)

• Service group name of the sent messages (up to 31 characters).

**** is displayed when the service group name is unknown.

• Service name of the sent messages (up to 31 characters).

**** is displayed when the service name is unknown.

• One of the following function names for which the messages were collected:

dc_mcf_send function

dc_mcf_reply function

dc_mcf_execap function

dc_mcf_sendrecv function

dc_mcf_sendsync function

• One of the following segment types:

M

Middle segment

L

Last segment

• Map name.

**** is displayed when no map name is returned.

5. Operating Commands

135

2. Relative location

3. Dump display (hexadecimal)

4. ASCII character display.

A period (.) is displayed when ASCII character display is impossible.

Output example

(b) -i option specified

1. Message number in the file

2. Function for which the message was sent:

send

dc_mcf_send function

reply

dc_mcf_reply function

execap

dc_mcf_execap function

sendrecv

5. Operating Commands

136

dc_mcf_sendrecv function

sendsync

dc_mcf_sendsync function

3. Service group name of the sent messages (up to 31 characters).

**** is displayed when the service group name is unknown.

4. Service name of the sent messages (up to 31 characters).

**** is displayed when the service name is unknown.

Output example

(6) Notes
• The send messages collected by the MCF simulation functions are written to the

MCF send message file when a function is issued. The messages remain in the file
if a rollback occurs.

• When the -r option is specified in the utomsgout command, the segment type
is displayed as [M...]L. For example, a logical message consisting of the three
segments F, M, and L is actually output as M, M, L. However, this output can be used
without modification as input for the online or offline tester.

5.1.8 utosppsvc (service requests to an RPC interface SPP)
(1) Syntax

(2) Function
Requests an RPC interface SPP to execute a specified service. However, execution of
a service cannot be requested for an SPP that expects a transactional RPC (an SPP that
requires a transaction to be generated in advance at the UAP making the service
request). A command error occurs if the utosppsvc command is executed for a UAP
other than an RPC interface SPP.

utosppsvc service-group-name service-name
 RPC-request-data-file-name
 [RPC-response-data-file-name]

5. Operating Commands

137

If no reply to the service request is received within the RPC maximum reply-wait time
(value specified in the watch_time operand in the system common definition), a
send/receive timeout condition occurs and the command is not accepted.

This command cannot be used for a simulate MHP.

(3) Command arguments
service-group-name ~<identifier of 1-31 characters>

Specify the name of the service group to which the service to be executed belongs.

service-name ~<identifier of 1-31 characters>

Specify the name of the service to be executed.

RPC-request-data-file-name ~<pathname>

Specify the name of the RPC request data file that contains the input data for the
service request.

RPC-response-data-file-name ~<pathname>

Specify the name of the RPC response data file for storing the response data when
the service is executed.

If this command argument is omitted, the response data is deleted.

When an existing output file is specified, its contents are overwritten. If the
specified file does not exist, the online tester creates the file.

5.1.9 utotrcmrg (merger of UAP trace information)
(1) Syntax

(2) Function
Outputs the trace information in the specified trace files in service execution sequence
to a specified file.

Duplicated trace information is output once only.

The merged trace information may not be listed in collection sequence if the merged
trace files were collected by different versions of the online tester.

(3) Option
-o trace-merge-file-name ~<pathname>

Specify the name of the trace merge file for output of the merged trace
information.

utotrcmrg -o trace-merge-file-name trace-file-name
 trace-file-name [trace-file-name ...]

5. Operating Commands

138

(4) Command argument
trace-file-name ~<pathname>

Specify the names of the trace files or trace merge files to be merged.

(5) Notes
• A warning message is output if the trace information in a specified trace file is of

a version for which nest control is not possible. The trace information is merged
by time series.

• A warning message is output if the trace information required for nest control
does not exist.

5.1.10 utotrcout (edited output of UAP trace information)
(1) Syntax

(2) Function
Edits the trace information in the specified trace file or trace merge file and outputs the
information to standard output.

(3) Options
-s service-group-name ~<identifier of 1-31 characters>

 service-name ~<identifier of 1-31 characters>

Edits and outputs trace information for a specified service. Specify both the
service group name and service name, delimiting the two names with a comma (,).

Two or more services can be specified for a service group. Delimit the service
names with commas. Do not insert a space or symbol before or after the comma.

Both the service group name and service name must be specified. If no service
name is specified, trace information is edited and output to standard output for all
the services in the specified service group.

When this option is omitted, the trace information of all the service groups in the
specified file is edited and output.

If this option is specified with the -v option, both specifications apply to the
output trace information.

If this option is specified with the -n option, trace information for the service

utotrcout [-s service-group-name
 [,service-name]...]
 [-v server-name] [-i] [-n]
 [-t [edit-start-date-and-time]
 [,edit-end-date-and-time]] edit-file-name

5. Operating Commands

139

request destination is also output.

-v server-name ~<identifier of 1-8 characters>

Edits and outputs trace information for the specified server.

When this option is omitted, the trace information of all the servers in the
specified file is edited and output.

If this option is specified with the -s option, both specifications apply to the
output trace information.

If this option is specified with the -n option, trace information on service requests
to the specified server is also output.

-i

Outputs selected information, such as function names, from the trace information
collected in the specified file to standard output.

When this option is omitted, all trace information is output to standard output.

-n

Outputs the trace information collected in the specified file to standard output in
the sequence in which the information was collected.

-t edit-start-date-and-time, edit-end-date-and-time
Sets the time range for output of trace information. The specified start time is
corrected to the log time for the process that made the first service request.

Specify the start and end times within the range from 0:0:0 on January 1, 1970 to
the current time.

If the edit start time is omitted, trace information is output from the start of the
specified file up to the specified edit end time.

If the edit end time is omitted, trace information is output from the specified edit
start time up to the end of the specified file.

Specify the start and end times in the following format:

hhmmss[MMDD[YYYY]]
where

hh
hour (00 hh 23)

mm
minute (00 mm 59)

ss

5. Operating Commands

140

second (00 ss 59)

MM
month (01 MM 12)

DD
day (01 DD 31)

YYYY
year (1970 YYYY 9999)

If YYYY is omitted in the start or end time, the current year is assumed. If MM,
DD, and YYYY are all omitted, the current month, day, and year are assumed.

Either the edit start time or the edit end time must be specified.

(4) Command argument
edit-file-name ~<pathname>

Specify the name of the trace file or trace merge file to be edited.

(5) Output format
(a) -i option omitted

1. Tester information:

• Name of the server at which the UAP was started (up to 8 characters)

• Date and time, corrected to the log time for the process that made the first
service request

5. Operating Commands

141

(last two digits of year/month/day hour:minute:second)

• Service group name of the activated service (up to 31 characters).

**** is displayed for an SUP.

• Time at which the UAP trace information was collected

(last two digits of year/month/day hour:minute:second)

• Sequence number of the entry for which trace information was collected (6
digits)

• ID of the process for which trace information was collected

• Test user ID of the user who started the UAP (up to 4 characters)

2. UAP trace information (same output format as for uatdump -e command):

• Type of trace information collected

• Date and time when the trace information was collected.

Not displayed for functions that activate or terminate service requests.

• Date and time when the tester information or the UAP trace information was
collected in the format of year (last two digits)/month/day
hour:minutes:seconds.

• Sequential number (six digits) of the entry that collected trace information

• Name of the service that activated the UAP (up to 31 characters).

**** is displayed for an SUP or when the service is unknown.

3. Output area for call information on OpenTP1 functions

Output example (-i option omitted)

5. Operating Commands

142

5. Operating Commands

143

5. Operating Commands

144

5. Operating Commands

145

5. Operating Commands

146

5. Operating Commands

147

1. Trace information collected at SPP startup

2. Trace information collected at SUP startup

3. Trace information collected at service execution

4. Trace information collected at SUP completion

5. Trace information collected at SPP completion

(b) -i option specified

1. Tester information:

• Date and time, corrected to the log time for the process that made the first
service request

(last two digits of year/month/day hour:minute:second)

5. Operating Commands

148

• Date and time when the tester information was collected

(last two digits of year/month/day hour:minute:second)

• ID of the process for which the UAP trace was collected

• Name of the server at which the UAP was started (up to 8 characters)

• Service group name of the activated service (up to 31 characters).

**** is displayed for an SUP.

• Nest number of the UAP for which trace information was collected.

0 is displayed for trace information for which the online tester version cannot
perform nest control.

When a simulated client UAP or TP1/Client UAP makes the service request,
the nest numbers of the service request destinations are displayed from 1.

2. UAP trace information

• Type of trace information collected

• Time at which the trace information was collected.

For functions that activate or terminate service requests, the name of the
service that activated the UAP is displayed (up to 31 characters).

Output example (-i option specified)

5. Operating Commands

149

1. Trace information collected at SPP startup

2. Trace information collected at SUP startup

3. Trace information collected at service execution

4. Trace information collected at SUP completion

5. Trace information collected at SPP completion

5. Operating Commands

150

(6) Notes
• When the specified edit file contains trace information of an older version than

this command, a warning message is output and the information is output in the
order in which it was stored in the file.

• When the -n option is specified, a warning message is output if the required trace
information does not exist (part of the information is missing).

• When the -n option is specified and the edition start date and time specified in the
-t option is a time between the edition object date and times for two consecutive
groups, the trace information for the latter and subsequent groups is output.

• When the -n option is specified, trace information is output up to the nesting level
of the client process, even if the edition object date and time of the trace
information for the service request destination exceeds the edition end date and
time specified in the -t option.

• When trace information is collected with the complete I/O data specified, tester
information may be output in the middle of I/O data.

• Valid option combinations are shown below.

Legend:

-x: Only the -x option is valid.

-x, -y: Both the -x and -y options are valid.

--: Not applicable

5.1.11 utoxsppsvc (service requests to an XATMI interface SPP)
(1) Syntax

Specifiable option
combinations

-s -v -n -t -i

-s -s -s, -v -s, -n -s, -t -s, -i

-v -- -v -v, -n -v, -t -v, -i

-n -- -- -n -n, -t -n, -i

-t -- -- -- -t -t, -i

-i -- -- -- -- -i

utoxsppsvc [-f send/receive-control-file-name]
 service-name typed-buffer-definition-file-name
 XATMI-request-data-file-name
 [XATMI-response-data-file-name]

5. Operating Commands

151

(2) Function
Requests an XATMI interface SPP to execute a specified service. A command error
occurs if the utoxsppsvc command is executed for a UAP other than an SPP that uses
XATMI.

This command cannot be used for a simulate MHP.

(3) Options
-f send/receive-control-file-name ~<pathname>

For an interactive service request, specify the name of the send/receive control
file that defines the send and receive procedures.

(4) Command arguments
service-name ~<identifier of 1-31 characters>

Specify the name of the service to be executed.

typed-buffer-definition-file-name ~<pathname>

Specify the name of the typed buffer definition file that defines typed buffer
information.

XATMI-request-data-file-name ~<pathname>

Specify the name of the XATMI request data file that contains the input data
passed when a service is requested (when connection is established).

XATMI-response-data-file-name ~<pathname>

Specify the name of the XATMI response data file for storing the receive data
during service execution and the response data after service execution.

If this command argument is omitted, the response data is deleted.

When an existing output file is specified, its contents are overwritten. If the
specified file does not exist, the online tester creates the file.

(5) Notes
• Only one service request can be made interactively.

• Set the type of service request function (request/response or conversational
service paradigm) in call_kind in the XATMI request data file.

• The -f option is ignored if specified for the request/response service paradigm.
If the -f option is omitted for the conversational service paradigm, a command
error occurs.

• Service requests from within a transaction cannot be simulated.

• No error occurs if the send/receive control file contains no valid lines, but the

5. Operating Commands

152

command terminates immediately after the request for establishing connection.

• If no receive data or response data is received, no XATMI response data file is
created. Provided at least one item of data is received, the file is created even if
an error subsequently occurs. The data up to the error remains in the file.

• The data in the XATMI receive or XATMI response data file is invalidated if the
data length specified for the file differs from the typed buffer length specified in
the typed buffer definition file.

• The following conditions occur if the buffer length managed by the SPP differs
from the typed buffer length specified in the typed buffer definition file:

1. Service request error at utoxsppsvc command execution

2. Data receive error at utoxsppsvc command execution

3. Data receive error in the SPP

• If an XATMI response data file already exists, its contents are deleted when the
utoxsppsvc command starts. No data remains in the file, even if no data is
output.

153

Chapter

6. Error Recovery

This chapter explains the errors related to online tester operation and how to handle
them.

This chapter contains the following section:

6.1 Handling online tester errors

6. Error Recovery

154

6.1 Handling online tester errors

This chapter describes how to handle online tester errors. See the manual OpenTP1
Operation for details on errors not related to the online tester.

6.1.1 Error conditions and causes
Table 6-1 lists the types of errors that may occur with the online tester and their
probable causes.

Table 6-1: Online tester errors and causes

Error Cause Manual
reference

Online tester command does
not terminate normally.

No online tester definition in system definition. 6.1.2 (1)

Incorrect option or command argument.

File for command execution cannot be accessed.

UAP trace information not
collected.

No test target specified in system definition. 6.1.2 (2)

Zero specified in max_trace_file_size operand in the
system definition.

Zero specified in UAP_trace_max operand in the system
definition.

Send messages not collected. No test target specified in system definition. 6.1.2 (3)

Zero specified in max_message_file_size operand in the
system definition.

Number of send messages exceeds the upper limit.

No send data collected for
interactive service requests.

Output of send data not defined in the system definition. 6.1.2 (4)

Test UAP does not start. Test user ID not set. 6.1.4 (1)

No test target specified in system definition.

UAP does not start in non-test
mode.

Specified as a test UAP in the system definition. 6.1.4 (2)

dc_rpc_open function in a
test UAP returns an error.

No online tester definition in the system definition. 6.1.4 (3)

Test UAP restarted with _uto
as the test user ID.

Conflict in UAP status control between the OpenTP1 system
and the online tester.

6.1.4 (4)

6. Error Recovery

155

6.1.2 Online tester errors
The following explains how to handle online tester errors.

(1) Online tester command does not terminate normally
Take one of the following actions, then re-enter the command:

• If usage of the online tester is not specified in the system service configuration
definition, terminate OpenTP1, configure the online tester in the definition
(specify Y in the uto_conf operand), then restart OpenTP1.

• If an option or command argument is incorrectly specified, correct the option or
command argument.

• If a file required for command execution does not exist, create the file. Or, if the
existing file cannot be used because access is prohibited, change the access
authority.

(2) UAP trace information not collected
(a) No UAP trace information collected at all

If zero is specified as the maximum size of the trace file (max_trace_file_size
operand) in the tester service definition, terminate OpenTP1, specify 1 or a higher
value, then restart OpenTP1.

(b) Trace information not collected for a specific UAP
Take one of the following actions:

• If the UAP is not specified as a test UAP in the user service definition, terminate
the UAP, correct the definition (specify target in the test_mode operand), then
restart the UAP.

• If zero is specified as the maximum number of UAP traces (uap_trace_max
operand) in the user service definition, terminate the UAP, specify 1 or a higher
value, then restart the UAP.

(c) Some trace information missing
Take one of the following actions:

Test UAP does not recover
after abnormal termination.

Test UAP interlocked to the debugger. 6.1.4 (5)

Debugger-interlocked UAP
frequently causes a time-out
error.

Incorrect value specified for the monitoring time in the user
service definition.

6.1.4 (6)

Error Cause Manual
reference

6. Error Recovery

156

• If the trace file is full, back up to another file, then delete the full file.

• If the online tester shut down during UAP execution, restart the online tester, then
re-execute the UAP.

• If the UAP detected an abnormality and immediately shut down without
collecting the core file, modify the program so that the core file can be collected,
then re-execute the UAP.

(3) Send messages not collected
(a) No send messages collected at all

If zero is specified as the maximum size of the MCF send message file
(max_message_file_size operand) in the tester service definition, terminate
OpenTP1, specify 1 or a higher value, then restart OpenTP1.

(b) Send messages not collected for a specific UAP
If the UAP is not specified as a test UAP in the user service definition, terminate the
UAP, correct the definition (specify target in the test_mode operand), then restart
the UAP.

(c) Some send messages missing
If the MCF send message file is full, back up to another file, then delete the full file.

(4) No send data collected for interactive service requests.
(a) No send data collected at all

If N is specified for send data output (test_xatmi_send_file operand) in the user
service definition, terminate the UAP, specify Y, then restart the UAP.

6.1.3 File errors
If an error occurs in a file created by the online tester, check the cause of the error from
the file name and error code displayed in the error message, and take appropriate
action.

6.1.4 UAP errors
The following explains how to handle UAP errors.

(1) Test UAP does not start
Take one of the following actions, then re-start the UAP:

• Set the test user ID if omitted.

• Reset the test user ID if incorrect.

• If the UAP is not specified as a test UAP in the user service definition, terminate
the UAP, correct the definition (specify target in the test_mode operand), then

6. Error Recovery

157

restart the UAP.

(2) UAP does not start in non-test mode
If the UAP is specified as a test target in the user service definition, specify the UAP
as a non-test UAP (specify no in the test_mode operand) or delete the definition
statement. Then restart the UAP.

(3) dc_rpc_open function in a test UAP returns an error
If usage of the online tester is not specified in the system service configuration
definition, terminate OpenTP1, configure the online tester in the definition (specify Y
in the uto_conf operand), then restart OpenTP1.

(4) Test UAP restarted with _uto as the test user ID
_uto may be set as the test user ID when a test UAP is restarted after:

• Forced termination of the OpenTP1 system or UAP during normal termination
processing of the UAP

• Abnormal termination of the OpenTP1 system

In these cases, a message reports that _uto was set as the test user ID at system restart.
To execute the UAP with a different test user ID, terminate and then restart the UAP.

(5) Test UAP does not recover after abnormal termination
When the test UAP is interlocked to the debugger, the UAP is not recovered if it
terminates abnormally. A message appears, notifying the UAP recovery is disabled. To
restart this UAP, stop the debugger if the debugger process remains.

(6) Debugger-interlocked UAP causes a time-out error frequently
A debugger-interlocked UAP may frequently cause a time-out error depending on a
value specified for the monitoring time in the user service definition. Table 6-2 shows
time-out error events and related definitions.

Table 6-2: Time-out error events caused by a debugger-interlocked UAP and
related definitions

Time-out error event Set format of the related user service
definition

dc_rpc_call function times out and returns an error. set watch_time

A time-out error abnormally terminates the corresponding
transaction branch process, activating the recovery process. The
UAP is then terminated forcibly.

set trn_expiration_time

set trn_cpu_time

A time-out error abnormally terminates the corresponding UAP.
The UAP is terminated forcibly.

set watch_next_chain_time

6. Error Recovery

158

A time-out error abnormally terminates the corresponding UAP
without shutdown by the service group. The UAP is terminated
forcibly.

set term_watch_time

Time-out error event Set format of the related user service
definition

159

PART 3: Online Tester (TP1/Message Control/Tester)

Chapter

7. Facilities

This chapter describes the following facilities provided by the MCF online tester:

Disabling updating of non-MCF resources

Invalidating send messages

Invalidating application startup messages

Suppressing error events

Suppressing MHP automatic shutdown

Collecting UAP trace information

This chapter contains the following sections:

7.1 MHP testing
7.2 Collecting test information

7. Facilities

160

7.1 MHP testing

The MCF online tester allows the user to test and check the operation of a newly
created MHP or modified MHP. Both of the following conditions must be satisfied for
a test to be performed:

• The MHP must be within a transaction.

• The MHP must be activated directly from TP1/Message Control.

To test an MHP, enter the mcfutfst command to declare use of the MCF online tester
and to access its facilities. Then, enter the mcftules, mcfauaps or mcftusgs
command to start testing. Or, to check whether the facilities of the MCF online tester
are available, enter the mcflsutf command.

Tests can be performed on:

• A logical terminal

• An application

• A service group

The test start command differs in each case. Use the mcftules command to test a
logical terminal. The test runs from the time a message from the specified logical
terminal is received by the application until no further test messages remain.

Use the mcfauaps command to test an application. The test runs from the time the
specified application receives a message until no further test messages remain. The
type of application (user application or MCF event) can be selected by specifying the
-k operand in the mcfauaps command.

Use the mcftusgs command to test a service group. The test runs while the service
group specified by the mcftusgs command is active.

The MCF online tester facilities to be used in a test can also be specified as options in
the test start commands. The specifiable facilities are described below.

7.1.1 Disabling updating of non-MCF resources
When a test MHP updates resources managed by another resource manager during
message processing, the updated resources can be restored to their previous status at
completion of the transaction. This facility means that the user does not need to restore
the resources after testing.

To use this facility, specify backout in the -e option of the test start command.

7.1.2 Invalidating send messages
Messages sent by a test MHP can be invalidated, allowing the MHP to be tested

7. Facilities

161

without affecting online jobs.

This facility invalidates messages sent by the following functions issued by the test
MHP:

• dc_mcf_send function (message send)

• dc_mcf_sendsync function (synchronous message send)

• dc_mcf_resend function (message resend)

To use this facility, specify swmsg in the -e option of the test start command.

Messages sent by the following functions cannot be invalidated:

• dc_mcf_reply function (response message send)

• dc_mcf_sendrecv function (synchronous message send and receive)

7.1.3 Invalidating application startup messages
Startup messages for branch applications can be invalidated, allowing the MHP to be
tested without affecting online jobs.

To use this facility, specify execap in the -e option of the test start command.

Application startup messages for response messages cannot be invalidated.

7.1.4 Suppressing error events
Error events generated in a test MHP can be suppressed, allowing the MHP to be tested
without affecting online jobs.

The following error events can be suppressed:

• ERREVT1 (MCF event that reports detection of an invalid application name,
suppressed for logical terminal tests only)

• ERREVT2 (MCF event that reports discarding of a message at abnormal
termination before issue of the dc_mcf_receive function)

• ERREVT2 (MCF event that reports discarding of a message generated at automatic
shutdown)

• ERREVT3 (MCF event that reports UAP abnormal termination at abnormal
termination during MHP execution)

To use this facility, specify errevt in the -e option of the test start command.

The following error events cannot be suppressed:

• ERREVTA (MCF event that reports discarding of an unprocessed message)

• ERREVT4 (MCF event that reports discarding of a timer-start message)

7. Facilities

162

7.1.5 Suppressing MHP automatic shutdown
The MHP normally shuts down automatically at abnormal termination. Automatic
shutdown can be suppressed so that the user does not need to enter an operating
command to release shutdown status.

To use this facility, specify holdlimit in the -e option of the test start command.

After the test start command has been executed, applications can be started in the same
way as when not using the MCF online tester.

Figure 7-1 shows an example of transaction processing from receiving to sending a
message. If the MHP terminates abnormally, MCF resources are restored to their status
before the transaction began.

Figure 7-1: Example of transaction processing from message receive to
message send

Explanation:

1. Messages sent during a test are handled as follows:

Message type -e option of test start command

swmsg specified swmsg omitted

Inquiry response messages Sent Sent

7. Facilities

163

#: The interface is checked at message send and an error status code is returned if
an error occurs.

2. Resources of resource managers other than the MCF are restored to their previous
status when backout is specified in the -e option of the test start command.
Updated resources are not restored when backout is omitted.

3. The send message is output if one exists.

Branch messages Not sent# Sent

Message type -e option of test start command

swmsg specified swmsg omitted

7. Facilities

164

7.2 Collecting test information

7.2.1 Collecting UAP trace information
Trace information can be collect for a test MHP so that MHP operation can be checked.
However, the TP1/Server Base online tester must also be used.

To use this facility, specify the test user ID in the -u option of the command for the
MCF online tester use declaration (mcfutfst), and trace in the -e option of the test
start command (mcftules, mcfauaps, or mcftusgs).

165

Chapter

8. Test Execution

This chapter explains how to start and end a test, how duplicate test mode
specifications are handled, and how to inherit and edit test mode information.

This chapter contains the following sections:

8.1 Starting and ending a test
8.2 Duplicate test mode specifications
8.3 Inheriting test mode information
8.4 Editing test information

8. Test Execution

166

8.1 Starting and ending a test

Test mode is the system status from execution of a test start command (mcftules,
mcfauaps, or mcftusgs) until execution of a test end command (mcftulee,
mcfauape, or mcftusge). The MCF online tester facilities can be used during this
time.

8.1.1 Starting a test and setting the test environment
To use the MCF online tester, first enter the mcfutfst command to declare usage.
Then, enter a test start command to start testing. Specify the test environment (the MCF
online tester facilities to be used) in the test start command. These specifications are
called test mode information.

Before starting a test, you can check whether the facilities of the MCF online tester are
available. Enter the mcflsutf command to display tester status.

(1) Starting a test
(a) Testing a logical terminal

Enter the mcftules command to start testing. At command execution, the specified
logical terminal is in test mode. That is, all the applications activated from the logical
terminal run in test mode.

(b) Testing an application
Enter the mcfauaps command to start testing. At command execution, the specified
application runs in test mode.

An application test can be performed when adding new application processing to an
existing UAP.

(c) Testing a service group
Enter the mcftusgs command to start testing. At command execution, the specified
service group enters test mode.

(d) Note on executing a test start command
Do not enter a test start command before shutdown of connection and completion of
all message send and receive. If a test start command is executed during message send
and receive, the application(s) run in test mode when subsequently activated.

(2) Setting the test environment
To set the test environment, specify any of the following facilities in the test start
command:

• Disable updating of non-MCF resources

8. Test Execution

167

• Invalidate send messages

• Invalidate application startup messages

• Suppress error events

• Suppress MHP automatic shutdown

• Collecting UAP trace information

(3) Test mode range
The input messages for an application in test mode and the messages input from a
logical terminal in test mode are called test mode messages.

Test mode is effective from the time the MHP receives a test mode message until the
end of messages generated during testing.

8.1.2 Ending a test
To declare test termination, enter the test end command (mcftulee, mcfauape or
mcftusge) from a workstation that accepts online tester operating commands.

When the test end command is executed, the specified logical terminal, application, or
service group is released from test mode.

8. Test Execution

168

8.2 Duplicate test mode specifications

When two or more test mode specifications apply to an application, the precedence of
the test environment specification for the application is in the order of first the logical
terminal, then the application, and finally the service group.

For example, if an application is input from a logical terminal in test mode, and if a test
environment is specified for that application by entering the mcfauaps command, the
test environment specified for the logical terminal by the mcftules command takes
effect. The test environment specified by the mcfauaps command is effective if the
application is input from a logical terminal that is not in test mode.

Table 8-1 shows how duplicate test mode specifications for a logical terminal, an
application, and a service group are handled.

Table 8-1: Duplicate test mode specifications

Legend:

Y: The test mode is specified.

N: The test mode is not specified.

--: Not applicable.

Logical terminal Application Service group Source of valid test
mode information

Y Y Y Logical terminal

N Logical terminal

N Y Logical terminal

N Logical terminal

N Y Y Application

N Application

N Y Service group

N --

8. Test Execution

169

8.3 Inheriting test mode information

When a test MHP issues the dc_mcf_execap function (for activating an application
program), the test mode information specified in the test start command is inherited to
the activated MHP.

Table 8-2 shows how test mode information is inherited.

Table 8-2: Inheritance of test mode information

Legend:

Y: The test mode is specified.

N: The test mode is not specified.

--: Not applicable.

Logical
terminal

Application Service
group

Application specified using dc_mcf_execap

Y N

Service group Service group

Y N Y N

Y Y Y The test mode information for the logical terminal is inherited.

N

N Y

N

N Y Y The test mode information
for the application specified
using dc_mcf_execap is
inherited.

The test mode
information for
the MHP started
using
dc_mcf_execa
p is inherited.

The test mode
information for
the startup
source
application is
inherited.

N

N Y The test mode
information for
the startup
source MHP is
inherited.

N --

8. Test Execution

170

8.4 Editing test information

8.4.1 Displaying test mode information
Entering a test mode information display command (mcftulsle, mcfaulsap, or
mcftulssg) can output the test mode information for a logical terminal, application,
or service group (MHP) specified in a test start command to standard output. This
facility allows the operator to monitor the status of the online test.

