HITACHI

Inspire the Next

OpenTP1 Version 7

Tester and UAP Trace User's Guide

3000-3-D57-20(E)

B Relevant program products

Note: In the program products listed below, those marked with an asterisk (*) might be released later than the other program
products.

For AIX 5L V5.1, AIX 5L V5.2, AIX 5L V5.3, and AIX V6.1
P-1M64-2131 uCosminexus TPL/Server Base 07-03*
P-1M64-2331 uCosminexus TPL/FS/Direct Access 07-03*
P-1M64-2431 uCosminexus TPL/FS/Table Access 07-03*
P-1M64-2531 uCosminexus TPL/Client/W 07-02

P-1M64-2631 uCosminexus TPL/Offline Tester 07-00
P-1M64-2731 uCosminexus TPL/Online Tester 07-00
P-1M64-2831 uCosminexus TPL/Multi 07-00

P-1M64-2931 uCosminexus TPL/High Availability 07-00
P-1M64-3131 uCosminexus TPL/Message Control 07-03
P-1M64-3231 uCosminexus TPUNET/Library 07-04
P-1M64-8131 uCosminexus TPL1/Shared Table Access 07-00
P-1M64-8331 uCosminexus TPL/Resource Manager Monitor 07-00
P-1M64-8531 uCosminexus TPL/Extension 1 07-00
P-1M64-C371 uCosminexus TP1/Message Queue 07-01
P-1M64-C771 uCosminexus TP1/Message Queue - Access 07-01
P-F1IM64-31311 uCosminexus TP1/Message Control/Tester 07-00
P-F1IM64-32311 uCosminexus TPL/NET/User Agent 07-00
P-F1IM64-32312 uCosminexus TPL/NET/HDLC 07-00
P-F1IM64-32313 uCosminexus TP1/NET/X25 07-00
P-F1IM64-32314 uCosminexus TPL/NET/OSI-TP 07-00
P-F1IM64-32315 uCosminexus TPL/NET/XMAP3 07-01
P-F1IM64-32316 uCosminexus TPI/NET/HSC 07-00
P-F1IM64-32317 uCosminexus TP1/NET/NCSB 07-00
P-F1IM64-32318 uCosminexus TPL/NET/OSAS-NIF 07-01
P-F1IM64-3231B uCosminexus TPL/NET/Secondary Logica Unit - TypeP2 07-00
P-F1IM64-3231C uCosminexus TPL/NET/TCP/IP 07-02
P-F1IM64-3231D uCosminexus TPL/NET/High Availability 07-00
P-F1IM64-3231U uCosminexus TPL/NET/User Datagram Protocol 07-00
R-1M45F-31 uCosminexus TP1/Web 07-00

For AIX 5L V5.3and AIX V6.1

P-1M64-1111 uCosminexus TP1/Server Base(64) 07-03*
P-1M64-1311 uCosminexus TPL/FS/Direct Access(64) 07-03*
P-1M64-1411 uCosminexus TPL/FS/Table Access(64) 07-03*
P-1M64-1911 uCosminexus TPL/High Availability(64) 07-00
P-1M64-1L11 uCosminexus TP1/Extension 1(64) 07-00

For HP-UX 11i V1 (PA-RISC) and HP-UX 11i V2 (PA-RISC)
P-1B64-3F31 uCosminexus TP1/NET/High Availability 07-00
P-1B64-8531 uCosminexus TP1/Extension 1 07-00

P-1B64-8931 uCosminexus TP1/High Availability 07-00
R-18451-41K uCosminexus TP1/Client/W 07-00

R-18452-41K uCosminexus TP1/Server Base 07-00

R-18453-41K uCosminexus TP1/FS/Direct Access 07-00
R-18454-41K uCosminexus TPL/FS/Table Access 07-00
R-18455-41K uCosminexus TP1/Message Control 07-03*
R-18456-41K uCosminexus TPLNET/Library 07-04*
R-18459-41K uCosminexus TPL/Offline Tester 07-00
R-1845A-41K uCosminexus TP1/Online Tester 07-00
R-1845C-41K uCosminexus TPL/Shared Table Access 07-00
R-1845D-41K uCosminexus TP1/Resource Manager Monitor 07-00
R-1845E-41K uCosminexus TP1/Multi 07-00

R-1845F-41K uCosminexus TP1/Web 07-00

R-F18455-411K uCosminexus TP1/Message Control/Tester 07-00
R-F18456-411K uCosminexus TPL/NET/User Agent 07-00
R-F18456-415K uCosminexus TPLY/NET/XMAP3 07-01*
R-F18456-41CK uCosminexus TPUNET/TCP/IP 07-02*

For HP-UX 11i V2 (IPF) and HP-UX 11i V3 (IPF)

P-1J64-3F21 uCosminexus TPY/NET/High Availability 07-00
P-1J64-4F11 uCosminexus TPL/NET/High Availability(64) 07-00
P-1J64-8521 uCosminexus TP1/Extension 1 07-00

P-1J64-8611 uCosminexus TP1/Extension 1(64) 07-00
P-1J64-8921 uCosminexus TPL/High Availability 07-00
P-1J64-8A11 uCosminexus TP1/High Availability(64) 07-00
P-1J64-C371 uCosminexus TP1/Message Queue 07-01
P-1J64-C571 uCosminexus TP1/Message Queue(64) 07-01
P-1J64-C871 uCosminexus TP1/Message Queue - Access(64) 07-00
R-18451-21J uCosminexus TP1/Client/W 07-02

R-18452-21J uCosminexus TP1/Server Base 07-03*
R-18453-21J uCosminexus TPL/FS/Direct Access 07-03*
R-18454-21J uCosminexus TPL/FS/Table Access 07-03*
R-18455-21J uCosminexus TP1/Message Control 07-03*
R-18456-21J uCosminexus TPL/NET/Library 07-04*
R-18459-21J uCosminexus TPL/Offline Tester 07-00
R-1845A-21J uCosminexus TP1/Online Tester 07-00
R-1845C-21J uCosminexus TP1/Shared Table Access 07-00
R-1845D-21J uCosminexus TP1/Resource Manager Monitor 07-00
R-1845E-21J uCosminexus TP1/Multi 07-00

R-1845F-21J uCosminexus TP1/Web 07-00

R-1B451-11J uCosminexus TP1/Client/W(64) 07-02
R-1B452-11J uCosminexus TP1/Server Base(64) 07-03*
R-1B453-11J uCosminexus TPL/FS/Direct Access(64) 07-03*
R-1B454-11J uCosminexus TP1/FS/Table Access(64) 07-03*
R-1B455-11J uCosminexus TP1/Message Control(64) 07-03*
R-1B456-11J uCosminexus TPL/NET/Library(64) 07-04*
R-F18455-211J uCosminexus TP1/Message Control/Tester 07-00
R-F18456-215J uCosminexus TPL/NET/XMAP3 07-01*

R-F18456-21CJ uCosminexus TPLYNET/TCP/IP 07-02*
R-F1B456-11CJ uCosminexus TPLY/NET/TCP/IP(64) 07-02*
For Solaris 8, Solaris 9, and Solaris 10

P-9D64-3F31 uCosminexus TPL/NET/High Availability 07-00
P-9D64-8531 uCosminexus TP1/Extension 1 07-00
P-9D64-8931 uCosminexus TP1/High Availability 07-00
R-19451-216 uCosminexus TPL/Client/W 07-00

R-19452-216 uCosminexus TP1/Server Base 07-00
R-19453-216 uCosminexus TP1/FS/Direct Access 07-00
R-19454-216 uCosminexus TP1/FS/Table Access 07-00
R-19455-216 uCosminexus TP1/Message Control 07-03*
R-19456-216 uCosminexus TPL/NET/Library 07-04*
R-19459-216 uCosminexus TPL/Offline Tester 07-00
R-1945A-216 uCosminexus TP1/Online Tester 07-00
R-1945C-216 uCosminexus TP1/Shared Table Access 07-00
R-1945D-216 uCosminexus TP1/Resource Manager Monitor 07-00
R-1945E-216 uCosminexus TPL/Multi 07-00

R-F19456-2156 uCosminexus TPU/NET/XMAP3 07-01*
R-F19456-21C6 uCosminexus TPYNET/TCP/IP 07-02*

For Red Hat Enterprise Linux AS4 (AMD64 & Intel EM64T), Red Hat Enterprise Linux AS 4 (x86), Red Hat Enterprise Linux ES
4 (AMDG64 & Intel EM64T), and Red Hat Enterprise Linux ES 4 (x86)

P-9S64-2161 uCosminexus TPL/Server Base 07-00

P-9S64-2351 uCosminexus TPL/FS/Direct Access 07-00

P-9S64-2451 uCosminexus TPL/FS/Table Access 07-00

P-9S64-2551 uCosminexus TPL/Client/W 07-00

P-9S64-3151 uCosminexus TP1/Message Control 07-00

P-9S64-3251 uCosminexus TPY/NET/Library 07-00

P-9S64-C371 uCosminexus TP1/Message Queue 07-01
P-F9S64-3251C uCosminexus TPL/NET/TCP/IP 07-00
P-F9S64-3251U uCosminexus TPL/NET/User Datagram Protocol 07-00
R-1845F-A15 uCosminexus TPL/Web 07-00

For Red Hat Enterprise Linux AS4 (AMD64 & Intel EM64T), Red Hat Enterprise Linux AS 4 (x86), Red Hat Enterprise Linux ES
4 (AMD64 & Intel EM64T), Red Hat Enterprise Linux ES 4 (x86), Red Hat Enterprise Linux 5 (AMD/Intel 64), Red Hat Enterprise
Linux 5 (x86), Red Hat Enterprise Linux 5 Advanced Platform (AMD/Intel 64), and Red Hat Enterprise Linux 5 Advanced Platform
(x86)

P-9S64-2951 uCosminexus TP1/High Availability 07-00
P-9S64-8551 uCosminexus TP1/Extension 1 07-00

P-9S64-C771 uCosminexus TP1/Message Queue - Access 07-01
P-F9S64-3251D uCosminexus TPY/NET/High Availability 07-00

For Red Hat Enterprise Linux 5 (AMD/Intel 64), Red Hat Enterprise Linux 5 (x86), Red Hat Enterprise Linux 5 Advanced Platform
(AMD/Intel 64), and Red Hat Enterprise Linux 5 Advanced Platform (x86)

P-9S64-2171 uCosminexus TP1/Server Base 07-03
P-9S64-2361 uCosminexus TP1/FS/Direct Access 07-03
P-9S64-2461 uCosminexus TP1/FS/Table Access 07-03
P-9S64-2561 uCosminexus TPL/Client/W 07-02
P-9S64-3161 uCosminexus TP1L/Message Control 07-03*

P-9S64-3261 uCosminexus TPLYNET/Library 07-04*

P-9S64-C571 uCosminexus TP1/Message Queue 07-01

P-F9S64-32611 uCosminexus TPY/NET/User Agent 07-00
P-F9S64-3261C uCosminexus TPLNET/TCP/IP 07-02

P-F9S64-3261U uCosminexus TPL/NET/User Datagram Protocol 07-00
For Red Hat Enterprise Linux 5 (AMD/Intel 64) and Red Hat Enterprise Linux 5 Advanced Platform (AMD/Intel 64)
P-9W64-2111 uCosminexus TPL1/Server Base(64) 07-03

P-9W64-2311 uCosminexus TP1/FS/Direct Access(64) 07-03
P-9W64-2411 uCosminexus TP1/FS/Table Access(64) 07-03
P-9W64-2911 uCosminexus TP1/High Availability(64) 07-02
P-9W64-8511 uCosminexus TP1/Extension 1(64) 07-02

For Red Hat Enterprise Linux AS 4 (IPF)

P-9v64-2121 uCosminexus TPL/Server Base 07-00

P-9V64-2321 uCosminexus TP1/FS/Direct Access 07-00

P-9V64-2421 uCosminexus TPL/FS/Table Access 07-00

P-9V64-2521 uCosminexus TPL/Client/W 07-00

P-9V64-3121 uCosminexus TP1/Message Control 07-00

P-9V64-3221 uCosminexus TPL/NET/Library 07-00

P-9V64-C371 uCosminexus TP1/Message Queue(64) 07-01
P-9V64-C771 uCosminexus TP1/Message Queue - Access(64) 07-00
P-F9V 64-3221C uCosminexus TPLYNET/TCP/IP 07-00

P-FOV 64-3221U uCosminexus TP1/NET/User Datagram Protocol 07-00

For Red Hat Enterprise Linux AS 4 (IPF), Red Hat Enterprise Linux 5 (Intel Itanium), and Red Hat Enterprise Linux 5 Advanced
Platform (Intel Itanium)

P-9V64-2921 uCosminexus TP1/High Availability 07-00

P-9V64-8521 uCosminexus TPL/Extension 1 07-00

P-FOV 64-3221D uCosminexus TPL/NET/High Availability 07-00

For Red Hat Enterprise Linux 5 (Intel Itanium) and Red Hat Enterprise Linux 5 Advanced Platform (Intel Itanium)
P-9V64-2131 uCosminexus TPL/Server Base 07-02

P-9V64-2331 uCosminexus TP1/FS/Direct Access 07-02

P-9V64-2431 uCosminexus TPL/FS/Table Access 07-02

P-9v64-2531 uCosminexus TPL/Client/W 07-02

P-9V64-3131 uCosminexus TP1/Message Control 07-03*

P-9V64-3231 uCosminexus TPLU/NET/Library 07-04*

P-F9V64-3231C uCosminexus TPL/NET/TCP/IP 07-02*

P-FOV 64-3231U uCosminexus TP1/NET/User Datagram Protocol 07-00

For Windows 2000, Windows Server 2003, Windows Server 2003 x64 Editions, Windows Server 2003 R2, Windows Server 2003
R2 x64 Editions, Windows XP, Windows Vista, and Windows Vista x64

P-2464-2144 uCosminexus TP1/Client/P 07-02

For Windows 2000, Windows Server 2003, Windows Server 2003 x64 Editions, Windows Server 2003 R2, Windows Server 2003
R2 x64 Editions, and Windows XP

R-1845F-8134 uCosminexus TP1/Web 07-00

For Windows 2000, Windows Server 2003, Windows Server 2003 x64 Editions, Windows Server 2003 R2, Windows Server 2003
R2 x64 Editions, Windows XP, Windows Vista, Windows Vista x64, Windows Server 2008, and Windows Server 2008 x64

P-2464-7824 uCosminexus TP1/Client for .NET Framework 07-03

R-15451-21 uCosminexus TP1/Connector for .NET Framework 07-03

For Windows Server 2003, Windows Server 2003 x64 Editions, Windows Server 2003 R2, Windows Server 2003 R2 x64 Editions,
Windows XP, Windows Vista, Windows Vista x64, Windows Server 2008, and Windows Server 2008 x64

P-2464-2274 uCosminexus TPL/Server Base 07-03*
P-2464-2374 uCosminexus TPL/FS/Direct Access 07-03*
P-2464-2474 uCosminexus TPL/FS/Table Access 07-03*
P-2464-2544 uCosminexus TPL/Extension 1 07-00
P-2464-3154 uCosminexus TPL/Message Control 07-03*
P-2464-3254 uCosminexus TPYNET/Library 07-04*
P-2464-3354 uCosminexus TPL/Messaging 07-00

P-2464-C374 uCosminexus TPL/Message Queue 07-01
P-2464-C774 uCosminexus TP1/Message Queue - Access 07-00
P-F2464-3254C uCosminexus TPLY/NET/TCP/IP 07-02*
R-15452-21 uCosminexus TPL/Extension for .NET Framework 07-00
R-1945B-24 uCosminexus TPL/LINK 07-02

For Windows Server 2003, Windows Server 2003 x64 Editions, Windows Server 2003 R2, Windows Server 2003 R2 x64 Editions,
and Windows XP

P-F2464-32545 uCosminexus TPI/NET/XMAP3 07-01*

For Windows Server 2003, Windows Server 2003 x64 Editions, Windows Server 2003 R2, Windows Server 2003 R2 x64 Editions,
Windows Server 2008, and Windows Server 2008 x64

P-2464-2934 uCosminexus TPL/High Availability 07-00

P-F2464-3254D uCosminexus TPL/NET/High Availability 07-00

For JavaVM

P-2464-7394 uCosminexus TPL/Client/J 07-02

P-2464-73A4 uCosminexus TP1/Client/J 07-02

This manual can be used for products other than the products shown above. For details, see the Release Notes.

This product was devel oped under a quality management system that has received 1SO9001 and Tickl T certification.
B Trademarks

AlX isatrademark of International Business Machines Corporation in the United States, other countries, or both.
AIX 5L isatrademark of International Business Machines Corporation in the United States, other countries, or both.
AMD, AMD Opteron, and combinations thereof, are trademarks of Advanced Micro Devices, Inc.

HP-UX is a product name of Hewlett-Packard Company.

Itanium is atrademark of Intel Corporation in the United States and other countries.

Javais either aregistered trademark or atrademark of Oracle and/or its affiliates.

Linux(R) isthe registered trademark of Linus Torvaldsin the U.S. and other countries.

Microsoft is either aregistered trademark or atrademark of Microsoft Corporation in the United States and/or other countries.
MS-DOS s aregistered trademark of Microsoft Corp. in the U.S. and other countries.

ORACLE is either aregistered trademark or atrademark of Oracle and/or its affiliates.

Oracleis either aregistered trademark or a trademark of Oracle Corporation and/or its affiliates.

Oracle and Oracle 10g are either registered trademarks or trademarks of Oracle and/or its affiliates.

Oracle and Oracle9i are either registered trademarks or trademarks of Oracle and/or its affiliates.

Red Hat is atrademark or aregistered trademark of Red Hat Inc. in the United States and other countries.

Solarisis either aregistered trademark or atrademark of Oracle and/or its affiliates.

UNIX isaregistered trademark of The Open Group in the United States and other countries.

Windows is either aregistered trademark or atrademark of Microsoft Corporation in the United States and/or other countries.

Windows Server iseither aregistered trademark or atrademark of Microsoft Corporation in the United States and/or other countries.
Windows Vistais either aregistered trademark or atrademark of Microsoft Corporation in the United States and/or other countries.
X/Open is aregistered trademark of The Open Group in the U.K. and other countries.

Portions of this document are extracted from X/Open CAE Specification System I nterfaces and Headers, Issue4, (C202 ISBN
1-872630-47-2) Copyright (C) July 1992, X/Open Company Limited with the permission of X/Open; part of which isbased on IEEE
Sd 1003.1-1990, (C) 1990 Ingtitute of Electrical and Electronics Engineers, Inc., and |[EEE Sd 1003.2/D12, (C) 1992 Institute of
Electrical and Electronics Engineers, Inc.

No further reproduction of this material is permitted without the prior permission of the copyright owners.

Other product and company names mentioned in this document may be the trademarks of their respective owners. Throughout this
document Hitachi has attempted to distinguish trademarks from descriptive terms by writing the name with the capitalization used
by the manufacturer, or by writing the name with initial capital | etters. Hitachi cannot attest to the accuracy of thisinformation. Use
of atrademark in this document should not be regarded as affecting the validity of the trademark.

B Restrictions

Information in this document is subject to change without notice and does not represent a commitment on the part of Hitachi. The
software described in this manual is furnished according to a license agreement with Hitachi. The license agreement contains all of
thetermsand conditions governing your use of the software and documentation, including all warranty rights, limitations of liability,
and disclaimers of warranty.

Material contained in this document may describe Hitachi products not available or features not available in your country.
No part of this material may be reproduced in any form or by any means without permission in writing from the publisher.
Printed in Japan.

B Edition history

Edition 1 (3000-3-D57(E)): June 2006

Edition 3 (3000-3-D57-20(E)): October 2010

B Copyright

All Rights Reserved. Copyright (C) 2006, 2010, Hitachi, Ltd.

Summary of amendments

The following table lists changesin this manual (3000-3-D57-20(E)) and product
changesrelated to thismanual for uCosminexus TP1/Server Base 07-03, uCosminexus
TP1/Server Base(64) 07-03, uCosminexus TP1/Message Control 07-03, uCosminexus
TP1/Message Control(64) 07-03, uCosminexus TPL/NET/Library 07-04, and
uCosminexus TPL/NET/Library(64) 07-04.

Changes Location

UAP traces (UAP trace datafiles) can now be collected for processes even if the 1.1, 1.3,15.1, 15.1.1,

processis not aborted. 15.2.2(1), 15.2.2(2), 15.2.3
Along with this change, the - f option has been added to the uat dunp command.

In addition to the above changes, minor editorial corrections have been made.

The following table lists changes in the manual (3000-3-D57-10(E)) and product
changes related to that manual.

Change

An explanation of specifying an environment variablein apath namefor ther pc_t r ace_nane definition operand
has been added.

Preface

Thismanual describes how to use the testers and UAP trace facility of the Distributed
Transaction Processing Facility OpenTPL1.

Products described in this manual, other than those for which the manual is released,
may not work with OpenTP1 Version 7 products. You need to confirm that the products
you want to use work with OpenTP1 Version 7 products.

Intended readers

This manual isintended for system managers, system designers, programmers, and
operators.

This manual consists of five parts and an appendix, as outlined below.

Readers should first ook at the manual OpenTP1 Description which introduces
OpenTPl.

Organization of this manual
This manual is organized into the following parts and chapters:
PART 1. Overview of Testersand UAP Traces
1. Overview
This chapter describes the types of testers and introduces UAP traces.
PART 2. Online Tester (TP1/Online Tester)
2. Facilities

This chapter describes the facilities of the online tester TPL/Online Tester for
TPL/Server Base.

3. Setting the Test Environment

This chapter describes the definitions for setting the test environment to execute
TPL/Online Tester.

4. Test Execution

This chapter describes how to create atest UAP, request services, and edit test
information.

5. Operating Commands
This chapter describes the test operating commands.

6. Error Recovery

This chapter describes TP1/Online Tester errors and how to handle them.
PART 3. Online Tester (TP1/M essage Control/Tester)
7. Facilities

This chapter describes the facilities of the online tester TPL/Message Control/
Tester for TP1/Message Control.

8. Test Execution

This chapter describes how to start and end atest, how duplicate test mode
specifications are handled, and how to inherit test mode information and edit test
information.

9. Operating Commands
This chapter describes the test operating commands.
PART 4. Offline Tester
10. Facilities
This chapter describes the facilities of the offline tester TPL/Offline Tester.
11. Setting the Test Environment

This chapter describes the definitions for setting the test environment to execute
TP1/Offline Tester, the files that the user creates, and the files that TP1/Offline
Tester creates.

12. Test Execution

This chapter describes how to create atest UAP, start and end atest, activate and
terminate UAPs, request services, and edit trace information collected by the
offline tester.

13. Operating Commands
This chapter describes the test operating commands and subcommands.
14. Smulation Functions

This chapter lists the processing and return values of the functions for simulating
OpenTP1 functions.

PART 5. UAP Traces
15. How to Use UAP Traces
This chapter describes how to use UAP traces.

Related publications

Thismanual is part of arelated set of manuals. The manualsin the set arelisted below
(with the manual numbers):

OpenTP1 products

OpenTP1 Version 7 Description (3000-3-D50(E))

OpenTP1 Version 7 Programming Guide (3000-3-D51(E))

OpenTP1 Version 7 System Definition (3000-3-D52(E))

OpenTP1 Version 7 Operation (3000-3-D53(E))

OpenTP1 Version 7 Programming Reference C Language (3000-3-D54(E))

OpenTP1 Version 7 Programming Reference COBOL Language
(3000-3-D55(E))

OpenTP1 Version 7 Messages (3000-3-D56(E))
OpenTP1 Version 7 Tester and UAP Trace User's Guide (3000-3-D57(E))

OpenTP1 Version 7 TP1/Client User's Guide TP1/Client/W, TP1/Client/P
(3000-3-D58(E))

OpenTP1 Version 7 TPL/Client User's Guide TPL/Client/J (3000-3-D59(E))
OpenTP1 Version 7 TPU/LINK User's Guide (3000-3-D60(E))*
OpenTP1 Version 7 Protocol TP/NET/TCP/IP (3000-3-D70(E))

OpenTP1 Version 7 TP1/Message Queue User's Guide (3000-3-D90(E))*

OpenTP1 Version 7 TP1/Message Queue Messages (3000-3-D91(E))*
OpenTP1 Version 7 TP1/Message Queue Application Programming Guide
(3000-3-D92(E))*

OpenTP1 Version 7 TP1/Message Queue Application Programming Reference
(3000-3-D93(E))*

Other OpenTP1 products

TP1/Web User's Guide and Reference (3000-3-D62(E))*

Other related products

Indexed Sequential Access Method |SAM (3000-3-046(E))
XP/W (3000-3-047(E))

Extended Mapping Service 2/\Wbrkstation XMAP2/W DESCRIPTION/USER'S
GUIDE (3000-7-421(E))

» SEWB 3 General Information (3000-7-450(E))

» Job Management Partner 1/Base User's Guide (3020-3-K06(E))

» Job Management Partner 1/Base Messages (3020-3-K07(E))

» Job Management Partner 1/Base Software Developer's Guide (3020-3-K08(E))
For OpenTP1 protocol manuals, please check whether English versions are available.

#

If you want to use this manual, confirm that it has been published. (Some of these
manuals might not have been published yet.)

Conventions: Abbreviations for product names

This manual uses the following abbreviations for product names:

Abbreviation

Full name or meaning

AlIX AIX 5L V5.1
AIX 5L V5.2
AIX 5L V5.3
AIX V6.1
Client .NET TPL/Clientfor NET | uCosminexus TP1/Client for NET Framework
Framework
Connector .NET TP1/Connector for uCosminexus TP1/Connector for .NET Framework
.NET Framework
DPM JP1/ServerConductor/Deployment Manager
HI-UX/WE2 HI-UX/workstation Extended Version 2

HP-UX | HP-UX (IPF)

HP-UX 11i V2 (IPF)

HP-UX 11i V3 (IPF)

HP-UX (PA-RISC)

HP-UX 11i V1 (PA-RISC)

HP-UX 11i V2 (PA-RISC)

IPF Itanium(R) Processor Family
Java Java™
JP1 JPY/AJIS2 JPY/AJS2 - Agent JP1/Automatic Job Management System 2 - Agent

JPUAIS2 -
Manager

JP1/Automatic Job Management System 2 - Manager

Abbreviation

Full name or meaning

JPU/AJS2 - View

JP1/Automatic Job Management System 2 - View

JPVAIS2 -
Scenario
Operation

JPL/AJS2 - Scenario
Operation Manager

JP1/Automatic Job Management System 2 - Scenario
Operation Manager

JPL/AJS2 - Scenario
Operation View

JP1/Automatic Job Management System 2 - Scenario
Operation View

JPUNETM/Audit

JPLY/NETM/Audit - Manager

Linux

Linux(R)

Linux (AMD®64/Intel EM64T/x86)

Red Hat Enterprise Linux AS 4 (AMD64 & Intel EM64T)

Red Hat Enterprise Linux AS 4 (x86)

Red Hat Enterprise Linux ES 4 (AMD64 & Intel EM64T)

Red Hat Enterprise Linux ES 4 (x86)

Red Hat Enterprise Linux 5 (AMD/Intel 64)

Red Hat Enterprise Linux 5 (x86)

Red Hat Enterprise Linux 5 Advanced Platform (AMD/Intel
64)

Red Hat Enterprise Linux 5 Advanced Platform (x86)

Linux (I1PF) Red Hat Enterprise Linux AS 4 (IPF)
Red Hat Enterprise Linux 5 (Intel Itanium)
Red Hat Enterprise Linux 5 Advanced Platform (Intel
Itanium)

MS-DOS Microsoft® MS-DOSR)

NETM/DM JP1I/NETM/DM Client
JPL/NETM/DM Manager
JPL/NETM/DM SubManager

Oracle Oracle 10g
Oraclegi

Solaris Solaris 8

Solaris 9

Abbreviation

Full name or meaning

Solaris 10

TP1/Client TPLClient/J uCosminexus TP1/Client/J
TPL/Client/P uCosminexus TP1/Client/P
TPL/Client/W uCosminexus TPL/Client/W

uCosminexus TPL/Client/W(64)
TPVEE uCosminexus TP1/Server Base Enterprise Option

uCosminexus TPL/Server Base Enterprise Option(64)
TP1/Extension 1 uCosminexus TP1/Extension 1

uCosminexus TP1/Extension 1(64)
TP1/FS/Direct Access uCosminexus TPL/FS/Direct Access

uCosminexus TPL/FS/Direct Access(64)
TPL/FS/Table Access uCosminexus TPL/FS/Table Access

uCosminexus TPL/FS/Table Access(64)
TP1/High Availability uCosminexus TP1/High Availability

uCosminexus TPL/High Avail ability(64)
TPL/LINK uCosminexus TPL/LiNK
TP1/Message Control uCosminexus TP1/Message Control

uCosminexus TP1/Message Control (64)
TP1/Message Control/Tester uCosminexus TP1L/Message Control/Tester
TPL/Message Queue uCosminexus TP1/Message Queue

uCosminexus TP1/M essage Queue(64)

TP1/Message Queue - Access

uCosminexus TP1/Message Queue - Access

uCosminexus TP1/Message Queue - Access(64)

TP1/Messaging uCosminexus TP1/Messaging
TP1/Multi uCosminexus TP1/Multi
TP1/NET/HDLC uCosminexus TPL/NET/HDLC

TPLUNET/High Availability

uCosminexus TPL/NET/High Availability

vi

Abbreviation

Full name or meaning

uCosminexus TPL/NET/High Availahility(64)

TPLNET/HSC

uCosminexus TPI/NET/HSC

TPLUNET/Library

uCosminexus TPL/NET/Library

uCosminexus TPL/NET/Library(64)

TPL/NET/NCSB

uCosminexus TPI/NET/NCSB

TPL/NET/OSAS-NIF

uCosminexus TPI/NET/OSAS-NIF

TPLUNET/OSI-TP

uCosminexus TPI/NET/OSI-TP

TPL/NET/SLU -
TypeP2

TPLUNET/
Secondary Logical
Unit - TypeP2

uCosminexus TPL/NET/Secondary Logical Unit - TypeP2

TPLUNET/TCP/IP

uCosminexus TPL/NET/TCP/IP

uCosminexus TPL/NET/TCP/IP(64)

TPLNET/UDP uCosminexus TPL/NET/User Datagram Protocol
TPL/NET/User Agent uCosminexus TPL/NET/User Agent
TPLUNET/X25 uCosminexus TPL/NET/X25

TPLNET/X25-Extended

uCosminexus TP1/NET/X 25-Extended

TPLUNET/XMAP3

uCosminexus TP/NET/XMAP3

TP1/Offline Tester

uCosminexus TP1/Offline Tester

TP1/Online Tester

uCosminexus TP1/Online Tester

TP1/Resource Manager Monitor

uCosminexus TP1/Resource Manager Monitor

TPL/Server Base uCosminexus TP1/Server Base
uCosminexus TPL/Server Base(64)

TPL/Shared Table Access uCosminexus TPL/Shared Table Access

TPL/Web uCosminexus TPL/Web

Windows 2000

Microsoft®® Windows(R) 2000 Advanced Server Operating
System

Microsoft®® Windows(R) 2000 Datacenter Server Operating
System

Vii

Abbreviation

Full name or meaning

Microsoft®® Windows®) 2000 Professional Operating
System

Microsoft®® Windows(R) 2000 Server Operating System

Windows Server 2003 Microsoft® windows Server(®) 2003, Datacenter Edition
Microsoft®) Windows Server® 2003, Enterprise Edition
Microsoft® Windows Server® 2003, Standard Edition

Windows Server 2003 R2 Microsoft®) Windows Server® 2003 R2, Enterprise Edition
Microsoft® windows Server® 2003 R2, Standard Edition

Windows Server 2003 x64 Editions Microsoft® Windows Server(®) 2003, Datacenter x64 Edition

Microsoft® Windows Server(R) 2003, Enterprise x64 Edition

Microsoft® Windows Server(® 2003, Standard x64 Edition

Windows Server 2003 R2 x64 Editions

Microsoft®) Windows Server® 2003 R2, Enterprise x64
Edition

Microsoft® Windows Server(® 2003 R2, Standard x64
Edition

Windows Server 2008

Microsoft® Windows Server(® 2008 Datacenter (x86)

Microsoft®) Windows Server® 2008 Enterprise (x86)

Microsoft®) Windows Server® 2008 Standard (x86)

Windows Server 2008 x64 Editions

Microsoft®) Windows Server® 2008 Datacenter (x64)

Microsoft® Windows Server®) 2008 Enterprise (x64)

Microsoft®® Windows Server® 2008 Standard (x64)

Windows Vista Microsoft®® Windows Vistal® Business (x86)
Microsoft®) Windows Vista® Enterprise (x86)
Microsoft®) Windows Vista® Ultimate (x86)
Windows Vista x64 Editions

Microsoft®) Windows Vista® Business (x64)

viii

Abbreviation Full name or meaning

Microsoft®® Windows Vista(R) Enterprise (x64)

Microsoft(®) Windows Vista® Ultimate (x64)

Windows XP

Microsoft®) Windows®) X P Professional Operating System

If thereisno difference in OS functionality, the term Windows is used to indicate
Windows 2000, Windows Server 2003, Windows Server 2008, Windows X P, and
Windows Vista.

The term UNIX isused to indicate Al X, HP-UX, Linux, and Solaris.

Conventions: Acronyms
This manual also uses the following acronyms:;

Acronym Full name or meaning
ACL Access Control List
ANS American National Standards Institute
AP Application Program
API Application Programming Interface
CIs Client/Server
CRM Communication Resource Manager
CUP Client User Program
DAM Direct Access Method
DBMS Database Management System
DML Data Manipulation Language
DNS Domain Name System
FEP Front End Processor
GUI Graphical User Interface
HA High Availability
HI-ODTP Hitachi - Open Distributed Transaction Processing Adapter
ISAM Indexed Sequential Access Method
IST Internode Shared Table

Acronym Full name or meaning
LAN Local AreaNetwork
MCF Message Control Fecility
MHP Message Handling Program
MQA Message Queue Access
MQI Message Queue Interface
NIF/HNA Network Interface Feature/Hitachi Network Architecture
NIF/OS| Network Interface Feature/OSI
(O] Operating System
osl Open Systems Interconnection
oSl TP Open Systems Interconnection Transaction Processing
PC Personal Computer
PRF Performance
RM Resource Manager
RPC Remote Procedure Call
SPP Service Providing Program
STDL Structured Transaction Definition Language
SUP Service Using Program
TAM Table Access Method
TCP/IP Transmission Control Protocol/Internet Protocol
™ Transaction Manager
UAP User Application Program
uoC User Own Coding
WAN Wide Area Network
WS Workstation

Conventions: Diagrams
This manual uses the following conventions in diagrams:

e Workstation or terminal e File e Program

=

e Program flow e Data flow e Control flow
<
—_—
<>
o Other flows e Input/output operation & Communication line
-
& H
-— > 2T
o WAN e LAN

Conventions: Differences in installation directory paths

Thismanual usesthe notation/ Be TRANto indicate the OpenTP1 installation directory.
The actual installation directory differs depending on the operating system. Use the
following table to determine the actual installation directory for your OS.

As written in Actual directory for each OS
this manual
AIX, HP-UX, and Solaris Linux Windows
/ BeTRAN / BeTRAN / opt / OpenTP1 The directory in which
OpenTP1 was installed

Conventions: Fonts and symbols
The following table explains the fonts used in this manual:

Xi

Font

Convention

Bold

Bold type indicates text on awindow, other than the window title. Such text includes
menus, menu options, buttons, radio box options, or explanatory |abels. For example:
¢ From the File menu, choose Open.
¢ Click the Cancel button.
¢ Inthe Enter name entry box, type your name.

Italics

Italics are used to indicate a placehol der for some actual text to be provided by the user
or system. For example:
* Write the command as follows:
copy source-file target-file
« The following message appears:
Afile was not found. (file = file-name)
Italics are a so used for emphasis. For example:
« Do not delete the configuration file.

Code font

A code font indicatestext that the user enters without change, or text (such as
messages) output by the system. For example:
« At theprompt, enter dir.
* Usethesend command to send mail.
¢ Thefollowing messageis displayed:
The password is incorrect.

SD

Bold code-font characters indicate the abbreviation for acommand.

perm

Underlined characters indicate the default value.

The following table explains the symbols used in this manual:

Symbol Convention
| In syntax explanations, avertical bar separates multiple items, and has the
meaning of OR. For example:
Al B| Cmeans A, or B, or C.
{1} In syntax explanations, curly bracketsindicate that only one of the enclosed items

isto be selected. For example:
{Al B| C} meansonly oneof A, or B, or C.

[]

In syntax explanations, square brackets indicate that the enclosed item or items
are optiona. For example:

[Al meansthat you can specify A or nothing.

[B C] meansthat you can specify B, or C, or nothing.

il

Symbol

Convention

Incoding, an elipsis(...) indicatesthat one or more lines of coding are not shown
for purposes of brevity.
In syntax explanations, an ellipsis indicates that the immediately preceding item
can be repeated as many times as hecessary. For example:
A B, B,

. meansthat, after you specify A, B, you can specify B as many

times as necessary.

~ Theitem preceding this symbol must be specified according to the rule givenin

the angle brackets (< >) following this symbol.

<< >> Default value assumed when a specification is omitted.
<> Information between these symbols indicates the syntax of the item.
(@) Range of specifiable values.

Conventions for permitted characters

In most cases, only the following characters are permitted as syntax elements (if other
characters are permitted, the manual will state this explicitly):

Type Definition
Upper-case a phabetic characters Atoz
Lower-case alphabetic characters atoz
Alphabetic characters AtoZz,atoz
Numeric characters 0to9

Alphanumeric characters

AtoZ,atoz,0t09

Unsigned integer

Numeric values0 to 9

Hexadecimal

Numeric values0 to 9, AtoF, and a to f

Identifier

String of aphanumeric characters, beginning with an alphabetic
character AtoZzoratoz

Symbolic name

String of aphanumeric symbols, beginning with an alphabetic
symbol

Pathname

Symbolic names, slashes (/), and periods (.), depending on the
operating system

Conventions: KB, MB, GB,

and TB

This manual uses the following conventions:
» 1KB (kilobyte) is 1,024 bytes.

Xii

« 1MB (megabyte) is 1,0242 bytes.
« 1GB (gigabyte) is 1,024 bytes.
« 1TB (terabyte) is 1,024% bytes.
Conventions: Platform-specific notational differences

For the Windows version of OpenTP1, there are some notational differencesfrom the
description in the manual. The following table describes these differences.

Item Description in the manual Change to:

Environment variable $aaaaaa Y@aaaaado
Example: $DCDI R Example: 9OCDI R%

Path name separator Colon (:) Semicolon (;)

Directory name separator Slash (/) Backslash (\)

Absolute path name A path from the root directory A path namefrom adrive letter and the
Example: / t np root directory

Example: C:\ 't np

Executable file name File name only (without an File name with an extension

extension) Example: ncf mgr d. exe

Example: ncf mgrd

make command make nmake

Conventions: Version numbers

The version numbers of Hitachi program products are usually written as two sets of
two digits each, separated by a hyphen. For example:

» Version 1.00 (or 1.0) iswritten as 01-00.
* Version 2.05 iswritten as 02-05.

» Version 2.50 (or 2.5) iswritten as 02-50.
* Version 12.25 iswritten as 12-25.

Theversion number might be shown on the spine of amanual as Ver. 2.00, but the same
version number would be written in the program as 02-00.

Important note on this manual

Please check the availability of the products and manuals for HAmonitor,
ServerConductor/DeploymentManager, Cosminexus, and Job Management Partner 1/
Automatic Job Management System 2.

Xiv

Contents

Preface i
INEENAEA FEBUEN'S ...ttt bttt ene s i
Organization of thiSMANUELccocciiieii e [
Related puBliCaLIONS.........ccceeiece e s iii
Conventions: Abbreviations for product NAMES............cccveeeriericie s iv
CONVENLIONS: ACTONYIMIS......ccviitiitieiestesteeiestesteesaetesreesaessestesseesestestesnsesressesseessessens iX
(00 101%/= g1 K0 g S DI o =0 01 TS X
Conventions: Differences in installation directory paths..........cccccovvvveveieceesennenn Xi
Conventions: Fonts and SYMDOIS.........cccoceeveiiieciece e Xi
Conventions: KB, MB, GB, @and TBcccocviiiniirinerene e Xiii
Conventions: Platform-specific notational differences.........cccecvvvevevvccicceiecine, Xiv
Conventions: VErsion NUMDENS.........ccuiiiiriiieirese et eerens Xiv
Important note 0N thiSMaNUalcccveieeiiiie e Xiv

PART 1: Overview of Testersand UAP Traces

1. Overview 1

1.1 TeSterSand UAP IrACES.cceoee e eeeere ettt ettt nee st te e seesaeeneeneeneesneeneenes 2

1.2 OVEIVIOW Of TESLEIS. ..ottt st e e et esee e ens 3

O O 1] 1= (S (= S 3

1.2.2 Offline tester (TPL/OFfliNg TESLEN) ...vevveeeere e 6

1.3 OVEVIEW Of UAPTIECES.oeeeieeeieee ettt st e e e e 9
PART 2: Online Tester (TP1/Online Tester)

2. Facilities 11

2.1 Facilities of the ONliNE tESLENooiieeree e e 12

2.2 SIMUlAting @ ClIENE UAP ...t 13

2.2.1 Simulating aclient UAP with an RPC interface........ccccocevevevcvieecinciens 13

2.2.2 Simulating aclient UAP with an XATMI interface......cccccvveveiicieeiennens 14

2.3 SIMUIAtiNg @ SEIVEr UAP ...ttt ettt s sre e e 18

2.3.1 Simulating aserver UAP with an RPC interfaceccocvvveveivveneececeens 18

2.3.2 Simulating a server UAP with an XATMI interfacecccoovvoveeeenvnenceiene. 19

2.4 SIMUIELNG TNEMCE ... 22

2.4.1 MCF sSimulation FUNCLIONS.........cceerrieieeiee e 22

2.4.2 Simulating message SENA/TECEIVE.ccoerereieeie e 22

2.4.3 Simulating continUOUS iNQUITY FESPONSES..........coveureeeersesresseeeeeessesneseeseens 23

XV

2.4.4 Simulating application program startup reqUESEScceeeveerereeciereseeeene 25

2.4.5 Simulating synchronous point ProCeSSINGcoeerereereerrreeseseeseeseseeseenns 27

2.5 Disabling resource UPatingcc.ceeereeiereneeeeneeseseeee et neenes 28
2.6 Simulating operating COMMENGScccoerrirrereeeeerese e enes 29
2.7 Creating and outputting teStEr FIlES........ocviiiiriecerer s 31
2.7.1 Creating teSter fIllES... ..o 31
2.7.2 Editing and outputting tester fil€S........ccviiiiriricee e 33

2.8 Collecting test INFOrMELIONcovriiiirieeeeer s 34
2.8.1 Collecting UAP trace informMation..........c.coeererereersesieeeesese s 34
2.8.2 Merging, editing, and outputting UAP trace information..............c.ccoevvennee. 35
2.8.3 Editing SENG MESSAGES.......c.ccuerrireeeeeeesiesie st e sr e ee e eneas 39

2.9 Interlocking the deDUGOEcooiiii e 40
3. Setting the Test Environment 43
3.1 System definitions for the oNliNELESLErcccecee i 44
3.1.1 System service configuration definition..........ccccovieevnii e, 44
3.1.2 Tester service defiNition..........occooeriiee e s 44
3.1.3 Tester service definition (command format)..........cccevveveevceneeccecce e, 47
3.1.4 User service defiNitioN........ccooe oo e 48
3.1.5 Setting the typed DUFFENc.ooeeeeee e 54
3.1.6 Setting Send/reCeiVe ProCEAUIEScviirierreeeieieere e 56

3.2 Setting environmMent VariableSccooiiiiieieies e 59
3.3 USEr-Created fillES ... e 60
3.3.1 Servicerequest datafileS........ccoiiiireieeieer e 62
3.3.2 Serviceresponse datafiles.........ccceieirinirineeee e 65
3.3.3 XATMI receive datafil......cooriieeeee e 68
3.3.4 MCF receive meSSagE filES.......cciiiirieeee e 71
3.3.5 Operating command result datafile...........cccovririreieiiineee e 81

34 Creating fIlES. ..o 84
341 TESE AITECIONY ..ottt 84
3.4.2 Test datadefinition file......c..coiiieeeee e 84
3.4.3 Files created by the OnliNe teSterccooiiiiririree e 95

4. Test Execution 99
4.1 CreatiNg UAPS ..ottt 100
4.2 ServicereqUeSISTo an SPP.........ccooi i e 102
4.2.1 Client UAP SIMUIBLONcooiiiieiiniesesiesee st 102
4.2.2 Server UAP SIMUIGLOT.......coiiiieeiriesiesee et 102

4.3 ServicerequestSto an MHP.........ccco it 103
4.4 Creating tESIEr FIlES ...t e e 104
4.4.1 Creating tester files using the test data definition file........c.cccccvevvvieennnne, 104
4.4.2 Creating tester files using operating command output data...................... 105

4.5 Editing test iNfOrMationcccceieeiiiiiiee et 107
4.5.1 Displaying tESt SLALUS........coeiuieeeiesieeeceeste e e sre e e et se e ereeae e 107

XVi

4.5.2 Collecting UAP trace information..........ccccceeveeiiiesieesieses e ses e seeesee e 107
4.5.3 Merging and outputting UAP trace informationcc.ccoevvrvevvneieeninne. 108
4.5.4 UAP tracesfor MCF simulation fuNCtions...........cccooeverinieie e 109
4.5.5 Editing and outputting SENd MESSAGEScccvruererrerrereeerere e 109
4.5.6 Checking UAP reSpoNSe al@.........cccurververeerennirereeieeeeesresse s 110
4.5.7 Checking UAP Send dataL.........ccceovrieieeeeiniesesie s 110
5. Operating Commands 111
5.1 Operating commands for runNNiNg tESES........coiieeiieriiee e e 112
5.1.1 utodbgstop (termination of a UAP interlocked with the debugger) 112
5.1.2 utodebug (activation of a UAP interlocked with the debugger).................. 113
5.1.3 utofilcre (tester file Creation)........cccccceeeeeveesie s 115
5.1.4 utofilout (edited output of the tester file content)cccooceveveeiiiriieenne 116
5.1.5 utols (test StatuS diSplay)ceeeeeerereeierere e 129
5.1.6 utomhpsvc (service requeststo an MHP) ..o, 130
5.1.7 utomsgout (edited output of Send MESSAYES)......wccverveereererreereere e 131
5.1.8 utosppsvc (service requests to an RPC interface SPP)......ccccovveevvvveeeeee 136
5.1.9 utotrcmrg (merger of UAP trace information)ccoeeereeeeienenenenennns 137
5.1.10 utotrcout (edited output of UAP trace information)..........c.ccocevveveennee. 138
5.1.11 utoxsppsvc (service requests to an XATMI interface SPP).........cccce....... 150
6. Error Recovery 153
6.1 Handling ONliNE tESLEr EITOISccueieie e ciecie ettt sre e sae 154
6.1.1 Error conditionS @nd CAUSES...........coirerierieririeniinienienee st 154
6.1.2 ONlINELESIEN EITOIS .. .ottt se b e 155
B.1.3 FIlEEITOIS ...ttt ettt bbb e 156
B.1.4 UAP BITOIS.....eeiee ettt sttt e nre s sn e sneeneenreens 156
PART 3: Online Tester (TP1/Message Control/Tester)
7. Facilities 159
A8 Y 1 1 (== 1] o USRS 160
7.1.1 Disabling updating of NON-MCF rE€SOUICES........ccceecveereeiieesiesiee e see e 160
7.1.2 Invalidating SENd MESSAgEScccocveeieiie et eeeerte e ste et st ae e sre s 160
7.1.3 Invalidating application startup MESSAQES........cccvveereerereereeseeeeseeseeeneeneens 161
7.1.4 SUPPIESSING EITON EVENTSeoieiieeeeeeiesie e see st eeeee e e sree e seesneeneenes 161
7.1.5 Suppressing MHP automatic SNULAOWNcccoirverierieeeeeinese e 162
7.2 Collecting test iNfOrMELIONcooviiieieeseeieee e eee e ene e 164
7.2.1 Collecting UAP trace information............coeoeeerereensenenesesieseeeeeere e 164
8. Test Execution 165
8.1 Starting and ending AteSt........ccecviecieiii e s 166
8.1.1 Starting atest and setting the test environment...........ccccevevveevieecncceeenens 166

Xvii

S I 0o (1o - (= SN 167

8.2 Duplicate test mode SPECIfiCaLiONSc.eeeeirreee e 168
8.3 Inheriting test Mode iNfOrMatioNccoiiiieeie e 169
8.4 Editing test iNfOrMBELiONccveieeririeiiieeieie e 170
8.4.1 Displaying test mode informMationcccuvrerrereereeieeiene e 170
8.4.2 Collecting UAP trace information...........ccecevererreeeeneneneseesesesese s 170
8.4.3 Merging and outputting UAP trace information............cccooeverereneneeennnnn 170

9. Operating Commands 173
9.1 Operating commands for runnNiNg tESES........cooveieeviierie e e 174
9.1.1 mcfutfst (MCF online tester use declaration)ccceccevieevcenieeeiecieenienns 174
9.1.2 mcflsutf (display of MCF online tester Status)ccceeevueeveriveeniensieeninnns 174

9.2 Operating commands for testing alogical terminal..........c..ccooovveeiiiiiiieneneeee 176
9.2.1 mcftulde (display of test mode information for alogical terminal)........... 176
9.2.2 mcftules (start of alogical terminal teSt)cccevvieevieeiiie v 178
9.2.3 mcftulee (termination of alogical terminal test)ccoevveeveveeceir e 180

9.3 Operating commands for testing an appliCationccoeeereneerieriencreseeeeens 181
9.3.1 mcfaulsap (display of test mode information for an application)............... 181
9.3.2 mcfauaps (start of an application teS)ccevveerererereeeeee e 184
9.3.3 mcfauape (termination of an application test)ccccevvrerirereererereriene 187

9.4 Operating commands for testing & SErViCe groUpc.vverrerrereeeeeeienreseeseseeseenes 189
9.4.1 mcftulssg (display of test mode information for a service group).............. 189
9.4.2 mcftusgs (start of aService group tESL)vvererreerieereere e 191
9.4.3 mcftusge (termination of aService group test)ccvvveerererereereerereniene 193

PART 4: Offline Tester

10. Facilities 195
10.1 Facilities Of the OffliNE tESIErccveviiieeeee e 196
10.2 Simulating aclient UAP ...ttt s s 197

10.2.1 Simulating aclient UAP with an RPC interface........ccccocvvvvivvivevncnen, 197
10.2.2 Simulating aclient UAP with an XATMI interfacecccccovevvevieevnccnenee. 198
10.2.3 Simulating aclient UAP with a TXRPC interface........cccccoevevevieeviecnneenne. 198
10.3 Simulating @Server UAP ... 199
10.3.1 Simulating a server UAP with an RPC interface.........ccoovvoeeenveeennen. 200
10.3.2 Simulating a server UAP with an XATMI interface..........ccccoovevieneniennes 200
10.3.3 Simulating a server UAP with a TXRPC interface..........c.oooevevennenenne 200
10.4 SIMUIEING tNEMCF........oiiiiee e 202
10.5 SIMUIELing fil€ SEIVICES.......c.eieiiieeeeiee e 203
10.5.1 Simulating the DAM SEIVICE.......ccccieeeerirenieseees e 203
10.5.2 Simulating the TAM SEIVICE........couiiriirieireee et 204
10.6 Simulating OpenTPL fUNCLIONS...........cceiriririereieeere e 206
10.7 Simulating operating COMMENGSccoveerririerrereeerese e ere e sne s 207

Xviil

10.8 Creating teSter fIlES.......uciiiecciee et se e e snee 208

10.9 Continuous cOMMaNd EXECULTONcceeriirrreerierieeeeseeree e see e eeeseeseeeneeseeseeenenne 209
IO R KO BT oNTo T = glore] n10]="oi []o] o F P 210
10.11 Collecting teSt iNfOrMALTONcceivereeeeerese e 211
10.11.1 Collecting offline tester trace iNfOrmMationceceeeereeeneniseneseenens 211

11. Setting the Test Environment 213
11.1 System definitions for the offlinetester.........cooe e 214
11.1.1 Offline tester environment definitionccoceveeiriireeccn e 214
11.1.2 User service definitioNn........cc.coeerireeiene e 231
11.1.3 Setting function return ValUES...........ccceceevievee s e see s 232
11.1.4 Setting continuous execution COMMANAS..........ccccceevereesenee e eee e 236
11.1.5 Creating StUDS......ooui e e e 238
11.2 USEr-Created fil@S ..ottt 239
11.2.1 Servicerequest datafiles.........ccoiiiiiiiiiiiiree e 240
11.2.2 Service response daafileS.........couvireieeiieiinireseeee e 244
11.2.3 XATMI receive datafile........ccoeeoeieiieiee e 248
11.2.4 MCF receive message fil€S.......ccviiieiiiiirieeee e 250
2T I AN 1Y I T = 255
ST AN 1 1= 256
11.2.7 Operating command result datafilecccooeiririniieiecn e 257

11.3 Creating fllES......cieieeeeeeriese e 259
11.3.1 Test datadefinition file.......c..cooeeeeieiieee e 259
11.3.2 Filescreated by the offline teStercooeieiereeee e 270

12. Test Execution 271
12.1 CreatiNg UAPS. ..ottt sttt 272
12.1.1 Creating UAP execution format programs............cccceeveevesieseeseeseeseesnenns 272

12.2 Starting and ending an OffliN@tESt.......cccveviiiei e 277
12.3 Activating and terminating UAPSocooieiiiiceee et 278
12,4 SEIVICETEQUESES.....cueeeeitecteceie ettt st ettt e et este s teere e e e besreeseennesne e 279
12,5 Creating teSter fillES....uiiiiiiieiee e e e 280
12.6 Continuous COMMEN EXECULIONcoueruirieieieirie sttt 281
12.7 DEbUQQEr CONMNECLION......ccueieieticticeeeste st et te e tesbe e e sresresnaenaens 282
12.8 Editing offline tester trace iNformMationcccceevvieneesie e 283
12.9 NOtES ON FUNNING tESESveceeeiiecieceecieste ettt st sre e e e e re e 284
12.9.1 Noteson the OffiNELESIEY ... 284
12.9.2 NOES ON FIlES....ueiiiieiieieee e 288
12.9.3 NOES ONUAPS.......cueiicirieseesieee et 289

13. Operating Commands 291
13.1 Operating commands for runniNg tESES..........ccevveeeceiiereere e 292
13.1.1 utfdamcre (creation of offline tester DAM fil€)cccvvvevevievvccivecee, 292
13.1.2 utffilcre (tester file Creation)........cccoeveeceie i 293

Xix

13.1.3 utfstart (offline tester Startup)cooveeeerereeeieeeee e 293

13.1.4 utftamcre (creation of offline tester TAM fil€S)ccooveveiiiiiiireceee 295
13.1.5 utftrcpic (retrieval of offline tester trace information)ccccecevveee. 296

13.2 Subcommands fOr ruNNINgG tESES.........cceiiiieeeeeeriee e e 302
13.2.1 call (SErVICETEOUESL)cieeeeeeereeseeeeeeesie ettt e e 302
13.2.2 cmdauto (continuous command EXECULION)ccvevererrerererrenresieeeeens 303
13.2.3 end (offline tester terminNation)ccecveererenreresese e 304
13.2.4 PS (tESt SLAUS AISPIAY) ...ecvvverirreeeeeiri et 304
13.2.5 read (input of tester file name to offline tester)ccoovvvevenencscieee 305
13.2.6 start (Service group aCtIVAiON)coveerireereereeiesese e 306
13.2.7 stop (Service group tErMINGLiON)cccevereereruerrereeeeeeesresre e 307
13.2.8 write (input of tester file name to offlinetester)cooovvecveniniienenne 308

14. Simulation Functions 309
14.1 List of simulation functions and ProCESSINGceveeverererireerieerieesee e e seeseeeseeens 310
14.2 List of return values for smulation fUNCLioNS.............ccooeiiiieienencre e 326
14.3 List of functions not supported by the simulation feature..............cocecvevieieennnnns 342

PART 5: UAP Traces

15. How to Use UAP Traces 347
15.1 ColleCting UAPIACEScoveeieeeecee et s st s 348
15.1.1 UAPtrace collection UNitS.......cccoceeieenensieeree e seesiee e e 348

15.1.2 Trace area definitionccecoiiie i e 348

15.1.3 Information t0 COIIECLcvieiiieiiecee e 348

15.2 Editing and outputting UAP traCes..........ooeeeeieiee e 349
15.2.1 UAPraCe OULPUL UNITSocveiveeeeeiriisiesieiesiesiesee e 349

15.2.2 UAP trace output MELNOUS..........coviiriiieieisiesie e 350

15.2.3 uatdump (edited output Of UAPrace)ccceverereereienineneseeseesieeeeees 352

15.2.4 UAPtrace OULPUL FOMMEL........cccrverrereeieienienieniesie s 354

Index 359

XX

List of figures

[T [0 s R O o=l I B = = 3
Figure 1-2: Overview Of ONlINEtESIENcccv i e e 5
Figure 1-3: Overview of MCF ONlINEIESIENooiiieiiiiee e 6
Figure 1-4: Overview Of OffliNE tESIENccviiiiiice s 8
Figure 2-1: Simulating aclient UAP with an RPC interface..........ccooevenenincieieiesesesees 14
Figure 2-2: Simulating a client UAP for request/response service paradigm............cc.cceeeeuenne. 15
Figure 2-3: Simulating aclient UAP for conversational service paradigm............cccceevevvenennene 17
Figure 2-4: Simulating a server UAP with an RPC interface..........ccocvvveveienninenienescsins 19
Figure 2-5: Simulating a server UAP for request/response service paradigm.........cccceevevveveenns 20
Figure 2-6: Simulating a server UAP for conversational service paradigm.........cccceveevvceennenne 21
Figure 2-7: Simulating message SENA/TECEIVEcccuviiiecieiie e sre e 23
Figure 2-8: Simulating continUOUS INQUITY FESPONSEScueereerieriieeierseeseeessessseessessseessesseens 24
Figure 2-9: Simulating an application program startup reqUESEocvecveereereesieseresieeseeens 26
Figure 2-10: Replacing command eXeCULiON rESUILS..........cceivereeiieeiie e 30
Figure 2-11: Result of merging UAP trace informationc..cceecvevevevenieeseee e esiee e 36
Figure 2-12: Coallecting, merging, editing, and outputting UAP trace information.................. 38
Figure 2-13: Interlocking the debUGEScccveieei e 41
Figure 3-1: Receive dataand tester filES.......ccvviiiriieiiiii e 70
Figure 7-1. Example of transaction processing from message receive to message send........ 162
Figure 10-1: Simulating @acClient UAPcooe i ste et 197
Figure 10-2: Simulating aSerVer UAP ...ttt 200
Figure 10-3: SIMUlating @an MCF.......cc.oo i 202
Figure 10-4: Simulating the DAM SEIVICEcccvcieieeieeiec e see e siee e see s s e snee e e 204
Figure 10-5: Simulating the TAM SEIVICEcceieeiie ettt 205
Figure 10-6: Simulating UAP operating COMMENGS..........ccveerrreeererreeseesieeseesessreessessnesnns 207
Figure 10-7: Continuous command EXECULION..........c.cuvveriieeieeerieesieesieeseesee e see e see e e 209
Figure 10-8: Debugger CONMNECLIONcccueeiieceeiie e ceese et sttt neas 210
Figure 10-9: Coallecting offline tester trace iNformMation...........ccccevveveevceesee s 212
Figure 12-1: Procedure for creating UAP execution format program with the RPC or XATMI

INEEITACE. ...ttt et b et sb et b e sae e 273
Figure 12-2: Procedure for creating UAP execution format program with the TXxRPC

L= g = oYU URSOR 275
Figure 12-3: Recursive calsusing the offline testercccvvvvvee s 287
Figure 15-1: Inter-UAP communication and collected UAPtraces.......ccccccevevvvevevceevnene, 349
Figure 15-2: Overview of automatic edit and output of UAPtrace.......cccccceeevevveveeveesnennen, 351
Figure 15-3: Overview of editing and outputting UAP trace to standard output by a

[oi0]0 011 0= o [P S S 352

XXi

List of tables

Table 2-1: Tester files created by tester file creation facilitycccecevviviiviiic v, 31
Table2-2: Kinds of tester filesto be created, available data extraction commands, and available

0 7= ¢ SRS 32
Table 2-3: Tester files available for edit and output with the tester file edit and output

L L LY/ 33
Table 2-4: Functions that can use the complete I/O data trace collection facility 34
Table 3-1: test_mode specifications and available test faCilities...........coovirirercnerceceeee, 50
Table 3-2: Relationships between calling UAP and called UAP when requesting services.... 50
Table 3-3: List of tester filesto be created by the USErcceeveevivvien i 60
Table 3-4: Namesfor user-created tester fil€S.... ... 61
Table 3-5: Keywords and input data formats for RPC request datafiles..........cccocvvvevieernenne 90
Table 3-6: Keywords and input dataformats for XATMI request datafiles.........ccccccvvevennnnee. 90
Table 3-7. Keywords and input dataformats for RPC response datafiles.........ccccvevvvernnnne 91
Table 3-8: Keywords and input dataformats for XATMI response datafiles.........cccecveenene. 91
Table 3-9: Keywords and input dataformats for XATMI receive datafiles.........ccccccvvvvenenee. 92
Table 3-10: Keywords and input data formats for asynchronous receive messagefiles.......... 93
Table 3-11. Keywords and input data formats for synchronous receive messagefiles........... 93
Table 3-12: Keywords and input data formats for operating command result datafile........... 95
Table 3-13: List of files created by ONlINETESLENccoevv e 95
Table 3-14: Names for tester files created by the onlinetestercocvvvvviv v, 96
Table 4-1: Dummy values and non-collectable trace information..........cccceeevevveceeveesennnn, 109
Table 5-1. List of operating COMMENGS.........cccccuiireiieeieiie e reenreens 112
Table 6-1: Online tester errors aNd CALISESc.eieriirerieriie e sieeeeee sttt sre b e sees 154
Table 6-2: Time-out error events caused by a debugger-interlocked UAP and related

EFINITIONS ... e e sttt 157
Table 8-1: Duplicate test mode SPECITICAIONS........cccevveeieeiiie e 168
Table 8-2: Inheritance of test mode iNformation............ccoceviiene i 169
Table 9-1. List of operating COMMANGS..........cciueiieereriiesie e see e eee e ree e ste e e nre e enees 174
Table 9-2: Operating commands for running tests on alogical termindcccceveveenen. 176
Table 9-3. Operating commands for running tests on an applicationccccceveeevcenerennene 181
Table 9-4. IDsto be specified when testing ERREVT (mcfauaps command)...........cccceeeeee. 184
Table 9-5: IDsto be specified when testing ERREVT (mcfauape command)............cccce...... 187
Table 9-6. Operating commands for running tests on an applicationcccccceveevcererennene 189
Table 10-1: Tester files created by tester file creation facilityc.cccovevevievciv e, 208
Table 11-1: Format errors and validity of definitions..........ccecveveecieeve v 215
Table 11-2: List Of USEr-Created filES........eiiiii e e 239
Table 11-3: RPC request data file keywords and input dataformats...........ccccceeevveicenennnnene 265
Table 11-4: XATMI request data file keywords and corresponding input data formats........ 265
Table 11-5: TxXRPC request data file keywords and corresponding input dataformat 266
Table 11-6: RPC response data file keywords and corresponding input data formats........... 266

XXii

Table 11-7: XATMI response data file keywords and corresponding input data formats......267
Table 11-8: TxRPC response data file keywords and corresponding input data format......... 267
Table 11-9: XATMI receive data file keywords and input data formats............c.ccocvrervernennne 267
Table 11-10: MCF receive message file keywords and corresponding input data formats.... 268
Table 11-11: Operation command result data file keywords and corresponding input data

FOIMIALS. ...ttt e e nn e 269
Table 11-12: List of files created by off iNELESIENccvviiiiiccc e 270
Table 12-1: Upper [imits of OffliN@ tESLEN.........ccveiiiiiireeer e 285
Table 13-1: List of operating commands for offline testingccccovrereieeieinieneseeeene 292
Table 13-2: List of subcommands for offline teStiNg..........ccvoeeierieiiierireeeee e 302
Table 14-1: List of offline tester sSimulation fUNCLIONS............ccooeieinineneeeeeeeee e 310
Table 14-2: List of return values for sSimulation fUNCLIONSccoiieiineieicieeseeeee 326
Table 14-3: List of functions not supported by the simulation feature (for C)c.ccceeee. 342
Table 14-4: List of functions not supported by the simulation feature (for COBOL) 343
Table 15-1: Directories and file names of core file and UAP trace output file.............c..c...... 350

XXiii

PART 1: Overview of Testers and UAP Traces

Chapter
1. Overview

This chapter introduces the testers and UAP traces provided by OpenTP1.
This chapter contains the following sections:

1.1 Testersand UAP traces
1.2 Overview of testers
1.3 Overview of UAP traces

1. Overview

1.1 Testers and UAP traces

OpenTP1 provides test support programs (testers) for checking UAP operation.
OpenTP1 also provides a troubleshooting facility, the UAP trace facility, for
troubleshooting UAP operation.

