
OpenTP1 Version 7
Programming Reference COBOL Language

3000-3-D55-30(E)

Relevant program products
Note: In the program products listed below, those marked with an asterisk (*) might be released later than the other program
products.
For AIX 5L V5.1, AIX 5L V5.2, AIX 5L V5.3, AIX V6.1
P-1M64-2131 uCosminexus TP1/Server Base 07-03*
P-1M64-2331 uCosminexus TP1/FS/Direct Access 07-03*
P-1M64-2431 uCosminexus TP1/FS/Table Access 07-03*
P-1M64-2531 uCosminexus TP1/Client/W 07-02
P-1M64-2631 uCosminexus TP1/Offline Tester 07-00
P-1M64-2731 uCosminexus TP1/Online Tester 07-00
P-1M64-2831 uCosminexus TP1/Multi 07-00
P-1M64-2931 uCosminexus TP1/High Availability 07-00
P-1M64-3131 uCosminexus TP1/Message Control 07-03
P-1M64-3231 uCosminexus TP1/NET/Library 07-04
P-1M64-8131 uCosminexus TP1/Shared Table Access 07-00
P-1M64-8331 uCosminexus TP1/Resource Manager Monitor 07-00
P-1M64-8531 uCosminexus TP1/Extension 1 07-00
P-1M64-C371 uCosminexus TP1/Message Queue 07-01
P-1M64-C771 uCosminexus TP1/Message Queue - Access 07-01
P-F1M64-31311 uCosminexus TP1/Message Control/Tester 07-00
P-F1M64-32311 uCosminexus TP1/NET/User Agent 07-00
P-F1M64-32312 uCosminexus TP1/NET/HDLC 07-00
P-F1M64-32313 uCosminexus TP1/NET/X25 07-00
P-F1M64-32314 uCosminexus TP1/NET/OSI-TP 07-00
P-F1M64-32315 uCosminexus TP1/NET/XMAP3 07-01
P-F1M64-32316 uCosminexus TP1/NET/HSC 07-00
P-F1M64-32317 uCosminexus TP1/NET/NCSB 07-00
P-F1M64-32318 uCosminexus TP1/NET/OSAS-NIF 07-01
P-F1M64-3231B uCosminexus TP1/NET/Secondary Logical Unit - TypeP2 07-00
P-F1M64-3231C uCosminexus TP1/NET/TCP/IP 07-02
P-F1M64-3231D uCosminexus TP1/NET/High Availability 07-00
P-F1M64-3231U uCosminexus TP1/NET/User Datagram Protocol 07-00
R-1M45F-31 uCosminexus TP1/Web 07-00
For AIX 5L V5.3 and AIX V6.1
P-1M64-1111 uCosminexus TP1/Server Base(64) 07-03*
P-1M64-1311 uCosminexus TP1/FS/Direct Access(64) 07-03*
P-1M64-1411 uCosminexus TP1/FS/Table Access(64) 07-03*
P-1M64-1911 uCosminexus TP1/High Availability(64) 07-00
P-1M64-1L11 uCosminexus TP1/Extension 1(64) 07-00
For HP-UX 11i V1 (PA-RISC) and HP-UX 11i V2 (PA-RISC)
P-1B64-3F31 uCosminexus TP1/NET/High Availability 07-00
P-1B64-8531 uCosminexus TP1/Extension 1 07-00
P-1B64-8931 uCosminexus TP1/High Availability 07-00
R-18451-41K uCosminexus TP1/Client/W 07-00
R-18452-41K uCosminexus TP1/Server Base 07-00

R-18453-41K uCosminexus TP1/FS/Direct Access 07-00
R-18454-41K uCosminexus TP1/FS/Table Access 07-00
R-18455-41K uCosminexus TP1/Message Control 07-03*
R-18456-41K uCosminexus TP1/NET/Library 07-04*
R-18459-41K uCosminexus TP1/Offline Tester 07-00
R-1845A-41K uCosminexus TP1/Online Tester 07-00
R-1845C-41K uCosminexus TP1/Shared Table Access 07-00
R-1845D-41K uCosminexus TP1/Resource Manager Monitor 07-00
R-1845E-41K uCosminexus TP1/Multi 07-00
R-1845F-41K uCosminexus TP1/Web 07-00
R-F18455-411K uCosminexus TP1/Message Control/Tester 07-00
R-F18456-411K uCosminexus TP1/NET/User Agent 07-00
R-F18456-415K uCosminexus TP1/NET/XMAP3 07-01*
R-F18456-41CK uCosminexus TP1/NET/TCP/IP 07-02*
For HP-UX 11i V2 (IPF) and HP-UX 11i V3 (IPF)
P-1J64-3F21 uCosminexus TP1/NET/High Availability 07-00
P-1J64-4F11 uCosminexus TP1/NET/High Availability(64) 07-00
P-1J64-8521 uCosminexus TP1/Extension 1 07-00
P-1J64-8611 uCosminexus TP1/Extension 1(64) 07-00
P-1J64-8921 uCosminexus TP1/High Availability 07-00
P-1J64-8A11 uCosminexus TP1/High Availability(64) 07-00
P-1J64-C371 uCosminexus TP1/Message Queue 07-01
P-1J64-C571 uCosminexus TP1/Message Queue(64) 07-01
P-1J64-C871 uCosminexus TP1/Message Queue - Access(64) 07-00
R-18451-21J uCosminexus TP1/Client/W 07-02
R-18452-21J uCosminexus TP1/Server Base 07-03*
R-18453-21J uCosminexus TP1/FS/Direct Access 07-03*
R-18454-21J uCosminexus TP1/FS/Table Access 07-03*
R-18455-21J uCosminexus TP1/Message Control 07-03*
R-18456-21J uCosminexus TP1/NET/Library 07-04*
R-18459-21J uCosminexus TP1/Offline Tester 07-00
R-1845A-21J uCosminexus TP1/Online Tester 07-00
R-1845C-21J uCosminexus TP1/Shared Table Access 07-00
R-1845D-21J uCosminexus TP1/Resource Manager Monitor 07-00
R-1845E-21J uCosminexus TP1/Multi 07-00
R-1845F-21J uCosminexus TP1/Web 07-00
R-1B451-11J uCosminexus TP1/Client/W(64) 07-02
R-1B452-11J uCosminexus TP1/Server Base(64) 07-03*
R-1B453-11J uCosminexus TP1/FS/Direct Access(64) 07-03*
R-1B454-11J uCosminexus TP1/FS/Table Access(64) 07-03*
R-1B455-11J uCosminexus TP1/Message Control(64) 07-03*
R-1B456-11J uCosminexus TP1/NET/Library(64) 07-04*
R-F18455-211J uCosminexus TP1/Message Control/Tester 07-00
R-F18456-215J uCosminexus TP1/NET/XMAP3 07-01*

R-F18456-21CJ uCosminexus TP1/NET/TCP/IP 07-02*
R-F1B456-11CJ uCosminexus TP1/NET/TCP/IP(64) 07-02*
For Solaris 8, Solaris 9, and Solaris 10
P-9D64-3F31 uCosminexus TP1/NET/High Availability 07-00
P-9D64-8531 uCosminexus TP1/Extension 1 07-00
P-9D64-8931 uCosminexus TP1/High Availability 07-00
R-19451-216 uCosminexus TP1/Client/W 07-00
R-19452-216 uCosminexus TP1/Server Base 07-00
R-19453-216 uCosminexus TP1/FS/Direct Access 07-00
R-19454-216 uCosminexus TP1/FS/Table Access 07-00
R-19455-216 uCosminexus TP1/Message Control 07-03*
R-19456-216 uCosminexus TP1/NET/Library 07-04*
R-19459-216 uCosminexus TP1/Offline Tester 07-00
R-1945A-216 uCosminexus TP1/Online Tester 07-00
R-1945C-216 uCosminexus TP1/Shared Table Access 07-00
R-1945D-216 uCosminexus TP1/Resource Manager Monitor 07-00
R-1945E-216 uCosminexus TP1/Multi 07-00
R-F19456-2156 uCosminexus TP1/NET/XMAP3 07-01*
R-F19456-21C6 uCosminexus TP1/NET/TCP/IP 07-02*
For Red Hat Enterprise Linux AS 4 (AMD64 & Intel EM64T), Red Hat Enterprise Linux AS 4 (x86), Red Hat Enterprise Linux ES
4 (AMD64 & Intel EM64T), and Red Hat Enterprise Linux ES 4 (x86)
P-9S64-2161 uCosminexus TP1/Server Base 07-00
P-9S64-2351 uCosminexus TP1/FS/Direct Access 07-00
P-9S64-2451 uCosminexus TP1/FS/Table Access 07-00
P-9S64-2551 uCosminexus TP1/Client/W 07-00
P-9S64-3151 uCosminexus TP1/Message Control 07-00
P-9S64-3251 uCosminexus TP1/NET/Library 07-00
P-9S64-C371 uCosminexus TP1/Message Queue 07-01
P-F9S64-3251C uCosminexus TP1/NET/TCP/IP 07-00
P-F9S64-3251U uCosminexus TP1/NET/User Datagram Protocol 07-00
R-1845F-A15 uCosminexus TP1/Web 07-00
For Red Hat Enterprise Linux AS 4 (AMD64 & Intel EM64T), Red Hat Enterprise Linux AS 4 (x86), Red Hat Enterprise Linux ES
4 (AMD64 & Intel EM64T), Red Hat Enterprise Linux ES 4 (x86), Red Hat Enterprise Linux 5 (AMD/Intel 64), Red Hat Enterprise
Linux 5 (x86), Red Hat Enterprise Linux 5 Advanced Platform (AMD/Intel 64), and Red Hat Enterprise Linux 5 Advanced Platform
(x86)
P-9S64-2951 uCosminexus TP1/High Availability 07-00
P-9S64-8551 uCosminexus TP1/Extension 1 07-00
P-9S64-C771 uCosminexus TP1/Message Queue - Access 07-01
P-F9S64-3251D uCosminexus TP1/NET/High Availability 07-00
For Red Hat Enterprise Linux 5 (AMD/Intel 64), Red Hat Enterprise Linux 5 (x86), Red Hat Enterprise Linux 5 Advanced Platform
(AMD/Intel 64), and Red Hat Enterprise Linux 5 Advanced Platform (x86)
P-9S64-2171 uCosminexus TP1/Server Base 07-03
P-9S64-2361 uCosminexus TP1/FS/Direct Access 07-03
P-9S64-2461 uCosminexus TP1/FS/Table Access 07-03
P-9S64-2561 uCosminexus TP1/Client/W 07-02
P-9S64-3161 uCosminexus TP1/Message Control 07-03*