8.4.2 Collecting UAP trace information
To collect UAP (MHP) trace information, first complete the following specifications:

• Specify uto_conf=Y in the system service configuration definition.

• Specify the maximum size of the trace file in the max_trace_file_size
operand of the tester service definition.

• Specify test_mode=no in the user service definition.

• Specify the test user ID in the -u option of the mcfutfst (MCF online tester use
declaration) command.

• Specify trace in the -e option of the command for starting the MCF online
tester.

8.4.3 Merging and outputting UAP trace information
MHP trace information is collected when these specifications are completed. The
information can be edited and output to standard output by entering the online tester's
utotrcout command.

The output format follows TP1/Server Base online tester specifications. No trace
information is output for the following functions.

• dc_mcf_open function

• dc_mcf_close function

• dc_mcf_mainloop function

• dc_mcf_regster function

MHP trace information is output to the $DCDIR/spool/uto/test-user-ID directory.
The test user ID in the pathname is the ID specified in the -u option of the mcfutfst
command.

There are two MHP trace files, trace1 and trace2. These files are swapped if the
contents written to a file exceed the value specified in the max_trace_file_size
operand of the tester service definition. A message reports that the files were swapped
when one file became full. When this message is output, copy the contents of the full

8. Test Execution

171

trace file to another file, then delete the full trace file.

See Section 3.1 System definitions for the online tester for information on the system
service configuration definition, tester service definition, and user service definition.
For details on the utotrcout command, see Section 5.1 Operating commands for
running tests.

173

Chapter

9. Operating Commands

This chapter explains how to use the operating commands of the MCF online tester.

This chapter contains the following sections:

9.1 Operating commands for running tests
9.2 Operating commands for testing a logical terminal
9.3 Operating commands for testing an application
9.4 Operating commands for testing a service group

9. Operating Commands

174

9.1 Operating commands for running tests

The following pages explain the operating commands for the MCF online tester. For
information on command syntax and rules, see the manual OpenTP1 Operation.

Table 9-1 lists the operating commands for running tests.

Table 9-1: List of operating commands

9.1.1 mcfutfst (MCF online tester use declaration)
(1) Syntax

(2) Function
Declares usage of the MCF online tester.

Commands for the MCF online tester other than mcfutfst and mcflsutf are not
accepted unless usage of the MCF online tester is first declared by entering the
mcfutfst command.

The mcfutfst command is not accepted if usage of the MCF online tester has already
been declared.

Enter the mcfutfst command only after shutdown of connection and completion of
all message send and receive.

The MCF online tester ends when TP1/Message Control terminates.

(3) Option
-u test-user-ID ~<identifier of 1-4 characters>

Specify a test user ID for identifying the trace file directory.

This option must be specified to collect MCF trace information.

9.1.2 mcflsutf (display of MCF online tester status)
(1) Syntax

Command name Function

mcfutfst MCF online tester use declaration

mcflsutf Display of MCF online tester status

mcfutfst [-u test-user-ID]

mcflsutf

9. Operating Commands

175

(2) Function
Outputs the status of the MCF online tester, showing whether the tester facilities can
be used, to standard output.

Before the MCF online tester facilities can be used, usage must be declared by entering
the mcfutfst command.

(3) Output format

1. MCF manager process ID and MCF communication process ID

2. MCF mode indication

3. TEST

MCF online tester can be used.

NORMAL

MCF online tester cannot be used.

4. **** is displayed when no test user ID is specified.

A00 MCF mode=TEST test user ID=mhp
 1. 2. 3.

9. Operating Commands

176

9.2 Operating commands for testing a logical terminal

This section explains the commands of the MCF online tester for running a test on a
logical terminal. For the format and rules of the operating commands, see the manual
OpenTP1 Operation.

Table 9-2 lists the operating commands used for running tests on a logical terminal.

Table 9-2: Operating commands for running tests on a logical terminal

9.2.1 mcftulsle (display of test mode information for a logical
terminal)
(1) Syntax

(2) Function
Outputs test mode information for the specified logical terminal to standard output.

(3) Option
-l logical-terminal-name ~<identifier of 1-8 characters>

Specify the name of the logical terminal for which test mode information is to be
displayed.

Specify an asterisk (*) in logical-terminal-name to display test mode information
for all logical terminals in test mode. To display test mode information for all
logical terminals whose names begin with a particular prefix character string,
follow the prefix character string with an asterisk (prefix-character-string*).

Only one logical terminal name can be specified.

(4) Output format

1. MCF manager process ID and MCF communication process ID

Command name Function

mcftulsle Display of test mode information for a logical terminal

mcftules Start of a logical terminal test

mcftulee Termination of a logical terminal test

mcftulsle -l logical-terminal-name

A01 LEual1 back trac swms erre exec hold
 1. 2. 3. 4. 5. 6. 7. 8.

9. Operating Commands

177

2. Logical terminal name (up to 8 characters)

3. Shows whether to restore resources to pre-test status at completion of a
transaction.

back

Restore.

nobk

Do not restore.

4. Shows whether to collect MHP trace information during processing of a
transaction in test mode.

trac

Collect.

notr

Do not collect.

5. Shows whether to invalidate MHP send messages issued by a transaction in test
mode.

swms

Invalidate.

nosw

Do not invalidate.

6. Shows whether to suppress error event activation.

erre

Suppress.

noer

Do not suppress.

7. Shows whether to invalidate application startup messages issued by a transaction
in test mode.

exec

Invalidate.

noex

Do not invalidate.

8. Shows whether to suppress MHP automatic shutdown should a transaction in test

9. Operating Commands

178

mode terminate abnormally.

hold

Suppress.

noho

Do not suppress.

9.2.2 mcftules (start of a logical terminal test)
(1) Syntax

(2) Function
Sets the specified logical terminal in test mode and starts testing.

Enter the mcftules command only after shutdown of connection and completion of
all message send and receive.

(3) Options
-e

Specify the test mode options.

Enclose two or more flag arguments with quotation marks (") and delimit each
flag argument by inserting a space.

Flag arguments:

backout

Restores the resources used in a transaction to pre-test status at completion
of the transaction.

When this flag argument is omitted, updated resources are used in their
current status and are not restored to pre-test status.

trace

Collects MHP trace information during processing of a transaction in test
mode.

When this flag argument is omitted, no MHP trace information is collected.

swmsg

Invalidates messages sent by the MHP during processing of a transaction in
test mode.

mcftules [-e "[backout] [trace] [swmsg] [errevt]
 [execap] [holdlimit]"]
 -l logical-terminal-name

9. Operating Commands

179

Messages sent by the following functions issued by the test MHP are
invalidated:

dc_mcf_send function (message send)

dc_mcf_sendsync function (synchronous message send)

dc_mcf_resend function (message resend)

When this flag argument is omitted, messages sent by the above functions are
effective.

errevt

Suppresses error event activation if an error event occurs during testing. The
following error events are suppressed:

ERREVT1 (MCF event that reports detection of an invalid application name)

ERREVT2 (MCF event that reports discarding of a message at abnormal
termination before issue of the dc_mcf_receive function)

ERREVT2 (MCF event that reports discarding of a message generated at
automatic shutdown)

ERREVT3 (MCF event that reports UAP abnormal termination at abnormal
termination during MHP execution)

When this flag argument is omitted, activation of the above error events is
not suppressed.

execap

Invalidates branch application startup messages issued by a transaction in
test mode.

When this flag argument is omitted, branch application startup messages are
effective.

holdlimit

Suppresses MHP automatic shutdown should a transaction in test mode
terminate abnormally.

When this flag argument is omitted, MHP automatic shutdown is not
suppressed.

-l logical-terminal-name ~<identifier of 1-8 characters>

Specify the name of the logical terminal at which to start testing.

You cannot use an asterisk (*) or a prefix character string plus an asterisk
(prefix-character-string*) to specify a group of logical terminal names.

Only one logical terminal name can be specified.

9. Operating Commands

180

9.2.3 mcftulee (termination of a logical terminal test)
(1) Syntax

(2) Function
Releases test mode status at the specified logical terminal and ends testing.

(3) Option
-l logical-terminal-name~<identifier of 1-8 characters>

Specify the name of the logical terminal at which to end testing.

You cannot use an asterisk (*) or a prefix character string plus an asterisk
(prefix-character-string*) to specify logical terminal names in a batch.

Only one logical terminal name can be specified.

mcftulee -l logical-terminal-name

9. Operating Commands

181

9.3 Operating commands for testing an application

This section explains the commands of the MCF online tester for running a test on an
application. For the format and rules of the operating commands, see the manual
OpenTP1 Operation.

Table 9-3 lists the operating commands used for running tests on an application.

Table 9-3: Operating commands for running tests on an application

9.3.1 mcfaulsap (display of test mode information for an application)
(1) Syntax

(2) Function
Outputs test mode information for the specified application to standard output.

(3) Options
-s MCF-communication-process-ID |
 application-startup-process-ID ~<hexadecimal> ((01-ef))

Specify the MCF communication process ID or application startup process ID.

Specify the application startup process ID when testing an application specified
by ERREVT or by the dc_mcf_execap function. In all other cases, specify the
MCF communication process ID.

Only one process ID can be specified.

-a application-name ~<identifier of 1-8 characters>

Specify the name of the application for which test mode information is to be
displayed.

Specify an asterisk (*) in application-name to display test mode information for
all applications in test mode. Placing an asterisk (*) after first character(s) of the

Command name Function

mcfaulsap Display of test mode information for an application

mcfauaps Start of an application test

mcfauape Termination of an application test

mcfaulsap -s { MCF-communication-process-ID |
 application-startup-process-ID }
 -a application-name [-k application-name-type]

9. Operating Commands

182

application name (first_characters_*) shows test mode information for all
applications whose name begins with those character before *.

Only one application name can be specified.

-k application-name-type
Specify the type of the application specified in the -a option:

user

User application

mcf

MCF event

When this option is omitted, the application name specified in the -a option is
assumed to be a user application name.

(4) Output format

1. MCF manager process ID, MCF communication process ID, or application
startup process ID

2. Application name type

user

User application

mcf

MCF event

3. Application name or MCF event name

4. Shows whether to restore resources to pre-test status at completion of a
transaction.

back

Restore.

nobk

Do not restore.

5. Shows whether to collect MHP trace information during processing of a
transaction in test mode.

trac

A01 user aprep01 back trac swms erre exec hold
 1. 2. 3. 4. 5. 6. 7. 8. 9.

9. Operating Commands

183

Collect.

notr

Do not collect.

6. Shows whether to invalidate MHP send messages issued by a transaction in test
mode.

swms

Invalidate.

nosw

Do not invalidate.

7. Shows whether to suppress error event activation.

erre

Suppress.

noer

Do not suppress.

8. Shows whether to invalidate application startup messages issued by a transaction
in test mode.

exec

Invalidate.

noex

Do not invalidate.

9. Shows whether to suppress MHP automatic shutdown should a transaction in test
mode terminate abnormally.

hold

Suppress.

noho

Do not suppress.

9. Operating Commands

184

9.3.2 mcfauaps (start of an application test)
(1) Syntax

(2) Function
Sets the specified application in test mode and starts testing.

Enter the mcfauaps command only after shutdown of connection and completion of
all message send and receive.

(3) Options
-s MCF-communication-process-ID |

 application-startup-process-ID ~<hexadecimal> ((01-ef))

Specify the MCF communication process ID or application startup process ID.

To test an application specified by the dc_mcf_execap function, specify the
application startup process ID. To test ERREVT, specify IDs based on Table 9-4.
For other testing, specify the MCF communication process ID.

Only one process ID can be specified.

Table 9-4: IDs to be specified when testing ERREVT (mcfauaps command)

Legend:

Y: Specifiable.

mcfauaps -s { MCF-communication-process-ID |
 application-startup-process-ID }
 [-e "[backout] [trace] [swmsg] [errevt]
 [execap] [holdlimit]"]
 -a application-name [-k application-name-type]

ERREVT to be tested ID to be specified

MCF
communication

process ID

Application
startup process ID

Invalid application name notification event (ERREVT1) Y --

Message discard event that is issued by abnormal termination
before the dc_mcf_receive function is issued (ERREVT2)

-- Y

Message discard event generated by shutdown (ERREVT2) Y# Y#

UAP abnormal termination notification event that is issued
by abnormal termination during MHP execution
(ERREVT3)

-- Y

9. Operating Commands

185

--: Not specifiable.

#: Specify both the MCF communication process ID and the application startup
process ID.

-e

Specify the test mode options.

Enclose two or more flag arguments with quotation marks (") and delimit each
flag argument by inserting a space.

Flag arguments:

backout

Restores the resources used in a transaction to pre-test status at completion
of the transaction.

When this flag argument is omitted, updated resources are used in their
current status and are not restored to pre-test status.

trace

Collects MHP trace information during processing of a transaction in test
mode.

When this flag argument is omitted, no MHP trace information is collected.

swmsg

Invalidates messages sent by the MHP during processing of a transaction in
test mode.

Messages sent by the following functions issued by the test MHP are
invalidated:

dc_mcf_send function (message send)

dc_mcf_sendsync function (synchronous message send)

dc_mcf_resend function (message resend)

When this flag argument is omitted, messages sent by the above functions are
effective.

errevt

Suppresses error event activation if an error event occurs during testing. The
following error events are suppressed:

ERREVT1 (MCF event that reports detection of an invalid application name)

However, the above error event can be suppressed only when testing is
performed in a logical terminal.

9. Operating Commands

186

ERREVT2 (MCF event that reports discarding of a message at abnormal
termination before issue of the dc_mcf_receive function)

ERREVT2 (MCF event that reports discarding of a message generated at
automatic shutdown)

ERREVT3 (MCF event that reports UAP abnormal termination at abnormal
termination during MHP execution)

When this flag argument is omitted, activation of the above error events is
not suppressed.

execap

Invalidates branch application startup messages issued by a transaction in
test mode.

When this flag argument is omitted, branch application startup messages are
effective.

holdlimit

Suppresses MHP automatic shutdown should a transaction in test mode
terminate abnormally.

When this flag argument is omitted, MHP automatic shutdown is not
suppressed.

-a application-name ~<identifier of 1-8 characters>

Specify the name of the application to be tested.

You cannot use an asterisk (*) or a prefix character string plus an asterisk
(prefix-character-string*) to specify application names in a batch.

Only one application name can be specified.

-k application-name-typet
Specify the type of the application specified in the -a option:

user

User application

mcf

MCF event

When this option is omitted, the application name specified in the -a option is
assumed to be a user application name.

9. Operating Commands

187

9.3.3 mcfauape (termination of an application test)
(1) Syntax

(2) Function
Releases test mode at the specified application and ends testing.

(3) Options
-s MCF-communication-process-ID |

 application-startup-process-ID ~<hexadecimal> ((01-ef))

Specify the MCF communication process ID or application startup process ID.

Specify the application startup process ID when testing an application specified
using the dc_mcf_execap function. When testing ERREVT, specify the
applicable ID as shown in Table 9-5. In all other cases, specify the MCF
communication process ID.

Only one process ID can be specified.

Table 9-5: IDs to be specified when testing ERREVT (mcfauape command)

Legend:

Y: Specifiable.

--: Not specifiable.

#1: Specify when the application activated by the received message is shut down.

mcfauape -s { MCF-communication-process-ID |
 application-startup-process-ID }
 -a application-name [-k application-name-type]

ERREVT to be tested ID to be specified

MCF
communication

process ID

Application
startup process ID

Invalid application name notification event (ERREVT1) Y --

Message discard event that is issued by abnormal termination
before the dc_mcf_receive function is issued (ERREVT2)

-- Y

Message discard event generated by shutdown (ERREVT2) Y#1 Y#2

UAP abnormal termination notification event that is issued
by abnormal termination during MHP execution
(ERREVT3)

-- Y

9. Operating Commands

188

#2: Specify when the application activated by the dc_mcf_execap function is
shut down.

-a application-name ~<identifier of 1-8 characters>

Specify the name of the application at which to end testing.

You cannot use an asterisk (*) or a prefix character string plus an asterisk
(prefix-character-string*) to specify application names in a batch.

Only one application name can be specified.

-k application-name-type
Specify the type of the application specified in the -a option:

user

User application

mcf

MCF event

When this option is omitted, the application name specified in the -a option is
assumed to be a user application name.

9. Operating Commands

189

9.4 Operating commands for testing a service group

This section explains the commands of the MCF online tester for running a test on a
service group. For the format and rules of the operating commands, see the manual
OpenTP1 Operation.

Table 9-6 lists the operating commands used for running tests on a service group.

Table 9-6: Operating commands for running tests on an application

9.4.1 mcftulssg (display of test mode information for a service
group)
(1) Syntax

(2) Function
Outputs test mode information for the specified service group to standard output.

(3) Option
-g service-group-name ~<identifier of 1-31 characters>

Specify the service group name.

Specifying an asterisk (*) for the service group name outputs test mode
information for all the service groups in test mode. Placing an * after first
character(s) of the service group name (first_characters_*) shows test mode
information for all service groups whose name begins with those character before
*.

(4) Output format

1. MCF manager process ID and MCF communication process ID

2. Service group name

Command name Function

mcftulssg Display of test mode information for a service group

mcftusgs Start of a service group test

mcftusge Termination of a service group test

mcftulssg -g service-group-name

A01 SVG01 LEual1 back trac swms erre exec hold
 1. 2. 3. 4. 5. 6. 7. 8. 9.

9. Operating Commands

190

3. Logical terminal name (no more than 8 characters)

4. Shows whether to restore the resource to the status before the test when the
transaction ends.

back

Restore.

nobk

Do not restore.

5. Shows whether to collect the trace information of the MHP while a test mode
transaction is being processed.

trac

Collect.

notr

Do not collect.

6. Shows whether to invalidate the send message issued by a test mode transaction.

swms

Invalidate.

nosw

Do not invalidate.

7. Shows whether to suppress the startup of error events.

erre

Suppress.

noer

Do not suppress.

8. Shows whether to invalidate the application startup message issued by a test mode
transaction.

exec

Invalidate.

noex

Do not invalidate.

9. Shows whether to suppress the automatic shutdown function of the MHP if a test
mode transaction ends abnormally.

9. Operating Commands

191

hold

Suppress.

noho

Do not suppress.

9.4.2 mcftusgs (start of a service group test)
(1) Syntax

(2) Function
Sets the specified service group in test mode. The mcftusgs command must be
executed after the connection is shut down and there is no transmission of messages.

(3) Options
-g service-group-name ~<identifier of 1-31 characters>

Specify the name of the service group where the test is to be started.

You cannot use an asterisk (*) or a prefix character string plus an asterisk
(prefix-character-string*) to specify a group of service group names.

Only one service group name can be specified.

-e

Specify the test mode options.

Enclose two or more flag arguments with quotation marks (") and delimit each
flag argument by inserting a space.

Flag arguments:

backout

Restores the resource used in a transaction to pre-test status at completion of
the transaction.

When this flag argument is omitted, updated resources are used in their
current status and are not restored to pre-test status.

trace

Collects MHP trace information during processing of a transaction in test
mode.

When this flag argument is omitted, no MHP trace information is collected.

mcftusgs -g service-group-name
 [-e"[backout] [trace] [swmsg] [errevt]
 [execap] [holdlimit]"]

9. Operating Commands

192

swmsg

Invalidates messages sent by MHP during processing of a transaction in test
mode. Messages sent by the following functions issued by the test MHP are
invalidated:

dc_mcf_send function (message send)

dc_mcf_sendsync function (synchronous message send)

dc_mcf_resend function (message resend)

When this flag argument is omitted, messages sent by the above functions are
effective.

errevt

Suppresses error event activation if an error event occurs during testing. The
following error events are suppressed:

ERREVT1 (MCF event that reports discarding of a message at abnormal
termination before issue of the dc_mcf_receive function)

However, the above error event can be suppressed only when testing is
performed in a logical terminal.

ERREVT2 (MCF event that reports discarding of a message at abnormal
termination before issue of the dc_mcf_receive function)

ERREVT2 (MCF event that reports discarding of a message generated at
automatic shutdown)

ERREVT3 (MCF event that reports UAP abnormal termination at abnormal
termination during MHP execution)

When this flag argument is omitted, activation of the above error events is
not suppressed.

execap

Invalidates the branch application startup message issued by a transaction in
test mode.

When this flag argument is omitted, branch application startup messages are
effective.

holdlimit

Suppresses MHP automatic shutdown should a transaction in test mode
terminates.

When this flag argument is omitted, MHP automatic shutdown is not
suppressed.

9. Operating Commands

193

9.4.3 mcftusge (termination of a service group test)
(1) Syntax

(2) Function
Releases test mode for the specified service group and ends the test.

(3) Option
-g service-group-name ~<identifier of 1-31 characters>

Specify the service group name for which the test should terminate.

You cannot use an asterisk (*) or a prefix character string plus an asterisk
(prefix-character-string*) to specify service group names in a batch.

Only one service group name can be specified.

mcftusge -g service-group-name

195

PART 4: Offline Tester

Chapter

10. Facilities

This chapter describes the test facilities available with the offline tester.

This chapter contains the following sections:

10.1 Facilities of the offline tester
10.2 Simulating a client UAP
10.3 Simulating a server UAP
10.4 Simulating the MCF
10.5 Simulating file services
10.6 Simulating OpenTP1 functions
10.7 Simulating operating commands
10.8 Creating tester files
10.9 Continuous command execution
10.10 Debugger connection
10.11 Collecting test information

10. Facilities

196

10.1 Facilities of the offline tester

The offline tester provides the following facilities for testing UAPs:

1. Client UAP simulator

Simulates client UAP processing so that a server UAP can be tested without a
client UAP.

2. Server UAP simulator

Simulates server UAP processing so that a client UAP can be tested without a
server UAP.

3. MCF simulator

Simulates message send and receive processing for testing an MHP or an SPP
called by service requests from the MHP.

4. File service simulators

Simulate the DAM service and TAM service for testing UAP access to DAM or
TAM files.

5. OpenTP1 function simulator

Simulates processing of OpenTP1 functions by using the corresponding
simulation functions that have the same names as the OpenTP1 functions.

6. Operating command simulator

Simulates the processing of operating commands executed by a test UAP.

7. Tester file creation

Creates the tester files required when using the simulators.

8. Continuous command execution

During testing, continuously executes the offline tester subcommands set in a file.

9. Debugger connection

Runs test UAPs under debugger control.

10. Collection of offline tester trace information

Collects trace information for the UAP being tested.

10. Facilities

197

10.2 Simulating a client UAP

The offline tester can take the place of a client UAP in requesting services from a
server UAP. This allows the user to test the server UAP without needing a client UAP.
This facility is called the client UAP simulator.

An offline tester command is used to simulate a client UAP. Before executing the
command, the user must first create the processing data to be passed to the server UAP.
This data is created in a service request data file.

There are three types of service request data files which are used according to the client
interface:

• RPC request data file (for simulating a UAP that has an RPC interface)

• XATMI request data file (for simulating a UAP that has an XATMI interface)

• TxRPC request data file (for simulating a UAP that has a TxRPC interface)

Figure 10-1 outlines the client UAP simulator.

Figure 10-1: Simulating a client UAP

10.2.1 Simulating a client UAP with an RPC interface
To simulate a client UAP that uses an RPC interface to send service requests, the user
must first create an RPC request data file containing the processing data to be passed

10. Facilities

198

to the server UAP being tested.

10.2.2 Simulating a client UAP with an XATMI interface
To simulate a client UAP that uses an XATMI interface to send service requests, the
user must first create an XATMI request data file containing the processing data to be
passed to the server UAP being tested.

When service requests are made interactively, the user must also create an XATMI
receive data file containing the test data to be received by the server UAP during
service execution. If the server UAP passes send data, the offline tester makes a file
name inquiry for each service. Using an offline tester command, the user specifies the
name of an XATMI send data file for saving the send data.

10.2.3 Simulating a client UAP with a TxRPC interface
To simulate a client UAP that uses a TxRPC interface to send service requests, the user
must first create a TxRPC request data file containing the processing data to be passed
to the server UAP being tested.

10. Facilities

199

10.3 Simulating a server UAP

The offline tester can take the place of a server UAP in executing services requested
by a client UAP. This allows the user to test the client UAP without needing a server
UAP. This facility is called the server UAP simulator.

To simulate a server UAP, the user activates the server UAP (dummy) and then
executes an OpenTP1 command. Before executing the command, the user must create
the response data to be passed to the client UAP. This data is created in a service
response data file. When the client UAP sends a service request, the offline tester reads
the response data from the file and passes it to the client UAP.

There are three types of service response data files which are used according to the
UAP interface:

• RPC response data file (for simulating a UAP that has an RPC interface)

• XATMI response data file (for simulating a UAP that has an XATMI interface)

• TxRPC response data file (for simulating a UAP that has a TxRPC interface)

To simulate a server UAP, the user must first define the server UAP as the simulation
target in an offline tester environment definition. This enables the server UAP to be
simulated but not actually activated when a test is performed.

Figure 10-2 outlines the server UAP simulator.

10. Facilities

200

Figure 10-2: Simulating a server UAP

10.3.1 Simulating a server UAP with an RPC interface
To simulate a server UAP that uses an RPC interface for accepting service requests,
the user must first create an RPC response data file with the response data to be
returned to the client UAP. When the client UAP sends a service request, the offline
tester reads the response data from the file and returns it to the client UAP.

10.3.2 Simulating a server UAP with an XATMI interface
To simulate a server UAP that uses an XATMI interface for accepting service requests,
the user must first create an XATMI response data file with the response data to be
returned to the client UAP. When the client UAP sends a service request, the offline
tester reads the response data from the file and returns it to the client UAP.

When service requests are made interactively, the user must also create an XATMI
receive data file containing the test data to be received by the client UAP during
service execution. If the client UAP passes send data, the offline tester makes a file
name inquiry for each service. Using an offline tester command, the user specifies the
name of an XATMI send data file for saving the send data.

10.3.3 Simulating a server UAP with a TxRPC interface
To simulate a server that uses a TxRPC interface for accepting service requests, the
user must first create a TxRPC response data file with the response data to be returned

10. Facilities

201

to the client UAP. When the client UAP sends a service request, the offline tester reads
the response data from the file and returns it to the client UAP.

10. Facilities

202

10.4 Simulating the MCF

The offline tester can take the place of the MCF in exchanging messages with an MHP.
This allows the user to test the MHP without an MCF. This facility is called the MCF
simulator.

An offline tester command is used to start the MHP application. Before executing the
command, the user must first create an MCF receive message file with the messages
to be passed to the MHP.

Figure 10-3 outlines the MCF simulator.

Figure 10-3: Simulating an MCF

10. Facilities

203

10.5 Simulating file services

This section describes how the offline tester simulates file services in order to test file
access.

10.5.1 Simulating the DAM service
The offline tester can simulate the DAM service for testing UAP access to DAM files.
This facility is called the DAM service simulator.

Files created by an editor or by the function for simulating DAM file creation
(dc_dam_create function) are handled by the TP1/FS/Direct Access file interface.
The user must write an offline tester environment definition to associate each logical
file name with the actual file.

At each update request from the UAP, a DAM file simulated by the offline tester is
immediately updated (but writing is delayed). If the UAP terminates abnormally or if
a rollback request occurs, the DAM file remains in updated status.

File update can be suppressed by option specification when starting the offline tester.
Thus, the contents of a DAM file remain unchanged even if the UAP issues an update
request function. If the data is re-entered after the update request, the file contents are
the same as before the update request.

The user can also specify in the offline tester environment definition whether a lock is
to be used for DAM files. Locks can only be placed on files, regardless of any
specification made in a function.

Note that the DAM file is not closed when the dc_trn_unchained_commit function
is issued in a UAP.

Figure 10-4 outlines the DAM service simulator.

10. Facilities

204

Figure 10-4: Simulating the DAM service

10.5.2 Simulating the TAM service
The offline tester can simulate the TAM service for testing UAP access to TAM files.
This facility is called the TAM service simulator.

Files created by the offline tester utftamcre command are handled by the TP1/FS/
Table Access file interface. The user must write an offline tester environment
definition to associate each logical file name with the actual file.