The OpenTPL1 testers include online testers which operate in an online environment
with TPL/Server Base or TP1/Message Control and an offline tester used in an offline
environment.

The UAP trace facility can be used with TP1/Server Base.
Each tester requires a different program product, as follows:
TPL1/Online Tester

For using the TPL/Server Base online tester
TP1/Message Control/Tester

For using the TPL/Message Control online tester
TP1/Offline Tester

For using the offline tester

1. Overview

1.2 Overview of testers

Figure 1-1 shows the OpenTP1 testers.
Figure 1-1: OpenTP1 testers

LAN
DX {1 {1 X
Node T Node T Workstation
TP1/Server Base TP1/Message Control
Online Tester Online Tester Offline Tester
(TP1/Online (TP1/Message (TP1/Offline
Tester) Control/Tester) Tester)

UAP UAP UAP

1.2.1 Online testers
(1) Online tester (TP1/Online Tester)

The online tester for TP1/Server Base (hereafter called the online tester) performsthe
following (see Part |1 for details):

e Simulatesclient and server UAPs
e Simulatesthe MCF

1. Overview

Disables resource updating

Simulates operating commands issued from the UAP
Creates, edits, and outputs tester files (data files used in tests)
Collects, edits, and outputs UAP trace information

Collects and edits UAP send messages

Runs with the debugger

Using the online tester, you can test and check the operation of an SUP, SPP, or MHP
in an online environment.

TP1/Server Base must be installed to use the online tester.
Figure 1-2 shows how the online tester is structured.

Figure 1-2: Overview of online tester

D

Request
data

- sy

-

Response
data

-

Receive

messages

Send
messages

TP1/Server Base

TP1/Online Tester

Issue service
u

23

Start application

SPP

Start transaction

Update resources

Acquire synch point

Rollback

1. Overview

Resources

(before
update)

MHP

dc mcf receive

Issue service request

dc mcf reply

[

Trace
information

£ B

Resources
(after
update)

- ey

€ B

Trace
information

- s

Response
data

1. Overview

(2) Online tester (TP1/Message Control/Tester)

The online tester for TPL/Message Control (hereafter called the MCF online tester)
performs the following (see Part 111 for details):

» Disables updating of non-MCF resources
» Invalidates send messages

» Invalidates application startup messages
* Suppresses error events

» Suppresses MHP automatic shutdown

» Collects UAP trace information

Theonlinetester (TP1/Online Tester) isrequired for collecting UAP traceinformation.
Otherwise, the MCF online tester can be used without installing TPL/Online Tester.

When an MHP is specified as atest program for both the online tester and the MCF
online tester, the M CF online tester specification takes precedence.

Figure 1-3 shows how the MCF online tester is structured.
Figure 1-3: Overview of MCF online tester

TP1/Server Base

TP1/Message Control MHP

TP1/Message Control/Tester

Resources
Receive) (before
dc mcf receive
message - - update)
Send

dc mcf send

message Resources
(after

update)

1.2.2 Offline tester (TP1/Offline Tester)
The offline tester performs the following (see Part |V for details):
» Simulates client and server UAPs
* Simulatesthe MCF

1. Overview

» Simulatesfile services

» Simulates operating commands issued from the UAP
» Createstester files (datafiles used in tests)

» Executes commands continuously

* Runswith the debugger

» Collects offline tester trace information

Using the offline tester, you can test and check the operation of an SPP or MHP in an
offline environment.

Depending on the functions used during testing, the UAP may need to be compiled
using the header files provided by the following program products:

* TPlUServer Base
When using functions provided by TP1/Server Base
» TP1/Message Control
When using message send/receive functions
* TPLUFS/Direct Access
When using DAM service functions
* TPLUFS/Table Access
When using TAM service functions
* TPLl/Shared Table Access
When using IST service functions

Also, the OpenTP1 st brake command is required when creating a UAP for offline
tester use. At UAP creation, copy the OpenTP1 command file containing thest bmake
command.

Figure 1-4 shows how the offline tester is structured.

1. Overview

Figure 1-4: Overview of offline tester

Request
data

Receive

messages

Node

TP1/Offline Tester

Issue service
request

Issue service
request '\

SPP

Perform
file access

Issue operating
commands

S

MHP

dc mcf receive

ap

Issue service request

|

dc mcf reply

Access

Read

Trace
information

€ B

DAM and
TAM files

- e

€ B

Results
data

- e

D

Trace
information

- e

€ B

Response
data

- s

1. Overview

1.3 Overview of UAP traces

Asan aid to handling possible UAP errors, OpenTP1 collects alog of the library
functions used by the UAP. Thisinformation shows which functions returned an error
and which resources the UAP attempted to access. By editing and outputting this
information, the user can analyze the cause of UAP errors and then correct the UAP or
rebuild the system. Thisfacility is called the UAP trace facility.

UAP traces are collected for each SUP, SPP, or MHP process.

If either of the following filesis available when a UAP terminates abnormally, the
UAP traces are automatically edited and output to that file.

« UAPtrace datafile
« Corefile

If a UAP terminates abnormally and a core file exists, the UAP trace is automatically
edited and output to afile. The user can edit and output the UAP trace to the standard
output by using the uat dunp command of TP1/Server Base. See Subsection 15.2.2
UAP trace output methods for details of the uat dunp command.

UAP traces can aso be collected when using an online or offline tester to test a UAP.
Such information is useful for analyzing the processing flow in a UAP test.

For the online tester, UAP traces are collected for TP1/Server Base. For the offline
tester, specialized trace information is collected.

PART 2: Online Tester (TP1/Online Tester)

Chapter
2. Facilities

This chapter describes the test facilities available with the online tester.
This chapter contains the following sections:

2.1 Facilities of the online tester

2.2 Simulating aclient UAP

2.3 Simulating a server UAP

2.4 Simulating the MCF

2.5 Disabling resource updating

2.6 Simulating operating commands
2.7 Creating and outputting tester files
2.8 Collecting test information

2.9 Interlocking the debugger

11

2. Facilities

2.1 Facilities of the online tester

The online tester provides the following facilities for testing UAPs:
1. Client UAP simulator

Simulates client UAP processing so that a server UAP can be tested without a
client UAP.

2. Server UAP simulator

Simulates server UAP processing so that a client UAP can be tested without a
server UAP,

3. MCF simulator

Simulates message send and receive processing controlled by TP1/Message
Control so that an MHP or an SPP called by service requests from the MHP can
be tested without TP1/Message Control.

4. Disabling resource update

Disables update processing of resources so that the test UAP does not update
resources used by applications.

5. Operating command simulator
Simulates the processing of operating commands issued by atest UAP.
6. Tester file creation and editing

Creates tester files needed for each simulation and outputs them in an edited
format.

7. UAP trace collection
Collects UAP trace information for the UAP being tested.
8. Merger and editing of UAP trace information

Merges UAP trace information collected in multiple files and edits the
information for output.

9. Send message editing

Collects send messages from test UAPs and edits the messages for output.
10. Debugger interlocking

Executes a UAP to be tested under control of the debugger.

12

2. Facilities

2.2 Simulating a client UAP

Theonlinetester can takethe place of aclient UAPin requesting servicesfrom aserver
UAP. This allows the user to test the server UAP without needing aclient UAPR. This
facility is called the client UAP simulator.

An online tester command is used to simulate a client UAP. Before executing the
command, the user must first create the processing datato be passed to the server UAP.
Thisdatais created in a service request data file. The response data from the server
UAP is saved to the service response data file specified in the command.

There are two types of service request datafileswhich are used according to the client
interface:

* RPC request data file (for simulating a UAP that has an RPC interface)
» XATMI request datafile (for simulating a UAP that has an XATMI interface)

There are also two types of service response data files, selected according to the type
of simulated client UAP:

* RPC response datafile (for simulating a UAP that has an RPC interface)
* XATMI response datafile (for smulating a UAP that has an XATMI interface)

To test aserver UAP using the client UAP simulator, the user must first define the
server UAP as atest-only UAP in auser service definition. A test-only UAPisaUAP
that runsin test mode. All of the facilities of the online tester are available for a
test-only UAP.

Instead of defining the server UAP as atest-only UAP, the server UAP can be defined
asausable UAP inthe user service definition. A usable UAPisaSPPthat runsin test
mode only when the UAP being tested makes a service request.

2.2.1 Simulating a client UAP with an RPC interface

To simulate aclient UAP that uses an RPC interface to send service requests, the user
must first create an RPC request data file with the processing data to be passed to the
server UAP. The response datafrom the server UAP is saved to the RPC response data
file specified in the online tester command.

Figure 2-1 illustrates the client UAP simulator for an RPC interface.

13

2. Facilities

Figure 2-1: Simulating aclient UAP with an RPC interface

'utosppsvc’ OpenTP1

& Online tester Server UAP (SPP)
Z [l _

=

RPC
request

data file - yd

« Service request Service execution
— R\ -
RPC)
response
data file i

- e

2.2.2 Simulating a client UAP with an XATMI interface

The client UAP simulator is also available when using the online tester for service
requests (the request/response service paradigm and the conversational service
paradigm) in an XATMI interface.

(1) Request/response service paradigm

14

To simulate a client UAP that sends the request/response service paradigm, the user
must first create an XATMI request data file with the processing data to be passed to
the server UAP. The response data from the server UAP is saved to the XATMI
response data file specified in the online tester command.

The user must also set the typed buffer information, needed for using the XATMI, in
the typed buffer definition file.

Also, the types of functions to be used in the request/response service paradigm must
be set as headersin the XATMI request datafile.

Figure 2-2 illustrates the client UAP simulator for the request/response service
paradigm.

2. Facilities

Figure 2-2: Simulating a client UAP for request/response service paradigm

'utoxsppsvc' OpenTP1
& Online tester Server UAP (SPP)
2 _

Typed
buffer
definition
file

@ B _ Service execution

XATMI
request
data file

- e

XATMI) \
response -
data file
- e

Service request

(2) Conversational service paradigm

Tosimulateaclient UAPthat sendsthe conversational service paradigm, the user must
first create an XATMI request data file with the processing data to be passed to the
server UAP. Thetypes of functionsto be used in the conversational service paradigm
must be set as the file headers. The response data from the server UAP is saved to the
XATMI response data file specified in the online tester command.

The user must al so set the typed buffer information, needed for accessing the XATMI,
in the typed buffer definition file.

Also, the send/receive procedures must be set in a send/receive control file. The user
creates an XATMI receive data file with the data received by the test server UAP when
aserviceisrequested. The name of thisfileis specified in the send/receive control file.

Datasent by the server UAP is saved to the XATMI response datafilein the same way
as response data.

The server UAP's response data and send data, which the client UAP simulator saved
to the XATMI response data file, can be used by the server UAP simulator as the
request data and receive data sent to aclient UAP. To enable the server UAP simulator

15

2. Facilities

16

to access the response data and send data, first use the binary editor to recreate the
XATMI response datafileasan XATMI request datafile and XATMI receive datafile.

Figure 2-3 illustrates the client UAP simulator for the conversational service
paradigm.

2. Facilities

Figure 2-3: Simulating aclient UAP for conversational service paradigm

OpenTP1

'utoxsppsvc'

E Online tester Server UAP (SPP)
%;ﬁ,]

data file ||
Establish
connection

data file

17

2. Facilities

2.3 Simulating a server UAP

Theonlinetester can take the place of aserver UAP in executing servicesrequested by
aclient UAP. Thisallowsthe user to test the client UAP without needing aserver UAP.
Thisfacility is caled the server UAP simulator.

To simulate a server UAP, the user activates the server UAP (dummy) and then
executes an OpenTP1 command. Before executing the command, the user must create
the response data to be passed to the client UAP. Thisdatais created in a service
response data file. When the client UAP sends a service request, the onlinetester reads
the response data from the file and passesit to the client UAP.

There aretwo types of serviceresponse datafileswhich are used according tothe UAP
interface:

* RPC response datafile (for simulating a UAP that has an RPC interface)
» XATMI response data file (for simulating a UAP that has an XATMI interface)

To test aclient UAP using the server UAP simulator, the user must first define the
server UAP asadummy SPP in auser service definition. A dummy SPPisan SPP that
does not actually generate processes when activated by the server UAP simulator. The
dummy SPP must be activated before entering the command to start testing.

2.3.1 Simulating a server UAP with an RPC interface

18

To simulate a server UAP that uses an RPC interface for accepting service requests,
the user must first create an RPC response data file with the response data to be
returned to the client UAP. When the client UAP sends a service request, the online
tester reads the response data from the file and returnsit to the client UAP,

Figure 2-4 illustrates the server UAP simulator for an RPC interface.

2. Facilities

Figure 2-4. Simulating a server UAP with an RPC interface

'desvstart’
OpenTP1
%74 | Server UAP _
_ Client UAP (simulated) Online tester

_ o

RPC

response
data file

L —
Service request

T~

2.3.2 Simulating a server UAP with an XATMI interface

The server UAP simulator is also available when using the online tester for service
requests (request/response service paradigm and conversational service paradigm) in
an XATMI interface.

(1) Request/response service paradigm

To simulate a server UAP that accepts request/response service paradigm, the user
must first create an XATMI response data file with the response data to be returned to
the client UAP. When the client UAP sends a service request, the online tester reads
the response data from the file and returnsit to the client UAP.

Figure 2-5illustrates the server UAP simulator for the request/response service
paradigm

19

2. Facilities

Figure 2-5: Simulating a server UAP for request/response service paradigm

dcsvstart
OpenTP1
%Z _ Server UAP .
Client UAP (simulated) Online tester
____________ I/:
— [
[]
: ! /
h
! XATMI
" response
1
Ll 1 data file
Issue service N
request : I
— | :
[N
[N
[N
[N
1
(]
L : : _
1

(2) Conversational service paradigm

20

To simulate a server UAP that accepts the conversational service paradigm, the user
must first create an XATMI receive data file and X ATMI response datafile containing
the datato bereceived by the client UAP. When areceive regquest issent from the client
UAP the onlinetester reads an item of receive datafrom the XATMI receive datafile
and returnsit to the client UAP. If afurther receive request is made after al the datain
the XATMI receive data file has been returned, the online tester reads response data
from the XATMI response data file and returnsit to the client UAP.

The data sent by the client UAP is saved to the XATMI send data file created by the
online tester according to the specification in the user service definition.

Figure 2-6 illustrates the server UAP simulator for the conversational service
paradigm.

2. Facilities

Figure 2-6: Simulating a server UAP for conversational service paradigm

decsvstart

OpenTP1

&. Server UAP

Client UAP (simulated) Online tester

M |7

Establish &)nnection

tprecv

tpsend

21

2. Facilities

2.4 Simulating the MCF

The onlinetester can take the place of the M CF in exchanging messages with an MHP.
This alows the user to test the MHP, or the SPP to which the MHP sends service
requests, without needing the MCF. Thisfacility is called the MCF simulator.

An onlinetester command is used to start the MHP application. Before executing the
command, the user must first create an MCF receive message file with the messagesto
be passed to the MHP. The messages sent from the MHP and SPP are saved to an MCF
send message file created by the online tester.

Send messages can be edited by online tester command. Also, specific send messages
can be recreated in the M CF receive message file and used again.

When an MHP usesthe M CF simulator, the onlinetester managesthat MHP. The MHP
is not managed by the actual MCF, even if active. Therefore, operating commands
provided by the MCF are not available for the MHP,

2.4.1 MCF simulation functions

At execution, the MCF simulator linksthe MHP to the online tester library rather than
to the library provided by the MCF. At linkage to the online tester, the functions used
by the MHP are replaced by functions for the online tester. These functions are called
MCF simulation functions.

To use the MCF simulator, the user must first write a user service definition, defining
the MHP for which functions are to be replaced as a smulate MHP. A simulate MHP
isan MHP that uses M CF simulation functions and runsin test mode (that is, all the
facilities of the online tester can be used). A simulate MHP is managed as an SPP by
the online tester.

The online tester cannot be used to test a normal MHP (linked to the M CF-supplied
library).

2.4.2 Simulating message send/receive

22

MCF simulation functions simulate message send and receive. Receive messages are
created in different M CF receive message files, depending on whether messages are
sent and received synchronously or asynchronously.

Asynchronous type receive message files are for simulating asynchronous message
send/receive. A single logical message is stored in an asynchronous type receive
message file.

Synchronous type receive message files are for simulating synchronous message send/
receive. All the logical messages received synchronously during execution of one
service are stored in a synchronous type receive message file.

Figure 2-7 outlines simulation of message send/receive.
Figure 2-7: Simulating message send/receive

utomhpsve

OpenTP1 1

OpenTP1 2

2. Facilities

Online tester

Simulate MHP

SPP

B

Asynchronous
typereceive
message

H

dc mcf receive

N

dc mcf sendrecv

y —

Synchronous|
type receive

file® yd message
| dc mcf call file#
ssue L
Stores service N dc mcf recvsync
messages request |:| T
received from Stores messages
the following dec_mcf send received from the
function: I:I following
¢ dc mef L functions:
receive ¢ dc mcf
dc mcf reply dc mcf sendsync sendrecy
e dc mcf
recvsync

Collects messages

received from the

MCF send

MCF send

message

Collects messages
received from the

message
file#

following functions:
e dc mcf sendrecv
e dc mcf sendsync

following functions:
e dc mcf send
edc mcf reply

file#

#: MCF receive message files (both asyncronous and synchronous) are created by the user for each test

user |ID and logical terminal.
MCF send message files are generated by the online tester for each test user ID.

2.4.3 Simulating continuous inquiry responses

Simulation of continuous inquiry responses is executed by online tester command.
Temporary memory datais collected in atemporary memory data file created by the
onlinetester. Thisfile isautomatically deleted when continuous inquiry responses
terminate.

Figure 2-8 outlines simulation of continuous inquiry responses.

23

2. Facilities

Figure 2-8: Simulating continuous inquiry responses

& IIE 'utomhpsvc'
4.!
€ B

OpenTP1

Online tester

Simulate MHP

MCF

receive

message
file

&I IIE 'utomhpsvc’
!

/|

Service request

A dc_mcf_receive

dc_mcf__tempget

dc_mc_f_reply

dc_mcf__tempput

OpenTP1

Online tester

Simulate MHP

MCF

receive

message
file

24

/|

Service request

dc_mcf_receive

yl

dc_mcf_tempget

dc_mcf_contend

Null data

Temporary

Delete

memory
data file

2. Facilities

2.4.4 Simulating application program startup requests

Online tester commands can be used to simulate an application program startup
request. When a UAP requests startup of an application program, the application
program does not actually start, but the data to be passed is saved in an MCF send
message file created by the online tester. To send this data and start the application
program, the user entersan onlinetester command to download the datato another file.
Then, the user starts the application program by command input, using thisfile asthe
M CF receive message file. In this way, a startup request can be simulated for an
application program that was not actually started by the UAP,

Figure 2-9 outlines simulation of an application program startup request.

25

2. Facilities

26

Figure 2-9: Simulating an application program startup request

.

IIE 'utomhpsvc’

receive

message
file

.

IIE 'utomhpsvc’

OpenTP1

Online tester

Simulate MHP

/|

1 dc_mcf_receive
Service_ request -
- \ dc_mcf_execap
OpenTP1
Online tester Simulate MHP

/l

Service request

dc_mcf_receive

MCF send

message
file

Edit
and

‘'utomsgout -r'
output

MCF

receive

message
file

2. Facilities

2.4.5 Simulating synchronous point processing

When a commit request or rollback request isissued by the MHP being tested, the
function is actually executed by the online tester. For a commit request, however, the
user service definition determines whether a commit or rollback is performed.

Also, evenif processtermination or re-scheduling occursduring arollback request, the
rollback function is completed and returned.

The online tester cannot handle process termination or re-scheduling. Include such
processing within the MHP to be tested.

27

2. Facilities

2.5 Disabling resource updating

28

The online tester can restore the resources updated during atest. Thisis called
disabling resource updating.

Updated resources are restored by rollback at normal termination of the transaction.
Whether acommit or rollback isperformed at normal termination is determined for the
global transaction according to the user service definition for the UAP in which the
root transaction branch occurred. When two or more transaction branches occur, the
specification for the UAP in which the root transaction branch occurred takes effect,
regardless of the specifications for the individual UAPs.

Transaction-dependent journals collected for atransaction being tested can be edited
for output in the same way as normal journals, using thej nl edi t OpenTP1
command.

2. Facilities

2.6 Simulating operating commands

The online tester can simulate command execution requested by the
dc_adm cal | _conmmand function issued in a UAP. Thisfacility is called the
operating command simulator.

In the user service definition, the user can specify for each UAP whether to use the
operating command simulator. The following two options are available:

(1) Skipping command execution

Operating commands are skipped instead of being executed. The following default
information is set as the command execution result (return information of the
dc_adm cal | _conmmand function):

» Shell termination code: 0
» Dataoutput to standard output or standard error output: Null character
e Output data length (standard output or standard error output): O

(2) Replacing command execution results

Instead of the operating command being executed, the datain the operating command
result data file is set as the command execution result. When the UAP issues a
dc_adm cal | _command function, the online tester reads the execution result data
from the file and returns the data to the UAP.

An operating command result data file must be created for each service. Set the
execution result datain thisfile before running a test.

Ifthedc_adm cal | _comand function isissued morethan oncein aservice, the user
must create the data to be returned at each function call. This also applies to the main
function in the SPP and to functions issued from an SUP.

Figure 2-10 shows how the data in the operating command result datafile is used to
replace the actual execution result.

29

2. Facilities

Figure 2-10: Replacing command execution results

OpenTP1
UAP Online tester
dc_adm__call_ Operating
command command
M result
data file

30

2. Facilities

2.7 Creating and outputting tester files

The online tester uses a number of different ssimulators, so a dedicated-use datafile
must be created for each one. These data files are called tester files.

This section describes how tester files are created, edited, and output.

2.7.1 Creating tester files

Each tester fileiswritten in aspecific dataformat. However, the user can easily create
the tester files by command input, using the online tester. Thisis called the tester file
creation facility.

Table 2-1 lists the tester files that can be created with the tester file creation facility.

Table 2-1: Tester files created by tester file creation facility

Tester files Creator Simulator using the tester file

Servicerequest | RPC request datafile User Client UAP simulator
datafiles

XATMI request datafile User Client UAP simulator
Service RPC response datafile User Server UAP simulator
response data
files Online tester Client UAP simulator

XATMI response data file User Server UAP simulator

Online tester Client UAP simulator

XATMI receive datafile User Client UAP simulator
MCF receive Asynchronous receive message file | User MCF simulator
message files

Synchronous receive message file User MCF simulator
Operating command result datafile User Operating command simulator

The tester file creation facility is used to create tester files with one of following two
methods:

Using the test data definition file

Creation of atester file can use data from the test data definition file created by
the user. The user can create the test data definition file using atext editor. This
file can contain data for multiple tester files.

Using journal data

Creation of atester file can use record datafrom an unload journal file or trace

31

2. Facilities

data from an RPC trace file. To usejournal data, extract it using an operating
command.

Commandsfor extracting data and data types depend on kinds of tester filesto be
created. Using journal data disallows creation of an operating command result
datafile. Table 2-2 lists the kinds of tester files to be created, corresponding data
extraction commands, and available data.

Table 2-2: Kinds of tester files to be created, available data extraction
commands, and available data

Tester file name Data extraction Available data
command
RPC request datafile r pcdunp « First effective RPC request send data out of RPC

trace data extracted by ther pcdunp command.

XATMI request datafile r pcdunp » First effectivet pcal | ort pacal | function data
out of XATMI request/response request send data
in RPC trace data extracted by ther pcdunp
command.

» First effectivet pconnect function data out of
XATMI interactive request send datain RPC trace
data extracted by the r pcdunp command.

RPC response datafile r pcdunp » First effective RPC request send data out of RPC
trace data extracted by ther pcdunp command.

XATMI response datafile r pcdunp » First effectivet pr et ur n function data out of
XATMI request/response and interactive request
send datain RPC trace data extracted by the

r pcdunp command.

XATMI receive datafile r pcdunp e All t precv function data out of XATMI
interactivereceive datain RPC trace dataextracted
by ther pcdunp command.

Asynchronous receive j nlrput ij record data and mj record input message datain
message file unload journal files extracted by thej nl r put
command. When two or more record data entries
areavailable, the system acceptsdataentrieswhose
order identifier beginswiths or | .

Synchronous receive j nlrput * Input message datain mj records from unload
message file journal files extracted by thej nl r put command.
Operating command result -- --
datafile

L egend:

--: No files are created from journal data or trace data.

32

2.7.2 Editing and outputting tester files
The online tester can edit and output contents of the created tester file. Thisiscalled

the tester file edit and output facility.

2. Facilities

To use this facility, execute an online tester command. Entering the command edits
datain a specified tester file based on the format of the specified tester file kind and
outputs the edited data to the standard output.

Table 2-3 shows tester files available for edit and output with the tester file edit and

output facility.

Table 2-3: Tester filesavailable for edit and output with the tester file edit and

output facility

Tester files Creator Simulator using the tester file

Servicerequest | RPC request datafile User Client UAP simulator
datafiles

XATMI request datafile User Client UAP simulator
Service RPC response datafile User Server UAP simulator
response data
files Online tester Client UAP simulator

XATMI response datafile User Server UAP simulator

Online tester Client UAP simulator

XATMI send/ XATMI send datafile Online tester Client UAP simulator
receive data
files Server UAP simulator

XATMI receive datafile User Client UAP simulator
MCF receive Asynchronous receive message file | User MCF simulator
message files

Synchronous receive message file User MCF simulator
Operating command result datafile User Operating command simulator

33

2. Facilities

2.8 Collecting test information

2.8.1 Collecting UAP trace information

The online tester collects UAP trace information for the UAP running in test mode at
the entrance and exit of each OpenTPL1 function. Thisis called collecting UAP trace
information.

The functions provided by OpenTP1 that access a user server, an RPC function, a
DAM file, or aTAM file can use an online tester facility that collects atrace of dl the
I/O data specified in the function. Thisis called collecting of the complete I/O data
trace.

Table 2-4 shows the functions that can use an online tester facility that collects the
complete |/O data trace.

Table 2-4: Functionsthat can use the complete I/O datatrace collection facility

Facility Function name
C format COBOL format
User server Service function start Service program start
Service function end Service program end
Service function start Service program start (at retry)
(at retry)
Servicefunctionend (at | Service program end (at retry)
retry)
Remote procedure call dc_rpc_call CBLDCRPC(' CALL ")

dc_rpc_cl tsend

CBLDCRPC(' CLTSEND ')

DAM file service

dc_dam read

CBLDCDAM ' DCDAMSVC' , ' READ)

dc_damrewite

CBLDCDAM ' DCDAMSVC' , ' REWT")

dc_damwite

CBLDCDAM ' DCDAMSVC' , 'VRIT')

TAM file service

dc_tamread

CBLDCTAM ' FxxR') (' FxxU)

dc_tamrewite

dc_tamwite

CBLDCTAM' MEY ') (' MFYS') (' STR ')

IST service

dc_ist_read

CBLDCI ST(* DCI STSVC , ' READ)

dc_ist_wite

CBLDCI ST(* DCI STSVC , 'WRIT')

34

2. Facilities

Facility Function name
C format COBOL format
User journal collection dc_j nl _uj put CBLDCINL(' WPUT ")

The complete I/0O datatrace is collected at different times depending on the function,
as shown below.

e User server functions
Collect input data at startup and collect output data at termination.
» Datasend/receive functions

Collect the send data on service requests and the CUP notification data at the start
of the function. Also, collect the receive data on service responses at the exit of
the function.

» File dataread functions

Collects the trace at the exit of the function.
» File datawrite functions

Collectsthe trace at the start of the function.

UAP trace information is collected in tracefiles. A tracefile is created automatically
for each OpenTP1 system when the online tester collects the first trace information.
When full, the trace file is swapped with another file.

Trace information for a number of OpenTP1 functionsis collected in onefile at
completion of aservicefunction, for example. Also, if the UAPterminates abnormally,
trace information is extracted from the core file and saved in the trace file. For this
reason, trace information may not be collected if the online tester isimmediately
terminated during UAP execution or if no corefileis collected at abnormal UAP
termination.

2.8.2 Merging, editing, and outputting UAP trace information

The onlinetester can merge UAP trace information from anumber of tracefilesinto a
singlefile and edit thefile contentsfor output. Thisis called merging and editing UAP
trace information.

Traceinformation is merged by entering an online tester command. The user specifies
two or more trace files and the trace information is merged in asingle file, following

the service sequence. Thisfacility can be used for saving the trace information from a
number of OpenTP1 systemsin collection sequence for each global transaction. The

facility can also be used for merging the contents of atrace file and swap file.

Figure 2-11 shows the result of merging UAP trace information.

35

2. Facilities

Figure 2-11. Result of merging UAP trace information

OpenTP1 1 OpenTP1 2 OpenTP1 3
SUP SPP1 SPP2
Procedure A // Procedure B ///
I = 1=
1 - L
Service request Service request < Procedure C
IR 1 i

/
/

Procedure E I~ Procedure D N

]] I

36

Trace Trace Trace
information information information
Trace Trace Trace
file 1 file 2 file 3
» Procedure A » Procedure B « Procedure C
* Procedure E * Procedure D
Merge

Trace information from procedure A
Trace information from procedure B

Trace information from procedure C

Trace information from procedure D

merge | Trace information from procedure E
file

Trace information can be edited for output by online tester command. The user can

2. Facilities

specify the log date and time to set the output range.
Two output formats are available:
» All thetraceinformation in atracefile
» Part of the trace information (function names, for example) in atracefile

Figure 2-12 gives an overview of collecting, merging, editing, and outputting UAP
trace information.

37

2. Facilities

38

Figure 2-12: Collecting, merging, editing, and outputting UAP trace

information
OpenTP1 1
SUP SPP1
dc_rpc_open = dc_trn_begin
dc_rpc_call dc_rpc_call

dc_rpc_close

~ dc_trn_unchained
_commit

Trace information

trace file

(when trace file 1 is full)

Trace
file 2

\

/

OpenTP1 2

SPP2

dc_dam__

=7 dc_darj_open

dc_dam_read

N\ dc_dam_close

rewrite

Trace
information

Trace
file

‘utotremrg’

Merge trace information

Standard output

'utotrcout’

Edit and output
trace information

_
—

2. Facilities

2.8.3 Editing send messages

The send messages collected in the MCF send message file when using the MCF
simulator can be edited for output. Thisis called editing send messages.

Send messages are edited by entering an online tester command. The datain the MCF
send message file is edited and output to the file specified in the command or to
standard output.

39

2. Facilities

2.9 Interlocking the debugger

40

The online tester can online test test-only UAPs such as SUP, SPP, and MHP by
interlocking with the debugger. This facility is called debugger interlocking.

Specify debugger interlocking for each UAP in the user service definition and execute
the online tester command. The main function in the UAP activates the debugger.
Interlocking the debugger easily provides step-by-step debugging or batch debugging.

The available debugger is.

e dbx

e cbltd (COBOL85/TD)
e chlcv (COBOL85/ TD)

Before testing a UAP online by interlocking the debugger, test that UAPisoffline. Do
not let more than one user interlock the debugger on the same node to perform atest.
Thisisaguard against an effect on the OpenTP1 system when the UAP interlocked to
the debugger terminates abnormally.

The user can collect trace information about a UAP interacting with the debugger in
the same manner as a UAP that operatesindependently of the debugger. However, part
or all of the trace information may be unavailable depending on the timing when the
onlinetester writestrace information. Figure 2-13 outlines how debugger interlocking
works.

Figure 2-13: Interlocking the debugger

2. Facilities

OpenTP1
utodebug Online tester
Window []
= L Debugger
Activate
debugger M
Start debugger: Replace Start d;bugger
M standard I/O M
- L UAP
Activate UAP Activate UAP
(debugger command)]]
Enter debugger Exe_cute
command commands <
— \\
L] Report UAP ||
Terminate UAP termination &
Terminate —
debugger
Terminate
debugger
utodbgstop
<[l

41

Chapter

3. Setting the Test Environment

This chapter explains how to set the environment for running tests with the online
tester.

This chapter contains the following sections:

3.1 System definitions for the online tester
3.2 Setting environment variables

3.3 User-created files

3.4 Creating files

43

3. Setting the Test Environment

3.1 System definitions for the online tester

The system definitions for running the online tester are described below. See the
manual OpenTP1 System Definition for information on definition structure and rules.

3.1.1 System service configuration definition

Add the following definition to the OpenTP1 system service configuration definition
(definition file name: $DCCONFPATH/ sysconf).

(1) Syntax
(@) setformat

[set uto_conf=Y| N

(b) Command format
None.
(2) Function
Defines whether to start the online tester at system startup.
(3) Explanation
(a) set format
Operands
® ut o_conf=Y| N~<<N>>
Specify whether to use the online tester at this node.
Y
Use the online tester.

Do not use the online tester.
(b) Command format
None.
3.1.2 Tester service definition

Create the definition file $DCCONFPATH ut o, then definein thisfilethe tester service
definition.

44

(1) Syntax

3. Setting the Test Environment

(a) set format

[set uto_server_count =maximum no. of test user servers]
[set max_trace_file_size=maximumsize of tracefiles]
[set max_nessage_fil e_si ze=maximum size of MCF send

[set watch_ti me=max reply wait time]
[set rpc_trace=Y|N
[set rpc_trace_name="name of thefilefor collecting RPC

[set rpc_trace_size=sizeof thefilefor collecting RPC

message file]

trace information”]

trace information]

(b) Command format

{{[<l NDEXWORD PRONOUNCE="ut ot er m' | NDEXI TEM=" ut ot er M PARENTPRONOUNCE="Test er Servi ce
Definition"
OSI TP| ot her] logical-terminal-name] } }

PARENTI TEM=" Test er Servi ce Definition">utoternx/| NDEXWORD> [-p

(2) Function
Defines the environment for executing online tester services.

(3) Explanation

(a) set format

Operands

m uto_server_count ~<unsigned integer> ((0-240)) <<64>>

Specify the maximum number of user serversthat can be activated for testing by
the online tester.

max_trace_fil e_si ze ~<unsigned integer> ((0-2000000)) <<64>> (unit:
Kbytes)

Specify the maximum size of each trace file for storing UAP trace information.
Asthe header (management information) in atracefileis 128 bytes, add 128 bytes
to the value you wish to specify.

When zero is specified, the online tester does not collect UAP trace information.

Up to two trace files are created for each tester user ID. This prevents erasure of
the trace information when atrace file becomes full.

Whenever atracefile becomesfull, the trace information must be backed up, and
then the full trace fileis deleted. Prevent the trace file from becoming full by
specifying sufficient size.

The maximum tracefile size that can be specified for an OpenTPlsystemisgiven

45

3. Setting the Test Environment

46

by the following equation:
Maximum size of tracefile=

(value specified inmax_trace_fil e_si ze operand) x 2 x (number of
users) x 1,024 bytes

max_nessage_fil e_si ze ~<unsigned integer> ((0-2000000)) <<64>> (unit:
Kbytes)

Specify the maximum size of the MCF send message file for storing messages
sent by the following functions when the online tester's M CF simul ator is used:

* dc_ncf _send function

e dc_ncf_reply function

e dc_ncf_sendsync function
* dc_ncf _sendrecv function
e dc_ncf_execap function

As the management information datain each send message is 128 bytes, and the
header (management information) in the M CF send messagefileis 128 bytes, add
128 bytes to the value you wish to specify.

When zero is specified, the online tester does not collect send messages.

An MCF send message file is created for each test user ID. The maximum size
that can be specified for aM CF send message filein an OpenTP1 systemisgiven
by the following equation:

Maximum size of MCF send message file =

(value specified in max_nessage_fi | e_si ze operand) x (humber of
users) x 1,024 bytes

wat ch_t i me ~<unsigned integer> ((0-62535)) (unit: seconds)

When using remote procedure calls (RPCs) for inter-process communication,
specify the maximum wait timefor return of aservicereply after aservice request
issent.

OpenTP1 may suspend termination processing for the length of time specifiedin
this operand. Therefore, if you specify alarge value, the termination processing
of OpenTP1 may take sometime.

If no reply has been received when the specified time elapses, the RPC returns a
send/receive timeout error.

When zero is specified, the system remainsin wait state indefinitely.
When you specify zero, OpenTP1 may not terminate.

3. Setting the Test Environment

When specification isomitted, the value specified inthewat ch_t i me operand of
the system common definition is assumed.

B rpc_trace=Y| N~<<N>>
Specify whether to collect RPC traces.
Y
Collect RPC traces.

Do not collect RPC traces.

When specification is omitted, the value specified inther pc_t r ace operand in
the system common definition is assumed.

m rpc_trace_nane ~<pathname> <<$DCDI R/ spool / r pct r >>
Specify the pathname of the file for collecting RPC traces.

In the pathname, the maximum length of the name of the file for acquiring the
RPC trace is 13 characters. The default file nameisr pctr.

To specify an environment variable in a pathname, make sure that the pathname
begins with the environment variable (example: $DCDI R/ t np/ file-name).

When specification is omitted, the value specified inther pc_t race_nane
operand in the system common definition is assumed.

B rpc_trace_size ~<unsigned integer> ((1024-2147483648)) <<4096>> (Unit:
bytes)

Specify the size of the file for collecting RPC traces.

When specification is omitted, the value specified inther pc_t race_si ze
operand in the system common definition is assumed.

(b) Command format
See below.
3.1.3 Tester service definition (command format)
(1) utoterm (specification of logical terminal information)

Syntax

{{[utoterm[-p OSITP| ot her] logical-terminal-name] }}

Function

Definesinformation for each logical terminal when using the MCF simulator for
testing an MHP created in the data manipulation language (DML).

47

3. Setting the Test Environment

When a name already specified is respecified as the logical terminal name, a
warning message is displayed and the repeat specification isignored.

Options
m -p OSI TP| ot her ~<<other>>

Specify the protocol type. Specify this option when testing an MHP created in the
DML.

oSl TP
OSI TP protocol
ot her
Protocol other than OSI TP
m |ogical-terminal-name ~<identifier of 1-8 characters>
Specify the logical terminal name.
3.1.4 User service definition

Add the following definitions to the OpenTP1 user service definition (definition file
name: $DCCONFPATH/ user-server-name).

(1) Syntax
(@) setformat

[set test_node=target|usabl e| dnyspp]| si nmhp| no]

[set test_transaction_commt=Y| N

[set test_adm cal | _command=do| ski p|fil e]

[set test_xatm _send_file=Y|N

[set test_debugger="{dbx| cbl td|cbl cv}[command-argument] "]
[set test_data_trace=Y|N|

(b) Command format
None.
(2) Function

Enables execution of the online tester at the user server. Add the definitions to each
service group in the OpenTP1 user service definition.

(3) Explanation
(@) setformat
Operands
B test_node=t arget| usabl e| dmyspp| si mrhp| no ~<<no>>
Specify whether the UAP is to be tested when the online tester is activated.

48

3. Setting the Test Environment

t ar get

Test-only UAP

Specify thisoption to set the UAP as atest-only UAP. All thefacilities of the
online tester (disabling resources updating, collecting UAP trace
information, and so on) are used in testing the UAPR.

Service requests cannot be made from atest-only UAP to a non-test UAP, or
from a non-test UAP to atest-only UAP.

usabl e

Usable UAP

Specify this option to set the UAP as an SPP to which service requests are
sent from the UAP being tested.

A usable UAP runsin test mode when the UAP being tested makes a service
request. The facilities of the online tester, such as disabling resources
updating, can be used.

When a service request is made from a hon-test UAP, the usable UAP runs
in non-test mode and the online tester facilities are not available.

dnyspp

Dummy SPP

Specify thisoption to usethe onlinetester's server UAP simulator to simulate
the SPP without actually activating it.

si mrhp

no

Simulate MHP

Specify this option to use the online tester's M CF simulator and link
simulation functions to the MHP.

Non-test UAP

Specify thisoption to exclude the UAP from testing. Service requests cannot
be made from atest UAP to a UAP with the no specification.

The following tables show the relationships between thet est _node operands
and the online tester facilities that can be used for UAPs, as well as the
relationships between a calling UAP and a called UAP when a serviceis
requested.

49

3. Setting the Test Environment

Table 3-1: test_mode specifications and available test facilities

Available test facility target usable | dmyspp | simmhp | no
Client UAP simulator Y Y -- -- N
Server UAP simulator Y Y/N -- Y N
MCF simulator v# YIN -- v# N
Disabling the resources update process Y Y/N -- Y N
Operating command simulator Y Y/N -- Y N
Collecting UAP trace information Y Y/N -- Y N
Debugger interlocking Y N -- Y N

Legend:
Y: Available.

Y/N: May be available, depending on the type of function.
Main function

Not available.
Service function

Available when using the client UAP simulator for service requests. In other
cases, thetest facility isavailableif it can be used with the calling UAP (or with
the UAP that makesthefirst request when a service extends over multiple UAPS).

N: Not available.
--: Not applicable.
#. The UAP must be linked to the M CF simulation functions provided by the online
tester.
Tabl e 3-2. Relationships between calling UAP and called UAP when requesting
services
Calling UAP Called UAP
target usable dmyspp simmhp no
tar get Y Y Y -- N
usabl e Test mode Y Y Y -- N
Non-test mode N Y N - Y

50

3. Setting the Test Environment

Calling UAP Called UAP
target usable dmyspp simmhp no
dnyspp - - - - -
si mrhp Y Y Y -- N
no N Y N -- Y
Legend:

Y: Service requests can be made.

N: Service requests cannot be made.

--: Not applicable.
test_transaction_conmit=Y] N~<<N>>

Specify whether acommit or rollback is performed at a synchronous point when
atransaction running in test mode occurs in this UAPR.

Y
Commit

Rollback
test _adm cal | _comuand=do| ski p| fi | e ~<<do>>

Specify whether to simulate operating command execution when a
dc_adm cal | _conmand function isissued in this UAP.

do
Execute operating commands.
skip
Instead of executing the command, use the default result.

Thisoptionisvalid only whent ar get or si nrhp issetinthet est _node
operand, or when usabl e is specified and the UAP is running in test mode.

file

Instead of executing the command, use the data in the operating command
result datafile as the execution result.

Thisoptionisvalid only whent ar get or si nrhp issetinthet est _node
operand, or when usabl e is specified and the UAP is running in test mode.

51

3. Setting the Test Environment

52

B test_xatm _send_fil e=Y] N~<<N>>

Specify whether the data sent to the simulated UAP by the server UAP simulator
isto be output to the XATMI send data file when a conversational serviceis
requested in an XATMI interface.

Y
Outputs the send datato thefile.

Does not output the send data to the file.

Thisoptionisignoredif specified for aUAP other thanasimulated UAP (dnyspp
specified inthet est _node operand).

t est _debugger ="{dbx]| cbl t d| cbl cv} [command-argument] "

When activating the UAP by interlocking the debugger, specify the necessary
debugger command name and a command argument for that debugger command.

When aUAP is given this definition, executing the ut odebug command
activates this UAP together with the specified debugger.

Inadvertently executing the dcsvst art or dcst art command for a UAP with
this definition causes the command to fail, outputting an error message.

To terminate the UAP that was activated with the ut odebug command, execute
the ut odbgst op command from awindow other than that was used to execute
the ut odebug command.

If the UAP isterminated with acommand other than theut odbgst op command,
the OpenTP1 system and the online tester may provide different UAP states. The
executed command must wait until the debugger terminates.

Itisimpossibleto re-activate aUAP processthat was activated with the debugger.
After termination of the UAP process that is interlocked to the debugger,
reexecuting this UAP needs to stop the debugger, then reexecute the ut odebug
command.

The UAP with this definition can be active in a single process regardless of the
par al | el _count operand value specified in the user service definition of the
corresponding UAP.

Itisimpossibleto enable or disable shutdown for the UAP that was activated with
the debugger.

test_data_trace=Y] N~<<N>>

Specify whether the complete I/O dataissued in thisUAP for the functionisto be
collected astrace information. For the function that can use afacility that collects
the complete |/O data trace information, see Subsection 2.8.1 Collecting UAP

3. Setting the Test Environment

trace information.

Y
Collects the complete 1/0O data as UAP trace information.
Thisoption isvalid only when avalue of 1 or greater is specified in the
max_t race_fil e_si ze operand of the tester service definition to use the
UAP as the test target.

N

Collects a part of the I/O data as UAP trace information.

Thisoption isvalid only when avalue of 1 or greater is specified in the
max_t race_fil e_si ze operand of the tester service definition to use a

UAP asthe test target.
(b) Command format
None.
(4) Notes

When specifying si mmhp inthet est _node operand, match all the other
specifications in the user service definition with the SPP specifications.

Example:

t ype=ot her

Also, specify queue inther ecei ve_f r omoperand.

User service default definitions cannot be specified as online tester definitionsin
the user service definition. This prevents areal job UAP from being runin error
in atest environment.

When using the M CF simul ator, specify Y intheat oni ¢c_updat e operand of the
user service definition if atransaction MHP is to be executed.

The schedule priority of atest UAP depends on value specified in the

schedul e_pri ori ty operand of the user service definition. When executing a
test UAP concurrently with areal job UARP, consider the effect on the performance
of the job UAP when specifying the priority of the test UAP.

If zeroisspecified intheuap_t r ace_nmax operand of the user service definition
(evenif avalueof 1 or higher is specifiedinthemax_trace_file_si ze
operand of thetester servicedefinition), awarning message output, indicating that
UAP trace information cannot be collected.

When the online tester is not being used, the dc_r pc_open function returns an
error code at activation of a UAP that has a value other than no specified in the

53

3. Setting the Test Environment

t est _nmode operand. This prevents atest UAP from being runin error as areal
job UAP.

Tointerlock a UAP to the debugger, specify fi | e or ski p for the

t est _adm cal | _conmand operand. When the UAP isinterlocked to the
debugger by specifying do for thet est _adm cal | _conmand operand, issuing
thedc_adm cal | _command functionletsthe UAPwait for aresponse, disabling
debugger control. To solvethis, issuetheut odbgst op command to terminatethe
UAP, then terminate the debugger.

Do not issue af or k system call or syst en(3C) functionto a UAP interlocked
with the debugger. Issuing these functions lets the UAP wait for aresponse,
disabling debugger control. To solve this, issue the ut odbgst op command to
terminate the UAP, then terminate the debugger.

Debugger interlocking is unavailable when running under the multi-node
environment.

If possible, avoid testing a UAP interlocked with the debugger under the
OpenTP1 system where areal job UAP is active. Thisisto prevent asystem
failure caused by normal or abnormal termination of the UAPinterlocked with the
debugger under the OpenTP1 system where the UAP is operating.

Consider debugger interlocking operations and operation times when specifying
monitoring timevaluesin the user service definition for the UAP interlocked with
the debugger. A thoughtlessy specified value may frequently cause atime-out
error.

When do is specified for thet est _adm cal | _conmand operand for aUAP to
start another UAP in the test mode using thedcsvst art command set in the
argument of thedc_adm cal | _conmand function, specify the environment
variable DCUTCOKEY in the user service definition of the UAP that issues the
function.

3.1.5 Setting the typed buffer

Typed buffer information must be set to simulate a UAP that uses the XATMI
interface. Typed buffer information is stored in atyped buffer definition file (any file
name).

(1) Syntax

zueng020. ti f Otype zueng020. ti f 1subtype zueng020. ti f 1buffer-length

54

Legend:

Ag

One or more spaces or tab codes (or none)

3. Setting the Test Environment

Ag
One or more spaces or tab codes
(2) Operands
m type ~<8 upper-case a phabetics>
Specify either of the following buffer types:
e X_COWWDN
« X C TYPE
m subtype ~<1-16 a phanumerics>

Specify the buffer subtype. When the specification exceeds 16 characters, only
thefirst 16 are valid.

Up to 512 subtypes can be defined for X_COMMON or X_C_TYPE. When morethan
512 subtypes are defined, an error occurs and the ut oxsppsvc command is
terminated.

When a subtype is duplicated, the first definition is valid. The second and
subsequent definitions result in an error and an error message is output. No error
message is output, however, when identical contents are defined for the
duplicated subtypes.

m buffer-length ~<decimal digit>

Specify the buffer length. Check the buffer length by referring to the stub source
created by the TP1/Server Base st brmake command and an output result created
by the st bmake command with the - p option specified.

(3) Definition example

typed-buffer-definition
X_COMVON subt ypel 256
X_COVMON subtype2 128
X_C_TYPE subtype3 128
#

(4) Notes
» Specify one subtype name per line.
» Alinecan be up to 512 bytesin length, including the line feed code.

» Write# at the start of acomment. Only aspace or tab code may be written before
#.

Do not write acomment at the end of the typed buffer definition.
* No error occurs for the file when no valid definitions exist. However, an error

55

3. Setting the Test Environment

occurs when the typed buffer is allocated when, for example, aserviceis

requested.
3.1.6 Setting send/receive procedures

Send/receive procedures must be set when using the conversational service paradigm
with asimulated UAP that uses the XATMI interface. Send/receive procedures are

stored in a send/receive control file (any file name).