P-9S64-3261 uCosminexus TP1/NET/Library 07-04*
P-9S64-C571 uCosminexus TP1/Message Queue 07-01
P-F9S64-32611 uCosminexus TP1/NET/User Agent 07-00
P-F9S64-3261C uCosminexus TP1/NET/TCP/IP 07-02
P-F9S64-3261U uCosminexus TP1/NET/User Datagram Protocol 07-00
For Red Hat Enterprise Linux 5 (AMD/Intel 64) and Red Hat Enterprise Linux 5 Advanced Platform (AMD/Intel 64)
P-9W64-2111 uCosminexus TP1/Server Base(64) 07-03
P-9W64-2311 uCosminexus TP1/FS/Direct Access(64) 07-03
P-9W64-2411 uCosminexus TP1/FS/Table Access(64) 07-03
P-9W64-2911 uCosminexus TP1/High Availability(64) 07-02
P-9W64-8511 uCosminexus TP1/Extension 1(64) 07-02
For Red Hat Enterprise Linux AS 4 (IPF)
P-9V64-2121 uCosminexus TP1/Server Base 07-00
P-9V64-2321 uCosminexus TP1/FS/Direct Access 07-00
P-9V64-2421 uCosminexus TP1/FS/Table Access 07-00
P-9V64-2521 uCosminexus TP1/Client/W 07-00
P-9V64-3121 uCosminexus TP1/Message Control 07-00
P-9V64-3221 uCosminexus TP1/NET/Library 07-00
P-9V64-C371 uCosminexus TP1/Message Queue(64) 07-01
P-9V64-C771 uCosminexus TP1/Message Queue - Access(64) 07-00
P-F9V64-3221C uCosminexus TP1/NET/TCP/IP 07-00
P-F9V64-3221U uCosminexus TP1/NET/User Datagram Protocol 07-00
For Red Hat Enterprise Linux AS 4 (IPF), Red Hat Enterprise Linux 5 (Intel Itanium), and Red Hat Enterprise Linux 5 Advanced
Platform (Intel Itanium)
P-9V64-2921 uCosminexus TP1/High Availability 07-00
P-9V64-8521 uCosminexus TP1/Extension 1 07-00
P-F9V64-3221D uCosminexus TP1/NET/High Availability 07-00
For Red Hat Enterprise Linux 5 (Intel Itanium) and Red Hat Enterprise Linux 5 Advanced Platform (Intel Itanium)
P-9V64-2131 uCosminexus TP1/Server Base 07-02
P-9V64-2331 uCosminexus TP1/FS/Direct Access 07-02
P-9V64-2431 uCosminexus TP1/FS/Table Access 07-02
P-9V64-2531 uCosminexus TP1/Client/W 07-02
P-9V64-3131 uCosminexus TP1/Message Control 07-03*
P-9V64-3231 uCosminexus TP1/NET/Library 07-04*
P-F9V64-3231C uCosminexus TP1/NET/TCP/IP 07-02*
P-F9V64-3231U uCosminexus TP1/NET/User Datagram Protocol 07-00
For Windows 2000, Windows Server 2003, Windows Server 2003 x64 Editions, Windows Server 2003 R2, Windows Server 2003
R2 x64 Editions, Windows XP, Windows Vista, and Windows Vista x64
P-2464-2144 uCosminexus TP1/Client/P 07-02
For Windows 2000, Windows Server 2003, Windows Server 2003 x64 Editions, Windows Server 2003 R2, Windows Server 2003
R2 x64 Editions, and Windows XP
R-1845F-8134 uCosminexus TP1/Web 07-00
For Windows 2000, Windows Server 2003, Windows Server 2003 x64 Editions, Windows Server 2003 R2, Windows Server 2003
R2 x64 Editions, Windows XP, Windows Vista, Windows Vista x64, Windows Server 2008, and Windows Server 2008 x64
P-2464-7824 uCosminexus TP1/Client for .NET Framework 07-03

R-15451-21 uCosminexus TP1/Connector for .NET Framework 07-03
For Windows Server 2003, Windows Server 2003 x64 Editions, Windows Server 2003 R2, Windows Server 2003 R2 x64 Editions,
Windows XP, Windows Vista, Windows Vista x64, Windows Server 2008, and Windows Server 2008 x64
P-2464-2274 uCosminexus TP1/Server Base 07-03*
P-2464-2374 uCosminexus TP1/FS/Direct Access 07-03*
P-2464-2474 uCosminexus TP1/FS/Table Access 07-03*
P-2464-2544 uCosminexus TP1/Extension 1 07-00
P-2464-3154 uCosminexus TP1/Message Control 07-03*
P-2464-3254 uCosminexus TP1/NET/Library 07-04*
P-2464-3354 uCosminexus TP1/Messaging 07-00
P-2464-C374 uCosminexus TP1/Message Queue 07-01
P-2464-C774 uCosminexus TP1/Message Queue - Access 07-00
P-F2464-3254C uCosminexus TP1/NET/TCP/IP 07-02*
R-15452-21 uCosminexus TP1/Extension for .NET Framework 07-00
R-1945B-24 uCosminexus TP1/LiNK 07-02
For Windows Server 2003, Windows Server 2003 x64 Editions, Windows Server 2003 R2, Windows Server 2003 R2 x64 Editions,
and Windows XP
P-F2464-32545 uCosminexus TP1/NET/XMAP3 07-01*
For Windows Server 2003, Windows Server 2003 x64 Editions, Windows Server 2003 R2, Windows Server 2003 R2 x64 Editions,
Windows Server 2008, and Windows Server 2008 x64
P-2464-2934 uCosminexus TP1/High Availability 07-00
P-F2464-3254D uCosminexus TP1/NET/High Availability 07-00
For Java VM
P-2464-7394 uCosminexus TP1/Client/J 07-02
P-2464-73A4 uCosminexus TP1/Client/J 07-02
This manual can be used for products other than the products shown above. For details, see the Release Notes.
This product was developed under a quality management system that has received ISO9001 and TickIT certification.

Trademarks
AIX is a trademark of International Business Machines Corporation in the United States, other countries, or both.
AIX 5L is a trademark of International Business Machines Corporation in the United States, other countries, or both.
AMD, AMD Opteron, and combinations thereof, are trademarks of Advanced Micro Devices, Inc.
COBOL/2 is a trademark of International Business Machines Corporation in the United States, other countries, or both.
HP-UX is a product name of Hewlett-Packard Company.
Itanium is a trademark of Intel Corporation in the United States and other countries.
Java is a registered trademark of Oracle and/or its affiliates.
Linux(R) is the registered trademark of Linus Torvalds in the U.S. and other countries.
Microsoft is either a registered trademark or a trademark of Microsoft Corporation in the United States and/or other countries.
MS-DOS is a registered trademark of Microsoft Corp. in the U.S. and other countries.
ORACLE is either a registered trademark or a trademark of Oracle and/or its affiliates.
Oracle is either a registered trademark or a trademark of Oracle Corporation and/or its affiliates.
Oracle and Oracle 10g are either registered trademarks or trademarks of Oracle and/or its affiliates.
Oracle and Oracle9i are either registered trademarks or trademarks of Oracle and/or its affiliates.
OSF is a trademark of the Open Software Foundation, Inc.
Red Hat is a trademark or a registered trademark of Red Hat Inc. in the United States and other countries.
Solaris is either a registered trademark or a trademark of Oracle and/or its affiliates.