A TAM file simulated by the offline tester can access the same TAM data files as TP1/
FS/Table Access. Indexing is also the same. However, TAM files cannot be accessed
by DAM service functions. Also, to reduce shared memory size, only the management
and index parts of the TAM file are stored in shared memory and the data part is
accessed directly in the TAM file.

At each update request from the UAP, a TAM file simulated by the offline tester is
immediately updated (but writing is delayed). If the UAP terminates abnormally or if
a rollback request occurs, the TAM file remains in updated status.

File update can be suppressed by option specification when starting the offline tester.
Thus, the contents of a TAM file remain unchanged even if the UAP issues an update
request function. If the data is re-entered after the update request, the file contents are
the same as before the update request.

The user can also specify in the offline tester environment definition whether a lock is

10. Facilities

205

to be used for TAM files. Locks can only be placed on files, regardless of any
specification made in a function.

Note that the TAM file is not closed when the dc_trn_unchained_commit function
is issued in a UAP.

Figure 10-5 outlines the TAM service simulator.

Figure 10-5: Simulating the TAM service

10. Facilities

206

10.6 Simulating OpenTP1 functions

The offline tester provides simulation functions which replace and have the same
names as the functions provided by TP1/Server Base. These simulation functions can
be used by linkage with the UAP.

The user can set the return values of the OpenTP1 functions in a function return value
file. This facility enables set information to be returned to the UAP at completion of a
simulation function. The facility operates if no error is detected when the offline tester
performs the argument check. If an error is detected, the return code for the error is
returned to the UAP.

For DAM and TAM-related functions, error return values set by the user are returned
to the UAP. When a simulation function completes normally, however, the actual
processing result is returned, not the set return value. That is, a return value set by the
user is returned only if an error occurs during test processing.

For the tpsend and tprecv functions which use the XATMI interface, event names
can be set in the function return value file. For TP1/Multi functions (function names
beginning with dc_adm_get_xxx), the user can also set the output data (node ID and
server name).

See Chapter 14. Simulation Functions in this part of the manual for details on the return
values that can be set for each simulation function.

When using a function provided by TP1/Shared Table Access, be sure to specify an
IST table used by the function in the offline tester environment definition at offline
tester startup.

10. Facilities

207

10.7 Simulating operating commands

The offline tester can simulate command execution requested by the
dc_adm_call_command function issued in a UAP. This facility is called the
operating command simulator.

To simulate operating command execution, the user must first create the execution
result data in an operating command result data file. Then, when the
dc_adm_call_command function is issued in the UAP, the offline tester reads the
execution result data from the file and returns the data to the UAP.

Figure 10-6 outlines the operating command simulator.

Figure 10-6: Simulating UAP operating commands

10. Facilities

208

10.8 Creating tester files

A data file must be created for each simulator provided by the offline tester. These are
called tester files.

Each tester file is written in a specific data format. However, the user can easily create
the tester files by command input, using the offline tester. This is called the tester file
creation facility.

Table 10-1 lists the tester files that can be created using the tester file creation facility.

Table 10-1: Tester files created by tester file creation facility

To generate the tester files, the tester file creation facility uses data in a test data
definition file that is created beforehand by the user. Use a text editor to create the data.
Data for a number of tester files can be set in the same test data definition file.

Tester files can also be created in the required file format using a binary editor.

Tester files Simulator using the tester file

Service request data files RPC request data file Client UAP simulator

XATMI request data file Client UAP simulator

TxRPC request data file Client UAP simulator

Service response data files RPC response data file Server UAP simulator

XATMI response data file Server UAP simulator

TxRPC response data file Server UAP simulator

XATMI receive data file Client UAP simulator

MCF receive message file MCF simulator

Operating command result data file Operating command simulator

10. Facilities

209

10.9 Continuous command execution

Offline tester commands can be set in a file for automatic sequential execution. This
facility is called continuous command execution.

The commands to be executed are set in a continuous execution command file. The
offline tester reads the file and executes the commands in the set sequence.
Subcommands for responses are also executed if set. If no response subcommand is set
in the file, the offline tester waits for user response. Thus, continuous command
execution is useful when the testing sequence is fixed.

Figure 10-7 outlines continuous command execution.

Figure 10-7: Continuous command execution

10. Facilities

210

10.10 Debugger connection

Using the offline tester, a UAP can be executed under debugger control from the main
function. This facility is called debugger connection.

The user sets debugger connection in the offline tester environment definition. This
makes it easy to debug each step of the program or to debug in batch format.

Two types of debuggers can be used:

• dbx

• cbltd (COBOL85/TD)

Figure 10-8 outlines debugger connection.

Figure 10-8: Debugger connection

10. Facilities

211

10.11 Collecting test information

10.11.1 Collecting offline tester trace information
The offline tester can output the arguments and return information of OpenTP1
functions as trace information. This is called collecting offline tester trace information.
The trace information can be output to standard output or to a file specified in the
offline tester environment definition. Regardless of the output file, the output trace
information is the same and has the same format.

Using an offline tester command, the user can also output information from a trace file
for a selected service.

Do not use a shared trace file. The contents of the trace file are overwritten when a
number of offline testers share the same file.

Figure 10-9 illustrates collection of offline tester trace information.

10. Facilities

212

Figure 10-9: Collecting offline tester trace information

213

Chapter

11. Setting the Test Environment

This chapter explains how to set the environment for running tests with the offline
tester.

This chapter contains the following sections:

11.1 System definitions for the offline tester
11.2 User-created files
11.3 Creating files

11. Setting the Test Environment

214

11.1 System definitions for the offline tester

The system definitions for running the offline tester are described below. See the
manual OpenTP1 System Definition for information on definition structure and rules.

11.1.1 Offline tester environment definition
The offline tester environment definition specifies the following conditions for using
the offline tester:

• UAP definition

• Directory definition for the RPC request data file

• Directory definition for the XATMI request data file

• Directory definition for the TxRPC request data file

• Directory definition for the RPC response data file

• Directory definition for the XATMI response data file

• Directory definition for the TxRPC response data file

• Directory definition for the XATMI send/receive data file

• Directory definition for the MCF receive message file

• Directory definition for the operating command result data file

• Directory definition for the continuous execution command file

• DAM file definitions

• TAM file definitions

• Internode shared table definitions

• Definition of the function return values file

• Trace file definition

• Protocol definition

Code each definition in the offline tester environment definition file. The file name is
used as the command argument in the offline tester start command and can be any
name.

Rules for the offline tester environment definition:

1. Write one definition per line.

2. Use one-byte characters. The system distinguishes between upper-case and
lower-case characters.

11. Setting the Test Environment

215

3. End each line with a comma (,). Any coding after the comma is regarded as a
comment.

4. End the whole environment definition with a semicolon (;). Any coding after the
semicolon is regarded as a comment.

5. In the following cases, an error message is output at definition analysis. The
definition is ignored and analysis continues:

• When a non-existent directory and file (other than DAM file) is specified

• When access to the specified file is prohibited (no write permission, for
example)

• When an error occurs during definition analysis

When definition analysis is completed, the user must specify whether to continue
offline tester activation. Enter either of the following:

1

To continue

2 (or end)

To cancel

6. Do not abbreviate definitions. A format error occurs when a definition is
abbreviated.

7. Table 11-1 shows whether each definition is valid or invalid if a format error
occurs.

Table 11-1: Format errors and validity of definitions

Definition statement Format error Valid Assumed
specification
when valid

UAP definition No service group name, execution
format program name, or user
service definition file name

N --

Both N and F specified. Y F

, or ; missing at the end of the
statement.

Y ,

Directory for RPC request data file No directory name N --

, or ; missing at the end of the
statement.

Y ,

11. Setting the Test Environment

216

Directory for XATMI request data
file

No directory name N --

, or ; missing at the end of the
statement.

Y ,

Directory for TxRPC request data file No directory name N --

, or ; missing at the end of the
statement.

Y ,

Directory for RPC response data file No directory name N --

, or ; missing at the end of the
statement.

Y ,

Directory for XATMI response data
file

No directory name N --

, or ; missing at the end of the
statement.

Y ,

Directory for TxRPC response data
file

No directory name N --

, or ; missing at the end of the
statement.

Y ,

Directory for XATMI send/receive
data file

No directory name N --

, or ; missing at the end of the
statement.

Y ,

Directory for MCF receive message
file

No directory name N --

, or ; missing at the end of the
statement.

Y ,

Directory for operating command
result data file

No directory name N --

, or ; missing at the end of the
statement.

Y ,

Directory for continuous execution
command file

No directory name N --

, or ; missing at the end of the
statement.

Y ,

DAM file definition No physical file name or logical
file name.

N --

, or ; missing at the end of the
statement.

Y ,

Definition statement Format error Valid Assumed
specification
when valid

11. Setting the Test Environment

217

Legend:

Y: valid

N: invalid

--: Not applicable

TAM file definition No TAM table name or TAM file
name

N --

, or ; missing at the end of the
statement.

Y ,

Internode shared table definition No internode shared table name,
record length, or number of
records.

N --

, or ; missing at the end of the
statement.

Y ,

Definition of function return values
file

No file name N --

, or ; missing at the end of the
statement.

Y ,

Trace file definition No file name N --

, or ; missing at the end of the
statement.

Y ,

Protocol definition Protocol unspecified N --

, or ; missing at the end of the
statement.

Y ,

Other Definition name other than the
above

N --

Example of offline tester environment definition

UAP definition
SPP = spp1 spp1.out spp1usr,
SPP = spp2 DUMMY DUMMY F,
SPP = spp3 spp3.out spp3usr D dbx,
SPP = spp4 spp4.out spp4usr,
SPP = spp5 spp5.out spp5usr N D dbx -I /betran/utf/uap/src
 spp5.out,
MHP = mhp1 mhp1.out mhp1usr,

Definition statement Format error Valid Assumed
specification
when valid

11. Setting the Test Environment

218

#
directory definition for RPC request data file
rpc_message = /betran/utf/rpcmsg,
#
directory definition for XATMI request data file
tp_message = /betran/utf/xatmimsg,
#
directory definition for TxRPC request data file
txrpc_message = /betran/utf/txrpcmsg,
#
directory definition for RPC response data file
rpc_return_data = /betran/utf/rpc_return,
#
directory definition for XATMI response data file
tp_return_data = /betran/utf/tp_return,
#
directory definition for TxRPC response data file
txrpc_return_data = /betran/utf/tx_return,
#
directory definition for XATMI send/receive data file
tp_converse = /betran/utf/tp_converse,
#
directory definition for MCF receive message file
mcf_message = /betran/utf/mcfmsg,
#
directory definition for operating command result data file
adm_call_cmd = /betran/utf/etc/call_cmd_val,
#
directory definition for continuous execution command file
cmdfile = /betran/utf/etc,
#
DAM file definitions
damfile = damfile1 /betran/utf/dam/damfile1,
damfile = damfile2 /betran/utf/dam/damfile2 N,
#
TAM file definitions
tamtable = tamtable1 /betran/utf/tam/tamfile1,
tamtable = tamtable2 /betran/utf/tam/tamfile2 N,
#
IST table definitions
isttable = isttable 128 64,
isttable = ist2 4 256,
#
definition of function return values file
func_value_file = /betran/utf/etc/return_val,
#
trace file definition

tracefile = /betran/utf/log/trace,
#
protocol definition
protocol = OSI/TP;
#

11. Setting the Test Environment

219

(1) UAP definition
(a) Syntax

(b) Function
Defines the following items for the UAP to be tested by the offline tester:

• UAP type (SPP or MHP)

• Service group name

• Name of the execution format program for the service group

• Name of the user service definition file for the service group

• Whether to use the server UAP simulator

• Whether to connect a debugger

A UAP definition can only be written for an SPP or MHP. SUPs cannot be tested by
the offline tester.

(c) Operands
SPP|MHP

Specify the type of service group as the definition name, as follows:

SPP

SPP service group

MHP

MHP service group

service-group-name
Specify the service group name. To use the UAP simulator with a TxRPC
interface, specify the interface name that is specified in the IDL file.

service-name
Specify the service name to use the server UAP simulator with an XATMI
interface.

execution-format-program-name
Specify the name of the UAP (execution format program) that executes the

{SPP|MHP}={service-group-name|service-name}
 execution-format-program-name
 user-service-definition-file-name
 [T]
 [{F|D debugger-name|[N][D debugger-name]}]{,|;}

11. Setting the Test Environment

220

service group. A non-existent name can be specified when simulating service
functions.

user-service-definition-file-name
Specify the name of the user service definition file that contains the environment
definition for executing the service group. To use the UAP simulator with a
TxRPC interface, specify the name of the user service definition file created by
the txidl command. A non-existent name can be specified when simulating
service functions.

T

Specify this operand to use the UAP simulator with a TxRPC interface. This
operand can be specified only when SPP is specified for the service group type.
If MHP is specified, specifying this option causes an error.

F

Specify this operand to use the server UAP simulator. If specification is omitted,
the service group is activated at offline tester startup.

D debugger-name[debugger-argument]
Specify this operand to run the UAP under debugger control. Either of the
following debugger names can be specified, but no name check is performed:

dbx

To use the dbx debugger

cbltd

To use the COBOL85/TD debugger

The argument to be passed to the debugger can also be specified. When no
argument is specified, the name specified in execution-format-program-name
becomes the argument.

As the argument, specify the executable file name, using the same name as
specified in execution-format-program-name. No error occurs if the names differ,
but the specified executable file name is passed to the debugger, while the offline
tester uses the execution format program name to control the debugger.

N

Specify this operand to suppress activation of the service group (UAP) at offline
tester startup and to activate the service group by start subcommand after the
offline tester starts.

When specification is omitted, the service group (UAP) is activated at offline
tester startup.

11. Setting the Test Environment

221

(d) Note
A service group name can only be specified once. If duplicated, the first definition is
valid. In the following example, spp1 is specified twice and the definition of the
second line causes an error.

Example:

(e) Definition example

(2) Directory definition for RPC request data file
(a) Syntax

(b) Function
Defines the name of the directory that contains the RPC request data file. If the name
is specified more than once, the last definition is valid.

(c) Operands
rpc_message

Write rpc_message as the definition name.

directory-name-of-RPC-request-data-file
Specify the pathname of the directory that contains the RPC request data file. Add
the directory name if different from the directory in which the offline tester is
currently executing.

(d) Definition example

SPP = spp1 spp1.load spp1usr,

SPP = spp1 spp2.load spp2usr, Error occurs.

UAP definition
SPP = spp1 spp1.out spp1usr,
SPP = spp2 DUMMY DUMMY F,
SPP = spp3 spp3.out spp3usr D dbx,
SPP = spp4 spp4.out spp4usr,
SPP = spp5 spp5.out spp5usr N D dbx -I /betran/utf/uap/src
 spp5.out,
MHP = mhp1 mhp1.out mhp1usr;
#

rpc_message = directory-name-of-RPC-request-data-file{,|;}

directory definition for RPC request data file
rpc_message = /betran/utf/rpcmsg;
#

11. Setting the Test Environment

222

(3) Directory definition for XATMI request data file
(a) Syntax

(b) Function
Defines the name of the directory that contains the XATMI request data file. If the
name is specified more than once, the last definition is valid.

(c) Operands
tp_message

Write tp_message as the definition name.

directory-name-of-XATMI-request-data-file
Specify the pathname of the directory that contains the XATMI request data file.
Add the directory name if different from the directory in which the offline tester
is currently executing.

(d) Definition example

(4) Directory definition for TxRPC request data file
(a) Syntax

(b) Function
Defines the name of the directory that contains the TxRPC request data file. If the
name is specified more than once, the last definition is valid.

(c) Operands
txrpc_message

Write txrpc_message as the definition name.

directory-name-of-TxRPC-request-data-file
Specify the pathname of the directory that contains the TxRPC request data file.
Add the directory name if different from the directory in which the offline tester
is currently executing.

tp_message = directory-of-XATMI-request-data-file{,|;}

directory definition for XATMI request data file
tp_message = /betran/utf/xatmimsg;
#

txrpc_message = directory-name-of-TxRPC-request-data-file{,|;}

11. Setting the Test Environment

223

(d) Definition example

(5) Directory definition for RPC response data file
(a) Syntax

(b) Function
Defines the name of the directory that contains the RPC response data file. If the name
is specified more than once, the last definition is valid.

(c) Operands
rpc_return_data

Write rpc_return_data as the definition name.

directory-name-of-RPC-response-data-file
Specify the pathname of the directory that contains the RPC response data file.
Add the directory name if different from the directory in which the offline tester
is currently executing.

(d) Definition example

(6) Directory definition for XATMI response data file
(a) Syntax

(b) Function
Defines the name of the directory that contains the XATMI response data file. If the
name is specified more than once, the last definition is valid.

(c) Operands
tp_return_data

Write tp_return_data as the definition name.

directory-name-of-XATMI-response-data-file

directory definition for TxRPC request data file
txrpc_message = /betran/utf/txrpcmsg;
#

rpc_return_data = directory-name-of-RPC-response-data-file{,|;}

directory definition for RPC response data file
rpc_return_data = /betran/utf/rpc_return;
#

tp_return_data = directory-name-of-XATMI-response-data-file{,|;}

11. Setting the Test Environment

224

Specify the pathname of the directory that contains the XATMI response data file.
Add the directory name if different from the directory in which the offline tester
is currently executing.

(d) Definition example

(7) Directory definition for TxRPC response data file
(a) Syntax

(b) Function
Defines the name of the directory that contains the TxRPC response data file. If the
name is specified more than once, the last definition is valid.

(c) Operands
txrpc_return_data

Write txrpc_return_data as the definition name.

directory-name-of-TxRPC-response-data-file
Specify the pathname of the directory that contains the TxRPC response data file.
Add the directory name if different from the directory in which the offline tester
is currently executing.

(d) Definition example

(8) Directory definition for XATMI send/receive data file
(a) Syntax

(b) Function
Defines the name of the directory that contains the XATMI send/receive data file. If
the name is specified more than once, the last definition is valid.

directory definition for XATMI response data file
tp_return_data = /betran/utf/tp_return;
#

txrpc_return_data = directory-name-of-TxRPC-response-data-file{,|;}

directory definition for TxRPC response data file
txrpc_return_data = /betran/utf/tx_return;
#

tp_converse = directory-name-of-XATMI-send/receive-data-file{,|;}

11. Setting the Test Environment

225

(c) Operands
tp_converse

Write tp_converse as the definition name.

directory-name-of-XATMI-send/receive-data-file
Specify the pathname of the directory that contains the XATMI send data file and
XATMI receive data file. Add the directory name for the files if different from the
directory in which the offline tester is currently executing.

(d) Definition example

(9) Directory definition for MCF receive message file
(a) Syntax

(b) Function
Defines the name of the directory that contains the MCF receive message file. If the
name is specified more than once, the last definition is valid.

(c) Operands
mcf_message

Write mcf_message as the definition name.

directory-name-of-MCF-receive-message-file
Specify the pathname of the directory that contains the MCF receive message file.
Add the directory name if different from the directory in which the offline tester
is currently executing.

(d) Definition example

(10) Directory definition for operating command result data file
(a) Syntax

directory definition for XATMI send/receive data file
tp_converse = /betran/utf/tp_converse;
#

mcf_message = directory-name-of-MCF-receive-message-file{,|;}

directory definition for MCF receive message file
mcf_message = /betran/utf/mcfmsg;
#

adm_call_cmd = directory-name-of-operating-command-result-data-file{,|;}

11. Setting the Test Environment

226

(b) Function
Defines the name of the directory that contains the operating command result data file.
If the name is specified more than once, the last definition is valid.

(c) Operands
adm_call_cmd

Write adm_call_cmd as the definition name.

directory-name-of-operating-command-result-data-file
Specify the pathname of the directory that contains the operating command result
data file. Add the directory name if different from the directory in which the
offline tester is currently executing.

(d) Definition example

(11) Directory definition for continuous execution command file
(a) Syntax

(b) Function
Defines the name of the directory that contains the continuous execution command
file. If the name is specified more than once, the last definition is valid.

(c) Operands
cmdfile

Write cmdfile as the definition name.

directory-name-of-continuous-execution-command-file
Specify the pathname of the directory that contains the continuous execution
command file. Add the directory name if different from the directory in which the
offline tester is currently executing.

(d) Definition example

directory definition for operating command result data file
adm_call_cmd = /betran/utf/etc/call_cmd_val;
#

cmdfile = directory-name-of-continuous-execution-command-file{,|;}

directory definition for continuous execution command file
cmdfile = /betran/utf/etc;
#

11. Setting the Test Environment

227

(12) DAM file definitions
(a) Syntax

(b) Function
Associates a logical file name with a physical file name for simulating the DAM
service.

Definitions must be written for all the DAM files accessed by the UAP.

(c) Operands
damfile

Write damfile as the definition name.

logical-file-name
Specify the logical file name.

physical-file-name
Specify the name of the DAM file to be used by the offline tester. Add the
directory name if different from the directory in which the offline tester is
currently executing.

N

Specify to disable lock, regardless of any function specification.

(d) Definition example

(13) TAM file definitions
(a) Syntax

(b) Function
Associates TAM table names with TAM file names for simulating the TAM service.

Definitions must be written for all the TAM files accessed by the UAP.

damfile = logical-file-name physical-file-name [N]{,|;}

DAM file definitions
damfile = damfile1 /betran/utf/dam/damfile1,
damfile = damfile2 /betran/utf/dam/damfile2 N;
#

tamtable = TAM-table-name TAM-file-name [N]{,|;}

11. Setting the Test Environment

228

(c) Operands
tamtable

Write tamtable as the definition name.

TAM-table-name
Specify the TAM table name (name used by TAM service functions).

TAM-file-name
Specify the name of the TAM file to be used by the offline tester. Add the
directory name if different from the directory in which the offline tester is
currently executing.

N

Specify to disable lock, regardless of any function specifications. This operand
must be specified for a UAP written in COBOL that accesses TAM files.

(d) Definition example

(e) Note
• Each TAM file and TAM table name can only be specified once. If duplicated, the

first definition is valid.

(14) Internode shared table definitions
(a) Syntax

(b) Function
Specifies an internode shared table used for the IST service simulation using a set of
the internode shared table name, record length, and record count.

Define all internode shared tables accessed by the UAP. Up to 64 internode shared
tables can be defined.

(c) Operands
isttable

Write isttable as a definition name.

IST-table-name

TAM file definitions
tamtable = tamtable1 /betran/utf/tam/tamfile1,
tamtable = tamtable2 /betran/utf/tam/tamfile2 N;
#

isttable = IST-table-name record-length record-count{,|;}

11. Setting the Test Environment

229

Specify the internode shared table name. It is used for the IST service function.

record-length
Specify the record length in the internode shared table in bytes.

record-count
Specify the number of records in the internode shared table.

(d) Definition example

(15) Definition of function return values file
(a) Syntax

(b) Function
Defines the name of the file in which function return values are set. If the name is
specified more than once, the last definition is valid.

(c) Operands
func_value_file

Write func_value_file as the definition name.

function-return-values-file-name
Specify the name of the function return values file. Add the directory name if
different from the directory in which the offline tester is currently executing.

(d) Definition example

(16) Trace file definition
(a) Syntax

(b) Function
Defines the name of the file for storing offline tester trace information. If the name is

IST table definition
isttable = isttbl1 8 12,
isttable = isttbl2 10 20;
#

func_value_file = function-return-values-file-name{,|;}

definition of function return values file
func_value_file = /betran/utf/etc/return_val;
#

tracefile = trace-file-name{,|;}

11. Setting the Test Environment

230

specified more than once, the last definition is valid.

(c) Operands
tracefile

Write tracefile as the definition name.

trace-file-name
Specify the trace file name. Add the directory name if different from the directory
in which the offline tester is currently executing.

(d) Definition example

(17) Protocol definition
(a) Syntax

(b) Function
Defines MCF protocol. This definition is valid only when testing a UAP written in
COBOL or DML. Omit the definition for protocols other than OSI TP.

If the protocol is specified more than once, the last definition is valid.

(c) Operands
protocol

Write protocol as the definition name.

protocol-name
Specify the protocol name, as follows:

OSI/TP

OSI TP protocol is used.

An error occurs if a protocol other than OSI TP is specified.

(d) Definition example

trace file definition
tracefile = /betran/utf/log/trace;
#

protocol = protocol-name{,|;}

protocol definition
protocol = OSI/TP;
#

11. Setting the Test Environment

231

11.1.2 User service definition
Add the following user service definition for running the offline tester. Definition and
coding are the same as for the OpenTP1 user service definition. See the manual
OpenTP1 System Definition for details.

(1) Syntax
(a) set format

(b) putenv format

(2) Function
Enables execution of the offline tester according to the user service definition.

(3) Operands
(a) set format

service = "service-name = entry-point-name"
For all the services in the service group, specify the service name paired with the
entry point name.

The entry point name is a function name in C or a program name or entry name
in COBOL. Specify the same name as in the RPC (or XATMI) interface
definition.

See the manual OpenTP1 Programming Guide for details on the RPC and XATMI
interface definitions and on service functions for the RPC (or XATMI) interface.

server_type = betran|xatmi ~<<betran>>

Specify whether to use OpenTP1 (RPC) or XATMI functions, as follows:

betran

Use OpenTP1 (RPC) functions.

xatmi

Use XATMI functions.

(b) putenv format
environment-var-name

set service = "service-name = entry-point-name"
 [,"service-name = entry-point-name"]
 ... [set server_type = betran|xatmi]

{{[putenv environment-var-name environment-var-value]}}

11. Setting the Test Environment

232

Set the value of the specified environment variable for the processes in the service
group.

Use this format to set the COBOL environment when OpenTP1 activates a
COBOL operating environment. The user can choose an environment variable for
each UAP execution format program. Reference putenv in the standard C
library.

(4) Definition example
(a) set format

(b) putenv format

11.1.3 Setting function return values
To enable a simulated OpenTP1 function to return a fixed value, create a function
return values file and set the value in the file.

Using this file, you can also set event types for the XATMI functions tpsend and
tprecv and the output data (node ID and server name) to be passed to a function used
by the multi-node facility.

Definition and coding are the same as for the offline tester environment definition.

(1) Syntax
(a) Set return value

(b) Set event type

(c) Set output data

(2) Function
Defines a user-specified value as the return value for an OpenTP1 function. Or, defines
an event type for the XATMI function tpsend or tprecv, or the output data (node ID

set service = "service = xwsvkd0100"
set server_type = betran

putenv CBLCORE 1

{function-name|program-name(request-code)} = return-value {,|;}

{tpsend|tprecv} = TPEEVENT,
{tpsend(event)|tprecv(event)} = event-type {,|;}

{function-name-for-multinode(node_id)|function-name-for-multinode(sv_name)} =
{node-ID|server-name}{,|;}

11. Setting the Test Environment

233

and server name) to be passed to TP1/Multi function.

(3) Operands
(a) Set return value

function-name | program-name (request-code)

Specify a function name or program name (request code) for returning the value.

function-name
Return value for C function

program-name (request-code)
Return value for COBOL program. Set the request code in parentheses.

return-value ~<1-39 alphanumerics>

Set the return value (or return code for COBOL) to be returned by the function or
program.

Write the return value as an upper-case constant name. Use a constant name also
when setting a COBOL return code for a TX function.

Alternatively, the return value can be set as a numeric value (decimal) in the
following range:

Note
A specification outside the specifiable range is regarded as a character string.

#: For a TX function, specify the return code within the range -99999 to 99999.

If an undefined constant name is specified or if a numeric value is incorrectly specified
(non-numeric, for example), the offline tester assumes that the function returned
normally.

(b) Set event type
{tpsend|tprecv} = TPEEVENT

Indicates that the subsequent coding sets an event type.

tpsend(event)|tprecv(event)

Specify the function to which the event type applies.

Interface Specifiable range

C interface -99999 to 99999

COBOL interface 0 to 99999#

11. Setting the Test Environment

234

tpsend(event)

Event type for tpsend function

tprecv(event)

Event type for tprecv function

event-type
Set the event type for the tpsend or tprecv function. If specification is omitted,
TPEV_SVCERR is assumed.