In the send/receive control file, define asend statement for sending data to the test
SPP and ar ecv statement for receiving data from the test SPP.

Always create a send/receive control file when using the conversational service

paradigm, even if no datais actually sent or received.
(1) Syntax
(@) send statement

zueng020. ti f Osend [zueng020. ti f 1XATMI-receive-data-file-name]

Legend:
Ag
One or more spaces or tab codes (or none)
A1
One or more spaces or tab codes
(b) recv statement

Agrecv A qtype A qsubtype or buffer-length [A 4flag [, flag. . .11

L egend:
Ao
One or more spaces or tab codes (or none)
A1
One or more spaces or tab codes
(2) Operands
(@) send statement
m send

Specify the send keyword as the definition name.

56

3. Setting the Test Environment

m XATMI-receive-data-file-name ~<pathname>

Specify the name of the XATMI receive data file containing the data received by
the test SPP.

When specification is omitted, the datain the XATMI receive datafile specified
in the preceding send statement is used. An error occurs if specification is
omitted for the first send statement.

(b) recv statement
B recv
Specify ther ecv keyword as the definition name.
m type ~<8 upper-case a phabetics>
Specify one of the following receive buffer types:
e X OCTET
e X_COWON
X C TYPE
m subtype ~<1-31 a phanumerics>
Specify the receive buffer subtype when specifying X_COMMONor X_C TYPEn
type.
m buffer-length ~<decimal digit>
Specify the receive buffer length when specifying X_OCTET in type.
m flag

Specify one or more of the following flags set for areceive request (t pr ecv
function):

* TPNOCHANGE
* TPNOBLOCK
* TPNOTI MVE
e TPSI GRSTRT
Do not specify aflag unless required.

When setting multiple flags, delimit each flag with acomma (,). Do not insert a
space or tab code before or after the comma.

57

3. Setting the Test Environment

(3) Definition example

#

send/receive procedure definition

interactive service name: ser vi ce01

send sendfilel

recv X_OCTET 128 TPNOCHANGE

send sendfile2

recv X_COMMON subtypel TPNOTI ME, TPSI GRSTRT

(4) Notes

58

A line can be up to 512 bytes in length, including the line feed code.

Write # at the start of acomment. Only a space or tab code may be written before
#.

Do not write acomment at the end of the send/receive procedure definition.

No error occursif nosend statement or r ecei ve statement isdefined. However,
processing is terminated if a connection is established during execution of the
ut oxsppsvc command.

During execution of the ut oxsppsvc command, thet psend andt pr ecv
functions are issued for the conversationa service paradigm according to the
specifications in the send/receive control file. If a TPEV_SVCSUCC or
TPEV_SVCFAI L event occurs, subsequent send andr ecv statementsareignored
and the command terminates normally.

Thedefinitioninther ecv statement is related to the XATMI functionsissued by
the ut oxsppsvc command as follows.

Example:

If ther ecv statement isdefined as. r ecv X_COMMON subt ypel
TPNOCHANGE

Then:

ptr=tpalloc (X COMMON, subtypel,0)

1 2.
tprecvicd, &ptr, &len, TPNOCHANGE, &revent) ;
3.
1. type
2. subtype
flag

3. Setting the Test Environment

3.2 Setting environment variables

If two or more usersrun tests on the same OpenTP1 system, the trace information may
be mixed and the test results may be difficult to verify. To prevent thisrisk, atest user
ID isset for each user of the onlinetester. The onlinetester assignsoutput filesfor trace
information and M CF send messages, using the test user IDs.

Set aunique test user 1D for each user, subject to the following conditions:

Environment variable Value attribute Number of
characters
DCUTOKEY 1-byte alphanumerics (a-z, A-Z, and 0-9) Upto4

Setting test user IDs meansthat trace files and M CF send message files can be created
and used by each test user ID.

Test user IDs are obtained at the following times:
» At UAP startup by the OpenTP1 dcsvst art command
» At gpecification of thedcsvst art command in the user service configuration
definition
» Ataservicereguest to an SPP by the online tester'sut osppsvc or ut oxsppsvc
command
» Ataserviceregquest to an MHP by the online tester's ut omhpsvc command

Thetest user ID may be assumed as _ut o when the OpenTP1 system isrestarted after
forced termination (- f optioninthedcsvst op command) or after asystem shutdown
during normal termination processing of atest UAP. A message is output, reporting
that the system was restarted with the assumed test user ID. If necessary, re-enter the
dcsvst art command to restart the OpenTP1 system after UAP termination.

59

3. Setting the Test Environment

3.3 User-created files

Thefollowing tableslist the types and names of thetester filesthat the user must create
in order to use the online tester.

For creating atest directory, see Subsection 3.4.1 Test directory.

Table 3-3: List of tester filesto be created by the user
Tester file type Use and contents Time of Delet Time of
creation ed by | deletion
Service RPC Stores request data passed to the Before service User Any
request data request server UAP when using the client request
files datafile UAP simulator with an RPC
interface.
XATMI Stores request data passed to the Before service User Any
request server UAP when using the client request
datafile UAP simulator with an XATMI
interface.
Service RPC Stores data returned as the service | At activation of User Any
response data | response result when using the server UAP | the simulate SPP
files datafile simulator with an RPC interface.
XATMI Stores data returned as the service | At activation of User Any
response result when using the server UAP | the simulate SPP
datafile simulator with an XATMI
interface.
XATMI receive datafile Storesdatareceived by thet precv | Before service User Any
function in the UAP when the request or at
conversational service paradigmis | activation of the
made viaan XATMI interface. simulate SPP*
MCF receive | Asynchron | Stores messages passed to the Before service User Any
message files | ousreceive | MHP by thedc_ncf _recei ve request
message function when using the MCF
file simulator.
Synchrono | StoresmessagespassedtotheUAP | Before service User Any
usreceive by the dc_ntf _recvsync and request
message dc_ncf_sendrecv functions
file when using the MCF simulator.
Operating command result Stores datareturned tothe UAP as | Before service User Any
datafile theexecutionresult whenusingthe | request

operating command simulator.

Note

60

3. Setting the Test Environment

All user-created files for the offline tester can be used without modification,
except the following:

XATMI receive datafile

Synchronous receive message file

Operating command result data file

However, these three files can be used by the offline tester if you use the cat
command to consolidate severa offline tester data filesinto asingle file.

#. The user creates an XATMI receive data file before a service request is made when
using the client UAP simulator, or at activation of the simulate SPP when using the
server UAP simulator.

Table 3-4: Names for user-created tester files

Tester file type

File name

Service request datafiles

RPC request datafile

XATMI request datafile

Any

Service response data
files

RPC response datafile

$DCDI R/ spool / ut o/ test-user-1D/
USer-server-name/ sve-service-name™t

XATMI response datafile

$DCDI R/ spool / ut o/ test-user-1D/
USer-server-name/ Xsv-service-name™t

XATMI receive datafile

$DCDI R/ spool / ut o/ test-user-1D/
USer-server-name/ Xrv-service-name*l #2 #3

MCF receive message
files

Asynchronous receive message file

$DCDI R/ spool / ut o/ test-user-1D/
XX....XX(XX....Xx can be any name)

Synchronous receive message file

$DCDI R/ spool / ut o/ test-user-1D/
recv-logi cal-terminal-name™

(Header segment file: $DCDI R/ spool / ut o
/ test-user-1D/ recvh-logical -terminal-name)

Operating command
result datafiles

For SPP service functions

$DCDI R/ spool / ut o/ test-user-1D/
user-server-name/ cmd-service-name’’

For SUP and SPP main functions

$DCDI R/ spool / ut o/ test-user-1D/
user-server-name/ cmd

#1: When the service name exceeds 11 characters, thefirst five and last six characters
are combined as the service name.

Example:Service name uapser vi ce0001 =» uapsece0001

61

3. Setting the Test Environment

#2: When the service name exceeds 15 characters, the first five and the 10th to 15th
characters are combined as the service name.

Example:Service name uapxat ni servi ce0001 =» uapxaervi ce

#3: Any name when using the client UAP simulator.

#4: Logical terminal name set as the argument of thedc_ntf _recvsync or
dc_ncf _sendrecv function.

3.3.1 Service request data files
(1) RPC request data file

An RPC request data file stores the data passed to the service function for the service
specified by the ut osppsvc command when using the client UAP simulator with an
RPC interface. A single file contains one set of data.

(@) File structure

| Data length | Response area length | Data |

(b) File contents

Item Position Length (bytes) Contents
Data length 0 4 Length of the datato be passed to the service function. (1 to
specified value of DCRPC_MAX_MESSAGE_SI ZE)
Responsearea | 4 4 Length of the response area to be passed to the service
length function. (1 to specified value of
DCRPC_MAX_MESSAGE_SI ZE)
Data 8 n Data to be passed to the service function.
(c) Notes

» Theitemsin the RPC request datafile are related to the service function
arguments as follows:

Service function (in, in len,out,out len)
1 2. 3.

1. Data
2. Datalength
3. Response arealength
* AnRPC request datafile for the offline tester can also be used.

62

single file contains one set of data.
(a) File structure

3. Setting the Test Environment

An error occurswhen the specified dataislessthan the specified datalength. Data
that exceeds the datalength isignored.

(2) XATMI request data file

An XATMI request datafile stores the data passed to the service function for a
requested service when using the client UAP simulator with an XATMI interface. A

Call type Buffer type s?lggire Flags Data length Data
(b) File contents
Item Position Length (bytes) Contents
Call type 0 8 Type of function calling aservice:
cal |
call fromt pcal | function
acal |
call fromt pacal | function
connect
call fromt pconnect function
Buffer type 8 8 Buffer type, specified as one of the following character
strings:
e X_OCTET
e X_COMVON
e X_C TYPE
Buffer 16 16 Buffer subtype, specified as a string of up to 16 characters.
subtype Specify anull character when specifying X_OCTET as the
buffer type.

63

3. Setting the Test Environment

Item Position Length (bytes) Contents
Flags 32 4 Flags to be passed to the service function, specified asa
hexadecimal and restricted by the specified call type:
0x00000000
O (forcal I andacal | only)
0x00000004
TPNOREPLY (for acal | only)
0x00000008
TPNOTRAN
0x00000100
TPNOCHANGE (for cal | and acal I only)
0x00000800
TPSENDONLY (for connect only)
0x00001000

TPRECVONLY (for connect only)
TPNOTI ME and TPSI GRSTRT are always set at service
reguests. TPNOBLOCK is not set.

Data length 36 4 Length of the data to be passed to the service function
(0-524288).

Specify zero when no datais passed. The buffer type and
subtype specifications are ignored when zero is specified.

Data 40 n Data to be passed to the service function

(c) Notes

» Theitemsinthe XATMI request datafile are related to the service function
arguments as follows:

voi d tpservice(svcinf)
TPSVCI NFO *svci nf;

struct TPSVCI NFO {
char nane[32] ;
char *data;
long len;
I ong fl ags;
int cd;

[N

1. Addressat which the data mapped to the buffer type and subtype is stored
2. Length of the data shown by dat a

* Theitemsinthe XATMI request datafile are related to the XATMI functions
issued by the ut oxsppsvc command as follows.

64

3. Setting the Test Environment

i dat a=t pal | oc(type, subtype,ilen);
2. 3 4

tpcall (svc, idata,ilen, odata, ol en, flags);
1 4 5.

tgac.al | (svc, idata,i I.en,flags);
1 4. 5.

t pconnect (svc, idata,ilen,flags);
1 4. 5.

XATMI function corresponding to the call type

Buffer type name

Buffer subtype name

Datalength

Flags (specified as the actual flag values of the specified flags)
* An XATMI request data file for the offline tester can also be used.

» Anerror occurswhen the specified datais|essthan the specified datalength. Data
that exceeds the datalength isignored.

» When the subtype name is less than 16 characters, add null charactersto the end
of the name.

» For buffer types other than X_OCTET, the datain the XATMI request datafileis
illegal when the subtype data length specified in the file differs from the subtype
data length specified in the ut oxsppsvc command.

* TPNOCHANGE can be specified in f | ag, but the specification is ignored.

S

» When the buffer type and subtype are specified, the values specified for the data
length and data must be the same as the data structure val ue defined for the stubs.

Boundary alignment is performed for the data structure defined for the stubs (the
total length isan integer multiple of 4). For thisreason, the user must consider the
alignment portion when creating an XATMI request datafile.

Check boundary alignment details in the stub source created by the st brmake
command and an output result created by the st bmake command with the - p
option specified.

3.3.2 Service response data files
(1) RPC response data file

When using the server UAP simulator with an RPC interface, the RPC response data
file stores the response data returned to the UAP making the service request to the
simulate SPP. A singlefile contains one set of service data.

When using the client UAP simulator, the RPC response data file stores the response

65

3. Setting the Test Environment

datareturned from the test UAP.
(a) File structure

| Data length | Data |

(b) File contents

Item Position Length (bytes) Contents
Datalength 0 4 Length of the data to be returned to the UAP making the
service request. (0-2147483647)
Data 4 n Datato be returned to the UAP making the service request.
(c) Notes

» Theitemsinthe RPC response datafile are related to the arguments of the service
reguest function (dc_r pc_cal | function) of the UAP making the service request

asfollows:
dc_rpc_call(....., in,in_|len,out,out_len)
1
1. Data

» An RPC response datafile for the offline tester can also be used.

» Anerror occurswhen the specified dataisless than the specified datalength. Data
that exceeds the datalength isignored.

(2) XATMI response data file

When using the server UAP simulator with an XATMI interface, the XATMI response
datafile storesthe response datareturned to the UAP making the service request to the
simulate SPP. A singlefile can contain one or more sets of data.

(@) File structure

Buffer type Buffer Service termination Return code | Data length Data
subtype code

Buffer type Buffer Service termination Return code | Data length Data
subtype code

Buffer type Buffer Service termination Return code | Data length Data
subtype code

66

(b) File contents

3. Setting the Test Environment

Item Position Length (bytes) Contents
Buffer type 0 8 Buffer type, specified as one of the following character
strings:
e X_OCTET
o X_COVVON
e X C TYPE
Buffer 8 16 Buffer subtype, specified as a string of up to 16 characters.
subtype Specify anull character when specifying X_OCTET as the
buffer type.
Service 24 4 One of the following hexadecimal values of r val inthe
termination t pr et ur n function. Thevalueis set inthet per r no area.
code 0x04000000
TPSUCCESS
0x20000000
TPFAI L
Return code 28 4 Hexadecimal value of r code inthet pr et ur n function.
Thevalueissetinthet pur code area
Datalength 32 4 Length of the data to be returned to the UAP making a
service request (0-524288).
Specify zero when no datais passed. The buffer type and
subtype specifications are ignored when zero is specified.
Data 36 n Datato be returned to the UAP making the service request.
(c) Notes
» Theitemsinthe XATMI response datafile are related to the arguments of the
service termination function (t pr et ur n function) as follows:
tpreturn(rval,rcode,data,len,.....)

2

4,

A WD PR

Service termination code
Return code
Data stored in the buffer alocated by buffer type and subtype
Datalength

An XATMI response data file for the offline tester can also be used.

Anerror occurswhen the specified datais|essthan the specified datalength. Data
that exceeds the datalength isignored.

When the buffer type and subtype are specified, the values specified for the data

67

3. Setting the Test Environment

length and data must be the same as the data structure value defined for the stubs.

Boundary alignment is performed for the data structure defined for the stubs (the
total length isan integer multiple of 4). For thisreason, the user must consider the
alignment portion when creating an XATMI response datafile.

Check boundary aignment details in the stub source created by the st bnmake
command and an output result crated by the st bmake command with the - p
option specified.

3.3.3 XATMlI receive data file

An XATMI receive datafile stores the messages received by the UAP inthet precv
function when making the conversational service paradigm. A single file can contain
anumber of dataitems which are passed consecutively to thet pr ecv function.

Create an XATM| receive datafile for each service.
(1) File structure

Coar':er;on Buffer type Buffer subtype Event flag Data length Data
Coar':er;on Buffer type Buffer subtype Event flag Data length Data
Coar':er;on Buffer type Buffer subtype Event flag Data length Data
(2) File contents
Item Position Length (bytes) Contents
Commonarea | 0 36 Areashared with the XATMI send datafile. Specify a space
or null character.
Buffer type 36 8 « Buffer type, specified as one of the following character
strings:
e X _OCTET
« X_COMVON
« X C TYPE
Buffer 44 16 Buffer subtype, specified as a string of up to 16 characters.
subtype Specify anull character when specifying X_OCTET asthe
buffer type.

68

3. Setting the Test Environment

Item

Position

Length (bytes)

Contents

Event flag

60

4

One of thefollowing hexadecimal valuesasthe event flag to

be passed to the t pr ecv function:
0x00000000
0
0x00000001
TPEV_DI SCONI MM
0x00000002
TPEV_SVCERR
0x00000004
TPEV_SVCFAI L
0x00000008
TPEV_Svcsucc
0x00000020
TPEV_SENDONLY

Datalength

Length of the data to be passed to thet pr ecv function
(0-524288).
Specify zero when no dataiis passed. The buffer type and

subtype specifications are ignored when zero is specified.

Data

68

Datato be passed to thet pr ecv function

(3) Notes

The itemsin the XATMI receive datafile are related to the arguments of the
message receive function (t pr ecv function) as follows:

tprecv(....

..... revent)

3.

1. Datastored in the buffer alocated by buffer type and subtype
2. Datalength
3. Eventflag

Figure 3-1 shows the relationships between the data passed to the t pr ecv
function and the XATMI receive dataand X ATMI response data fileswhen using
the server UAP simulator.

69

3. Setting the Test Environment

70

Figure 3-1: Receive dataand tester files

Client UAP

ooy £ B

Data 1
N1 XATMlreceive data file

= Data 2
tprecv <

€ B

Data 3

XATMI response data file

- e

When using the server UAP simulator, create the receive datain execution units.
If thet pr ecv function isissued more than once in a service, create all the data
required for the number of executions. However, the data passed to the final

t pr ecv function can be stored in an XATMI response data file.

If thet pr ecv function is executed more times than the number of dataitems, the
system assumes that datafromthet pr et ur n function was received and an error
occurs at each execution that exceeds the number of dataitems.

The XATMI receive datafile opens and closes by service unit.

XATMI receive datafiles for the offline tester cannot be used. However, the cat
command can be used to edit anumber of XATMI receive datafilesinto asingle
file for use with the online tester.

An XATMI send datafile containing the send data to be output when using the
server UAP simulator can be used without modification as an XATMI receive
datafile.

Anerror occurswhen the specified dataislessthan the specified datalength. Data
that exceeds the datalength isignored.

If avalue other than TPEV_SENDONLY is specified as the event flag when using
the server UAP simulator, thet pr ecv functionissued by the client UAP receives
events that cannot be continued interactively any further. Therefore, the
remaining dataitems cannot be used. Zero isset inthe global variablet pur code
when an event occurs.

3. Setting the Test Environment

0 and TPEV_SENDONLY are the only valid specifications for the event flag when
using the client UAP simulator. Other specifications are ignored.

When the buffer type and subtype are specified, the values specified for the data
length and data must be the same as the data structure val ue defined for the stubs.

Boundary alignment is performed for the data structure defined for the stubs (the
total length isan integer multiple of 4). For thisreason, the user must consider the
alignment portion when creating an XATMI receive datafile.

Check boundary alignment details in the stub source created by the st brmake
command and an output result crated by the st brmake command with the - p
option specified.

3.3.4 MCF receive message files

A logical message can contain one or more segments. A segment consists of a header
part containing the segment information and a data part which is the message text.

&<———— Logical message ——— >

| Segment

Segment

Segment

7 Ay
/7 \
/ \

| Header | Data |

There are five types of segments:

Single segment

Segment in alogical message consisting of one segment only

First segment

First segment in alogical message consisting of multiple segments

Middle segment

One of the middle segmentsin alogical message consisting of multiple segments
Last segment

Last segment in alogical message consisting of multiple segments

Header segment

Segment prefixed to two concatenated messages

Specify the segment type in the header part.

(1) Asynchronous receive message file

An asynchronous receive message file stores the messages received by the UAP in an
MCEF function (dc_ntf _r ecei ve function). Create one logical message per file.

71

3. Setting the Test Environment

When a header segment is used, the data is prefixed to the message.
(a) File structure

B Logical message consisting of one segment only

Single segment

Header | Data

B Logical message consisting of multiple segments

First segment Middle segment Middle segment Last segment

Header | Data Header Data Header Data Header Data

B Header segment

Header segment

Header | Data

72

(b) File contents

3. Setting the Test Environment

Item Position | Length Contents
(bytes)

Header Input/output 0 9 Logical termina name (including final null character) to
logical terminal be passed to M CF functions. Specify the same name for
name each segment of a multiple-segment message.

Map name 9 9 Map name (including final null character). Specify the
same name for each segment of a multiple-segment
message.

This specificationis valid only for functions that return
amap name.

Reserved 18 9 Null character

Segment type 27 1 One of the following characters:

F

First segment
M

Middle segment
L

Last segment
(0]

Single segment
H

Header segment

Message length | 28 4 Message length (0-2147483647)

Data Message 32 n The datain the segment, of the specified message length

(c) Notes

» Thefollowing shows how the items in an asynchronous receive message file are
related to message receive reguests from a UAP via an MCF function.

73

3. Setting the Test Environment

File structure:

Logical message
First segment Middle segment Last segment
Header Data Header Data Header Data
Segment fanan Segment bbb Segment R
type=F type =M type =1

Messages received by the UAP:

MCF area | aaaaa | | MCF area | bbbbb | | MCF area | cccce |

T T T

dc mcf receive dc mcf receive dc mcf receive
receiving first receiving middle receiving last
segment data segment data segment data

» By concatenating header segments, data created in another file can be combined
with the first or single segment and passed together to the UAP. The following
shows how aheader segment is rel ated to a message receive request from aUAP
by an MCF function.

File A structure: File B structure:

Header segment First segment Last segment
Header Data Header Data Header Data
Segm_ent hhhhh Segm_ent aman Segm_ent bbb

type =H type=F type=1

Message received by the UAP (files A and B concatenated):

MCF area | hhhhh | aaaaa | | MCF area | bbbbb | |
T T

dc mcf receive dc mcf receive

receiving first segment data receiving last segment data

* Segment typesF (first segment) and M(middle segment) are handled in the same
way. Also, segment typesL (last segment) and O (single segment) are handled in
the same way. For example, afile consisting of the three segment typesF, M and
L ishandled in the same way as afile consisting of segment types M M and O.

» Thefollowing shows the relationshi ps between the segment type specified in the
segment header for message send/receive with an MHP and the file type at
execution. If the segment typeisincorrectly specified, the receive request
function returns an error at the first message receive.

74

3. Setting the Test Environment
B Asynchronous receive message file containing segments other than
header segments

When segment typeL or Ois specified for amessage, the MHP regards the message as
completed and ignores any subsequent segments.

Segment type Segments received by MHP
First segment Middle Last segment
segment
E M L F,ML
F L X F, L#
L X X L#2
X M L No segments received
F X L

L egend:
X: Specification other than F, M L, or O.

#1: At the third receive regquest, the MHP assumes that one logical message has been
received and an error code is returned.

#2: The middle and subsequent segments are ignored.

#3: A message reportsthat the segment typeisinvalid and the receive request function
returns an error code.

B Asynchronous receive message file containing a header segment
Only the first segmentsin the file are valid.

Segment type Segments received by MHP
H KL
H+ X
X No segments received.?
X +H
Legend:

X: Specification other than H.
#1. However, the segment is passed in concatenated format with F, M L, or Q.

75

3. Setting the Test Environment

#2: A message reportsthat the segment typeisinvalid and the receive request function
returns an error code.

(2) Synchronous receive message file

A synchronous receive message file stores the synchronous messages received by the
UAPviaMCF functions (dc_ncf _recvsync anddc_ncf _sendr ecv functions). A
single file can contain a number of logical messages. When a header segment is used,

the datais prefixed to the message.

(a) File structure

B Logical message consisting of one segment only

Single segment

Single segment

| Single segment

B Logical message consisting of multiple segments

First segment Middle segment Last segment
First segment Middle segment Last segment
First segment Middle segment Last segment

B Header segment

Header segment

Header segment

Header segment

76

(b) File contents

3. Setting the Test Environment

Item Position | Length Contents
(bytes)

Header Input/output 0 9 Logical termina name (including final null character) to
logical terminal be passed to M CF functions. Specify the same name for
name each segment of a multiple-segment logical message.
Map name 9 9 Map name (including final null character). Specify the

same name for each segment of a multiple-segment
message.
This specificationis valid only for functions that return
amap name.
Reserved 18 9 Null character
Segment type 27 1 One of the following characters:
F
First segment
M
Middle segment
L
Last segment
(0]
Single segment
H
Header segment
Message length | 28 4 Message length (0-2147483647)
Data Message 32 n The datain the segment, of the specified message length
(c) Notes

» Thefollowing shows how the items in a synchronous receive message file are
related to message receive requests from a UAP by an MCF function.

77

3. Setting the Test Environment

78

<File structure>

First segment Middle segments Last segment
Header Data Header Data Header Data
Segment type=F aaaaa Segment type=M bbbbb Segment type=1, ccecec
First segment Middle segments Last segment
Header Data Header Data Header Data
Segment type=F ddddd Segment type=M eeecee Segment type=1, fEfff

<Messages received by the UAP>

MCF area aaaaa <— dc_mcf recvsync function receiving first segment data
MCF area bbbbb <— dc_mcf recvsync function receiving middle segment data
MCF area cccee <— dc_mcf recvsync function receiving last segment data
MCF area ddddd <— dc _mcf recvsync function receiving first segment data
MCF area eceee <— dc_mcf recvsync function receiving middle segment data
MCF area fEfff <— dc_mcf_ recvsync function receiving last segment data

» By concatenating header segments, data created in another file can be combined
with the first or single segment and passed together to the UAP. The following
shows how aheader segment is related to a message receive request from aUAP
by an MCF function.

<File A structure>

<File B structure>

3. Setting the Test Environment

Header segment First segment Last segment
Header Data Header Data Header Data
Segment type=H h0001 Segment type=F aaaaa Segment type=1, bbbbb
Header segment First segment Last segment
Header Data Header Data Header Data
Segment type=H h0002 Segment type=F ccecec Segment type=1, ddddd

<Messages received by the UAP (with files A and B concatenated)>

I <—dc mef sendrecv function receiving first segment data

<—dc mef recvsync function receiving last segment data

I <—dc mcf sendrecv function receiving first segment data

MCF area h0001 aaaaa
MCF area bbbbb
MCF area h0002 cccce
MCF area ddddd

<—dc mcf recvsync function receiving last segment data

When the MCF simulator is used and the UAP receives a number of logical
messages synchronously, associate the header segment prefixed to each receive
message with the appropriate logical message. If no header segment is required
for any of the logical messages, set adummy header segment, specifying 0 asthe
message length. If none of the logical messages require a header segment, there
is no need to create a header segment file.

The following shows the relationshi ps between the header segment and the
message receive requests from the UAP via MCF functions.

79

3. Setting the Test Environment

<File A structure>

<File B structure>

Header segement

First segment

Last segment

Header Data Header Data Header Data
Segment type=H Null Segment type=F aaaaa Segment type=1, bbbbb
Header segement First segment Last segment
Header Data Header Data Header Data
Segment type=H h0001 Segment type=F ccecec Segment type=1, ddddd

<— dc mef sendrecv function receiving first segment data

<— dc mef recvsync function receiving last segment data

MCF area aaaaa
MCF area bbbbb
MCF area h0001 cccce
MCF area ddddd

<— dc_mcf recvsync function receiving last segment data

<Messages received by the UAP (with files A and B concatenated)>

I <— dc_mcf sendrecv function receiving first segment data

» Segment typesF (first segment) and M(middle segment) are handled in the same
way. Also, segment typesL (last segment) and O (single segment) are handled in
the same way. For example, afile consisting of the three segment typesF, M and
L is handled in the same way as afile consisting of segment typesM M and O.

» Thefollowing showsthe relati onships between the segment types specified in the
segment headers for message send/receive with an MHP and the file types at
execution. If asegment typeisincorrectly specified, the receive request function
returns an error at the first message receive.

B Synchronous receive message file containing segments other than
header segments

When segment type L or Ois specified for amessage, the MHP regards the message as
completed and ignores any subsequent segments.

Segment type

Segments received by MHP

First segment Middle Last segment
segment
F M L (F,M L)
M M L (MML)
o) o) o} (9,09,
F L M (F, L), (M

80

3. Setting the Test Environment

Segment type

Segments received by MHP

First segment Middle Last segment
segment
X M L No segments received.”
F X L
L egend:

X: Specification other than F, M L, or O.
(): Onelogical message

#: A message reports that the segment typeisinvalid and the receive request function
returns an error code.

B Synchronous receive message file containing a header segment
All the header segmentsin the file are vaid.

Segment type Segments received by MHP
H L
H+H H, H™L
H+X No segments received.”
X
X +H

Legend:

X: Specification other than H.
#1. However, the segment is passed in concatenated format with F, M L, or Q.

#2: A message reportsthat the segment typeisinvalid and the receive request function
returns an error code.

3.3.5 Operating command result data file

An operating command result datafile stores the data returned to the UAP as the
command execution result when using the operating command simulator. A singlefile
contains all the data required for the number of executions of the

dc_adm cal | _conmmand function in one service.

Create an operating command result data file for each service.

81

3. Setting the Test Environment

(a) File structure

| Data Data Data Data
Header Character string Character string for =
for standard output | standard error output
(b) File contents
Item Position | Length Contents
(bytes)
Header Operating 0 4 Result code value set inthe st at argument of the
command result dc_adm cal | _command function
code
Character string | 4 4 Length of character strings (including null characters)
length for output to standard output (0-2147483647)
standard output
Character string | 8 4 Length of character strings (including null characters)
length for output to standard error output (0-2147483647)
standard error
output
Character stringfor standard | 12 n Value set in the out msg argument of the
output dc_adm cal | _command function. (Includes the final
null character. If no null characters are added, the last
character isreplaced with anull character.)
The specified valueisignored when zero is specified as
the character string length for standard output.
Character stringfor standard | -- n Value set in the er r msg argument of the
error output dc_adm cal | _command function. (Includes the final
null character. If no null characters are added, the last
character is replaced with anull character.)
The specified valueisignored when zero is specified as
the character string length for standard error output.
Legend:
--: Not applicable
(c) Notes

* An operating command result datafile for the offline tester can also be used.
However, whenthedc_adm cal | _conmmand function isissued more than once
inaservice, al the data (files) for the number of executions must be edited into a

single file by the cat command.

» Add anull character to the end of the character strings for standard output and

82

3. Setting the Test Environment

standard error output. If no null character is specified, the last character in the
string is replaced with anull character. If O is specified as the character string
length, the specified string isignored.

» Whenissuing operating commands by SEND statement inaDML, specify the data
part asfollows:

Character string length for standard output:
Specify 0.
Character string length for standard error output:
Specify 0 (when standard error output is not available).

83

3. Setting the Test Environment

3.4 Creating files

84

This section provides details about how the directory used for storing tester filesis
created, and how the user can create test data definition filesto simplify later creation
of tester files. This section also provides alist of the filesthat the online tester creates.

3.4.1 Test directory

The $DCDI R/ spool / ut o directory for storing tester filesis created by OpenTPLin
mode 0777 at installation of the online tester.

Also, if no $DCDI R/ spool / ut o/ test-user-1D directory exists at creation of atrace
file or MCF send message file during UAP execution, the online tester creates the
directory in mode 0777.

The user must create the $DCDI R/ spool / ut o/ test-user-1D directory (or $DCDI R/
spool / ut o/ test-user-1D/ user-server-name directory if required) when creating a
M CF send message file or other online tester file prior to testing. Set the mode to
enable creation of the above files during UAP execution.

3.4.2 Test data definition file

By creating atest data definition file, the user can easily create tester files using the
tester file creation facility.

A test data definition file can have any name. The following tester files can be created
from atest data definition file:

RPC request data file

XATMI request datafile

RPC response datafile

XATMI response datafile

XATMI receive datafile
Asynchronous receive message file
Synchronous receive message file
Operating command result datafile

To create atest data definition file:

Use atext editor to create atest data definition file.
Check the contents of the file and close thefile.

Specify the created test data definition filein the ut of i | cr e command and
execute the command.

3. Setting the Test Environment

A tester fileis created.
(1) Syntax

comment 1

start tester-file-identifier tester-file-type output-file-name 2.
keyword = input-data @ 5.

keyword = input-data

sep L 3.

keyword = input-data

ke}-/wor-d = input-data
end ... 4.

Note that the italicized numbers above correspond to the numbers under (3)
Explanation below.

(2) Function

Enables tester files to be created by tester file creation command from the test data
defined in the definition file.

Onelinein the definition file can be up to 512 bytesin length, including the line feed
code.

(3) Explanation
1. Comment statement
comment
Write a one-line comment beginning with #.
2. start statement

Declares the start of the input datafor one tester file. Writeast art statement
before the input data for each tester file.

When atest data definition file contains input data for two or more tester files,
write an end statement at the end of input data in each tester file.

« tester-file-identifier ~<up to 14 alphanumerics>

Specify anidentifier for each set of the tester file data created in the test data
definition file. The identifiers must be unique within a definition file. Use
aphanumericsa- z, A- Z, and 0- 9 for an identifier.

o tester-file-kind
Specify the tester file kind as one of the following:
RRQ

85

3. Setting the Test Environment

86

RPC request datafile

XRQ

XATMI request datafile

RRT

RPC response data file

XRT

XATMI response data file

XRV

XATMI receive datafile

NRV

Asynchronous receive message file

SRV

Synchronous receive message file

com

Operating command result datafile
e output-file-name ~<pathname>

Specify the name of the tester file to be created from the input data.

When creating input data for two or more tester file kinds in one definition
file, specify different output file names for each file kind.

If the same output file name is specified for input data items for different
tester file kinds, the test data is added to the specified file when the fileis
created. No error occurs, but the tester file created from the data may not be
usable for atest.

When an existing file nameis specified, the test datais added to the specified
filewhen thefileis created.

sep statement

Delimitsinput dataitems when atester file isto contain multiple dataitems. sep
statements can be specified when creating the following tester files:

o XATMI receive datafile

e Synchronous receive message file

e Operating command result datafile
end statement

3. Setting the Test Environment

Declaresthe end of the input data for onetester file. Write an end statement after
the input data for each tester file.

5. Input data definition statement
Defines the input data for each tester file.

Input data can consist of fixed-information data which can be set in advance and
user data (dat a keyword) which can be any information set by the user. Write all
the fixed-information data before the user data for a tester file.

Input data cannot be duplicated within the test datafor atester file. The exception
is an operating command result data file, for which user data must be specified
twice (character string data for standard output and for standard error output).

For details about the input dataformats for specifying fixed information data, see
thetablesin (5) Formats for the input data corresponding to the keywords of
tester files, below.

e keyword

Specify keywords to identify the data specific to each tester file. Space
characters and tab codes before or after a keyword are ignored.

e input-data

Specify the input data for each keyword. Space characters and tab codes
before or after the input data are ignored.

(4) Required settings for specifying user data as input data
The formats of user input data are described below.
(a) Setting user data length
Set the data length of user data as fixed-information data in the following format:

dat a_| en=bytes

If the user dataexceedsthevalue setindat a_| en, the messageistruncated at output.
If the user dataislessthan the value set in dat a_| en, no further data can be set.

Example:
data len=5 T T T T

— —> Data: 3132 33 34| 35
data='1234567'] s 3113213134135 |
data len=5 T T T T

- —> Data: 31132 3300, 00
data='123"] s [31132133,00700]

87

3. Setting the Test Environment

(b) Initializing user data

Use the tester file creation command to initialize the user data in the specified data
length.

(c) Setting character data
Set character data in the following format:

dat a=' data'

Do not add a null character to the end of character data.
Example:

data='12345'] —> Data: 31 | 32 | 33 | 34, 35

(d) Setting binary data
Set binary datain the following format:

dat a=data

Data can be written in decimal and hexadecimal notation, as follows:
e Decimd
Set numeric values asis.
* Hexadecimal
Prefix Ox to numeric values.
Example:
dat a=5 =» Data: 5in decimal notation
dat a=0x05 =» Data: 5 in hexadecimal notation
Binary datais set asthei nt datatype.
(e) Setting special characters

Line feed codes, tab codes, null characters, apostrophes ('), and the \ symbol are
handled as special charactersin character data. Specify these characters as follows:

Special character Coding format
Line feed code \n
Tab code \t
Null character \0

88

3. Setting the Test Environment

Special character Coding format

(f) Loading user data from a file
To load user datafrom afile, set the datain the following format:

data=(file) file-pathname

Example:
data=(file)/tnp/datafile =» Datain/tnp/datafil e isset.
(g) Setting the starting position of user data
User data can be set from any position, using the following format:

dat a=[offset-from-start-of-user-data] data

Example:

data len=10
data=[2]"'1234"

—> Data: 00, 00,31 ,32,33, 34

(h) Setting multiple data types
When using two or more data types, set the user datain the following format:

dat a=data
=data

Example:
dat a=0x00000001 =» Data: First
=' ABCDEF' = Data: Second
(i) Aligning boundaries

When different datatypesare specified, thetester file creation command automatically
setsthe second data at the boundary of the first data. However, boundary alignment is
not performed when:

* User dataisloaded from afile
» The starting position of the user datais set

89

3. Setting the Test Environment

Example:

data len=20
data='12345"

=10 Boundaries aligned
=[15]'6789" \|/

Data: 31 132,33 ,34,35,00, 00,00, 00, 00

> ' 00 0a, 00 ;00,0036 ,37,38,39,00

(5) Formats for the input data corresponding to the keywords of tester files

Thefollowing tableslist the keywords and formats of the corresponding input datafor
each tester file.

For details about the type of information to be specified, see the description of each
tester filein Section 3.3 User-created files.

Table 3-5: Keywords and input data formats for RPC request data files

Keyword Information Explanation
out Il en Responsearea | Length of theresponse areafor thedc_r pc_cal | function. Specify adecimal
length or hexadecimal. Set before dat a.

data_l en Data length Length of the user datato be passed to the server UAP by thedc_r pc_cal |
function. Specify a decimal or hexadecimal. Set before dat a.

data Data User data to be passed to the server UAP by thedc_r pc_cal | function.

Table 3-6: Keywords and input data formats for XATMI request data files
Keyword Information Explanation

cal | _ki nd Call type Type of service request function. Set one of the following character strings:
e call
¢ acall
* connect
Set before dat a.

buf f _type Buffer type Set one of the following character strings:
e X_OCTET
« X_COMVON
« X C TYPE
Set before dat a.

sub_type Buffer Specify astring of up to 16 characters.

subtype Example:
sub_t ype=subt ypeOl

Set before dat a.

90

3. Setting the Test Environment

Keyword Information Explanation
flag Flags One or moreflagsto be passed to the service function. Set any of thefollowing
character strings and delimit with vertical lines (]):
« 0
e TPNOREPLY
e TPNOTRAN
e TPNOCHANGE
e TPSENDONLY
e TPRECVONLY
Set before dat a.
data_l en Data length Length of the user data to be passed to the server UAP by thet pcal I,
t pacal | , ort pconnect function. Specify adecimal or hexadecimal. Set
before dat a.
dat a Data User data to be passed to the server UAP by thet pcal I , t pacal |, or
t pconnect function.
Table 3-7: Keywords and input dataformats for RPC response data files
Keyword Information Explanation
data_l en Data length Length of the user data to be returned to the client UAP at completion of a
service. Specify adecimal or hexadecimal. Set before dat a.
dat a Data User datato be returned to the client UAP at completion of a service.
Table 3-8: Keywords and input dataformats for XATMI response data files
Keyword Information Explanation
buf f _type Buffer type Set one of the following character strings:
e X_OCTET
o X_COVVON
e X_C TYPE
Set before dat a.
sub_t ype Buffer Specify astring of up to 16 characters.
subtype Example:
sub_t ype=subt ype0Ol
Set before dat a.
rval Service Specify one of the following character strings:
termination e TPSUCCESS
code « TPFAIL
Set before dat a.
rcode Return code Specify adecimal or hexadecimal. Set before dat a.

91

3. Setting the Test Environment

Keyword Information Explanation
data_l en Data length Length of the user datato be returned to the client UAP at completion of a
service. Specify adecimal or hexadecimal.
Set before dat a.
data Data User data to be returned to the client UAP at completion of a service.
Table 3-9: Keywords and input dataformats for XATMI receive datafiles
Keyword Information Explanation
buf f _type Buffer type Set one of the following character strings:
e X_OCTET
o X_COVVON
e X_C TYPE
Set before dat a.
sub_t ype Buffer Specify astring of up to 16 characters.
subtype Example:
sub_t ype=subt ype0l
Set before dat a.
event Event flag Event flag to be passed to thet pr ecv function.
Specify one of the following character strings:
* 0
e TPEV_DI SCONI M
e TPEV_SVCERR
e TPEV_SVCFAI L
e TPEV_SVCSUCC
e TPEV_SENDONLY
Set before dat a.
data_l en Data length Length of the user datato be passed to thet pr ecv function. Specify adecimal
or hexadecimal. Set before dat a.
dat a Data User data to be passed to thet pr ecv function.
sep sep statement | Write at the end of the data for one service when coding data for a number of
services.
Do not set at the end of the final data.
Note

92

When coding data for a number of services, repeat the data specifications from
buf f _t ype onwards.

3. Setting the Test Environment

Table 3-10: Keywordsand input dataformatsfor asynchronousreceive message

files
Keyword Information Explanation
t er mame Input/output Name of the 1/O logical terminal to be passed to thedc_ncf _recei ve
logica function.
terminal name | Specify astring of up to 8 characters. Set before dat a.
mapnarme Map name Map nameto be passed to thedc_ntf _r ecei ve function. Specify a string of
up to 8 characters. Set before dat a.
seg_ki nd Segment type | Segment type to be passed to thedc_ncf _r ecei ve function.
Specify one of the following characters:
e F
e M
e L
* O
e H
To set data for multiple segments, use any of the following sequences:
e F.M.L
e F..F.L
e M.M.L
e L
e H
* O
Set before dat a.
data_l en Message Length of the user data in the segment to be passed to thedc_ncf _r ecei ve
length function.
Specify adecimal or hexadecimal. Set before dat a.
dat a Message User data in the segment to be passed to the dc_ncf _r ecei ve function.
Note
When setting data for a number of segments, repeat the data specifications from
seg_ki nd onwards.
Table 3-11: Keywords and input data formats for synchronous receive message
files
Keyword Information Explanation
t er mame Input/output logical Name of the /O logical terminal to be passed to the
termina name dc_ncf _recvsync anddc_ncf _sendr ecv functions. Specify a
string of up to 8 characters. Set beforedat a.
mapnane Map name Map name to be passed to thedc_ncf _recvsync and
dc_ncf _sendr ecv functions. Specify a string of up to 8
characters. Set before dat a.

93

3. Setting the Test Environment

Keyword Information Explanation

seg_ki nd Segment type Segment type to be passed to thedc_ncf _recvsync and
dc_ncf _sendr ecv functions.Specify one of the following
characters:

Torgmm

To set data for multiple segments, use any of the following
sequences:

e 0.0..F..M.L..O
e H.H.H
Set before dat a.

data_l en Message length Length of the user data in the segment to be passed to the
dc_ncf _recvsync or dc_ncf _sendr ecv function. Specify a
decimal or hexadecimal. Set before dat a.

dat a Message User data in the segment to be passed to thedc_ncf _recvsync
or dc_ncf _sendr ecv function.

sep sep Statement Write at the end of the data for one message when coding data for
anumber of messages. Do not set at the end of the final data.

Notes

1. When setting datafor anumber of messages, repeat the data specificationsfrom
t er mame onwards.

2. When setting datafor anumber of segments, repeat the data specificationsfrom
seg_ki nd todat a.

94

3. Setting the Test Environment

Table 3-12: Keywordsand input dataformatsfor operating command result data

file
Keyword Information Explanation
status_cod | Operating Specify aresult code returned from the operating command in decimal or
e commandresult | hexadecimal.
code Set before dat a.
out si ze Messagelength | Length of the message output by operating command to standard output.
for standard Specify adecimal or hexadecimal.
output Set before dat a.
errsize Messagelength | Length of the message output by operating command to standard error
for standard output.
error output Specify adecimal or hexadecimal.
Set before dat a.
dat a Characterstring | Message output by operating command to standard output. Set character
for standard data.
output
dat a Characterstring | Message output by operating command to standard error output. Set
for standard character data.
error output
sep sep statement Write at the end of the data for one command when coding datafor anumber
of commands.
Do not set at the end of the final data.
Note

When coding datafor anumber of commands, repeat the datakeywords and items
from st at us_code onwards.

3.4.3 Files created by the online tester

Thefollowing tableslist the typesand names of filesthat the onlinetester createswhen
itisused.

Table 3-13: List of files created by online tester

File type Use and contents Time of Delet Time of
creation ed by | deletion
Service RPC Storesdatareturned astheserviceresult | Atreturnof the | User Any
response | response when using the client UAP simulator service
datafiles | datafile with an RPC interface. request”t
XATMI Storesdatareturned astheserviceresult | Atreturnof the | User Any
response when using the client UAP simulator service
datafile with an XATMI interface. request!

95

3. Setting the Test Environment

File type Use and contents Time of Delet Time of
creation ed by | deletion
XATMI send datafile Storesdatasent by thet psend function | Inthet psend User Any
whenusingaUAPsimulator for making | fynction2
interactive service requests with an
XATMI interface.
MCF send message file Stores messages send by the following Inthefunctions | User Any
functions when using the MCF listed at |eft?2
simulator:
e dc_ncf_reply
e dc_ncf_send
e dc_ncf_sendsync
e dc_ncf_sendrecv
* dc_ncf_execap
Temporary memory data Stores data updated by the Inthe Online | At
file dc_ncf _t enpput function and de_ncf_tenpp | tegter | €Xxecution
acquired by thedc_ncf _t enpget ut and 3 of the
function in the UAP when using the dc_ncf _tenpg dc_ncf _
MCF simulator. et functions™ cont end
function
Tracefile Collects UAP trace information for an | Whentheonline | User Any™
OpenTP1 function. tester (UAP)
collectsthefirst
trace
information.

#1: If thefile already exidts, the existing data is overwritten by the new input data.

#2: If the file already exists, the new input data is added to thefile.

#3: When not running aUAP that issuesthedc_ntf _cont end function, the user can
deletethefile at any time.

#4: The user can delete the file when full after backup to another file.
Table 3-14: Namesfor tester files created by the online tester

Tester file type

Service response datafiles

File name
RPC response File name specified by the ut osppsvc command
datafile
XATMI File name specified by the ut oxsppsvc command
response data
file

XATMI send datafile

$DCDI R/ spool / ut o/ test-user-1D/ user-server-name/
xsd-service-name’

96

3. Setting the Test Environment

Tester file type File name
MCF send message file $DCDI R/ spool / ut o/ test-user-1D/ sendnsg
Temporary memory datafile $DCDI R/ spool / ut o/ test-user-1D/
utotmp-logical-terminal-name
Tracefiles Filel $DCDI R/ spool / ut o/ test-user-ID/ t r acel
File2 $DCDI R/ spool / ut o/ test-user-I1D/ t r ace?2

#: When the service name exceeds 11 characters, the first five and last six characters
are combined as the service name.

Example: Service name uapser vi ce0001 =» uapsece0001

When the service name exceeds 15 characters, the first five and the 10th to 15th
characters are combined as the service name.

Example: Service name uapxat mi ser vi ce0001 =» uapxaer vi ce

97

Chapter

4. Test Execution

This chapter explains how to run atest with the online tester.

This chapter contains the following sections:

4.1 Creating UAPs

4.2 Service requeststo an SPP
4.3 Service requeststo an MHP
4.4 Creating tester files

4.5 Editing test information

99

4. Test Execution

4.1 Creating UAPs

To create a UAP that does not use the MCF simulator, follow the same procedure as
for ajob UAP. See the manual OpenTP1 Programming Guide for details.

To create a UAP that uses the MCF simulator, use the simulation functions library
provided by the online tester. The creation procedure differs depending on whether
TP1/Message Control is cataloged in the Resource Manager.

If TPL/Message Control isnot cataloged in the Resource Manager, link the UAPto the
onlinetester's MCF simulation functionslibrary (I i brut 0. a) rather than to the TP1/
Message Control library (I i bntf . a).

Specify - | mut o to link the UAP to the MCF simulation functions library. Thereis no
need to specify - | ncf to link the UAP to the TP1/Message Control library.

For a UAP created in COBOL or in a data manipulation language (DML), specify
-1 nut o instead of - | ncf in the same way.

If TP1/Message Control is cataloged in the Resource Manager, link the UAP first to
the MCF simulation functionslibrary (I i brrut 0. a) and then to the TP1/Message
Control library (1 i bntf . a).

The command for compiling a UAP that uses the MCF simulator is shown below.
B TP1/Message Control not cataloged in the Resource Manager

ccC

-go exanpl e exmain.c exsvl.c exsv2.c ex_sstb.c
-1 $DCDI R/include -L$DCDIR/lib -W, -B,inmediate -W,
-a,default -lnmuto -lbetran -L/usr/lib -lItactk -lbsd -lc

Legend:
exmai n. ¢: Main function
exsvl. c: Servicefunction 1
exsv2. ¢: Service function 2
ex_sst b. ¢: Stub source created by the stub
B TP1/Message Control cataloged in the Resource Manager

cc

-go exanple exmain.c exsvl.c exsv2.c ex_ssth.c
-1$DCDI R'include -L$DCDIR/lib -W, -B,imediate -W,
-a,default -lmuto -lncf -lbetran -L/usr/lib -ltactk -lbsd -lc

100

L egend:

exmai n. c

Main function
exsvl.c

Service function 1
exsv2.c

Service function 2
ex_ssth.c

Stub source created by the stub

4. Test Execution

101

4. Test Execution

4.2 Service requests to an SPP

This section describes how service requests are issued to an SPPwhen aclient UAP or
aserver UAP is being simulated.

4.2.1 Client UAP simulator
(1) Simulating a client UAP with an RPC interface

Execute the ut osppsvc command to simulate a client UAP that uses an RPC
interface. Service requests can be sent to the SPP by issuingthedc_r pc_cal |
function during command processing.

(2) Simulating a client UAP with an XATMI interface

Execute the ut oxsppsvc command to simulate a client UAP that uses an XATMI
interface. Service requests can be sent to the SPP by issuing the following functions
during command processing:

e tpcall ortpacal |l function for the request/response service paradigm
* tpconnect function for the conversational service paradigm

4.2.2 Server UAP simulator

(1) Simulating a server UAP with an RPC interface

To simulate a server UAP that uses an RPC interface, activate the SPP (to which
service requests are sent) as adummy SPP. Specify dnyspp inthet est _node
operand of the user service definition to create the dummy SPP.

To activate the dummy SPP, enter the OpenTP1 dcsvst art command. To send a
service request to the dummy SPP, issuethedc_r pc_cal | function.

Execute the OpenTP1 dcsvst op or dcst op command to terminate the dummy SPP,
(2) Simulating a server UAP with an XATMI interface

To simulate a server UAP that uses an XATMI interface, activate the SPP (to which
service requests are sent) as adummy SPP. Specify dnyspp inthet est _node
operand of the user service definition to create the dummy SPP.

Execute the OpenTP1 dcsvst art command to activate the dummy SPP and the
dcsvst op or dcst op command to terminate the dummy SPP,

When the conversational service paradigm is sent to the server UAP simulator, the
table that manages conversational statusremainsin the tester daemon if the process or
serviceintheclient UAP terminates without receiving an event flag indicating service
completioninthet pr ecv function. Inthis case, terminate and then restart the dummy
SPP.

102

4. Test Execution

4.3 Service requests to an MHP

To use the MCF simulator, activate the test MHP as asimulate MHP. Specify si nrhp
inthet est _node operand of the user service definition to create the simulate MHP.

To activate the simulate MHP, execute the OpenTP1dcsvst art command or specify
dcsvst art inthe user service configuration definition.

To send a service request to the MHP, enter the ut omhpsvc command. If aservice
reguest is sent in any other way, the online tester outputs an error message and skips
execution of therequested service. Inthiscase, thedc_r pc_cal | functionterminates
normally becausethe onlinetester acceptsthe service request, but response datafor the
serviceis not guaranteed.

The simulate MHP is activated as an SPP. This means that SPP commands must be
used to run the simulate MHP. However, the ut osppsvc command cannot be used.

To terminate the s mulate MHP, execute the OpenTP1 dcsvst op command or
dcst op command.

103

4. Test Execution

4.4 Creating tester files

Enter the ut of i | cr e command to create atester file.

In tester file creation, how to create atester file or enter acommand depends on
whether to use the test data definition file or to use data output from the operating
command.

4.4.1 Creating tester files using the test data definition file
The following shows how to create tester files using the test data definition file.

Example:
To create an RPC response data file and an operating command result data file:

1. Openthetest datadefinition file using atext editor.

'vi testenv_file'

L

Set the input data for the RPC response data file and operating command
result datafile.

104

4. Test Execution

vi editor: Contents of testenv file
'Y B ™
Data definition 1 for RPC response data file
start testl RRT /tmp/rpcrtnfol
data len=20
data="'abcdefg'

=0x0008
end
Data definition 2 for RPC response data file
start test2 RRT /tmp/rpcrtnfi2
data len=20
data="'abcdefg'

=0x0008
end
Data definition for operating command result
data file start test3 COM /tmp/comrtnfO3
status-code=-1

outsize=20
errsize=10
data="'abcdefg'
data="'abcdefg'

4 end
!!%i ’
Z [

3. Check the coding, then close the test data definition file.
4. Executetheut ofi | cr e command, specifying the test data definition file.

‘utofilcre -e testenv_file'

oL

4.4.2 Creating tester files using operating command output data
The following shows how to create tester files using operating command output data.
Example:

To create an RPC request datafile:

1. Determinetracedataused astest datafor editing and outputting an RPC trace
datafile. In this example, use datawith trace number 6.

105

4. Test Execution

'rpedump rpctre_file'

I

2. Output the intended RPC trace data in the trace data file format to create a
file.

'rpcdump -r -n6,6 rpctrc_file > testdata_file'

I

3. Executetheut of i I cr e command by specifying the tester file name, tester
filekind, and afile that contains the RPC trace data.

‘utofilere -o rperegfile -k RRQ -i testdata_file’

D

106

4. Test Execution

4.5 Editing test information

4.5.1 Displaying test status

Execute the ut ol s command to display test status when using the online tester. The
following information can be displayed:

» Test mode of the UAP (value specified in thet est _node operand of the user
service definition)

e Test user ID for the user who started the UAP
e Server name
* Service group hame

See Section 5.1 Operating commands for running testsin this part of the manual for
the contents displayed.

4.5.2 Collecting UAP trace information

The online tester collects the same UAP trace information as OpenTP1. However,
trace information specific to the online tester (tester information) can also be collected
at the entrance to each OpenTP1 function.

To collect tester information, perform one of the following:

* Specify t ar get or si nmhp inthet est _node operand of the user service
definition, or specify usabl e and activate the UAP in test mode.

» Specify 1 or ahigher valueintheuap_t race_max operand of the user service
definition (or omit specification).

» Activate the UAP for which traces are to be collected by executing the OpenTP1
dcsvst art command or by specifying dcsvst art inthe user service
configuration definition.

Traceinformation is grouped by the online tester and output to atracefile at the times
shown below. Tester information is output once only when the trace information is
output to the trace file.

» Atthestart of thedc_r pc_nai nl oop function
e Atthestart of thedc_ntf _nmai nl oop function
» Atthedtart of thedc_rpc_cal | function

» At completion of thedc_r pc_cl ose function
» At completion of an RPC service function

» Atthestart of thet pcal | function

107

4. Test Execution

» Atthestart of thet pacal | function
» Atthestart of thet pconnect function
» At completion of an XATMI service function

When the information for agroup fillsthe UAP trace area, the information is output to
the trace file. The UAP trace area is then reused from the beginning.

A tracefileis created for each OpenTP1 system and for each test user ID. Therefore,
if anumber of UAPs that output trace information are executed in parallel, the UAP
trace information is mixed and difficult to check. Parallel execution also resultsin
waiting for release of locks and a timeout condition may occur before areply can be
made to a service request. For these reasons, parallel execution should be avoided
when using the online tester.

A swap message is output when the size of one of the two trace files exceedsthe value
specifiedinthemax_trace_fil e_si ze operand of the tester service definition.
UAP traces are then collected in the other trace file. When both trace filesare full, no
further UAP trace information can be collected.

To prevent this situation, the user must copy the full trace file to another file when the
swap message is output, and then delete the full trace file. If the second trace file
subsequently becomes full, create anew file, specifying the name of the deleted trace
file, and continue collecting trace information.

Do not delete atrace file while traces are till being collected. Deletion during trace
collection means that no further information can be collected.

Note also that trace information for the dc_t r n_i nf o function is not collected.