UNIX is a registered trademark of The Open Group in the United States and other countries.
Windows is either a registered trademark or a trademark of Microsoft Corporation in the United States and/or other countries.
Windows Server is either a registered trademark or a trademark of Microsoft Corporation in the United States and/or other countries.
Windows Vista is either a registered trademark or a trademark of Microsoft Corporation in the United States and/or other countries.
X/Open is a registered trademark of The Open Group in the U.K. and other countries.
Portions of this document are extracted from X/Open CAE Specification System Interfaces and Headers, Issue 4, (C202 ISBN
1-872630-47-2) Copyright (C) July 1992, X/Open Company Limited with the permission of X/Open;
part of which is based on IEEE Std 1003.1-1990, (C) 1990 Institute of Electrical and Electronics Engineers, Inc., and IEEE Std
1003.2/D12, (C) 1992 Institute of Electrical and Electronics Engineers, Inc.
No further reproduction of this material is permitted without the prior permission of the copyright owners.
Other product and company names mentioned in this document may be the trademarks of their respective owners. Throughout this
document Hitachi has attempted to distinguish trademarks from descriptive terms by writing the name with the capitalization used
by the manufacturer, or by writing the name with initial capital letters. Hitachi cannot attest to the accuracy of this information. Use
of a trademark in this document should not be regarded as affecting the validity of the trademark.

Restrictions
Information in this document is subject to change without notice and does not represent a commitment on the part of Hitachi. The
software described in this manual is furnished according to a license agreement with Hitachi. The license agreement contains all of
the terms and conditions governing your use of the software and documentation, including all warranty rights, limitations of liability,
and disclaimers of warranty.
Material contained in this document may describe Hitachi products not available or features not available in your country.
No part of this material may be reproduced in any form or by any means without permission in writing from the publisher.
Printed in Japan.

Edition history
Edition 1 (3000-3-D55(E)): June 2006
Edition 3 (3000-3-D55-30(E)): October 2010

Copyright
All Rights Reserved. Copyright (C) 2006, 2010, Hitachi, Ltd.

Summary of amendments
The following table lists changes in this manual (3000-3-D55-30(E)) and product
changes related to this manual for uCosminexus TP1/Server Base 07-03, uCosminexus
TP1/Server Base(64) 07-03, uCosminexus TP1/Message Control 07-03, uCosminexus
TP1/Message Control(64) 07-03, uCosminexus TP1/NET/Library 07-04,
uCosminexus TP1/NET/Library(64) 07-04.

Changes Location

Explanations have been added about the maximum length of segments
that can be sent or received.

Message exchange (CBLDCMCF) in
Chapter 2

CBLDCMCF('EXECAP '),
CBLDCMCF('RECEIVE '),
CBLDCMCF('RECVSYNC'),
CBLDCMCF('REPLY '),
CBLDCMCF('SEND '),
CBLDCMCF('SENDRECV'),
CBLDCMCF('SENDSYNC')

Data communication facility in
Chapter 3

RECEIVE - Receive a message,
SEND - Send a message

Service facility in Chapter 3
SEND - Activate an application
program

A method for declaring unique names in the DATA DIVISION
(communication description entry) specification has been added for the
following data manipulation language programs:
• RECEIVE: Receive a message
• RECEIVE: Accept temporarily-stored data
• SEND: Activate an application program
• SEND: Update temporarily-stored data
• SEND: Execute an operation command
• SEND: Acquire a user journal

Data communication facility in
Chapter 3

RECEIVE - Receive a message
Service facility in Chapter 3

RECEIVE - Accept
temporarily-stored data
SEND - Activate an application
program
SEND - Update
temporarily-stored data
SEND - Execute an operation
command
SEND - Acquire a user journal

The following table lists changes in this manual (3000-3-D55-30(E)) and product
changes related to this manual for uCosminexus TP1/Message Control 07-02 and
uCosminexus TP1/NET/Library 07-03

In addition to the above changes, minor editorial corrections have been made.

Changes Location

A library function can be used to delete application timer startup requests.
To support this change, the following function has been added:
• CBLDCMCF('ADLTAP ')

1.1.1, 1.1.1(2), 1.1.1(3)
Message exchange (CBLDCMCF)
in Chapter 2

CBLDCMCF('ADLTAP ')

Library functions can be used to display the status of connections and to
establish and release connections.
To support this change, the following functions have been added:
• CBLDCMCF('TACTCN ')

• CBLDCMCF('TDCTCN ')

• CBLDCMCF('TLSCN ')

1.1.1, 1.1.1(2), 1.1.1(3)
Message exchange (CBLDCMCF)
in Chapter 2

CBLDCMCF('TACTCN '),
CBLDCMCF('TDCTCN '),
CBLDCMCF('TLSCN ')

A library function can be used to display the status of MCF
communication services and application startup services.
To support this change, the following function has been added:
• CBLDCMCF('TLSCOM ')

1.1.1, 1.1.1(2), 1.1.1(3)
Message exchange (CBLDCMCF)
in Chapter 2

CBLDCMCF('TLSCOM ')

Library functions can be used to display the status of logical terminals, to
shut down logical terminals, to release logical terminals from shutdown
status, and to delete the output queue of logical terminals.
To support this change, the following functions have been added:
• CBLDCMCF('TACTLE ')

• CBLDCMCF('TDCTLE ')

• CBLDCMCF('TDLQLE ')

• CBLDCMCF('TLSLE ')

1.1.1, 1.1.1(2), 1.1.1(3)
Message exchange (CBLDCMCF)
in Chapter 2

CBLDCMCF('TACTLE '),
CBLDCMCF('TDCTLE '),
CBLDCMCF('TDLQLE '),
CBLDCMCF('TLSLE ')

A library function can be used to acquire the acceptance status of
connection establishment requests.
To support this change, the following function has been added:
• CBLDCMCF('TLSLN ')

1.1.1, 1.1.1(2), 1.1.1(3)
Message exchange (CBLDCMCF)
in Chapter 2

CBLDCMCF('TLSLN ')

Library functions can be used to start and stop acceptance of server-type
connection establishment requests.
To support this change, the following functions have been added:
• CBLDCMCF('TOFLN ')

• CBLDCMCF('TONLN ')

1.1.1, 1.1.1(2), 1.1.1(3)
Message exchange (CBLDCMCF)
in Chapter 2

CBLDCMCF('TOFLN '),
CBLDCMCF('TONLN ')

MHPs can use the facility for dynamic loading of service functions. 1.2.1(3), 1.2.5(3)(d)

The following table lists changes in the manual (3000-3-D55-20(E)) and product
changes related to that manual for uCosminexus TP1/Server Base 07-02, uCosminexus
TP1/Message Control 07-01, and uCosminexus TP1/NET/Library 07-01.

The following table lists changes in the manual (3000-3-D55-20(E)) and product
changes related to that manual for uCosminexus TP1/Server Base 07-01

Changes

An audit log output function was added.
With this addition, the CBLDCADT('PRINT ') function was added.

A function that enables service functions to be loaded dynamically was added.

A function that allows the system to operate without using system journal files (journal fileless mode) was added.
With this addition, status codes and return values for some functions were changed.

The description of the remote API facility was changed.
With this change, status codes were changed or added.

Changes

Notes and status codes were added.

i

Preface

This manual explains how to create application programs which can be used with the
following program products of OpenTP1:

• Distributed transaction processing facility TP1/Server Base

• Distributed application server TP1/LiNK

In this manual, an application program which is created by the user is abbreviated to a
UAP (User Application Program).

Products described in this manual, other than those for which the manual is released,
may not work with OpenTP1 Version 7 products. You need to confirm that the products
you want to use work with OpenTP1 Version 7 products.

Intended readers
This manual is intended for programmers who create user application programs
(UAPs) used with TP1/Server Base or TP1/LiNK.

Readers of this manual are assumed to have knowledge about operating systems,
online systems, handling of the machine to be used, and the syntax of the COBOL
language used for coding application programs.

This manual assumes that the reader has read the OpenTP1 Programming Guide.

Organization of this manual
This manual is organized into the following chapters and an appendix:

1. Creating Application Programs
This chapter explains the procedure for writing application programs to be used
with the OpenTP1.

2. Syntax of OpenTP1 Programs for COBOL-UAP Creation Programs
This chapter explains the syntax of OpenTP1 programs for COBOL-UAP
creation.

3. Syntax of OpenTP1 Programs for COBOL-UAP Creation Programs (DML
Interface)

This chapter explains the syntax of the data manipulation language (DML) for
OpenTP1 COBOL-UAP creation programs.

ii

4. X/Open-compliant Application Programming Interface
This chapter explains the syntax of the library functions complying with X/Open.