(c) Set output data
function-name-for-multimode (node_id) |function-name-for-multimode
(sv_name)

Specify the function name to which the output data applies and the output data
type, as follows:

node_id

Sets the node ID as the output data.

sv_name

Sets the server name as the output data.

The following function names and output data types can be specified:

node-ID | server-name
Specify the node ID or server name.

Node IDs and server names are associated with the sequence of multi-node
functions issued by the UAP in the order in which they are specified in the
function return values file.

When a node ID or server name is omitted or incorrectly specified, that line of
coding is ignored and the system processes the specifications as if the node ID or
server name does not exist. Therefore, the node ID or server name is not counted.

When the UAP issues more functions than the number of node IDs and server

Function name Type of output data

dc_adm_get_nd_status_next node_id

dc_adm_get_sv_status_next sv_name

dc_adm_get_nodeconf_next node_id

dc_adm_get_node_id node_id

11. Setting the Test Environment

235

names in the function return values file, DCADMER_NO_MORE_ENTRY is returned
by the excess functions (but not by the dc_adm_get_node_id function).

(4) Definition examples
(a) C

(b) COBOL

(5) Notes
• During definition analysis, the system does not check the validity of the functions

and return values or the relationships among them.

• A format error occurs when an unsupported function, a function that does not
return a return value, or a function that accesses a DAM file in the offline
environment is specified as a function name.

• Duplicate specifications (same function name, or a function and a program that
perform the same process) are not permitted. If specifications are duplicated, the
system sets the return value specified first.

• When a format error is detected during definition analysis, an error message is
output and analysis continues. The table below shows whether each definition
statement is valid or invalid when a format error occurs.

dc_jnl_ujput = 0,
dc_dam_open = DCDAMER_PROTO,
#dc_trn_begin = DC_OK,
dc_dam_read = -1600,
tpsend = TPEEVENT,
tpsend(event) = TPEV_DISCONIMM,
dc_adm_get_nd_status_next(node_id) = ND01
 :
 :
dc_logprint = DC_OK;

CBLDCJNL(UJPUT) = 0,
#CBLDCTRN(BEGIN) = 905,
CBLDCDAM(READ) = 1600,
 :
 :
CBLDCLOG(PRINT) = 1905;

Format error Valid Assumed specification when
valid

, or ; missing at the end of
statement.

Y ,

Other N --

11. Setting the Test Environment

236

Legend:

--: Not applicable

• Request codes must be those listed in the manual OpenTP1 Programming
Reference COBOL Language. However, for the following processes, specify the
request code shown below.

• Specify the following return values for a COBOL program that returns a status
code at normal termination:

CBLDCADM(STATUS)

Set the status code for the user server.

CBLDCTAM(GST)

Set the following values:

1: RO (open status)

2: RC (close status)

3: HL (logical shutdown status)

4: HO (error shutdown status)

Examples:

If CBLDCADM(STATUS)=1 is set, the return information is:

If CBLDCTAM(GST)=3 is set, the return information is:

11.1.4 Setting continuous execution commands
To enable continuous execution of commands in the set sequence, create a continuous
execution command file and set the commands in the file in the required execution
sequence. If the end subcommand is included, the offline tester terminates and does
not execute the remaining commands.

Description Request code

Delete records in TAM table DELT

Input TAM records READ

Update or output TAM records WRIT

Return value=0
User server status code=1

Return value=0
TAM table status=HL (logical shutdown status)

11. Setting the Test Environment

237

Commands (read and other subcommands) for responding to offline tester inquiries
during service execution can also be set in the file. If no response subcommands are
set in the file, the system waits for user input.

Definition and coding are the same as for the offline tester environment definition.

(1) Syntax

(2) Function
Defines commands for consecutive execution by the offline tester.

(3) Operands
command-name
The following values can be specified as the command name:

• call

• end

• ps

• read

• start

• stop

• write

When a command other than the above is specified, a message reports that a
command error has occurred. The command is ignored and processing continues.

command-argument
Set the command arguments for the specified command.

(4) Definition example

(5) Notes
• When a format error is detected during definition analysis, an error is output and

command-name [command-argument ...] {,|;}

call ser1 sppsub1 a_data,
call ser2 mcfsub b_data+c_data,
call ser3 sppsub2 d_data,
read rtn_data,
#call ser1 sppsub1 b_data,
 :
 :

end;

11. Setting the Test Environment

238

analysis continues. The table below shows whether each definition statement is
valid or invalid when a format error occurs.

Legend:

--: Not applicable

• Each command is checked at execution when the cmdauto subcommand is
actually entered.

11.1.5 Creating stubs
Stubs are required for UAPs (SPPs and MHPs) that provide services in an RPC,
XATMI, or TxRPC environment.

Stubs for UAPs with the RPC or XATMI interface are created by a stub generator from
the RPC (or XATMI) interface definition file which contains the RPC (or XATMI)
interface definitions. For UAPs with the TxRPC interface, stubs or server UAP
templates are created using an OpenTP1 command with the Interface Definition
Language file. Translate the stubs using a C compiler, then link the stubs to the server
UAP's object file.

Create stubs for the offline tester in the same way as for a job UAP. See the manual
OpenTP1 Programming Reference C Language for details.

Format error Valid Assumed specification when
valid

, or ; missing at the end of
statement.

Y ,

Other N --

11. Setting the Test Environment

239

11.2 User-created files

Table 11-2 lists the files that the user must create to use the offline tester.

Table 11-2: List of user-created files

Note

File type Use and contents Time of
creation

Deleted
by

Time of
deletion

Service
request
data files

RPC request
data file

Stores request data passed to the
server UAP when using the client
UAP simulator with an RPC interface.

Before
service
request

User Any

XATMI
request data
file

Stores request data passed to the
server UAP when using the client
UAP simulator with an XATMI
interface.

Before
service
request

User Any

TxRPC
request data
file

Stores request data passed to the
server UAP when using the client
UAP simulator with a TxRPC
interface.

Before
service
request

User Any

Service
response
data files

RPC
response
data file

Stores data returned as the service
result when using the server UAP
simulator with an RPC interface.

At activation
of the
simulate SPP

User Any

XATMI
response
data file

Stores data returned as the service
result when using the server UAP
simulator with an XATMI interface.

At activation
of the
simulate SPP

User Any

TxRPC
response
data file

Stores data returned as the service
result when using the server UAP
simulator with a TxRPC interface.

At activation
of the
simulate SPP

User Any

XATMI receive data file Stores data received by the tprecv
function

Before
service
request

User Any

MCF receive message file Stores messages passed to the MHP
when using the MCF simulator.

Before
service
request

User Any

Operating command result
data file

Stores data returned to the UAP as the
execution result when using the
operating command simulator.

Before
service
request

User Any

User file Used when the DAM or TAM facility
is used.

Before offline
tester startup

User Any

11. Setting the Test Environment

240

All user-created files for the online tester can be used without modification,
except the following:

 TMI receive data file

 MCF receive message file

 Operating command result data file

11.2.1 Service request data files
(1) RPC request data file

An RPC request data file stores the data passed to the service function for a service
requested when using the client UAP simulator with an RPC interface. A single file
contains one set of data.

(a) File structure

(b) File contents

(c) Notes
• The items in the RPC request data file are related to the service function

arguments as follows:

1. Data

2. Data length

3. Response area length

• An RPC request data file for the online tester can also be used.

• Do not use a plus sign (+) in the file name. Also, do not use ps or end as the file

Item Position Length (bytes) Contents

Data length 0 4 Length of the data to be passed to the service function.
(0 - specified value of DCRPC_MAX_MESSAGE_SIZE)

Response area
length

4 4 Length of the response area to be passed to the service
function. (1 - specified value of
DCRPC_MAX_MESSAGE_SIZE)

Data 8 n Data to be passed to the service function.

11. Setting the Test Environment

241

name.

• An error occurs when the specified data is less than the specified data length. Data
that exceeds the data length is truncated.

(2) XATMI request data file
An XATMI request data file stores the data passed to the service function for a
requested service when using the client UAP simulator with an XATMI interface. A
single file contains one set of data.

(a) File structure

(b) File contents
Item Position Length (bytes) Contents

Call type 0 8 Type of function calling a service:
call

call from tpcall function
acall

call from tpacall function
connect

call from tpconnect function

Buffer type 8 8 Buffer type, specified as one of the following character
strings:
• X_OCTET

• X_COMMON

• X_C_TYPE

Buffer
subtype

16 16 Buffer subtype, specified as a string of up to 16 characters.
Specify a null character when specifying X_OCTET as the
buffer type.

11. Setting the Test Environment

242

(c) Notes
• The items in the XATMI request data file are related to the service function

arguments as follows:

1. Service name

2. Address at which the data mapped to buff_type and sub_type is stored

3. Length of the data shown by data

4. Flags (specified flags stored in bit strings)

5. Interactive descriptor (stores zero)

• An XATMI request data file for the online tester can also be used.

Flags 32 4 Flags to be passed to the service function, specified as a
hexadecimal.
0x00000000L

0
0x00000004L

TPNOREPLY
0x00000008L

TPNOTRAN
0x00000100L

TPNOCHANGE
0x00000800L

TPSENDONLY
0x00001000L

TPRECVONLY

Data length 36 4 Length of the data to be passed to the service function
(0-524288).
Specify zero when no data is passed. The buffer type and
subtype specifications are ignored when zero is specified.

Data 40 n Data to be passed to the service function

void tpservice(svcinf)
 TPSVCINFO *svcinf;

 struct TPSVCINFO {
 char name[32]; 1.
 char *data; 2.
 long len; 3.
 long flags; 4.
 int cd; 5.
 }

Item Position Length (bytes) Contents

11. Setting the Test Environment

243

• Do not use a plus sign (+) in the file name. Also, do not use ps or end as the file
name.

• An error occurs when the specified data is less than the specified data length. Data
that exceeds the data length is truncated.

• The response data area is reallocated according to the buffer type and buffer
subtype in the response data.

• When the buffer type and subtype are specified, the values specified for the data
length and data must be the same as the data structure value defined for the stubs.

Boundary alignment is performed for the data structure specified for the stubs (the
total length is an integer multiple of 4). For this reason, the user must consider the
alignment portion when creating an XATMI request data file.

(3) TxRPC request data file
A TxRPC request data file stores the data passed to the service function for a requested
service when using the client UAP simulator with a TxRPC interface. A single file
contains one set of data.

(a) File structure

(b) File contents

(c) Notes
• The following shows data contents of the TxRPC request data file and how the

service function arguments are related to the data received by the arguments.

Item Position Length (bytes) Contents

Major version 0 2 Major version number specified in the interface definition of
the txidl command. Specify zero to omit this specification.

Minor version 2 2 Minor version number specified in the interface definition of
the txidl command. Specify zero to omit this specification.

Data length 4 4 Length of the data to be specified for a data part (0 to
specified value of DCRPC_MAX_MESSAGE_SIZE - 16).

Data 8 n Argument data to be passed to the service function. When
setting an address in the argument, set the contents of the
area indicated by the address.
Set character string #NULL## if the address is null.

11. Setting the Test Environment

244

• Do not use a plus sign (+) in the file name. Also, do not use ps or end as the file
name.

• An error occurs when the specified data is less than the specified data length. Data
that exceeds the data length is truncated.

• UAP operations are not guaranteed when the data contains an error.

11.2.2 Service response data files
(1) RPC response data file

When using the server UAP simulator with an RPC interface, the RPC response data
file stores the response data returned to the client UAP when a service request is made
to the simulate SPP. A single file contains one set of data.

(a) File structure

11. Setting the Test Environment

245

(b) File contents

(c) Notes
• The items in the RPC response data file are related to the arguments of the service

request function (dc_rpc_call function) as follows:

1. Data

• An RPC response data file for the online tester can also be used.

• Do not use a plus sign (+) in the file name. Also, do not use ps or end as the file
name.

• An error occurs when the specified data is less than the specified data length. Data
that exceeds the data length is truncated.

(2) XATMI response data file
When using the server UAP simulator with an XATMI interface, the XATMI response
data file stores the response data returned to the client UAP when a service request is
made to the simulate SPP. A single file contains one set of data.

(a) File structure

(b) File contents

Item Position Length (bytes) Contents

Data length 0 4 Length of the data to be returned to the UAP making the
service request. (0-2147483647)

Data 4 n Data to be returned to the UAP making the service request.

dc_rpc_call(.....,in,in_len,out,out_len)
 1.

Item Position Length (bytes) Contents

Buffer type 0 8 Buffer type, specified as one of the following character
strings:
• X_OCTET

• X_COMMON

• X_C_TYPE

Buffer
subtype

8 16 Buffer subtype, specified as a string of up to 16 characters.
Specify a null character when specifying X_OCTET as the
buffer type.

11. Setting the Test Environment

246

(c) Notes
• The items in the XATMI response data file are related to the arguments of the

service termination function (tpreturn function) as follows:

1. Service termination code

2. Return code

3. Data stored in the buffer allocated by buffer type and subtype

4. Data length

• An XATMI response data file for the online tester can also be used.

• Do not use a plus sign (+) in the file name. Also, do not use ps or end as the file
name.

• An error occurs when the specified data is less than the specified data length. Data
that exceeds the data length is truncated.

• When the buffer type and subtype are specified, the values specified for the data
length and data must be the same as the data structure value defined for the stubs.

Boundary alignment is performed for the data structure specified for the stubs (the
total length is an integer multiple of 4). For this reason, the user must consider the
alignment portion when creating an XATMI response data file.

Service
termination
code

24 4 One of the following hexadecimal values of rval in the
tpreturn function. The value is set in the tperrno area.
0x04000000L

TPSUCCESS

0x20000000L
TPFAIL

Return code 28 4 Hexadecimal value of rcode in the tpreturn function.
The value is set in the tpurcode area.

Data length 32 4 Length of the data to be returned to the UAP making a
service request. (0-524288)
Specify zero when no data is passed. The buffer type and
subtype specifications are ignored when zero is specified.

Data 36 n Data to be returned to the UAP making the service request.

tpreturn(rval,rcode,data,len,.....)
 1. 2. 3. 4.

Item Position Length (bytes) Contents

11. Setting the Test Environment

247

(3) TxRPC response data file
When using the server UAP simulator with a TxRPC interface, the TxRPC response
data file stores the response data returned to the client UAP when a service request is
made to the simulate SPP. A single file contains one set of data.

(a) File structure

(b) File contents

(c) Notes
• The following shows data contents of the TxRPC response data file and how the

service function arguments are related to the data received by the arguments.

Item Position Length (bytes) Contents

System area 0 12 Area used by the offline tester. Do not use this area.

Data length 12 4 Total length of the data to be specified for a data part and of
the return value (0 to specified value of
DCRPC_MAX_MESSAGE_SIZE - 16).

Return value 16 m Return value of the service function. The data type and size
are specified in the interface definition of the txidl
command. Do not specify a return value for the void type
service function.

Data 16+m n Argument data to be returned to the client. Specify an
argument for which the out attribute is specified in the
parameter declaration of the interface definition of the
txidl command. When setting an address in the argument,
set the contents of the area indicated by the address. Set
character string #NULL## if the address is null.

11. Setting the Test Environment

248

• Do not use a plus sign (+) in the file name. Also, do not use ps or end as the file
name.

• An error occurs when the specified data is less than the specified data length. Data
that exceeds the data length is truncated.

• UAP operations are not guaranteed when the data contains an error.

11.2.3 XATMI receive data file
An XATMI receive data file stores the messages received by the tprecv function in
the UAP. A single file can contain a number of data items which are passed
consecutively to the tprecv function.

(1) File structure

(2) File contents
Item Position Length (bytes) Contents

Common area 0 36 Area shared with the XATMI send data file. Specify a space
or null character.

11. Setting the Test Environment

249

(3) Notes
• The items in the XATMI receive data file are related to the arguments of the

message receive function (tprecv function) as follows:

1. Data stored in the buffer allocated by buffer type and subtype

2. Data length

3. Event flag

• XATMI receive data files for the online tester cannot be used.

• Do not use a plus sign (+) in the file name. Also, do not use ps or end as the file

Buffer type 36 8 Buffer type, specified as one of the following character
strings:
• X_OCTET

• X_COMMON

• X_C_TYPE

Buffer
subtype

44 16 Buffer subtype, specified as a string of up to 16 characters.
Specify a null character when specifying X_OCTET as the
buffer type.

Event flag 60 4 One of the following hexadecimal values as the string to be
passed to the tprecv function:
0x00000000L

0
0x00000001L

TPEV_DISCONIMM

0x00000002L
TPEV_SVCERR

0x00000004L
TPEV_SVCFAIL

0x00000008L
TPEV_SVCSUCC

0x00000020L
TPEV_SENDONLY

Data length 64 4 Length of the data to be passed to the tprecv function
(0-524288).
Specify zero when no data is passed. The buffer type and
subtype specifications are ignored when zero is specified.

Data 68 n Data to be passed to the tprecv function

tprecv(.....,data,len,.....,revent)
 1. 2. 3.

Item Position Length (bytes) Contents

11. Setting the Test Environment

250

name.

• An error occurs when the specified data is less than the specified data length. Data
that exceeds the data length is truncated.

• Create the receive data in execution units. If the tprecv function is executed
more than once in a service, create all the data required for the number of
executions. If the tprecv function is executed more times than the number of
data items, the system assumes that data from the tpreturn function was
received and an error occurs at each execution that exceeds the number of data
items.

The XATMI receive data file opens and closes by service unit.

• When the buffer type and subtype are specified, the values specified for the data
length and data must be the same as the data structure value defined for the stubs.

Boundary alignment is performed for the data structure specified for the stubs (the
total length is an integer multiple of 4). For this reason, the user must consider the
alignment portion when creating an XATMI receive data file.

11.2.4 MCF receive message files
A logical message can contain one or more segments. A segment consists of a header
part containing the segment information and a data part which is the message text.

There are five types of segments:

• Single segment

Segment in a logical message consisting of one segment only

• First segment

First segment in a logical message consisting of multiple segments

• Middle segment

One of the middle segments in a logical message consisting of multiple segments

• Last segment

Last segment in a logical message consisting of multiple segments

• Header segment

Segment prefixed to two concatenated messages

11. Setting the Test Environment

251

Specify the segment type in the header part.

An MCF receive message file stores the messages received by the UAP in an MCF
function (dc_mcf_receive, dc_mcf_recvsync, or dc_mcf_sendrecv). Create
one logical message per file. Two messages can be concatenated if a header segment
is used.

(1) File structure
Logical message consisting of one segment only

Logical message consisting of multiple segments

Header segment

11. Setting the Test Environment

252

(2) File contents

(3) Notes
• The following shows how the items in an MCF receive message file are related to

message receive requests from a UAP via an MCF function.

Item Position Length
(bytes)

Contents

Header Input/output
logical terminal
name

0 9 Logical terminal name (including final null character) to
be passed in MCF functions. Specify the same name for
each segment of a multiple-segment message.

Map name 9 9 Map name (including final null character). Specify the
same name for each segment of a multiple-segment
message.
This specification is valid only for functions that return
a map name.

Reserved 18 9 Null character

Segment type 27 1 One of the following characters:
F

First segment
M

Middle segment
L

Last segment
O

Single segment
H

Header segment

Message length 28 4 Message length (0-2147483647)

Data Message 32 n The data in the segment, of the specified message length

11. Setting the Test Environment

253

• By concatenating header segments, data created in another file can be combined
with the first or single segment and passed together to the UAP. The following
shows how a header segment is related to a message receive request from a UAP
by an MCF function.

• The following shows the relationships between the segment type specified in the
segment header for a service request to an MHP and the file type at execution.

Logical message consisting of one segment only
When segment type F, M, or L is specified, the message is handled in the same way as
when O is specified and no error occurs.

11. Setting the Test Environment

254

Legend:

#: Specification other than F, M, L, O, or H.

Logical message consisting of multiple segments
When segment type L, H, or O is specified, the MHP regards the message as completed
and ignores any subsequent segments. Segment type F is handled in the same way as
segment type M.

Segment type File type

F Handled as an MCF receive message file.

M

L

O

H, # Handled as an invalid file specification.
The system makes a file name inquiry.

Segment type Segments received by MHP

First segment Middle segment Last segment

F M L F, M, L

F L M F, L#1

F O L F, L#2

M M L M, M, L

L M F L#3

O O O O#3

F L M F, L#1

F M H No segments received.#4

X M L

F X L

F M X

H F L H#3

H O O H#3

11. Setting the Test Environment

255

Legend:

X: Specification other than F, M, or L.

#1: M is ignored.

#2: L is ignored.

#3: The middle and subsequent segments are ignored.

#4: Handled as an invalid file specification. The system makes a file name inquiry.

Files concatenated by header segment
Files can only be concatenated when H is specified as the segment type. Otherwise, the
file specifications are ignored.

Legend:

#: Specification other than F, M, L, O, or H.

Do not use a plus sign (+), space, or tab code in the file name. Also, do not use ps or
end as the file name.

11.2.5 DAM file
A DAM file stores DAM file data for the offline tester when the DAM service
simulator is used. DAM files are created by using an editor or by creating and
executing a program that uses the dc_dam_create function provided by the offline
tester.

Segment type (combinations for
concatenation)

File type

H + (file beginning with F) Handled as a concatenated MCF receive message file.

H + (file beginning with M)

H + (file beginning with L)

H + (file beginning with O)

H + (file beginning with #)

F, M, L, or O + (file beginning with any
segment type)

The file following + is ignored.

+ (file beginning with any segment type) Handled as an invalid file specification. The system makes a file
name inquiry.

11. Setting the Test Environment

256

(1) File structure

(2) File contents

(3) Note
The system does not check whether the total number of blocks in the data part is the
same as the actual block count. An error occurs at data access if the actual block count
is less.

11.2.6 TAM file
A TAM file stores TAM file data for the offline tester when using the TAM service
simulator. TAM files are created from a TAM data file by entering the offline tester's
utftamcre command (see Section 13.1 Operating commands for running tests).

Create a TAM data file in the same way as a TAM file used by TP1/FS/Table Access.
Or, use a job TAM file as is. See the manual OpenTP1 Operation for creating job TAM

Item Position Length
(bytes)

Contents

Header File name 0 64 DAM file name. The specification is not checked.

File name 64 4 Length of one block (0-32760)

Total no. of
blocks

68 4 Total number of blocks in the data part (1-2147483647)

Unused 72 2 Null character

Shutdown status 74 2 Specify one of the following:
0x0000

Not shutdown (normal)
0x0001

Logical shutdown
0x0002

Error shutdown

Reserved 76 20 Null character

Data Block 96 n Any data, specified by block.

11. Setting the Test Environment

257

files.

11.2.7 Operating command result data file
An operating command result data file stores the data returned to the UAP as the
command execution result when using the operating command simulator. A single file
contains one data item.

(1) File structure

(2) File contents

Legend:

--: Not applicable

Item Position Length
(bytes)

Contents

Header Operating
command result
code

0 4 Result code value set in the stat argument of the
dc_adm_call_command function

Character string
length for
standard output

4 4 Length of character strings (including null characters)
output to standard output (0-2147483647)

Character string
length for
standard error
output

8 4 Length of character strings (including null characters)
output to standard error output (0-2147483647)

Character string for standard
output

12 n Value set in the outmsg argument of the
dc_adm_call_command function. (Includes the final
null character. If no null characters are added, the last
character is replaced with a null character.) The
specified value is ignored when zero is specified as the
character string length for standard output.

Character string for standard
error output

-- n Value set in the errmsg argument of the
dc_adm_call_command function. (Includes the final
null character. If no null characters are added, the last
character is replaced with a null character.) The
specified value is ignored when zero is specified as the
character string length for standard error output.

11. Setting the Test Environment

258

(3) Notes
• An operating command result data file for the online tester cannot be used.

• Add a null character at the end of a standard output string and a standard error
output string. If no null character is added for such strings, the last character in the
string is replaced by a null character. If you specify 0 as the string length, the
character string is ignored even if it is specified.

• Do not use a plus sign (+) in the file name. Also, do not use ps or end as the file
name.

• When issuing operating commands by SEND statement in a DML, specify the
data part as follows:

Character string length for standard output:

Specify 0.

Character string length for standard error output:

Specify 0 (when standard error output is not available).

11. Setting the Test Environment

259

11.3 Creating files

This section explains how to create test data definition files for simplifying later
creation of tester files, and provides a list of the files generated by the offline tester.

11.3.1 Test data definition file
By creating a test data definition file, the user can easily create tester files using the
tester file creation facility.

A test data definition file can have any name. The following tester files can be created
from a test data definition file:

• RPC request data file

• XATMI request data file

• TxRPC request data file

• RPC response data file

• XATMI response data file

• TxRPC response data file

• XATMI receive data file

• MCF receive message file

• Operating command result data file

(1) Syntax

Note that the italicized numbers in the box above correspond to the numbers under (3)
Description below.

(2) Function
Allows the tester file creation command to create a tester file after the definition of test
data needed for the tester file.

#comment]1.
start tester-file-ID tester-file-kind output-destination-file-name]2.
keyword = input-data]5.
keyword = input-data
sep]3.
keyword = input-data
 : :
 : :
keyword = input-data
end]4.

11. Setting the Test Environment

260

One line in the definition file can contain up to 512 bytes including a carriage return
code.

(3) Description
1. Comment statement

Write a comment statement.

• comment
Write a comment in a line.

2. start statement

Declare the beginning of input data for a tester file. This statement is required for
declaring input data in each tester file.

When input data is created for multiple tester files in a test data definition file, the
end statement shows the end of input data of one tester file.

• tester-file-ID ~<up to 14 alphanumerics>

Specify an ID for identifying input data in each tester file described in the
test data definition file. The ID must be unique in a test data definition file.

• tester-file-kind
Specify a tester file kind. Available tester file kinds are:

RRQ

RPC request data file

XRQ

XATMI request data file

TRQ

TxRPC request data file

RRT

RPC response data file

XRT

XATMI response data file

TRT

TxRPC response data file

XRV

XATMI receive data file

11. Setting the Test Environment

261

NRV

MCF receive message file

COM

Operation command result data file

• output-destination-file-name ~<pathname>

Specify the name of a tester file made of input data.

When a test data definition file specifies input data of multiple tester file
kinds, specify different output destination file names for the file kinds.

If the same output destination file name is used for input data with different
tester file kinds, test data is appended to the specified file. Though this is not
an error, the created tester file may be unavailable for testing. If the existing
file name is specified, test data is appended to that file.

3. sep statement

Specify a data separator when creating a tester file that contains multiple data
entries.

If a file contains multiple data entries for the offline tester, however, only the first
data entry takes effect, ignoring the second or later data.

The sep statement is specifiable for creating the following tester files.

• XATMI receive data file

• Operation command result data file

4. end statement

Declare the end of input data in a tester file. This statement is required for every
input data in each tester file.

5. Input data definition statement

Define input data in each tester file.

Input data includes fixed information data and user data. The fixed information
data provides predetermined information to be specified. The user data (with the
keyword data) can contain anything the user specifies. In a set of test data,
specify all fixed data prior to user data.

Input data cannot duplicate in a set of test data. In the operation command result
data file, however, specify user data twice for setting standard output character
string data and standard error output character string data.

• keyword
Specify a keyword for identifying data specific to each tester file. Space

11. Setting the Test Environment

262

characters or tab codes are ignored if specified before or after the keyword.

• input-data
Specify input data for the keyword. Space characters or tab codes are ignored
if specified before or after the keyword.

For details about the input data formats for specifying fixed information data,
see the tables in (5) Formats for the input data corresponding to the
keywords of tester files, below

(4) Required settings for specifying user data as input data
The following describes an input data format for specifying user data.

(a) Setting the user data length
Specify the length of the entire user data as fixed information data in the following
format.

data_len=bytes
If the data specified as user data is larger than the data length, the system truncates the
data and issues a message. If the data is smaller than the data length, nothing is
appended to it.

Example:

(b) Initializing user data
Using the tester file creation command, initialize the user data for the specified user
data length.

(c) Setting character data
Set character data in the following format:

data='data'
Do not add a null character to the end of character data.