4.5.3 Merging and outputting UAP trace information

108

To merge UAP trace information, execute the ut ot r cnr g command.

At input of the ut ot r cnr g command, the data in the specified tracefilesis ordered
by service execution sequence in each group and is output to the specified file (trace
mergefile). If the specified output file already exists, its contents are del eted beforethe
new merged data is written to the file.

Trace merge files have a different file type but the same format as trace files.
Therefore, trace merge files can al so be merged. Also, tracefiles can be merged during
trace collection.

To edit and output UAP trace information, execute the ut ot r cout command. At
command input, the data in the specified trace file or trace mergefile is edited and
output to standard output.

The following trace information can be output by executing the ut ot r cout
command:

4. Test Execution

» Traceinformation for specific services

» Traceinformation for a specific server

» Traceinformation on function names and other selected items
» Traceinformation ordered in actual collection sequence

» Traceinformation collected within a specified time frame

See Section 5.1 Operating commands for running testsin this part of the manual for
details on output formats.

45.4 UAP traces for MCF simulation functions

UAP trace information is a so collected for the M CF simulation functions. However,
when information that the online tester cannot analyze is required (such asan MCF
application definition), the trace information cannot be collected. In such cases, the
online tester sets adummy value.

Table 4-1 lists the dummy values set for trace information that the online tester cannot
collect.

Table 4-1: Dummy values and non-collectable trace information

Function name Non-collectable information Dummy value

dc_nmcf _mai nl oop (at start) Application name Kok kkkk ok

Name of logical terminal where input *xkkdkhk

Application type 0

dc_ncf _mai nl oop (at return) Application name KKK AKK

The MCF simulation function dc_ncf _mai nl oop usesthedc_r pc_mai nl oop
function. Therefore, traceinformation for dc_r pc_mai nl oop isalso output when the
dc_ncf _mai nl oop function isissued.

4.5.5 Editing and outputting send messages

To edit the send messages collected when using the M CF simulator, execute the
ut omsgout command. At command input, the datain the specified M CF send
message file is edited and output to standard output or to a specified file.

The following trace information can be output by executing the ut onsgout
command:

» A list of abbreviated send messages
» Messages output in M CF receive message file format
» Messages not output in the M CF receive message file format

109

4. Test Execution

Oldest send message

Most recent send message

M essages collected for a specific function
Selected messages from a send message file
Messages sent in a specific service

See Section 5.1 Operating commands for running tests in this part of the manual for
details on output formats.

4.5.6 Checking UAP response data

The datain the RPC and XATMI response data files output by the client UAP
simulator can be output as an edited dump so that the file contents can be verified.

See Section 3.3 User-created filesin this part of the manual for details on the formats
of the output data.

4.5.7 Checking UAP send data

Thedatain the XATMI send datafiles output by the server UAP simulator can be
output as an edited dump so that the file contents can be verified.

See Section 3.3 User-created filesin this part of the manual for details on the formats
of the output data.

The contents of the common area are as follows;

Item Position | Length Contents
(bytes)
Commo | Service name 0 32 Stores the service names at the send destinations.
narea
Call descriptors | 32 4 Stores the call descriptors used when sending service
requests.

110

Chapter
5. Operating Commands

This chapter explains how to use the operating commands of the online tester.
This chapter contains the following section:
5.1 Operating commands for running tests

111

5. Operating Commands

5.1 Operating commands for running tests

The following pages explain the online tester's operating commands. For information
on command Syntax and rules, see the manual OpenTP1 Operation.

Table 5-1 lists the operating commands for running tests.
Table 5-1: List of operating commands

Command name Function
ut odbgst op Termination of a UAP interlocked with the debugger
ut odebug Activation of a UAP interlocked with the debugger
utofilcre Tester file creation
ut of i | out Edited output of the tester file content
utols Test status display
ut omhpsvce Service requests to an MHP
ut omsgout Edited output of send messages
ut osppsvce Service requests to an RPC interface SPP
utotrcnrg Merger of UAP trace information
ut ot r cout Edited output of UAP trace information
ut oxsppsvce Service requests to an XATMI interface SPP

5.1.1 utodbgstop (termination of a UAP interlocked with the
debugger)

(1) Syntax

ut odbgstop [-f] server-name

(2) Function
Requests to terminate a UAP that interlocks the debugger.

Execute the ut odbgst op command in awindow except one that was used to execute
the ut odebug command on the machine where the OpenTP1 system is operating.

After terminating the UAP using the ut odbgst op command, also terminate the
debugger as soon as possible. Until the debugger terminates, the ut odbgst op or
ut odebug command remainsin aresponse wait state.

112

5. Operating Commands

When the ut odbgst op command terminatesthe UAP, this UAP cannot restart with a
debugger command.

If the specified server does not interlock the debugger, the command fails. The
ut odbgst op command is available only when the tester serviceis active.

(3) Option

m -f

Forcibly terminate the specified server. When this specification is omitted, the
corresponding server terminates normally.

(4) Command arguments

m server-name ~<identifier of 1-8 characters>

(5) Notes

Specify the name of the server corresponding to the debugger-interlocked UAP to
be terminated.

Entering the command may issue the following message and condition codes,
which can be ignored.

Message ID
KFCA01844-E

Reason Code
STATUS
EXIT
ABORTI NG
ABORT

When entering the command issues the following message and condition code, be
sure to stop the debugger. No other actions are needed.

Message ID
KFCAO01844-E

Reason Code
CRI Tl CAL

5.1.2 utodebug (activation of a UAP interlocked with the debugger)

(1) Syntax

ut odebug server-name

113

5. Operating Commands

(2) Function

Requests to activate a debugger-interlocked UAP and identifies the window used to
execute the ut odebug command as an 1/O interface with the debugger.

When executing the ut odebug command, add $DCDI R/ bi n, / usr/ bi n, and/ bi n
to the search path name when specifying the pr csvpat h operand for the process
service definition or the pr cpat h command.

Execute the ut odebug command in awindow on the machine where the OpenTP1
system is operating. One window allows to test one UAP interlocked with the
debugger. The other commands are unexecutable in this window until the debugger
terminates.

The command fails if neither t ar get nor si mrhp is specified for thet est _node
operand in the user service definition on the specified server. The command also fails
if the specified server isalready active.

The ut odebug command is available only when the tester serviceis active.

(3) Command arguments

m server-name ~<identifier of 1-8 characters>

Specify the name of the server corresponding to the UAP to be tested by
interlocking the debugger.

(4) Notes

114

» When the debugger-interlocked UAP terminates normally or abnormally, be sure
to terminate the debugger.

» |f adebugger processisterminated forcibly with the debugger interlocked, the
debugger-interlocked UAP process may terminate incompletely, leaving part of
the process unprocessed. Terminate the remaining process using the command.

» |f theut odebug command is terminated forcibly while the debugger is
interlocked, 1/0 operations for the debugger process coexist with I/O operations
for the shell, disabling debugger control. To solve this, forcibly terminate the
debugger process and the debugger-interlocked UAP process.

 |f the debugger becomes uncontrollable during atest interlocked to the debugger,
forcibly terminate the ut odebug command process, the debugger process, and
the UAP processinterlocked to the debugger. If necessary, reexecute the
ut odebug command. Executing the pr cl s command shows the ID of the UAP
process interlocked to the debugger process.

5. Operating Commands

5.1.3 utofilcre (tester file creation)
(1) Syntax

utofil cre{-e test-data-definition-file-name|
- o tester-file-nameg| - k tester-file-kind
[-i input-data-file-name] }

(2) Function

Creates atester file using the specified test data definition file or record datafrom the
unload journal file or RPC trace data retrieved by the operating command.

(3) Options
m - e test-data-definition-file-name ~<pathname>

Specify the test data definition file that defines input data for atester file to be
created.

This option cannot be specified concurrently with the - o, - k, or -i option.
m - o tester-file-name ~<pathname>

Specify the name of atester file consisting of datathat is extracted by the
operating command. When specifying this option, also specify the - k option.

The - o option cannot be specified concurrently with the - e option.
m -k tester-file-kind

Specify thekind of atester file consisting of datathat is extracted by the operating
command. Specifiable file kinds are:

RRQ

RPC request datafile
RRT

RPC response datafile
XRQ

XATMI request datafile
XRT

XATMI response datafile
XRV

XATMI receive datafile
NRV

115

5. Operating Commands

(4) Notes

Asynchronous receive message file
SRV
Synchronous receive message file

The operating command result data file cannot be made of data extracted by a
command. Accordingly the - k option cannot specify the operating command
result datafile.

When specifying this option, also specify the - o option.
The - k option cannot be specified concurrently with the - e option.
-i input-data-file-name ~<pathname>

Specify the name of an input data file that stores data extracted by the operating
command. When specifying this option, also specify the - o option.

When the - o option is specified and the- i option is omitted, the standard input
is assumed.

The-i option cannot be specified concurrently with the - e option.

When the - o option is specified and the- i option is omitted, the standard input
isassumed. Thistime, specify an input file using a pipe or redirection. When no
input file is specified, the command waits for an input. To solve this, forcibly
terminate the command.

No map name is contained in mj record data of the unload journal file. When the
- 0 option is specified to create an asynchronous receive message file or
synchronous receive message file, specifying nj record data asinput data
assumes UTOVAP to be a map name by default.

5.1.4 utofilout (edited output of the tester file content)

(1) Syntax

ut of i | out

-k tester-file-kind tester-file-name

(2) Function

Editsthe contents of the specified tester filein adataformat of the specified tester file
kind and outputs the edited file to the standard output.

The tester file kind must be of atester file to be edited and output. If a different tester
filekind is specified, itsdataformat is used for editing data. If the datais editable, the
edited result is output. If the data cannot be edited, the command fails.

116

(3) Option

5. Operating Commands

m -k tester-file-kind

Specify thekind of atester fileto be edited and output. Specifiabletester filekinds
are:

RRQ

RPC request datafile
RRT

RPC response datafile
XRQ

XATMI request datafile
XRT

XATMI response datafile
XRV

XATMI receive datafile and XATMI send datafile
NRV

M CF receive message file (asynchronous receive message file and
synchronous receive message file)

com
Operating command result datafile

(4) Command arguments

m tester-file-name ~<pathname>

Specify the name of the tester file to be edited.

117

5. Operating Commands
(5) Output format (-k option = RRQ)

file kind=RPC request data file (RRQ)] 1.
file name=/tmp/rrgfile
No.1l]
response area size=256
data length=260 :I
data contents
00000000 52504320 72657175 65737420 64617461 RPC request data
00000010 00000000 00000000 00000000 00000000 ..vv v 4.
00000020 - O0OOOOOLE : SAME DATA

00000100 00000000
L [L JL |

5. 6. 7.
L egend:
File information
2. Datanumber
3. Specific information data
4. User data

The same datais displayed as follows.
(First matched datalocation) - (last matched datalocation) : SAMVE DATA
5. User datalocation
6. Hexadecimal representation of user data
7. ASCII representation of user data
Description
filekind
Tester file kind for the RPC request datafile.
file name
Specified tester file path name (up to 64 characters).
data number
Sequential data number from the beginning of file (up to 10 digits).
response area size

Response area size (bytesin decimal) specified for the RPC request datafile
header.

data length

118

5. Operating Commands

Datalength (bytesin decimal) specified for the RPC request data file header.
m Output example with - k option = RRQ

file kind=RPC request data file (RRQ)
file name=/tmp/rrgfile
No.1l
response area size=256
data length=20
data contents
00000000 52504320 72657175 65737420 64617461 RPC request data
00000010 00000000 e e

(6) Output format (-k option = RRT)

file kind=RPC response data file (RRT) 1.

file name=/tmp/rrtfile

No.1l :l 2.
data length=260 iE

data contents
00000000 52504320 72657370 6£6e7365 20646174 RPC response datu
00000010 61000000 00000000 00000000 00000000 A v,
00000020 00000000 00000000 00000000 00000000 .o, 4.
00000020 - 000000ff : SAME DATA
00000100 00000000
L] L I 1 1

5. 6. 7.
Legend:
File information
2. Datanumber
3. Specific information data
4. User data

The same datais displayed as follows.
(First matched data location) - (last matched datalocation) : SAME DATA
5. User datalocation
6. Hexadecimal representation of user data
7. ASCII representation of user data
Description:
filekind

119

5. Operating Commands

Tester file kind for the RPC response data file.
file name

Specified tester file path name (up to 64 characters).
data number

Sequentia data number (up to 10 digits) from the beginning of file.
data length

Datalength (bytesin decimal) specified for the RPC response datafile
header.

m Output example with - k option = RRT

file kind=RPC response data file (RRT)
file name=/tmp/rrtfile
No.1l
data length=20
data contents
00000000 52504320 72657370 6£6e7365 20646174 RPC response data
00000100 61000000

(7) Output format (-k option = XRQ)

file kind=XxATMI request data file (XRQ) 1.
file name=/tmp/xrqgfile
No.1l :l 2.

call kind=call

flag=0x0000108 (TPNOTRAN) (TPNOCHANGE)

type=¥_OCTET 3.

subtype=>***

data length=260

data contents _
00000000 74706361 €6c6c2058 5f4f4354 45542064 tpcall X _OCTET d
00000010 61746100 00000000 00000000 00000000 ata
00000020 00000000 00000000 00000000 00000000

................ 4.
00000030 - O000OOOLE : SAME DATA
00000100 00000000 .
L] L | L J
5. 6. 7.
Legend:

1. Fileinformation
2. Datanumber
3. Specific information data

120

5. Operating Commands

4. User data
The same datais displayed as follows.
(First matched data location) - (last matched datalocation) : SAME DATA
5. User datalocation
6. Hexadecimal representation of user data
7. ASCII representation of user data
Description:
filekind
Tester file kind for the XATMI request datafile.
file name
Specified tester file path name (up to 64 characters).
data number
Sequential data number (up to 10 digits) from the beginning of file.
call kind

Call kind (up to 7 characters) specified for the XATMI request datafile
header.

***x* jsdigplayed if no character string is specified.
flag

Flag (8 digits) specified for the XATMI request data file header.
type

Buffer type (up to 8 characters) specified for the XATMI request data file
header.

**** jsdigplayed if no character string is specified.
subtype

Buffer subtype (up to 16 characters) specified for the XATMI request data
file header.

**** jsdigplayed if no character string is specified.
data length

Datalength (bytesin decimal) specified for the XATMI request datafile
header.

m Output example with - k option = XRQ

121

5. Operating Commands

file kind=XxATMI request data file (XRQ)
file name=/tmp/xrqgfile
No.1l
call kind=call
flag=0x0000108 (TPNOTRAN) (TPNOCHANGE)
type=¥_OCTET
subtype=>***
data length=20
data contents
00000000 74706361 €6c6c2058 5f4f4354 45542064 tpcall X OCTET
00000010 61746100 data.

(8) Output format (-k option = XRT)

file kind=XxATMI request data file (XRT) 1.
file name=/tmp /xrtfile
No.1l :l 2.

type=X_OCTET =
subtype=>***
mwal=0x04000000 (TPFAIL) 3.
reode=22
data length=260
data contents
00000000 74707265 7475726e 20545046 41494c20 tpreturn TPFAIL
00000010 64617461 00000000 00000000 00000000 data....vevnvnn.

00000020 00000000 00000000 00000000 COCO0000 v v e vweeennnn 4.
00000030 - 000000ff SAME DATA
00000100 00000000 .
L] L] L]
5. 6. 7.
Legend:
File information
2. Datanumber
3. Specific information data
4. User data

The same data is displayed as follows.
(First matched data location) - (last matched datalocation) : SAME DATA
5. User datalocation
6. Hexadecimal representation of user data
7. ASCII representation of user data
Description:

122

5. Operating Commands

filekind
Tester file kind for the XATMI response datafile.
file name
Specified tester file path name (up to 64 characters).
data number
Sequential data number (up to 10 digits) from the beginning of file.
type

Buffer type (up to 8 characters) specified for the XATMI response datafile
header.

**** jsdigplayed if no character string is specified.
subtype

Buffer subtype (up to 16 characters) specified for the XATMI response data
file header.

**** jsdigplayed if no character string is specified.
rval

Service termination code (8 digits) specified XATMI response datafile
header.

rcode

Return code (up to 11 digitsin decimal) specified for the XATMI response
data file header.

data length

Datalength (bytesin decimal) specified for the XATMI response datafile
header.

m Output example with - k option = XRT

file kind=XxATMI response data file (XRT)
file name=/tmp /xrtfile

No.1l

type=X_OCTET
subtype=>****
rval=0x04000000 (TPFAIL)

reode=22

data length=20

data contents
00000000 74707265 7475726e 20545046 41494c20 tpreturn TPFAIL
00000010 64617461 data

123

5. Operating Commands

(9) Output format (-k option = XRV)

file kind=xATMI receive/send data file (XRV)] 1.
file name=/tmp/xrvfile
No.1l :| 2.
type=X_OCTET
subtype=**** 3.
event flag=0x 000000008 (TPEV SVCSUCC)
data length=260

data contents
00000000 74707265 63762072 65637620 64617461 tprecv recv data
00000010 00000000 00000000 00000000 00000000 .o iv i, 4
00000020 - 000000Off : SAME DATA
?OOOOlOO | OIOOOOOOO

5. 6. 7.
L egend:
File information
2. Datanumber
3. Specific information data
4. User data

The same datais displayed as follows.
(First matched datalocation) - (last matched datalocation) : SAMVE DATA
5. User datalocation
6. Hexadecimal representation of user data
7. ASCII representation of user data
Description:
filekind

Tester file kind for the XATMI receive data file and the XATMI send data
file.

file name
Specified tester file path name (up to 64 characters).
data number
Sequentia data number (up to 10 digits) from the beginning of file.
type
Buffer type (up to 8 characters) specified for the XATMI receive datafile

124

5. Operating Commands

header and the XATMI send data file header.
***x jsdigplayed if no character string is specified.
subtype

Buffer subtype (up to 16 characters) specified for the XATMI receive data
file header and the XATMI send data file header.

**** jsdigplayed if no character string is specified.
event flag

Event flag (8 digits) specified for the XATMI receive datafile header and the
XATMI send data file header.

data length

Datalength (bytesin decimal) specified for the XATMI receive datafile
header and the XATMI send data file header.

m Output example with - k option = XRV

file kind=XxATMI receive/send data file (XRV)
file name=/tmp/xrvfile
No.1l
type=X_OCTET
subtype=>***
event flag=0x 00000008 (TPEV_ SVCSUCC)
data length=20
data contents
00000000 74707265 63762072 65637620 64617461 tprecv recv data
00000010 00000000

(10) Output format (-k option = NRV)

file kind=MCF receive message file (NRV)]1.
file name=/tmp/nrvfile
No.1l :|2.
logical terminal name=TERM01
map name=MAP01 3.
segment type=0
data length=260
data contents
00000000 4d434620 72656376 206d6573 73616765 MCF recv message
00000010 00000000 00000000 00000000 00000000 4.
00000020 - O0OOOOOLE : SAME DATA
00000100 00000000
L [L

3. 6. 7.

125

5. Operating Commands

Legend:
File information
2. Datanumber
3. Specific information data
4. User data

The same data is displayed as follows.
(First matched data location) - (last matched datalocation) : SAME DATA
5. User datalocation
6. Hexadecimal representation of user data
7. ASCII representation of user data
Description:
file kind
Tester file kind for the MCF receive message file.
file name
Specified tester file path name (up to 64 characters).
data number
Sequential data number (up to 10 digits) from the beginning of file.
logical terminal name

Logical terminal name (up to 8 characters) specified for the MCF receive
message file.
**** jsdigplayed if no character string is specified.

map name

Map name (up to 8 characters) specified for the M CF receive message file
header.

segment type

Segment type (1 character) specified for the M CF receive message file
header.

**** jsdisplayed if no character string is specified.
data length

Datalength (bytesin decimal) specified for the MCF receive message file
header.

126

m Output example with - k option = NRV

file kind=MCF receive message file
file name=/tmp/nrvfile

(NRV)

No.1l
logical terminal name=TERM01
map name=MAP0O1
segment type=L
data length=20
data contents

00000000 44434620 72656376 206d6573 73616765 MCF recv message
00000010 32000000 2...
No.2

logical terminal name=TERMO02
map name=MAP02

segment type=0

data length=20

data contents

00000000 4d434620 72656376 206d6573 73616765 MCF recv message
00000010 33000000 3...

(11) Output format (-k option = COM)
file kind=operation command result data file (COM) 1.

file name=/tmp/comfile

No.1l :| 2.

command result code=1 =

standard out data length=260 3.
standard ervor data length=260
standard out data content :
00000000 7374646f 75742064 61746120 00000000 stdout data
00000010 00000000 00000000 00000000 00000000 ... 4.
00000020 - 00000OLE SAME DATA
00000100 00000000 i
standard ervor data content _
00000000 73746465 72722064 61746120 00000000 stderr data
00000010 00000000 00000000 00000000 00000000 ... 5.
00000020 - 00000OLE SAME DATA
00000100 00000000 .
[1 1 J
6. 7. 8.
Legend:
File information
2. Datanumber
3. Specific information data
4, Standard output data (user data)

The same datais displayed as follows.

5. Operating Commands

127

5. Operating Commands

(First matched data location) - (last matched datalocation) : SAME DATA
5. Standard error output data (user data)
The same data is displayed as follows.
(First matched data location) - (last matched datalocation) : SAME DATA
6. User datalocation
7. Hexadecimal representation of user data
8. ASCII representation of user data
Description:
file kind
Tester file kind for the operating command result datafile.
file name
Specified tester file path name (up to 64 characters).
data number
Sequential data number (up to 10 digits) from the beginning of file.
command result code

Command result code (up to 11 digitsin decimal) specified for the operating
command result data file.

standard out data length

Length (bytesin decimal) of a standard output character string specified for
the operating command result datafile.

standard error data length

Length (bytesin decimal) of astandard error output character string
specified for the operating command result data file.

m Output example with - k option = COM

128

5. Operating Commands

file kind=operation command result data file (COM)
file name=/tmp/comfile
No.1l
command result code=1
standard out data length=260
standard ervor data length=260
standard out data content
00000000 7374646f 75742064 61746120 00000000 stdout data
00000010 00000000
standard ervor data content
00000000 73746465 72722064 61746120 00000000 stderr data
00000010 00000000

5.1.5 utols (test status display)
(1) Syntax

utol s [server-name [server-namel . ..]

(2) Function

Outputs the status of the test UAP managed by the tester service to standard output.
Nothing is output if no test UAP exists.

Theut ol s command can only be used when the tester service is active.
(3) Command arguments
m server-name ~<identifier of 1-8 characters>
Specify the name of the user server for which test statusis to be displayed.

When specification is omitted, the status of all the user servers being tested is
displayed.
(4) Output format

mode ID server service group name debugger
target wusrl sppOl groupl dbx
dmyspp usrl spp02 group?2
simmhp usr2 spp03 group3 dbx
usable AFE* spp03 group3
L I L | L) L |

1. 2. 3. 4. 5.

1. Oneof thefollowingisdisplayed asthetest modeinformation for the UAP (value
specified in thet est _nopde operand of the user service definition):

129

5. Operating Commands

t ar get
t est _node=t ar get specified at startup
usabl e
t est _node=usabl e specified at startup
dnyspp
t est _node=dnyspp specified at startup
si mrhp
t est _node=si nmhp specified at startup
2. Test user ID of the user who started the UAP.
**** s displayed when the UAP test modeisusabl e.
3. Server name (up to 8 characters)
Service group name (up to 31 characters).
Nothing is displayed when no service groups are specified.
5. Name (up to 8 characters) of the debugger interlocked to the UAP.
Nothing is displayed when the UAP is not interlocked to the debugger.
(5) Note

If the OpenTP1 system isimmediately shut down or if the test UAP isforcibly
terminated while active or inactive, information may be displayed for the inactive or
terminated UAPR. To display information correctly, restart the UAP for which
information was displayed in error.

5.1.6 utomhpsvc (service requests to an MHP)
(1) Syntax

utomhpsve [-t MCF-receive-message-header-file-name] [- n]
Service-group-name service-name
MCF-receive-message-file-name

(2) Function

Requests the MHP to execute a specified service when using the MCF simulator. The
MHP that providesthe service must be activated asasimulate MHP linked to the MCF
simulation functions library provided by the online tester.

The MHP must be started in test mode; otherwise, a command error occurs. Also,
operation is not guaranteed if the service request is made to an SPP running in test
mode.

130

5. Operating Commands

If noreply to the service request isreceived within the RPC maximum reply-wait time
(value specified in thewat ch_t i me operand in the system common definition), a
send/receive timeout condition occurs and the command is not accepted.

(3) Options
m -t MCF-receive-message-header-file-name ~<1-14 alphanumerics>

Specify the name of the M CF receive message fil e containing the header segment
to be prefixed to the receive message.

When specification is omitted, no header segment is prefixed to the receive
message.

H -n

Executes the specified service as a non-transaction MHP. When thisoption is
omitted, the service is executed as a transaction MHP,

(4) Command arguments
m service-group-name ~<identifier of 1-31 characters>
Specify the name of the service group to which the service to be executed belongs.
m service-name ~<identifier of 1-31 characters>
Specify the name of the service to be executed.
m MCF-receive-message-file-name ~<1-14 alphanumerics>
Specify the name of the MCF receive message file containing the receive

message.
5.1.7 utomsgout (edited output of send messages)
(1) Syntax

utomsgout [{ -i|-r output-fileename }] [-wW[{ -o|-I }]

[-f function-name] [-n number]

[-t logical-terminal-name]

[-s service-group-name [, service-name] . . .|
MCF-send-message-file-name

(2) Function

Edits the send message information output by the online tester and outputs the
information to standard output. Or, outputs the information to the specified file when
the - r option is specified.

A command error occurs if the command is entered while OpenTP1 is writing send
messages to the specified M CF send message file.

There are two types of options:

131

5. Operating Commands

Options for changing the output format:
-iand-r
Options for selecting output message files:

-f,-1,-n,-0,-s,-t,and-w

When an option with a flag argument is specified more than once, the last specified
option isvalid.

(3) Options

132

Lists send messages in abbreviated form.
This option cannot be specified with the - r option.
- r output-file-name ~<pathname>

Specify the name of the file to which the specified messages are to be output. The
messages are output in the data format of an M CF receive message file.
Therefore, the output file can be used without modification as an MCF receive

message file.

This option cannot be specified with the-i option. If the-r and-i optionsare
both omitted, segment information and send message information are output to
standard outpui.

-W

Edits and outputs only the messages that are not output by the - r option.
When this option is omitted, all messages are edited and output.

-0

Outputs only the oldest message among the editable messages.

This option cannot be specified with the- | option. If the-o and -1 optionsare
both omitted, all messages are outpuit.

-
Outputs the most recent message among the editable messages.

This option cannot be specified with the - o option. If the- | and - o options are
both omitted, all messages are outpui.

-f function-name

Outputs messages collected for the specified function. The following function
names can be specified:

send

5. Operating Commands

dc_ncf _send function
reply

dc_ncf _reply function
execap

dc_ncf_execap function
sendr ecv

dc_ncf _sendr ecv function
sendsync

dc_ntf_sendsync function

Thedc_ncf _resend function cannot be specified in this option because send
messages are not resent (rewritten) by thedc_ncf _r esend function when the
MCF simulator is used.

® -n humber

Selects output messages by number. To check message numbers, specify the - i
option to display an abbreviated listing of all send messages.

This option takes precedence when specified with options other than-i or -r.
m -t |ogical-terminal-name ~<identifier of 1-8 characters>
Outputs messages sent to the specified logical terminal.
m -s service-group-name ~<identifier of 1-31 characters>
service-name ~<identifier of 1-31 characters>

Outputs messages sent in aspecified service. Specify both the service group name
and service name, delimiting the two names with acomma. (,).

Two or more services can be specified for a service group. Delimit the service
names with commas. Do not insert a space or symbol before or after the comma.

Both the service group name and service name must be specified. If no service
nameisspecified, the send messageinformation of all the servicesin the specified
service group is edited and output.

When this option is omitted, send message information is output for all services
in all the service groups.

(4) Command argument
m MCF-send-message-file-name ~<pathname>
Specify the name of the MCF send message file containing the send messages.

133

5. Operating Commands

(5) Output format

134

(@) -i and -r options omitted

time=10:36:12 service group name=groupl

message size=20 service name=servicel 1
logical terminal=term01 fiunction=dc mcf reply

segment type=L map name=map01

00000000 5245504c 59313233 34353637 38396162 REPL Y123 4567 89ab
00000010 63646566 cdef

2.

1. Information on the edited and output send messages:

Time at which the messages were collected (hour:minute:second)
Message size (up to 10 digits)

Logical terminal name (up to 8 characters)

Service group name of the sent messages (up to 31 characters).
**** jsdisplayed when the service group name is unknown.
Service name of the sent messages (up to 31 characters).

**** jsdisplayed when the service nameis unknown.

One of the following function names for which the messages were collected:
dc_ncf_send function

dc_ncf _reply function

dc_ncf_execap function

dc_ncf _sendrecv function

dc_ncf _sendsync function

One of the following segment types:

M

Middle segment

L

Last segment

Map name.

**** jsdisplayed when no map nameis returned.

5. Operating Commands

2. Relativelocation
Dump display (hexadecimal)
ASCII character display.
A period (.) is displayed when ASCII character display isimpossible.
m Output example

time=10:36:12 service group name=groupl
message size=20 service name=servicel
logical terminal=term01 function=dc mcf reply
segment type=L map name=map01

00000000 5245504c 59313233 34353637 38396162 REPL Y123 4567 89ab
00000010 63646566 cdef

time=10:36:13 service group name=group2
message size=10 service name=service?2
logical terminal=term01 function=dc_mcf send
segment type=L map name=****

00000000 53454e44 30303030 3030 send 0000 00

(b) -i option specified

no function service group service
1 reply groupl servicel
2 send group?2 service2
: [T T T - I
1 2. 3. 4.

Message number in the file
Function for which the message was sent:
send
dc_ncf _send function
reply
dc_ncf _reply function
execap
dc_ncf_execap function

sendr ecv

135

5. Operating Commands

(6) Notes

dc_nef _sendr ecv function
sendsync

dc_ncf _sendsync function
Service group name of the sent messages (up to 31 characters).
***x s displayed when the service group name is unknown.
Service name of the sent messages (up to 31 characters).
** % s digplayed when the service name is unknown.
Output example

function service group service

reply groupl servicel
send group?2 service2
execap group?2 FEEE

send i service3

The send messages collected by the MCF simulation functions are written to the
M CF send message filewhen afunctionisissued. The messagesremaininthefile
if arollback occurs.

When the - r option is specified in the ut onmsgout command, the segment type
isdisplayed as[M..] L. For example, alogical message consisting of the three
segmentsF, M and L isactually output asM M L. However, this output can be used
without modification as input for the online or offline tester.

5.1.8 utosppsvc (service requests to an RPC interface SPP)

(1) Syntax

ut osppsvce

service-group-name Sservice-name
RPC-request-data-file-name
[RPC-response-data-file-name]

(2) Function

Reguests an RPC interface SPP to execute a specified service. However, execution of
aservice cannot be requested for an SPP that expects atransactional RPC (an SPP that
requires atransaction to be generated in advance at the UAP making the service
regquest). A command error occursif theut osppsve command isexecuted for aUAP
other than an RPC interface SPP.

136

5. Operating Commands

If noreply to the service request isreceived within the RPC maximum reply-wait time
(value specified in thewat ch_t i me operand in the system common definition), a
send/receive timeout condition occurs and the command is not accepted.

This command cannot be used for a simulate MHP.

(3) Command arguments

m service-group-name ~<identifier of 1-31 characters>

Specify the name of the service group to which the service to be executed belongs.
service-name ~<identifier of 1-31 characters>

Specify the name of the service to be executed.

RPC-request-data-file-name ~<pathname>

Specify the name of the RPC request datafile that contains the input datafor the
service request.

RPC-response-data-file-name ~<pathname>

Specify the name of the RPC response datafile for storing the response datawhen
the serviceis executed.

If this command argument is omitted, the response data is deleted.

When an existing output file is specified, its contents are overwritten. If the
specified file does not exist, the online tester creates thefile.

5.1.9 utotrcmrg (merger of UAP trace information)

(1) Syntax

utotrcnrg

- o trace-merge-file-name trace-file-name
trace-file-name [trace-file-name . . .

(2) Function

Outputsthetraceinformation in the specified trace filesin service execution sequence
to a specified file.

Duplicated trace information is output once only.

The merged trace information may not be listed in collection sequence if the merged
trace files were collected by different versions of the online tester.

(3) Option

m - o trace-merge-file-name ~<pathname>

Specify the name of the trace merge file for output of the merged trace
information.

137

5. Operating Commands

(4) Command argument

m trace-file-name ~<pathname>

(5) Notes

Specify the names of the trace files or trace merge files to be merged.

A warning message isoutput if the trace information in a specified tracefileis of
aversion for which nest control is not possible. The trace information is merged
by time series.

A warning message is output if the trace information required for nest control
does not exist.

5.1.10 utotrcout (edited output of UAP trace information)

(1) Syntax

ut ot r cout

[-s service-group-name

[, service-namg] . . .]

[-v server-name] [-i] [-n]

[-t [edit-start-date-and-time]

[, edit-end-date-and-time] | edit-file-name

(2) Function

Editsthetraceinformation in the specified tracefile or trace merge file and outputsthe
information to standard output.

(3) Options
B -s service-group-name ~<identifier of 1-31 characters>

138

service-name ~<identifier of 1-31 characters>

Edits and outputs trace information for a specified service. Specify both the
service group name and service name, delimiting the two nameswith acommaly(,).

Two or more services can be specified for a service group. Delimit the service
names with commas. Do not insert a space or symbol before or after the comma.

Both the service group name and service name must be specified. If no service
nameis specified, trace information is edited and output to standard output for all
the services in the specified service group.

When this option is omitted, the trace information of all the service groupsin the
specified file is edited and output.

If this option is specified with the - v option, both specifications apply to the
output trace information.

If this option is specified with the - n option, trace information for the service

5. Operating Commands

reguest destination is also output.
-v server-name ~<identifier of 1-8 characters>
Edits and outputs trace information for the specified server.

When this option is omitted, the trace information of all the serversin the
specified file is edited and output.

If this option is specified with the - s option, both specifications apply to the
output trace information.

If thisoptionis specified with the - n option, traceinformation on service requests
to the specified server is aso output.

Outputs sel ected information, such asfunction names, from the trace information
collected in the specified file to standard output.

When this option is omitted, al trace information is output to standard output.
-Nn

Outputs the trace information collected in the specified file to standard output in
the sequence in which the information was collected.

-t edit-start-date-and-time, edit-end-date-and-time

Sets the time range for output of trace information. The specified start timeis
corrected to the log time for the process that made the first service request.

Specify the start and end times within the range from 0:0:0 on January 1, 1970 to
the current time.

If the edit start time is omitted, trace information is output from the start of the
specified file up to the specified edit end time.

If the edit end time is omitted, trace information is output from the specified edit
start time up to the end of the specified file.

Specify the start and end times in the following format:
hhmmss] MMDDJ[YYYY]]
where

hh

hour (00 < hh < 23)

mm

minute (00 < mm < 59)

ss

139

5. Operating Commands

second (00 < ss < 59)

MM

month (01 < MM < 12)
DD

day (01 < DD < 31)

YYYY

year (1970 < YYYY < 9999)

If YYYY isomitted in the start or end time, the current year is assumed. If MM,
DD, and YYYY are all omitted, the current month, day, and year are assumed.

Either the edit start time or the edit end time must be specified.
(4) Command argument
m edit-file-name ~<pathname>
Specify the name of the trace file or trace merge file to be edited.
(5) Output format
(@) -i option omitted

SERVER NAME = UTOSPPO1
EDITION OBJECT DATE AND TIME = 98/01/27 11:17:40
SERVICE GROUP NAME = UTOSPPO1

COLLECTION DATE AND TIME = 98/01/26 14:50:28 1.
COLLECTION NO. = 1
PROCESS ID = 1925

TEST USER ID usrl

FUNCTION = dc rpc open (ENTRANCE)
COLLECTION DATE AND TIME = 98/01/26 14:50:29
COLLECTION NO. = 2 SERVICE NAME = *#*#*%*

1. Tester information:
« Name of the server at which the UAP was started (up to 8 characters)

» Date and time, corrected to the log time for the process that made the first
service request

140

5. Operating Commands

(last two digits of year/month/day hour:minute:second)

Service group name of the activated service (up to 31 characters).
**** jsdigplayed for an SUP.

Time at which the UAP trace information was collected

(last two digits of year/month/day hour:minute:second)

Sequence number of the entry for which trace information was collected (6
digits)

ID of the process for which trace information was collected

Test user ID of the user who started the UAP (up to 4 characters)

2. UAPtraceinformation (same output format as for uat dunp - e command):

Type of trace information collected
Date and time when the trace information was collected.
Not displayed for functions that activate or terminate service requests.

Date and time when the tester information or the UAP trace information was
collected in the format of year (last two digits)/month/day
hour: minutes: seconds.

Sequential number (six digits) of the entry that collected trace information
Name of the service that activated the UAP (up to 31 characters).
***x* jsdigplayed for an SUP or when the service is unknown.

3. Output areafor call information on OpenTP1 functions

m Output example (-i option omitted)

141

5. Operating Commands

SERVER NAME = sppniol
EDITION OBJECT DATE AND TIME = 98/03/08 16:22:42
SERVICE GROUP NAME = sppniOl
COLLECTION DATE AND TIME = 98/03/08 16:22:42
COLLECTION NO. = 1
PROCESS ID = 3895
TEST USER ID

dam

FUNCTION = dc rpc open (ENTRANCE)
COLLECTION DATE AND TIME = 98/03/08 16:22:42
COLLECTION NO. = 2 SERVICE NAME = *#*#*%
SERVER NAME = sppniOl
OPTION FLAG = 0x00000000 (DCNOFLAGS)

FUNCTION = dc rpc open (EXIT)
COLLECTION DATE AND TIME = 98/03/08 16:22:43
COLLECTION NO. = 3 SERVICE NAME = *#*#*%
SERVER NAME = sppniOl
OPTION FLAG = 0x00000000 (DCNOFLAGS)
RETURN CODE = 0 (NORMAL TERMINATION)

FUNCTION = dc rpc mainloop (ENTRANCE)
COLLECTION DATE AND TIME = 98/03/08 16:22:43
COLLECTION NO. = 4 SERVICE NAME = *#*#*%
SERVER NAME = sppniOl
OPTION FLAG = 0x00000000 (DCNOFLAGS)

142

SERVER NAME = supnioOl
EDITION OBJECT DATE AND TIME =

SERVICE GROUP NAME = ****
COLLECTION DATE AND TIME = 98/03/08 16:22:45
COLLECTION NO. = 1
PROCESS ID = 3898
TEST USER ID = dam

FUNCTION = dc rpc open (ENTRANCE)
COLLECTION DATE AND TIME = 98/03/08 16:22:45
COLLECTION NO. = 2 SERVICE NAME = *#*#*%
SERVER NAME = supniOl
OPTION FLAG = 0x00000000 (DCNOFLAGS)

FUNCTION = dc rpc open (EXIT)
COLLECTION DATE AND TIME = 98/03/08 16:22:45
COLLECTION NO. = 3 SERVICE NAME = *#*#*%
SERVER NAME = supniOl
OPTION FLAG 0x00000000 (DCNOFLAGS)
RETURN CODE = 0 (NORMAL TERMINATION)

FUNCTION = dc adm complete (ENTRANCE)
COLLECTION DATE AND TIME = 98/03/08 16:22:45
COLLECTION NO. = 4 SERVICE NAME = *#*#*%
OPTION FLAG = 0x00000000 (DCNOFLAGS)

FUNCTION = dc adm complete (EXIT)
COLLECTION DATE AND TIME = 98/03/08 16:22:45
COLLECTION NO. = 5 SERVICE NAME = *#*#*%
OPTION FLAG = 0x00000000 (DCNOFLAGS)
RETURN CODE = 0 (DC OK)

FUNCTION = dc rpc call (ENTRANCE)
COLLECTION DATE AND TIME = 98/03/08 16:22:45
COLLECTION NO. = 6 SERVICE NAME = *#***
SERVICE GROUP NAME OF CALLED SERVICE = sppniOl
NAME OF CALLED SERVICE = svccal
SEND DATA LENGTH(1024)

—————— SEND DATA --——--

000078 00000000 00000001 00000001 00000000
000088 00000000 00000073 70706e69 30320000
000098 00000000 00000000 00000000 00000000
0000a8 00000000 00000073 76636461

RECEIVE DATA LENGTH(1024)
OPTION FLAG = 0x00000000 (DCNOFLAGS)

5. Operating Commands

98/03/08 16:22:45

.S ppni 02..

.s vcda

143

5. Operating Commands

SERVER NAME = sppniol
EDITION OBJECT DATE AND TIME = 98/03/08 16:22:45
SERVICE GROUP NAME = sppniOl
COLLECTION DATE AND TIME = 98/03/08 16:22:45
COLLECTION NO. = 5
PROCESS ID = 3895
TEST USER ID = dam

FUNCTION = STARTING SERVICE FUNCTION
COLLECTION DATE AND TIME = 98/03/08 16:22:45
COLLECTION NO. = 6 SERVICE NAME = svccal
CALLING NODE NAME = 2C3G009
CALLING SERVICE GROUP NAME = ***%
CALLING SERVICE NAME = *#***
INPUT MESSAGE LENGTH(1024)

—————— INPUT DATA -—----

000098 00000000 00000001 00000001 00000000 e e
0000a8 00000000 00000073 7070669 30320000 s ppni 02..
0000b8 00000000 00000000 00000000 00000000 e e
00008 00000000 00000073 76636461 eeee ...s vcda

FUNCTION = dc trn begin (ENTRANCE)
COLLECTION DATE AND TIME = 98/03/08 16:22:45
COLLECTION NO. = 7 SERVICE NAME = svccal

FUNCTION = dc trn begin (EXIT)
COLLECTION DATE AND TIME = 98/03/08 16:22:45

COLLECTION NO. = 8 SERVICE NAME = svccal
—————— XID —-—-=----
000034 01030000 00000018 00000024 00000013 B
000044 00000£37 40404040 5075746f 00000000 ...7 @@EE Puto
000054 00000000 00000001 00000013 00000001 e e e e
000064 fEEfEffff 40404040 5075746f 00000£37 @@EEe Puto ...7
000074 00000000 00000000 00000000 00000000
000084 - 0000a4 : SAME DATA
0000b4 00000000 00000000 00000000

RETURN CODE = 0 (DC OK)

FUNCTION = dc dam open (ENTRANCE)
COLLECTION DATE AND TIME = 98/03/08 16:22:45
COLLECTION NO. = 9 SERVICE NAME = svccal
REQUEST CODE = OPEN
LOGICAL FILE NAME = TAMTABLE
OPTION FLAG = 0x00000002 (DCDAM BLOCK EXCLUSIVE)

FUNCTION = dc dam open (EXIT)
COLLECTION DATE AND TIME = 98/03/08 16:22:45
COLLECTION NO. = 10 SERVICE NAME = svccal
REQUEST CODE = OPEN
LOGICAL FILE NAME = TAMTABLE
OPTION FLAG = 0x00000002 (DCDAM BLOCK EXCLUSIVE)
RETURN CODE = 16842753 (FILE DESCRIPTOR)

144

5. Operating Commands

FUNCTION = dc dam write (ENTRANCE)
COLLECTION DATE AND TIME = 98/03/08 16:22:46
COLLECTION NO. = 11 SERVICE NAME = svccal
REQUEST CODE = WRIT
FILE IDENTIFIER = 16842753
OPTION FLAG = 0x00000000 (DCNOFLAGS)

KEY COUNT = 1 BUFFER LENGTH = 512
RELATIVE BLOCK NUMBER = 3

000054 00000000 00000000 00000000 00000000

000064 - 0000ed : SAME DATA

0000f4 00000000 00000000

FUNCTION = dc dam write (EXIT)
COLLECTION DATE AND TIME = 98/03/08 16:22:46
COLLECTION NO. = 12 SERVICE NAME = svccal
REQUEST CODE = WRIT
LOGICAL FILE NAME = TAMTABLE
FILE IDENTIFIER = 16842753
OPTION FLAG = 0x00000000 (DCNOFLAGS)

KEY COUNT = 1 BUFFER LENGTH = 512

RELATIVE BLOCK NUMBER = 3

000054 00000003 7069643D 33383936 20757064 pid= 3896 upd
000064 6174655f 636f756e 74343100 00000000 ate coun t=1.
000074 00000000 00000000 00000000 00000000 N

000084 - 0000ed : SAME DATA

0000f4 00000000 00000000

RETURN CODE = 0 (DC OK)

FUNCTION = dc dam close (ENTRANCE)
COLLECTION DATE AND TIME = 98/03/08 16:22:46
COLLECTION NO. = 13 SERVICE NAME = svccal 3
REQUEST CODE = CLOS ’
FILE IDENTIFIER = 16842753
OPTION FLAG = 0x00000000 (DCNOFLAGS)

FUNCTION = dc dam close (EXIT)
COLLECTION DATE AND TIME = 98/03/08 16:22:46
COLLECTION NO. = 14 SERVICE NAME = svccal
REQUEST CODE = CLOS
LOGICAL FILE NAME = TAMTABLE
FILE IDENTIFIER = 16842753
OPTION FLAG = 0x00000000 (DCNOFLAGS)
RETURN CODE = O (DC_OK)

FUNCTION = dc trn unchained commit (ENTRANCE)
COLLECTION DATE AND TIME = 98/03/08 16:22:46
COLLECTION NO. = 15 SERVICE NAME = svccal

FUNCTION = dc trn unchained commit (EXIT)
COLLECTION DATE AND TIME = 98/03/08 16:22:46
COLLECTION NO. = 16 SERVICE NAME = svccal
RETURN CODE = O (DC_OK)

FUNCTION = ENDING SERVICE FUNCTION

COLLECTION DATE AND TIME = 98/03/08 16:22:46

COLLECTION NO. = 17 SERVICE NAME = svccal
CALLING NODE NAME = 2C3G009
CALLING SERVICE GROUP NAME = ***%
CALLING SERVICE NAME = *#***
OUTPUT MESSAGE LENGTH(13)
—————— OUTPUT MESSAGE —-—-—----
000098 7376636e 6964616d 20656e64 00 sven idam end

145

5. Operating Commands

146

SERVER NAME = supnioOl

EDITION OBJECT DATE AND TIME = 98/03/08 16:22:

SERVICE GROUP NAME = ****

COLLECTION DATE AND TIME = 98/03/08 16:

COLLECTION NO. = 7
PROCESS ID = 3898
TEST USER ID = dam

FUNCTION = dc rpc call (EXIT)

COLLECTION DATE AND TIME = 98/03/08 16:

COLLECTION NO. = 8 SERVICE NAME =

22:46

22:46

* ok ok ok

SERVICE GROUP NAME OF CALLED SERVICE = sppniOl

NAME OF CALLED SERVICE = svccal**
SEND MESSAGE LENGTH(1024)
—————— SEND DATA ------

000078 00000000 00000001 00000001
000088 00000000 00000073 70706e69
000098 00000000 00000000 00000000
0000a8 00000000 00000073 76636461

RECEIVE DATA LENGTH(13)

—————— RECEIVE DATA —-—-—----

0000b8 7376636e 6964616d 20656e64

OPTION FLAG = 0x00000000 (DCNOFLAGS)
RETURN CODE = 0 (NORMAL TERMINATION)

FUNCTION = dc rpc close (ENTRANCE)

COLLECTION DATE AND TIME = 98/03/08 16:

COLLECTION NO. = 9 SERVICE NAME =
OPTION FLAG = 0x00000000 (DCNOFLAGS)

FUNCTION = dc rpc close (EXIT)

COLLECTION DATE AND TIME = 98/03/08 16:
SERVICE NAME = *#***

COLLECTION NO. = 10

OPTION FLAG = 0x00000000 (DCNOFLAGS)

00000000 e e e
30320000 ..s ppni 02..
00000000 [

..s vcda
00 svcen idam end
22:46
* ok ok ok
22:46

46

(b)

SERVER NAME = sppniol

SERVICE GROUP NAME = sppniOl
COLLECTION DATE AND TIME = 98/03/08 16:27:37
COLLECTION NO. = 18

FUNCTION = dc rpc mainloop (EXIT)
COLLECTION DATE AND TIME = 98/03/08 16:27:37
COLLECTION NO. = 19 SERVICE NAME = *#*#*%

FUNCTION = dc rpc close (ENTRANCE)
COLLECTION DATE AND TIME = 98/03/08 16:27:37
COLLECTION NO. = 20 SERVICE NAME = *#*#*%

FUNCTION = dc rpc close (EXIT)
COLLECTION DATE AND TIME = 98/03/08 16:27:37
COLLECTION NO. = 21 SERVICE NAME = *#*#*%

a c D E

RETURN CODE = 0 (NORMAL TERMINATION)

5. Operating Commands

EDITION OBJECT DATE AND TIME = 98/03/08 16:27:37

PROCESS ID = 3895
TEST USER ID = dam

OPTION FLAG 0x00000000 (DCNOFLAGS) S.

OPTION FLAG = 0x00000000 (DCNOFLAGS)

OPTION FLAG = 0x00000000 (DCNOFLAGS)

Trace information collected at SPP startup
Trace information collected at SUP startup
Trace information collected at service execution
Trace information collected at SUP compl etion
Trace information collected at SPP completion

-i option specified

98/01/26 14:48:37 <98/01/26 15:50:28> <1925>| 1
UTOSPPO1 (UTOSPPO1l) <0>

dc rpc open (ENTRANCE)

1

Tester information:

- Dateand time, corrected to the log time for the process that made the first
service request

(last two digits of year/month/day hour:minute:second)

147

5. Operating Commands

148

Date and time when the tester information was collected

(last two digits of year/month/day hour:minute:second)

ID of the process for which the UAP trace was collected

Name of the server at which the UAP was started (up to 8 characters)
Service group name of the activated service (up to 31 characters).
***=* jsdisplayed for an SUP.

Nest number of the UAP for which trace information was collected.

Oisdisplayedfor traceinformation for which the online tester version cannot
perform nest control.

When asimulated client UAP or TPL/Client UAP makes the service request,
the nest numbers of the service request destinations are displayed from 1.

2. UAP traceinformation

Type of trace information collected
Time at which the trace information was collected.

For functions that activate or terminate service requests, the name of the
service that activated the UAP is displayed (up to 31 characters).

m Output example (-i option specified)

98/03/08 16:22:42 <98/03/08 16:22:42>
sppniOl (sppniOl) <0>

dc rpc open (ENTRANCE)

dc rpc open (EXIT)

dc rpc mainloop (ENTRANCE)

98/03/08 16:22:45 <98/03/08 16:22:45>
supniOl (****) <0>

dc rpc open (ENTRANCE)

dc rpc open (EXIT)

dc adm complete (ENTRANCE)

dc adm complete (EXIT)

dc rpc call (ENTRANCE)

98/03/08 16:22:42 <98/03/08 16:22:42>
sppniOl (sppniOl) <1>

STARTING SERVICE FUNCTION (svccal)
dc trn begin (ENTRANCE)

dc trn begin (EXIT)

dc dam open (ENTRANCE)

dc dam open (EXIT)

dc dam write (ENTRANCE)

dc dam write (EXIT)

dc dam close (ENTRANCE)

dc dam close (EXIT)

dc trn unchained commit (ENTRANCE)
dc trn unchained commit (EXIT)
ENDING SERVICE FUNCTION

98/03/08 16:22:46 <98/03/08 16:22:46>
supniOl (****) <0>

dc rpc call (EXIT)

dc rpc close (ENTRANCE)

dc rpc close (EXIT)

98/03/08 16:22:46 <98/03/08 16:22:46>
sppniOl (sppniOl) <0>

dc rpc mainloop (EXIT)

dc rpc close (ENTRANCE)

dc rpc close (EXIT)

a c D E

Trace information collected at SPP startup

Trace information collected at SUP startup
Trace information collected at service execution
Trace information collected at SUP compl etion
Trace information collected at SPP completion

. Operating Commands

<3895>

<3898>|

<3895> |

<3898>]

<3895> |

149

5. Operating Commands

(6) Notes

» When the specified edit file contains trace information of an older version than
this command, a warning message is output and the information is output in the
order in which it was stored in thefile.

* Whenthe- n option is specified, awarning messageisoutput if the required trace
information does not exist (part of the information is missing).

* Whenthe- n optionisspecified and the edition start date and time specified in the
-t option isatime between the edition object date and times for two consecutive
groups, the trace information for the latter and subsequent groupsis output.

* Whenthe- n optionisspecified, traceinformationisoutput up to the nesting level
of the client process, even if the edition object date and time of the trace
information for the service request destination exceeds the edition end date and
time specified inthe- t option.

» When trace information is collected with the complete 1/O data specified, tester
information may be output in the middle of 1/0 data.

» Valid option combinations are shown below.

Specifiable option -S -v -n -t -i

combinations

-S

-V

-Nn

-t

L egend:

- X: Only the - x option is valid.
- X, - y: Both the - x and - y options are valid.
--: Not applicable

5.1.11 utoxsppsvc (service requests to an XATMI interface SPP)

(1) Syntax

ut oxsppsvce

[-f send/receive-control-file-name]
service-name typed-buffer-definition-file-name
XATMI-request-data-file-name

[XATMI-response-data-file-name]

150

5. Operating Commands

(2) Function

Reguests an XATMI interface SPP to execute a specified service. A command error
occursif theut oxsppsvec command isexecuted for aUAP other than an SPPthat uses
XATMI.

This command cannot be used for asimulate MHP,

(3) Options

m -f send/receive-control-file-name ~<pathname>

For an interactive service request, specify the name of the send/receive control
file that defines the send and receive procedures.

(4) Command arguments

m service-name ~<identifier of 1-31 characters>

(5) Notes

Specify the name of the service to be executed.
typed-buffer-definition-file-name ~<pathname>

Specify the name of the typed buffer definition file that defines typed buffer
information.

XATMI-request-data-file-name ~<pathname>

Specify the name of the XATMI request datafile that contains the input data
passed when a service is requested (when connection is established).

XATMI-response-data-file-name ~<pathname>

Specify the name of the XATMI response datafile for storing the receive data
during service execution and the response data after service execution.

If this command argument is omitted, the response data is deleted.

When an existing output file is specified, its contents are overwritten. If the
specified file does not exist, the online tester creates thefile.

Only one service request can be made interactively.

Set the type of service reguest function (request/response or conversational
service paradigm) in cal | _ki nd in the XATMI request datafile.

The-f optionisignored if specified for the request/response service paradigm.
If the- f option is omitted for the conversational service paradigm, a command
error occurs.

Service requests from within a transaction cannot be simulated.
No error occurs if the send/receive control file contains no valid lines, but the

151

5. Operating Commands

152

command terminates immediately after the request for establishing connection.

If no receive data or response data is received, no XATMI response datafileis
created. Provided at least one item of datais received, thefileis created even if
an error subsequently occurs. The data up to the error remains in the file.

The datain the XATMI receive or XATMI response datafileisinvalidated if the
datalength specified for the file differs from the typed buffer length specified in
the typed buffer definition file.

The following conditions occur if the buffer length managed by the SPP differs
from the typed buffer length specified in the typed buffer definition file:

1. Servicerequest error at ut oxsppsvc command execution
2. Datareceive error at ut oxsppsvc command execution
3. Datareceiveerror in the SPP

If an XATMI response data file already exists, its contents are deleted when the
ut oxsppsvc command starts. No dataremainsin thefile, even if no datais
output.

Chapter
6. Error Recovery

This chapter explains the errors related to online tester operation and how to handle
them.

This chapter contains the following section:
6.1 Handling online tester errors

153

6. Error Recovery

6.1 Handling online tester errors

This chapter describes how to handle online tester errors. See the manua OpenTP1
Operation for details on errors not related to the online tester.

6.1.1 Error conditions and causes
Table 6-1 lists the types of errors that may occur with the online tester and their

probable causes.

Table 6-1: Onlinetester errors and causes

Error Cause Manual
reference
Online tester command does No online tester definition in system definition. 6.1.2(1)
not terminate normally.
Incorrect option or command argument.
File for command execution cannot be accessed.
UAP trace information not No test target specified in system definition. 6.1.2(2)
collected.
Zero specifiedinmax_trace_fil e_si ze operandin the
system definition.
Zero specified in UAP_t r ace_max operand in the system
definition.
Send messages not collected. No test target specified in system definition. 6.1.2(3)
Zero specifiedinmax_nessage_fil e_si ze operandinthe
system definition.
Number of send messages exceeds the upper limit.
No send data collected for Output of send data not defined in the system definition. 6.1.2 (4)
interactive service requests.
Test UAP does not start. Test user ID not set. 6.1.4 (1)
No test target specified in system definition.
UAP does not start in non-test | Specified as atest UAP in the system definition. 6.1.4(2)
mode.
dc_rpc_open functionina No online tester definition in the system definition. 6.1.4 (3)
test UAP returns an error.
Test UAP restarted with _ut o | Conflict in UAP status control between the OpenTP1 system | 6.1.4 (4)

asthetest user ID.

and the online tester.