5. Syntax of OpenTP1 COBOL-UAP Creation Programs (Association Status
Notification)

This chapter explains the syntax of the COBOL-UAP creation program used by
SPPs to process communication events and the format of received
communication events.

6. Coding Samples
This chapter gives coding samples for OpenTP1 application programs.

7. Reference for Application Activation
This chapter explains the communication facilities in the message exchange
configuration, focusing on user exit routines relating to application program
activate and MCF event (ERREVT4) reference information.

A. Using OpenTP1 Remote Procedure Calls and XATMI-interfaced API Functions in
Combination

This chapter explains the procedures for creating UAPs that use OpenTP1 remote
procedure calls and XATMI-Interfaced API functions in combination.

Related publications
This manual is part of a related set of manuals. The manuals in the set are listed below
(with the manual numbers):
OpenTP1 products

• OpenTP1 Version 7 Description (3000-3-D50(E))

• OpenTP1 Version 7 Programming Guide (3000-3-D51(E))

• OpenTP1 Version 7 System Definition (3000-3-D52(E))

• OpenTP1 Version 7 Operation (3000-3-D53(E))

• OpenTP1 Version 7 Programming Reference C Language (3000-3-D54(E))

• OpenTP1 Version 7 Programming Reference COBOL Language
(3000-3-D55(E))

• OpenTP1 Version 7 Messages (3000-3-D56(E))

• OpenTP1 Version 7 Tester and UAP Trace User's Guide (3000-3-D57(E))

• OpenTP1 Version 7 TP1/Client User's Guide TP1/Client/W, TP1/Client/P
(3000-3-D58(E))

• OpenTP1 Version 7 TP1/Client User's Guide TP1/Client/J (3000-3-D59(E))

iii

• OpenTP1 Version 7 TP1/LiNK User's Guide (3000-3-D60(E))1

• OpenTP1 Version 7 Protocol TP1/NET/TCP/IP (3000-3-D70(E))

• OpenTP1 Version 7 TP1/Message Queue User's Guide (3000-3-D90(E))1

• OpenTP1 Version 7 TP1/Message Queue Messages (3000-3-D91(E))1

• OpenTP1 Version 7 TP1/Message Queue Application Programming Guide
(3000-3-D92(E))1

• OpenTP1 Version 7 TP1/Message Queue Application Programming Reference
(3000-3-D93(E))1

Other OpenTP1 products

• TP1/Web User's Guide and Reference (3000-3-D62(E))1

Other related products

• Indexed Sequential Access Method ISAM (3000-3-046(E))

• XP/W (3000-3-047(E))

• Extended Mapping Service 2/Workstation XMAP2/W DESCRIPTION/USER'S
GUIDE (3000-7-421(E))

• SEWB 3 General Information (3000-7-450(E))

• Job Management Partner 1/Base User's Guide (3020-3-K06(E))

• Job Management Partner 1/Base Messages (3020-3-K07(E))

• Job Management Partner 1/Base Software Developer's Guide (3020-3-K08(E))

For OpenTP1 protocol manuals, please check whether English versions are available.

Note
1 If you want to use this manual, confirm that it has been published. (Some of
these manuals might not have been published yet.)

Conventions: Abbreviations
This manual uses the following abbreviations for product names:

Abbreviation Full name or meaning

AIX AIX 5L V5.1

AIX 5L V5.2

AIX 5L V5.3

iv

AIX V6.1

Client .NET TP1/Client for .NET
Framework

uCosminexus TP1/Client for .NET Framework

Connector .NET TP1/Connector for
.NET Framework

uCosminexus TP1/Connector for .NET Framework

DPM JP1/ServerConductor/Deployment Manager

HI-UX/WE2 HI-UX/workstation Extended Version 2

HP-UX HP-UX (IPF) HP-UX 11i V2 (IPF)

HP-UX 11i V3 (IPF)

HP-UX (PA-RISC) HP-UX 11i V1 (PA-RISC)

HP-UX 11i V2 (PA-RISC)

IPF Itanium(R) Processor Family

Java JavaTM

JP1 JP1/AJS2 JP1/AJS2 - Agent JP1/Automatic Job Management System 2 - Agent

JP1/AJS2 -
Manager

JP1/Automatic Job Management System 2 - Manager

JP1/AJS2 - View JP1/Automatic Job Management System 2 - View

JP1/AJS2 -
Scenario
Operation

JP1/AJS2 - Scenario
Operation Manager

JP1/Automatic Job Management System 2 - Scenario
Operation Manager

JP1/AJS2 - Scenario
Operation View

JP1/Automatic Job Management System 2 - Scenario
Operation View

JP1/NETM/Audit JP1/NETM/Audit - Manager

Linux Linux(R)

Linux (AMD64/Intel EM64T/x86) Red Hat Enterprise Linux AS 4 (AMD64 & Intel EM64T)

Red Hat Enterprise Linux AS 4 (x86)

Red Hat Enterprise Linux ES 4 (AMD64 & Intel EM64T)

Red Hat Enterprise Linux ES 4 (x86)

Red Hat Enterprise Linux 5 (AMD/Intel 64)

Red Hat Enterprise Linux 5 (x86)

Abbreviation Full name or meaning

v

Red Hat Enterprise Linux 5 Advanced Platform (AMD/Intel
64)

Red Hat Enterprise Linux 5 Advanced Platform (x86)

Linux (IPF) Red Hat Enterprise Linux AS 4 (IPF)

Red Hat Enterprise Linux 5 (Intel Itanium)

Red Hat Enterprise Linux 5 Advanced Platform (Intel
Itanium)

MS-DOS Microsoft(R) MS-DOS(R)

NETM/DM JP1/NETM/DM Client

JP1/NETM/DM Manager

JP1/NETM/DM SubManager

Oracle Oracle 10g

Oracle9i

Solaris Solaris 8

Solaris 9

Solaris 10

TP1/Client TP1/Client/J uCosminexus TP1/Client/J

TP1/Client/P uCosminexus TP1/Client/P

TP1/Client/W uCosminexus TP1/Client/W

uCosminexus TP1/Client/W(64)

TP1/EE uCosminexus TP1/Server Base Enterprise Option

uCosminexus TP1/Server Base Enterprise Option(64)

TP1/Extension 1 uCosminexus TP1/Extension 1

uCosminexus TP1/Extension 1(64)

TP1/FS/Direct Access uCosminexus TP1/FS/Direct Access

uCosminexus TP1/FS/Direct Access(64)

TP1/FS/Table Access uCosminexus TP1/FS/Table Access

Abbreviation Full name or meaning

vi

uCosminexus TP1/FS/Table Access(64)

TP1/High Availability uCosminexus TP1/High Availability

uCosminexus TP1/High Availability(64)

TP1/LiNK uCosminexus TP1/LiNK

TP1/Message Control uCosminexus TP1/Message Control

uCosminexus TP1/Message Control(64)

TP1/Message Control/Tester uCosminexus TP1/Message Control/Tester

TP1/Message Queue uCosminexus TP1/Message Queue

uCosminexus TP1/Message Queue(64)

TP1/Message Queue - Access uCosminexus TP1/Message Queue - Access

uCosminexus TP1/Message Queue - Access(64)

TP1/Messaging uCosminexus TP1/Messaging

TP1/Multi uCosminexus TP1/Multi

TP1/NET/HDLC uCosminexus TP1/NET/HDLC

TP1/NET/High Availability uCosminexus TP1/NET/High Availability

uCosminexus TP1/NET/High Availability(64)

TP1/NET/HSC uCosminexus TP1/NET/HSC

TP1/NET/Library uCosminexus TP1/NET/Library

uCosminexus TP1/NET/Library(64)

TP1/NET/NCSB uCosminexus TP1/NET/NCSB

TP1/NET/OSAS-NIF uCosminexus TP1/NET/OSAS-NIF

TP1/NET/OSI-TP uCosminexus TP1/NET/OSI-TP

TP1/NET/SLU -
TypeP2

TP1/NET/
Secondary Logical
Unit - TypeP2

uCosminexus TP1/NET/Secondary Logical Unit - TypeP2

TP1/NET/TCP/IP uCosminexus TP1/NET/TCP/IP

uCosminexus TP1/NET/TCP/IP(64)

TP1/NET/UDP uCosminexus TP1/NET/User Datagram Protocol

Abbreviation Full name or meaning

vii

TP1/NET/User Agent uCosminexus TP1/NET/User Agent

TP1/NET/X25 uCosminexus TP1/NET/X25

TP1/NET/X25-Extended uCosminexus TP1/NET/X25-Extended

TP1/NET/XMAP3 uCosminexus TP1/NET/XMAP3

TP1/Offline Tester uCosminexus TP1/Offline Tester

TP1/Online Tester uCosminexus TP1/Online Tester

TP1/Resource Manager Monitor uCosminexus TP1/Resource Manager Monitor

TP1/Server Base uCosminexus TP1/Server Base

uCosminexus TP1/Server Base(64)