Example:

11. Setting the Test Environment

263

(d) Setting binary data
Set binary data in the following format:

data=data
Data can be written in decimal and hexadecimal notation, as follows:

• Decimal notation

Specify the value as is.

• Hexadecimal notation

Prefix 0x to the value.

Example:

data=5 Data: Decimal 5

data=0x05 Data: Hexadecimal 5

Data is set with the int type.

(e) Setting hexadecimal code format data
Set hexadecimal code data in the following format:

data=(code)0xdata
In data, write n bytes of 2n-digit data using hexadecimal code. The user can write as
many number of bytes as required within the maximum length of a line.

Write a value of 0x00-0xff for one byte of data.

The data is assumed as binary data written in hexadecimal notation if (code) is not
specified.

Example:

(f) Setting special characters
The system processes a carriage return code, tab code, null character, single quotation
mark ('), and backslash (\) to be special characters in character data. Enter these
characters as follows.

Character Notation

Carriage return \n

Tab code \t

Null character \0

11. Setting the Test Environment

264

(g) Setting data to be read from the file
Use the following format when using data as user data read from the file.

data=(file) file-pathname
Example:

data=(file)/tmp/datafile Use data in /tmp/datafile.

(h) Setting the beginning of data
Specify the beginning of data as follows.

data=[offset-from-start-of-user-data] data
Example:

(i) Setting a format for multiple data types
data=data
 =data
 :
 :

Example:

data=0x00000001 First data

 ='ABCDEF' Second data

(j) Adjusting the boundary
When multiple data types are described, adjacent data types may differ from each
other. This time the tester file creation command sets data by automatically adjusting
the boundary for the preceding data. However, no boundary adjustment takes place
when:

• User data is read from the file.

• The beginning of user data is set.

• Hexadecimal code format data is set.

' \'

\ \\

Character Notation

11. Setting the Test Environment

265

(5) Formats for the input data corresponding to the keywords of tester files
The following tables list the keywords and the formats of the corresponding input data
for each tester file. For the type of information to be specified, see the description of
each tester file in Section 11.2 User-Created files.

Table 11-3: RPC request data file keywords and input data formats

Table 11-4: XATMI request data file keywords and corresponding input data
formats

Keyword Specified
information

Description

out_len Response area
length

Before data, specify the response area length in decimal or hexadecimal
placed in the dc_rpc_call function.

data_len Data length Before data, specify the user data length in decimal or hexadecimal passed
to the server UAP with the dc_rpc_call function.

data Data Specify the user data passed to the server UAP with the dc_rpc_call
function.

Keyword Specified
information

Description

call_kind Call kind Before data, specify one of the following character strings as a function
type for service request.
• call

• acall

• connect

buff_type Type Before data, specify one of the following character strings as a buffer
type.
• X_OCTET

• X_COMMON

• X_C_TYPE

sub_type Subtype Before data, specify a subtype within 16 characters.
Example:

sub_type=subtype01

11. Setting the Test Environment

266

Table 11-5: TxRPC request data file keywords and corresponding input data
format

Table 11-6: RPC response data file keywords and corresponding input data
formats

flag Flag Before data, specify the following character string as a flag to be passed
to the service function. Separate multiple flags with a vertical line (|).
• 0

• TPNOREPLY

• TPNOTRAN

• TONOCHANGE

• TPSENDONLY

• TPRECVONLY

data_len Data length Before data, specify the user data length in decimal or hexadecimal to be
passed to the server UAP with the tpcall, tpacall, or tpconnect
function.

data Data Specify user data to be passed to the server UAP with the tpcall,
tpacall, or tpconnect function.

Keyword Specified
information

Description

version Version number Before data, specify the version number in decimal or hexadecimal
specified in the interface definition of the txidl command. This
information is optional. If omitted, zero is assumed. The range of
specification is 0-65535.
Example:

version = : The version is 0.0.
version = 2: The version is 2.0.
version = 3.2: The version is 3.2.

data_len Data length Before data, specify the user data length in decimal or hexadecimal to be
passed to the server UAP.

data Data Specify user data to be passed to the server UAP.

Keyword Specified
information

Description

data_len Data length Before data, specify the user data length in decimal or hexadecimal to be
passed to the client UAP on service termination.

data Data Specify user data returned to the client UAP on service termination.

Keyword Specified
information

Description

11. Setting the Test Environment

267

Table 11-7: XATMI response data file keywords and corresponding input data
formats

Table 11-8: TxRPC response data file keywords and corresponding input data
format

Table 11-9: XATMI receive data file keywords and input data formats

Keyword Specified
information

Description

buff_type Type Before data, specify one of the following character strings as a buffer
type.
• X_OCTET

• X_COMMON

• X_C_TYPE

sub_type Subtype Before data, specify a subtype within 16 characters.
Example:

sub_type=subtype01

rval Service
termination code

Before data, specify one of the following character strings as a service
termination code.
• TPSUCCESS

• TPFAIL

rcode Return code Before data, specify the return code in decimal or hexadecimal.

data_len Data length Before data, specify the user data length in decimal or hexadecimal
passed to the client UAP on service termination.

data Data Specify user data returned to the client UAP on service termination.

Keyword Specified
information

Description

data_len Data length Before data, specify the user data length in decimal or hexadecimal to be
passed to the client UAP.

svc_rtn Return value Before data, specify the return value in decimal or hexadecimal to be
passed to the client UAP.

data Data Specify user data to be passed to the client UAP.

Keyword Specified
information

Description

buff_type Type Before data, specify one of the following character strings as a buffer type.
• X_OCTET

• X_COMMON

• X_C_TYPE

11. Setting the Test Environment

268

Note
When specifying data for multiple services, repeat buff_type and succeeding
data.

Table 11-10: MCF receive message file keywords and corresponding input data
formats

sub_type Subtype Before data, specify a subtype within 16 characters.
Example:

sub_type=subtype01

event Event flag Before data, specify one of the following character strings as an event flag
passed to the tprecv function.
• 0

• TPEV_DISCONIMM

• TPEV_SVCERR

• TPEV_SVCFAIL

• TPEV_SVCSUCC

• TPEV_SENDONLY

data_len Data length Before data, specify the user data length in decimal or hexadecimal passed
to the tprecv function.

data Data Specify user data passed to the tprecv function.

sep sep statement When specifying data for multiple services, place a sep statement at the
end of data for one service. Do not place this statement after the last data.

Keyword Specified
information

Description

termname I/O logical
terminal name

Before data, specify an I/O logical terminal name within 8 characters
passed to the dc_mcf_receive function.

mapname Map name Before data, specify a map name within 8 characters passed to the
dc_mcf_receive function.

Keyword Specified
information

Description

11. Setting the Test Environment

269

Note
When specifying data for multiple segments, repeat seg_kind and succeeding
data.

Table 11-11: Operation command result data file keywords and corresponding
input data formats

seg_kind Segment type Before data, specify one of the following characters as a segment type
passed to the dc_mcf_receive function.
• F

• M

• L

• O

• H

Specify these characters in any of the following orders when there is data
for multiple segments.
• F...M...L

• F...F...L

• M...M...L

• L

• H

• O

data_len Message length Before data, specify the user data length of the segment in decimal or
hexadecimal passed to the dc_mcf_receive function.

data Message Specify user data of the segment passed to the dc_mcf_receive
function.

Keyword Specified
information

Description

status_code Operation
command
result code

Before data, specify a result code in decimal returned by the operation
command.

outsize Standard
output
character
string length

Before data, specify the message length in decimal or hexadecimal the
operation command outputs to standard output.

errsize Standard error
output
character
string length

Before data, specify the message length in decimal or hexadecimal the
operation command outputs to standard output error.

Keyword Specified
information

Description

11. Setting the Test Environment

270

11.3.2 Files created by the offline tester
Table 11-12 lists the files created by the offline tester.

Table 11-12: List of files created by offline tester

#1: Created in the /tmp directory, with the logical terminal name acquired by the
dc_mcf_receive function as the file name. Not created when the same file name
already exists in the /tmp directory.
#2: When not running a UAP that issues the dc_mcf_contend function, the user can
delete the file at any time.

data Standard
output
character
string

Specify a message with character data the operation command outputs to
standard output.

data Standard error
output
character
string

Specify a message with character data the operation command outputs to
standard output error.

sep sep statement When specifying data for multiple commands, place a sep statement at the
end of data for one command. Do not place this statement after the last data.

File type Use and contents Time of creation Deleted
by

Time of
deletion

XATMI send data
file

Stores data sent by the tpsend
function.

At execution of the
tpsend function

User Any

Temporary
memory data file

Stores data updated by the
dc_mcf_tempput function and
acquired by the dc_mcf_tempget
function in the UAP when using the
MCF simulator.

In the
dc_mcf_tempput
and
dc_mcf_tempget
functions#1

Offline
tester#2

At execution
of the
dc_mcf_co
ntend
function

Trace file Collects offline tester trace
information.

When the offline
tester (UAP) collects
the first trace
information.

User Any

Keyword Specified
information

Description

271

Chapter

12. Test Execution

This chapter explains how to run a test with the offline tester.

This chapter contains the following sections:

12.1 Creating UAPs
12.2 Starting and ending an offline test
12.3 Activating and terminating UAPs
12.4 Service requests
12.5 Creating tester files
12.6 Continuous command execution
12.7 Debugger connection
12.8 Editing offline tester trace information
12.9 Notes on running tests

12. Test Execution

272

12.1 Creating UAPs

12.1.1 Creating UAP execution format programs
(1) Creating UAP execution format program with the RPC or XATMI interface

Figure 12-1 shows the procedure for creating a UAP execution format program with
the RPC or XATMI interface.

12. Test Execution

273

Figure 12-1: Procedure for creating UAP execution format program with the
RPC or XATMI interface

To create the stub source program for creating a UAP execution format program with
an RPC or XATMI interface, use the stbmake command with an RPC (or XATMI)
interface definition file. See the manual OpenTP1 Programming Guide for details on
the stbmake command.

12. Test Execution

274

The following examples show how to generate stubs.

Example:

Generate stubs from an RPC interface definition file.

1. RPC interface definition file

(The name of the source file generated in this example is
spp1stb_sstb.c.)

Example:

Generate stubs from an XATMI interface definition file.

1. XATMI interface definition file

(The name of the source file generated in this example is spp1stb_stbx.c
and the header file name is spp1stb_stbx.h.)

After generating the stubs, compile the stubs and UAP (C or COBOL). Use the header
file provided by TP1/Server Base.

After compilation, link the stub object file and UAP object file to the simulation
functions library provided by the offline tester.

(2) Creating UAP execution format program with a TxRPC interface
Figure 12-2 shows the procedure for creating a UAP execution format program with a
TxRPC interface.

stbmake spp1stb.def
 1.

stbmake -x spp1stb.def
 1.

12. Test Execution

275

Figure 12-2: Procedure for creating UAP execution format program with the
TxRPC interface

To create the client stub or server stub source program or server UAP templates for
creating a UAP execution format program with the TxRPC interface, use the OpenTP1
txidl command with the Interface Definition Language (IDL) file. See the manual

12. Test Execution

276

OpenTP1 Programming Guide for details on the txidl command.

The following example shows how to create stubs and a template.

Example:

Generate stubs from an IDL file

1. Interface Definition Language file name

The following six files are generated in this example:

spp1_cstub.c (Client stub source)

spp1_sstub.c (Server stub source)

Cspp1 (User service definition for client)

Sspp1 (User service definition for server)

spp1.h (Header file)

spp1.c (Server source program template)

After generating the files, code the UAP based on the template and then compile the
stubs and UAP (C). Use the header file provided by OpenTP1. See the manual
OpenTP1 Programming Reference C Language for how to create the UAP.

After compilation, link the stub object file and UAP object file to the simulation
functions library provided by the offline tester. For a client UAP, link the client stub
object file. For a server UAP, link the server stub object file.

txidl spp1.idl
 1.

12. Test Execution

277

12.2 Starting and ending an offline test

To start the offline tester, execute the utfstart command. In the command, specify
the name and option parameters of the offline tester environment definition file that
defines the execution conditions.

Starting the offline tester activates the service groups specified in the offline tester
environment definition file. A prompt (?>) for command input is displayed as each
UAP executes its main function and issues a function for starting services
(dc_rpc_mainloop or dc_mcf_mainloop function). Execute an offline tester
subcommand in response to the prompt.

At offline tester startup, a number of service groups are activated at the same time. That
is, a number of UAPs may run in parallel.

To end the offline tester, execute the end subcommand when the prompt is displayed.

12. Test Execution

278

12.3 Activating and terminating UAPs

When the offline tester is used, the offline tester controls activation and termination of
UAPs (service groups) instead of OpenTP1. At offline tester startup, all the UAPs are
activated except those for which activation at tester startup is suppressed by a
specification in the offline tester environment definition.

When the offline tester has completed startup, the start subcommand can be
executed to activate a UAP that has not yet activated or a UAP that terminated due to
an error.

Terminating the offline tester terminates all the active UAPs. To terminate one UAP,
execute the stop subcommand.

12. Test Execution

279

12.4 Service requests

A service can be requested in either of the following ways:

• By issuing a service request (dc_rpc_call function) in the program

• By executing the call subcommand

Execute the call subcommand after the UAP (service group) has activated.

12. Test Execution

280

12.5 Creating tester files

To create a tester file, execute the utffilcre command.

The procedure for creating tester files from a test data definition file is the same as for
the online tester (see Subsection 11.3.1 Test data definition file in Part IV).

12. Test Execution

281

12.6 Continuous command execution

To execute offline tester commands continuously, execute the cmdauto subcommand.
Specify the name of the continuous execution command file as the command
argument.

Subcommands for user responses can also be set in the file. If a command in the file
contains an error, the command is ignored or the offline tester prompts for command
input.

At completion of a UAP process (debugger process) other than execution of the stop
subcommand, the offline tester asks the user whether to continue or cancel continuous
command execution. The offline tester also waits for user response if no subcommand
is specified at any point during continuous command execution.

12. Test Execution

282

12.7 Debugger connection

To run UAPs under debugger control, specify debugger connection in the offline tester
environment definition. Parameters required for the debugger (the directory for the test
UAP source file) must also be set in the definition.

Debugger connection is executed by the main function of the UAP. After control is
passed to the debugger and initialization is completed, enter a program start command
to start the program. When the program completes execution, terminate the debugger.
The debugger cannot be restarted.

Two types of debuggers can be used:

• dbx

• cbltd (COBOL85/TD)

Follow the procedure for using each debugger.

12. Test Execution

283

12.8 Editing offline tester trace information

Offline tester trace information is collected in a trace file according to the output
specifications (output file, content to be output, and so on) set as options at offline
tester startup. Collected trace information can be output for each service or service
group by executing the utftrcpic command.

The dc_rpc_open function executes the processing, such as opening the trace file, to
prepare for trace collection. Therefore, trace information for functions issued before
the dc_rpc_open function cannot be collected. Also, trace information cannot be
collected for the following simulation functions for DAM file access:

• dc_dam_create

• dc_dam_get

• dc_dam_iclose

• dc_dam_iopen

• dc_dam_put

For a UAP written in COBOL, API trace information may not be output if the request
code, DML, or other specification is incorrect. In such cases, the system outputs error
message KFCA20016-E or KFCA20018-E. If the DML is incorrect, error information
is also output by the COBOL compiler and the program may terminate abnormally.

When UAPs run in parallel during main function execution, for example, each output
line may contain mixed trace information. To avoid this problem, activate each service
group at a different point.

12. Test Execution

284

12.9 Notes on running tests

This section describes points to remember when running tests with the offline tester.

12.9.1 Notes on the offline tester
(1) Processing after abnormal termination of the offline tester

The offline tester uses pipe and shared memory facilities to control processes.

If the offline tester is terminated abnormally in an irregular manner by pressing the
interrupt key, for example, the shared memory area and any temporary files in current
use are saved as allocated. The offline starter can still be restarted, but the shared
memory area and temporary files should be deleted if resource efficiency is likely to
be affected.

The offline tester uses the following names for temporary files:

• shmxxxx (in the /tmp directory)

• cpixxxx (in the /tmp directory)

• ppixxxx (in the /tmp directory)

• tttttttt (in the /tmp directory)

• aaaaaaaaxxxx (in the /tmp directory)

Legend:

xxxx
Hexadecimal display of process ID at execution

tttttttt
Same name as logical terminal name returned when the dc_mcf_receive
function receives the first segment. (Up to 8 characters)

aaaaaaaa
Same name (up to 8 characters) as the IST table name specified in the offline
tester environment definition file.

Example:

• shm4e7

• cpi3e9

• ppi3e8

• termnalA

12. Test Execution

285

If the offline tester terminates abnormally, the UAP process and debugger process (if
a debugger is connected) may still be active, depending on the termination timing. In
such cases, execute the kill command to terminate the processes.

(2) Upper limits of the offline tester
Table 12-1 sets out the upper limits of the offline tester.

Table 12-1: Upper limits of offline tester

Item Description Upper
limit

Processing when upper
limit is exceeded

UAP startup wait time Time from generation to activation
of a UAP process (dc_rpc_open
function) when starting the offline
tester or executing the start
subcommand

60 minutes An error message is output and
the process is forcibly
terminated.#1

UAP stop wait time Time from a termination request to
actual termination of a UAP
process when stopping the offline
tester or executing the stop
subcommand. Or, if debugger
connection is specified for the
UAP, time until the debugger
process terminates.

10 minutes Forcibly terminate the UAP
process or debugger process.

Command line length Length of command lines in offline
tester subcommands. Or, length of
definition lines in the continuous
execution command file

254 bytes An error message is output and
the command is rejected.

Definition line length Length of definition lines in the
offline tester environment
definition file or in the function
return values file

510 bytes An error message is output. The
line is ignored and definition
analysis continues.#2

Length of pathname
information

Length of directory names and
pathnames specified in the offline
tester environment definitions and
commands

255 bytes An error message is output and
the specification is ignored.

Number of function
return value definitions

Number of function return values
defined in the function return
values file

200 An error message is output.
Subsequent lines are ignored and
processing continues.

Number of DAM files Number of DAM files opened by
the dc_dam_open or
dc_dam_create function in a
UAP

200 An error message is output and
the dc_dam_open or
dc_dam_create function
returns an error value.

12. Test Execution

286

#1: Excluding UAPs for which debugger connection is specified.
#2: When definition analysis is completed, the system waits for command input to
continue or cancel offline tester startup.

(3) Recursive calls between service groups
Using the offline tester, the dc_rpc_call function can be used to execute nested
services within a service function. However, a service can only be called once within
nested services that belong to the same service group.

Figure 12-3 illustrates the use of recursive calls using the offline tester.

Number of TAM files Number of TAM files opened by
the dc_tam_open function in a
UAP

200 An error message is output and
the dc_tam_open function
returns an error value.

Number of
dc_rpc_call
functions

Number of UAP executions of the
dc_rpc_call function with
DCRPC_NOWAIT specified when
dc_rpc_poll_any_replies is
not issued

200 An error message is output and
the dc_rpc_call function
returns an error value.

Number of
synchronous message
send/receive functions

Number of executions of the
dc_mcf_sendrecv and
dc_mcf_recvsync function in a
service

100 An error message is output and
the dc_mcf_sendrecv or
dc_mcf_recvsync function
returns an error value.

Item Description Upper
limit

Processing when upper
limit is exceeded

12. Test Execution

287

Figure 12-3: Recursive calls using the offline tester

(4) Functions that cannot be used before or after service calls
The offline tester outputs an error message and an error value is returned when one of
the following functions is issued before or after a service call (before the
dc_rpc_mainloop or dc_mcf_mainloop function is issued or after the
dc_rpc_mainloop or dc_mcf_mainloop function returns):

• dc_rpc_call

• dc_adm_call_command

• MCF function other than dc_mcf_open, dc_mcf_close, or
dc_mcf_mainloop

(5) User exit routine functions
Of the functions related to user exit routines, the offline tester does not support the
dc_mcf_svstart function. To test a UAP that includes this function, create and link
a dummy function of the same name.

(6) Accessing TAM tables in DAM file access functions
The offline tester does not support accessing of TAM tables in DAM file access
functions. Operation is not guaranteed if access is attempted.

(7) Transaction processing
The offline tester does not support processing that depends on whether the process is
inside or outside a transaction.

12. Test Execution

288

(8) Event notification by tpsend function
The tpsend function cannot be used for event notification in interactive service
requests using an XATMI interface. To check UAP events, use the function return
values file.

(9) IST table access
The IST simulation facility of the offline tester stores IST table contents in a temporary
file for reference or update. This may cause a file access error that does not occur
otherwise.

When this error occurs, the system issues an error message. The function that caused
the file access error returns with an error condition. The return value corresponds to
one of error return values returned by that function.

12.9.2 Notes on files
(1) Lock of DAM files and TAM files

Locks can be placed on each DAM or TAM file. This means that a deadlock may occur
between UAPs which can normally be executed in parallel without a deadlock
occurring (because the UAPs have exclusive access to separate blocks within a DAM
file, for example).

If a deadlock occurs, take one of the following actions:

• Suppress lock in the offline tester environment definition.

• Suppress update by specifying the -c option in the utfstart command.

• Prevent the UAPs from running in parallel by entering the start subcommand
to start the UAPs sequentially after the offline tester starts.

(2) Number of batch processing blocks in DAM files
The offline tester processes files by block, regardless of the value set as the number of
batch processing blocks when issuing the dc_dam_create or dc_dam_iopen
function. However, no processing is performed when the specified value is less than
zero.

(3) Closing DAM files and TAM files
Always issue the dc_dam_close or dc_tam_close function after issuing the
dc_dam_open or dc_tam_open function.

If the service group is terminated without issuing the dc_dam_close or
dc_tam_close function, a duplicate open error or lock error may occur at the DAM
(or TAM) file when the service is re-executed. If an error occurs, enter the stop
subcommand to terminate the service (or service group), then enter the start
subcommand to reactivate the service.

12. Test Execution

289

(4) Lock of TAM files used by COBOL UAPs
COBOL UAPs cannot place locks on TAM files. When creating a UAP in COBOL,
specify suppression of lock in the TAM definition statement in the offline tester
environment definition.

If suppression is not specified, a lock error may occur when a service that accesses a
TAM file is restarted. If an error occurs, enter the stop subcommand to terminate the
service (or service group), then enter the start subcommand to restart the service.

12.9.3 Notes on UAPs
(1) Infinite looping of a UAP

As the offline tester does not perform timer monitoring, offline tester responses may
cease if the UAP goes into a infinite loop and makes no further responses. In this case,
execute the kill command from another window to forcibly terminate the UAP
process.

Operation is not guaranteed if the kill command is used to forcibly terminate a
process other than a UAP that has stopped issuing responses.

291

Chapter

13. Operating Commands

This chapter explains how to use the operating commands and subcommands of the
offline tester.

This chapter contains the following sections:

13.1 Operating commands for running tests
13.2 Subcommands for running tests

13. Operating Commands

292

13.1 Operating commands for running tests

Table 13-1 lists the operating commands for running offline tests.

Table 13-1: List of operating commands for offline testing

13.1.1 utfdamcre (creation of offline tester DAM file)
(1) Syntax

(2) Function
Reads a DAM data file and creates an offline tester DAM file.

(3) Command arguments
block-length ~((sector length x n - 8))

Specify the block length of a DAM file.

block-count ~((1-2147483647))

Specify the number of blocks in a DAM file to be created. The DAM file size will
be (block length x block count + 96) bytes.

DAM-file-name ~<pathname>

Specify the name of a DAM file to be created.

input-file-name ~<pathname>

Specify the name of a file that stores data to be output to the DAM file. Omitting
this specification outputs null data to the DAM file.

(4) Notes
• When an error occurs during utfdamcre command execution, the DAM file

remains allocated. Before reexecuting the utfdamcre command, use the rm

Command name Function

utfdamcre Creation of offline tester DAM file

utffilcre Tester file creation

utfstart Offline tester startup

utftamcre Creation of offline tester TAM files

utftrcpic Retrieval of offline tester trace information from a file

utfdamcre block-length block-count DAM-file-name [input-file-name]

13. Operating Commands

293

command to delete the DAM file.

• The following operations take place when the block count specified for the
utfdamcre command differs from the block count in the input file.

The system outputs blocks of null data to the end of the DAM file.

The system stops reading blocks from the input file, issues message
KFCA20789-W, then terminates the utfdamcre command.

13.1.2 utffilcre (tester file creation)
(1) Syntax

(2) Function
Creates tester files from the specified test data definition file.

(3) Option
-e test-data-definition-file-name ~<pathname>

Specify the name of the test data definition file that contains the input data for the
tester files.

13.1.3 utfstart (offline tester startup)
(1) Syntax

(2) Function
Starts the offline tester according to the definitions in the offline tester environment
definition file.

(3) Options
-s

Outputs service function names and return information to standard output as
offline tester trace information.

This option is ignored when the -i option is specified.

-l

Specified block count > block count in the input file

Specified block count < block count in the input file

utffilcre -e test-data-definition-file-name

utfstart [-s] [-l] [-i] [-f] [-g] [-d] [-c] offline-tester-environment-definition-file-name

13. Operating Commands

294

Outputs function argument information, as well as service function names and
return information, to standard output as offline tester trace information.

This option is ignored when the -i option is specified.

-i

Suppresses output of offline tester trace information.

-f

Outputs offline tester trace information to standard output and to a trace file.

When an existing trace file is specified, the information is added at the end of the
existing data. If the specified trace file does not exist, the offline tester creates the
file.

This option is ignored when the -g option is specified.

-g

Outputs offline tester trace information to standard output and to a trace file.

When an existing trace file is specified, the file is recreated and information is
written from the head of the file. If the specified trace file does not exist, the
offline tester creates the file.

-d

Outputs all the contents to standard output when the function argument
information consists of a data area (buffer, for example).

When this option is omitted, 20 bytes of information are output.

This option is valid only when the -l option is specified.

-c

Suppresses update of DAM files and TAM files when using the DAM service or
TAM service.

When this option is omitted, DAM files and TAM files are updated.

(4) Command argument
offline-tester-environment-definition-file-name ~<pathname>

Specify the name of the offline tester environment definition file containing the
test environment.

(5) Note
When all the options are omitted, the -l option is assumed.

13. Operating Commands

295

13.1.4 utftamcre (creation of offline tester TAM files)
(1) Syntax

(2) Function
Inputs the TAM data file and creates a TAM file for the offline tester.

(3) Options
-r record-length ~((1-2147483647))

Specify the record length of the TAM file.

-l key-area-length ~((1-2147483647))

Specify the key length.

-k key-start-position
Specify the offset to the key position from the head of the record.

An error occurs if a non-zero value is specified in this option and the -s option is
also specified. The record length of the management part of the TAM file is:
(record-length) - (key-area-length).

-m max-record-count ~((1-2147483647))

Specify the maximum number of records in TAM tables.

-t

Creates TAM tables in tree structure.

TAM tables are created in hash structure when this option is omitted, provided the
-u option is specified.

-u hash-entry-usage ~((1-100))

Specify the usage percentage of indexes to be used as hash areas.

An error occurs if this option is specified with the -t option.

-s

Specify this option to delete the key area from record contents.

-d TAM-data-file-name ~((255))

Specify the name of the TAM data file in up to 255 characters. An error occurs if
the number of characters is over 255 or if the specified name is the same as the

utftamcre -r record-length -l key-area-length -k key-start-position
 -m max-record-count [-t] [-u hash-entry-usage] [-s]
 [-d TAM-data-file-name] TAM-file-name

13. Operating Commands

296

TAM file name. Check the two name specifications.

(4) Command argument
TAM-file-name ~<pathname>

Specify the name of the TAM file to be created by the command.

(5) Notes
• An error occurs when the data length of the TAM data file exceeds (record-length)

x (maxd-record-count).
• When the data length of the TAM data file cannot be evenly divided by the record

length specified by the -r option, the excess data is truncated and is not stored in
the TAM file.

13.1.5 utftrcpic (retrieval of offline tester trace information)
(1) Syntax

(2) Function
Retrieves offline tester trace information by key from a trace file and outputs the
information to standard output.