154

6. Error Recovery

Error Cause Manual
reference
Test UAP does not recover Test UAP interlocked to the debugger. 6.1.4 (5)
after abnormal termination.
Debugger-interlocked UAP Incorrect value specified for the monitoring timeintheuser | 6.1.4 (6)
frequently causes a time-out service definition.

error.

6.1.2 Online tester errors
The following explains how to handle online tester errors.

(1) Online tester command does not terminate normally

Take one of the following actions, then re-enter the command:

If usage of the onlinetester is not specified in the system service configuration
definition, terminate OpenTPL, configure the online tester in the definition
(specify Y intheut o_conf operand), then restart OpenTPL.

If an option or command argument is incorrectly specified, correct the option or
command argument.

If afile required for command execution does not exist, create the file. Or, if the
existing file cannot be used because access is prohibited, change the access
authority.

(2) UAP trace information not collected
(& No UAP trace information collected at all

(b)

(c)

If zerois specified as the maximum size of the tracefile (max_trace_fil e_si ze
operand) in the tester service definition, terminate OpenTP1, specify 1 or a higher
value, then restart OpenTPL.

Trace information not collected for a specific UAP

Take one of the following actions:

If the UAPisnot specified as atest UAP in the user service definition, terminate
the UAP, correct thedefinition (specify t ar get inthet est _node operand), then
restart the UAP.

If zero is specified as the maximum number of UAP traces (uap_t r ace_nmax
operand) in the user service definition, terminate the UAPR, specify 1 or a higher
value, then restart the UAP.

Some trace information missing

Take one of the following actions:

155

6. Error Recovery

o If thetracefileisfull, back up to another file, then delete the full file.

 |f theonlinetester shut down during UAP execution, restart the online tester, then
re-execute the UAP.

» |f the UAP detected an abnormality and immediately shut down without
collecting the corefile, modify the program so that the core file can be collected,
then re-execute the UAP.

(3) Send messages not collected
(@) No send messages collected at all

If zero is specified as the maximum size of the MCF send message file
(max_message_fil e_si ze operand) in the tester service definition, terminate
OpenTP1, specify 1 or a higher value, then restart OpenTP1.

(b) Send messages not collected for a specific UAP

If the UAP is not specified asatest UAP in the user service definition, terminate the
UAP, correct the definition (specify t ar get inthet est _node operand), then restart
the UAP.

(c) Some send messages missing
If the M CF send message file is full, back up to ancther file, then delete the full file.
(4) No send data collected for interactive service requests.
(@) No send data collected at all

If Nis specified for send data output (t est _xat i _send_f i | e operand) in the user
service definition, terminate the UAP, specify Y, then restart the UAP,

6.1.3 File errors

If an error occursin afile created by the onlinetester, check the cause of the error from
the file name and error code displayed in the error message, and take appropriate
action.

6.1.4 UAP errors
The following explains how to handle UAP errors.
(1) Test UAP does not start
Take one of the following actions, then re-start the UAP:
» Setthetest user ID if omitted.
* Reset thetest user ID if incorrect.

» |fthe UAPisnot specified asatest UAP in the user service definition, terminate
the UAP, correct thedefinition (specify t ar get inthet est _node operand), then

156

6. Error Recovery

restart the UAP.
(2) UAP does not start in non-test mode

If the UAP is specified as atest target in the user service definition, specify the UAP
asanon-test UAP (specify no inthet est _node operand) or delete the definition
statement. Then restart the UAP.

(3) dc_rpc_open function in a test UAP returns an error

If usage of the online tester is not specified in the system service configuration
definition, terminate OpenTP1, configure the online tester in the definition (specify Y
intheut o_conf operand), then restart OpenTP1.

(4) Test UAP restarted with _uto as the test user ID
_ut o may be set asthetest user ID when atest UAP isrestarted after:

» Forced termination of the OpenTP1 system or UAP during normal termination
processing of the UAP

» Abnormal termination of the OpenTP1 system

In these cases, amessage reportsthat _ut o was set asthetest user ID at system restart.
To execute the UAP with adifferent test user ID, terminate and then restart the UAP.

(5) Test UAP does not recover after abnormal termination

When the test UAP isinterlocked to the debugger, the UAP is not recovered if it
terminates abnormally. A message appears, notifying the UAP recovery isdisabled. To
restart this UAP, stop the debugger if the debugger process remains.

(6) Debugger-interlocked UAP causes a time-out error frequently

A debugger-interlocked UAP may frequently cause atime-out error depending on a
value specified for the monitoring timein the user service definition. Table 6-2 shows
time-out error events and related definitions.

Table 6-2: Time-out error events caused by a debugger-interlocked UAP and
related definitions

Time-out error event Set format of the related user service
definition
dc_rpc_cal | function times out and returns an error. set watch_time
A time-out error abnormally terminates the corresponding set trn_expiration_tine

transaction branch process, activating the recovery process. The | set trn_cpu_tine
UAP isthen terminated forcibly.

A time-out error abnormally terminates the corresponding UAP. | set wat ch_next _chai n_ti me
The UAP isterminated forcibly.

157

6. Error Recovery

Time-out error event

Set format of the related user service
definition

A time-out error abnormally terminates the corresponding UAP
without shutdown by the service group. The UAP is terminated

forcibly.

set termwatch_tine

158

PART 3: Online Tester (TP1/Message Control/Tester)

Chapter
7. Facilities

This chapter describes the following facilities provided by the MCF online tester:
Disabling updating of non-M CF resources

Invalidating send messages

Invalidating application startup messages

Suppressing error events

Suppressing MHP automatic shutdown

Collecting UAP trace information

This chapter contains the following sections:

7.1 MHPtesting
7.2 Collecting test information

159

7. Facilities

7.1 MHP testing

The MCF online tester allows the user to test and check the operation of a newly
created MHP or modified MHP. Both of the following conditions must be satisfied for
atest to be performed:

* The MHP must be within atransaction.
» The MHP must be activated directly from TPL/Message Control.

Totest an MHP, enter thencf ut f st command to declare use of the M CF online tester
and to access its facilities. Then, enter the ncf t ul es, ncf auaps or ncf t usgs
command to start testing. Or, to check whether the facilities of the M CF online tester
are available, enter the ncf | sut f command.

Tests can be performed on:
* Alogical terminal
* Anapplication
» A servicegroup

Thetest start command differsin each case. Usethe ntf t ul es command to test a
logical terminal. The test runs from the time a message from the specified logical
terminal is received by the application until no further test messages remain.

Usethe ntcf auaps command to test an application. The test runs from the time the
specified application receives a message until no further test messages remain. The
type of application (user application or M CF event) can be selected by specifying the
- k operand in the ncf auaps command.

Usethentf t usgs command to test aservice group. The test runs while the service
group specified by the ntcf t usgs command is active.

The MCF online tester facilitiesto be used in atest can also be specified as optionsin
the test start commands. The specifiable facilities are described below.

7.1.1 Disabling updating of non-MCF resources

When atest MHP updates resources managed by another resource manager during
message processing, the updated resources can be restored to their previous status at
completion of the transaction. Thisfacility meansthat the user does not need to restore
the resources after testing.

To use thisfacility, specify backout inthe - e option of the test start command.
7.1.2 Invalidating send messages
Messages sent by atest MHP can be invalidated, allowing the MHP to be tested

160

7. Facilities

without affecting online jobs.

This facility invalidates messages sent by the following functions issued by the test
MHP:

e dc_ncf_send function (message send)

* dc_ncf_sendsync function (synchronous message send)

e dc_ncf_resend function (message resend)
To use this facility, specify swnsg in the - e option of the test start command.
Messages sent by the following functions cannot be invalidated:

e dc_ntf _reply function (response message send)

» dc_ncf_sendrecv function (synchronous message send and receive)

7.1.3 Invalidating application startup messages

Startup messages for branch applications can be invalidated, alowing the MHP to be
tested without affecting online jobs.

To use this facility, specify execap inthe - e option of the test start command.
Application startup messages for response messages cannot be invalidated.

7.1.4 Suppressing error events

Error eventsgenerated in atest MHP can be suppressed, allowing the MHPto betested
without affecting online jobs.

The following error events can be suppressed:

* ERREVT1 (MCF event that reports detection of an invalid application name,
suppressed for logical terminal tests only)

* ERREVT2 (MCF event that reports discarding of a message at abnormal
termination beforeissue of thedc_ntf _recei ve function)

* ERREVT2 (MCF event that reportsdiscarding of amessage generated at automatic
shutdown)

* ERREVT3 (MCF event that reports UAP abnormal termination at abnormal
termination during MHP execution)

To usethisfacility, specify er r evt inthe- e option of the test start command.
The following error events cannot be suppressed:
* ERREVTA (MCF event that reports discarding of an unprocessed message)
* ERREVT4 (MCF event that reports discarding of atimer-start message)

161

7. Facilities

7.1.5 Suppressing MHP automatic shutdown

The MHP normally shuts down automatically at abnormal termination. Automatic
shutdown can be suppressed so that the user does not need to enter an operating
command to rel ease shutdown status.

To use thisfacility, specify hol dl i mi t inthe- e option of the test start command.

After thetest start command has been executed, applications can be started in the same
way as when not using the MCF online tester.

Figure 7-1 shows an example of transaction processing from receiving to sending a
message. |f the MHP terminates abnormally, M CF resources arerestored to their status
before the transaction began.

Figure 7-1: Example of transaction processing from message receive to

message send

TP1/Message Control

MHP

TP1/Message Control /Tester

Message receive

UAP startup

Message send

dc_mcf_receive

dc_mcf_send

return()

Resources

(before
update)

Resources
(after

update)

Explanation:

1. Messages sent during atest are handled as follows:

Message type

-e option of test start command

swmsg specified

swmsg omitted

Inquiry response messages

162

7. Facilities

Message type -e option of test start command

swmsg specified swmsg omitted

Branch messages Not sent? Sent

#: Theinterfaceis checked at message send and an error status codeisreturned if
an error occurs.

2. Resourcesof resource managers other than the M CF are restored to their previous
status when backout is specified in the - e option of the test start command.
Updated resources are not restored when backout isomitted.

3. Thesend message is output if one exists.

163

7. Facilities

7.2 Collecting test information

7.2.1 Collecting UAP trace information

164

Traceinformation can be collect for atest MHP so that M HP operation can be checked.
However, the TP1/Server Base online tester must also be used.

To use thisfacility, specify the test user ID in the - u option of the command for the
MCEF onlinetester use declaration (ncf ut f st), andt r ace inthe- e option of thetest
start command (ncf t ul es, ncf auaps, or nef t usgs).

Chapter
8. Test Execution

This chapter explains how to start and end atest, how duplicate test mode
specifications are handled, and how to inherit and edit test mode information.

This chapter contains the following sections:

8.1 Starting and ending atest

8.2 Duplicate test mode specifications
8.3 Inheriting test mode information
8.4 Editing test information

165

8. Test Execution

8.1 Starting and ending a test

Test mode is the system status from execution of atest start command (ncf t ul es,
nmcf auaps, or ncf t usgs) until execution of atest end command (ncf t ul ee,

ncf auape, or ncf t usge). The MCF online tester facilities can be used during this
time.

8.1.1 Starting a test and setting the test environment

To use the MCF online tester, first enter the ncf ut f st command to declare usage.
Then, enter atest start command to start testing. Specify thetest environment (the MCF
online tester facilities to be used) in the test start command. These specifications are
called test mode information.

Before starting atest, you can check whether the facilities of the MCF onlinetester are
available. Enter the ncf | sut f command to display tester status.

(1) Starting atest

(@)

(b)

()

(d)

Testing a logical terminal

Enter the ncf t ul es command to start testing. At command execution, the specified
logical terminal isin test mode. That is, all the applications activated from the logical
terminal run in test mode.

Testing an application

Enter the ncf auaps command to start testing. At command execution, the specified
application runsin test mode.

An application test can be performed when adding new application processing to an
existing UAP.

Testing a service group

Enter the ncf t usgs command to start testing. At command execution, the specified
service group enters test mode.

Note on executing a test start command

Do not enter atest start command before shutdown of connection and completion of
all message send and receive. If atest start command is executed during message send
and receive, the application(s) run in test mode when subsequently activated.

(2) Setting the test environment

166

To set the test environment, specify any of the following facilities in the test start
command:

» Disable updating of non-M CF resources

8. Test Execution

Invalidate send messages

Invalidate application startup messages
Suppress error events

Suppress MHP automatic shutdown
Collecting UAP trace information

(3) Test mode range

The input messages for an application in test mode and the messages input from a
logical terminal in test mode are called test mode messages.

Test mode is effective from the time the MHP receives a test mode message until the
end of messages generated during testing.

8.1.2 Ending a test

To declare test termination, enter the test end command (ncf t ul ee, ncf auape or
mcf t usge) from aworkstation that accepts online tester operating commands.

When the test end command is executed, the specified logical terminal, application, or
service group is released from test mode.

167

8. Test Execution

8.2 Duplicate test mode specifications

When two or more test mode specifications apply to an application, the precedence of
the test environment specification for the application isin the order of first the logical

terminal, then the application, and finally the service group.

For example, if an applicationisinput from alogical terminal intest mode, and if atest
environment is specified for that application by entering the ncf auaps command, the
test environment specified for the logical terminal by the ncf t ul es command takes
effect. The test environment specified by the ncf auaps command is effectiveif the

application isinput from alogical terminal that is not in test mode.

Table 8-1 shows how duplicate test mode specifications for alogical terminal, an
application, and a service group are handled.

Table 8-1: Duplicate test mode specifications

Logical terminal Application Service group Source of valid test
mode information
Y Y Y Logical terminal
N Logical terminal
N Y Logical terminal
N Logical terminal
N Y Y Application
N Application
N Y Service group
N -

Legend:

168

Y: Thetest mode is specified.
N: The test mode is not specified.
--: Not applicable.

8. Test Execution

8.3 Inheriting test mode information

When atest MHP issuesthedc_ncf _execap function (for activating an application
program), the test mode information specified in the test start command isinherited to
the activated MHP.

Table 8-2 shows how test mode information is inherited.

Table 8-2: Inheritance of test mode information

Logical Application Service Application specified using dc_mcf_execap
terminal group
Y N
Service group Service group
Y N Y N
Y Y Y The test mode information for the logical terminal isinherited.
N
N Y
N
N Y Y The test mode information The test mode The test mode
for the application specified | informationfor | information for
N using dc_rmcf _execap is theMHPstarted | the startup
inherited. using source
dc_ntf_execa | applicationis
p isinherited. inherited.

N Y The test mode
information for
the startup
source MHP is
inherited.

N -
Legend:

Y: The test mode is specified.
N: The test mode is not specified.
--- Not applicable.

169

8. Test Execution

8.4 Editing test information

8.4.1 Displaying test mode information

Entering a test mode information display command (ncf t ul sl e, ncf aul sap, or
mcf t ul ssg) can output the test mode information for alogical terminal, application,
or service group (MHP) specified in atest start command to standard output. This
facility allowsthe operator to monitor the status of the online test.

8.4.2 Collecting UAP trace information

To collect UAP (MHP) trace information, first complete the following specifications:
» Specify ut o_conf =Y in the system service configuration definition.

» Specify the maximum size of the tracefileinthemax_trace_fil e_si ze
operand of the tester service definition.

» Specify t est _nmode=no inthe user service definition.

» Specify thetest user ID inthe- u option of thencf ut f st (MCF onlinetester use
declaration) command.

* Specify t race inthe - e option of the command for starting the MCF online
tester.

8.4.3 Merging and outputting UAP trace information

170

MHP trace information is collected when these specifications are completed. The
information can be edited and output to standard output by entering the online tester's
ut ot r cout command.

The output format follows TP1/Server Base online tester specifications. No trace
information is output for the following functions.

e dc_ncf_open function

e dc_ncf_cl ose function

e dc_ncf_mai nl oop function
e dc_ncf_regster function

MHP trace information is output to the $DCDI R/ spool / ut o/ test-user-1D directory.
Thetest user ID in the pathnameisthe ID specified in the - u option of thencf ut f st
command.

There are two MHP tracefiles, t racel and t r ace2. These files are swapped if the
contents written to a file exceed the value specified inthemax_trace_fil e_si ze
operand of the tester service definition. A message reports that the files were swapped
when one file became full. When this message is output, copy the contents of the full

8. Test Execution

trace file to another file, then delete the full tracefile.

See Section 3.1 System definitions for the online tester for information on the system
service configuration definition, tester service definition, and user service definition.

For details on the ut ot r cout command, see Section 5.1 Operating commands for
running tests.

171

Chapter
9. Operating Commands

This chapter explains how to use the operating commands of the M CF online tester.
This chapter contains the following sections:

9.1 Operating commands for running tests

9.2 Operating commands for testing alogical terminal
9.3 Operating commands for testing an application
9.4 Operating commands for testing a service group

173

9. Operating Commands

9.1 Operating commands for running tests

The following pages explain the operating commands for the M CF online tester. For
information on command syntax and rules, see the manual OpenTP1 Operation.

Table 9-1 lists the operating commands for running tests.
Table 9-1: List of operating commands

Command name Function
ncf ut f st MCEF online tester use declaration
mef | sut f Display of MCF online tester status

9.1.1 mcfutfst (MCF online tester use declaration)
(1) Syntax

ncfutfst [-u test-user-1D]

(2) Function
Declares usage of the MCF online tester.

Commands for the M CF online tester other than ncf ut f st and ncf | sut f are not
accepted unless usage of the MCF online tester isfirst declared by entering the
ncf ut f st command.

Thencf ut f st command isnot accepted if usage of the MCF onlinetester has already
been declared.

Enter the ncf ut f st command only after shutdown of connection and completion of
all message send and receive.

The MCF online tester ends when TP1/Message Control terminates.
(3) Option
m -u test-user-ID ~<identifier of 1-4 characters>
Specify atest user ID for identifying the trace file directory.
This option must be specified to collect MCF trace information.
9.1.2 mcflsutf (display of MCF online tester status)
(1) Syntax

nmcfl sut f

174

9. Operating Commands

(2) Function

Outputs the status of the M CF online tester, showing whether the tester facilities can
be used, to standard output.

Beforethe M CF onlinetester facilities can be used, usage must be declared by entering
the ncf ut f st command.

(3) Output format

A00 MCF mode=TEST testuser | D=nhp
1 2. 3.

MCF manager process ID and MCF communication process |D
M CF mode indication
TEST
M CF online tester can be used.
NORMAL
M CF online tester cannot be used.
4. =*=*x** jsdisplayed when no test user ID is specified.

175

9. Operating Commands

9.2 Operating commands for testing a logical terminal

This section explains the commands of the MCF online tester for running atest on a
logical terminal. For the format and rules of the operating commands, see the manual
OpenTP1 Operation.

Table 9-2 lists the operating commands used for running tests on alogical terminal.
Table 9-2: Operating commands for running tests on alogical terminal

Command name Function
meftul sle Display of test mode information for alogical terminal
meftul es Start of alogical terminal test
meftul ee Termination of alogical terminal test

9.2.1 mcftulsle (display of test mode information for a logical
terminal)

(1) Syntax

meftul sl e -1 logical-terminal-name

(2) Function
Outputs test mode information for the specified logical terminal to standard output.
(3) Option
m -| logical-terminal-name ~<identifier of 1-8 characters>

Specify the name of the logical terminal for which test mode information isto be
displayed.

Specify an asterisk (*) inlogical-terminal-nameto display test mode information
for all logical terminalsin test mode. To display test mode information for all

logical terminals whose names begin with a particular prefix character string,
follow the prefix character string with an asterisk (prefix-character-string*).

Only onelogical terminal name can be specified.
(4) Output format

AO01 LEual 1 back trac swns erre exec hold
1. 2. 3. 4, 5. 6. 7. 8.

1. MCF manager process |ID and MCF communication process |ID

176

9. Operating Commands

Logical terminal name (up to 8 characters)

Shows whether to restore resources to pre-test status at completion of a
transaction.

back
Restore.
nobk
Do not restore.

Shows whether to collect MHP trace information during processing of a
transaction in test mode.

trac
Collect.
notr
Do not collect.

Shows whether to invalidate MHP send messages issued by atransaction in test
mode.

SWI's
Invalidate.
nosw
Do not invalidate.
Shows whether to suppress error event activation.
erre
Suppress.
noer
Do not suppress.

Shows whether to invalidate application startup messages issued by atransaction
in test mode.

exec
Invalidate.
noex
Do not invalidate.
Shows whether to suppress MHP automatic shutdown should atransaction in test

177

9. Operating Commands

mode terminate abnormally.
hol d
Suppress.
noho
Do not suppress.
9.2.2 mcftules (start of a logical terminal test)
(1) Syntax

ncftules [-e "[backout] [trace] [swnsg] [errevt]
[execap] [holdlimt]"]
-1 logical-terminal-name

(2) Function
Sets the specified logical terminal in test mode and starts testing.

Enter the ncf t ul es command only after shutdown of connection and completion of
all message send and receive.

(3) Options
m -e
Specify the test mode options.

Enclose two or more flag arguments with quotation marks (") and delimit each
flag argument by inserting a space.

Flag arguments:
backout

Restores the resources used in atransaction to pre-test status at completion
of the transaction.

When this flag argument is omitted, updated resources are used in their
current status and are not restored to pre-test status.

trace

Collects MHP trace information during processing of a transaction in test
mode.

When this flag argument is omitted, no MHP trace information is collected.
SWTBQ

Invalidates messages sent by the MHP during processing of atransaction in
test mode.

178

9. Operating Commands

Messages sent by the following functions issued by the test MHP are
invalidated:

dc_ntf _send function (message send)
dc_ntf_sendsync function (synchronous message send)
dc_ncf _resend function (message resend)

When thisflag argument isomitted, messages sent by the above functionsare
effective.

errevt

Suppresses error event activation if an error event occurs during testing. The
following error events are suppressed:

ERREVT1 (MCF event that reports detection of an invalid application name)

ERREVT2 (MCF event that reports discarding of a message at abnormal
termination beforeissue of thedc_ntf _recei ve function)

ERREVT2 (MCF event that reports discarding of a message generated at
automatic shutdown)

ERREVT3 (MCF event that reports UAP abnormal termination at abnormal
termination during MHP execution)

When this flag argument is omitted, activation of the above error eventsis
not suppressed.

execap

Invalidates branch application startup messages issued by atransactionin
test mode.

When thisflag argument is omitted, branch application startup messages are
effective.

hol dl'i mt

Suppresses MHP automatic shutdown should a transaction in test mode
terminate abnormally.

When this flag argument is omitted, MHP automatic shutdown is not
suppressed.

-1 logical-terminal-name ~<identifier of 1-8 characters>
Specify the name of the logical terminal at which to start testing.

You cannot use an asterisk (*) or a prefix character string plus an asterisk
(prefix-character-string*) to specify a group of logical terminal hames.

Only onelogica terminal hame can be specified.

179

9. Operating Commands

9.2.3 mcftulee (termination of a logical terminal test)
(1) Syntax

mcftulee -1 logical-terminal-name

(2) Function
Releases test mode status at the specified logical terminal and ends testing.
(3) Option
m -| logical-terminal-name~<identifier of 1-8 characters>
Specify the name of the logical terminal at which to end testing.

You cannot use an asterisk (*) or a prefix character string plus an asterisk
(prefix-character-string*) to specify logical terminal names in a batch.

Only onelogical terminal name can be specified.

180

9. Operating Commands

9.3 Operating commands for testing an application

This section explains the commands of the MCF online tester for running atest on an
application. For the format and rules of the operating commands, see the manual
OpenTP1 Operation.

Table 9-3 lists the operating commands used for running tests on an application.
Table 9-3: Operating commands for running tests on an application

Command name Function
mef aul sap Display of test mode information for an application
mcf auaps Start of an application test
mcf auape Termination of an application test

9.3.1 mcfaulsap (display of test mode information for an application)
(1) Syntax

mcfaul sap -s { MCF-communication-process-1D |
application-startup-process-1D }
-a application-name [- k application-name-type]

(2) Function
Outputs test mode information for the specified application to standard output.
(3) Options
m -s MCF-communication-process-1D |
application-startup-process-1D ~<hexadecimal> ((01-€f))
Specify the MCF communication process ID or application startup process ID.

Specify the application startup process D when testing an application specified
by ERREVT or by thedc_ntf _execap function. In all other cases, specify the
M CF communication process ID.

Only one process ID can be specified.
m -a application-name ~<identifier of 1-8 characters>

Specify the name of the application for which test mode information isto be
displayed.

Specify an asterisk (*) in application-name to display test mode information for
al applicationsin test mode. Placing an asterisk (*) after first character(s) of the

181

9. Operating Commands
application name (first_characters *) shows test mode information for all
applications whose name begins with those character before *.
Only one application name can be specified.
m -k application-name-type
Specify the type of the application specified in the - a option:
user
User application
ncf
MCF event

When this option is omitted, the application name specified in the - a option is
assumed to be a user application name.

(4) Output format

AO01 user aprepOl back trac swrs erre exec hold
1 2. 3. 4. 5. 6. 7. 8. 9.

1. MCF manager process |ID, MCF communication process ID, or application
startup process ID

2. Application name type
user
User application
ncf
MCF event
3. Application name or MCF event name

Shows whether to restore resources to pre-test status at completion of a
transaction.

back
Restore.
nobk
Do not restore.

5. Showswhether to collect MHP trace information during processing of a
transaction in test mode.

trac

182

9. Operating Commands

Collect.
notr
Do not collect.

Shows whether to invalidate MHP send messages issued by atransaction in test
mode.

SWI's
Invalidate.
nosw
Do not invalidate.
Shows whether to suppress error event activation.
erre
Suppress.
noer
Do not suppress.

Shows whether to invalidate application startup messages issued by atransaction
in test mode.

exec
Invalidate.
noex
Do not invalidate.

Shows whether to suppress MHP automatic shutdown should atransaction in test
mode terminate abnormally.

hol d
Suppress.
noho

Do not suppress.

183

9. Operating Commands

9.3.2 mcfauaps (start of an application test)
(1) Syntax

mcfauaps -s { MCF-communication-process-ID |
application-startup-process-1D }
[-e "[backout] [trace] [swrsg] [errevt]
[execap] [holdlimt]"]
-a application-name [- k application-name-type]

(2) Function
Sets the specified application in test mode and starts testing.

Enter the ncf auaps command only after shutdown of connection and completion of
all message send and receive.

(3) Options
m -s MCF-communication-process-ID |
application-startup-process-1D ~<hexadecimal> ((01-€f))
Specify the MCF communication process ID or application startup process ID.

To test an application specified by thedc_ntf _execap function, specify the
application startup process ID. To test ERREV T, specify 1Ds based on Table 9-4.
For other testing, specify the M CF communication process ID.

Only one process ID can be specified.
Table 9-4: IDsto be specified when testing ERREV T (mcfauaps command)

ERREVT to be tested ID to be specified
MCF Application
communication startup process ID
process ID
Invalid application name notification event (ERREV T1) Y --
Messagediscard event that isissued by abnormal termination - Y
beforethedc_ncf _recei ve functionisissued (ERREVT?2)
Message discard event generated by shutdown (ERREV T2) v# v#
UAP abnormal termination notification event that is issued - Y
by abnormal termination during MHP execution
(ERREVT3)
L egend:
Y: Specifiable.

184

9. Operating Commands

--: Not specifiable.

#: Specify both the MCF communication process | D and the application startup
process ID.

-e
Specify the test mode options.

Enclose two or more flag arguments with quotation marks (") and delimit each
flag argument by inserting a space.

Flag arguments:;
backout

Restores the resources used in a transaction to pre-test status at completion
of the transaction.

When this flag argument is omitted, updated resources are used in their
current status and are not restored to pre-test status.

trace

Collects MHP trace information during processing of atransaction in test
mode.

When this flag argument is omitted, no MHP trace information is collected.
SWTBQ

Invalidates messages sent by the MHP during processing of atransaction in
test mode.

Messages sent by the following functions issued by the test MHP are
invalidated:

dc_ntf _send function (message send)
dc_ntf_sendsync function (synchronous message send)
dc_ncf _resend function (message resend)

When thisflag argument isomitted, messages sent by the above functionsare
effective.

errevt

Suppresses error event activation if an error event occurs during testing. The
following error events are suppressed:

ERREVT1 (MCF event that reports detection of an invalid application name)

However, the above error event can be suppressed only when testing is
performed in alogical terminal.

185

9. Operating Commands

186

ERREVT2 (MCF event that reports discarding of a message at abnormal
termination before issue of thedc_ntf _recei ve function)

ERREVT2 (MCF event that reports discarding of a message generated at
automatic shutdown)

ERREVT3 (MCF event that reports UAP abnormal termination at abnormal
termination during MHP execution)

When this flag argument is omitted, activation of the above error eventsis
not suppressed.

execap

Invalidates branch application startup messages issued by atransactionin
test mode.

When thisflag argument is omitted, branch application startup messages are
effective.

hol dli mt

Suppresses MHP automatic shutdown should a transaction in test mode
terminate abnormally.

When this flag argument is omitted, MHP automatic shutdown is not
suppressed.

- a application-name ~<identifier of 1-8 characters>
Specify the name of the application to be tested.

You cannot use an asterisk (*) or a prefix character string plus an asterisk
(prefix-character-string*) to specify application names in a batch.

Only one application name can be specified.
- k application-name-typet
Specify the type of the application specified in the - a option:
user
User application
ncf
MCF event

When this option is omitted, the application name specified in the - a option is
assumed to be a user application name.

9. Operating Commands

9.3.3 mcfauape (termination of an application test)
(1) Syntax

mcfauape -s { MCF-communication-process-ID |
application-startup-process-1D }
-a application-name [- k application-name-type]

(2) Function
Releases test mode at the specified application and ends testing.
(3) Options
m -s MCF-communication-process-ID |
application-startup-process-1D ~<hexadecimal> ((01-€f))
Specify the MCF communication process ID or application startup process ID.

Specify the application startup process |D when testing an application specified
using thedc_ncf _execap function. When testing ERREV T, specify the
applicable ID as shown in Table 9-5. In all other cases, specify the MCF
communication process ID.

Only one process ID can be specified.
Table 9-5: IDsto be specified when testing ERREV T (mcfauape command)

ERREVT to be tested ID to be specified
MCF Application
communication startup process ID
process ID
Invalid application name notification event (ERREVT1) Y
Messagediscard event that isissued by abnormal termination - Y
beforethedc_ncf _recei ve functionisissued (ERREV T2)
Message discard event generated by shutdown (ERREV T2) %" y#2
UAP abnormal termination notification event that is issued - Y
by abnormal termination during MHP execution
(ERREVT3)
L egend:
Y: Specifiable.
--- Not specifiable.

#1: Specify when the application activated by the received message is shut down.

187

9. Operating Commands

188

#2: Specify when the application activated by thedc_ntf _execap functionis
shut down.

- a application-name ~<identifier of 1-8 characters>
Specify the name of the application at which to end testing.

You cannot use an asterisk (*) or a prefix character string plus an asterisk
(prefix-character-string*) to specify application names in a batch.

Only one application name can be specified.
- k application-name-type
Specify the type of the application specified in the - a option:
user
User application
ncf
MCF event

When this option is omitted, the application name specified in the - a option is
assumed to be a user application name.

9. Operating Commands

9.4 Operating commands for testing a service group

This section explains the commands of the MCF online tester for running atest on a
service group. For the format and rules of the operating commands, see the manual
OpenTP1 Operation.

Table 9-6 lists the operating commands used for running tests on a service group.
Table 9-6: Operating commands for running tests on an application

Command name Function
meftul ssg Display of test mode information for a service group
mcf t usgs Start of a service group test
mcf t usge Termination of a service group test

9.4.1 mcftulssg (display of test mode information for a service
group)
(1) Syntax

mcftul ssg -g Service-group-name

(2) Function
Outputs test mode information for the specified service group to standard output.
(3) Option
m - g service-group-name ~<identifier of 1-31 characters>
Specify the service group name.

Specifying an asterisk (*) for the service group name outputs test mode
information for all the service groupsin test mode. Placing an * after first
character(s) of the service group name (first_characters *) shows test mode
information for all service groups whose name beginswith those character before

*

(4) Output format

A0l SVQ01 LEual 1 back trac swrs erre exec hold
1 2. 3. 4, 5. 6. 7. 8. 9.

1. MCF manager process |ID and MCF communication process ID
2. Service group name

189

9. Operating Commands

190

3.

Logical terminal name (no more than 8 characters)

Shows whether to restore the resource to the status before the test when the
transaction ends.

back
Restore.
nobk
Do not restore.

Shows whether to collect the trace information of the MHP while a test mode
transaction is being processed.

trac
Collect.
notr
Do not collect.
Shows whether to invalidate the send message issued by atest mode transaction.
SWI'B
Invalidate.
nosw
Do not invalidate.
Shows whether to suppress the startup of error events.
erre
Suppress.
noer
Do not suppress.

Showswhether to invalidate the application startup messageissued by atest mode
transaction.

exec
Invalidate.
noex
Do not invalidate.

Shows whether to suppress the automatic shutdown function of the MHP if atest
mode transaction ends abnormally.

9. Operating Commands

hol d
Suppress.
noho
Do not suppress.
9.4.2 mcftusgs (start of a service group test)
(1) Syntax

mcftusgs -g Service-group-name
[-e"[backout] [trace] [swrsg] [errevt]
[execap] [holdlimt]"]

(2) Function

Sets the specified service group in test mode. The ncft usgs command must be
executed after the connection is shut down and there is no transmission of messages.

(3) Options
m - g service-group-name ~<identifier of 1-31 characters>
Specify the name of the service group where the test is to be started.

You cannot use an asterisk (*) or a prefix character string plus an asterisk
(prefix-character-string*) to specify a group of service group names.

Only one service group hame can be specified.
m -e
Specify the test mode options.

Enclose two or more flag arguments with quotation marks (") and delimit each
flag argument by inserting a space.

Flag arguments:;
backout

Restores the resource used in atransaction to pre-test status at completion of
the transaction.

When this flag argument is omitted, updated resources are used in their
current status and are not restored to pre-test status.

trace

Collects MHP trace information during processing of atransaction in test
mode.

When this flag argument is omitted, no MHP trace information is collected.

191

9. Operating Commands

192

SWNBg

Invalidates messages sent by MHP during processing of atransaction in test
mode. Messages sent by the following functions issued by the test MHP are
invalidated:

dc_ncf _send function (message send)
dc_ncf _sendsync function (synchronous message send)
dc_ncf _resend function (message resend)

When thisflag argument isomitted, messages sent by the above functionsare
effective.

errevt

Suppresses error event activation if an error event occurs during testing. The
following error events are suppressed:

ERREVT1 (MCF event that reports discarding of a message at abnormal
termination before issue of thedc_ntf _recei ve function)

However, the above error event can be suppressed only when testing is
performed in alogical terminal.

ERREVT2 (MCF event that reports discarding of a message at abnormal
termination before issue of thedc_ntf _recei ve function)

ERREVT2 (MCF event that reports discarding of a message generated at
automatic shutdown)

ERREVT3 (MCF event that reports UAP abnormal termination at abnormal
termination during MHP execution)

When this flag argument is omitted, activation of the above error eventsis
not suppressed.

execap

Invalidates the branch application startup message issued by atransactionin
test mode.

When thisflag argument is omitted, branch application startup messages are
effective.

hol dli mt

Suppresses MHP automatic shutdown should a transaction in test mode
terminates.

When this flag argument is omitted, MHP automatic shutdown is not
suppressed.

9. Operating Commands

9.4.3 mcftusge (termination of a service group test)
(1) Syntax

mcftusge -g Service-group-name

(2) Function
Releases test mode for the specified service group and ends the test.
(3) Option
m - g service-group-name ~<identifier of 1-31 characters>
Specify the service group name for which the test should terminate.

You cannot use an asterisk (*) or a prefix character string plus an asterisk
(prefix-character-string*) to specify service group names in a batch.

Only one service group hame can be specified.

193

PART 4: Offline Tester

Chapter
10. Facilities

This chapter describes the test facilities available with the offline tester.
This chapter contains the following sections:

10.1 Facilities of the offline tester
10.2 Simulating aclient UAP

10.3 Simulating aserver UAP

10.4 Simulating the MCF

10.5 Simulating file services

10.6 Simulating OpenTP1 functions
10.7 Simulating operating commands
10.8 Creating tester files

10.9 Continuous command execution
10.10 Debugger connection

10.11 Collecting test information

195

10. Facilities

10.1 Facilities of the offline tester

196

The offline tester provides the following facilities for testing UAPs:

1

10.

Client UAP simulator

Simulates client UAP processing so that a server UAP can be tested without a
client UAP.

Server UAP simulator

Simulates server UAP processing so that a client UAP can be tested without a
server UAP,

M CF simul ator

Simulates message send and receive pracessing for testing an MHP or an SPP
called by service requests from the MHP.

File service ssimulators

Simulate the DAM service and TAM service for testing UAP access to DAM or
TAM files.

OpenTP1 function simulator

Simulates processing of OpenTP1 functions by using the corresponding
simulation functions that have the same names as the OpenTP1 functions.

Operating command simulator

Simulates the processing of operating commands executed by atest UAP.

Tester file creation

Creates the tester files required when using the simulators.

Continuous command execution

During testing, continuoudly executes the offline tester subcommands set in afile.
Debugger connection

Runs test UAPs under debugger control.

Collection of offline tester trace information

Collects trace information for the UAP being tested.

10. Facilities

10.2 Simulating a client UAP

The offline tester can take the place of a client UAP in requesting services from a
server UAP. Thisallowsthe user to test the server UAP without needing aclient UAP.
Thisfacility is called the client UAP simulator.

An offline tester command is used to simulate a client UAP. Before executing the
command, the user must first create the processing datato be passed to the server UAP.
Thisdatais created in a service request data file.

Therearethreetypes of servicerequest datafileswhich are used according to the client
interface:

* RPC request datafile (for simulating a UAP that has an RPC interface)
» XATMI request datafile (for simulating a UAP that has an XATMI interface)
» TxRPC request datafile (for ssimulating a UAP that has a TXRPC interface)
Figure 10-1 outlines the client UAP simulator.
Figure 10-1: Simulating aclient UAP

Node

‘call

II Offline tester Server UAP (SPP)
[
Service /
request

data file

Service execution

Service request

10.2.1 Simulating a client UAP with an RPC interface

To simulate a client UAP that uses an RPC interface to send service requests, the user
must first create an RPC request data file containing the processing data to be passed

197

10. Facilities

10.2.2

10.2.3

198

to the server UAP being tested.
Simulating a client UAP with an XATMI interface

To simulate a client UAP that uses an XATMI interface to send service requests, the
user must first create an XATMI request data file containing the processing data to be
passed to the server UAP being tested.

When service requests are made interactively, the user must also create an XATMI
receive data file containing the test data to be received by the server UAP during
service execution. If the server UAP passes send data, the offline tester makes afile
nameinquiry for each service. Using an offline tester command, the user specifiesthe
name of an XATMI send data file for saving the send data.

Simulating a client UAP with a TXRPC interface

Tosimulateaclient UAP that uses a TXRPC interface to send service requests, the user
must first create a TXRPC request data file containing the processing datato be passed
to the server UAP being tested.

10. Facilities

10.3 Simulating a server UAP

The offline tester can take the place of a server UAP in executing services requested
by aclient UAP. This allows the user to test the client UAP without needing a server
UAP Thisfacility is called the server UAP simulator.

To simulate aserver UAP, the user activates the server UAP (dummy) and then
executes an OpenTP1 command. Before executing the command, the user must create
the response data to be passed to the client UAP. Thisdatais created in a service
responsedata file. When the client UAP sends a servicerequest, the offline tester reads
the response data from the file and passesit to the client UAP.

There are three types of service response data files which are used according to the
UAP interface:

* RPC response datafile (for simulating a UAP that has an RPC interface)
» XATMI response data file (for simulating a UAP that has an XATMI interface)
» TxRPC response datafile (for simulating a UAP that has a TXRPC interface)

To simulate aserver UAP, the user must first define the server UAP as the simulation
target in an offline tester environment definition. This enables the server UAP to be
simulated but not actually activated when atest is performed.

Figure 10-2 outlines the server UAP simulator.

199

10. Facilities

10.3.1

10.3.2

10.3.3

200

Figure 10-2: Simulating aserver UAP

‘utfstart'
Node

&" \L Server UAP

) Client UAP (simulated) Offline tester

////;7_

S Service
Service request

response
data file

0

Simulating a server UAP with an RPC interface

To simulate a server UAP that uses an RPC interface for accepting service requests,
the user must first create an RPC response data file with the response data to be
returned to the client UAP. When the client UAP sends a service reguest, the offline
tester reads the response data from the file and returnsit to the client UAP,

Simulating a server UAP with an XATMI interface

To simulate aserver UAP that usesan XATMI interface for accepting service requests,
the user must first create an XATMI response data file with the response data to be
returned to the client UAP. When the client UAP sends a service reguest, the offline
tester reads the response data from the file and returnsit to the client UAP,

When service requests are made interactively, the user must also create an XATMI
receive data file containing the test datato be received by the client UAP during
service execution. If the client UAP passes send data, the offline tester makes afile
nameinquiry for each service. Using an offline tester command, the user specifiesthe
name of an XATMI send data file for saving the send data.

Simulating a server UAP with a TXRPC interface

To simulate a server that uses a TXRPC interface for accepting service requests, the
user must first create a TXRPC response data file with the response datato be returned

10. Facilities

to the client UAP. When the client UAP sends a service request, the offline tester reads
the response data from the file and returnsit to the client UAP.

201

10. Facilities

10.4 Simulating the MCF

The offline tester can take the place of the M CF in exchanging messageswith an MHP,
This allows the user to test the MHP without an M CF. Thisfacility is called the MCF
simulator.

An offline tester command is used to start the MHP application. Before executing the
command, the user must first create an M CF receive message file with the messages
to be passed to the MHP.

Figure 10-3 outlines the MCF simulator.
Figure 10-3: Simulating an MCF

Node

‘call

I Offline tester MHP
&‘.

7i dc_mcf_receive

MCF
receive

message

ns Service r;quest dc_mc_f_send

dc_mc_f_reply

202

10. Facilities

10.5 Simulating file services

10.5.1

This section describes how the offline tester ssmulates file servicesin order to test file
access.

Simulating the DAM service

The offlinetester can simulate the DAM service for testing UAP accessto DAM files.
Thisfacility is called the DAM service simulator.

Files created by an editor or by the function for simulating DAM file creation
(dc_dam cr eat e function) are handled by the TPL/FS/Direct Access file interface.
The user must write an offline tester environment definition to associate each logical
file name with the actual file.

At each update request from the UAP, aDAM file simulated by the offline tester is
immediately updated (but writing is delayed). If the UAP terminates abnormally or if
arollback request occurs, the DAM file remainsin updated status.

File update can be suppressed by option specification when starting the offline tester.
Thus, the contents of aDAM file remain unchanged even if the UAP issues an update
request function. If the dataisre-entered after the update request, the file contents are
the same as before the update request.

The user can also specify in the offline tester environment definition whether alock is
to be used for DAM files. Locks can only be placed on files, regardless of any
specification made in a function.

Notethat the DAM fileisnot closed whenthedc _t rn_unchai ned_conmi t function
isissued in aUAP.

Figure 10-4 outlines the DAM service simulator.

203

10. Facilities

Figure 10-4: Simulating the DAM service

Node

UAP Offline tester

Logical file is
associated with @
dc_dam_xox physical file.

‘logical_file_name’ DAM file

10.5.2 Simulating the TAM service

204

The offline tester can simulate the TAM service for testing UAP access to TAM files.
Thisfacility is called the TAM service simulator.

Files created by the offline tester ut f t ancr e command are handled by the TPL/FS/
Table Accessfile interface. The user must write an offline tester environment
definition to associate each logical file name with the actual file.

A TAM file smulated by the offline tester can accessthe same TAM datafilesas TP1/
FS/Table Access. Indexing is also the same. However, TAM files cannot be accessed
by DAM servicefunctions. Also, to reduce shared memory size, only the management
and index parts of the TAM file are stored in shared memory and the data part is
accessed directly in the TAM file.

At each update request from the UAP, aTAM file simulated by the offline tester is
immediately updated (but writing is delayed). If the UAP terminates abnormally or if
arollback request occurs, the TAM file remains in updated status.

File update can be suppressed by option specification when starting the offline tester.
Thus, the contents of a TAM file remain unchanged even if the UAP issues an update
request function. If the datais re-entered after the update request, the file contents are
the same as before the update request.

The user can also specify in the offline tester environment definition whether alock is

10. Facilities

to be used for TAM files. Locks can only be placed on files, regardless of any
specification made in a function.

Notethat the TAM fileisnot closed whenthedc _t rn_unchai ned_commi t function
isissuedinaUAPR.

Figure 10-5 outlines the TAM service simulator.
Figure 10-5: Simulating the TAM service

Node € B
UAP Offline tester TAM
data file

utftamcre Create TAM file
TAM table name is

bound to TAM file

y name € B
dc tam XXXX

'TAM-tablf-name’

TAM file

205

10. Facilities

10.6 Simulating OpenTP1 functions

206

The offline tester provides simulation functions which replace and have the same
names as the functions provided by TP1/Server Base. These simulation functions can
be used by linkage with the UAP.

The user can set the return values of the OpenTP1 functionsin afunction return value
file. Thisfacility enables set information to be returned to the UAP at completion of a
simulation function. The facility operatesif no error is detected when the offline tester
performs the argument check. If an error is detected, the return code for the error is
returned to the UAP.

For DAM and TAM-related functions, error return values set by the user are returned
to the UAP. When a simulation function completes normally, however, the actual
processing result is returned, not the set return value. That is, areturn value set by the
user isreturned only if an error occurs during test processing.

For thet psend and t pr ecv functions which use the XATMI interface, event names
can be set in the function return value file. For TP1/Multi functions (function names

beginningwithdc_adm get _xxx), the user can also set the output data (node ID and
server name).

See Chapter 14. Smulation Functionsin thispart of themanual for detailson thereturn
values that can be set for each simulation function.

When using a function provided by TP1/Shared Table Access, be sure to specify an
IST table used by the function in the offline tester environment definition at offline
tester startup.

10. Facilities

10.7 Simulating operating commands

The offline tester can simulate command execution requested by the
dc_adm cal | _conmmand function issued in a UAP. Thisfacility is called the
operating command simulator.

To simulate operating command execution, the user must first create the execution
result datain an operating command result data file. Then, when the

dc_adm cal | _command function isissued in the UAP, the offline tester reads the
execution result data from the file and returns the data to the UAP.

Figure 10-6 outlines the operating command simulator.
Figure 10-6: Simulating UAP operating commands

Node

UAP Offline tester

Operating

dc_adm_call_

command

command
result
data file

207

10. Facilities

10.8 Creating tester files

A datafile must be created for each simulator provided by the offline tester. These are
called tester files.

Each tester fileiswritten in a specific dataformat. However, the user can easily create
the tester files by command input, using the offline tester. Thisis called the tester file
creation facility.

Table 10-1 liststhe tester files that can be created using the tester file creation facility.
Table 10-1: Tester files created by tester file creation facility

Tester files Simulator using the tester file

Service request datafiles RPC request datafile Client UAP simulator

XATMI request datafile Client UAP simulator

TxRPC request datafile Client UAP simulator
Service response datafiles RPC response datafile Server UAP simulator

XATMI response datafile Server UAP simulator

TXRPC response data file Server UAP simulator
XATMI receive datafile Client UAP simulator
MCF receive messagefile MCF simulator
Operating command result datafile Operating command simulator

To generate the tester files, the tester file creation facility uses datain atest data
definitionfilethat iscreated beforehand by the user. Use atext editor to create the data.
Data for a number of tester files can be set in the same test data definition file.

Tester files can also be created in the required file format using a binary editor.

208

10. Facilities

10.9 Continuous command execution

Offline tester commands can be set in afile for automatic sequential execution. This
facility is called continuous command execution.

The commands to be executed are set in a continuous execution command file. The
offline tester reads the file and executes the commands in the set sequence.
Subcommandsfor responsesare also executed if set. If no response subcommand is set
in the file, the offline tester waits for user response. Thus, continuous command
execution is useful when the testing sequence is fixed.

Figure 10-7 outlines continuous command execution.
Figure 10-7: Continuous command execution

Node

‘cmdauto

& E Offline tester
Z [

Continuous M

execution
command
file

Continuous command
execution

209

10. Facilities

10.10 Debugger connection

Using the offline tester, aUAP can be executed under debugger control from themai n
function. Thisfacility is called debugger connection.

The user sets debugger connection in the offline tester environment definition. This
makes it easy to debug each step of the program or to debug in batch format.

Two types of debuggers can be used:
e dbx
« cbltd (COBOLS85/TD)
Figure 10-8 outlines debugger connection.
Figure 10-8: Debugger connection

Node

Offline tester Debugger

UAP (debugger
connection specified)

main()

Start debugger

return()

210

10. Facilities

10.11 Collecting test information

10.11.1 Collecting offline tester trace information

The offline tester can output the arguments and return information of OpenTP1
functionsastraceinformation. Thisiscalled collecting offlinetester traceinformation.
Thetrace information can be output to standard output or to afile specified in the
offline tester environment definition. Regardless of the output file, the output trace
information is the same and has the same format.

Using an offline tester command, the user can al so output information from atracefile
for a selected service.

Do not use a shared trace file. The contents of the trace file are overwritten when a
number of offline testers share the samefile.

Figure 10-9 illustrates collection of offline tester trace information.

211

10. Facilities
Figure 10-9: Collecting offline tester trace information

Node
SUP SPP

dc rpc open dc trn begin

Z —

dc rpc call

— dc trn unchained

dc rpc close commit

Offline tester trace information

Standard output

utftrecpic -
Trace il —
= T

Fetch offline tester trace : &

information

212

Chapter
11. Setting the Test Environment

This chapter explains how to set the environment for running tests with the offline
tester.

This chapter contains the following sections:

11.1 System definitions for the offline tester
11.2 User-created files
11.3 Creating files

213

11. Setting the Test Environment

11.1 System definitions for the offline tester

The system definitions for running the offline tester are described below. See the
manual OpenTP1 System Definition for information on definition structure and rules.

11.1.1 Offline tester environment definition

The offline tester environment definition specifies the following conditions for using
the offline tester:

» UAP definition

» Directory definition for the RPC request datafile

» Directory definition for the XATMI request datafile

» Directory definition for the TXRPC request datafile

» Directory definition for the RPC response data file

» Directory definition for the XATMI response data file

* Directory definition for the TXRPC response datafile

* Directory definition for the XATMI send/receive data file

» Directory definition for the M CF receive message file

» Directory definition for the operating command result data file
» Directory definition for the continuous execution command file
* DAM file definitions

* TAM filedefinitions

* Internode shared table definitions

» Definition of the function return values file

» Tracefiledefinition

* Protocol definition

Code each definition in the offline tester environment definition file. The file nameis
used as the command argument in the offline tester start command and can be any
name.

Rules for the offline tester environment definition:
1. Write one definition per line.

2. Use one-byte characters. The system distinguishes between upper-case and
lower-case characters.

214

11. Setting the Test Environment

End each line with acomma (,). Any coding after the commais regarded as a
comment.

End the whole environment definition with a semicolon (;). Any coding after the
semicolon is regarded as a comment.

In the following cases, an error message is output at definition analysis. The
definition isignored and analysis continues.

« When anon-existent directory and file (other than DAM file) is specified

* When access to the specified file is prohibited (no write permission, for
example)

« When an error occurs during definition analysis

When definition analysisis completed, the user must specify whether to continue
offline tester activation. Enter either of the following:

1

To continue
2 (or end)

To cancel

Do not abbreviate definitions. A format error occurs when a definition is
abbreviated.

Table 11-1 shows whether each definition isvalid or invalid if aformat error
occurs.

Table 11-1: Format errors and validity of definitions

Definition statement Format error Valid Assumed
specification
when valid
UAP definition No service group name, execution N -
format program name, or user
service definition file name
Both N and F specified. Y F
, or; missing at the end of the Y
Statement.
Directory for RPC request datafile No directory name N --
, or; missing at the end of the Y
Statement.

215

11. Setting the Test Environment

Definition statement Format error Valid Assumed
specification
when valid

Directory for XATMI request data No directory name N --

file
, or; missing at the end of the Y ,
statement.

Directory for TXRPC request datafile | No directory name N --
, or; missing at the end of the Y ,
statement.

Directory for RPC response datafile | No directory name N --
, or; missing at the end of the Y ,
statement.

Directory for XATMI response data No directory name N --

file
, or; missing at the end of the Y ,
statement.

Directory for TXRPC response data No directory name N --

file
, or; missing at the end of the Y ,
statement.

Directory for XATMI send/receive No directory name N --

datafile
, or; missing at the end of the Y ,
statement.

Directory for MCF receive message | No directory name N --

file
, or; missing at the end of the Y ,
statement.

Directory for operating command No directory name N --

result datafile
, or; missing at the end of the Y ,
statement.

Directory for continuous execution No directory name N --

command file
, or; missing at the end of the Y ,
statement.

DAM file definition No physical file name or logical N --
file name.

, or; missing at the end of the Y

statement.

216

11. Setting the Test Environment

Definition statement Format error Valid Assumed
specification
when valid

TAM file definition No TAM table name or TAM file N --
name
, or; missing at the end of the Y ,
Sstatement.

Internode shared table definition No internode shared table name, N --
record length, or number of
records.
, or; missing at the end of the Y ,
statement.

Definition of function return values No file name N --

file
, or; missing at the end of the Y ,
statement.

Trace file definition No file name N --
, or; missing at the end of the Y ,
statement.

Protocol definition Protocol unspecified N -
, or; missing at the end of the Y ,
statement.

Other Definition name other than the N --

above

Legend:
Y: vaid
N: invalid

--: Not applicable

Exanpl e of offline tester environment definition

UAP definition

SPP = sppl sppl. out spplusr,
SPP = spp2 DUMW DUMWY

SPP = spp3 spp3. out spp3usr
SPP = spp4 spp4. out spp4usr,
SPP = spp5 spp5. out spp5usr

spp5. out,
MHP = nmhpl nhpl. out nmhplusr,

F,
D dbx,

N D dbx -1 /betran/utf/uap/src

217

11. Setting the Test Environment

#

directory definition for RPC request data file
rpc_nessage = /betran/utf/rpcnsg,

#

directory definition for XATMI request data file
t p_nessage = /betran/utf/xatm nsg,

#

directory definition for TXRPC request data file
txrpc_message = /betran/utf/txrpcnsg,

#

directory definition for RPC response data file
rpc_return_data = /betran/utf/rpc_return,

#

directory definition for XATMI response data file
tp_return_data = /betran/utf/tp_return,

#

directory definition for TXRPC response data file
txrpc_return_data = /betran/utf/tx_return,

#

directory definition for XATMI send/receive data file
tp_converse = /betran/utf/tp_converse,

#

directory definition for MCF receive message file

nmcf _message = /betran/utf/ncfnsg,

#

directory definition for operating command result data file
admcall _cnd = /betran/utf/etc/call _cm_val,

#

directory definition for continuous execution command file
crdfile = /betran/utf/etc,

#

DAM file definitions

danfile = danfilel /betran/utf/danm danfilel,
danfile = danfile2 /betran/utf/dam danfile2 N,
#

TAM file definitions

tantable = tantablel /betran/utf/tamtanfilel,
tantable = tantable2 /betran/utf/tamtanfile2 N,
#

|IST table definitions

isttable = isttable 128 64,

isttable = ist2 4 256,

#

definition of function return values file
func_value_file = /betran/utf/etc/return_val,
#

tracefile definition

tracefile = /betran/utf/log/trace,
#

protocol definition

protocol = OSI/TP;

#

218

11. Setting the Test Environment

(1) UAP definition
(a) Syntax

{ SPP| MHP} ={ service-group-name| service-name}
execution-format-program-name
user -service-definition-file-name
[T]
[{F| D debugger-namef [N] [D debugger-name] }]1{, | ;}

(b) Function
Defines the following items for the UAP to be tested by the offline tester:

UAP type (SPP or MHP)

Service group name

Name of the execution format program for the service group
Name of the user service definition file for the service group
Whether to use the server UAP simulator

Whether to connect a debugger

A UAP definition can only be written for an SPP or MHP. SUPs cannot be tested by
the offline tester.

(c) Operands
m SPP| MHP

Specify the type of service group as the definition name, as follows:
SPP
SPP service group
MHP
MHP service group
service-group-name

Specify the service group name. To use the UAP simulator with a TXRPC
interface, specify the interface name that is specified in the IDL file.

service-name

Specify the service name to use the server UAP simulator with an XATMI
interface.

executi on-for mat-program-name
Specify the name of the UAP (execution format program) that executes the

219

11. Setting the Test Environment

220

service group. A non-existent name can be specified when simulating service
functions.

user-service-definition-file-name

Specify the name of the user service definition file that contains the environment
definition for executing the service group. To use the UAP simulator with a
TxRPC interface, specify the name of the user service definition file created by
thet xi dl command. A non-existent name can be specified when simulating
service functions.