TP1/Shared Table Access uCosminexus TP1/Shared Table Access

TP1/Web uCosminexus TP1/Web

Windows 2000 Microsoft(R) Windows(R) 2000 Advanced Server Operating
System

Microsoft(R) Windows(R) 2000 Datacenter Server Operating
System

Microsoft(R) Windows(R) 2000 Professional Operating
System

Microsoft(R) Windows(R) 2000 Server Operating System

Windows Server 2003 Microsoft(R) Windows Server(R) 2003, Datacenter Edition

Microsoft(R) Windows Server(R) 2003, Enterprise Edition

Microsoft(R) Windows Server(R) 2003, Standard Edition

Windows Server 2003 R2 Microsoft(R) Windows Server(R) 2003 R2, Enterprise Edition

Microsoft(R) Windows Server(R) 2003 R2, Standard Edition

Windows Server 2003 x64 Editions Microsoft(R) Windows Server(R) 2003, Datacenter x64 Edition

Microsoft(R) Windows Server(R) 2003, Enterprise x64 Edition

Microsoft(R) Windows Server(R) 2003, Standard x64 Edition

Abbreviation Full name or meaning

viii

• The term Windows is used to indicate Windows Server 2003, Windows XP and
Windows Vista if the difference in functions among them need not be considered.

• The term UNIX is used to indicate AIX, HP-UX, Linux, and Solaris.

Conventions: Acronyms
This manual also uses the following acronyms:

Windows Server 2003 R2 x64 Editions Microsoft(R) Windows Server(R) 2003 R2, Enterprise x64
Edition

Microsoft(R) Windows Server(R) 2003 R2, Standard x64
Edition

Windows Server 2008 Microsoft(R) Windows Server(R) 2008 Datacenter (x86)

Microsoft(R) Windows Server(R) 2008 Enterprise (x86)

Microsoft(R) Windows Server(R) 2008 Standard (x86)

Windows Server 2008 x64 Editions Microsoft(R) Windows Server(R) 2008 Datacenter (x64)

Microsoft(R) Windows Server(R) 2008 Enterprise (x64)

Microsoft(R) Windows Server(R) 2008 Standard (x64)

Windows Vista Microsoft(R) Windows Vista(R) Business (x86)

Microsoft(R) Windows Vista(R) Enterprise (x86)

Microsoft(R) Windows Vista(R) Ultimate (x86)

Windows Vista x64 Editions Microsoft(R) Windows Vista(R) Business (x64)

Microsoft(R) Windows Vista(R) Enterprise (x64)

Microsoft(R) Windows Vista(R) Ultimate (x64)

Windows XP Microsoft(R) Windows(R) XP Professional Operating System

Acronym Full name or meaning

ACL Access Control List

ANSI American National Standards Institute

AP Application Program

Abbreviation Full name or meaning

ix

API Application Programming Interface

C/S Client/Server

CPU Central Processing Unit

CRM Communication Resource Manager

CUP Client User Program

DAM Direct Access Method

DBMS Database Management System

DML Data Manipulation Language

DNS Domain Name System

FEP Front End Processor

GUI Graphical User Interface

HA High Availability

ISAM Indexed Sequential Access Method

IST Internode Shared Table

LAN Local Area Network

MCF Message Control Facility

MHP Message Handling Program

MQA Message Queue Access

MQI Message Queue Interface

OS Operating System

OSI Open Systems Interconnection

OSI TP Open Systems Interconnection Transaction Processing

PC Personal Computer

PRF Performance

RM Resource Manager

RPC Remote Procedure Call

SPP Service Providing Program

Acronym Full name or meaning

x

Conventions: Diagrams
This manual uses the following conventions in diagrams:

Conventions: Differences between JIS and ASCII keyboards
The JIS code and ASCII code keyboards are different in the input characters
represented by the following codes. In this manual, the use of a JIS keyboard is
assumed for these characters.

SUP Service Using Program

TAM Table Access Method

TCP/IP Transmission Control Protocol/Internet Protocol

UAP User Application Program

UOC User Own Coding

VM Virtual Machine

WAN Wide Area Network

WS Workstation

Acronym Full name or meaning

xi

Conventions: Fonts and symbols
The following table explains the fonts used in this manual:

The following table explains the symbols used in this manual:

Code JIS keyboard ASCII keyboard

(5c)16 (yen symbol) \ (backslash)

(7e)16 (overline)
 ~ (tilde)

Font Convention

Bold Bold type indicates text on a window, other than the window title. Such text includes
menus, menu options, buttons, radio box options, or explanatory labels. For example:
• From the File menu, choose Open.
• Click the Cancel button.
• In the Enter name entry box, type your name.

Italics Italics are used to indicate a placeholder for some actual text to be provided by the user
or system. For example:
• Write the command as follows:

copy source-file target-file
• The following message appears:

A file was not found. (file = file-name)
Italics are also used for emphasis. For example:
• Do not delete the configuration file.

Code font A code font indicates text that the user enters without change, or text (such as
messages) output by the system. For example:
• At the prompt, enter dir.
• Use the send command to send mail.
• The following message is displayed:

The password is incorrect.

SD Bold code-font characters indicate the abbreviation for a command.

perm Underlined characters indicate the default value.

Symbol Convention

| In syntax explanations, a vertical bar separates multiple items, and has the
meaning of OR. For example:
A|B|C means A, or B, or C.

{ } In syntax explanations, curly brackets indicate that only one of the enclosed items
is to be selected. For example:
{A|B|C} means only one of A, or B, or C.

xii

Conventions for permitted characters

In most cases, only the following characters are permitted as syntax elements (if other
characters are permitted, the manual will state this explicitly):

Conditions for values to be specified for data areas

The table below lists the conditions for values to be specified for data areas.

[] In syntax explanations, square brackets indicate that the enclosed item or items
are optional. For example:
[A] means that you can specify A or nothing.
[B|C] means that you can specify B, or C, or nothing.

... In coding, an ellipsis (...) indicates that one or more lines of coding are not shown
for purposes of brevity.
In syntax explanations, an ellipsis indicates that the immediately preceding item
can be repeated as many times as necessary. For example:
A, B, B, ... means that, after you specify A, B, you can specify B as many
times as necessary.

Indicates a space character.

~ The item preceding this symbol must be specified according to the rule given in
the angle brackets (< >) following this symbol.

< > Information between these symbols indicates the syntax of the item.

Type Definition

Upper-case alphabetic characters A to Z

Lower-case alphabetic characters a to z

Alphabetic characters A to Z, a to z

Numeric characters 0 to 9

Alphanumeric characters A to Z, a to z, 0 to 9

Symbols !, #, $, %, &, ', (,), *, +, -, ., /, :, ;, <, =, >, ?, @, [, \,], ^, _, `, {,
|, }, ~

Hexadecimal Numeric values 0 to 9, A to F, and a to f

Pathname Symbolic names, slashes (/), and periods (.), depending on the
operating system being used.

Symbol Convention

xiii

Conventions: KB, MB, GB, and TB
This manual uses the following conventions:

• 1 KB (kilobyte) is 1,024 bytes.

• 1 MB (megabyte) is 1,0242 bytes.

• 1 GB (gigabyte) is 1,0243 bytes.

• 1 TB (terabyte) is 1,0244 bytes.

Conventions: Platform-specific notational differences
For the Windows version of OpenTP1, there are some notational differences from the
description in the manual. The following table describes these differences.

Value to be specified Condition

Service group name Must be an ASCII character string of up to 31 bytes. Note that null characters,
blanks, at marks (@), and periods cannot be used. When a service group name is
specified in a data area, it must end with a blank. This blank will not be included
in the length of the character string.

Service name Must be an ASCII character string of up to 31 bytes. Note that null and blank
characters cannot be used. When a service name is specified in a data area, it must
end with a blank. This blank will not be included in the length of the character
string.

Physical file name Must be a pathname consisting of the special file name followed by a name of 14
or less bytes. The entire pathname must not exceed 63 characters.

Logical file name Must be an alphanumeric character string of 1 to 8 bytes that begins with an
alphabetic character.

Item Description in the manual Change to:

Environment variable $aaaaaa
Example: $DCDIR

%aaaaaa%
Example: %DCDIR%

Path name separator Colon (:) Semicolon (;)

Directory name separator Slash (/) Backslash (\)

Absolute path name A path from the root directory
Example: /tmp

A path name from a drive letter and the
root directory
Example: C:\tmp

Executable file name File name only (without an
extension)
Example: mcfmngrd

File name with an extension
Example: mcfmngrd.exe

xiv

Conventions: Version numbers
The version numbers of Hitachi program products are usually written as two sets of
two digits each, separated by a hyphen. For example:

• Version 1.00 (or 1.0) is written as 01-00.