(3) Command arguments
trace-file-name ~<pathname>

Specify the name of the trace file that contains the offline tester trace information.

service-group-name ~<identifier of 1-31 characters>

As the key information, specify the name of the service group that contains the
trace information to be retrieved.

service-name ~<identifier of 1-31 characters>

As the key information, specify the name of the service that contains the trace
information to be retrieved.

When specification is omitted, trace information is retrieved by service group.

data-file-name ~<pathname>

Specify the name of a data file as the key information if you want to restrict the
retrieved trace information to a specific data file used at service execution.

utftrcpic trace-file-name service-group-name
 [service-name [data-file-name]]

13. Operating Commands

297

(4) Output format

1. Time and function information:

• Time at which the service group was activated (hour:minute:second)

• Name of C function

• Name of COBOL program

• Request code

• DML statement name

2. Argument information:

(IN) indicates contents specified with the function argument by the UAP. (OUT)
indicates contents returned by the function to the UAP. arg name (OUT)=NULL
is displayed when the address of the character string area is a null character.

3. Information on data and data length:

Data contents are displayed for the specified data length in 40 bytes per line. The
format when a specification is incorrect or incomplete is as follows:

Example:

When the data address is a null character:

When the data length is zero:

4. Option flag information:

• Option flag name

data name(IN)=NULL

data name(IN)=

13. Operating Commands

298

• COBOL flag name

• COBOL flag type

If a specification is incorrect, the code of the incorrect flag is displayed and ***
is displayed as the COBOL flag name and flag type.

Example:

5. Return value information:

• Definition name of C return value

• Decimal display of C return value

• Decimal display of COBOL return code

Output example

option flags(IN)=00000001
 DCDAM_FILE_EXCLUSIVE [exclusive:B]
 00000006 [***]

13. Operating Commands

299

13. Operating Commands

300

1. Message indicating offline tester startup and trace information collected at SPP
startup

2. Trace information collected at subcommand input (test start)

3. Trace information collected at service execution

4. Trace information collected at data file read

5. Trace information collected at subcommand input (test end)

6. Trace information collected at SPP termination when offline tester ends

(5) Notes
• Offline tester trace information is retrieved from the start to the end of each

service.

• The retrieval range of the trace information differs according to the user response
when prompted for input of the read or write subcommand or for input of a file
name during service execution.

The table below shows how the user response determines the retrieval range.

13. Operating Commands

301

Input prompt Response (command input) Trace information retrieval

read or write
subcommand

read or write subcommand Trace information is also retrieved after
subcommand input.

ps subcommand Command input information and the
command execution result are not
retrieved.

end subcommand Trace information is not retrieved after
subcommand input.

Invalid command Command input information and error
messages are not retrieved.

File name ps subcommand Command input information and the
command execution result are not
retrieved.

end subcommand Trace information is not retrieved after
subcommand input.

Command other than ps or end
subcommand

Trace information is also retrieved after
subcommand input.

13. Operating Commands

302

13.2 Subcommands for running tests

Table 13-2 lists the subcommands for running offline tests.

Table 13-2: List of subcommands for offline testing

13.2.1 call (service request)
(1) Syntax

(2) Function
Activates the SPP or MHP process corresponding to the specified service group name
and executes the service function for the specified service name.

(3) Command arguments
service-group-name ~<identifier of 1-31 characters>

Specify the name of the service group that contains the service to be activated.

service-name ~<identifier of 1-31 characters>

Specify the name of the service to be activated.

RPC-request-data-file-name ~<pathname>

Command name Function

call Service request

cmdauto Continuous command execution

end Offline tester termination

ps Test status display

read Input of tester file name to offline tester

start Service group activation

stop Service group termination

write Input of tester file name to offline tester

call service-group-name service-name
{ RPC-request-data-file-name|
 XATMI-request-data-file-name|
 TxRPC-request-data-file-name|
 MCF-receive-message-file-name
 [+ MCF-receive-message-file-name]}

13. Operating Commands

303

Specify the name of the RPC request data file that contains the input data received
by the first service function when requesting the service from an RPC interface
SPP.

XATMI-request-data-file-name ~<pathname>

Specify the name of the XATMI request data file that contains the input data
received by the first service function when requesting the service from an XATMI
interface SPP.

TxRPC-request-data-file-name ~<pathname>

Specify the name of the TxRPC request data file that contains the input data
received by the first service function when requesting the service from a TxRPC
interface SPP.

MCF-receive-message-file-name ~<pathname>

Specify the name of the MCF receive message file that contains the data for input
to the UAP by the MCF function when requesting the service from an MHP.

To create concatenated messages, specify a second MCF receive message file,
prefixed with a plus sign (+).

(4) Notes
• The service group name must be defined in the offline tester environment

definition and the service name must be defined in the user service definition.

• If a tester file cannot be accessed, or if the file contents are incorrect, the next
prompt is displayed for file name input. When concatenation of MCF receive
message files is specified, if an error occurs at one of the files, specify both of the
file names in the specification.

Format

1. Service group name

2. Service name

13.2.2 cmdauto (continuous command execution)
(1) Syntax

(2) Function
Executes offline tester commands in sequence, according to the contents of the

file(group1:service1)?>
 1. 2.

cmdauto continuous-execution-command-file-name

13. Operating Commands

304

continuous execution command file.

(3) Command argument
continuous-execution-command-file-name ~<pathname>

Specify the name of the continuous execution command file containing the
commands to be executed successively.

13.2.3 end (offline tester termination)
(1) Syntax

(2) Function
Terminates active service groups and ends the offline tester.

(3) Note
This command sets normal return for the dc_rpc_mainloop function of each service
group. If the UAP process (or debugger process when using debugger connection)
does not complete within 10 minutes, the command forcibly terminates the UAP
process (or debugger process). However, if the command is entered while the system
is waiting for input of the read subcommand or file name, the service group
terminates normally only after the offline tester issues the dc_rpc_close function.

13.2.4 ps (test status display)
(1) Syntax

(2) Function
Displays the status of processes running under the offline tester.

(3) Output format

1. Time at which the ps subcommand was executed (hour:minute:second)

end

ps

13. Operating Commands

305

2. UAP process ID.

***** is displayed when the process is inactive.

3. Service group type code:

SPP

Indicates an SPP.

MHP

Indicates an MHP.

4. Service group name

5. Process status:

R

Indicates that the service group process is active.

E

Indicates that the service group process is inactive.

F

Indicates that the service group process is specified as the target of the server
UAP simulator (and cannot be activated or inactivated).

6. Debugger connection:

D

Specified

*

Not specified

7. Debugger process ID

***** is displayed when the process is inactive.

13.2.5 read (input of tester file name to offline tester)
(1) Syntax

(2) Function
Informs the offline tester of the tester file name required by a simulator.

read tester-file-name [+ MCF-receive-message-file-name]

13. Operating Commands

306

(3) Command arguments
tester-file-name ~<pathname>

Specify the name of the tester file required by the offline tester.

The prompt displays which tester file name is required, as shown below.

Format

1. Service group name

2. Service name (not displayed for a process other than a service)

3. Tester file type:

rpc_rtn

Service response data file

crm_rtn

XATMI response data file

trp_trn

TxRPC response data file

crm_rcv

XATMI receive data file

mcf_msg

MCF receive message file

adm_cmd

Operating command result data file

MCF-receive-message-file-name ~<pathname>

When concatenating the tester file with an MCF receive message file, write a plus
sign (+), then specify the name of the MCF receive message file.

13.2.6 start (service group activation)
(1) Syntax
start {SPP|MHP} service-group-name

13. Operating Commands

307

(2) Function
Reactivates a UAP when:

• Suppression of service group activation is specified for the UAP at offline tester
startup

• The UAP terminates abnormally during testing

(3) Command arguments
SPP|MHP

Specify the type of service group to be activated.

SPP

Indicates an SPP.

MHP

Indicates an MHP.

service-group-name ~<identifier of 1-31 characters>

Specify the name of the service group to be activated.

The service group name must be defined in the offline tester environment
definition.

13.2.7 stop (service group termination)
(1) Syntax

(2) Function
Terminates an active UAP.

(3) Command arguments
SPP|MHP

Specify the type of service group to be terminated.

SPP

Indicates an SPP.

MHP

Indicates an MHP.

service-group-name ~<identifier of 1-31 characters>

Specify the name of the service group to be terminated.

stop {SPP|MHP} service-group-name

13. Operating Commands

308

The service group name must be defined in the offline tester environment
definition.

13.2.8 write (input of tester file name to offline tester)
(1) Syntax

(2) Function
Informs the offline tester of the tester file name required by a simulator.

(3) Command argument
tester-file-name ~<pathname>

Specify the name of the tester file required by the offline tester.

The prompt displays which tester file name is required, as shown below.

Format

1. Service group name

2. Service name (not displayed for a process other than a service)

3. Tester file type:

crm_snd

XATMI send data file

write tester-file-name

309

Chapter

14. Simulation Functions

This chapter describes the purpose, processing, and return values of the simulation
functions provided by the offline tester.

This chapter contains the following sections:

14.1 List of simulation functions and processing
14.2 List of return values for simulation functions
14.3 List of functions not supported by the simulation feature

14. Simulation Functions

310

14.1 List of simulation functions and processing

This section lists the offline tester simulation functions and provides notes on function
simulations.

(1) Simulation functions
Table 14-1 lists the offline tester simulation functions for simulating OpenTP1
functions.

Table 14-1: List of offline tester simulation functions

Type Function name
[prog_name

(request_code)] <DML>

Purpose Traces Return
value

Function
processing

Control of
system
operation
(adm)

dc_adm_call_command

[CBLDCADM(COMMAND)]

Executes an
operating
command.

Y Y Returns data from
the operating
command result
data file.

dc_adm_complete

[CBLDCADM(COMPLETE)]

Notifies
completion of user
server startup.

Y Y --

dc_adm_status

[CBLDCADM(STATUS)]

Notifies user
server status.

Y Y Returns
DCADM_STAT_ST
ART_NORMAL
(return value) or
zero (return code)
at normal
termination.

dc_adm_get_nd_status_b
egin

Starts status
acquisition at the
OpenTP1 node.

Y Y Gets the number
of node IDs set in
the function return
values file.

dc_adm_get_nd_status_n
ext

Gets OpenTP1
node status.

Y Y Gets the node ID
set in the function
return values file.
Returns
DCADM_STATUS_
NORMAL (C return
value) at normal
termination.

dc_adm_get_nd_status_d
one

Ends status
acquisition at the
OpenTP1 node.

Y Y --

14. Simulation Functions

311

dc_adm_get_nd_status Gets OpenTP1
node status.

Y Y Returns
DCADM_STATUS_
NORMAL (return
value) at normal
termination.

dc_adm_get_node_id Gets the local
node ID from the
system common
definition.

Y Y Gets the node ID
set in the function
return values file.

dc_adm_get_sv_status_b
egin

Starts server status
acquisition.

Y Y Gets the number
of server names
set in the function
return values file.

dc_adm_get_sv_status_n
ext

Gets server status
at the OpenTP1
node.

Y Y Gets the server
name set in the
function return
values file.
Returns
DCADM_STATUS_
NORMAL (C return
value) at normal
termination.

dc_adm_get_sv_status_d
one

Ends server status
acquisition.

Y Y --

dc_adm_get_sv_status Gets status of a
specified server.

Y Y Returns
DCADM_STATUS_
NORMAL (return
value) at normal
termination.

dc_adm_get_nodeconf_be
gin

Starts node ID
acquisition.

Y Y Returns the
number of node
IDs set in function
return values file.

dc_adm_get_nodeconf_ne
xt

Gets multi-node
area ID for the
UAP that issued
the function, or all
node IDs of
specified
subareas.

Y Y Returns the node
IDs set in the
function return
values file.

Type Function name
[prog_name

(request_code)] <DML>

Purpose Traces Return
value

Function
processing

14. Simulation Functions

312

dc_adm_get_nodeconf_do
ne

Ends node ID
acquisition.

Y Y --

DAM file
service
(dam)

dc_dam_close

[CBLDCDAM(CLOS)]

Closes a DAM
file.

Y Y Closes a DAM
file.

dc_dam_create

[CBLDCDMB(CRAT)]

Allocates a
physical file.

N N Creates a DAM
file and returns the
file descriptor.

dc_dam_end

[CBLDCDAM(END)]

Declares to stop
using files not
subject to
recovery.

Y Y --

dc_dam_get

[CBLDCDMB(GET)]

Reads a physical
file block.

N N Reads a specified
block from a
DAM file to a
specified buffer.

dc_dam_hold

[CBLDCDAM(HOLD)]

Logical shutdown
of a DAM file

Y Y Sets shutdown
status in the DAM
file header and
shuts down the
DAM file.

dc_dam_iclose

[CBLDCDMB(CLOS)]

Closes a physical
file.

N N Closes a DAM
file.

dc_dam_iopen

[CBLDCDMB(OPEN)]

Opens a physical
file.

N N Opens a DAM file
and returns the file
descriptor.

dc_dam_open

[CBLDCDAM(OPEN)]

Opens a DAM
file.

Y Y Opens a DAM file
and returns the file
descriptor. Locks
the file if lock is
specified for the
file.

dc_dam_put

[CBLDCDMB(PUT)]

Writes a physical
file block.

N N Writes buffer
contents to a
specified DAM
file block.

Type Function name
[prog_name

(request_code)] <DML>

Purpose Traces Return
value

Function
processing

14. Simulation Functions

313

dc_dam_read

[CBLDCDAM(READ)]

Reads a DAM file
block.

Y Y Reads a specified
DAM file block to
a specified buffer.
Locks the file if
lock is specified
for the block.

dc_dam_start

[CBLDCDAM(STRT)]

Declares to start
using files not
subject to
recovery.

Y Y --

dc_dam_status

[CBLDCDAM(STAT)]

Shows DAM file
state.

Y Y Returns the DAM
file state.

dc_dam_release

[CBLDCDAM(RLSE)]

Releases DAM
file shutdown
status.

Y Y Resets the
shutdown status in
the DAM file
header and
cancels the
shutdown of the
DAM file.

dc_dam_rewrite

[CBLDCDAM(REWT)]

Updates a DAM
file block.

Y Y Writes the
contents of a
specified buffer to
a specified DAM
file block.

dc_dam_write

[CBLDCDAM(WRIT)]

Outputs a DAM
file.

Y Y Writes the
contents of a
specified buffer to
a specified DAM
file block.

Shared
table
service
(ist)

dc_ist_close

[CBLDCIST(CLOS)]

Closes IST table. Y Y Closes the IST
table.

dc_ist_open

[CBLDCIST(OPEN)]

Opens IST table. Y Y Opens the IST
table and returns
its descriptor.

dc_ist_read

[CBLDCIST(READ)]

Reads records
from IST table.

Y Y Reads specified
records from the
IST table to
specified buffer.

Type Function name
[prog_name

(request_code)] <DML>

Purpose Traces Return
value

Function
processing

14. Simulation Functions

314

dc_ist_write

[CBLDCIST(WRIT)]

Writes records to
IST table.

Y Y Writes specified
records to the IST
table.

User
journal
collection
(jnl)

dc_jnl_ujput

[CBLDCJNL(UJPUT)]

Collects UAP log
information.

Y Y --

Lock of
resources
(lck)

dc_lck_get

[CBLDCLCK(GET)]

Requests locking
of resources.

Y Y --

dc_lck_release_all

[CBLDCLCK(RELALL)]

Requests
unlocking of all
resources.

Y Y --

dc_lck_release_byname

[CBLDCLCK(RELNAME)]

Requests
unlocking of a
specified
resource.

Y Y --

Message
log control
(log)

dc_logprint

[CBLDCLOG(PRINT)]

Requests logged
message output.

Y Y --

Message
control
function
(mcf)

dc_mcf_execap

[CBLDCMCF(EXECAP)]

<SEND>

Starts an
application.

Y Y --

dc_mcf_mainloop

[CBLDCMCF(MAINLOOP)]

Starts the MCF
service.

Y Y Notifies the
offline tester that
MCF service has
started. At a
service request to
the MHP, executes
the service
function and waits
for the next
service request.
Returns when a
UAP termination
request is received
(at offline tester
termination, for
example).

Type Function name
[prog_name

(request_code)] <DML>

Purpose Traces Return
value

Function
processing

14. Simulation Functions

315

dc_mcf_receive

[CBLDCMCF(RECEIVE)

]<RECEIVE>

Message receive Y Y Inputs a segment
from the MCF
receive message
file and stores the
segment in the
message receive
area. Counts up
the transaction
sequence number.

dc_mcf_reply

[CBLDCMCF(REPLY)]

<SEND>

Response
message send

Y Y --

dc_mcf_rollback

[CBLDCMCF(ROLLBACK)]

<ROLLBACK>

Partial recovery Y Y Counts up the
transaction
sequence number
if the next
processing is
specified to run as
a different
transaction.

dc_mcf_send

[CBLDCMCF(SEND)]

<SEND>

Message send Y Y --

dc_mcf_open

[CBLDCMCF(OPEN)]

Prepares and
initializes for
using the MCF
service.

Y Y --

dc_mcf_close

[CBLDCMCF(CLOSE)]

Deletes the
environment for
using the MCF
service.

Y N --

dc_mcf_sendrecv

[CBLDCMCF(SENDRECV)]

<SEND>

Synchronous
message send/
receive

Y Y Outputs trace
information of the
last segment, then
inputs a segment
from the MCF
receive message
file and stores the
segment in the
message receive
area.

Type Function name
[prog_name

(request_code)] <DML>

Purpose Traces Return
value

Function
processing

14. Simulation Functions

316

dc_mcf_recvsync

[CBLDCMCF(RECVSYNC)]

<RECEIVE>

Synchronous
message receive

Y Y Inputs a segment
from the MCF
receive message
file and stores the
segment in the
message receive
area.

dc_mcf_sendsync

[CBLDCMCF(SENDSYNC)]

<SEND>/<ENABLE>/
<DISABLE>

Synchronous
message send

Y Y --

dc_mcf_tempget

[CBLDCMCF(TEMPGET)]

<RECEIVE>

Passes temporary
memory data for
continuous
inquiry/response

Y Y Inputs data from
the temporary
memory data file
and stores the data
in the message
receive area. Or,
stores a null
character if no file
exists.

dc_mcf_tempput

[CBLDCMCF(TEMPPUT)]

<SEND>

Updates
temporary
memory data for
continuous
inquiry/response

Y Y Updates the
temporary
memory data file.
Or, creates an
update file if none
exists.

dc_mcf_contend

[CBLDCMCF(CONTEND)]

<DISABLE>

Terminates
continuous
inquiry/response

Y Y Deletes the
temporary
memory data file.

dc_mcf_regster Sets user exit
routine function
addresses.

Y Y --

dc_mcf_resend

[CBLDCMCF(RESEND)]

Message resend Y Y --

dc_mcf_commit

[CBLDCMCF(COMMIT)]

Synchronous
point acquisition

Y Y Counts up the
transaction
sequence number.

Type Function name
[prog_name

(request_code)] <DML>

Purpose Traces Return
value

Function
processing

14. Simulation Functions

317

Remote
procedure
call (rpc)

dc_rpc_call

[CBLDCRPC(CALL)]

Remote service
call

Y Y Requests the
offline tester to
execute a service
function.
Returns a
descriptor
(positive integer)
as the return value
when
DCRPC_NOWAIT is
specified.
Or, returns zero to
the specified
service (service
function) as the
response length
when
DCRPC_NOREPLY
is specified.

dc_rpc_close

[CBLDCRPC(CLOSE)]

UAP termination Y N --

dc_rpc_mainloop

[CBLDCRSV(MAINLOOP)]

Starts the SPP
service.

Y Y Notifies the
offline tester that
service has
started. At a
service request to
the SPP, executes
the service
function and waits
for the next
service request.
Returns when a
UAP termination
request is received
(at offline tester
termination, for
example).

dc_rpc_open

[CBLDCRPC(OPEN)]

UAP start
processing

Y Y Allocates shared
memory, then
notifies the offline
tester that the
UAPs have
started.

Type Function name
[prog_name

(request_code)] <DML>

Purpose Traces Return
value

Function
processing

14. Simulation Functions

318

dc_rpc_poll_any_replie
s

[CBLDCRPC(POLLANYR)]

Receives
responses from
the dc_rpc_call
function
(DCRPC_NOWAIT
specified).

Y Y If
flags=DCNOFLA
GS, returns the
descriptor of the
first
dc_rpc_call
function
(DCRPC_NOWAIT
specified) for
which no reply
was received. If
flags=DCRPC_S
PECIFIC_MSG,
returns DC_OK. If
no dc_rpc_call
functions that
terminated
normally were
issued in the SPP,
returns
DCRPC_PROTO.

dc_rpc_discard_further
_replies

[CBLDCRPC(DISCARDF)]

Cancels responses
from the
dc_rpc_call
function
(DCRPC_NOWAIT
specified).

Y N Cancels all
descriptors
returned by the
dc_rpc_call
function
(DCRPC_NOWAIT
specified).

dc_rpc_get_callers_add
ress

[CBLDCRPC(GETCLADR)]

Notifies the node
address of the
client.

Y N Returns ADDRESS
(fixed value) as
the client address.

dc_rpc_set_service_pri
o

[CBLDCRPC(SETSVPRI)]

Sets schedule
priority of service
requests.

Y N --

dc_rpc_get_service_pri
o

[CBLDCRPC(GETSVPRI)]

Gets schedule
priority of service
requests.

Y N Returns the
schedule priority
value specified for
the
dc_rpc_set_se
rvice_prio
function.

Type Function name
[prog_name

(request_code)] <DML>

Purpose Traces Return
value

Function
processing

14. Simulation Functions

319

dc_rpc_set_watch_time

[CBLDCRPC(SETWATCH)]

Updates the
service response
wait time.

Y Y Updates the
service response
wait time.

dc_rpc_get_watch_time

[CBLDCRPC(GETWATCH)]

References the
service response
wait time.

Y N References the
values set by the
dc_rpc_set_wa
tch_time
function. Returns
180 if the function
has not been
issued.

TAM file
service
(tam)

dc_tam_close Closes a TAM
table.

Y Y Releases lock and
closes the TAM
table.

dc_tam_delete

[CBLDCTAM(ERS or ERSR)]
Deletes a record
from a TAM table.

Y Y Deletes a record
specified by key
value from a TAM
table and updates
the TAM table
file.

dc_tam_get_inf

[CBLDCTAM(GST)]

Collects TAM
table information.

Y Y Returns
DCTAM_STS_OPN
if the calling
process has issued
an open request
for the specified
TAM table file.
Or, returns
DCTAM_STS_CLS
if no open request
has been issued.

dc_tam_open Opens a TAM
table.

Y Y Opens the TAM
table specified by
table ID and
returns the file ID
as the table ID.
Locks the TAM
table file if lock of
the TAM table is
specified.

Type Function name
[prog_name

(request_code)] <DML>

Purpose Traces Return
value

Function
processing

14. Simulation Functions

320

dc_tam_read

[CBLDCTAM(FxxR or
FxxU)]

Retrieves a record
from a TAM table.

Y Y Retrieves a
specified index
from a TAM table
(control part and
index part) in
shared memory
and reads the
record for the
index from the
TAM table file.
Locks the TAM
table file if lock of
the record is
specified.

dc_tam_read_cancel Cancels TAM
table record
retrieval.

Y Y Unlocks the TAM
table file that
contains a
specified record.

dc_tam_rewrite Updates a
retrievable record
in a TAM table.

Y Y Writes the
contents of a
specified buffer to
a specified record
in a TAM table.

dc_tam_write

[CBLDCTAM(MFY, MFYS, or
STR)]

Updates or
appends a record
in a TAM table.

Y Y Retrieves a
specified index
from a TAM table
(control part and
index part) in
shared memory
and writes the
contents of a
specified buffer to
the record for the
index in the TAM
table file.

Transaction
control
(trn)

dc_trn_begin

[CBLDCTRN(BEGIN)]

Starts a
transaction.

Y Y Counts up the
transaction
sequence number.

dc_trn_chained_commit

[CBLDCTRN(C-COMMIT)]

Commits a
transaction
(chained mode).

Y Y Counts up the
transaction
sequence number.

Type Function name
[prog_name

(request_code)] <DML>

Purpose Traces Return
value

Function
processing

14. Simulation Functions

321

dc_trn_chained_rollbac
k

[CBLDCTRN(C-ROLL)]

Rolls back a
transaction
(chained mode).

Y Y Counts up the
transaction
sequence number.

dc_trn_info

[CBLDCTRN(INFO)]

Returns
information for
the current
transaction.

Y Y Returns zero if no
information is
specified in the
function return
values file.

dc_trn_unchained_commi
t

[CBLDCTRN(U-COMMIT)]

Commits a
transaction
(unchained
mode).

Y Y --

dc_trn_unchained_rollb
ack

[CBLDCTRN(U-ROLL)]

Rolls back a
transaction
(unchained
mode).

Y Y --

TX
interface
(tx_~)

tx_begin

[TXBEGIN]

Starts a
transaction.

Y Y Counts up the
transaction
sequence number
and initializes
TXINFO
information.

tx_close

[TXCLOSE]

Closes the
resource
managers.

Y Y --

tx_commit

[TXCOMMIT]

Commits a
transaction.

Y Y In chained mode,
counts up the
transaction
sequence number.

tx_info

[TXINFORM]

Returns
information for
the current
transaction.

Y Y Returns zero if no
information is
specified in the
function return
values file.

tx_open

[TXOPEN]

Opens the
resource
managers.

Y Y --

tx_set_commit_return

[TXSETCOMMITRET]

Sets
commit_return
characteristics.

Y Y --

Type Function name
[prog_name

(request_code)] <DML>

Purpose Traces Return
value

Function
processing

14. Simulation Functions

322

tx_set_transaction_con
trol

[TXSETTRANCTL]

Sets
trans-action_
control
characteristics.

Y Y Sets
transaction_c
ontrol
characteristics.

tx_set_transaction_tim
eout

[TXSETTIMEOUT]

Sets
trans-action_
timeout
characteristics.

Y Y --

tx_rollback

[TXROLLBACK]

Rolls back a
transaction.

Y Y In chained mode,
counts up the
transaction
sequence number
and sets
transaction_s
tate
characteristics.

XATMI
interface
(tp_~)

tpalloc Allocates a typed
buffer.

Y Y Allocates the
buffer specified
by an argument of
type type and
returns the
pointer.

tpfree Frees a typed
buffer.

Y N Frees the buffer
allocated by the
tpalloc or
tprealloc
function.

tprealloc Resizes a typed
buffer.

Y Y Resizes the buffer
allocated by the
tpalloc or
tprealloc
function.

tptypes Gets typed buffer
information.

Y Y Returns the type
and subtype of the
buffer allocated
by the tpalloc or
tprealloc
function.

Type Function name
[prog_name

(request_code)] <DML>

Purpose Traces Return
value

Function
processing

14. Simulation Functions

323

tpservice Service function
template

Y N Collects trace
information
immediately
before a service
function is called.

tpreturn Returns from a
service function.

Y Y Sets return
information and
returns to the
client UAP.

tpadvertise Advertises a
service name.

Y Y --

tpunadvertise Cancels service
name advertising.

Y Y --

tpacall Asynchronous
service request

Y Y Requests the
offline tester to
execute a service
function. The
tpgetrply
function returns
the call result.

tpcall Synchronous
service request

Y Y Requests the
offline tester to
execute a service
function.

tpcancel Service
cancellation

Y Y Cancels the
response from the
service requested
by tpacall
function.

tpgetrply Asynchronous
response from a
service

Y Y Returns the
execution result of
a service function.

tpconnect Establishes the
conversational
service paradigm
connection.

Y Y Requests the
offline tester to
execute a service
function. The
execution result is
returned by the
tprecv function.

Type Function name
[prog_name

(request_code)] <DML>

Purpose Traces Return
value

Function
processing

14. Simulation Functions

324

Legend:

Y: Trace information collected; return value set.

N: Trace information cannot be collected; return value cannot be set.

--: No processing

(2) Notes on simulation functions
Note the following points on using the function simulator:

1. The offline tester does not check the type of the UAP issuing the function,
transaction status, or whether the function is issued inside or outside the main
function.