T

Specify this operand to use the UAP simulator with a TXRPC interface. This
operand can be specified only when SPP is specified for the service group type.
If MHP is specified, specifying this option causes an error.

F

Specify this operand to use the server UAP simulator. If specification is omitted,
the service group is activated at offline tester startup.

D debugger-name] debugger-argument]

Specify this operand to run the UAP under debugger control. Either of the
following debugger names can be specified, but no name check is performed:

dbx
To use the dbx debugger
chltd
To use the COBOLS85/TD debugger

The argument to be passed to the debugger can also be specified. When no
argument is specified, the name specified in execution-for mat-program-name
becomes the argument.

Asthe argument, specify the executable file name, using the same name as
specified in execution-format-program-name. No error occursif the names differ,
but the specified executable file name is passed to the debugger, while the offline
tester uses the execution format program name to control the debugger.

N

Specify this operand to suppress activation of the service group (UAP) at offline
tester startup and to activate the service group by st art subcommand after the
offline tester starts.

When specification is omitted, the service group (UAP) is activated at offline
tester startup.

11. Setting the Test Environment

(d) Note

A service group name can only be specified once. If duplicated, the first definition is
valid. In the following example, spp1 is specified twice and the definition of the
second line causes an error.

Example:
SPP = sppl sppl.load spplusr,
SPP = sppl spp2.1oad spp2usr, 4= Error occurs.

(e) Definition example

UAP definition

SPP = sppl sppl. out spplusr,

SPP = spp2 DUMWY DUMWY F,

SPP = spp3 spp3.out spp3usr D dbx,

SPP = spp4 spp4. out sppdusr,

SPP = spp5 spp5.out spp5usr N D dbx -1 /betran/utf/uap/src
spp5. out,

MHP = nmhpl nhpl. out nhplusr;

#

(2) Directory definition for RPC request data file
(a) Syntax

rpc_nessage = directory-name-of-RPC-request-data-file{, | ; }

(b) Function

Defines the name of the directory that contains the RPC request datafile. If the name
is specified more than once, the last definition is valid.

(c) Operands
B rpc_nessage
Writer pc_nessage as the definition name.
m directory-name-of-RPC-request-data-file

Specify the pathname of the directory that containsthe RPC request datafile. Add
the directory nameif different from the directory in which the offline tester is
currently executing.

(d) Definition example

directory definition for RPC request data file
rpc_nessage = /betran/utf/rpcnsg;

221

11. Setting the Test Environment

(3) Directory definition for XATMI request data file
(@) Syntax

t p_message = directory-of-XATMI-request-data-file{, | ; }

(b) Function

Defines the name of the directory that contains the XATMI request datafile. If the
name is specified more than once, the last definition isvalid.

(c) Operands
m tp_nessage
Writet p_nessage asthe definition name.
m directory-name-of-XATMI-request-data-file

Specify the pathname of the directory that contains the XATMI request datafile.
Add the directory name if different from the directory in which the offline tester
is currently executing.

(d) Definition example

directory definition for XATMI request data file
t p_nessage = /betran/utf/xatm nsg;
#

(4) Directory definition for TXRPC request data file
(@) Syntax

txr pc_message = directory-name-of-TXxRPC-request-data-file(, | ; }

(b) Function

Defines the name of the directory that contains the TXRPC request datafile. If the
name is specified more than once, the last definition isvalid.

(c) Operands
B tXxrpc_nessage
Writet xr pc_nessage as the definition name.
m directory-name-of-TxRPC-request-data-file

Specify the pathname of the directory that contains the TXRPC request datafile.
Add the directory name if different from the directory in which the offline tester
is currently executing.

222

11. Setting the Test Environment

(d) Definition example

directory definition for TXRPC request data file
tXxrpc_nessage = /betran/utf/txrpcnsg;
#

(5) Directory definition for RPC response data file
(&) Syntax

rpc_return_data = directory-name-of-RPC-response-data-file{, | ; }

(b) Function

Definesthe name of the directory that containsthe RPC response datafile. If the name
is specified more than once, the last definition is valid.

(c) Operands
W rpc_return_data
Writer pc_r et ur n_dat a as the definition name.
m directory-name-of-RPC-response-data-file

Specify the pathname of the directory that contains the RPC response data file.
Add the directory name if different from the directory in which the offline tester
is currently executing.

(d) Definition example

directory definition for RPC response data file
rpc_return_data = /betran/utf/rpc_return;
#

(6) Directory definition for XATMI response data file
(a) Syntax

tp_return_data = directory-name-of-XATMI-response-data-file{, | ; }

(b) Function

Defines the name of the directory that contains the XATMI response datafile. If the
name is specified more than once, the last definition is valid.

(c) Operands
B tp return_data
Writet p_r et ur n_dat a as the definition name.
m directory-name-of-XATMI-response-data-file

223

11. Setting the Test Environment

Specify the pathname of the directory that containsthe XATMI response datafile.
Add the directory name if different from the directory in which the offline tester
is currently executing.

(d) Definition example

directory definition for XATMI response data file
tp_return_data = /betran/utf/tp_return;
#

(7) Directory definition for TXRPC response data file
(@) Syntax

txrpc_return_data = directory-name-of-TXRPC-response-data-file{, | ; }

(b) Function

Defines the name of the directory that contains the TXRPC response datafile. If the
name is specified more than once, the last definition isvalid.

(c) Operands
W txrpc_return_data
Writet xr pc_r et ur n_dat a asthe definition name.
m directory-name-of-TXRPC-response-data-file

Specify the pathname of the directory that containsthe TXRPC response datafile.
Add the directory name if different from the directory in which the offline tester
is currently executing.

(d) Definition example

directory definition for TXRPC response data file
txrpc_return_data = /betran/utf/tx_return;
#

(8) Directory definition for XATMI send/receive data file
(@) Syntax

tp_converse = directory-name-of-XATMI-send/receive-data-file{, | ; }

(b) Function

Defines the name of the directory that contains the XATMI send/receive datafile. If
the name is specified more than once, the last definition isvalid.

224

11. Setting the Test Environment

(c) Operands
mt p_converse
Writet p_conver se as the definition name.
m directory-name-of-XATMI-send/receive-data-file

Specify the pathname of the directory that containsthe XATMI send datafile and
XATMI receivedatafile. Add thedirectory namefor thefilesif different from the
directory in which the offline tester is currently executing.

(d) Definition example

directory definition for XATMI send/receive data file
tp_converse = /betran/utf/tp_converse;
#

(9) Directory definition for MCF receive message file
(&) Syntax

mcf _nmessage = directory-name-of-MCF-receive-message-file(, | ; }

(b) Function

Defines the name of the directory that contains the M CF receive message file. If the
name is specified more than once, the last definition is valid.

(c) Operands
m ncf _nessage
Writencf _nessage as the definition name.
m directory-name-of-MCF-receive-message-file

Specify the pathname of thedirectory that containsthe M CF receive messagefile.
Add the directory name if different from the directory in which the offline tester
is currently executing.

(d) Definition example

directory definition for MCF receive messagefile
ncf _nmessage = /betran/utf/ncfnsg;
#

(10) Directory definition for operating command result data file
(a) Syntax

adm cal | _cnd = directory-name-of-operating-command-result-data-file{, | ; }

225

11. Setting the Test Environment

(b) Function

Definesthe name of the directory that containsthe operating command result datafile.
If the name is specified more than once, the last definition isvalid.

(c) Operands
®m admcall_cnd
Writeadm cal | _cnd asthe definition name.
m directory-name-of-oper ating-command-result-data-file

Specify the pathname of the directory that contains the operating command result
datafile. Add the directory name if different from the directory in which the
offline tester is currently executing.

(d) Definition example

directory definition for operating command result data file
admcall _cnd = /betran/utf/etc/call_cnd_val;
#

(11) Directory definition for continuous execution command file

(@) Syntax

cmdf i | e = directory-name-of-continuous-execution-command-file(, | ; }

(b) Function

Defines the name of the directory that contains the continuous execution command
file. If the name is specified more than once, the last definition is valid.

(c) Operands
m crmdfile
Writecndf i | e asthe definition name.
m directory-name-of-continuous-execution-command-file

Specify the pathname of the directory that contains the continuous execution
command file. Add the directory nameif different from the directory in which the
offline tester is currently executing.

(d) Definition example

directory definition for continuous execution command file
cmdfile = /betran/utf/etc;
#

226

11. Setting the Test Environment

(12) DAM file definitions
(a) Syntax

danfile = logical-fileename physical-fileename [N {, | ;}

(b) Function

Associates alogical file name with aphysical file name for simulating the DAM
service.

Definitions must be written for all the DAM files accessed by the UAP.
(c) Operands
m danfile
Writedanf i | e asthe definition name.
m |ogical-file-name
Specify the logical file name.
m physical-file-name

Specify the name of the DAM file to be used by the offline tester. Add the
directory name if different from the directory in which the offline tester is
currently executing.

m N
Specify to disable lock, regardless of any function specification.
(d) Definition example

DAM file definitions

danfile = danfilel /betran/utf/dam danfilel,
danfile = danfile2 /betran/utf/dam danfile2 N;
#

(13) TAM file definitions
(a) Syntax

tant abl e = TAM-table-name TAM-file-name [N] {, | ; }

(b) Function
Associates TAM table names with TAM file names for simulating the TAM service.
Definitions must be written for all the TAM files accessed by the UAP.

227

11. Setting the Test Environment

(c) Operands
m tamtable
Writet ant abl e as the definition name.
m TAM-table-name
Specify the TAM table name (name used by TAM service functions).
m TAM-file-name

Specify the name of the TAM file to be used by the offline tester. Add the
directory name if different from the directory in which the offline tester is
currently executing.

m N

Specify to disable lock, regardless of any function specifications. This operand
must be specified for a UAP written in COBOL that accesses TAM files,

(d) Definition example

TAM file definitions

tamable = tantablel /betran/utf/tamtanfilel,
tamtable = tantable2 /betran/utf/tamtanfile2 N;
#

(e) Note

» Each TAM fileand TAM table name can only be specified once. If duplicated, the
first definitionisvalid.

(14) Internode shared table definitions
(@) Syntax

i sttabl e = IST-table-name record-length record-count{, | ;}

(b) Function

Specifies an internode shared table used for the ST service simulation using a set of
the internode shared table name, record length, and record count.

Define al internode shared tables accessed by the UAPR. Up to 64 internode shared
tables can be defined.

(c) Operands
m isttable
Writei st t abl e asadefinition name.
m |ST-table-name

228

11. Setting the Test Environment

Specify the internode shared table name. It is used for the I ST service function.
m record-length
Specify the record length in the internode shared table in bytes.
m record-count
Specify the number of records in the internode shared table.
(d) Definition example

|ST table definition
isttable = isttbhl1 8 12,
isttable = istthl2 10 20;
#

(15) Definition of function return values file
(a) Syntax

func_val ue_file = function-return-values-file-name{, | ; }

(b) Function

Defines the name of the file in which function return values are set. If the nameis
specified more than once, the last definition is valid.

(c) Operands
m func_value file
Writef unc_val ue_fi | e asthe definition name.
m function-return-values-file-name

Specify the name of the function return values file. Add the directory name if
different from the directory in which the offline tester is currently executing.

(d) Definition example

definition of function return valuesfile
func_value_file = /betran/utf/etc/return_val;
#

(16) Trace file definition
(&) Syntax

tracefile = traceffilename(, | ;}

(b) Function

Defines the name of the file for storing offline tester trace information. If the nameis

229

11. Setting the Test Environment

specified more than once, the last definition is valid.
(c) Operands
m tracefile
Writet r acef i | e asthe definition name.
m tracefile-name

Specify thetracefile name. Add thedirectory nameif different from the directory
in which the offline tester is currently executing.

(d) Definition example

tracefile definition
tracefile = /betran/utf/log/trace;
#

(17) Protocol definition
(@) Syntax

prot ocol = protocol-name(, | ;}

(b) Function

Defines MCF protocol. This definition isvalid only when testing a UAP written in
COBOL or DML. Omit the definition for protocols other than OSI TP,

If the protocol is specified more than once, the last definition isvalid.
(c) Operands
m protocol
Write pr ot ocol asthe definition name.
m protocol-name
Specify the protocol name, as follows:
oSl /TP
OSI TP protocol is used.
An error occursif a protocol other than OSI TP is specified.
(d) Definition example

protocol definition
protocol = OSI/TP;
#

230

11. Setting the Test Environment

11.1.2 User service definition

Add the following user service definition for running the offline tester. Definition and
coding are the same as for the OpenTP1 user service definition. See the manual
OpenTP1 System Definition for details.

(1) Syntax
(@) set format

set service = "service-name = entry-point-name"
[, "service-name = entry-point-name"]
. [set server_type = betran|xatm]

(b) putenv format

{{[put env environment-var-name environment-var-value] } }

(2) Function
Enables execution of the offline tester according to the user service definition.
(3) Operands
(a) set format
m service = "service-name = entry-point-name"

For all the servicesin the service group, specify the service name paired with the
entry point name.

The entry point name is afunction name in C or a program name or entry hame
in COBOL. Specify the same name as in the RPC (or XATMI) interface
definition.

Seethe manual OpenTP1 Programming Guidefor detailsonthe RPC and XATMI
interface definitions and on service functions for the RPC (or XATMI) interface.

m server_type = betran| xatmnm ~<<betran>>
Specify whether to use OpenTP1 (RPC) or XATMI functions, as follows:
betran
Use OpenTP1 (RPC) functions.
xat m
Use XATMI functions.
(b) putenv format
m environment-var-name

231

11. Setting the Test Environment

Set the value of the specified environment variablefor the processesin the service
group.

Use this format to set the COBOL environment when OpenTP1 activates a
COBOL operating environment. The user can choose an environment variable for
each UAP execution format program. Reference put env in the standard C
library.

(4) Definition example
(a) setformat

set service = "service = xwsvkd0100"
set server_type = betran

(b) putenv format

put env CBLCORE 1

11.1.3 Setting function return values

To enable a simulated OpenTP1 function to return afixed value, create afunction
return valuesfile and set the value in thefile.

Using thisfile, you can also set event types for the XATMI functionst psend and
t pr ecv and the output data (node 1D and server name) to be passed to afunction used
by the multi-node facility.

Definition and coding are the same as for the offline tester environment definition.
(1) Syntax
(@) Setreturn value

{ function-name| program-name(request-code) } = return-value {, | ;}

(b) Set event type

{tpsend| tprecv} = TPEEVENT,
{tpsend(event)|tprecv(event)} = event-type {,|;}

(c) Set output data

{ function-name-for-multinode(node_i d) | function-name-for-multinode(sv_nane)} =
{node-ID| server-name} {, | ; }

(2) Function

Defines auser-specified value asthereturn value for an OpenTP1 function. Or, defines
an event type for the XATMI functiont psend or t pr ecv, or the output data (hode 1D

232

11. Setting the Test Environment

and server name) to be passed to TP1/Multi function.
(3) Operands
(a) Setreturn value

m function-name | program-name (request-code)

Specify afunction name or program name (request code) for returning the value.
function-name

Return value for C function
program-name (request-code)

Return value for COBOL program. Set the request code in parentheses.
return-value ~<1-39 al phanumerics>

Set the return value (or return code for COBOL) to be returned by the function or
program.

Write the return value as an upper-case constant name. Use a constant name also
when setting a COBOL return code for a TX function.

Alternatively, the return value can be set as a numeric value (decimal) in the
following range:

Interface Specifiable range
Cinterface -99999 to 99999
COBOL interface 0 to 99999#
Note

A specification outside the specifiable range is regarded as a character string.

#. For aTX function, specify the return code within the range -99999 to 99999.

If an undefined constant nameis specified or if anumeric valueisincorrectly specified
(non-numeric, for example), the offline tester assumes that the function returned
normally.

(b) Set event type

m {tpsend|tprecv} = TPEEVENT

Indicates that the subsequent coding sets an event type.

m tpsend(event)|tprecv(event)

Specify the function to which the event type applies.

233

11. Setting the Test Environment

t psend(event)
Event typefor t psend function
t precv(event)
Event typefor t pr ecv function
m event-type

Set the event typefor thet psend ort pr ecv function. If specificationisomitted,
TPEV_SVCERR s assumed.

(c) Set output data

m function-name-for-multimode (node_i d) [function-name-for-multimode
(sv_nane)

Specify the function name to which the output data applies and the output data
type, as follows.

node id
Sets the node ID as the output data.
svV_nane
Sets the server name as the output data.
The following function names and output data types can be specified:

Function name Type of output data
dc_adm get _nd_st at us_next node_i d
dc_adm get _sv_st at us_next sv_nane
dc_adm get _nodeconf _next node_id
dc_adm get _node_id node_id

234

m node-ID | server-name
Specify the node ID or server name.

Node I Ds and server names are associated with the sequence of multi-node
functions issued by the UAP in the order in which they are specified in the
function return valuesfile.

When anode ID or server name is omitted or incorrectly specified, that line of
coding isignored and the system processes the specifications asif thenode ID or
server name does not exist. Therefore, the node ID or server nameis not counted.

When the UAP issues more functions than the number of node |Ds and server

11. Setting the Test Environment

names in the function return values file, DCADMER_NO_MORE_ENTRY isreturned
by the excess functions (but not by thedc_adm get _node_i d function).

(4) Definition examples

(@ C
dc_jnl _ujput =0,
dc_dam open = DCDAMER _PROTQ,
#dc_trn_begin = DC_CK
dc_dam read = -1600,
t psend = TPEEVENT,

t psend(event

dc_adm get _nd_st at us_next (node_i d) = NDO1

dc_| ogpri nt

) = TPEV_DI SCONI MM

= DC_CK;

(b) COBOL

CBLDCINL(UJPUT)

0

#CBLDCTRN(BEGI N) = 905,

CBLDCDAM READ) = 1600,

CBLDCLOG(PRINT) = 1905;
(5) Notes

» During definition analysis, the system does not check the validity of the functions
and return values or the relationships among them.

» A format error occurs when an unsupported function, a function that does not
return areturn value, or afunction that accesses aDAM file in the offline
environment is specified as a function name.

» Duplicate specifications (same function name, or afunction and a program that
perform the same process) are not permitted. If specifications are duplicated, the
system sets the return value specified first.

» When aformat error is detected during definition analysis, an error message is
output and analysis continues. The table below shows whether each definition
statement isvalid or invalid when aformat error occurs.

Format error Valid Assumed specification when
valid
, or; missing at the end of Y
statement.
Other N --

235

11. Setting the Test Environment

Legend:

--: Not applicable

» Request codes must be those listed in the manual OpenTP1 Programming
Reference COBOL Language. However, for the following processes, specify the
request code shown below.

Description Request code
Delete recordsin TAM table DELT
Input TAM records READ
Update or output TAM records VR T

» Specify the following return values for a COBOL program that returns a status
code at normal termination:

CBLDCADM STATUS)

Set the status code for the user server.
CBLDCTAM GST)

Set the following values:

1
2
3:
4

RO (open status)

RC (close status)

HL (logica shutdown status)
HO (error shutdown status)

Examples:
If CBLDCADM STATUS) =1 is set, the return information is:

Return value=0

User server status code=1

If CBLDCTAM GST) =3 is s&t, the return information is:

Return value=0

TAM table status=HL (logical shutdown status)

11.1.4 Setting continuous execution commands

To enabl e continuous execution of commandsin the set sequence, create a continuous
execution command file and set the commands in the file in the required execution
sequence. If the end subcommand is included, the offline tester terminates and does
not execute the remaining commands.

236

11. Setting the Test Environment

Commands (r ead and other subcommands) for responding to offline tester inquiries
during service execution can also be set in the file. If no response subcommands are
set in the file, the system waits for user input.

Definition and coding are the same as for the offline tester environment definition.

(1) Syntax

command-name [command-argument ...] {,|;}

(2) Function

Defines commands for consecutive execution by the offline tester.

(3) Operands

® command-name

The following values can be specified as the command name:

cal |
end
ps
read
start
stop

wite

When a command other than the above is specified, a message reportsthat a
command error has occurred. The command isignored and processing continues.

m command-argument

Set the command arguments for the specified command.

(4) Definition example

call serl sppsubl a_data,
call ser2 ntfsub b_data+c_data,
call ser3 sppsub2 d_data,

read rtn_data,

#cal |l serl sppsubl b_data,

end;

(5) Notes

» When aformat error is detected during definition analysis, an error is output and

237

11. Setting the Test Environment

analysis continues. The table below shows whether each definition statement is
valid or invalid when a format error occurs.

Format error Valid Assumed specification when
valid
, or; missing at the end of Y
statement.
Other N -
Legend:
--: Not applicable

« Each command is checked at execution when the cndaut o subcommand is
actually entered.

11.1.5 Creating stubs

Stubs are required for UAPs (SPPs and MHPs) that provide servicesin an RPC,
XATMI, or TXRPC environment.

Stubsfor UAPswith the RPC or XATMI interface are created by astub generator from
the RPC (or XATMI) interface definition file which contains the RPC (or XATMI)
interface definitions. For UAPs with the TXRPC interface, stubs or server UAP
templates are created using an OpenTP1 command with the Interface Definition
Languagefile. Trandate the stubs using a C compiler, then link the stubsto the server
UAP's object file.

Create stubs for the offline tester in the same way asfor ajob UAP. See the manual
OpenTP1 Programming Reference C Language for details.

238

11. Setting the Test Environment

11.2 User-created files

Table 11-2 lists the files that the user must create to use the offline tester.

Table 11-2: List of user-created files

File type Use and contents Time of Deleted Time of
creation by deletion
Service RPCrequest | Storesrequest data passed to the Before User Any
request datafile server UAP when using the client service
datafiles UAP simulator with an RPC interface. | request
XATMI Stores request data passed to the Before User Any
request data | server UAP when using the client service
file UAP simulator with an XATMI request
interface.
TxXRPC Stores request data passed to the Before User Any
request data | server UAP when using the client service
file UAP simulator with a TXRPC regquest
interface.
Service RPC Stores data returned as the service At activation User Any
response response result when using the server UAP of the
datafiles | datafile simulator with an RPC interface. simulate SPP
XATMI Stores data returned as the service At activation User Any
response result when using the server UAP of the
datafile simulator with an XATMI interface. simulate SPP
TXRPC Stores data returned as the service At activation User Any
response result when using the server UAP of the
datafile simulator with a TXRPC interface. simulate SPP
XATMI receive datafile Stores data received by thet precv Before User Any
function service
request
MCF receive messagefile | Stores messages passed to the MHP Before User Any
when using the M CF simulator. service
request
Operatingcommandresult | Storesdatareturned tothe UAPasthe | Before User Any
datafile execution result when using the service
operating command simulator. request
User file Used when the DAM or TAM facility | Beforeoffline | User Any
isused. tester startup

Note

239

11. Setting the Test Environment

All user-created files for the online tester can be used without modification,
except the following:

TMI receive datafile
MCF receive message file
Operating command result datafile
11.2.1 Service request data files
(1) RPC request data file

An RPC request data file stores the data passed to the service function for a service
requested when using the client UAP simulator with an RPC interface. A singlefile
contains one set of data.

(@) File structure

| Data length | Response area length Data

(b) File contents

Item Position Length (bytes) Contents
Data length 0 4 Length of the data to be passed to the service function.
(0 - specified value of DCRPC_MAX_MESSAGE_SI ZE)
Responsearea | 4 4 Length of the response area to be passed to the service
length function. (1 - specified value of
DCRPC_MAX_MESSAGE_SI ZE)
Data 8 n Data to be passed to the service function.
(c) Notes

» Theitemsin the RPC request datafile are related to the service function
arguments as follows:

Service function (in, in len,out,out len)
1 2. 3.

1. Data
2. Datalength
3. Response arealength
* AnRPC request data file for the online tester can also be used.
» Donotuseaplussign (+) inthefile name. Also, do not use ps or end asthefile

240

single file contains one set of data.
(a) File structure

name.

11. Setting the Test Environment

» Anerror occurswhen the specified dataislessthan the specified datalength. Data
that exceeds the data length is truncated.

(2) XATMI request data file

An XATMI request data file stores the data passed to the service function for a
requested service when using the client UAP simulator with an XATMI interface. A

Call type Buffer type s?lggire Flags Data length Data
(b) File contents
Item Position Length (bytes) Contents
Call type 0 8 Type of function calling aservice:
cal |
call fromt pcal | function
acal |
call fromt pacal | function
connect
call fromt pconnect function
Buffer type 8 8 Buffer type, specified as one of the following character
strings:
e X_OCTET
e X_COMVON
e X_C TYPE
Buffer 16 16 Buffer subtype, specified as a string of up to 16 characters.
subtype Specify anull character when specifying X_OCTET as the
buffer type.

241

11. Setting the Test Environment

Item

Position Length (bytes) Contents

Flags

32 4 Flags to be passed to the service function, specified asa

hexadecimal.
0x00000000L
0
0x00000004L
TPNOREPLY
0x00000008L
TPNOTRAN
0x00000100L
TPNOCHANGE
0x00000800L
TPSENDONLY
0x00001000L
TPRECVONLY

Data length

36 4 Length of the data to be passed to the service function

(0-524288).
Specify zero when no datais passed. The buffer type and
subtype specifications are ignored when zero is specified.

Data

40 n Data to be passed to the service function

(c) Notes

Theitemsin the XATMI request datafile are related to the service function
arguments as follows:

voi d tpservice(svcinf)
TPSVCI NFO *svci nf;

struct TPSVCI NFO {

242

char nane[32]; 1.
char *data; 2.
long len; 3.
long flags; 4.
int ¢cd;, ..., 5.
}
Service name

o~ 0w N PE

Address at which the data mapped to buf f _t ype and sub_t ype isstored
Length of the data shown by dat a

Flags (specified flags stored in bit strings)

Interactive descriptor (stores zero)

An XATMI request datafile for the online tester can also be used.

11. Setting the Test Environment

Do not use aplussign (+) in the file name. Also, do not use ps or end asthefile
name.

Anerror occurswhen the specified datais|essthan the specified datalength. Data
that exceeds the data length is truncated.

The response data area is reallocated according to the buffer type and buffer
subtype in the response data.

When the buffer type and subtype are specified, the values specified for the data
length and data must be the same as the data structure val ue defined for the stubs.

Boundary alignment is performed for the data structure specified for the stubs (the
total length isan integer multiple of 4). For thisreason, the user must consider the
alignment portion when creating an XATMI request datafile.

(3) TXRPC request data file

A TxXRPC request datafile storesthe data passed to the service function for arequested
service when using the client UAP simulator with a TXRPC interface. A singlefile
contains one set of data.

(a) File structure

| Major version | Minor version | Data length Data

(b) File contents

Item Position Length (bytes) Contents
Major version | 0 2 Major version number specified in theinterface definition of
thet xi dI command. Specify zero to omit this specification.
Minor version | 2 2 Minor version number specifiedin theinterface definition of
thet xi dI command. Specify zero to omit this specification.
Datalength 4 4 Length of the data to be specified for a data part (0 to
specified value of DCRPC_MAX_MESSAGE_SI ZE - 16).
Data 8 n Argument data to be passed to the service function. When
setting an address in the argument, set the contents of the
areaindicated by the address.
Set character string #NULL## if the addressis null.
(c) Notes

The following shows data contents of the TXRPC request data file and how the
service function arguments are related to the data received by the arguments.

243

11. Setting the Test Environment

Data contents

Data of argument 1 | Data of argument 2 | Data of argument 3

(n bytes) (m bytes) (k bytes)
1
Service function = Data received by the arguments (data length)
arguments
Argument 1 = Data of argument 1 (» bytes)
Argument 2 = Data of argument 2 (m bytes)
Argument 3 = Data of argument 3 (& bytes)
Example:

Data contents of the TXRPC request data file to be passed to service
function servicer

00000004 |007b |234e5540232300

Service function arguments and data received by the arguments

serviceA(pl, p2, p3)

long pl; (Datareceived by pl = 4)
short p2; (Data received by p2 123)
char *p3; (Data received by p3 = NULL)

» Do not useaplussign (+) in the file name. Also, do not use ps or end asthefile
name.

» Anerror occurswhen the specified dataisless than the specified datalength. Data
that exceeds the data length is truncated.

» UAP operations are not guaranteed when the data contains an error.
11.2.2 Service response data files

(1) RPC response data file

When using the server UAP simulator with an RPC interface, the RPC response data
file storesthe response data returned to the client UAP when a service request is made
to the simulate SPP. A single file contains one set of data.

(@) File structure

| Data length | Data |

244

11. Setting the Test Environment

(b) File contents

Item Position Length (bytes) Contents
Datalength 0 4 Length of the data to be returned to the UAP making the
service request. (0-2147483647)
Data 4 n Data to be returned to the UAP making the service request.
(c) Notes

» Theitemsinthe RPC response datafile are related to the arguments of the service
reguest function (dc_r pc_cal | function) asfollows:

dc_rpc_call(....., in,in_len,out, out_Ien)
1.

1. Data
» An RPC response datafile for the online tester can also be used.

e Do not useaplussign (+) in the file name. Also, do not use ps or end asthefile
name.

» Anerror occurswhen the specified datais|essthan the specified datalength. Data
that exceeds the data length is truncated.

(2) XATMI response data file

When using the server UAP simulator with an XATMI interface, the XATMI response
datafile stores the response data returned to the client UAP when a service request is
made to the simulate SPP. A single file contains one set of data.

(@) File structure

Buffer type Buffer Service termination Return code | Data length Data
subtype code

(b) File contents

Item Position Length (bytes) Contents
Buffer type 0 8 Buffer type, specified as one of the following character
strings:
e X_OCTET
o X_COVVON
e X _C TYPE
Buffer 8 16 Buffer subtype, specified asastring of up to 16 characters.
subtype Specify anull character when specifying X_OCTET as the
buffer type.

245

11. Setting the Test Environment

Item Position Length (bytes) Contents
Service 24 4 One of the following hexadecimal values of r val inthe
termination t pret ur n function. Thevalueisset inthet perrno area.
code 0x04000000L
TPSUCCESS
0x20000000L
TPFAI L
Return code 28 4 Hexadecimal value of r code inthet pr et ur n function.
Thevalueissetinthet pur code area
Data length 32 4 Length of the data to be returned to the UAP making a
service request. (0-524288)
Specify zero when no datais passed. The buffer type and
subtype specifications are ignored when zero is specified.
Data 36 n Datato be returned to the UAP making the service request.
(c) Notes
* Theitemsinthe XATMI response datafile are related to the arguments of the
service termination function (t pr et ur n function) as follows:
tpreturn(rval,rcode, data,len,.....)
1. 2 3. 4
1. Servicetermination code
2. Return code
3. Datastored in the buffer allocated by buffer type and subtype
4. Datalength

246

An XATMI response data file for the online tester can also be used.

Do not useaplus sign (+) in the file name. Also, do not use ps or end asthefile
name.

Anerror occurswhen the specified dataislessthan the specified datalength. Data
that exceeds the data length is truncated.

When the buffer type and subtype are specified, the val ues specified for the data
length and data must be the same as the data structure value defined for the stubs.

Boundary alignment is performed for the data structure specified for the stubs (the
total length isan integer multiple of 4). For thisreason, the user must consider the
alignment portion when creating an XATMI response datafile.

(3) TxRPC response data file

11. Setting the Test Environment

When using the server UAP simulator with a TXRPC interface, the TXRPC response
datafile stores the response data returned to the client UAP when a service request is
made to the simulate SPP. A single file contains one set of data.

(a) File structure

| System area | Data length | Return value | Data |
(b) File contents
Item Position Length (bytes) Contents

System area 0 12 Areaused by the offline tester. Do not use this area.

Datalength 12 4 Total length of the datato be specified for adata part and of
the return value (0 to specified value of
DCRPC_MAX_MESSAGE_SI ZE - 16).

Return value 16 m Return value of the service function. The datatype and size
are specified in the interface definition of thet xi dI
command. Do not specify areturn value for thevoi d type
service function.

Data 16+m n Argument data to be returned to the client. Specify an
argument for which the out attribute is specified in the
parameter declaration of the interface definition of the
t xi dl command. When setting an addressin the argument,
set the contents of the area indicated by the address. Set
character string #NULL## if the addressis null.

(c) Notes

» Thefollowing shows data contents of the TXRPC response data file and how the

service function arguments

Data contents

arerelated to the data received by the arguments.

Data of argument 1 [out attribute]

(n bytes)

Data of argument 3 [out attribute]
(m bytes)

l

Service function arguments

Argument 1 (out attribute)
Argument 2 (in attribute
Argument 3 (out attribute)

Data received by the arguments
(data length)

Data of argument 1 (» bytes)
No data received

Data of argument 3 (m bytes)

247

11. Setting the Test Environment

Example:
Data contents of the TXRPC request data file to be passed to service
function servicer

00000004 |007b |234e5540232300

Service function arguments and data received by the arguments

serviceA(pl,p2,p3,p4)

long pl;
short p2;
short p3;
char *p4d;

Do not useaplussign (+) in thefile name. Also, do not use ps or end asthefile

name.

An error occurs when the specified datais|essthan the specified datalength. Data

[out attribute]

[
[
[

out attribute)
in attribute]
out attribute)

(
(
(
(

Data received by pl =
Data received by p2
Data received by p3 = None)
Data received by pd

that exceeds the data length is truncated.

UAP operations are not guaranteed when the data contains an error.

11.2.3 XATMI receive data file

An XATMI receive data file stores the messages received by thet pr ecv functionin
the UAP A single file can contain a number of dataitems which are passed

consecutively to thet pr ecv function.

(1) File structure

4)
123)

NULL)

Coar':er;on Buffer type Buffer subtype Event flag Data length Data
Coar':er;on Buffer type Buffer subtype Event flag Data length Data
Coar':er;on Buffer type Buffer subtype Event flag Data length Data
(2) File contents
Item Position Length (bytes) Contents
Commonarea | 0 36 Areashared with the XATMI send datafile. Specify aspace
or null character.

248

11. Setting the Test Environment

Item

Position Length (bytes) Contents

Buffer type

36 8 Buffer type, specified as one of the following character
strings:

e X_OCTET

e X_COMVON

e X _C TYPE

Buffer
subtype

44 16 Buffer subtype, specified as a string of up to 16 characters.
Specify anull character when specifying X_OCTET as the
buffer type.

Event flag

60 4 One of the following hexadecimal values as the string to be
passed to thet pr ecv function:
0x00000000L

0
0x00000001L

TPEV_DI SCONI MM
0x00000002L

TPEV_SVCERR
0x00000004L

TPEV_SVCFAI L
0x00000008L

TPEV_SVCSUCC
0x00000020L

TPEV_SENDONLY

Datalength

64 4 Length of the data to be passed to thet pr ecv function
(0-524288).

Specify zero when no dataiis passed. The buffer type and
subtype specifications are ignored when zero is specified.

Data

68 n Datato be passed to thet pr ecv function

(3) Notes

The itemsin the XATMI receive datafile are related to the arguments of the
message receive function (t pr ecv function) as follows:

tprecv(....

.,data,len,....., revent)

1 2 3

1. Datastored in the buffer alocated by buffer type and subtype

2. Datalength

3. Eventflag

XATMI receive datafiles for the online tester cannot be used.

Do not use aplus sign (+) in the file name. Also, do not use ps or end asthefile

249

11. Setting the Test Environment

name.

Anerror occurswhen the specified dataislessthan the specified datalength. Data
that exceeds the data length is truncated.

Create the receive datain execution units. If thet pr ecv function is executed
more than once in a service, create al the data required for the number of
executions. If thet pr ecv function is executed more times than the number of
dataitems, the system assumes that data from thet pr et ur n function was
received and an error occurs at each execution that exceeds the number of data
items.

The XATMI receive datafile opens and closes by service unit.

When the buffer type and subtype are specified, the values specified for the data
length and data must be the same as the data structure value defined for the stubs.

Boundary alignment is performed for the data structure specified for the stubs (the
total length isan integer multiple of 4). For thisreason, the user must consider the
alignment portion when creating an XATMI receive datafile.

11.2.4 MCF receive message files

A logical message can contain one or more segments. A segment consists of a header
part containing the segment information and a data part which is the message text.

250

&<———— Logical message ——— >

Segment | Segment

Segment

7 Ay
/7 \
/ \

| Header | Data |

There are five types of segments:

Single segment

Segment in alogical message consisting of one segment only

First segment

First segment in alogical message consisting of multiple segments

Middle segment

One of the middle segments in alogical message consisting of multiple segments
Last segment

Last segment in alogical message consisting of multiple segments

Header segment

Segment prefixed to two concatenated messages

11. Setting the Test Environment

Specify the segment type in the header part.

An MCF receive message file stores the messages received by the UAP in an MCF
function (dc_ntf _recei ve,dc_ntf _recvsync, ordc_ncf_sendrecv). Create
one logical message per file. Two messages can be concatenated if a header segment
isused.

(1) File structure
B Logical message consisting of one segment only

Single segment
Header | Data

B Logical message consisting of multiple segments

First segment Middle segment Middle segment Last segment

Header | Data Header | Data Header | Data Header Data

B Header segment

Header segment
Header | Data

251

11. Setting the Test Environment

(2) File contents

Iltem Position | Length Contents
(bytes)

Header Input/output 0 9 Logical termina name (including final null character) to
logical terminal be passed in MCF functions. Specify the same name for
name each segment of a multiple-segment message.

Map name 9 9 Map name (including final null character). Specify the
same name for each segment of a multiple-segment
message.

This specificationis vaid only for functions that return
amap name.

Reserved 18 9 Null character

Segment type 27 1 One of the following characters:

F

First segment
M

Middle segment
L

Last segment
(0]

Single segment
H

Header segment

Message length | 28 4 Message length (0-2147483647)

Data Message 32 n The datain the segment, of the specified message length

(3) Notes

» Thefollowing showshow theitemsin an M CF receive messagefile arerelated to
message receive reguests from a UAP viaan MCF function.

252

File structure:

Logical message

11. Setting the Test Environment

First segment Middle segment Last segment
Header Data Header Data Header Data
Segment fanan Segment bbb Segment R

type=F type =M type =1

Messages received by the UAP:

MCF area | aaaaa | | MCF area | bbbbb | | MCF area | cccce |

1

dc mcf receive

receiving first
segment data

1

dc mcf receive
receiving middle
segment data

1

dc mcf receive
receiving last
segment data

» By concatenating header segments, data created in another file can be combined
with the first or single segment and passed together to the UAP. The following
shows how a header segment is rel ated to a message receive request from aUAP
by an MCF function.

File A structure:

File B structure:

Header segment

First segment

Last segment

Header Data Header Data Header Data
Segment Mhhhh Segment aman Segment bbb
type =H type=F type=1

Message received by the UAP (files A and B concatenated):

MCF area | hhhhh | aaaaa |

| MCF area | bbbbb |

1

dc mcf receive
receiving first segment data

1

dc mcf receive

receiving last segment data

» Thefollowing shows the relationships between the segment type specified in the
segment header for a service request to an MHP and the file type at execution.

B Logical message consisting of one segment only

When segment type F, M or L is specified, the message is handled in the same way as
when Ois specified and no error occurs.

253

11. Setting the Test Environment

Segment type File type
F Handled as an MCF receive message file.
M
L
(0]
H, # Handled as an invalid file specification.
The system makes afile name inquiry.

L egend:

#: Specification other than F, M L, O, or H.
B Logical message consisting of multiple segments

When segment typeL, H, or Ois specified, the MHP regards the message as compl eted
and ignores any subsequent segments. Segment type F is handled in the same way as

segment type M
Segment type Segments received by MHP
First segment Middle segment Last segment
F M L F,ML
F L M Fo
F o) L FL®
M M L MM L
L M F L3
(0] (0] (0] foics
F L M Fo
F M H No segments received
X M L
F X L
F M X
H F L H3
H o o) H3

254

11. Setting the Test Environment

Legend:
X: Specification other than F, M or L.
#1: Misignored.
#2: L isignored.
#3: The middle and subsequent segments are ignored.
#4:. Handled as an invalid file specification. The system makes afile name inquiry.

B Files concatenated by header segment
Filescan only be concatenated when His specified as the segment type. Otherwise, the
file specifications are ignored.
Segment type (combinations for File type
concatenation)
H + (file beginning with F) Handled as a concatenated M CF receive message file.

H + (file beginning with M

H + (file beginning with L)

H + (file beginning with O)

H + (file beginning with #)

F, M L, or O+ (file beginning with any Thefile following + isignored.
segment type)

+ (file beginning with any segment type) Handled as an invalid file specification. The system makes afile

name inquiry.

11.2.5

Legend:
#: Specification other than F, M L, O, or H.

Do not use aplus sign (+), space, or tab code in the file name. Also, do not use ps or
end asthefile name.

DAM file

A DAM file stores DAM file data for the offline tester when the DAM service
simulator is used. DAM files are created by using an editor or by creating and
executing a program that usesthe dc_dam cr eat e function provided by the offline
tester.

255

11. Setting the Test Environment

(1) File structure

| Header | Data
/ Ay
’ \\
/ N
/ \
4 —_— - AN
Block Block Block Block Block
1 2 N N+1 N+2
(2) File contents
Item Position | Length Contents
(bytes)
Header File name 0 64 DAM file name. The specification is not checked.
File name 64 4 Length of one block (0-32760)
Total no. of 68 4 Total number of blocks in the data part (1-2147483647)
blocks
Unused 72 2 Null character
Shutdown status | 74 2 Specify one of the following:
0x0000
Not shutdown (normal)
0x0001
Logical shutdown
0x0002
Error shutdown
Reserved 76 20 Null character
Data Block 96 n Any data, specified by block.
(3) Note
The system does not check whether the total number of blocksin the data part is the
same asthe actual block count. An error occurs at data accessif the actual block count
isless.
11.2.6 TAM file

256

A TAM file stores TAM file data for the offline tester when using the TAM service
simulator. TAM files are created from a TAM datafile by entering the offline tester's
ut f t anmcr e command (see Section 13.1 Operating commands for running tests).

Create aTAM datafilein the sameway asa TAM file used by TP1L/FS/Table Access.
Or,useajob TAM fileasis. Seethe manual OpenTP1 Operation for creating job TAM

11. Setting the Test Environment

files.
11.2.7 Operating command result data file

An operating command result datafile stores the data returned to the UAP as the
command execution result when using the operating command simulator. A singlefile
contains one data item.

(1) File structure

| Data

- -
- -
-
- -
- -
- -

Character string Character string for
for standard output | standard error output

Header

(2) File contents

Item Position | Length Contents
(bytes)
Header Operating 0 4 Result code value set inthe st at argument of the
command result dc_adm cal | _command function
code
Character string | 4 4 Length of character strings (including null characters)
length for output to standard output (0-2147483647)
standard output
Character string | 8 4 Length of character strings (including null characters)
length for output to standard error output (0-2147483647)
standard error
output
Character string for standard | 12 n Value set in the out nsg argument of the
output dc_adm cal | _conmmand function. (Includes the final

null character. If no null characters are added, the last
character is replaced with anull character.) The
specified value isignored when zero is specified as the
character string length for standard output.

Character stringfor standard | -- n Value set inthe er r msg argument of the

error output dc_adm cal | _command function. (Includes the final
null character. If no null characters are added, the last
character is replaced with anull character.) The
specified value isignored when zero is specified as the
character string length for standard error output.

L egend:
--: Not applicable

257

11. Setting the Test Environment

(3) Notes

258

An operating command result datafile for the online tester cannot be used.

Add anull character at the end of a standard output string and a standard error
output string. If no null character isadded for such strings, thelast character inthe
string is replaced by a null character. If you specify 0 as the string length, the
character string isignored eveniif it is specified.

Do not useaplus sign (+) in the file name. Also, do not use ps or end asthefile
name.

When issuing operating commands by SEND statement in aDML, specify the
data part asfollows:

Character string length for standard output:
Specify 0.
Character string length for standard error output:
Specify 0 (when standard error output is not available).

11. Setting the Test Environment

11.3 Creating files

This section explains how to create test data definition files for simplifying later
creation of tester files, and provides alist of the files generated by the offline tester.

11.3.1 Test data definition file

By creating atest data definition file, the user can easily create tester files using the
tester file creation facility.

A test data definition file can have any name. The following tester files can be created
from atest data definition file:

* RPC request datafile

* XATMI request datafile

» TxRPC request datafile

* RPC response datafile

* XATMI response datafile

* TxRPC response data file

» XATMI receive datafile

* MCF receive message file

» Operating command result datafile
(1) Syntax

#comment 1L

start tester-file-lD tester-file-kind output-destination-file-name] 2.
keyword = input-data 15.

keyword = input-data

sep]13.

keyword = input-data

keyWord = input-déta
end]14.

Note that the italicized numbersin the box above correspond to the numbers under (3)
Description below.

(2) Function

Allowsthetester file creation command to create atester file after the definition of test
data needed for the tester file.

259

11. Setting the Test Environment

Onelinein the definition file can contain up to 512 bytes including a carriage return
code.

(3) Description
1. Comment statement
Write a comment statement.
e comment
Write acommentin aline.
2. start statement

Declare the beginning of input datafor atester file. This statement isrequired for
declaring input datain each tester file.

When input datais created for multipletester filesin atest datadefinition file, the
end statement shows the end of input data of one tester file.

 tester-file-1ID ~<up to 14 aphanumerics>

Specify an ID for identifying input data in each tester file described in the
test data definition file. The ID must be unique in atest data definition file.

o tester-file-kind
Specify atester file kind. Available tester file kinds are:
RRQ
RPC request datafile
XRQ
XATMI request datafile
TRQ
TXRPC request datafile
RRT
RPC response datafile
XRT
XATMI response data file
TRT
TXRPC response data file
XRV
XATMI receive datafile

260

11. Setting the Test Environment

NRV
MCEF receive message file
Ccom
Operation command result datafile
* output-destination-file-name ~<pathname>
Specify the name of atester file made of input data.

When atest data definition file specifiesinput data of multiple tester file
kinds, specify different output destination file names for the file kinds.

If the same output destination file name is used for input data with different
tester filekinds, test datais appended to the specified file. Though thisis not
an error, the created tester file may be unavailable for testing. If the existing
file name is specified, test datais appended to that file.

sep statement

Specify a data separator when creating a tester file that contains multiple data
entries.

If afile contains multiple dataentries for the offline tester, however, only thefirst
data entry takes effect, ignoring the second or later data.

The sep statement is specifiable for creating the following tester files.
o XATMI receive datafile
e Operation command result datafile

end statement

Declare the end of input datain atester file. This statement is required for every
input datain each tester file.

Input data definition statement
Define input data in each tester file.

Input data includes fixed information data and user data. The fixed information
data provides predetermined information to be specified. The user data (with the
keyword dat a) can contain anything the user specifies. In a set of test data,
specify all fixed data prior to user data.

Input data cannot duplicate in a set of test data. In the operation command result
datafile, however, specify user datatwice for setting standard output character
string data and standard error output character string data.

e keyword
Specify a keyword for identifying data specific to each tester file. Space

261

11. Setting the Test Environment

characters or tab codes are ignored if specified before or after the keyword.
e input-data

Specify input datafor the keyword. Space charactersor tab codesareignored
if specified before or after the keyword.

For detail sabout theinput dataformatsfor specifying fixed information data,
see the tablesin (5) Formats for the input data corresponding to the
keywords of tester files, below

(4) Required settings for specifying user data as input data

262

(@)

(b)

()

The following describes an input data format for specifying user data.
Setting the user data length

Specify the length of the entire user data as fixed information datain the following
format.

dat a_| en=bytes

If the data specified as user dataislarger than the datalength, the system truncates the
dataand issues a message. If the datais smaller than the data length, nothing is
appended to it.

Example:
data len=5 T T T

- —> Data: 31 132,33, 34 35
data='1234567"] s 9113213313413 |
data len=5 T T T T

- —> Data: 31,32 33,00 00
data='123"] s [311927133100700]

Initializing user data

Using the tester file creation command, initialize the user data for the specified user
datalength.

Setting character data

Set character datain the following format:

dat a=' data’

Do not add a null character to the end of character data.
Example:

data='12345'"—> Data 31 132,33,34,35

(d)

(e)

(f)

11. Setting the Test Environment

Setting binary data
Set binary datain the following format:
dat a=data
Data can be written in decimal and hexadecimal notation, as follows:
» Decimal notation
Specify thevaue asis.
» Hexadecimal notation
Prefix Ox to the value.
Example:
dat a=5 = Data: Decimal 5
dat a=0x05 =+ Data Hexadecimal 5
Datais set with thei nt type.
Setting hexadecimal code format data
Set hexadecimal code data in the following format:
dat a=(code) Oxdata

In data, write n bytes of 2n-digit data using hexadecimal code. The user can write as
many number of bytes as required within the maximum length of aline.

Write avalue of 0x00- Oxf f for one byte of data.

The datais assumed as binary data written in hexadecimal notation if (code) isnot
specified.

Example:

data=(code) 0x1234 —> Data:

Setting special characters

The system processes a carriage return code, tab code, null character, single quotation
mark ('), and backslash (\) to be specia charactersin character data. Enter these
characters asfollows.

Character Notation
Carriage return \n
Tab code \t
Null character \0

263

11. Setting the Test Environment

(9)

(h)

()

264

Character Notation

\ \\

Setting data to be read from the file
Use the following format when using data as user data read from the file.
data=(file) file-pathname
Example:
data=(file)/tnp/datafile = Usedatain/tnp/datafile.
Setting the beginning of data
Specify the beginning of data as follows.
dat a=[offset-from-start-of-user-data] data
Example:

data len=10

Data: 00, 00,31 ,32,33, 34
data=[2]"'1234" - [00100131,32,33,

Setting a format for multiple data types
dat a=data
=data

Example:
dat a=0x00000001 =» First data
=' ABCDEF'" = Second data
Adjusting the boundary

When multiple data types are described, adjacent data types may differ from each
other. Thistime the tester file creation command sets data by automatically adjusting
the boundary for the preceding data. However, no boundary adjustment takes place
when:

e User dataisread from thefile.
» Thebeginning of user datais set.
» Hexadecimal code format datais set.

data len=20
data="'12345"
=10
=[15]'6789"
—> Data:

11. Setting the Test Environment

Boundaries aligned

\’

31

32

33

34

35

00

00

00 |

00

00

T
1
00 |

Oa

00

00

00

36

37

38

39

00

(5) Formats for the input data corresponding to the keywords of tester files

Thefollowing tableslist the keywords and the formats of the corresponding input data
for each tester file. For the type of information to be specified, see the description of
each tester file in Section 11.2 User-Created files.

Table 11-3: RPC request data file keywords and input data formats

Keyword Specified Description
information
out _l en Responsearea | Beforedat a, specify the response arealength in decimal or hexadecimal
length placed inthedc_r pc_cal I function.
data_l en Datalength Before dat a, specify the user datalength in decimal or hexadecimal passed
to the server UAP with thedc_rpc_cal | function.
dat a Data Specify the user data passed to the server UAP with thedc_r pc_cal |
function.
Table 11-4: XATMI request data file keywords and corresponding input data
formats
Keyword Specified Description
information

call _kind Cal kind Before dat a, specify one of the following character strings as afunction
type for service request.
e call
e acall
* connect

buf f _type Type Before dat a, specify one of the following character strings as a buffer
type.
e X OCTET
o X_COVMON
e X C TYPE

sub_type Subtype Before dat a, specify a subtype within 16 characters.
Example:

sub_t ype=subt ype0Ol

265

11. Setting the Test Environment

Keyword Specified Description
information
flag Flag Before dat a, specify the following character string as aflag to be passed
to the service function. Separate multiple flags with avertical line (]).
« 0
¢ TPNOREPLY
¢ TPNOTRAN
* TONOCHANGE
e TPSENDONLY
¢ TPRECVONLY
data_l en Datalength Beforedat a, specify the user datalength in decimal or hexadecimal to be
passed to the server UAP withthet pcal | , t pacal | , or t pconnect
function.
dat a Data Specify user datato be passed to the server UAP with thet pcal | ,
t pacal |, ort pconnect function.
Table 11-5: TXRPC request data file keywords and corresponding input data
format
Keyword Specified Description
information
ver si on Version number Before dat a, specify the version number in decimal or hexadecimal
specified in the interface definition of thet xi dI command. This
information is optional. If omitted, zero is assumed. The range of
specification is 0-65535.
Example:
version = : Theversionis0.0.
version = 2: Theversionis?2.0.
version = 3.2: Theversionis3.2.
data_l en Data length Before dat a, specify the user datalength in decimal or hexadecimal to be
passed to the server UAP.
dat a Data Specify user datato be passed to the server UAP.
Table 11-6: RPC response data file keywords and corresponding input data
formats
Keyword Specified Description
information
data_l en Datalength Before dat a, specify the user datalength in decimal or hexadecimal to be
passed to the client UAP on service termination.
dat a Data Specify user data returned to the client UAP on service termination.

266

11. Setting the Test Environment

Table 11-7: XATMI response data file keywords and corresponding input data

formats
Keyword Specified Description
information
buf f _type Type Before dat a, specify one of the following character strings as a buffer
type.
e X_CCTET
e X_COMVON
* X_C.TYPE
sub_t ype Subtype Before dat a, specify a subtype within 16 characters.
Example:
sub_t ype=subt ype0Ol
rval Service Before dat a, specify one of the following character strings as a service
termination code | termination code.
¢ TPSUCCESS
e TPFAIL
r code Return code Before dat a, specify the return code in decimal or hexadecimal.
data_l en Data length Before dat a, specify the user datalength in decimal or hexadecimal
passed to the client UAP on service termination.
dat a Data Specify user data returned to the client UAP on service termination.
Table 11-8: TXRPC response data file keywords and corresponding input data
format
Keyword Specified Description
information
data_l en Data length Before dat a, specify the user datalength in decimal or hexadecimal to be
passed to the client UAP.
sve_rtn Return value Before dat a, specify the return value in decimal or hexadecimal to be
passed to the client UAP.
dat a Data Specify user datato be passed to the client UAP.
Table 11-9: XATMI receive datafile keywords and input dataformats
Keyword Specified Description
information
buf f _type Type Beforedat a, specify one of the following character strings as a buffer type.

X_OCTET
X_COVMON
X_C_TYPE

267

11. Setting the Test Environment

Keyword Specified Description
information
sub_type Subtype Before dat a, specify a subtype within 16 characters.
Example:
sub_t ype=subt ype0l
event Event flag Beforedat a, specify one of thefollowing character strings asan event flag
passed to thet pr ecv function.
e 0
e TPEV_DI SCONI MM
e TPEV_SVCERR
¢ TPEV_SVCFAI L
¢ TPEV_SVCSUCC
e TPEV_SENDONLY
data_l en Datalength Beforedat a, specify theuser datalength in decimal or hexadecimal passed
tothet precv function.
dat a Data Specify user data passed to thet pr ecv function.
sep sep statement When specifying data for multiple services, place asep statement at the
end of data for one service. Do not place this statement after the last data.
Note
When specifying data for multiple services, repeat buf f _t ype and succeeding
data.
Table 11-10: MCF receive message file keywords and corresponding input data
formats
Keyword Specified Description
information
t er mame 1/0 logical Before dat a, specify an 1/O logical terminal name within 8 characters
terminal name passed to thedc_ncf _recei ve function.
mapnarme Map name Before dat a, specify a map name within 8 characters passed to the
dc_ncf_recei ve function.

268

11. Setting the Test Environment

Keyword Specified Description
information
seg_ki nd Segment type Before dat a, specify one of the following characters as a segment type
passed to the dc_ncf _r ecei ve function.
e F
e M
e L
Lo
e H
Specify these charactersin any of the following orders when there is data
for multiple segments.
e F...M..L
e F...F...L
e M..M..L
e L
e H
e O
data_l en Message length Before dat a, specify the user data length of the segment in decimal or
hexadecimal passed to thedc_ncf _recei ve function.
dat a Message Specify user data of the segment passed to the dc_ncf _recei ve
function.
Note
When specifying data for multiple segments, repeat seg_ki nd and succeeding
data.
Table 11-11: Operation command result data file keywords and corresponding
input data formats
Keyword Specified Description
information
st at us_code Operation Before dat a, specify aresult codein decimal returned by the operation
command command.
result code
out si ze Standard Before dat a, specify the message length in decimal or hexadecimal the
output operation command outputs to standard output.
character
string length
errsize Standarderror | Before dat a, specify the message length in decimal or hexadecimal the
output operation command outputs to standard output error.
character
string length

269

11. Setting the Test Environment

Keyword Specified Description

information

dat a Standard Specify amessage with character data the operation command outputs to
output standard output.
character
string

dat a Standarderror | Specify amessage with character data the operation command outputs to
output standard output error.
character
string

sep sep statement | When specifying data for multiple commands, place asep statement at the

end of datafor one command. Do not place this statement after the last data.

11.3.2 Files created by the offline tester
Table 11-12 lists the files created by the offline tester.
Table 11-12: List of files created by offline tester

File type Use and contents Time of creation Deleted Time of
by deletion
XATMI send data | Storesdatasent by thet psend At execution of the User Any
file function. t psend function
Temporary Stores data updated by the In the Offline At execution
memory datafile dc_ncf _tenpput function and dc_ncf _t enpput tester® of the
acquired by thedc_ncf _t enpget and dc_ncf_co
function inthe UAPwhen using the | dc_ncf _t enpget nt end
MCF simulator. functions™® function
Tracefile Collects offline tester trace When the offline User Any

information.

tester (UAP) collects
the first trace
information.