• Version 2.05 is written as 02-05.

• Version 2.50 (or 2.5) is written as 02-50.

• Version 12.25 is written as 12-25.

The version number might be shown on the spine of a manual as Ver. 2.00, but the same
version number would be written in the program as 02-00.

Acknowledgments
Quotations from X/Open CAE Specification Distributed Transaction Processing:
The XATMI Specification published by X/Open Company Limited

The following section comes from Chapter 7. COBOL Reference Manual Pages of the
above document.

Chapter 4. X/Open-Compliant Application Programming Interface
4.1 XATMI-Interfaced Application Programming Interface (TP~)

Quotations from X/Open CAE Specification Distributed Transaction Processing:
The TX (Transaction Demarcation) Specification published by X/Open Company
Limited

The following section comes from Chapter 6. COBOL Reference Manual Pages of the
above document.

Chapter 4. X/Open-Compliant Application Programming Interface
4.2 TX-Interfaced Application Programming Interface (TX~)

COBOL

COBOL was developed by CODASYL (the Conference on Data Systems Languages).
Of the OpenTP1 application programming interface specifications, the data
manipulation language (DML) specification was developed by relying on the
communication section in CODASYL COBOL (1981) as well as the RECEIVE,
SEND, COMMIT, and ROLLBACK statements and adding original specifications and
interpretations made by Hitachi, Ltd. The publisher of this manual expresses
acknowledgment to the original developer and presents the following
acknowledgment statement as requested by CODASYL. This statement is quoted from

make command make nmake

Item Description in the manual Change to:

xv

the acknowledgement in the original CODASYL COBOL specification titled COBOL
Journal of Development 1984.

Any organization interested in reproducing the COBOL report and specifications in
whole or in part, using ideas from this report as the basis for an instruction manual or
for any other purpose, is free to do so. However, all such organizations are requested
to reproduce the following acknowledgement paragraphs in their entirety as part of the
preface to any such publication. Any organization using a short passage from this
document, such as in a book review, is requested to mention "COBOL" in
acknowledgement of the source, but need not quote the acknowledgement.

COBOL is an industry language and is not the property of any company or group of
companies, or of any organization or group of organizations.

No warranty, expressed or implied, is made by any contributor or by the CODASYL
COBOL Committee as to the accuracy and functioning of the programming system
and language. Moreover, no responsibility is assumed by any contributor, or by the
committee, in connection therewith.

The authors and copyright holders of the copyrighted material used herein

FLOW-MATIC (trademark of Sperry Rand Corporation), Programming for the Univac
(R) I and II, Data Automation Systems copyrighted 1958, 1959, by Sperry Rand
Corporation; IBM Commercial Translator From No. F 28-8013, copyrighted 1959 by
IBM; FACT, DSI 27A5260-2760, copyrighted 1960 by Minneapolis-Honeywell

have specifically authorized the use of this material in whole or in part, in the COBOL
specifications. Such authorization extends to the reproduction and use of COBOL
specifications in programming manuals or similar publications.

Important note on this manual
Please check the availability of the products and manuals for HAmonitor,
ServerConductor/DeploymentManager, Cosminexus, and Job Management Partner 1/
Automatic Job Management System 2.

xvii

Contents

Preface i

Intended readers ...i
Organization of this manual ...i
Related publications ..ii
Conventions: Abbreviations .. iii
Conventions: Acronyms.. viii
Conventions: Diagrams ...x
Conventions: Differences between JIS and ASCII keyboards..................................x
Conventions: Fonts and symbols..xi
Conventions: KB, MB, GB, and TB ... xiii
Conventions: Platform-specific notational differences ... xiii
Conventions: Version numbers...xiv
Acknowledgments ..xiv
Important note on this manual...xv

1. Creating Application Programs 1

1.1 Coding application program ...2
1.1.1 Relationship between UAPs and programs...2
1.1.2 Coding rules ..20

1.2 Creating application programs (TCP/IP)..23
1.2.1 Procedure for creating application programs ..23
1.2.2 Creating stubs..31
1.2.3 Creating stub source file..34
1.2.4 stbmake - Stub source file creation ...34
1.2.5 Compiling and linking application program ...35

1.3 Creating XATMI interface application programs (TCP/IP, OSI TP)........................39
1.3.1 Procedure for creating XATMI-Interfaced application programs39
1.3.2 Creating stubs for XATMI interface..41
1.3.3 Creating stub source files for XATMI interface..48
1.3.4 stbmake - Stub source file creation for XATMI interface49
1.3.5 tpstbmk - XATMI-interfaced stub creation for OSI TP communication52

1.4 Executing application programs ...54
1.4.1 Starting and terminating application programs ...54
1.4.2 Operating environment of application programs started by OpenTP155
1.4.3 Environment variables of application programs ...57
1.4.4 Troubleshooting...58

xviii

2. Syntax of OpenTP1 Programs for COBOL-UAP Creation Programs 59

Format for explaining COBOL-UAP creation programs ... 60
Creating main and service programs .. 63
Create a main program (SUP, SPP, MHP) .. 64
Create a service program (SPP) .. 67
Create a service program (MHP) .. 71
System operation management (CBLDCADM)... 73
CBLDCADM ('COMMAND ') - Execute an operation command 74
CBLDCADM ('COMPLETE') - Report the completion of user server start processing 78
CBLDCADM('STATUS ') - Report the status of a user server...................................... 80
Audit log output (CBLDCADT)... 82
CBLDCADT('PRINT ') - Output audit log data ... 83
DAM file service (online facility: CBLDCDAM, offline facility: CBLDCDMB) 88
CBLDCDAM('CLOS') - Close a logical file .. 89
CBLDCDAM('END ') - Terminate using an unrecoverable DAM file 92
CBLDCDAM('HOLD') - Shut down a logical file ... 94
CBLDCDAM('OPEN') - Open a logical file .. 97
CBLDCDAM('READ') - Input a logical file block .. 102
CBLDCDAM('REWT') - Update a logical file block... 108
CBLDCDAM('RLES') - Release a logical file from the shutdown state.......................112
CBLDCDAM('STAT') - Reference the status of a logical file.......................................115
CBLDCDAM('STRT') - Start using an unrecoverable DAM file..................................119
CBLDCDAM('WRIT') - Output a logical file block .. 121
CBLDCDMB('BSEK') - Seek a physical file block ... 126
CBLDCDMB('CLOS') - Close a physical file.. 128
CBLDCDMB('CRAT') - Allocate a physical file ... 130
CBLDCDMB('DGET') - Input directly a physical file block 134
CBLDCDMB('DPUT') - Output directly a physical file block 137
CBLDCDMB('GET ') - Input a physical file block .. 140
CBLDCDMB('OPEN') - Open a physical file .. 143
CBLDCDMB('PUT ') - Output a physical file block.. 146
IST service (CBLDCIST) ... 149
CBLDCIST('CLOS') - Close an internode shared table ... 150
CBLDCIST('OPEN') - Open an internode shared table ... 152
CBLDCIST('READ') - Input an internode shared table record 154
CBLDCIST('WRIT') - Output an internode shared table record 157
User journal acquisition (CBLDCJNL) .. 160
CBLDCJNL('UJPUT ') - Acquire a user journal .. 161
Journal data editing (CBLDCJUP) ... 163
CBLDCJUP('CLOSERPT') - Close the jnlrput output file ... 164
CBLDCJUP('OPENRPT ') - Open the jnlrput output file... 166
CBLDCJUP('RDGETRPT') - Input journal data of the jnlrput output file................... 169
Resource lock control (CBLDCLCK) .. 179
CBLDCLCK('GET ') - Enable locking of a resource ... 180