2. The function sequence is checked only for functions that affect offline tester
operation.

3. Arguments are not checked. The user should check the arguments from the trace
information.

4. An error message is output but no trace information is collected when an interface
code or request code is set incorrectly in a COBOL program.

tpdiscon Disconnects the
conversational
service paradigm.

Y Y Terminates the
service if in reply
wait state
(tprecv
function) and
disables
acceptance of
tpsend or
tprecv after the
tpdiscon is
accepted.

tprecv Message receive
from the
conversational
service paradigm

Y Y Inputs data from
the XATMI
receive data file.

tpsend Message send to
the conversational
service paradigm

Y Y Outputs data to
the XATMI send
data file.

Online
tester (uto)

dc_uto_test_status

[CBLDCUTO(T-STATUS)]

Reports user
server test state.

Y Y Returns non-test
mode state.

Type Function name
[prog_name

(request_code)] <DML>

Purpose Traces Return
value

Function
processing

14. Simulation Functions

325

5. A dc_trn_~ function cannot coexist with a tx_~ function. The offline tester
does not check whether the two functions types are mixed.

6. The offline tester counts the number of transactions (transaction sequence
number). The transaction sequence number is counted up at execution of some
simulation functions and at execution of the call subcommand. You can
reference the transaction sequence number by using the tx_info function. For
details about the simulation function that increments the transaction sequence
number, see (1) Simulation functions, above.

14. Simulation Functions

326

14.2 List of return values for simulation functions

Table 14-2 lists the return values for simulation functions. Note that 0, DC_OK,
DCMCFRTN_00000, and TX_OK are omitted.

Table 14-2: List of return values for simulation functions

Type Function name [prog_name
(request_code)] <DML>

C return value COBOL
return code

Control of
system
operation (adm)

dc_adm_call_command

[CBLDCADM(COMMAND)]

DCADMER_STATNOTZERO

DCADMER_PARAM

DCADMER_MEMORY_OUT

DCADMER_MEMORY_ERR

DCADMER_MEMORY_OUTERR

DCADMER_PROTO

01801

01802

01803

01804

01805

01807#1

dc_adm_complete

[CBLDCADM(COMPLETE)]

DCADM_STAT_START_NORMAL

DCADMER_PROTO

DCADMER_PARAM

00000

01830#1

01831

dc_adm_status

[CBLDCADM(STATUS)]

DCADMER_PROTO

DCADMER_PARAM
01830#1

01831

dc_adm_get_nd_status_begin DCADMER_PROTO

DCADMER_PARAM
--#1, #2

--

dc_adm_get_nd_status_next DCADM_STAT_START_NORMAL

DCADMER_PROTO

DCADMER_PARAM

DCADMER_NO_MORE_ENTRY

--
--#1, #3

--
--

dc_adm_get_nd_status_done DCADMER_PROTO

DCADMER_PARAM
--#1, #3

--

dc_adm_get_nd_status DCADM_STAT_START_NORMAL

DCADMER_PROTO

DCADMER_PARAM

--
--#1, #2

--

dc_adm_get_node_id DCADMER_PROTO

DCADMER_PARAM
--#1, #2

--

dc_adm_get_sv_status_begin DCADMER_PROTO

DCADMER_PARAM
--#1, #2

--

14. Simulation Functions

327

dc_adm_get_sv_status_next DCADM_STAT_START_NORMAL

DCADMER_PROTO

DCADMER_PARAM

DCADMER_NO_MORE_ENTRY

--
--#1, #3

--
--

dc_adm_get_sv_status_done DCADMER_PROTO

DCADMER_PARAM
--#1, #3

--

dc_adm_get_sv_status DCADM_STAT_START_NORMAL

DCADMER_PROTO

DCADMER_PARAM

--
--#1, #2

--

dc_adm_get_nodeconf_begin DCADMER_PROTO

DCADMER_PARAM
--#1, #2

--

dc_adm_get_nodeconf_next DCADMER_PROTO

DCADMER_PARAM

DCADMER_NO_MORE_ENTRY

--#1, #3

--
--

dc_adm_get_nodeconf_done DCADMER_PROTO

DCADMER_PARAM
--#1, #3

--

DAM file
service (dam)

dc_dam_close

[CBLDCDAM(CLOS)]

DCDAMER_PROTO

DCDAMER_BADF

DCDAMER_PARAM_FLAGS

01600#1

01603

01611

dc_dam_create

[CBLDCDMB(CRAT)]

DCDAMER_NOMEM

DCDAMER_OPENED

DCDAMER_PARAM_FLAGS

DCDAMER_FILEER

DCDAMER_PNUMER

DCDAMER_EXIST

DCDAMER_IOER

DCDAMER_OPENNUM

DCDAMER_ACCESS

DCDAMER_LBLNER

DCDAMER_LBNOER

DCDAMER_LFNOVF

01607

01608

01611

01614

01615

01617

01620

01627

01628

01630

01631

01635

dc_dam_end

[CBLDCDAM(END)]

DCDAMER_PROTO

DCDAMER_PARAM_FLAGS
01600#1

01611

Type Function name [prog_name
(request_code)] <DML>

C return value COBOL
return code

14. Simulation Functions

328

dc_dam_get

[CBLDCDMB(GET)]

DCDAMER_BADF

DCDAMER_BUFER

DCDAMER_SEQER

DCDAMER_PARAM_FLAGS

DCDAMER_IOER

DCDAMER_EOF

01603

01604

01605

01611

01620

01637

dc_dam_hold

[CBLDCDAM(HOLD)]

DCDAMER_PROTO

DCDAMER_UNDEF

DCDAMER_PARAM_LFNAME

DCDAMER_PARAM_FLAGS

DCDAMER_IOER

DCDAMER_LHOLDED

DCDAMER_OHOLDED

01600#1

01601

01610

01611

01620

01625

01626

dc_dam_iclose

[CBLDCDMB(CLOS)]

DCDAMER_BADF

DCDAMER_PARAM_FLAGS

01603

01611

dc_dam_iopen

[CBLDCDMB(OPEN)]

DCDAMER_NOMEM

DCDAMER_OPENED

DCDAMER_PARAM_FLAGS

DCDAMER_FILEER

DCDAMER_PNUMER

DCDAMER_NOEXIST

DCDAMER_IOER

DCDAMER_OPENNUM

DCDAMER_ACCESS

DCDAMER_LFNOVF

01607

01608

01611

01614

01615

01619

01620

01627

01628

01635

dc_dam_open

[CBLDCDAM(OPEN)]

DCDAMER_PROTO

DCDAMER_UNDEF

DCDAMER_EXCER

DCDAMER_OPENED

DCDAMER_PARAM_LFNAME

DCDAMER_PARAM_FLAGS

DCDAMER_IOER

DCDAMER_LHOLD

DCDAMER_OHOLD

DCDAMER_OPENNUM

DCDAMER_ACCESS

01600#1

01601

01602

01608

01610

01611

01620

01621

01622

01627

01628

Type Function name [prog_name
(request_code)] <DML>

C return value COBOL
return code

14. Simulation Functions

329

dc_dam_put

[CBLDCDMB(PUT)]

DCDAMER_BADF

DCDAMER_BUFER

DCDAMER_SEQER

DCDAMER_PARAM_FLAGS

DCDAMER_IOER

DCDAMER_EOF

01603

01604

01605

01611

01620

01637

dc_dam_read

[CBLDCDAM(READ)]

DCDAMER_PROTO

DCDAMER_EXCER

DCDAMER_BADF

DCDAMER_BUFER

DCDAMER_BNOER

DCDAMER_PARAM_KEYNO

DCDAMER_PARAM_FLAGS

DCDAMER_IOER

DCDAMER_LHOLD

DCDAMER_OHOLD

01600#1

01602

01603

01604

01606

01609

01611

01620

01621

01622

dc_dam_start

[CBLDCDAM(STRT)]

DCDAMER_PROTO

DCDAMER_PARAM_FLAGS

DCDAMER_STARTED

01600#1

01611

01647

dc_dam_status

[CBLDCDAM(STAT)]

DCDAMER_PROTO

DCDAMER_UNDEF

DCDAMER_PARAM_LFNAME

DCDAMER_PARAM_FLAGS

DCDAMER_PARAM_ERROR

DCDAMER_IOER

01600#1

01601

01610

01611

01612

01620

dc_dam_release

[CBLDCDAM(RLSE)]

DCDAMER_PROTO

DCDAMER_UNDEF

DCDAMER_PARAM_LFNAME

DCDAMER_PARAM_FLAGS

DCDAMER_IOER

DCDAMER_NOLHOLD

DCDAMER_NOOHOLD

01600#1

01601

01610

01611

01620

01623

01624

Type Function name [prog_name
(request_code)] <DML>

C return value COBOL
return code

14. Simulation Functions

330

dc_dam_rewrite

[CBLDCDAM(REWT)]

DCDAMER_PROTO

DCDAMER_BADF

DCDAMER_BUFER

DCDAMER_BNOER

DCDAMER_PARAM_KEYNO

DCDAMER_PARAM_FLAGS

DCDAMER_IOER

DCDAMER_LHOLD

DCDAMER_OHOLD

DCDAMER_BUFOV

01600#1

01603

01604

01606

01609

01611

01620

01621

01622

01641

dc_dam_write

[CBLDCDAM(WRIT)]

DCDAMER_PROTO

DCDAMER_EXCER

DCDAMER_BADF

DCDAMER_BUFER

DCDAMER_BNOER

DCDAMER_PARAM_KEYNO

DCDAMER_PARAM_FLAGS

DCDAMER_IOER

DCDAMER_LHOLD

DCDAMER_OHOLD

DCDAMER_BUFOV

01600#1

01602

01603

01604

01606

01609

01611

01620

01621

01622

01641

Shared table
service (ist)

dc_ist_close

[CBLDCIST(CLOS)]

DCISTER_PROTO

DCISTER_BADID

DCISTER_PARAM_FLAGS

--#1

--
--

dc_ist_open

[CBLDCIST(OPEN)]

DCISTER_PROTO

DCISTER_UNDEF

DCISTER_OPENED

DCISTER_PARAM_TBLNAME

DCISTER_PARAM_FLAGS

--#1

--
--
--
--

dc_ist_read

[CBLDCIST(READ)]

DCISTER_PROTO

DCISTER_BADID

DCISTER_BUFER

DCISTER_RNOER

DCISTER_NOMEM

DCISTER_PARAM_KEYNO

DCISTER_PARAM_FLAGS

--#1

--
--
--
--
--
--

Type Function name [prog_name
(request_code)] <DML>

C return value COBOL
return code

14. Simulation Functions

331

dc_ist_write

[CBLDCIST(WRIT)]

DCISTER_PROTO

DCISTER_BADID

DCISTER_BUFER

DCISTER_RNOER

DCISTER_NOMEM

DCISTER_PARAM_KEYNO

DCISTER_PARAM_FLAGS

DCISTER_BUFOV

--#1

--
--
--
--
--
--
--

User journal
collection (jnl)

dc_jnl_ujput

[CBLDCJNL(UJPUT)]

DCJNLER_PARAM

DCJNLER_SHORT

DCJNLER_PROTO

01101

01102

01105#1

Lock of
resources (lck)

dc_lck_get

[CBLDCLCK(GET)]

DCLCKER_PARAM

DCLCKER_OUTOFTRN

00401

00455#1

dc_lck_release_all

[CBLDCLCK(RELALL)]

DCLCKER_PARAM

DCLCKER_OUTOFTRN

00401

00455#1

dc_lck_release_byname

[CBLDCLCK(RELNAME)]

DCLCKER_PARAM

DCLCKER_OUTOFTRN

00401

00455#1

Message log
control (log)

dc_logprint

[CBLDCLOG(PRINT)]

DCLOGER_PARAM_ARGS

DCLOGER_COMM

01900

01901#1

Message control
function (mcf)

dc_mcf_execap

[CBLDCMCF(EXECAP)]

<SEND>

DCMCFER_PROTO

DCMCFRTN_71002

DCMCFRTN_72000

DCMCFRTN_72001

DCMCFRTN_72005

DCMCFRTN_72016

DCMCFRTN_72024

DCMCFRTN_72026

DCMCFRTN_72041

DCMCFRTN_72108

70901#1, #4

71002

72000

72001

72005

72016

72024

72026

72041

72108

dc_mcf_mainloop

[CBLDCMCF(MAINLOOP)]

DCMCFER_INVALID_ARGS

DCMCFER_PROTO

DCMCFER_FATAL

70900

70901#1, #5

70902

Type Function name [prog_name
(request_code)] <DML>

C return value COBOL
return code

14. Simulation Functions

332

dc_mcf_receive

[CBLDCMCF(RECEIVE)]

<RECEIVE>

DCMCFER_PROTO

DCMCFRTN_71000

DCMCFRTN_71001

DCMCFRTN_71002

DCMCFRTN_72000

DCMCFRTN_72001

DCMCFRTN_72013

DCMCFRTN_72016

DCMCFRTN_72024

DCMCFRTN_72025

DCMCFRTN_72036

70901#1, #4

71000

71001

71002

72000

72001

72013

72016

72024

72025

72036

dc_mcf_reply

[CBLDCMCF(REPLY)]

<SEND>

DCMCFER_PROTO

DCMCFRTN_71002

DCMCFRTN_72000

DCMCFRTN_72005

DCMCFRTN_72016

DCMCFRTN_72017

DCMCFRTN_72026

DCMCFRTN_72041

DCMCFRTN_72047

70901#1, #4

71002

72000

72005

72016

72017

72026

72041

72047

dc_mcf_rollback

[CBLDCMCF(ROLLBACK)]

<ROLLBACK>

DCMCFER_PROTO

DCMCFRTN_72000

DCMCFRTN_72027

70901#1, #4

72000

72027

dc_mcf_send

[CBLDCMCF(SEND)]

<SEND>

DCMCFER_PROTO

DCMCFRTN_71002

DCMCFRTN_72000

DCMCFRTN_72001

DCMCFRTN_72005

DCMCFRTN_72016

DCMCFRTN_72017

DCMCFRTN_72020

DCMCFRTN_72024

DCMCFRTN_72026

DCMCFRTN_72041

70901#1, #4

71002

72000

72001

72005

72016

72017

72020

72024

72026

72041

dc_mcf_open

[CBLDCMCF(OPEN)]

DCMCFER_INVALID_ARGS

DCMCFER_PROTO

70900

70901#1

dc_mcf_close

[CBLDCMCF(CLOSE)]

-- --

Type Function name [prog_name
(request_code)] <DML>

C return value COBOL
return code

14. Simulation Functions

333

dc_mcf_sendrecv

[CBLDCMCF(SENDRECV)]

<SEND>

DCMCFER_PROTO

DCMCFRTN_71002

DCMCFRTN_71108

DCMCFRTN_72000

DCMCFRTN_72001

DCMCFRTN_72005

DCMCFRTN_72013

DCMCFRTN_72016

DCMCFRTN_72024

DCMCFRTN_72026

DCMCFRTN_72036

DCMCFRTN_72041

70901#1, #4

71002

71108

72000

72001

72005

72013

72016

72024

72026

72036

72041

dc_mcf_recvsync

[CBLDCMCF(RECVSYNC)]

<RECEIVE>

DCMCFER_PROTO

DCMCFRTN_71001

DCMCFRTN_71108

DCMCFRTN_72000

DCMCFRTN_72001

DCMCFRTN_72013

DCMCFRTN_72016

DCMCFRTN_72024

DCMCFRTN_72025

DCMCFRTN_72036

DCMCFRTN_73001

70901#1, #4

71001

71108

72000

72001

72013

72016

72024

72025

72036

73001

dc_mcf_sendsync

[CBLDCMCF(SENDSYNC)]

<SEND>/<ENABLE>/<DISABLE>

DCMCFER_PROTO

DCMCFRTN_71002

DCMCFRTN_72000

DCMCFRTN_72001

DCMCFRTN_72005

DCMCFRTN_72016

DCMCFRTN_72024

DCMCFRTN_72026

DCMCFRTN_72041

70901#1, #4

71002

72000

72001

72005

72016

72024

72026

72041

dc_mcf_tempget

[CBLDCMCF(TEMPGET)]

<RECEIVE>

DCMCFER_PROTO

DCMCFRTN_72000

DCMCFRTN_72013

DCMCFRTN_72016

DCMCFRTN_72036

DCMCFRTN_72106

70901#1, #4

72000

72013

72016

72036

72106

Type Function name [prog_name
(request_code)] <DML>

C return value COBOL
return code

14. Simulation Functions

334

dc_mcf_tempput

[CBLDCMCF(TEMPPUT)]

<SEND>

DCMCFER_PROTO

DCMCFRTN_71103

DCMCFRTN_72000

DCMCFRTN_72013

DCMCFRTN_72016

DCMCFRTN_72035

DCMCFRTN_72106

70901#1, #4

71103

72000

72013

72016

72035

72106

dc_mcf_contend

[CBLDCMCF(CONTEND)]

<DISABLE>

DCMCFER_PROTO

DCMCFRTN_72000

DCMCFRTN_72016

70901#1

72000

72016

dc_mcf_regster DCMCFER_INVALID_ARGS

DCMCFER_PROTO

--
--#1

dc_mcf_resend

[CBLDCMCF(RESEND)]

DCMCFER_PROTO

DCMCFRTN_72000

DCMCFRTN_72001

DCMCFRTN_72011

DCMCFRTN_72016

DCMCFRTN_72017

DCMCFRTN_72024

DCMCFRTN_72047

70901#1, #4

72000

72001

72011

72016

72017

72024

72047

dc_mcf_commit

[CBLDCMCF(COMMIT)]

DCMCFER_PROTO

DCMCFRTN_72000

DCMCFRTN_72016

70901#1, #4

72000

72016

Remote
procedure call
(rpc)

dc_rpc_call

[CBLDCRPC(CALL)]

DCRPCER_INVALID_ARGS

DCRPCER_PROTO

DCRPCER_MESSAGE_TOO_BIG

DCRPCER_REPLY_TOO_BIG

DCRPCER_NO_SUCH_SERVICE_G
ROUP

DCRPCER_NO_SUCH_SERVICE

DCRPCER_SERVICE_CLOSED

DCRPCER_SYSERR_AT_SERVER

DCRPCER_SYSER

00301

00302#1, #5

00308

00309

00310

00311

00312

00316

00318

dc_rpc_close

[CBLDCRPC(CLOSE)]

-- --

dc_rpc_mainloop

[CBLDCRSV(MAINLOOP)]

DCRPCER_INVALID_ARGS

DCRPCER_PROTO

DCRPCER_FATAL

00301

00302#1, #5

00303

Type Function name [prog_name
(request_code)] <DML>

C return value COBOL
return code

14. Simulation Functions

335

dc_rpc_open

[CBLDCRPC(OPEN)]

DCRPCER_INVALID_ARGS

DCRPCER_PROTO

DCRPCER_FATAL

00301

00302

00303

dc_rpc_poll_any_replies

[CBLDCRPC(POLLANYR)]

DCRPCER_INVALID_ARGS

DCRPCER_PROTO

DCRPCER_REPLY_TOO_BIG

DCRPCER_NO_SUCH_SERVICE

DCRPCER_SERVICE_CLOSED

DCRPCER_SYSERR_AT_SERVER

DCRPCER_NO_BUFS_AT_SERVER

DCRPCER_ALL_RECEIVED

00301

00302#1, #6

00309

00311

00312

00316

00318

00321

dc_rpc_discard_further_repli
es

[CBLDCRPC(DISCARDF)]

-- --

dc_rpc_get_callers_address

[CBLDCRPC(GETCLADR)]

-- --

dc_rpc_set_service_prio

[CBLDCRPC(SETSVPRI)]

-- --

dc_rpc_get_service_prio

[CBLDCRPC(GETSVPRI)]

DCRPCER_PROTO 00302#1

dc_rpc_set_watch_time

[CBLDCRPC(SETWATCH)]

DCRPCER_INVALID_ARGS

DCRPCER_PROTO

00301

00302#1

dc_rpc_get_watch_time

[CBLDCRPC(GETWATCH)]

DCRPCER_PROTO 00302#1

TAM file
service (tam)

dc_tam_close DCTAMER_PARAM_FLG

DCTAMER_PROTO

DCTAMER_NOOPEN

--
--#1

--

Type Function name [prog_name
(request_code)] <DML>

C return value COBOL
return code

14. Simulation Functions

336

dc_tam_delete

[CBLDCTAM(ERS or ERSR)]

DCTAMER_PARAM_KEY

DCTAMER_PARAM_KNO

DCTAMER_PARAM_BFA

DCTAMER_PARAM_BFS

DCTAMER_PARAM_FLG

DCTAMER_PROTO

DCTAMER_NOOPEN

DCTAMER_NOREC

DCTAMER_LOCK

DCTAMER_MEMORY

DCTAMER_IO

01702

01703

01704

01705

01708

01721#1

01726

01731

01736

01769

01770

dc_tam_get_inf

[CBLDCTAM(GST)]

DCTAMER_PARAM_TBL

DCTAMER_PARAM_FLG

DCTAMER_UNDEF

DCTAMER_PROTO

01702

01708

01710

01721#1

dc_tam_open DCTAMER_PARAM_TBL

DCTAMER_PARAM_FLG

DCTAMER_UNDEF

DCTAMER_PROTO

DCTAMER_NOLOAD

DCTAMER_OPENED

DCTAMER_LOCK

DCTAMER_OPENNUM

DCTAMER_IO

--
--
--
--#1

--
--
--
--
--

dc_tam_read

[CBLDCTAM(FxxR or FxxU)]
DCTAMER_PARAM_KEY

DCTAMER_PARAM_KNO

DCTAMER_PARAM_BFA

DCTAMER_PARAM_BFS

DCTAMER_PARAM_FLG

DCTAMER_PROTO

DCTAMER_NOOPEN

DCTAMER_IDXTYP

DCTAMER_NOREC

DCTAMER_LOCK

DCTAMER_MEMORY

DCTAMER_IO

01702

01703

01704

01705

01708

01721#1

01726

01729

01731

01736

01769

01770

Type Function name [prog_name
(request_code)] <DML>

C return value COBOL
return code

14. Simulation Functions

337

dc_tam_read_cancel DCTAMER_PARAM_KEY

DCTAMER_PARAM_KNO

DCTAMER_PARAM_FLG

DCTAMER_PROTO

DCTAMER_NOOPEN

DCTAMER_NOREC

DCTAMER_MEMORY

--
--
--
--#1

--
--
--

dc_tam_rewrite DCTAMER_PARAM_KEY

DCTAMER_PARAM_KNO

DCTAMER_PARAM_DTA

DCTAMER_PARAM_DTS

DCTAMER_PARAM_FLG

DCTAMER_PROTO

DCTAMER_NOOPEN

DCTAMER_NOREC

DCTAMER_MEMORY

DCTAMER_IO

--
--
--
--
--
--#1

--
--
--
--

dc_tam_write

[CBLDCTAM(MFY, MFYS, or STR)]
DCTAMER_PARAM_KEY

DCTAMER_PARAM_KNO

DCTAMER_PARAM_DTA

DCTAMER_PARAM_DTS

DCTAMER_PARAM_FLG

DCTAMER_PROTO

DCTAMER_NOOPEN

DCTAMER_NOREC

DCTAMER_EXKEY

DCTAMER_LOCK

DCTAMER_NOAREA

DCTAMER_MEMORY

DCTAMER_IO

01702

01703

01706

01707

01708

01721#1

01726

01731

01735

01736

01763

01769

01770

Transaction
control (trn)

dc_trn_begin

[CBLDCTRN(BEGIN)]

DCTRNER_PROTO 00905#1

dc_trn_chained_commit

[CBLDCTRN(C-COMMIT)]

DCTRNER_PROTO 00905#1

dc_trn_chained_rollback

[CBLDCTRN(C-ROLL)]

DCTRNER_PROTO 00905#1

dc_trn_info

[CBLDCTRN(INFO)]

1 00001

00908

Type Function name [prog_name
(request_code)] <DML>

C return value COBOL
return code

14. Simulation Functions

338

dc_trn_unchained_commit

[CBLDCTRN(U-COMMIT)]

DCTRNER_PROTO 00905#1

dc_trn_unchained_rollback

[CBLDCTRN(U-ROLL)]

DCTRNER_PROTO 00905#1

TX interface
(tx_~)

tx_begin

[TXBEGIN]

TX_PROTOCOL_ERROR TX_PROTOCO

L_ERROR#1

tx_close

[TXCLOSE]

-- --

tx_commit

[TXCOMMIT]

TX_PROTOCOL_ERROR TX_PROTOCO

L_ERROR#1

tx_info

[TXINFORM]

TX_PROTOCOL_ERROR TX_PROTOCO

L_ERROR#1

tx_open

[TXOPEN]

TX_ERROR TX_ERROR#1

tx_set_commit_return

[TXSETCOMMITRET]

TX_EINVAL

TX_NOT_SUPPORTED

TX_PROTOCOL_ERROR

TX_EINVAL

TX_NOT_SUP
PORTED

TX_PROTOCO

L_ERROR#1

tx_set_transaction_control

[TXSETTRANCTL]

TX_EINVAL

TX_PROTOCOL_ERROR

TX_EINVAL

TX_PROTOCO

L_ERROR#1

tx_set_transaction_timeout

[TXSETTIMEOUT]

TX_EINVAL

TX_PROTOCOL_ERROR

TX_EINVAL

TX_PROTOCO

L_ERROR#1

tx_rollback

TXROLLBACK]

TX_PROTOCOL_ERROR TX_PROTOCO

L_ERROR#1

XATMI
interface (tp~)

tpalloc TPEINVAL

TPENOENT

TPESYSTEM

TPEPROTO

--
--
--
--#1

tpfree -- --

Type Function name [prog_name
(request_code)] <DML>

C return value COBOL
return code

14. Simulation Functions

339

tprealloc TPEINVAL

TPESYSTEM

TPEPROTO

--
--
--#1

tptypes TPEINVAL

TPEPROTO

--
--#1

tpreturn -- --

tpadvertise TPEINVAL

TPEPROTO

--
--#1

tpunadvertise TPEINVAL

TPEPROTO

--
--#1

tpacall TPEINVAL

TPEPROTO

TPENOENT

TPEITYPE

TPETRAN

--
--#1, #7, #8, #9

--
--
--

tpcall TPEINVAL

TPEPROTO

TPENOENT

TPEITYPE

TPEOTYPE

TPETRAN

TPESVCFAIL

TPESVCERR

--
--#1, #7, #8, #9

--
--
--
--
--
--

tpcancel TPEBADDESC

TPETRAN

TPEPROTO

--
--
--#1, #7, #8,

tpgetrply TPEBADDESC

TPEOTYPE

TPESYSTEM

TPEPROTO

TPESVCFAIL

TPESVCERR

--
--
--
--#1, #7, #8, #9,

#10

--
--

Type Function name [prog_name
(request_code)] <DML>

C return value COBOL
return code

14. Simulation Functions

340

Legend:

--: No return value (return code)

Note
For the XATMI interface, the return value in C indicates the value to be returned
to tperrno.

#1: If no dc_rpc_open function has been issued.

#2: If the dc_adm_get_nd_status_begin, dc_adm_get_sv_status_begin, or
dc_adm_get_nodeconf_begin function has been issued.

#3: If no dc_adm_get_nd_status_begin, dc_adm_get_sv_status_begin, or
dc_adm_get_nodeconf_begin function has been issued.

#4: If issued in the main function.

#5: If the dc_mcf_mainloop or dc_rpc_mainloop function has been issued.

#6: If no asynchronous dc_rpc_call function has been issued.

#7: If issued after the tpreturn function.