#1: Created in the/ t np directory, with the logical terminal name acquired by the
dc_ncf _recei ve function as the file name. Not created when the same file name
aready existsinthe/ t np directory.

#2: When not running aUAP that issuesthedc_ntf _cont end function, the user can
deletethefile at any time.

270

Chapter
12. Test Execution

This chapter explains how to run atest with the offline tester.
This chapter contains the following sections:

12.1 Creating UAPs

12.2 Starting and ending an offline test
12.3 Activating and terminating UAPs
12.4 Service requests

12.5 Creating tester files

12.6 Continuous command execution

12.7 Debugger connection

12.8 Editing offline tester trace information
12.9 Notes on running tests

271

12. Test Execution

12.1 Creating UAPs

12.1.1 Creating UAP execution format programs
(1) Creating UAP execution format program with the RPC or XATMI interface

Figure 12-1 shows the procedure for creating a UAP execution format program with
the RPC or XATMI interface.

272

12. Test Execution

Figure 12-1: Procedure for creating UAP execution format program with the
RPC or XATMI interface

Compile Compile

format
program

To create the stub source program for creating a UAP execution format program with
an RPC or XATMI interface, use the st brmake command with an RPC (or XATMI)

interface definition file. See the manual OpenTP1 Programming Guide for details on
the st bmake command.

273

12. Test Execution

The following examples show how to generate stubs.
Example:

Generate stubs from an RPC interface definition file.

st bnake spplstb. def
1

1. RPCinterface definition file

(The name of the source file generated in this example is
spplstb_ssth.c.)

Example:

Generate stubs from an XATM | interface definition file.

st bmake -x spplstb. def
1

1. XATMI interface definition file

(The name of the sourcefile generated in thisexampleisspplst b_st bx. ¢
and the header filenameisspplst b_st bx. h.)

After generating the stubs, compile the stubs and UAP (C or COBOL). Usethe header
file provided by TP1/Server Base.

After compilation, link the stub object file and UAP object file to the simulation
functions library provided by the offline tester.

(2) Creating UAP execution format program with a TXRPC interface

Figure 12-2 showsthe procedure for creating a UAP execution format program with a
TXRPC interface.

274

12. Test Execution

Figure 12-2: Procedure for creating UAP execution format program with the
TxRPC interface

IDL fil

Generate

To create the client stub or server stub source program or server UAP templates for
creating aUAP execution format program with the TXRPC interface, use the OpenTP1
t xi dl command with the Interface Definition Language (IDL) file. See the manual

275

12. Test Execution

OpenTP1 Programming Guide for detailson thet xi dl command.
The following example shows how to create stubs and a template.
Example:

Generate stubs from an IDL file

txidl sppl.idl
1

1. Interface Definition Language file name
The following six files are generated in this example:
sppl_cst ub. c (Client stub source)
sppl_sst ub. c (Server stub source)
Csppl (User service definition for client)
Ssppl (User service definition for server)
sppl. h (Header file)
sppl. ¢ (Server source program template)

After generating the files, code the UAP based on the template and then compile the
stubs and UAP (C). Use the header file provided by OpenTP1. See the manual
OpenTP1 Programming Reference C Language for how to create the UAPR.

After compilation, link the stub object file and UAP object file to the simulation
functions library provided by the offline tester. For a client UAP, link the client stub
object file. For aserver UAP, link the server stub object file.

276

12. Test Execution

12.2 Starting and ending an offline test

To start the offline tester, execute the ut f st art command. In the command, specify
the name and option parameters of the offline tester environment definition file that
defines the execution conditions.

Starting the offline tester activates the service groups specified in the offline tester
environment definition file. A prompt (?>) for command input is displayed as each
UAP executesits mai n function and issues a function for starting services
(dc_rpc_mai nl oop or dc_ncf _mai nl oop function). Execute an offline tester
subcommand in response to the prompt.

At offlinetester startup, anumber of service groupsare activated at the sametime. That
is, anumber of UAPs may runin paralel.

To end the offline tester, execute the end subcommand when the prompt is displayed.

277

12. Test Execution

12.3 Activating and terminating UAPs

278

When the offline tester is used, the offline tester controls activation and termination of
UAPs (service groups) instead of OpenTP1. At offline tester startup, all the UAPs are
activated except those for which activation at tester startup is suppressed by a
specification in the offline tester environment definition.

When the offline tester has completed startup, the st ar t subcommand can be
executed to activate a UAP that has not yet activated or a UAP that terminated due to
an error.

Terminating the offline tester terminates al the active UAPs. To terminate one UAP,
execute the st op subcommand.

12. Test Execution

12.4 Service requests

A service can be requested in either of the following ways:
» By issuing aservicerequest (dc_r pc_cal | function) in the program
» By executing thecal | subcommand
Executethecal | subcommand after the UAP (service group) has activated.

279

12. Test Execution

12.5 Creating tester files

To create atester file, executetheut ffi | cr e command.

The procedure for creating tester files from atest data definition fileisthe ssme asfor
the online tester (see Subsection 11.3.1 Test data definition file in Part 1V).

280

12. Test Execution

12.6 Continuous command execution

To execute offline tester commands continuously, execute the cndaut o subcommand.

Specify the name of the continuous execution command file as the command
argument.

Subcommands for user responses can also be set in thefile. If acommand in the file

contains an error, the command isignored or the offline tester prompts for command
input.

At completion of a UAP process (debugger process) other than execution of the st op
subcommand, the offline tester asks the user whether to continue or cancel continuous
command execution. The offline tester also waitsfor user response if no subcommand
is specified at any point during continuous command execution.

281

12. Test Execution

12.7 Debugger connection

282

To run UAPs under debugger control, specify debugger connection in the offline tester
environment definition. Parametersrequired for the debugger (the directory for thetest
UAP source file) must also be set in the definition.

Debugger connection is executed by the mai n function of the UAP. After control is
passed to the debugger and initialization is completed, enter a program start command
to start the program. When the program compl etes execution, terminate the debugger.
The debugger cannot be restarted.

Two types of debuggers can be used:
e dbx
* cbltd (COBOL85/TD)
Follow the procedure for using each debugger.

12. Test Execution

12.8 Editing offline tester trace information

Offline tester trace information is collected in atrace file according to the output
specifications (output file, content to be output, and so on) set as options at offline
tester startup. Collected trace information can be output for each service or service
group by executing the ut f t r cpi ¢ command.

Thedc_r pc_open function executesthe processing, such as opening thetracefile, to
prepare for trace collection. Therefore, trace information for functions issued before
thedc_r pc_open function cannot be collected. Also, trace information cannot be
collected for the following simulation functions for DAM file access:

e dc_damcreate
e dc_dam get

e dc_dam. cl ose
e dc_dam.i open
e dc_dam put

For aUAP writtenin COBOL, API trace information may not be output if the request
code, DML, or other specification isincorrect. In such cases, the system outputs error
message KFCA 20016-E or KFCA20018-E. If the DML isincorrect, error information
is also output by the COBOL compiler and the program may terminate abnormally.

When UAPsrunin parallel during mai n function execution, for example, each output
line may contain mixed trace information. To avoid this problem, activate each service
group at adifferent point.

283

12. Test Execution

12.9 Notes on running tests

This section describes points to remember when running tests with the offline tester.

12.9.1 Notes on the offline tester

(1) Processing after abnormal termination of the offline tester

284

The offline tester uses pipe and shared memory facilities to control processes.

If the offline tester is terminated abnormally in an irregular manner by pressing the
interrupt key, for example, the shared memory area and any temporary filesin current
use are saved as alocated. The offline starter can still be restarted, but the shared
memory area and temporary files should be deleted if resource efficiency islikely to
be affected.

The offline tester uses the following names for temporary files:
e shmoxx (inthe/ t np directory)
e cpi xxxx (inthe/t np directory)
e ppi xxxx (inthe/t np directory)
e tttttttt (inthe/ t np directory)
* aaaaaaaaxxxx (inthe/ t np directory)
L egend:
XXKX
Hexadecimal display of process|D at execution
tetttttt

Same name as logical terminal name returned whenthedc_ntcf _recei ve
function receives the first segment. (Up to 8 characters)

aaaaaaaa

Same name (up to 8 characters) asthe | ST table name specified in the offline
tester environment definition file.

Example:
* shmie?
* cpi 3e9
* ppi 3e8

e termal A

12. Test Execution

If the offline tester terminates abnormally, the UAP process and debugger process (if
a debugger is connected) may still be active, depending on the termination timing. In
such cases, execute the kill command to terminate the processes.

(2) Upper limits of the offline tester

Table 12-1 sets out the upper limits of the offline tester.

Table 12-1: Upper limits of offline tester

Item Description Upper Processing when upper
limit limit is exceeded

UAP startup wait time | Timefrom generationto activation | 60 minutes | An error messageis output and
of aUAP process (dc_r pc_open the processisforcibly
function) when starting the offline terminated.**
tester or executing the st ar t
subcommand

UAP stop wait time Timefrom aterminationrequestto | 10 minutes | Forcibly terminate the UAP
actual termination of aUAP process or debugger process.
process when stopping the offline
tester or executing the st op
subcommand. Or, if debugger
connection is specified for the
UAP, time until the debugger
process terminates.

Command line length Length of commandlinesinoffline | 254 bytes An error message is output and
tester subcommands. Or, length of the command is rejected.
definition lines in the continuous
execution command file

Definition line length Length of definition linesin the 510 bytes An error message is output. The
offline tester environment lineisignored and definition
definition file or in the function analysis continues.2
return valuesfile

Length of pathname Length of directory names and 255 bytes An error message is output and

information pathnames specified in the offline the specification isignored.
tester environment definitions and
commands

Number of function Number of function return values | 200 An error message is output.

return value definitions | defined in the function return Subsequent linesareignored and
valuesfile processing continues.

Number of DAM files | Number of DAM files opened by 200 An error message is output and

thedc_dam open or
dc_dam creat e functionina
UAP

thedc_dam open or
dc_dam cr eat e function
returns an error value.

285

12. Test Execution

Item Description Upper Processing when upper
limit limit is exceeded
Number of TAM files Number of TAM files opened by 200 An error message is output and
thedc_t am open functionin a thedc_t am open function
UAP returns an error value.
Number of Number of UAP executions of the | 200 An error message is output and
dc_rpc_call dc_rpc_cal | function with thedc_rpc_cal | function
functions DCRPC_NOWAI T specified when returns an error value.
dc_rpc_poll _any repliesis
not issued
Number of Number of executions of the 100 An error message is output and
synchronous message dc_ncf_sendrecv and thedc_ncf _sendrecv or
send/receive functions | dc_ncf _recvsync functionina dc_ncf _recvsync function
service returns an error value.

#1: Excluding UAPs for which debugger connection is specified.

#2: When definition analysis is completed, the system waits for command input to
continue or cancel offline tester startup.

(3) Recursive calls between service groups

Using the offline tester, thedc_r pc_cal | function can be used to execute nested
services within a service function. However, a service can only be called once within
nested services that belong to the same service group.

Figure 12-3 illustrates the use of recursive calls using the offline tester.

286

12. Test Execution

Figure 12-3. Recursive cals using the offline tester

SPP (service group hame: svgl) SPP (service group name: svg2)

main() main()
Main function { { Main function
} }

Recursive call /|:|
L / Service function

Servi_ce function de rpe ca1l — dec_rpc call (service name:
(service name: ("svg2", "svelh) Recursive call 1" ("svgl", "svc2™) B
svel) o % |:| svel)

Service function —£ \L
(service name: Error occurs
sve2)

(4) Functions that cannot be used before or after service calls

The offline tester outputs an error message and an error value is returned when one of
the following functionsis issued before or after a service call (before the
dc_rpc_mai nl oop or dc_ncf _mai nl oop function isissued or after the
dc_rpc_mai nl oop or dc_ncf _mai nl oop function returns):

e dc_rpc_call
e dc_admcall _command

e MCF function other thandc_ntf _open,dc_ncf _cl ose, or
dc_ncf _mai nl oop

(5) User exit routine functions

Of the functions related to user exit routines, the offline tester does not support the
dc_nef _svstart function. To test a UAP that includes this function, create and link
adummy function of the same name.

(6) Accessing TAM tables in DAM file access functions

The offline tester does not support accessing of TAM tablesin DAM file access
functions. Operation is not guaranteed if access is attempted.

(7) Transaction processing

The offline tester does not support processing that depends on whether the processis
inside or outside a transaction.

287

12. Test Execution

(8) Event notification by tpsend function

Thet psend function cannot be used for event notification in interactive service
requests using an XATMI interface. To check UAP events, use the function return
valuesfile.

(9) IST table access

Thel ST simulation facility of the offlinetester stores|ST table contentsin atemporary
file for reference or update. This may cause afile access error that does not occur
otherwise.

When this error occurs, the system issues an error message. The function that caused
the file access error returns with an error condition. The return value correspondsto
one of error return values returned by that function.

12.9.2 Notes on files
(1) Lock of DAM files and TAM files

L ockscan be placed on each DAM or TAM file. This meansthat adeadlock may occur
between UAPs which can normally be executed in parallel without a deadlock
occurring (because the UAPs have exclusive access to separate blocks withinaDAM
file, for example).

If adeadlock occurs, take one of the following actions:
» Suppress lock in the offline tester environment definition.
» Suppress update by specifying the - ¢ optionintheut f st art command.

» Prevent the UAPs from running in parallel by entering the st ar t subcommand
to start the UAPs sequentially after the offline tester starts.

(2) Number of batch processing blocks in DAM files

The offline tester processes files by block, regardless of the value set as the number of
batch processing blocks when issuing the dc_dam cr eat e or dc_dam i open
function. However, no processing is performed when the specified value is less than
zero.

(3) Closing DAM files and TAM files

288

Alwaysissuethedc_dam cl ose or dc_t am cl ose function after issuing the
dc_dam open or dc_t am open function.

If the service group is terminated without issuing the dc_dam cl ose or

dc_t am cl ose function, aduplicate open error or lock error may occur at the DAM
(or TAM) file when the serviceis re-executed. If an error occurs, enter the st op
subcommand to terminate the service (or service group), then enter the st ar t
subcommand to reactivate the service.

12. Test Execution

(4) Lock of TAM files used by COBOL UAPs

COBOL UAPs cannot place locks on TAM files. When creating a UAP in COBOL,

specify suppression of lock in the TAM definition statement in the offline tester
environment definition.

If suppression is not specified, alock error may occur when a service that accesses a
TAM fileisrestarted. If an error occurs, enter the st op subcommand to terminate the
service (or service group), then enter the st art subcommand to restart the service.

12.9.3 Notes on UAPs
(1) Infinite looping of a UAP

Asthe offline tester does not perform timer monitoring, offline tester responses may
ceaseif the UAP goesinto ainfinite loop and makes no further responses. In this case,

executetheki | I command from another window to forcibly terminate the UAP
process.

Operation is not guaranteed if the ki | | command is used to forcibly terminate a
process other than a UAP that has stopped issuing responses.

289

Chapter
13. Operating Commands

This chapter explains how to use the operating commands and subcommands of the
offline tester.

This chapter contains the following sections:

13.1 Operating commands for running tests
13.2 Subcommands for running tests

201

13. Operating Commands

13.1 Operating commands for running tests

Table 13-1 lists the operating commands for running offline tests.

Table 13-1: List of operating commands for offline testing

Command name Function

ut f dancre Creation of offline tester DAM file

utffilcre Tester file creation

utfstart Offline tester startup

utftancre Creation of offline tester TAM files

utftrcpic Retrieva of offline tester trace information from afile

13.1.1 utfdamcre (creation of offline tester DAM file)
(1) Syntax

ut f dancre block-length block-count DAM-file-name [input-file-name]

(2) Function
Reads aDAM datafile and creates an offline tester DAM file.

(3) Command arguments

(4) Notes

292

m block-length ~((sector length x n - 8))

Specify the block length of aDAM file.
block-count ~((1-2147483647))

Specify the number of blocksinaDAM fileto be created. The DAM filesize will
be (block length x block count + 96) bytes.

DAM-file-name ~<pathname>
Specify the name of a DAM file to be created.
input-file-name ~<pathname>

Specify the name of afilethat stores datato be output to the DAM file. Omitting
this specification outputs null datato the DAM file.

When an error occurs during ut f dancr e command execution, the DAM file
remains allocated. Before reexecuting the ut f dancr e command, usether m

13. Operating Commands

command to delete the DAM file.

» Thefollowing operations take place when the block count specified for the
ut f dancr e command differs from the block count in the input file.

Soecified block count > block count in the input file

The system outputs blocks of null datato the end of the DAM file.

Soecified block count < block count in the input file

The system stops reading blocks from the input file, issues message
KFCA20789-W, then terminates the ut f dancr e command.

13.1.2 utffilcre (tester file creation)
(1) Syntax

utffilcre -e test-data-definition-file-name

(2) Function
Creates tester files from the specified test data definition file.
(3) Option
m - e test-data-definition-file-name ~<pathname>
Specify the name of the test data definition file that containsthe input datafor the

tester files.
13.1.3 utfstart (offline tester startup)
(1) Syntax
utfstart [-s] [-1] [-i] [-f] [-g] [-d] [-c] Ooffline-tester-environment-definition-file-name

(2) Function
Starts the offline tester according to the definitions in the offline tester environment

definition file.
(3) Options
m -s

Outputs service function names and return information to standard output as
offline tester trace information.

Thisoption isignored when the - i option is specified.

293

13. Operating Commands

Outputs function argument information, as well as service function names and
return information, to standard output as offline tester trace information.

Thisoption isignored when the - i option is specified.
-
Suppresses output of offline tester trace information.
m -f
Outputs offline tester trace information to standard output and to atracefile.

When an existing trace file is specified, the information is added at the end of the
existing data. If the specified trace file does not exist, the offline tester createsthe
file

This option isignored when the - g option is specified.
" -9
Outputs offline tester trace information to standard output and to atracefile.

When an existing trace file is specified, the file is recreated and information is
written from the head of the file. If the specified trace file does not exist, the
offline tester creates thefile.

m -d

Outputs all the contents to standard output when the function argument
information consists of a data area (buffer, for example).

When this option is omitted, 20 bytes of information are output.
Thisoption isvalid only when the - | option is specified.
m -C

Suppresses update of DAM files and TAM files when using the DAM service or
TAM service.

When this option is omitted, DAM files and TAM files are updated.
(4) Command argument
m offline-tester-environment-definition-file-name ~<pathname>

Specify the name of the offline tester environment definition file containing the
test environment.

(5) Note
When all the options are omitted, the- 1 option is assumed.

294

13. Operating Commands

13.1.4 utftamcre (creation of offline tester TAM files)
(1) Syntax

utftamecre -r record-length -1 key-area-length -k key-start-position
-m max-record-count [-t] [-u hash-entry-usage] [- s]
[-d TAM-data-file-name] TAM-file-name

(2) Function
Inputs the TAM datafile and creates a TAM file for the offline tester.
(3) Options
m -r record-length ~((1-2147483647))
Specify the record length of the TAM file.
m -| key-area-length ~((1-2147483647))
Specify the key length.
m -k key-start-position
Specify the offset to the key position from the head of the record.

An error occursif anon-zero value is specified in this option and the - s optionis
also specified. Therecord length of the management part of the TAM fileis:
(record-length) - (key-area-length).

® - m max-record-count ~((1-2147483647))

Specify the maximum number of recordsin TAM tables.
m -t

Creates TAM tablesin tree structure.

TAM tablesare created in hash structure when this option is omitted, provided the
- u option is specified.

m -u hash-entry-usage ~((1-100))
Specify the usage percentage of indexes to be used as hash areas.
An error occursif this option is specified with the -t option.
m-s
Specify this option to delete the key area from record contents.
m -d TAM-data-file-name ~((255))

Specify the name of the TAM datafilein up to 255 characters. An error occursif
the number of charactersis over 255 or if the specified name is the same as the

295

13. Operating Commands

TAM file name. Check the two name specifications.
(4) Command argument
m TAM-file-name ~<pathname>
Specify the name of the TAM file to be created by the command.
(5) Notes

» Anerror occurswhen the datalength of the TAM datafile exceeds (record-length)
x (maxd-record-count).

» When the datalength of the TAM datafile cannot be evenly divided by therecord
length specified by the- r option, the excess dataistruncated and isnot stored in
the TAM file.

13.1.5 utftrcpic (retrieval of offline tester trace information)
(1) Syntax

utftrcpic traceffileename service-group-name
[service-name [data-file-name] |

(2) Function

Retrieves offline tester trace information by key from atrace file and outputs the
information to standard output.

(3) Command arguments
m trace-file-name ~<pathname>
Specify the name of the trace file that containsthe offline tester trace information.
m service-group-name ~<identifier of 1-31 characters>

Asthe key information, specify the name of the service group that contains the
trace information to be retrieved.

m service-name ~<identifier of 1-31 characters>

Asthe key information, specify the name of the service that contains the trace
information to be retrieved.

When specification is omitted, trace information is retrieved by service group.
m data-file-name ~<pathname>

Specify the name of a data file as the key information if you want to restrict the
retrieved trace information to a specific datafile used at service execution.

296

(4) Output format

18:41:01 Function=dc_dam read [CBLDCDAM (READ)]

file descriptor (IN) =00000008
DAM key (IN) =first-block-number last-block-number
00000000 00000000
number of DAM keys (IN) =00000001
input data (OUT) =
00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000
input buffer length (IN) =000001£8
option flags (IN) =00000009
DCDAM REFERENCE [request:R]
DCDAM NOEXCLUSIVE [exclusive : N
relurnvaluezDCioK(OOOOOO) [00000]

1. Time and function information:

13. Operating Commands

Time at which the service group was activated (hour:minute:second)

Name of C function

Name of COBOL program
Request code

DML statement name

2. Argument information:

(I N) indicates contents specified with the function argument by the UAP. (QUT)
indicates contents returned by the functionto the UAP. ar g name (OUT) =NULL
is displayed when the address of the character string areais anull character.

3. Information on data and data length:

Data contents are displayed for the specified datalength in 40 bytes per line. The
format when a specification is incorrect or incomplete is as follows:

Example:

When the data address is a null character:

data name(| N) =NULL

When the data length is zero:

data name(I N) =

4. Option flag information:

Option flag name

297

13. Operating Commands

« COBOL flag name
« COBOL flag type

If aspecification isincorrect, the code of the incorrect flag is displayed and * * *
isdisplayed as the COBOL flag name and flag type.

Example:

option flags(1 N) =00000001
DCDAM FI LE_EXCLUSI VE [exclusive: B]
00000006 [***]

5. Return value information:

» Definition name of C return value

e Decimal display of C return value

e Decimal display of COBOL return code
Output example

298

13. Operating Commands

KFCA20001-1 Process was created. Service group name=svg2 (xdb)

15:18:56 functz’on:dcirpciopen (svg2) [CBLDCRPC (OPEN)]
option flags (IN) =00000000
DCNOFLAGS 1.

KFCA20000-1 Offline tester was activated. Tue May 31 15:18:56 1994
relurnvaluezDCioK(OOOOOO) [00000]

15:18:56 function=dc rpc mainloop(svg2) [CBLDCRSV(MAINLOOP)] -
option flags (IN) =00000000
DCNOFLAGS

?>call svg2 sveb xd03km :|2.

15:19:18 service start(svchH)]
buffer type (IN) =X OCTET
buffer length (IN) =00000000
data (IN) =NULL
option flags (IN) =00000000

DCNOFLAGS

15:19:18 function=tpalloc
buffer type (IN) =X OCTET
buffer subtype (IN) =NULL
buffer length (IN) =0000008¢
veturn value=DC_OK (ADDRESS)

15:19:18 function=tprealloc
buffer length (IN) =00000096
veturn value=DC_OK (ADDRESS)

15:19:18 function=tpcall

service name (IN) =svcl

send buffer type (IN) =X OCTET

send buffer length (IN) =0000008¢c

data (IN)=
00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000 3
00000000 00000000 00000000 00000000 00000000
00000000 00000000 0000

receive buffer type (IN) =X OCTET

receive buffer length (IN) =0000008¢

option flags (IN) =00000008

TPNOTRAN

299

13. Operating Commands

o ok~ 0D

(5) Notes

300

read(svg2:svch:crm rtn) ?>read xdO4km :|4.
receive buffer type(OUT)=X_ OCTET
receive buffer length (OUT) =00000000
data (OUT) =
return value from service (OUT) =999999
veturn value=DC_OK (000000)

15:19:27 function=tpreturn
end code (IN) =TPSUCCESS
return value (IN) =000000
buffer length (IN) =00000000
data (IN) =NULL
option flags (IN) =00000000

DCNOFLAGS

15:19:27 service end (svch) _

?>end :I 5.

15:19:31 returnvalue (svg2) =DC_OK(000000) [00000]

15:19:31 functz’on:dcirpciclose (svg2) [CBLDCRPC (CLOSE)] 6.

option flags (IN) =00000000
DCNOFLAGS
M essage indicating offline tester startup and trace information collected at SPP

startup

Trace information collected at subcommand input (test start)

Trace information collected at service execution

Trace information collected at datafile read

Trace information collected at subcommand input (test end)

Trace information collected at SPP termination when offline tester ends

Offline tester trace information is retrieved from the start to the end of each
service.

Theretrieval range of the traceinformation differs according to the user response
when prompted for input of ther ead orwr i t e subcommand or for input of afile
name during service execution.

The table below shows how the user response determines the retrieval range.

13. Operating Commands

Input prompt

Response (command input)

Trace information retrieval

readorwite
subcommand

read or wi t e subcommand

Trace information is also retrieved after
subcommand input.

ps subcommand

Command input information and the
command execution result are not
retrieved.

end subcommand

Trace information is not retrieved after
subcommand input.

Invalid command

Command input information and error
messages are not retrieved.

File name

ps subcommand

Command input information and the
command execution result are not
retrieved.

end subcommand

Trace information is not retrieved after
subcommand input.

Command other than ps or end
subcommand

Trace information is also retrieved after
subcommand input.

301

13. Operating Commands

13.2 Subcommands for running tests

Table 13-2 lists the subcommands for running offline tests.
Table 13-2: List of subcommands for offline testing

Command name Function
cal | Service request
cndaut o Continuous command execution
end Offline tester termination
ps Test status display
read Input of tester file name to offline tester
start Service group activation
st op Service group termination
wite Input of tester file name to offline tester

13.2.1 call (service request)
(1) Syntax

cal |l service-group-name service-name
{ RPC-request-data-file-name|
XATMI-request-data-file-name|
TXRPC-request-data-file-name|
MCEF-receive-message-file-name
[+ MCF-receive-message-file-name] }

(2) Function

Activatesthe SPP or MHP process corresponding to the specified service group name
and executes the service function for the specified service name.

(3) Command arguments
m service-group-name ~<identifier of 1-31 characters>
Specify the name of the service group that contains the service to be activated.
m service-name ~<identifier of 1-31 characters>
Specify the name of the service to be activated.
m RPC-regquest-data-file-name ~<pathname>

302

(4) Notes

13. Operating Commands

Specify the name of the RPC request datafilethat containsthe input datareceived
by the first service function when requesting the service from an RPC interface
SPP.

XATMI-request-data-file-name ~<pathname>

Specify the name of the XATMI request datafile that contains the input data
received by thefirst service function when requesting the servicefrom an XATMI
interface SPP.

TXRPC-request-data-file-name ~<pathname>

Specify the name of the TXRPC request data file that contains the input data
received by thefirst service function when requesting the service from a TxRPC
interface SPP.

MCF-receive-message-file-name ~<pathname>

Specify the name of the M CF receive message fil e that containsthe datafor input
to the UAP by the M CF function when requesting the service from an MHP.,

To create concatenated messages, specify a second M CF receive message file,
prefixed with aplus sign (+).

The service group name must be defined in the offline tester environment
definition and the service name must be defined in the user service definition.

If atester file cannot be accessed, or if the file contents are incorrect, the next
prompt is displayed for file name input. When concatenation of MCF receive
messagefilesis specified, if an error occurs at one of thefiles, specify both of the
file namesin the specification.

Format

file(groupl:servicel)?>
1 2.

1. Service group name
2. Servicename

13.2.2 cmdauto (continuous command execution)

(1) Syntax

cndaut o continuous-execution-command-file-name

(2) Function
Executes offline tester commands in sequence, according to the contents of the

303

13. Operating Commands

continuous execution command file.
(3) Command argument
m continuous-executi on-command-fil e-name ~<pathname>

Specify the name of the continuous execution command file containing the
commands to be executed successively.

13.2.3 end (offline tester termination)
(1) Syntax

end

(2) Function
Terminates active service groups and ends the offline tester.
(3) Note

Thiscommand sets normal return for thedc_r pc_mai nl oop function of each service
group. If the UAP process (or debugger process when using debugger connection)
does not complete within 10 minutes, the command forcibly terminates the UAP
process (or debugger process). However, if the command is entered while the system
iswaiting for input of ther ead subcommand or file name, the service group
terminates normally only after the offline tester issuesthe dc_r pc_cl ose function.

13.2.4 ps (test status display)
(1) Syntax

ps

(2) Function
Displays the status of processes running under the offline tester.
(3) Output format

18:23:43 PID Type Service-group-name S D DFID

1925 SPP groupl R % kkkkw

Hakk SPP groupl E % kkxkw

1927 SPP group2 R D 0013

1928 SPP group3 F % kkxks

1929 MHP group4 F % kkxks
IS I S S— | | 1

1. 2. 3. 4. 5 6. 7.

1. Timeat which the ps subcommand was executed (hour:minute:second)

304

13. Operating Commands

2. UAPprocessID.
***xx g displayed when the processisinactive.
3. Service group type code:
SPP
Indicates an SPP.
MHP
Indicates an MHP.
Service group name
5. Process status:

R

Indicates that the service group processis active.
E

Indicates that the service group processisinactive.
F

Indicatesthat the service group processis specified asthetarget of the server
UAP simulator (and cannot be activated or inactivated).

6. Debugger connection:
D
Specified

Not specified
7. Debugger process 1D
***xx g displayed when the processisinactive.
13.2.5 read (input of tester file name to offline tester)
(1) Syntax

read tester-file-name [+ MCF-receive-message-file-name]

(2) Function
Informs the offline tester of the tester file name required by a simulator.

305

13. Operating Commands

(3) Command arguments
m tester-file-name ~<pathname>
Specify the name of the tester file required by the offline tester.
The prompt displays which tester file name is required, as shown below.
Format

read(groupl:servicel:rpc rtn)?>

1. 2. 3.

1. Servicegroup hame
2. Service name (not displayed for a process other than a service)
3. Tester filetype:
rpc_rtn
Service response datafile
crmrtn
XATMI response datafile
trp_trn
TXRPC response data file
crmrcv
XATMI receive datafile
ncf _msg
M CF receive message file
adm cnd
Operating command result datafile
m MCF-receive-message-file-name ~<pathname>

When concatenating the tester file with an M CF receive messagefile, write aplus
sign (+), then specify the name of the MCF receive messagefile.

13.2.6 start (service group activation)
(1) Syntax

start {SPP| MHP} service-group-name

306

13. Operating Commands

(2) Function
Reactivates a UAP when:

» Suppression of service group activation is specified for the UAP at offline tester
startup

» The UAP terminates abnormally during testing
(3) Command arguments
m SPP| MHP
Specify the type of service group to be activated.
SPP
Indicates an SPP.
MHP
Indicates an MHP.
m service-group-name ~<identifier of 1-31 characters>
Specify the name of the service group to be activated.

The service group name must be defined in the offline tester environment
definition.

13.2.7 stop (service group termination)
(1) Syntax

stop {SPP| MHP} service-group-name

(2) Function
Terminates an active UAP.
(3) Command arguments
m SPP| MHP
Specify the type of service group to be terminated.
SPP
Indicates an SPP.
MHP
Indicates an MHP.
m service-group-name ~<identifier of 1-31 characters>
Specify the name of the service group to be terminated.

307

13. Operating Commands

The service group name must be defined in the offline tester environment
definition.

13.2.8 write (input of tester file name to offline tester)

(1) Syntax

wite tester-file-name

(2) Function
Informs the offline tester of the tester file name required by a simulator.
(3) Command argument
m tester-file-name ~<pathname>
Specify the name of the tester file required by the offline tester.

The prompt displays which tester file name is required, as shown below.
Format

write(groupl:servicel:crm snd) ?>

1. 2. 3.

1. Servicegroup hame
2. Service name (not displayed for a process other than a service)
3. Tester filetype:
crm.snd
XATMI send datafile

308

Chapter
14. Simulation Functions

This chapter describes the purpose, processing, and return values of the simulation
functions provided by the offline tester.

This chapter contains the following sections:

14.1 List of simulation functions and processing
14.2 Lig of return values for simulation functions
14.3 List of functions not supported by the simulation feature

309

14. Simulation Functions

14.1 List of simulation functions and processing

This section lists the offline tester simulation functions and provides notes on function

simulations.

(1) Simulation functions

Table 14-1 lists the offline tester simulation functions for simulating OpenTP1
functions.

Table 14-1: List of offline tester simulation functions

Type Function name Purpose Traces Return Function
[prog_name value processing
(request_code)] <DML>
Control of dc_adm cal | _conmand Executes an Y Y Returns datafrom
system [CBLDCADM COMMVAND) | operating the operating
operation command. command result
(adm datafile.
dc_adm conpl et e Notifies Y Y --
[CBLDCADM COVPLETE)] completionof user
server startup.
dc_adm st at us Notifies user Y Y Returns
[CBLDCADM STATUS)] server status. DCADM_STAT_ST
ART_NORMAL
(return vaue) or
zero (return code)
at normal
termination.
dc_adm get _nd_status_b | Starts status Y Y Gets the number
egin acquisition at the of node IDs set in
OpenTP1 node. thefunctionreturn
valuesfile.
dc_adm get _nd_status_n | GetsOpenTP1l Y Y Getsthe node ID
ext node status. set in the function
return valuesfile.
Returns
DCADM_STATUS
NORMAL (C return
value) at normal
termination.
dc_adm get _nd_status_d | Endsstatus Y Y --
one acquisition at the
OpenTP1 node.

310

14.

Simulation Functions

Type Function name Purpose Traces Return Function
[prog_name value processing
(request_code)] <DML>
dc_adm get _nd_status Gets OpenTP1 Y Y Returns
node status. DCADM_STATUS_
NORMAL (return
value) at normal
termination.
dc_adm get _node_id Getsthe local Y Y Getsthe node ID
node ID from the set in the function
systerm common return valuesfile.
definition.
dc_adm get _sv_status_b | Startsserverstatus | Y Y Gets the number
egin acquisition. of server names
set in the function
return valuesfile.
dc_adm get _sv_status_n | Getsserver status | Y Y Getsthe server
ext at the OpenTP1 name set in the
node. function return
valuesfile.
Returns
DCADM _STATUS_
NORMAL (C return
value) at normal
termination.
dc_adm get _sv_status_d | Endsserver status | Y Y --
one acquisition.
dc_adm get _sv_status Gets status of a Y Y Returns
specified server. DCADM_STATUS
NORMAL (return
value) at normal
termination.
dc_adm get _nodeconf _be | StartsnodelD Y Y Returnsthe
gin acquisition. number of node
IDssetinfunction
return valuesfile.
dc_adm get _nodeconf _ne | Gets multi-node Y Y Returns the node
xt area|D for the IDs set inthe
UAP that issued function return
thefunction, or all valuesfile.
node I Ds of
specified
subareas.

311

14. Simulation Functions

Type Function name Purpose Traces Return Function
[prog_name value processing
(request_code)] <DML>
dc_adm get _nodeconf_do | Endsnode D Y Y --
ne acquisition.
DAM file dc_dam cl ose ClosesaDAM Y Y ClosesaDAM
service [CBLDCDAM CLOS) | file. file.
(dam)
dc_dam create Allocates a N N CreatesaDAM
[CBLDCDMB(CRAT)] physical file. fileandreturnsthe
file descriptor.
dc_dam end Declares to stop Y Y --
[CBLDCDAM END) | using files not
subject to
recovery.
dc_dam get Reads a physical N N Reads a specified
[CBLDCDVB(GET)] file block. block from a
DAM filetoa
specified buffer.
dc_dam hol d Logical shutdown | Y Y Sets shutdown
[CBLDCDAM HOLD) | of aDAM file statusinthe DAM
file header and
shuts down the
DAM file.
dc_dam.i cl ose Closes aphysical N N ClosesaDAM
[CBLDCDVB(CLOS) | file. file.
dc_dam i open Opens aphysica N N OpensaDAM file
[CBLDCDVB(OPEN) | file. and returnsthefile
descriptor.
dc_dam open OpensaDAM Y Y OpensaDAM file
[CBLDCDAM OPEN)] file. andreturnsthefile
descriptor. Locks
thefileif lock is
specified for the
file.
dc_dam put Writes aphysical N N Writes buffer
[CBLDCDVB(PUT)] file block. contentsto a
specified DAM
file block.

312

14. Simulation Functions
Type Function name Purpose Traces Return Function
[prog_name value processing
(request_code)] <DML>
dc_dam read ReadsaDAM file | Y Y Reads a specified
[CBLDCDAM READ)] block. DAM fileblock to
aspecified buffer.
Locksthefileif
lock is specified
for the block.
dc_dam start Declaresto start Y Y --
[CBLDCDAM STRT) | using files not
subject to
recovery.
dc_dam st at us Shows DAM file Y Y Returnsthe DAM
[CBLDCDAM STAT) | state. file state.
dc_dam rel ease Releases DAM Y Y Resets the
[CBLDCDAM RLSE)] file shutdown shutdown statusin
status. the DAM file
header and
cancelsthe
shutdown of the
DAM file.
dc_damrewite Updatesa DAM Y Y Writes the
[CBLDCDAM REW) | file block. contents of a
specified buffer to
aspecified DAM
file block.
dc_damwite Outputsa DAM Y Y Writes the
[CBLDCDAM WRI T) | file. contents of a
specified buffer to
aspecified DAM
file block.
Shared dc_ist_close Closes ST table. Y Y Closesthe IST
table [CBLDCI ST(CLOS) | table.
service
(i st) dc_i st _open Opens I ST table. Y Y Opensthe IST
[CBLDC!I ST(OPEN) | table and returns
its descriptor.
dc_ist_read Reads records Y Y Reads specified
[CBLDCI ST(READ)] from IST table. records from the
IST tableto
specified buffer.

313

14. Simulation Functions

Type Function name Purpose Traces Return Function
[prog_name value processing
(request_code)] <DML>
dc_ist_wite Writes records to Y Y Writes specified
[CBLDCI ST(WRI T)] IST table. recordsto the IST
table.
User dc_j nl _uj put CollectsUAPlog | Y Y --
journd [CBLDCINL(UJPUT)] information.
collection
@G nl)
Lock of dc_| ck_get Requests locking Y Y --
resources [CBLDCLCK(GET)] of resources.
(I ck)
dc_l ck_rel ease_al | Requests Y Y --
[CBLDCLCK(RELALL)] unlocking of all
resources.
dc_I ck_rel ease_byname Requests Y Y --
[CBLDCLCK(RELNANE)] unlocking of a
specified
resource.
Message dc_| ogpri nt Requests logged Y Y -
log control | [CBLDCLOG(PRI NT)] message output.
(1 0g)
Message dc_ncf_execap Startsan Y Y --
control [CBLDCMCF(EXECAP)] application.
function <SEND>
(mef)
dc_ncf _mai nl oop Starts the MCF Y Y Notifiesthe
[CBLDCMCF(MAI NLOOP) | service. offline tester that

MCEF service has
started. Ata
service request to
theMHP, executes
the service
functionand waits
for the next
service request.
Returnswhen a
UAP termination
reguestisreceived
(at offline tester
termination, for
example).

314

14.

Simulation Functions

Type Function name Purpose Traces Return Function
[prog_name value processing
(request_code)] <DML>
dc_ncf_receive Message receive Y Y Inputs a segment
[CBLDCMCF(RECEI VE) from the MCF
] <RECEI VE> receive message
file and storesthe
segment in the
message receive
area. Counts up
the transaction
sequence number.
dc_ncf _reply Response Y Y --
[CBLDCMCF(REPLY)] message send
<SEND>
dc_ncf _rol | back Partial recovery Y Y Counts up the
[CBLDCMCF(ROLLBACK)] transaction
<ROLLBACK> sequence number
if the next
processing is
specifiedtorunas
adifferent
transaction.
dc_ncf_send Message send Y Y --
[CBLDCMCF(SEND)]
<SEND>
dc_ncf_open Prepares and Y Y --
[CBLDCMCF(OPEN)] initializes for
using the MCF
service.
dc_ncf_cl ose Deletesthe Y N --
[CBLDCMCF(CLOSE)] environment for
using the MCF
service.
dc_ntf _sendrecv Synchronous Y Y Outputs trace
[CBLDCMCF(SENDRECV)] message send/ information of the
<SEND> receive last segment, then

inputs a segment
from the MCF
receive message
file and storesthe
segment in the
message receive
area.

315

14. Simulation Functions

Type Function name Purpose Traces Return Function
[prog_name value processing
(request_code)] <DML>
dc_ncf _recvsync Synchronous Y Y Inputs a segment
[CBLDCMCF(RECVSYNC) | message receive from the MCF
<RECEI VE> receive message
file and stores the
segment in the
message receive
area.
dc_ncf _sendsync Synchronous Y Y --
[CBLDCMCF(SENDSYNC)] message send
<SEND>/ <ENABLE>/
<Dl SABLE>
dc_ncf _tenpget Passestemporary | Y Y Inputs data from
[CBLDCMCF(TEMPGET)] memory data for the temporary
<RECE| VE> continuous memory datafile
inquiry/response and storesthedata
in the message
receive area. Or,
stores anull
character if nofile
exists.
dc_ncf _t enpput Updates Y Y Updates the
[CBLDCMCF(TEMPPUT) | temporary temporary
<SEND> memory data for memory datafile.
continuous Or, creates an
inquiry/response updatefileif none
exists.
dc_mcf _contend Terminates Y Y Deletesthe
[CBLDCMCF(CONTEND)] continuous temporary
<Dl SABLE> inquiry/response memory datafile.
dc_ncf _regster Sets user exit Y Y --
routine function
addresses.
dc_ncf_resend Message resend Y Y --
[CBLDCMCF(RESEND)]
dc_ncf _commi t Synchronous Y Y Counts up the
[CBLDCMCF(COMM T) | point acquisition transaction
sequence number.

316

14.

Simulation Functions

Type

Function name
[prog_name
(request_code)] <DML>

Purpose

Traces

Return
value

Function
processing

Remote
procedure
cal (rpc)

dc_rpc_call
[CBLDCRPC(CALL)]

Remote service
call

Requests the
offline tester to
execute a service
function.
Returnsa
descriptor
(positive integer)
asthereturnvalue
when
DCRPC_NOMAI Tis
specified.

Or, returns zero to
the specified
service (service
function) asthe
response length
when
DCRPC_NOREPLY

is specified.

dc_rpc_cl ose
[CBLDCRPC(CLCSE)]

UAP termination

dc_r pc_nai nl oop
[CBLDCRSV(MAI NLOOP)]

Starts the SPP
service.

Notifies the
offline tester that
service has
started. Ata
service request to
the SPP, executes
the service
functionand waits
for the next
service request.
Returnswhen a
UAP termination
reguestisreceived
(at offline tester
termination, for
example).

dc_rpc_open
[CBLDCRPC(OPEN)]

UAP start
processing

Allocates shared
memory, then
notifiestheoffline
tester that the
UAPs have
started.

317

14. Simulation Functions

(o]
[CBLDCRPC(GETSVPRI) |

priority of service
requests.

Type Function name Purpose Traces Return Function
[prog_name value processing
(request_code)] <DML>
dc_rpc_poll _any_replie | Receives Y Y If
s responses from f 1 ags=DCNOFLA
[CBLDCRPC(POLLANYR)] thedc_r pc_cal | GS, returnsthe
function descriptor of the
(DCRPC_NOWAI T first
specified). dc_rpc_call
function
(DCRPC_NOWAI T
specified) for
which no reply
was received. If
f1 ags=DCRPC_S
PECI FI C_MSG,
returnsDC_OK. If
nodc_rpc_cal
functions that
terminated
normally were
issued in the SPP,
returns
DCRPC_PROTO.
dc_rpc_discard_further | Cancelsresponses | Y N Cancelsal
_replies from the descriptors
[CBLDCRPC(DI SCARDF) | dc_rpc_call returned by the
function dc_rpc_cal
(DCRPC_NOWAI T function
specified). (DCRPC_NOWMAI T
specified).
dc_rpc_get_callers_add | Notifiesthenode | Y N Returns ADDRESS
ress address of the (fixed value) as
[CBLDCRPC(GETCLADR) | client. the client address.
dc_rpc_set_service pri | Setsschedule Y N --
o priority of service
[CBLDCRPC(SETSVPRI)] requests.
dc_rpc_get _service_pri | Getsschedule Y N Returnsthe

schedule priority
valuespecifiedfor
the
dc_rpc_set_se
rvice_prio
function.

318

14.

Simulation Functions

Type

Function name
[prog_name
(request_code)] <DML>

Purpose

Traces

Return
value

Function
processing

dc_rpc_set _watch_tine
[CBLDCRPC(SETWATCH)]

Updatesthe
service response
wait time.

Updates the
service response
wait time.

dc_rpc_get _watch_tine
[CBLDCRPC(GETWATCH)]

Referencesthe
service response
wait time.

References the
values set by the
dc_rpc_set_wa
tch_tine
function. Returns
180 if thefunction
has not been
issued.

TAM file
service

(tam

dc_tam cl ose

ClosesaTAM
table.

Releases lock and
closesthe TAM
table.

dc_tam del ete
[CBLDCTAM ERS or ERSR)]

Deletes arecord

fromaTAM table.

Deletes arecord
specified by key
valuefromaTAM
table and updates
the TAM table
file.

dc_tam get _i nf
[CBLDCTAM GST)]

Collects TAM
table information.

Returns

DCTAM _STS_OPN
if thecalling
process hasissued
an open request
for the specified
TAM tablefile.
Or, returns
DCTAM STS_CLS
if no open request
has been issued.

dc_tam open

Opensa TAM
table.

Opensthe TAM
table specified by
table ID and
returnsthefile ID
asthetable ID.
Locksthe TAM
tablefileif lock of
the TAM tableis
specified.

319

14. Simulation Functions

Type

Function name
[prog_name
(request_code)] <DML>

Purpose

Traces

Return
value

Function
processing

dc_tamread
[CBLDCTAM FxxRor
FxxU)]

Retrievesarecord

fromaTAM table.

Retrieves a
specified index
fromaTAM table
(control part and
index part) in
shared memory
and reads the
record for the
index from the
TAM tablefile.
Locksthe TAM
tablefileif lock of
therecord is
specified.

dc_tam read_cancel

Cancels TAM
table record
retrieval.

Unlocksthe TAM
table file that
contains a
specified record.

dc_tamrewite

Updates a
retrievable record
inaTAM table.

Writes the
contents of a
specified buffer to
a specified record
inaTAM table.

dc_tamwite
[CBLDCTAM MFY, MFYS, or
STR)]

Updates or
appends arecord
inaTAM table.

Retrieves a
specified index
fromaTAM table
(control part and
index part) in
shared memory
and writesthe
contents of a
specified buffer to
the record for the
index inthe TAM
tablefile.

Transaction
control

(trn)

dc_trn_begin
[CBLDCTRN(BEG N)]

Startsa
transaction.

Counts up the
transaction
sequence number.

dc_trn_chai ned_conmi t
[CBLDCTRN(C- COW T)]

Commitsa
transaction
(chained mode).

Counts up the
transaction
sequence number.

320

14.

Simulation Functions

Type Function name Purpose Traces Return Function
[prog_name value processing
(request_code)] <DML>
dc_trn_chained_rol I bac | Rollsback a Y Y Counts up the
k transaction transaction
[CBLDCTRN(C- ROLL)] (chained mode). sequence number.
dc_trn_info Returns Y Y Returns zero if no
[CBLDCTRN(| NFO)] information for information is
the current specified in the
transaction. function return
valuesfile.
dc_trn_unchai ned_conmi | Commitsa Y Y --
t transaction
[CBLDCTRN(U- COMM T)] (unchained
mode).
dc_trn_unchained_rollb | Rollsback a Y Y --
ack transaction
[CBLDCTRN(U- ROLL)] (unchained
mode).
TX tx_begin Startsa Y Y Counts up the
interface [TXBEG N] transaction. transaction
(tx_~) sequence number
and initializes
TXI NFO
information.
tx_cl ose Closesthe Y Y --
[TXCLOSE] resource
managers.
tx_conmit Commits a Y Y In chained mode,
[TXCOWMM T] transaction. counts up the
transaction
sequence number.
tx_info Returns Y Y Returns zero if no
[TXI NFORM information for information is
the current specified inthe
transaction. function return
valuesfile.
tx_open Opensthe Y Y --
[TXOPEN] resource
managers.
tx_set_commit _return Sets Y Y --
[TXSETCOMM TRET] comit_return
characteristics.

321

14. Simulation Functions

Type Function name Purpose Traces Return Function
[prog_name value processing
(request_code)] <DML>
tx_set _transaction_con | Sets Y Y Sets
trol trans-action_ transaction_c
[TXSETTRANCTL] control ontrol
characteristics. characteristics.
tx_set _transaction_tim | Sets Y Y --
eout trans-action_
[TXSETTI MEQUT] timeout
characteristics.
tx_rol | back Rolls back a Y Y In chained mode,
[TXROLLBACK] transaction. counts up the
transaction
sequence number
and sets
transaction_s
tate
characteristics.
XATMI t pal | oc Allocatesatyped | Y Y Allocatesthe
interface buffer. buffer specified
(tp_~) by an argument of
type typeand
returns the
pointer.
tpfree Frees atyped Y N Frees the buffer
buffer. allocated by the
tpal |l oc or
tpreal |l oc
function.
tpreall oc Resizes atyped Y Y Resizes the buffer
buffer. allocated by the
tpal | oc or
tpreal |l oc
function.
t pt ypes Getstyped buffer | Y Y Returns the type
information. and subtype of the

buffer allocated
by thet pal | oc or
tpreal |l oc
function.

322

14.

Simulation Functions

Type Function name Purpose Traces Return Function
[prog_name value processing
(request_code)] <DML>
t pservice Service function Y N Collectstrace
template information
immediately
before aservice
functionis called.
tpreturn Returns from a Y Y Sets return
service function. information and
returnsto the
client UAP.
t padverti se Advertisesa Y Y --
service name.
t punadverti se Cancels service Y Y --
name advertising.
t pacal | Asynchronous Y Y Requests the
service request offline tester to
execute aservice
function. The
tpgetrply
function returns
the call result.
tpcal | Synchronous Y Y Requests the
service request offline tester to
execute aservice
function.
t pcancel Service Y Y Cancelsthe
cancellation response from the
service requested
by t pacal |
function.
tpgetrply Asynchronous Y Y Returnsthe
response from a execution result of
service aservice function.
t pconnect Establishes the Y Y Requests the

conversational
service paradigm
connection.

offline tester to
execute a service
function. The
executionresultis
returned by the

t precv function.

323

14. Simulation Functions

Type Function name Purpose Traces Return Function
[prog_name value processing
(request_code)] <DML>

t pdi scon Disconnects the Y Y Terminates the
conversational serviceif inreply
service paradigm. wait state

(tprecv
function) and
disables
acceptance of

t psend or

t pr ecv after the
t pdi sconis
accepted.

t precv Message receive Y Y Inputs data from
from the the XATMI
conversational receive datafile.
service paradigm

t psend Message send to Y Y Outputs data to
the conversational the XATMI send
service paradigm datafile.

Online dc_uto_test_status Reports user Y Y Returns non-test
tester (ut 0) | [CBLDCUTO(T- STATUS)] server test state. mode state.
L egend:

(2) Notes on simulation functions
Note the following points on using the function simulator:
1

324

Y: Trace information collected; return value set.

N: Trace information cannot be collected; return value cannot be set.

--: No processing

The offline tester does not check the type of the UAP issuing the function,
transaction status, or whether the function isissued inside or outside the mai n

function.

The function sequence is checked only for functions that affect offline tester

operation.

Arguments are not checked. The user should check the arguments from the trace

information.

Anerror messageisoutput but no traceinformationis collected when aninterface
code or request code is set incorrectly ina COBOL program.

14. Simulation Functions

A dc_trn_~ function cannot coexist with at x_~ function. The offline tester
does not check whether the two functions types are mixed.

The offline tester counts the number of transactions (transaction sequence
number). The transaction sequence number is counted up at execution of some
simulation functions and at execution of thecal | subcommand. You can
reference the transaction sequence number by using thet x_i nf o function. For
detail s about the simulation function that increments the transaction sequence
number, see (1) Smulation functions, above.

325

14. Simulation Functions

14.2 List of return values for simulation functions

Table 14-2 lists the return values for simulation functions. Note that 0, DC_OK,
DCMCFRTN_00000, and TX_OK are omitted.