xix

CBLDCLCK('RELALL ') - Release all resources from lock.......................................183
CBLDCLCK('RELNAME ') - Release resource from lock specified by name185
Message log output (CBLDCLOG)...187
CBLDCLOG('PRINT ') - Output message log..188
Message exchange (CBLDCMCF)..192
CBLDCMCF('ADLTAP ') - Delete an application timer start request194
CBLDCMCF('APINFO ') - Report the application information197
CBLDCMCF('CLOSE ') - Close the MCF environment...203
CBLDCMCF('COMMIT ') - Commit an MHP..205
CBLDCMCF('CONTEND ') - Terminate continuous-inquiry-response processing....208
CBLDCMCF('EXECAP ') - Activate an application program.....................................210
CBLDCMCF('MAINLOOP') - Start an MHP service...218
CBLDCMCF('OPEN ') - Open the MCF environment ..220
CBLDCMCF('RECEIVE ') - Receive a message..222
CBLDCMCF('RECVSYNC') - Receive a synchronous message228
CBLDCMCF('REPLY ') - Send a response message ..229
CBLDCMCF('RESEND ') - Resend a message ...230
CBLDCMCF('ROLLBACK') - Enable MHP rollback ...231
CBLDCMCF('SEND ') - Send a message ..233
CBLDCMCF('SENDRECV') - Exchange a synchronous message...............................234
CBLDCMCF('SENDSYNC') - Send a synchronous message235
CBLDCMCF('TACTCN ') - Establish connection ...236
CBLDCMCF('TACTLE ') - Release a logical terminal from shutdown status240
CBLDCMCF('TDCTCN ') - Release connection ...244
CBLDCMCF('TDCTLE ') - Shut down a logical terminal ..249
CBLDCMCF('TDLQLE ') - Delete a logical terminal's output queue.........................253
CBLDCMCF('TEMPGET ') - Accept temporarily-stored data.....................................256
CBLDCMCF('TEMPPUT ') - Update temporarily-stored data....................................260
CBLDCMCF('TIMERCAN') - Cancel user timer monitoring264
CBLDCMCF('TIMERSET') - Set user timer monitoring ...266
CBLDCMCF('TLSCN ') - Acquire a connection status ..270
CBLDCMCF('TLSCOM ') - Acquire status of MCF communication services275
CBLDCMCF('TLSLE ') - Acquire a logical terminal status280
CBLDCMCF('TLSLN ') - Acquire the acceptance status for a server-type connection
establishment request...284
CBLDCMCF('TOFLN ') - Stop accepting server-type connection establishment
requests ..288
CBLDCMCF('TONLN ') - Start accepting server-type connection establishment
requests ..291
Performance verification trace (CBLDCPRF) ..294
CBLDCPRF('PRFGETN ') - Report the sequential number for an acquired performance
verification trace ..295
CBLDCPRF('PRFPUT ') - Acquire user-specific performance verification traces297
Remote API facilities (CBLDCRAP)..299

xx

CBLDCRAP('CONNECT ') - Establish connection with a RAP-processing listener .. 300
CBLDCRAP('CONNECTX') - Establish connection with a RAP-processing listener 303
CBLDCRAP('DISCNCT ') - Release a connection with a RAP-processing listener ... 306
Remote procedure calls (CBLDCRPC, CBLDCRSV) ... 308
CBLDCRPC('CALL ') - Request a remote service.. 309
CBLDCRPC('CLOSE ') - Terminate an application program 328
CBLDCRPC('CLTSEND ') - Report data to CUP unidirectionally.............................. 330
CBLDCRPC('DISCARDF') - Reject the receiving of processing results 333
CBLDCRPC('DISCARDS') - Reject acceptance of specific processing results 335
CBLDCRPC('GETCLADR') - Acquire the node address of a client UAP 337
CBLDCRPC('GETERDES') - Acquire the descriptor of an asynchronous response-type
RPC request which has encountered an error ... 339
CBLDCRPC('GETGWADR') - Acquire the node address of a gateway...................... 341
CBLDCRPC('GETSVPRI') - Reference the schedule priority of a service request 343
CBLDCRPC('GETWATCH') - Reference the service response waiting interval 345
CBLDCRPC('OPEN ') - Start an application program .. 347
CBLDCRPC('POLLANYR') - Receive processing results in asynchronous mode 349
CBLDCRPC('SETSVPRI') - Set a schedule priority of a service request.................... 356
CBLDCRPC('SETWATCH') - Update the service response waiting interval 358
CBLDCRPC('SVRETRY ') - Retry a service program... 360
CBLDCRSV('MAINLOOP') - Start an SPP service... 362
Real time statistical information service (CBLDCRTS)... 364
CBLDCRTS('RTSPUT ') - Acquire real-time statistical information for arbitrary
section ... 365
TAM file service (CBLDCTAM).. 368
CBLDCTAM('ERS '/'ERSR'/'ZRS '/'ZRSR') - Delete a TAM table record 369
CBLDCTAM('FxxR'/'FxxU'/'VxxR'/'VxxU') - Input a TAM table record 374
CBLDCTAM('GST ') - Acquire TAM table status ... 380
CBLDCTAM('INFO') - Acquire TAM table information... 383
CBLDCTAM('MFY '/'MFYS'/'STR '/'WFY '/'WFYS'/'YTR ') - Update/add a TAM table
record .. 388
Transaction control (CBLDCTRN) .. 393
CBLDCTRN('BEGIN ') - Start a transaction.. 394
CBLDCTRN('C-COMMIT') - Enable commitment in chained mode 396
CBLDCTRN('C-ROLL ') - Enable rollback in chained mode..................................... 399
CBLDCTRN('INFO ') - Report the information about the current transaction 402
CBLDCTRN('U-COMMIT') - Enable commitment in unchained mode 404
CBLDCTRN('U-ROLL ') - Enable rollback in unchained mode 407
Online tester management (CBLDCUTO) ... 409
CBLDCUTO('T-STATUS') - Report the test status of a user server............................. 410

3. Syntax of OpenTP1 Programs for COBOL-UAP Creation Programs (DML
Interface) 413

Coding in data manipulation language ... 414

xxi

Data communication facility ...420
RECEIVE - Receive a message...421
SEND - Send a message ..424
Service facility...425
DISABLE - Terminate continuous-inquiry-response processing..................................426
RECEIVE - Accept temporarily-stored data ...428
ROLLBACK - Enable MHP rollback ...430
SEND - Activate an application program..431
SEND - Update temporarily-stored data ...437
SEND - Execute an operation command...439
SEND - Acquire a user journal..442

4. X/Open-compliant Application Programming Interface 445

X/Open-compliant function...446
XATMI-interfaced application programming interface (TP~)450
TPINTRO - COPY files for the XATMI interface ..451
TPACALL - Send a service request...454
TPADVERTISE - Advertise a service name ...459
TPCALL - Send a service request and synchronously await its reply461
TPCANCEL - Cancel a communication handle for an outstanding reply467
TPCONNECT - Establish a conversational service connection....................................469
TPDISCON - Terminate a conversational service connection abortively474
TPGETRPLY - Get a reply from a previous service request...476
TPRECV - Receive a message in a conversational connection.....................................481
TPRETURN - Return from a service routine ..486
TPSEND - Send a message in a conversational connection..490
TPSVCSTART - Start a service routine ..495
TPUNADVERTISE - Unadvertise a service name ...499
TX-interfaced application programming interface (TX~)...501
TXINTRO - COBOL data structures...502
TXBEGIN - Begin a transaction ...505
TXCLOSE - Close a set of resource managers ...507
TXCOMMIT - Commit a global transaction...509
TXINFORM - Return global transaction information...512
TXOPEN - Open a set of resource managers ..514
TXROLLBACK - Roll back a global transaction ...516
TXSETCOMMITRET - Set commit_return characteristic ...519
TXSETTIMEOUT - Set transaction_timeout characteristic ...522
TXSETTRANCTL - Set transaction_control characteristic..524

5. Syntax of OpenTP1 COBOL-UAP Creation Programs (Association Status
Notification) 527

Association operation (CBLDCXAT) ...528
CBLDCXAT('CONNECT') - Establish an association..529

xxii

Format of received communication events ... 531

6. Coding Samples 533

6.1 Coding samples for client/server UAPs (SUP, SPP DAM access) 534
6.2 Coding samples for client/server UAPs (SPP TAM access).................................. 543
6.3 Coding samples for message exchange UAPs (MHP)... 548
6.4 Coding samples for X/Open-compliant UAPs... 559

6.4.1 XATMI interface samples... 559
6.4.2 TX interface sample.. 586

7. Reference for Application Activation 591

Function format of user exit routine that determines the inheriting timer-start
message ... 592
Data format of MCF event that reports discarding of a timer-start message
(ERREVT4) .. 596

Appendix 599

A. Using OpenTP1 Remote Procedure Calls and XATMI-interfaced API Functions in
Combination .. 600

A.1 Modes of combined use .. 600
A.2 How to create stubs of application programs that use both OpenTP1 remote

procedure calls and XATMI-interfaced API functions................................. 601
A.3 Callable XATMI-interfaced API functions... 602

Index 605

xxiii

List of figures

Figure 1-1: Procedure for creating SUPs ..24
Figure 1-2: Procedure for creating an SPP by using a stub ..26
Figure 1-3: Procedure for creating an SPP that dynamically loads service functions27
Figure 1-4: Procedure for creating an MHP (when using a stub) ...29
Figure 1-5: Procedure for creating an MHP (when using dynamic loading of service

functions)...30
Figure 1-6: Procedure for creating UAPs that handle offline work..31
Figure 1-7: Stub creation procedure ...32
Figure 1-8: Procedure for creating UAP (XATMI interface TCP/IP, OSI TP).........................40
Figure 1-9: Procedure for creating stub for XATMI interface..42
Figure 6-1: Client/server UAP configuration sample (DAM access).....................................534
Figure 6-2: Client/server UAP configuration sample (TAM access)......................................543
Figure 6-3: Message exchange UAP configuration sample (MHP)548
Figure 6-4: Communication of request/response services receiving responses

synchronously..559
Figure 6-5: Communication of conversational service...573
Figure A-1: Modes of combined use of inter-process communication and the stubs

required..601

xxiv

List of tables

Table 1-1: Relationship between OpenTP1 facilities and programs for COBOL-UAP
creation ... 2