#8: If issued in a service environment with different service paradigms.

tpconnect TPEINVAL

TPENOENT

TPEITYPE

TPETRAN

TPEPROTO

--
--
--
--
--#1, #7, #8, #9

tpdiscon TPEBADDESC

TPEPROTO

--
--#1, #7, #8, #11

tprecv TPEINVAL

TPEOTYPE

TPEBADDESC

TPEPROTO

--
--
--
--#1, #7, #8, #12

tpsend TPEINVAL

TPEBADDESC

TPEPROTO

--
--
--#1, #7, #8, #13

Online tester
(uto)

dc_uto_test_status

[CBLDCUTO(T-STATUS)]

DCUTOER_PROTO

DCUTOER_PARAM_FLAGS

DCUTOER_PARAM_ADDS

02701#1

02757

02758

Type Function name [prog_name
(request_code)] <DML>

C return value COBOL
return code

14. Simulation Functions

341

#9: For recursive calls in a service group.

#10: If no tpacall function has been issued.

#11: If not the connection originator.

#12: If the connection attribute is TPSENDONLY.

#13: If the connection attribute is TPRECVONLY.

14. Simulation Functions

342

14.3 List of functions not supported by the simulation feature

As shown in 14.1(1) Simulation functions, you can simulate functions provided by
OpenTP1 by using the simulation functions of the offline tester. However, functions
provided by OpenTP1 that are listed in the following tables are not supported by the
simulation functions of the offline tester. Therefore, if these functions are executed by
a UAP, only the return values listed in the following tables are returned, and trace
information is not acquired nor are function arguments changed. In addition, you
cannot set return values in the function return value file.

The following tables separately list the simulation functions not supported for C and
for COBOL.

Table 14-3: List of functions not supported by the simulation feature (for C)

Type Function name Description of the
OpenTP1-provided function

Retur
n

value

Remote procedure call
(rpc)

dc_rpc_call_to function Calls a remote service by specifying
the communication destination.

0

dc_rpc_get_error_descrip
tor function

Acquires the descriptor of the
asynchronous response RPC request
where an error occurred.

1

dc_rpc_discard_specific_
reply function

Rejects the reception of specific
processing results.

DC_OK

dc_rpc_service_retry
function

Retries a service function. DC_OK

dc_rpc_get_gateway_addre
ss function

Acquires the gateway node address. DC_OK

dc_rpc_cltsend function One-way communication to the CUP DC_OK

Remote API facility
(rap)

dc_rap_connect function Establishes a connection with a
RAP-processing listener.

DC_OK

dc_rap_disconnect function Releases the connection with a
RAP-processing listener.

DC_OK

Performance verification
trace (prf)

dc_prf_utrace_put function Acquires the user-specific
performance verification trace
information.

DC_OK

dc_prf_get_trace_num
function

Reports the sequential number of the
acquired performance verification
trace information.

DC_OK

14. Simulation Functions

343

Table 14-4: List of functions not supported by the simulation feature (for
COBOL)

Message transmission
(mcf)

dc_mcf_ap_info function Reports application information. DCMCFR
TN_000
00

dc_mcf_ap_info_uoc
function

Reports application information to a
user exit routine.

DCMCFR
TN_000
00

dc_mcf_timer_set function Sets user timer monitoring. DC_OK

dc_mcf_timer_cancel
function

Cancels user timer monitoring. DC_OK

DAM file service (dam) dc_dam_bseek function Searches for a physical file block. Returns
the
relative
block
number
specifie
d in the
argume
nt of
the
functio
n.

dc_dam_dget function Directly reads a block from a
physical file.

504

dc_dam_dput function Directly writes data to a block in a
physical file.

504

Type Program name (request
code)

Description of the
OpenTP1-provided function

Status
code

Remote procedure call
(rpc)

CBLDCRPC ('GETERDES') Acquires the descriptor of the
asynchronous response RPC request
where an error occurred.

00000

CBLDCRPC ('DISCARDS') Rejects the reception of specific
processing requests.

00000

CBLDCRPC ('SVRETRY') Retries a service program. 00000

CBLDCRPC ('GETGWADR') Acquires the gateway node address. 00000

Type Function name Description of the
OpenTP1-provided function

Retur
n

value

14. Simulation Functions

344

Remote API facility
(rap)

CBLDCRAP ('CONNECT') Establishes a connection with a
RAP-processing listener.

00000

CBLDCRAP ('DISCNCT') Releases the connection with a
RAP-processing listener.

00000

Edition of journal data
(jnl)

CBLDCJUP ('CLOSERPT') Closes the jnlrput output file. 00000

CBLDCJUP ('OPENRPT') Opens the jnlrput output file. 00000

CBLDCJUP ('RDGETRPT') Enters journal data from the
jnlrput output file.

00000

Performance verification
trace (prf)

CBLDCPRF ('PRFPUT') Acquires the user-specific
performance verification trace
information.

00000

CBLDCPRF ('PRFGETN') Reports the sequential number of the
acquired performance verification
trace information.

00000

Transmission of
messages (mcf)

CBLDCMCF ('APINFO') Reports application information. 00000

DAM file service (dam) CBLDCDMB ('BSEK') Searches for a physical file block. 00000

CBLDCDMB ('DGET') Directly reads a block from a
physical file.

00000

CBLDCDMB ('DPUT') Directly writes data to a block in a
physical file.

00000

Type Program name (request
code)

Description of the
OpenTP1-provided function

Status
code

14. Simulation Functions

345

#: TPOK is set in the data area (TP-STATUS) where a return value indicating the result
of execution is set.

XATMI interface (tp~) TPCALL Calls a request or response service
and receives the reply.

TPOK#

TPACALL Calls a request or response service. TPOK#

TPGETRPLY Receives an asynchronous reply
from a request or response service.

TPOK#

TPCANCEL Cancels a request or response
service.

TPOK#

TPCONNECT Establishes a connection with an
interactive service.

TPOK#

TPDISCON Disconnects an interactive service. TPOK#

TPRECV Receives a message from an
interactive service.

TPOK#

TPSEND Sends a message to an interactive
service.

TPOK#

TPADVERTISE Advertises a service name. TPOK#

TPUNADVERTISE Cancels the advertisement of a
service name.

TPOK#

TPSVCSTART Starts a service routine. TPOK#

TPRETURN Returns control from a service
routine.

There is
no
status
code.

Type Program name (request
code)

Description of the
OpenTP1-provided function

Status
code

347

PART 5: UAP Traces

Chapter

15. How to Use UAP Traces

This chapter describes how to use UAP traces.

This chapter contains the following sections:

15.1 Collecting UAP traces
15.2 Editing and outputting UAP traces

15. How to Use UAP Traces

348

15.1 Collecting UAP traces

The UAP trace facility collects information on the OpenTP1 functions called from a
UAP. OpenTP1 collects UAP traces in UAP trace data files and in process-specific
areas.

If a UAP terminates abnormally, the user can edit and output a log file of the library
functions called from the UAP and analyze why the UAP terminated abnormally.

The UAP trace facility can be used for the following UAP events:

• Abnormal termination of a UAP

• Forcible termination of a UAP by the dcstop -df command

• Forcible termination of a UAP by the dcsvstop -df command

• Forcible termination of a UAP by the prckill command

15.1.1 UAP trace collection units
UAP traces are collected separately for each UAP process. The UAP traces are edited
and output based on either the UAP trace data file or the core file collected for each
UAP process.

UAP traces are collected for SUPs, SPPs, and MHPs.

15.1.2 Trace area definition
The size of the area used by the UAP trace facility is specified using the
uap_trace_max operand in the user service definition.

See the manual OpenTP1 System Definition for details on the user service definition.

15.1.3 Information to collect
A UAP trace contains various information specified for arguments when the UAP calls
OpenTP1 library functions. Of this information, the exit information from functions
maintains information when a function returned. The entry information to functions
maintains information when a function call from the UAP caused an entry into the
OpenTP1 function.

When the online tester (TP1/Online Tester) is used, UAP trace data contains entry
information and exit information for all executed functions.

When collecting of the complete I/O data is specified with the online tester (TP1/
Online Tester) used, I/O data is also collected.

15. How to Use UAP Traces

349

15.2 Editing and outputting UAP traces

The following explains how to edit and output UAP traces.

15.2.1 UAP trace output units
UAP traces are edited and output by process unit. When two or more processes are
involved in a transaction, traces are output only information of transaction branch that
executed at the UAP that terminated abnormally.

The example in Figure 15-1 shows communication among UAPs and the UAP traces
collected.

Figure 15-1: Inter-UAP communication and collected UAP traces

15. How to Use UAP Traces

350

15.2.2 UAP trace output methods
There are the following two methods of editing and outputting UAP traces.

(1) Edit and output the trace to a file automatically
The file that stores abnormal termination information that OpenTP1 collects for each
UAP process is called a core file. If UAP abnormally terminates and there is a core file,
the UAP trace is automatically edited and output to a file called the UAP trace output
file.

Table 15-1 shows the directories and file names of the core file and UAP trace output
file.

Table 15-1: Directories and file names of core file and UAP trace output file

#: n: Sequence number of the core file (1 to 3)

Note that a sequence number is not assigned to the core file output if OpenTP1 is
forcibly terminated (when the dcsvstop -df command is executed or the real
monitoring time expires).

Figure 15-2 shows an overview of automatically editing and outputting a UAP trace to
a file.

Name Directory File name

Core file $DCDIR/spool/save/ server-name-n#

UAP trace output file $DCDIR/spool/save/ server-name-n.uat#

15. How to Use UAP Traces

351

Figure 15-2: Overview of automatic edit and output of UAP trace

(2) Edit and output the trace to the standard output by a command
When the uatdump command is entered, the UAP trace is edited and output to the
standard output. For details on how to use the uatdump command, see Subsection

15. How to Use UAP Traces

352

15.2.3 uatdump (edited output of UAP trace).
Figure 15-3 shows an overview of editing and outputting the UAP trace to the standard
output by a command.

Figure 15-3: Overview of editing and outputting UAP trace to standard output
by a command

15.2.3 uatdump (edited output of UAP trace)
(1) Syntax

(2) Function
Edits a specified UAP trace data file or core file, and outputs the contents to standard
output.

On a node that uses the online tester (TP1/Online Tester), this command edits and
outputs exit information and entry information for all executed functions. Since the

uatdump {[core-file-name] | -f [UAP-trace-data-file]}

15. How to Use UAP Traces

353

command does not output tester information, however, some data may be missing just
after the tester information.

(3) Options
-f UAP-trace-data-file ~<pathname>

Specify the pathname of the UAP trace data file to which UAP traces are edited
and output.

If specification of this argument is omitted, ducat.map in the current command
execution directory is assumed for the UAP trace data file name.

(4) Command argument
core-file-name ~<pathname>

Specify the pathname of the core file for the UAP process that terminated
abnormally.

If specification of this argument is omitted, core in the current command
execution directory is assumed for the core file name.

(5) Output messages

(6) Output format
See 15.2.4 UAP trace output format for the output format of the uatdump command.

(7) Notes
Always specify the -f option when a UAP trace data file is being edited and output if
Y is specified for the uap_trace_file_put operand. If you do not specify the -f
option, the command ends in an error because the UAP traces cannot be edited.

The uap_trace_file_put operand is specified in one of the following definitions:

• System common definition

• User service default definition

Message ID message text Output file

KFCA03100-E Insufficient memory. Standard error output

KFCA03101-E Invalid option flag. Standard error output

KFCA03102-E Specified file does not exist. Standard error output

KFCA03103-E No trace data in the specified file. Standard error output

KFCA03104-W Incorrect type code in the trace data. Standard error output

KFCA03105-I Help message Standard output

15. How to Use UAP Traces

354

• User service definition

15.2.4 UAP trace output format
The following shows the format of the UAP trace automatically edited and output to a
file and the format of the UAP trace edited and output to the standard output by using
the uatdump command.

(1) Output format

Legend:

1. UAP trace header

2. UAP trace data

When the online tester is used, entrance information and exit information are
output alternately. ENTRANCE and EXIT are displayed, accordingly.

3. Output area for the call information on the OpenTP1 function.

The information that is output to the output area depends on the function that
is issued.

Explanation:

SERVICE GROUP NAME

15. How to Use UAP Traces

355

Service group name of the active service.

Asterisks (****) are displayed for a SUP or MHP.

PROCESS ID

Process ID of the process for which the UAP trace was collected

SIZE

Size of the UAP trace information area (decimal display; bytes)

FUNCTION

Called OpenTP1 function

COLLECTION DATE AND TIME

Date and time of collection (last 2 digits of year/month/day
hour:minute:second)

COLLECTION NO.

Sequential number set when the UAP trace data was collected (up to 6 digits)

SERVICE NAME

Active service name (up to 32 characters).

Asterisks (****) are displayed for a SUP or MHP.

RETURN CODE

Execution result of the OpenTP1 function

15. How to Use UAP Traces

356

(2) Output example

15. How to Use UAP Traces

357

15. How to Use UAP Traces

358

359

Index

A
abbreviations for products iv
acronyms ix
application program startup requests, simulating 25
application startup messages, invalidating 161
application test

starting 184
terminating 187

application, testing 166
asynchronous receive message file 71

C
call 302
client UAP

simulating 13, 197
simulating, with RPC interface 13, 102, 197
simulating, with TxRPC interface 198
simulating, with XATMI interface 14, 102,
198

client UAP simulator 13, 102, 197
cmdauto 303
comment statement 85, 260
complete I/O data trace, collecting 34
continuous commands, executing 209, 281, 303
continuous execution command file 236

creating 236
directory definition for 226

continuous execution commands, setting 236
continuous inquiry responses, simulating 23
conventions

abbreviations for products iv
acronyms ix
diagrams x
fonts and symbols xi
KB, MB, GB, and TB xiii
permitted characters xiii
version numbers xiv

conversational service paradigm 15

core file 9, 350

D
DAM and TAM files, notes on 288
DAM file 255
DAM service simulator 203
DAM service, simulating 203
DCUTOKEY 59
debugger

activating UAP interlocked with 113
interlocking 40
specifying connection 282
terminating UAP interlocked with 112

debugger connection 210
definition

offline tester environment 214
system service configuration 44
tester service 44
user service 48, 231

diagram conventions x
dummy SPP 49

E
end 304
end statement 86, 261
entry information 348
environment variables, setting 59

DCUTOKEY 59
test user ID 59

environment-var-name 231
error conditions and causes 154
error events, suppressing 161
error recovery 153

handling online tester errors 154
event type, setting 233
exit information 348

Index

360

F
facilities [offline tester]

client UAP simulator 197
collecting offline tester trace information 211
continuous command execution 209
creating tester files 208
DAM service simulator 203
debugger connection 210
MCF simulator 202
operating command simulator 207
server UAP simulator 199
TAM service simulator 204

facilities [online tester] 12, 31
client UAP simulator 13
collecting complete I/O data trace 34
collecting UAP trace information 34
creating tester file 31
debugger interlocking 40
disabling resource updating 28
editing send messages 39
MCF simulator 22
operating command simulator 29
server UAP simulator 18
tester file edit and output 33

file automatically, editing and outputting trace to 350
file errors 156
file service, simulating

DAM service simulator 203
TAM service simulator 204

files created by offline tester
list of 270
temporary memory data file 270
trace file 270
XATMI send data file 270

files created by online tester
MCF send message file 96
service response data file 95
temporary memory data file 96
trace file 96
XATMI send data file 96

files created by online tester, list of 95
files created by user 239
font conventions xi
function return values

event type, setting 233
output data, setting 234
return value, setting 233
setting 232

function return values file 232
creating 232
definition of 229

functions not supported by simulation feature 342

G
GB meaning xiii

I
information to collect 348

entry information 348
exit information 348

input data definition statement 87, 261
interface definition language file 238
internode shared table definitions 228

K
KB meaning xiii

L
logical terminal information, specifying 47
logical terminal test

starting 178
terminating 180

logical terminal, testing 166

M
max_message_file_size 46
max_trace_file_size 45
MB meaning xiii
MCF

editing send messages 39
simulating 22, 202
simulating application program startup
requests 25
simulating continuous inquiry responses 23
simulating message send/receive 22
simulating synchronous point processing 27
simulation functions 22

Index

361

MCF online tester 6
collecting test information 164
collecting UAP trace information 164, 170
displaying test mode information 170
editing test information 170
inheriting test mode information 169
merging and outputting UAP trace
information 170
MHP testing 160
starting and ending test 166
starting test 166
test environment 166
test mode 166
test mode information 166
test mode messages 167
test mode range 167

MCF online tester status, displaying 174
MCF online tester use declaration 174
MCF receive message file, directory definition
for 225
MCF receive message files 71, 250

asynchronous receive message file 71
synchronous receive message file 76

MCF send message file 96
MCF simulation functions, UAP traces for 109
MCF simulator 22, 202
mcfauape 187
mcfauaps 184
mcfaulsap 181
mcflsutf 174
mcftulee 180
mcftules 178
mcftulsle 176
mcftulssg 189
mcftusge 193
mcftusgs 191
mcfutfst 174
message send/receive, simulating 22
MHP automatic shutdown, suppressing 162
MHP testing 160

disabling non-MCF resources update 160
invalidating application startup messages 161
invalidating send messages 160
suppressing error events 161

suppressing MHP automatic shutdown 162
MHP, service requests to 103, 130

N
non-MCF resources, disabling update of 160
non-test UAP 49
notes on

DAM and TAM files 288
offline tester 284
running tests 284
UAP 289

O
offline test

ending 277
starting 277

offline tester 2, 6
creating stubs 238
creating tester files 280
creating UAP 272
creating UAP execution format programs 272
executing continuous commands 281
facilities of 196
files created by 270
files created by user 239
inputting tester file name to 305, 308
list of simulation functions and
processing 310
notes on 284
requesting service 279
setting continuous execution commands 236
setting function return values 232
specifying debugger connection 282
starting 293
system definitions for 214
terminating 304
test data definition file 259
test data definition file, creating 259
TP1/Offline Tester 2, 6
user service definition 231

offline tester DAM file, creating 292
offline tester environment definition 214

continuous execution command file, directory
definition for 226

Index

362

DAM file definitions 227
function return values file, definition of 229
internode shared table definitions 228
MCF receive message file, directory definition
for 225
operating command result data file, directory
definition for 225
protocol definition 230
RPC request data file, directory definition
for 221
RPC response data file, directory definition
for 223
TAM file definitions 227
trace file definition 229
TxRPC request data file, directory definition
for 222
TxRPC response data file, directory definition
for 224
UAP definition 219
XATMI request data file, directory definition
for 222
XATMI response data file, directory definition
for 223
XATMI send/receive data file, directory
definition for 224

offline tester TAM files, creating 295
offline tester trace information

collecting 211
editing 283

online tester 2, 3
creating tester file 31
facilities of 12
files created by 95
service response data file 95
system definitions for 44
TP1/Message Control 2, 6
TP1/Message Control/Tester 2, 6
TP1/Online Tester 3
TP1/online tester 2
TP1/Server Base 2, 3
trace file 96

online tester errors
conditions and causes of 154
handling 154, 155

handling UAP errors 156
occur in file 156

OpenTP1 functions, simulating 206
simulation functions 206

operating command output data, creating tester files
using 105
operating command result data file 81, 257

directory definition for 225
operating command simulator 29, 207
operating commands 111, 173, 291

activating UAP interlocked with
debugger 113
creating offline tester DAM file 292
creating offline tester TAM file 295
creating tester file 115, 293
displaying MCF online tester status 174
displaying test mode information for
application 181
displaying test mode information for logical
terminal 176
displaying test mode information for service
group 189
displaying test status 129
editing and outputting send messages 131
editing and outputting test file content 116
editing and outputting UAP trace
information 138
for running tests 112, 174, 292
for testing application 181
for testing logical terminal 176
for testing service group 189
MCF online tester use declaration 174
merging UAP trace information 137
requesting service to MHP 130
requesting service to RPC interface SPP 136
requesting service to XATMI interface
SPP 150
retrieving offline tester trace information 296
simulating 29, 207
starting application test 184
starting logical terminal test 178
starting offline tester 293
starting service group test 191
terminating application test 187

Index

363

terminating logical terminal test 180
terminating service group test 193
terminating UAP interlocked with
debugger 112

operating commands for running tests 112, 292
mcflsutf 174
mcfutfst 174
utfdamcre 292
utffilcre 293
utfstart 293
utftamcre 295
utftrcpic 296
utodbgstop 112
utodebug 113
utofilcre 115
utofilout 116
utols 129
utomhpsvc 130
utomsgout 131
utosppsvc 136
utotrcmrg 137
utotrcout 138
utoxsppsvc 150

operating commands for testing application 181
mcfauape 187
mcfauaps 184
mcfaulsap 181

operating commands for testing logical terminal 176
mcftulee 180
mcftules 178
mcftulsle 176

operating commands for testing service group 189
mcftulssg 189
mcftusge 193
mcftusgs 191

output data, setting 234

P
permitted character conventions xiii
protocol definition 230
ps 304

R
read 305

recv statement 57
request/response service paradigm 14
resource updating, disabling 28
return values

for simulation functions 326
setting 233

RPC interface
creating UAP execution format program
with 272
simulating client UAP with 13, 102, 197
simulating server UAP with 18, 102, 200

RPC interface definition file 238
RPC interface SPP, service requests to 136
RPC request data file 62, 240

directory definition for 221
RPC response data file 65, 95, 244

directory definition for 223
rpc_trace 47
rpc_trace_name 47
rpc_trace_size 47

S
send messages

editing 39
editing and outputting 109
invalidating 160

send statement 56
send/receive control file 56
send/receive procedures, setting 56

recv statement 56
send statement 56
send/receive control file 56

sep statement 86, 261
server UAP

simulating 18, 199
simulating, with RPC Interface 200
simulating, with RPC interface 18, 102
simulating, with TxRPC Interface 200
simulating, with XATMI Interface 200
simulating, with XATMI interface 19, 102

server UAP simulator 18, 102, 199
server_type 231
service 231
service group

Index

364

activating 306
displaying test mode information for 189
terminating 307

service group test
starting 191
terminating 193

service group, testing 166
service request data files 62, 240

RPC request data file 62, 240
TxRPC request data file 243
XATMI request data file 63, 241

service requests 279, 302
to MHP 103
to SPP 102

service response data file 65, 244
RPC response data file 65, 95, 244
TxRPC response data file 247
XATMI response data file 66, 95, 245

setting
environment variables 59
send/receive procedures 56
test environment 166
typed buffer information 54

simulation feature, functions not supported by 342
simulation functions 206, 309

list of 310
list of return values for 326

SPP, service requests to 102
standard output by command, editing and outputting
trace to 351

uatdump 352
start 306
start statement 85, 260
stop 307
stubs, creating 238
subcommands for running tests 302

activating service group 306
call 302
cmdauto 303
displaying test status 304
end 304
executing continuous commands 303
inputting tester file name to offline tester 305,
308

ps 304
read 305
requesting service 302
start 306
stop 307
terminating offline tester 304
terminating service group 307
write 308

symbol conventions xi
synchronous point processing, simulating 27
synchronous receive message file 76
system definitions

for offline tester 214
for online tester 44

system service configuration definition 44
uto_conf 44

T
TAM file 256
TAM file definitions 227
TAM service simulator 204
TAM service, simulating 204
TB meaning xiii
temporary memory data file 96, 270
test

duplicate test mode specifications 168
ending 167
notes on running 284
operating commands for running 174
running 99, 165, 271
setting environment of 166
starting 166
starting and ending 166
subcommands for running 302
testing application 166
testing logical terminal 166
testing service group 166

test data definition file 84, 259
comment statement 85, 260
creating 84, 259
end statement 86, 261
input data definition statement 87, 261
sep statement 86, 261
start statement 85, 260

Index

365

using, to create tester files 104
test directory 84
test environment 166

creating files 239
setting 43, 166, 213

test information
checking UAP response data 110
checking UAP send data 110
collecting 34, 164, 211
collecting UAP trace information 107
displaying test status 107
editing 107, 170
editing and outputting send messages 109
merging and outputting UAP trace
information 108

test mode 48, 166
dummy SPP 49
non-test UAP 49
simulate MHP 49
test-only UAP 49
usable UAP 49

test mode information 166
displaying 170
displaying, for application 181
displaying, for logical terminal 176
inheriting 169

test mode messages 167
test mode range 167
test mode specifications, duplicate 168
test status, displaying 107, 304
test user ID 59
test-only UAP 49
test_adm_call_command 51
test_data_trace 52
test_debugger 52
test_mode 48
test_transaction_commit 51
test_xatmi_send_file 52
tester file 31

creating 31
creating and outputting 31
editing 33
outputting 33

tester file creation facility 208

tester file edit and output facility 33
tester files 208

creating 104, 105, 208, 280
tester files, creating

test data definition file 84
tester service definition 44

command format 47
max_message_file_size 46
max_trace_file_size 45
rpc_trace 47
rpc_trace_name 47
rpc_trace_size 47
specifying logical terminal information 47
uto_server_count 45
watch_time 46

tester, overview of 3
TP1/Message Control 6
TP1/Message Control online tester, using 2
TP1/Message Control/Tester 2, 6
TP1/Offline Tester 2, 6
TP1/Online Tester 2, 3
TP1/Server Base 4
TP1/server base online tester, using 2
trace area definition 348
trace file 270
trace file definition 229
trace information

collecting offline tester 211
editing offline tester 283
retrieving offline tester 296

TxRPC interface
creating UAP execution format program
with 274
simulating client UAP with 198
simulating server UAP with 200

TxRPC request data file 243
directory definition for 222

TxRPC response data file 247
directory definition for 224

typed buffer definition file 54
typed buffer, setting 54

typed buffer definition file 54

Index

366

U
UAP

activating 278
creating 100, 272
notes on 289
terminating 278

UAP definition 219
UAP errors 156
UAP execution format program

creating 272
creating, with RPC or XATMI interface 272
creating, with TxRPC interface 274

UAP response data, checking 110
UAP send data, checking 110
UAP trace collection units 348
UAP trace data file 9
UAP trace information

collected for MCF simulation functions 109
collecting 34, 107, 164, 170
editing 35
editing and outputting 138
merging 35, 137
merging and outputting 108, 170
outputting 35

UAP trace output file 350
UAP trace output format 354
UAP trace output methods 350

editing and outputting trace to file
automatically 350
editing and outputting trace to standard output
by command 351

UAP traces 9
collecting 348
editing 349
editing and outputting 352
information to collect 348
output format of 354
outputting 349
overview of 9
UAP trace output methods 350
UAP trace output units 349
using 347

uap_trace_file_put 353
uatdump 352

usable UAP 49
user service definition 48, 231

environment-var-name 231
server_type 231
test_adm_call_command 51
test_data_trace 52
test_debugger 52
test_mode 48
test_transaction_commit 51
test_xatmi_send_file 52
trace area 348

user-created files 60, 239
DAM file 255
list of 239
MCF receive message files 71, 250
operating command result data file 81, 257
service request data files 62, 240
service response data files 65, 244
TAM file 256
XATMI receive data file 68, 248

utfdamcre 292
utffilcre 293
utfstart 293
utftamcre 295
utftrcpic 296
uto_conf 44
uto_server_count 45
utodbgstop 112
utodebug 113
utofilcre 115
utofilout 116
utols 129
utomhpsvc 130
utomsgout 131
utosppsvc 136
utoterm 47
utotrcmrg 137
utotrcout 138
utoxsppsvc 150

V
version number conventions xiv

Index

367

W
watch_time 46
write 308

X
XATMI interface

conversational service paradigm 15, 20
creating UAP execution format program
with 272
request/response service paradigm 14, 19
simulating client UAP with 14, 102, 198
simulating server UAP with 19, 102, 200

XATMI interface definition file 238
XATMI interface SPP, service requests to 150
XATMI receive data file 68, 248
XATMI request data file 63, 241

directory definition for 222
XATMI response data file 66, 95, 245

directory definition for 223
XATMI send data file 96, 270
XATMI send/receive data file, directory definition
for 224

Reader’s Comment Form

We would appreciate your comments and suggestions on this manual. We will use
these comments to improve our manuals. When you send a comment or suggestion,
please include the manual name and manual number. You can send your comments
by any of the following methods:

• Send email to your local Hitachi representative.
• Send email to the following address:

 WWW-mk@itg.hitachi.co.jp
• If you do not have access to email, please fill out the following information

and submit this form to your Hitachi representative:

Manual name:

Manual number:

Your name:

Company or
organization:

Street address:

Comment:

(For Hitachi use)