Table 14-2: List of return values for simulation functions

Type Function name [prog_name C return value COBOL
(request_code)] <DML> return code
Control of dc_adm cal | _conmand DCADMER_STATNOTZERO 01801
system [CBLDCADM COVVAND)] DCADVER _PARAM 01802
operation (adm) DCADVER MEMORY_OUT 01803
DCADMER _MEMORY_ERR 01804
DCADMER _MEMORY_OUTERR 01805
DCADMVER_PROTO 018071
dc_adm conpl et e DCADM_STAT_START_NORVAL 00000
[CBLDCADM COVPLETE)] DCADVER_PROTO 01830%L
DCADMER _PARAM 01831
dc_adm st at us DCADMER_PROTO 01830%!
[CBLDCADM STATUS) | DCADVER_PARAM 01831
dc_adm get _nd_st at us_begin DCADMER_PROTO _HL#2
DCADMER_PARAM -
dc_adm get _nd_st at us_next DCADM_STAT_START_NORMAL -
DCADMER_PROTO _HL#3
DCADMVER _PARAM -
DCADMER _NO_MORE_ENTRY -
dc_adm get _nd_st at us_done DCADMER _PROTO _H#LH3
DCADMVER _PARAM -
dc_adm get _nd_st at us DCADM_STAT_START_NORVAL -
DCADMER_PROTO _H#L#2
DCADMVER _PARAM -
dc_adm get _node_id DCADMER _PROTO _H#L#2
DCADVMER _PARAM -
dc_adm get _sv_status_begin DCADMER _PROTO _H#L#2

DCADMVER_PARAM

326

14. Simulation Functions

Type Function name [prog_name C return value COBOL
(request_code)] <DML> return code
dc_adm get _sv_st at us_next DCADM_STAT_START_NORVAL -
DCADMER_PROTO __HL#3
DCADMER_PARAM -
DCADMER_NO_MORE_ENTRY -
dc_adm get _sv_status_done DCADMVER_PROTO _H#L#3
DCADMER_PARAM -
dc_adm get _sv_status DCADM_STAT_START_NORMAL -
DCADMER_PROTO _HL#2
DCADMVER_PARAM -
dc_adm get _nodeconf _begin DCADMVER_PROTO _H#L#2
DCADMER _PARAM -
dc_adm get _nodeconf _next DCADVER_PROTO _H#L#3
DCADMER _PARAM -
DCADMER_NO_MORE_ENTRY -
dc_adm get _nodeconf_done DCADMER _PROTO _HL#3
DCADMER _PARAM -
DAM file dc_dam cl ose DCDAMER_PROTO 01600
service (dam) [CBLDCDAM CLOS)] DCDANVER_BADF 01603
DCDAMVER_PARAM FLAGS 01611
dc_dam create DCDAMER _NOVEM 01607
[CBLDCDVB(CRAT) | DCDAMER_OPENED 01608
DCDAMER_PARAM_FLAGS 01611
DCDAMER_FI LEER 01614
DCDAMER_PNUMER 01615
DCDAMER_EXI ST 01617
DCDAMER _| CER 01620
DCDAMER _OPENNUM 01627
DCDAMER_ACCESS 01628
DCDAMER_LBLNER 01630
DCDAMER_LBNCER 01631
DCDAMER _LFNOVF 01635
dc_dam end DCDAMER_PROTO 01600#1
[CBLDCDAM END)] DCDAVER_PARAM FLAGS 01611

327

14. Simulation Functions

Type

Function name [prog_name
(request_code)] <DML>

C return value

COBOL
return code

dc_dam get DCDAMER _BADF 01603
[CBLDCDVB(GET)] DCDAMER _BUFER 01604
DCDAMER _SEQER 01605
DCDAMER _PARAM FLAGS 01611
DCDAMER | CER 01620
DCDAMER_EOF 01637
dc_dam hol d DCDAMER_PROTO 016007t
[CBLDCDAM HOLD)] DCDAMER _UNDEF 01601
DCDAMER _PARAM LFNAME 01610
DCDAMER_PARAM_FLAGS 01611
DCDAMER _| CER 01620
DCDAMER _LHOLDED 01625
DCDAMER _OHOLDED 01626
dc_dam i cl ose DCDAMER _BADF 01603
[CBLDCDWVB(CLOS)] DCDAMER_PARAM FLAGS 01611
dc_dam i open DCDAMER _NOVEM 01607
[CBLDCDVB(OPEN)] DCDAMER _OPENED 01608
DCDAMER_PARAM FLAGS 01611
DCDAMER_FI LEER 01614
DCDAMER_PNUMER 01615
DCDAMER _NOEXI ST 01619
DCDAMER | CER 01620
DCDAMER _OPENNUM 01627
DCDAMER_ACCESS 01628
DCDAMER_LFNOVF 01635
dc_dam open DCDAMER_PROTO 016007t
[CBLDCDAM OPEN)] DCDAMER _UNDEF 01601
DCDAMER_EXCER 01602
DCDAMER _OPENED 01608
DCDAMER_PARAM_LFNANME 01610
DCDAMER_PARAM FLAGS 01611
DCDAMER_| CER 01620
DCDAMER_LHOLD 01621
DCDAMER_OHOLD 01622
DCDAMER _OPENNUM 01627
DCDAMER_ACCESS 01628

328

14. Simulation Functions

Type

Function name [prog_name
(request_code)] <DML>

C return value

COBOL
return code

dc_dam put DCDAMER _BADF 01603
[CBLDCDVB(PUT)] DCDAMER_BUFER 01604
DCDAMER_SEQER 01605
DCDAMER _PARAM FLAGS 01611
DCDAMER _| CER 01620
DCDAMER_EOF 01637
dc_dam read DCDAMER _PROTO 0160071
[CBLDCDAM READ) | DCDAMER_EXCER 01602
DCDAMER _BADF 01603
DCDAMER_BUFER 01604
DCDAMER_BNCER 01606
DCDAMER _PARAM_KEYNO 01609
DCDAMER _PARAM FLAGS 01611
DCDAMER _| CER 01620
DCDAMER_LHOLD 01621
DCDAMER_OHOLD 01622
dc_dam start DCDAMER _PROTO 0160071
[CBLDCDAM STRT)] DCDAMER _PARAM FLAGS 01611
DCDAMER_STARTED 01647
dc_dam st at us DCDAMER_PROTO 0160071
[CBLDCDAM STAT)] DCDAMER_UNDEF 01601
DCDAMER_PARAM_LFNANME 01610
DCDAMER_PARAM FLAGS 01611
DCDAMER_PARAM_ERROR 01612
DCDAMER _| CER 01620
dc_dam rel ease DCDAMVER_PROTO 01600%L
[CBLDCDAM RLSE) | DCDAMER_UNDEF 01601
DCDAMER_PARAM_LFNANME 01610
DCDAMER_PARAM_FLAGS 01611
DCDAMER _| CER 01620
DCDAMER_NOLHOLD 01623
DCDAMER _NOCHOLD 01624

329

14. Simulation Functions

Type Function name [prog_name Creturn value COBOL
(request_code)] <DML> return code
dc_damrewite DCDAMER_PROTO 016007t
[CBLDCDAM REW\T)] DCDAMER_BADF 01603
DCDAMER_BUFER 01604
DCDAMER_BNCER 01606
DCDAMER _PARAM_KEYNO 01609
DCDAMER_PARAM _FLAGS 01611
DCDAMER _| CER 01620
DCDAMER_LHOLD 01621
DCDAMER_OHOLD 01622
DCDAMER_BUFOV 01641
dc_damwite DCDAMER_PROTO 0160071
[CBLDCDAM VWRI T)] DCDAMER_EXCER 01602
DCDAMER _BADF 01603
DCDAMER_BUFER 01604
DCDAMER _BNCER 01606
DCDAMER_PARAM_KEYNO 01609
DCDAMER_PARAM_FLAGS 01611
DCDAMER _| CER 01620
DCDAMER_LHOLD 01621
DCDAMER_OHOLD 01622
DCDAMER_BUFOV 01641
Shared table dc_ist_close DCl STER_PROTO _#
service (i st) [CBLDC!I ST(CLOS)] DCI STER BADI D -

DCl STER_PARAM FLAGS

dc_i st_open
[CBLDCI ST(OPEN)]

DCl STER_PROTO

DCl STER_UNDEF

DCl STER_OPENED

DCl STER_PARAM TBLNAME
DCl STER_PARAM FLAGS

dc_ist_read
[CBLDCI ST(READ)]

DCl STER_PROTO
DCl STER_BADI D
DCl STER_BUFER
DCl STER_RNCER
DCl STER_NOVEM
DCl STER_PARAM KEYNO
DCl STER_PARAM FLAGS

_#

330

14. Simulation Functions

Type Function name [prog_name C return value COBOL
(request_code)] <DML> return code
dc_ist_wite DCl STER_PROTO _H
[CBLDCI ST(WRI T)] DCl STER_BADI D -
DCl STER_BUFER -
DCl STER_RNCER -
DCl STER_NOVEM -
DCl STER_PARAM KEYNO -
DCl STER_PARAM FLAGS -
DClI STER_BUFOV -
User journal dc_j nl _uj put DCINLER_PARAM 01101
collection (j nl') | [CBLDCINL(UJPUT)] DCINLER_SHORT 01102
DCINLER_PROTO 01105%1
Lock of dc_| ck_get DCLCKER_PARAM 00401
resources (I ck) | [CBLDCLCK(GET)] DCLCKER_OUTOFTRN 0045541
dc_lck_rel ease_all DCLCKER_PARAM 00401
[CBLDCLCK(RELALL)] DCLCKER_OUTOFTRN 0045541
dc_I ck_rel ease_bynane DCLCKER_PARAM 00401
[CBLDCLCK(RELNANE) | DCLCKER_OUTOFTRN 0045541
Message log dc_Il ogprint DCLOGER_PARAM _ARGS 01900
control (I og) [CBLDCLOG(PRI NT)] DCLOGER_COWM 0190171
Messagecontrol | dc_ntf_execap DCMCFER_PROTO 7090171 #4
function (mcf) | [CBLDCMCF(EXECAP) | DCMCFRTN_71002 71002
<SEND> DCMCFRTN_72000 72000
DCMCFRTN_72001 72001
DCMCFRTN_72005 72005
DCMCFRTN_72016 72016
DCMCFRTN_72024 72024
DCMCFRTN_72026 72026
DCMCFRTN_72041 72041
DCMCFRTN_72108 72108
dc_ntf _mai nl oop DCMCFER _| NVALI D_ARGS 70900
[CBLDCMCF(MAI NLOOP)] DCMCFER_PROTO 7090171 #
DCMCFER_FATAL 70902

331

14. Simulation Functions

Type

Function name [prog_name
(request_code)] <DML>

C return value

COBOL
return code

dc_ncf _receive DCMCFER_PROTO 70901%L #4
[CBLDCMCF(RECEI VE)] DCMCFRTN_71000 71000
<RECEI VE> DCMCFRTN_71001 71001
DCMCFRTN_71002 71002
DCMCFRTN_72000 72000
DCMCFRTN_72001 72001
DCMCFRTN_72013 72013
DCMCFRTN_72016 72016
DCMCFRTN_72024 72024
DCMCFRTN_72025 72025
DCMCFRTN_72036 72036
dc_ntf_reply DCMCFER_PROTO 7090171 #4
[CBLDCMCF(REPLY)] DCMCFRTN_71002 71002
<SEND> DCMCFRTN_72000 72000
DCMCFRTN_72005 72005
DCMCFRTN_72016 72016
DCMCFRTN_72017 72017
DCMCFRTN_72026 72026
DCMCFRTN_72041 72041
DCMCFRTN_72047 72047
dc_ncf _rol | back DCMCFER_PROTO 70901%L #4
[CBLDCMCF(ROLLBACK)] DCMCFRTN_72000 72000
<ROLLBACK> DCMCFRTN_72027 72027
dc_ncf _send DCMCFER_PROTO 70901%L #4
[CBLDCMCF(SEND)] DCMCFRTN_71002 71002
<SEND> DCMCFRTN_72000 72000
DCMCFRTN_72001 72001
DCMCFRTN_72005 72005
DCMCFRTN_72016 72016
DCMCFRTN_72017 72017
DCMCFRTN_72020 72020
DCMCFRTN_72024 72024
DCMCFRTN_72026 72026
DCMCFRTN_72041 72041
dc_ncf _open DCMCFER _| NVALI D_ARGS 70900
[CBLDCMCF(OPEN)] DCMCFER_PROTO 70901%#1

dc_ntf_cl ose
[CBLDCMCF(CLCSE)]

332

14. Simulation Functions

Type

Function name [prog_name
(request_code)] <DML>

C return value

COBOL
return code

dc_ncf_sendrecyv DCMCFER_PROTO 7090171 #4
[CBLDCMCF(SENDRECV)] DCMCFRTN_71002 71002
<SEND> DCMCFRTN_71108 71108
DCMCFRTN_72000 72000
DCMCFRTN_72001 72001
DCMCFRTN_72005 72005
DCMCFRTN_72013 72013
DCMCFRTN_72016 72016
DCMCFRTN_72024 72024
DCMCFRTN_72026 72026
DCMCFRTN_72036 72036
DCMCFRTN_72041 72041
dc_ncf_recvsync DCMCFER_PROTO 7090171 #4
[CBLDCMCF(RECVSYNC)] DCMCFRTN_71001 71001
<RECEI VE> DCMCFRTN_71108 71108
DCMCFRTN_72000 72000
DCMCFRTN_72001 72001
DCMCFRTN_72013 72013
DCMCFRTN_72016 72016
DCMCFRTN_72024 72024
DCMCFRTN_72025 72025
DCMCFRTN_72036 72036
DCMCFRTN_73001 73001
dc_ncf_sendsync DCMCFER_PROTO 7090171 #4
[CBLDCMCF(SENDSYNC)] DCMCFRTN_71002 71002
<SEND>/ <ENABLE>/ <Dl SABLE> DCMCFRTN_72000 72000
DCMCFRTN_72001 72001
DCMCFRTN_72005 72005
DCMCFRTN_72016 72016
DCMCFRTN_72024 72024
DCMCFRTN_72026 72026
DCMCFRTN_72041 72041
dc_ncf _t enpget DCMCFER_PROTO 709017 #4
[CBLDCMCF(TEMPGET)] DCMCFRTN_72000 72000
<RECEI VE> DCMCFRTN_72013 72013
DCMCFRTN_72016 72016
DCMCFRTN_72036 72036
DCMCFRTN_72106 72106

333

14. Simulation Functions

Type Function name [prog_name C return value COBOL
(request_code)] <DML> return code
dc_ncf _t enpput DCMCFER_PROTO 70901%L #4
[CBLDCMCF(TEMPPUT) | DCMCFRTN_71103 71103
<SEND> DCMCFRTN_72000 72000
DCMCFRTN_72013 72013
DCMCFRTN_72016 72016
DCMCFRTN_72035 72035
DCMCFRTN_72106 72106
dc_ncf_contend DCMCFER_PROTO 709017t
[CBLDCMCF(CONTEND)] DCMCFRTN_72000 72000
<Dl SABLE> DCMCFRTN_72016 72016
dc_ncf_regster DCMCFER _| NVALI D_ARGS -
DCMCFER_PROTO #
dc_ncf _resend DCMCFER_PROTO 70901%L #4
[CBLDCMCF(RESEND) | DCMCFRTN_72000 72000
DCMCFRTN_72001 72001
DCMCFRTN_72011 72011
DCMCFRTN_72016 72016
DCMCFRTN_72017 72017
DCMCFRTN_72024 72024
DCMCFRTN_72047 72047
dc_ncf _conmi t DCMCFER_PROTO 70901%L #4
[CBLDCMCF(COMM T) | DCMCFRTN_72000 72000
DCMCFRTN_72016 72016
Remote dc_rpc_cal | DCRPCER | NVALI D_ARGS 00301
procedure call [CBLDCRPC(CALL) | DCRPCER_PROTO 0030271 #5
(rpc) DCRPCER_MESSAGE_TCO Bl G 00308
DCRPCER_REPLY_TOO BI G 00309
DCRPCER_NO_SUCH_SERVI CE_G | gp310
ROUP 00311
DCRPCER_NO_SUCH_SERVI CE 00312
DCRPCER_SERVI CE_CLOSED 00316
DCRPCER_SYSERR_AT_SERVER 00318
DCRPCER_SYSER
dc_rpc_cl ose - -
[CBLDCRPC(CLOSE) |
dc_r pc_nai nl oop DCRPCER _| NVALI D_ARGS 00301
[CBLDCRSV(MAI NLOOP)] DCRPCER_PROTO 00302%L #5
DCRPCER_FATAL 00303

334

14. Simulation Functions

Type Function name [prog_name C return value COBOL
(request_code)] <DML> return code

dc_rpc_open DCRPCER _| NVALI D_ARGS 00301

[CBLDCRPC(OPEN) | DCRPCER_PROTO 00302
DCRPCER_FATAL 00303

dc_rpc_pol |l _any_replies DCRPCER _| NVALI D_ARGS 00301

[CBLDCRPC(POLLANYR)] DCRPCER_PROTO 00302#L #6
DCRPCER_REPLY_TOO BI G 00309
DCRPCER_NO_SUCH_SERVI CE 00311
DCRPCER_SERVI CE_CLOSED 00312
DCRPCER_SYSERR AT_SERVER | 00316
DCRPCER_NO_BUFS_AT_SERVER | 0318
DCRPCER_ALL_RECEI VED 00321

dc_rpc_discard_further_repli - -

es

[CBLDCRPC(DI SCARDF)]

dc_rpc_get _cal |l ers_address - -

[CBLDCRPC(GETCLADR)]

dc_rpc_set_service_prio - -

[CBLDCRPC(SETSVPRI)]

dc_rpc_get _service_prio DCRPCER_PROTO 00302%1

[CBLDCRPC(GETSVPRI)]

dc_rpc_set _watch_tine DCRPCER | NVALI D_ARGS 00301

[CBLDCRPC(SETWATCH)] DCRPCER_PROTO 00302%L

dc_rpc_get_watch_time DCRPCER_PROTO 00302%1

[CBLDCRPC(GETWATCH)]

TAM file dc_tam cl ose DCTAMER_PARAM FLG --
service (t am) DCTAMER_PROTO _H#

DCTAMER_NOOPEN

335

14. Simulation Functions

Type

Function name [prog_name
(request_code)] <DML>

C return value

COBOL
return code

dc_tam del ete DCTAMER_PARAM KEY 01702
[CBLDCTAM ERS or ERSR)] DCTAMER_PARAM_KNO 01703
DCTAMER_PARAM BFA 01704
DCTAMER_PARAM BFS 01705
DCTAMER_PARAM FLG 01708
DCTAMER_PROTO 01721%
DCTAMER _NOOPEN 01726
DCTAMER_NOREC 01731
DCTAMER _LOCK 01736
DCTAMER_MEMORY 01769
DCTAMER | O 01770
dc_tam get _inf DCTAMER_PARAM TBL 01702
[CBLDCTAM GST)] DCTAMER_PARAM FLG 01708
DCTAMER _UNDEF 01710
DCTAMER_PROTO 01721%
dc_t am open DCTAMER _PARAM TBL -
DCTAMER_PARAM FLG -
DCTAMER _UNDEF -
DCTAMER_PROTO #
DCTAMER_NOLQOAD -
DCTAMER_OPENED -
DCTAMER _LOCK -
DCTAMER_OPENNUM -
DCTAMER | O -
dc_tamread DCTAMER_PARAM KEY 01702
[CBLDCTAM FxxRor FxxU)] DCTAMER_PARAM_KNO 01703
DCTAMER_PARAM BFA 01704
DCTAMER_PARAM BFS 01705
DCTAMER_PARAM FLG 01708
DCTAMER_PROTO 01721%*
DCTAMER _NOOPEN 01726
DCTAMER _| DXTYP 01729
DCTAMER_NOREC 01731
DCTAMER _LOCK 01736
DCTAMER _MEMORY 01769
DCTAMER | O 01770

336

14. Simulation Functions

Type Function name [prog_name C return value COBOL
(request_code)] <DML> return code

dc_tam read_cancel DCTAMER_PARAM KEY -
DCTAMER_PARAM KNO -
DCTAMER_PARAM FLG -
DCTAMER_PROTO _#
DCTAMER NOOPEN -
DCTAMER NOREC -
DCTAMER MVEMORY -

dc_tamrewite DCTAMER_PARAM_KEY -
DCTAVER_PARAM KNO -
DCTAMER_PARAM DTA -
DCTAMER_PARAM DTS -
DCTAMER_PARAM FLG -
DCTAMVER_PROTO _#
DCTAMER NOOPEN -
DCTAMER NOREC -
DCTAMER_MEMORY -
DCTAMER | O -

dc_tamwite DCTAMER_PARAM KEY 01702

[CBLDCTAM MFY, MFYS, or STR)] DCTAMER_PARAM KNO 01703
DCTAMER_PARAM DTA 01706
DCTAMVER_PARAM DTS 01707
DCTAVER_PARAM FLG 01708
DCTAMER_PROTO 01721%L
DCTAMER _NOOPEN 01726
DCTAMER_NOREC 01731
DCTAMER_EXKEY 01735
DCTAMER _LOCK 01736
DCTAMER _NOAREA 01763
DCTAMER _MEMORY 01769
DCTAMER_| O 01770

Transaction dc_trn_begin DCTRNER_PROTO 00905%1
control (t rn) [CBLDCTRN(BEG N)]

dc_trn_chai ned_conmi t DCTRNER_PROTO 00905%L

[CBLDCTRN(C- COMM T)]

dc_trn_chai ned_rol | back DCTRNER_PROTO 00905%L

[CBLDCTRN(C- ROLL)]

dc_trn_info 1 00001

[CBLDCTRN(| NFO)] 00908

337

14. Simulation Functions

Type Function name [prog_name C return value COBOL
(request_code)] <DML> return code
dc_trn_unchai ned_conmi t DCTRNER_PROTO 00905%%
[CBLDCTRN(U- COMM T)]
dc_trn_unchai ned_rol | back DCTRNER_PROTO 00905%%
[CBLDCTRN(U- ROLL) |
TX interface tx_begin TX_PROTOCOL_ERROR TX_PROTOCO
(tx_~) [TXBEG N| L_ERROR'
tx_cl ose - -
[TXCLOSE]
tx_comm t TX_PROTOCOL_ERROR TX_PROTOCO
[TXCOW T] L_ERROR
tx_info TX_PROTOCOL_ERROR TX_PROTOCO
[TXI NFORM L_ERROR™
t x_open TX_ERROR TX ERROR™L
[TXOPEN]
tx_set_commt_return TX_EI NVAL TX_EI NVAL
[TXSETCOWMM TRET] TX_NOT_SUPPORTED TX_NOT_SUP
TX_PROTOCOL_ERROR PORTED
TX_PROTOCO
L_ERROR
tx_set_transaction_control TX_ElI NVAL TX_ElI NVAL
[TXSETTRANCTL] TX_PROTOCOL_ERROR TX_PROTOCO
L_ERROR'L
tx_set_transaction_ti meout TX_EI NVAL TX_El NVAL
[TXSETTI MEOUT] TX_PROTOCOL_ERROR TX_PROTOCO
L_ERROR
tx_rol | back TX_PROTOCOL_ERROR TX_PROTOCO
TXROLLBACK] L_ERRORL
XATMI tpall oc TPEI NVAL --
interface (t p~) TPENCENT --
TPESYSTEM --
TPEPROTO _#l
tpfree - -

338

14. Simulation Functions

Type

Function name [prog_name
(request_code)] <DML>

C return value

COBOL
return code

tpreal |l oc

TPEI NVAL
TPESYSTEM
TPEPROTO

t pt ypes

TPEI NVAL
TPEPROTO

tpreturn

t padvertise

TPEI NVAL
TPEPROTO

t punadverti se

TPEI NVAL
TPEPROTO

t pacal |

TPEI NVAL
TPEPROTO
TPENOENT
TPEI TYPE
TPETRAN

t pcal |

TPEI NVAL
TPEPROTO
TPENCENT
TPEI TYPE
TPEOTYPE
TPETRAN
TPESVCFAI L
TPESVCERR

t pcancel

TPEBADDESC
TPETRAN
TPEPROTO

tpgetrply

TPEBADDESC
TPEOTYPE
TPESYSTEM
TPEPROTO
TPESVCFAI L
TPESVCERR

__H1, #7,#8, 49,
#10

339

14. Simulation Functions

Type Function name [prog_name C return value COBOL
(request_code)] <DML> return code

t pconnect TPEI NVAL --
TPENCENT --
TPEI TYPE --
TPETRAN --
TPEPROTO _HLHT,#8,#9

t pdi scon TPEBADDESC -
TPEPROTO L #7, 8, #11

t precv TPEI NVAL --
TPEOTYPE --
TPEBADDESC --
TPEPROTO _HL #T, #8, #12

t psend TPEI NVAL -
TPEBADDESC --
TPEPROTO __H#1,#7,#8, #13

Online tester dc_uto_test_status DCUTCER_PROTO 0270171
(uto) [CBLDCUTQ(T- STATUS) | DCUTOER_PARAM FLAGS 02757
DCUTCER_PARAM_ADDS 02758
L egend:
--: No return value (return code)
Note
For the XATMI interface, the return value in C indicates the value to be returned

tot perrno.

#1: If nodc_r pc_open function has been issued.

#2: 1f thedc_adm get _nd_st at us_begi n,dc_adm get _sv_st at us_begi n, or
dc_adm get _nodeconf _begi n function has been issued.

#3: If nodc_adm get _nd_st at us_begi n,dc_adm get _sv_st at us_begi n, or
dc_adm get _nodeconf _begi n function has been issued.

#4: If issued in the mai n function.

#5: If thedc_ncf _mai nl oop or dc_r pc_nmai nl oop function has been issued.

#6: If no asynchronousdc_r pc_cal | function has been issued.

#7: |f issued after thet pr et ur n function.

#8: If issued in a service environment with different service paradigms.

340

#9: For recursive callsin a service group.
#10: If no tpacall function has been issued.
#11: If not the connection originator.

#12: If the connection attribute is TPSENDONLY.
#13: If the connection attribute is TPRECVONLY.

14. Simulation Functions

341

14. Simulation Functions

14.3 List of functions not supported by the simulation feature

Asshown in 14.1(1) Smulation functions, you can simulate functions provided by
OpenTP1 by using the simulation functions of the offline tester. However, functions
provided by OpenTP1 that are listed in the following tables are not supported by the
simulation functions of the offline tester. Therefore, if these functions are executed by

aUAP, only the return values listed in the following tables are returned, and trace
information is not acquired nor are function arguments changed. In addition, you
cannot set return values in the function return value file.

The following tables separately list the simulation functions not supported for C and

for COBOL.
Table 14-3: List of functions not supported by the simulation feature (for C)
Type Function name Description of the Retur
OpenTP1-provided function n
value
Remote procedure call dc_rpc_cal | _t o function Callsaremote service by specifying | 0
(rpc) the communication destination.
dc_rpc_get _error_descrip | Acquiresthedescriptor of the 1
t or function asynchronous response RPC request
where an error occurred.
dc_rpc_discard_specific_ | Reectsthereception of specific DC K
repl y function processing resullts.
dc_rpc_service retry Retries a service function. DC K
function
dc_rpc_get _gateway_addre | Acquiresthe gateway node address. | DC_OK
ss function
dc_rpc_cl t send function One-way communicationtothe CUP | DC_OK
Remote API facility dc_rap_connect function Establishes a connection with a DC K
(rap) RAP-processing listener.
dc_rap_di sconnect function Releases the connection with a DC K
RAP-processing listener.
Performance verification | dc_prf_utrace_put function | Acquiresthe user-specific DC K
trace (pr f) performance verification trace
information.
dc_prf_get_trace_num Reportsthe sequential number of the | DC_OK
function acquired performance verification
trace information.

342

14. Simulation Functions

Type Function name Description of the Retur
OpenTP1-provided function n
value
Message transmission dc_ncf _ap_i nf o function Reports application information. DCMCFR
(necf) TN_000
00
dc_ncf_ap_i nfo_uoc Reports application informationtoa | DCMCFR
function user exit routine. TN_000
00
dc_ncf _timer_set function Sets user timer monitoring. DC K
dc_ncf _timer_cancel Cancels user timer monitoring. DC_ K
function
DAM file service (dam) dc_dam bseek function Searches for aphysical file block. Returns
the
relative
block
number
specifie
dinthe
argume
nt of
the
functio
n.
dc_dam dget function Directly reads a block from a 504
physicdl file.
dc_dam dput function Directly writes datato ablock in a 504
physical file.

Table 14-4: List of functions not supported by the simulation feature (for

COBOL)
Type Program name (request Description of the Status
code) OpenTP1-provided function code
Remote procedure call CBLDCRPC (' GETERDES') Acquires the descriptor of the 00000
(rpc) asynchronous response RPC request
where an error occurred.
CBLDCRPC (' DI SCARDS') Rejects the reception of specific 00000
processing requests.
CBLDCRPC (* SVRETRY') Retries a service program. 00000
CBLDCRPC (* GETGMDR) Acquires the gateway node address. | 00000

343

14. Simulation Functions

physicd file.

Type Program name (request Description of the Status
code) OpenTP1-provided function code
Remote API facility CBLDCRAP (* CONNECT') Establishes a connection with a 00000
(rap) RAP-processing listener.
CBLDCRAP (' DI SCNCT") Releases the connection with a 00000
RAP-processing listener.
Edition of journal data CBLDCJUP (* CLOSERPT') Closesthej nl r put output file. 00000
@(inl)
CBLDCJUP (* OPENRPT') Opensthej nl r put output file. 00000
CBLDCJUP (* RDGETRPT') Enters journal datafrom the 00000
j nl rput output file.
Performance verification | CBLDCPRF (' PRFPUT") Acquires the user-specific 00000
trace (pr f) performance verification trace
information.
CBLDCPRF (* PRFGETN) Reportsthe sequentia number of the | 00000
acquired performance verification
trace information.
Transmission of CBLDCMCF (* API NFO) Reports application information. 00000
messages (ncf)
DAM file service (dam) CBLDCDMVB (' BSEK') Searches for aphysical file block. 00000
CBLDCDMVB (' DGET') Directly reads ablock from a 00000
physicdl file.
CBLDCDMVB (' DPUT') Directly writesdatato ablock in a 00000

344

14. Simulation Functions

Type Program name (request Description of the Status
code) OpenTP1-provided function code
XATMI interface (t p~) TPCALL Calls arequest or response service TPOKH
and receives the reply.
TPACALL Calls arequest or response service. TPOKH
TPGETRPLY Receives an asynchronous reply TPOKH
from arequest or response service.
TPCANCEL Cancels arequest or response TPOKH
service.
TPCONNECT Establishes a connection with an TPOKH
interactive service.
TPDI SCON Disconnects an interactive service. TPOK#
TPRECV Receives a message from an TPOKH
interactive service.
TPSEND Sends amessage to an interactive TPOKH
service.
TPADVERTI SE Advertises a service name. TPOKH
TPUNADVERTI SE Cancels the advertisement of a TPOKH
service name.
TPSVCSTART Starts a service routine. TPOKH
TPRETURN Returns control from a service Thereis
routine. no
status
code.

#: TPOK is set in the data area (TP- STATUS) where areturn value indicating the result
of execution is set.

345

PART 5: UAP Traces

Chapter
15. How to Use UAP Traces

This chapter describes how to use UAP traces.
This chapter contains the following sections:

15.1 Collecting UAP traces
15.2 Editing and outputting UAP traces

347

15. How to Use UAP Traces

15.1 Collecting UAP traces

15.1.1

15.1.2

15.1.3

348

The UAP trace facility collects information on the OpenTP1 functions called from a
UAP. OpenTP1 collects UAP traces in UAP trace data files and in process-specific
areas.

If aUAP terminates abnormally, the user can edit and output alog file of the library
functions called from the UAP and analyze why the UAP terminated abnormally.

The UAP trace facility can be used for the following UAP events:
* Abnormal termination of a UAP
» Forcibletermination of a UAP by thedcst op - df command
» Forcible termination of a UAP by thedcsvst op - df command
» Forcible termination of a UAP by thepr cki | I command
UAP trace collection units

UAP traces are collected separately for each UAP process. The UAP traces are edited
and output based on either the UAP trace datafile or the core file collected for each
UAP process.

UAP traces are collected for SUPs, SPPs, and MHPs.
Trace area definition

The size of the area used by the UAP trace facility is specified using the
uap_t race_max operand in the user service definition.

See the manual OpenTP1 System Definition for details on the user service definition.
Information to collect

A UAPtrace containsvariousinformation specified for argumentswhenthe UAP calls
OpenTP1 library functions. Of this information, the exit information from functions
maintains information when a function returned. The entry information to functions
maintains information when a function call from the UAP caused an entry into the
OpenTP1 function.

When the online tester (TPL/Online Tester) is used, UAP trace data contains entry
information and exit information for all executed functions.

When collecting of the complete I/O datais specified with the online tester (TPL/
Online Tester) used, |/O datais also collected.

15. How to Use UAP Traces

15.2 Editing and outputting UAP traces

The following explains how to edit and output UAP traces.
15.2.1 UAP trace output units

UAP traces are edited and output by process unit. When two or more processes are
involved in atransaction, traces are output only information of transaction branch that
executed at the UAP that terminated abnormally.

The example in Figure 15-1 shows communication among UAPs and the UAP traces
collected.

Figure 15-1: Inter-UAP communication and collected UAP traces

@ Example of UAP communication SPP1 SPP2 SPP3
(startup process: 2) (startup process: 1) (startup process: 2)
Client D —
UAP1 RPC\‘\
(startup process: 1) = = —
D 0l 101 ——
RPC RPC$
|:| N |:| — 1
e
Client |:| /’/2 —/
UAP2 | RPCL | RPCL |
startup process: 1 7 0
arupprocessi)|] T~ 0 4L

@ UAP traces that are collected

€ B £

SPP1 SPP2 SPP3
Client (service (service (service
UAP1 requests from requests from requests from

client UAP1) SPP1) SPP2)

€ B € € B

SPP1 SPP3
Client (service (service
UAP2 requests from requests from
client UAP2) SPP2)
-« s

349

15. How to Use UAP Traces

15.2.2

UAP trace output methods

There are the following two methods of editing and outputting UAP traces.

(1) Edit and output the trace to a file automatically

Thefile that stores abnormal termination information that OpenTP1 collects for each
UAP processiscaled acorefile. If UAP abnormally terminates and thereisacorefile,

the UAP traceis automatically edited and output to afile called the UAP trace output
file.

Table 15-1 shows the directories and file names of the core file and UAP trace output
file.

Table 15-1: Directories and file names of core file and UAP trace output file

Name Directory File name
Corefile $DCDI R/ spool / save/ server-name-n*
UAP trace output file $DCDI R/ spool / save/ server-name-n. uat #

350

#. n: Sequence number of the core file (1 to 3)

Note that a sequence number is not assigned to the core file output if OpenTP1 is
forcibly terminated (when thedcsvst op - df command is executed or the rea
monitoring time expires).

Figure 15-2 shows an overview of automatically editing and outputting aUAP traceto
afile.

15. How to Use UAP Traces

Figure 15-2: Overview of automatic edit and output of UAP trace

Forced termination

OpenTP1

UAP

UAP

Forced

I E command #!

£ I

#1

termination

Abnormal
temination

Collect
Core file #2 Core file #2
Edit and
output

UAP trace

edit/output
file

automatically

UAP trace

edit/output
file

Refers to any of the following commands:

edcsvstop -df command

e prckill command
edcstop -df command

#2

If Y is specified for the uap trace file put operand, a UAP trace data file is
automatically edited and output, instead of a core file.
The uap trace file put operand can be specified in any of the following definitions:

» System common definition

« User service default definition

» User service definition

(2) Edit and output the trace to the standard output by a command

When the uat dunp command is entered, the UAP trace is edited and output to the
standard output. For details on how to use the uat dunp command, see Subsection

351

15. How to Use UAP Traces

15.2.3 uatdump (edited output of UAP trace).

Figure 15-3 shows an overview of editing and outputting the UAP trace to the standard
output by a command.

Figure 15-3. Overview of editing and outputting UAP trace to standard output
by acommand

UAP

Forced termination
Abnormal 4 Forced ~ Z- command *

I =S

@-dE]

uatdump -f command

- uatdump command

& UC'?‘T tﬁce Core file Core file %
== ata file =
Z [[T PR

I I
Edit and output | U Edit and output
(standard output) (standard output)

/

#

Refers to any of the following commands:
e decsvstop -df command
* prckill command
e dcstop -df command

15.2.3 uatdump (edited output of UAP trace)
(1) Syntax

uat dunp {[core-file-name] | -f [UAP-trace-data-file] }

(2) Function

Edits a specified UAP trace data file or core file, and outputs the contents to standard
output.

On anode that uses the online tester (TP1/Online Tester), this command edits and
outputs exit information and entry information for all executed functions. Since the

352

15. How to Use UAP Traces

command does not output tester information, however, some data may be missing just
after the tester information.

(3) Options

m -f UAP-trace-data-file ~<pathname>

Specify the pathname of the UAP trace data file to which UAP traces are edited
and output.

If specification of thisargument is omitted, ducat . map in the current command
execution directory is assumed for the UAP trace datafile name.

(4) Command argument

m core-file-name ~<pathname>

Specify the pathname of the core file for the UAP process that terminated
abnormally.

If specification of this argument is omitted, cor e in the current command

execution directory is assumed for the core file name.

(5) Output messages

Message ID

message text

Output file

KFCAO03100-E

Insufficient memory.

Standard error output

KFCAOQ3101-E

Invalid option flag.

Standard error output

KFCAQ3102-E

Specified file does not exist.

Standard error output

KFCAQ3103-E

No trace datain the specified file.

Standard error output

KFCAQ03104-W

Incorrect type code in the trace data.

Standard error output

KFCAQ03105-|

Help message

Standard output

(6) Output format

See 15.2.4 UAP trace output format for the output format of the uat dunp command.

(7) Notes

Always specify the - f option when aUAP trace datafileisbeing edited and output if
Y is specified for theuap_trace_fil e_put operand. If you do not specify the - f
option, the command endsin an error because the UAP traces cannot be edited.

Theuap_trace_fil e_put operand isspecified in one of the following definitions:

e Systerm common definition

o User service default definition

353

15. How to Use UAP Traces

o User service definition
15.2.4 UAP trace output format

Thefollowing showsthe format of the UAP trace automatically edited and output to a
file and the format of the UAP trace edited and output to the standard output by using

the uat dunp command.
(1) Output format

HIUXOLTFE [HIUXOLTE]
SERVICE GROUP NAME = dam svg
PROCESS ID = 2029 SIZE =8576

FUNCTION = dc rpc open (EXIT)
COLLECTION DATE AND TIME = 98/07/20 11:39:20
COLLECTION NO. = 1 SERVICE NAME = *#*#*%
SERVER NAME = damspp
OPTION FLAG = 0x00000000 (DCNOFLAGS)
RETURN CODE = 0 (NORMAL TERMINATION)

FUNCTION = dc dam open (EXIT)

COLLECTION DATE AND TIME = 98/07/20 11:39:20
COLLECTION NO. = 2 SERVICE NAME = *#*#*%

REQUEST CODE = OPEN

LOGICAL FILE NAME = sppfile

OPTION FLAG = 0x00000022 (DCDAM NOWAIT)

(DCDAM BLOCK EXCLUSIVE)

RETURN CODE = 0 (FILE DESCRIPTOR)

Legend:
1. UAPtrace header
2. UAPtracedata

When the onlinetester isused, entrance information and exit information are
output alternately. ENTRANCE and EXI T are displayed, accordingly.

3. Output areafor the call information on the OpenTP1 function.

Theinformation that is output to the output area depends on the function that

isissued.
Explanation:
SERVI CE GROUP NAME

354

15. How to Use UAP Traces

Service group name of the active service.

Asterisks (****) are displayed for a SUP or MHP.
PROCESS | D

Process ID of the process for which the UAP trace was collected
SI ZE

Size of the UAP trace information area (decimal display; bytes)
FUNCTI ON

Called OpenTP1 function
COLLECTI ON DATE AND TI ME

Date and time of collection (last 2 digits of year/month/day
hour: minute:second)

COLLECTI ON NO.

Sequential number set when the UAP trace datawas collected (up to 6 digits)
SERVI CE NAME

Active service name (up to 32 characters).

Asterisks (****) are displayed for a SUP or MHP.
RETURN CODE

Execution result of the OpenTP1 function

355

15. How to Use UAP Traces

(2) Output example

HIUXOLTFE [HIUXOLTE]
SERVICE GROUP NAME = dam svg
PROCESS ID = 2029 SIZE =8576

FUNCTION = dc rpc open (EXIT)
COLLECTION DATE AND TIME = 98/07/20 11:39:20
COLLECTION NO. = 2 SERVICE NAME = *#*#*%
SERVER NAME damspp
OPTION FLAG = 0x00000000 (DCNOFLAGS)
RETURN CODE = 0 (NORMAL TERMINATION)

FUNCTION = dc dam open (EXIT)

COLLECTION DATE AND TIME = 98/07/20 11:39:20
COLLECTION NO. = 3 SERVICE NAME = *#*#*%

REQUEST CODE = OPEN

LOGICAL FILE NAME = sppfile

OPTION FLAG = 0x00000022 (DCDAM NOWAIT)

(DCDAM BLOCK EXCLUSIVE)

RETURN CODE = 0 (FILE DESCRIPTOR)

FUNCTION = XATMI STARTING FUNCTION (EXIT)
COLLECTION DATE AND TIME = 98/07/20 11:39:25
COLLECTION NO. = 4 SERVICE NAME = REEFSVC A

NODE NAME = 2c3gfm0l

SERVICE NAME = REFSVC A

RECEIVE TYPE NAME = X C TYPE

RECEIVE SUBTYPE NAME = subl

—————— RECEIVE DATA --—----

00008¢c 534b492d 50415241 44494345 00000000 SKI- PARA DICE
00009c 00000000 00000000 00000000 00000000

RECEIVE DATA LENGTH = 104

FLAG = 0x00000000

DESCRIPTOR = 0

FUNCTION = tpconnect (EXIT)
COLLECTION DATE AND TIME = 98/07/20 11:39:20
COLLECTION NO. = 5 SERVICE NAME = REEFSVC A
SERVICE NAME = REFSVC C
SEND TYPE NAME = X C TYPE
SEND SUBTYPE NAME = subl

—————— SEND DATA ------
00006¢ 5340492d 50415241 44494345 00000000 SKI- PARA DICE
00007¢ 00000000 00000000 00000000 00000000

SEND DATA LENGTH = 50
FLAG = 0x00001000 (TPRECVONLY)
RETURN CODE = 1390287197

356

15. How to Use UAP Traces

FUNCTION = tprecv (EXIT)
COLLECTION DATE AND TIME = 98/07/20 11:39:25
COLLECTION NO. = ¢ SERVICE NAME = REEFSVC A
DESCRIPTOR = 1390287197
RECEIVE TYPE NAME = X C TYPE
RECEIVE SUBTYPE NAME = subl
—————— RECEIVE DATA --—----
000050 dedf5254 482d464c 49474854 00000000 NORT H-FL IGHT
000060 00000000 00000000 00000000 00000000
RECEIVE DATA LENGTH = 104
FLAG = 0x00000000
EVENT = 0x0008 (TPEV SVCSUCC)
tperrno = 22 (TPEEVENT)
tpurcode = 0x00000000
RETURN CODE = -1

FUNCTION = tpreturn (EXIT)
COLLECTION DATE AND TIME = 98/07/20 11:39:25
COLLECTION NO. = 7 SERVICE NAME = REEFSVC A
RETURN VALUE = 0x04000000 USER RETURN = 22
SEND TYPE NAME = X C TYPE
SEND SUBTYPE NAME = subl

—————— SEND DATA ------
000054 4¢4f5254 482d464c 49474854 00000000 NORT H-FL TGHT
000064 00000000 00000000 00000000 00000000

SEND DATA LENGTH = 50
FLAG = 0x00000000

FUNCTION = XATMI ENDING FUNCTION (EXIT)
COLLECTION DATE AND TIME = 98/07/20 11:39:25
COLLECTION NO. = 8 SERVICE NAME = REEFSVC A
NODE NAME = 2c3gfm0l
SERVICE NAME = REFSVC A
SEND TYPE NAME = X C TYPE
SEND SUBTYPE NAME = subl

—————— SEND DATA ------
00008¢ 4¢4f5254 482d464c 49474854 00000000 NORT H-FL TGHT
00009¢ 00000000 00000000 00000000 00000000

SEND DATA LENGTH = 104

357

15. How to Use UAP Traces

358

FUNCTION = XATMI STARTING FUNCTION (EXIT)
COLLECTION DATE AND TIME = 98/07/20 11:39:25
COLLECTION NO. = 9 SERVICE NAME = REFSVC B

NODE NAME = 2c3gfm0l
SERVICE NAME = REFSVC B
RECEIVE TYPE NAME = X C TYPE
RECEIVE SUBTYPE NAME = subl
—————— RECEIVE DATA --—----
00008¢c 534b492d 50415241 44494345 00000000
00009c 00000000 00000000 00000000 00000000
RECEIVE DATA LENGTH = 104
FLAG = 0x00000c00 (TPSENDONLY)
(TPCONV)
DESCRIPTOR = 1028921693

SKI-

PARA DICE

Index

A

abbreviations for products iv
acronyms ix
application program startup requests, smulating 25
application startup messages, invalidating 161
application test
starting 184
terminating 187
application, testing 166
asynchronous receive message file 71

C
cal 302
client UAP

simulating 13, 197
simulating, with RPC interface 13, 102, 197
simulating, with TXRPC interface 198
simulating, with XATMI interface 14, 102,
198
client UAP simulator 13, 102, 197
cmdauto 303
comment statement 85, 260
complete I/O datatrace, collecting 34
continuous commands, executing 209, 281, 303
continuous execution command file 236
creating 236
directory definition for 226
continuous execution commands, setting 236
continuous inquiry responses, simulating 23
conventions
abbreviations for products iv
acronyms ix
diagrams x
fonts and symbols xi
KB, MB, GB,and TB xiii
permitted characters xiii
version numbers Xxiv
conversationd service paradigm 15

corefile 9, 350

D

DAM and TAM files, noteson 288

DAM file 255

DAM service simulator 203

DAM service, simulating 203

DCUTOKEY 59

debugger
activating UAP interlocked with 113
interlocking 40
specifying connection 282
terminating UAP interlocked with 112

debugger connection 210

definition
offline tester environment 214
system service configuration 44
tester service 44
user service 48, 231

diagram conventions x

dummy SPP 49

E

end 304
end statement 86, 261
entry information 348
environment variables, setting 59

DCUTOKEY 59

test user ID 59
environment-var-name 231
error conditions and causes 154
error events, suppressing 161
error recovery 153

handling online tester errors 154
event type, setting 233
exitinformation 348

359

Index

=

facilities [offline tester]
client UAP simulator 197
collecting offline tester trace information 211
continuous command execution 209
creating tester files 208
DAM service simulator 203
debugger connection 210
MCF simulator 202
operating command simulator 207
server UAP simulator 199
TAM service simulator 204
facilities [onlinetester] 12, 31
client UAP simulator 13
collecting complete 1/0O datatrace 34
collecting UAP trace information 34
creating tester file 31
debugger interlocking 40
disabling resource updating 28
editing send messages 39
MCF simulator 22
operating command simulator 29
server UAP simulator 18
tester file edit and output 33
file automatically, editing and outputting traceto 350
fileerrors 156
file service, simulating
DAM servicesimulator 203
TAM servicesimulator 204
files created by offline tester
listof 270
temporary memory datafile 270
tracefile 270
XATMI send datafile 270
files created by online tester
MCF send messagefile 96
service response datafile 95
temporary memory datafile 96
tracefile 96
XATMI send datafile 96
files created by online tester, list of 95
files created by user 239
font conventions xi
function return values

360

event type, setting 233
output data, setting 234
return value, setting 233
setting 232
function return values file 232
creating 232
definition of 229
functions not supported by simulation feature 342

G

GB meaning xiii

information to collect 348
entry information 348
exitinformation 348
input data definition statement 87, 261
interface definition language file 238
internode shared table definitions 228

K
KB meaning Xiii

L

logical terminal information, specifying 47
logical terminal test

starting 178

terminating 180
logical terminal, testing 166

M

max_message file size 46

max_trace file size 45

MB meaning xiii

MCF
editing send messages 39
simulating 22, 202
simulating application program startup
requests 25
simulating continuous inquiry responses 23
simulating message send/receive 22
simulating synchronous point processing 27
simulation functions 22

MCEF online tester 6
collecting test information 164

collecting UAP trace information 164, 170
displaying test mode information 170

editing test information 170

inheriting test mode information 169
merging and outputting UAP trace

information 170
MHPtesting 160

starting and ending test 166
starting test 166

test environment 166

test mode 166

test mode information 166
test mode messages 167
test moderange 167

MCF online tester status, displaying 174

MCEF online tester use declaration 174

MCEF receive message file, directory definition

for 225
MCF receive message files 71, 250

asynchronous receive message file 71
synchronous receive message file 76

MCF send message file 96

MCF simulation functions, UAP tracesfor 109

MCF simulator 22, 202
mcfauape 187
mcfauaps 184
mcfaulsap 181
mcflsutf 174

mcftulee 180

mcftules 178
mcftulsle 176
mcftulssy 189
mcftusge 193
mcftusgs 191

mcfutfst 174

message send/receive, simulating 22

MHP automatic shutdown, suppressing 162

MHP testing 160

disabling non-MCF resources update 160
invalidating application startup messages 161

invalidating send messages 160
suppressing error events 161

Index

suppressing MHP automatic shutdown 162

MHP, servicerequeststo 103, 130

N

non-M CF resources, disabling update of 160
non-test UAP 49
notes on

DAM and TAM files 288
offlinetester 284
running tests 284

UAP 289

(0]

offline test

ending 277
starting 277

offlinetester 2, 6

creating stubs 238
creating tester files 280
creating UAP 272

creating UAP execution format programs 272

executing continuous commands 281
facilitiesof 196

files created by 270

files created by user 239

inputting tester file nameto 305, 308
list of simulation functions and
processing 310

noteson 284

reguesting service 279

setting continuous execution commands 236

setting function return values 232
specifying debugger connection 282
starting 293

system definitionsfor 214
terminating 304

test data definition file 259

test data definition file, creating 259
TPL/Offline Tester 2, 6

user service definition 231

offline tester DAM file, creating 292
offline tester environment definition 214

continuous execution command file, directory

definition for 226

361

Index

DAM file definitions 227

function return valuesfile, definition of 229
internode shared table definitions 228

MCF receive messagefile, directory definition
for 225

operating command result datafile, directory
definitionfor 225

protocol definition 230

RPC request datafile, directory definition

for 221

RPC response datafile, directory definition
for 223

TAM file definitions 227

tracefile definition 229

TXRPC request datafile, directory definition
for 222

TXRPC response datafile, directory definition
for 224

UAP definition 219

XATMI request data file, directory definition
for 222

XATMI response datafile, directory definition
for 223

XATMI send/receive datafile, directory
definitionfor 224

offline tester TAM files, creating 295
offline tester trace information

collecting 211
editing 283

onlinetester 2, 3

creating tester file 31
facilitiesof 12

files created by 95

service response datafile 95
system definitionsfor 44
TP1/Message Control 2, 6
TP1L/Message Control/Tester 2, 6
TPL/Online Tester 3
TPlonlinetester 2
TP1/Server Base 2, 3
tracefile 96

online tester errors

362

conditions and causes of 154
handling 154, 155

handling UAP errors 156
occur infile 156
OpenTP1 functions, smulating 206
simulation functions 206
operating command output data, creating tester files
using 105
operating command result datafile 81, 257
directory definition for 225
operating command simulator 29, 207
operating commands 111, 173, 291
activating UAP interlocked with
debugger 113
creating offline tester DAM file 292
creating offline tester TAM file 295
creating tester file 115, 293
displaying MCF online tester status 174
displaying test mode information for
application 181
displaying test mode information for logical
terminal 176
displaying test mode information for service
group 189
displaying test status 129
editing and outputting send messages 131
editing and outputting test file content 116
editing and outputting UAP trace
information 138
for running tests 112, 174, 292
for testing application 181
for testing logical terminal 176
for testing service group 189
MCEF online tester use declaration 174
merging UAP trace information 137
requesting serviceto MHP 130
requesting service to RPC interface SPP 136
requesting service to XATMI interface
SPP 150
retrieving offline tester trace information 296
simulating 29, 207
starting application test 184
starting logical terminal test 178
starting offline tester 293
starting service group test 191
terminating application test 187

terminating logical terminal test 180
terminating service group test 193
terminating UAP interlocked with
debugger 112
operating commands for running tests 112, 292
mcflsutf 174
mcfutfst 174
utfdamcre 292
utffilcre 293
utfstart 293
utftamcre 295
utftrcpic 296
utodbgstop 112
utodebug 113
utofilcre 115
utofilout 116
utols 129
utomhpsve 130
utomsgout 131
utosppsvc 136
utotrcmrg 137
utotrcout 138
utoxsppsve 150
operating commands for testing application 181
mcfauape 187
mcfauaps 184
mcfaulsap 181
operating commands for testing logical terminal 176
mcftulee 180
mcftules 178
mcftulsle 176
operating commands for testing service group 189
mcftulssg 189
mcftusge 193
mcftusgs 191
output data, setting 234

P

permitted character conventions xiii
protocol definition 230
ps 304

R
read 305

Index

recv statement 57
request/response service paradigm 14
resource updating, disabling 28
return values
for simulation functions 326
setting 233
RPC interface
creating UAP execution format program
with 272
simulating client UAPwith 13, 102, 197
simulating server UAP with 18, 102, 200
RPC interface definition file 238
RPC interface SPP, service requeststo 136
RPC request datafile 62, 240
directory definition for 221
RPC response datafile 65, 95, 244
directory definition for 223
rpc_trace 47
rpc_trace name 47
rpc_trace size 47

S

send messages
editing 39
editing and outputting 109
invalidating 160
send statement 56
send/receive control file 56
send/receive procedures, setting 56
recv statement 56
send statement 56
send/receive control file 56
sep statement 86, 261
server UAP
simulating 18, 199
simulating, with RPC Interface 200
simulating, with RPC interface 18, 102
simulating, with TXRPC Interface 200
simulating, with XATMI Interface 200
simulating, with XATMI interface 19, 102
server UAP simulator 18, 102, 199
server_type 231
service 231
service group

363

Index

activating 306
displaying test mode information for 189
terminating 307
service group test
starting 191
terminating 193
service group, testing 166
service request datafiles 62, 240
RPC request datafile 62, 240
TXRPC request datafile 243
XATMI request datafile 63, 241
servicerequests 279, 302
to MHP 103
to SPP 102
service response datafile 65, 244
RPC response datafile 65, 95, 244
TXRPC response datafile 247
XATMI response datafile 66, 95, 245
setting
environment variables 59
send/receive procedures 56
test environment 166
typed buffer information 54
simulation feature, functions not supported by 342
simulation functions 206, 309
list of 310
list of return valuesfor 326
SPP, servicerequeststo 102
standard output by command, editing and outputting
traceto 351
uatdump 352
start 306
start statement 85, 260
stop 307
stubs, creating 238
subcommands for running tests 302
activating service group 306
cal 302
cmdauto 303
displaying test status 304
end 304
executing continuous commands 303
inputting tester filenameto offlinetester 305,
308

364

ps 304
read 305
requesting service 302
start 306
stop 307
terminating offline tester 304
terminating service group 307
write 308
symbol conventions xi
synchronous point processing, simulating 27
synchronous receive message file 76
system definitions
for offline tester 214
for onlinetester 44
system service configuration definition 44
uto_conf 44

T

TAM file 256

TAM file definitions 227

TAM service simulator 204

TAM service, simulating 204

TB meaning xiii

temporary memory datafile 96, 270

test
duplicate test mode specifications 168
ending 167
notes on running 284
operating commands for running 174
running 99, 165, 271
setting environment of 166
starting 166
starting and ending 166
subcommands for running 302
testing application 166
testing logical termina 166
testing service group 166

test data definition file 84, 259
comment statement 85, 260
creating 84, 259
end statement 86, 261
input data definition statement 87, 261
sep statement 86, 261
start statement 85, 260

using, to create tester files 104
test directory 84
test environment 166
creating files 239
setting 43, 166, 213
test information
checking UAP response data 110
checking UAP send data 110
collecting 34, 164, 211
collecting UAP traceinformation 107
displaying test status 107
editing 107, 170
editing and outputting send messages 109
merging and outputting UAP trace
information 108
test mode 48, 166
dummy SPP 49
non-test UAP 49
simulate MHP 49
test-only UAP 49
usable UAP 49
test mode information 166
displaying 170
displaying, for application 181
displaying, for logical termina 176
inheriting 169
test mode messages 167
test moderange 167
test mode specifications, duplicate 168
test status, displaying 107, 304
testuser ID 59
test-only UAP 49
test_adm call_command 51
test_data trace 52
test_debugger 52
test_mode 48
test_transaction_commit 51
test_xatmi_send _file 52
tester file 31
creating 31
creating and outputting 31
editing 33
outputting 33
tester file creation facility 208

Index

tester file edit and output facility 33
tester files 208
creating 104, 105, 208, 280
tester files, creating
test data definition file 84
tester service definition 44
command format 47
max_message file size 46
max_trace_file size 45
rpc_trace 47
rpc_trace name 47
rpc_trace size 47
specifying logical terminal information 47
uto_server_count 45
watch_time 46
tester, overview of 3
TP1/Message Control 6
TP1/Message Control online tester, using 2
TP1/Message Control/Tester 2, 6
TP1/Offline Tester 2, 6
TP1/Online Tester 2, 3
TPLl/Server Base 4
TPLl/server base online tester, using 2
trace area definition 348
tracefile 270
tracefile definition 229
trace information
collecting offline tester 211
editing offline tester 283
retrieving offline tester 296
TXRPC interface
creating UAP execution format program
with 274
simulating client UAPwith 198
simulating server UAP with 200
TXRPC request datafile 243
directory definition for 222
TXRPC response datafile 247
directory definition for 224
typed buffer definition file 54
typed buffer, setting 54
typed buffer definition file 54

365

Index

U

UAP
activating 278
creating 100, 272
noteson 289
terminating 278

UAP definition 219

UAP errors 156

UAP execution format program
creating 272
creating, with RPC or XATMI interface 272
creating, with TXRPC interface 274

UAP response data, checking 110

UAP send data, checking 110

UAP trace collection units 348

UAP trace datafile 9

UAP trace information
collected for MCF simulation functions 109
collecting 34, 107, 164, 170
editing 35
editing and outputting 138
merging 35, 137
merging and outputting 108, 170
outputting 35

UAP trace output file 350

UAP trace output format 354

UAP trace output methods 350
editing and outputting trace to file
automatically 350
editing and outputting trace to standard output
by command 351

UAP traces 9
collecting 348
editing 349
editing and outputting 352
information to collect 348
output format of 354
outputting 349
overview of 9
UAP trace output methods 350
UAP trace output units 349
using 347

uap_trace file put 353

uatdump 352

366

usable UAP 49

user service definition 48, 231
environment-var-name 231
server_type 231
test_adm_call_command 51
test_data trace 52
test_debugger 52
test_mode 48
test_transaction_commit 51
test_xatmi_send_file 52
trace area 348

user-created files 60, 239
DAM file 255
list of 239
MCF receive messagefiles 71, 250
operating command result datafile 81, 257
service request datafiles 62, 240
service response data files 65, 244
TAM file 256
XATMI receive datafile 68, 248

utfdamcre 292

utffilcre 293

utfstart 293

utftamcre 295

utftrcpic 296

uto_conf 44

uto_server_count 45

utodbgstop 112

utodebug 113

utofilcre 115

utofilout 116

utols 129

utomhpsve 130

utomsgout 131

utosppsvc 136

utoterm 47

utotrcmrg 137

utotrcout 138

utoxsppsve 150

\Y

version number conventions Xiv

wW

watch_time 46
write 308

X

XATMI interface
conversationa service paradigm 15, 20
creating UAP execution format program
with 272
request/response service paradigm 14, 19
simulating client UAPwith 14, 102, 198
simulating server UAP with 19, 102, 200
XATMI interface definition file 238
XATMI interface SPP, service requeststo 150
XATMI receive datafile 68, 248
XATMI request datafile 63, 241
directory definition for 222
XATMI response datafile 66, 95, 245
directory definition for 223
XATMI send datafile 96, 270
XATMI send/receive datafile, directory definition
for 224

Index

367

Reader’'s Comment Form

We would appreciate your comments and suggestions on this manual. We will use
these comments to improve our manuals. When you send a comment or suggestion,
please include the manual name and manual number. Y ou can send your comments
by any of the following methods:

e Send email to your local Hitachi representative.

e Send email to the following address:
WWW-mk@itg.hitachi.co.jp

¢ If you do not have access to email, please fill out the following information
and submit this form to your Hitachi representative:

Manual name:

Manual number:

Your hame:

Company or
or ganization:

Street address;

Comment:

(For Hitachi use)