Table 1-2: Facilities available with SUPs and their request codes... 6
Table 1-3: Facilities available with SPPs and their request codes ... 10
Table 1-4: Facilities available with MHPs and their request codes ... 15
Table 1-5: Facilities available with UAPs that handle offline work and their request codes... 19
Table 1-6: Data types that can be used for type arguments.. 44
Table 1-7: UAP signals set by OpenTP1.. 56
Table 2-1: Correspondence between audit event types and reserved words 85
Table 2-2: Relationship between search types and index types ... 374
Table 2-3: TAM table status ... 381
Table 3-1: DML provided by OpenTP1 ... 414
Table 3-2: Clauses for specifying data names in communication description entry and their edit

formats .. 418
Table 4-1: Relationship between X/Open-compatible APIs and functions............................ 446
Table 4-2: Relationship between X/Open-compatible API functions and OpenTP1 UAPs .. 447
Table 7-1: MCF event ERREVT4 information .. 596
Table 7-2: Reason codes for ERREVT4 .. 598
Table A-1: XATMI-interfaced API functions that can be used by an SPP called by the function

dc_rpc_call()... 602

1

Chapter

1. Creating Application Programs

This chapter outlines how to write OpenTP1 application programs in the COBOL
language.

This chapter contains the following sections:

1.1 Coding application program
1.2 Creating application programs (TCP/IP)
1.3 Creating XATMI interface application programs (TCP/IP, OSI TP)
1.4 Executing application programs

1. Creating Application Programs

2

1.1 Coding application program

1.1.1 Relationship between UAPs and programs
Table 1-1 gives the relationship between OpenTP1 facilities for use with OpenTP1
UAPs and programs for creating UAPs in COBOL.

Table 1-1: Relationship between OpenTP1 facilities and programs for
COBOL-UAP creation

OpenTP1 facility Program called with CALL statement

System operation
management

Execute an operation command. CBLDCADM('COMMAND ')

Report the completion of user server
start processing.

CBLDCADM('COMPLETE')

Report the status of a user server. CBLDCADM('STATUS ')

DAM file service Close a logical file. CBLDCDAM('DCDAMSVC','CLOS')

Terminate using an unrecoverable
DAM file.

CBLDCDAM('DCDAMSVC','END ')

Shut down a logical file. CBLDCDAM('DCDAMSVC','HOLD')

Open a logical file. CBLDCDAM('DCDAMSVC','OPEN')

Input a logical file block. CBLDCDAM('DCDAMSVC','READ')

Update a logical file block. CBLDCDAM('DCDAMSVC','REWT')

Release a logical file from the
shutdown state.

CBLDCDAM('DCDAMSVC','RLES')

Reference the status of a logical file. CBLDCDAM('DCDAMSVC','STAT')

Start using an unrecoverable DAM file. CBLDCDAM('DCDAMSVC','STRT')

Output a logical file block. CBLDCDAM('DCDAMSVC','WRIT')

Seek a physical file block. CBLDCDMB('DCDAMINT','BSEK')

Close a physical file. CBLDCDMB('DCDAMINT','CLOS')

Allocate a physical file. CBLDCDMB('DCDAMINT','CRAT')

Input directly a physical file block. CBLDCDMB('DCDAMINT','DGET')

Output directly a physical file block. CBLDCDMB('DCDAMINT','DPUT')

1. Creating Application Programs

3

Input a physical file block. CBLDCDMB('DCDAMINT','GET ')

Open a physical file. CBLDCDMB('DCDAMINT','OPEN')

Output a physical file block. CBLDCDMB('DCDAMINT','PUT ')

IST service Close an internode shared table. CBLDCIST('CLOS')

Open an internode shared table. CBLDCIST('OPEN')

Input an internode shared table record. CBLDCIST('READ')

Output an internode shared table
record.

CBLDCIST('WRIT')

User journal
acquisition

Acquire a user journal. CBLDCJNL('UJPUT ')

Journal data
editing

Close the jnlrput output file. CBLDCJUP('CLOSERPT')

Open the jnlrput output file. CBLDCJUP('OPENRPT ')

Input journal data of the jnlrput output
file.

CBLDCJUP('RDGETRPT')

Look for
resources

Enable locking of a resource. CBLDCLCK('GET ')

Release all the resources from lock. CBLDCLCK('RELALL ')

Release resource from lock specified
by name.

CBLDCLCK('RELNAME ')

Audit log output Output audit log data. CBLDCADT('PRINT ')

Output message
log

Output message log. CBLDCLOG('PRINT ')

Message
exchange
processing

Report the application information. CBLDCMCF('APINFO ')

Close the MCF environment. CBLDCMCF('CLOSE ')

Commit an MHP. CBLDCMCF('COMMIT ')

Terminate continuous-inquiry-
response processing.

CBLDCMCF('CONTEND ')

Activate an application program. CBLDCMCF('EXECAP ')

OpenTP1 facility Program called with CALL statement

1. Creating Application Programs

4

Start an MHP service. CBLDCMCF('MAINLOOP')

Open the MCF environment. CBLDCMCF('OPEN ')

Receive a message. CBLDCMCF('RECEIVE ')

Receive a synchronous message. CBLDCMCF('RECVSYNC')

Send a response message. CBLDCMCF('REPLY ')

Resend a message. CBLDCMCF('RESEND ')

Enable MHP rollback. CBLDCMCF('ROLLBACK')

Send a message. CBLDCMCF('SEND ')

Exchange a synchronous message. CBLDCMCF('SENDRECV')

Send a synchronous message. CBLDCMCF('SENDSYNC')

Accept temporary-stored data. CBLDCMCF('TEMPGET')

Update temporary-stored data. CBLDCMCF('TEMPPUT')

Cancel user timer monitoring. CBLDCMCF('TIMERCAN')

Set user timer monitoring. CBLDCMCF('TIMERSET')

Performance
verification trace

Report the sequential number for an
acquired performance verification
trace.

CBLDCPRF('PRFGETN ')

Acquire user-specific performance
verification traces.

CBLDCPRF('PRFPUT ')

Remote API
facility

Establish a connection with a
RAP-processing listener.

CBLDCRAP('CONNECT ')

CBLDCRAP('CONNECTX')

Release a connection with a
RAP-processing listener.

CBLDCRAP('DISCNCT ')

Remote procedure
call

Request a remote service. CBLDCRPC('CALL ')

Terminate an application program. CBLDCRPC('CLOSE ')

Report data to CUP unidirectionally. CBLDCRPC('CLTSEND ')

Reject the receiving of processing
results.

CBLDCRPC('DISCARDF ')

OpenTP1 facility Program called with CALL statement

1. Creating Application Programs

5

Reject acceptance of specific
processing results.

CBLDCRPC('DISCARDS')

Acquire the node address of a client
UAP.

CBLDCRPC('GETCLADR')

Acquire the descriptor of an
asynchronous response-type RPC
request which has encountered an error

CBLDCRPC('GETERDES')

Acquire the node address of a gateway. CBLDCRPC('GETGWADR')

Reference the schedule priority of a
service request.

CBLDCRPC('GETSVPRI ')

Reference the service response waiting
interval.

CBLDCRPC('GETWATCH')

Start an application program. CBLDCRPC('OPEN ')

Receive processing results in
asynchronous mode.

CBLDCRPC('POLLANYR')

Set a schedule priority of a service
request.

CBLDCRPC('SETSVPRI ')

Update the service response waiting
interval.

CBLDCRPC('SETWATCH ')

Retry a service program. CBLDCRPC('SVRETRY ')

Start an SPP service. CBLDCRSV('MAINLOOP')

Real-time
statistical
information
service

Acquire real-time statistical
information for arbitrary section.

CBLDCRTS('RTSPUT ')

TAM file service# Delete a TAM table record. CBLDCTAM('ERS ')('ERSR')('ZRS
')('ZRSR')

Input a TAM table record. CBLDCTAM('FxxR')('FxxU')('VxxR')('Vx
xU')

Acquire TAM table status. CBLDCTAM('GST ')

Acquire TAM table information. CBLDCTAM('INFO')

Update/add a TAM table record. CBLDCTAM('MFY ')('MFYS')('STR ')('WFY
')('WFYS')('YTR ')

OpenTP1 facility Program called with CALL statement

1. Creating Application Programs

6

#: The APIs of the following TAM file services are not supported in COBOL language:

• Open a TAM table.

• Close a TAM table.

• Cancel the input of a TAM table record.

(1) Facilities and programs available with SUPs
Table 1-2 lists the facilities which can be used with SUPs and their request codes.

Table 1-2: Facilities available with SUPs and their request codes

Transaction
control

Start a transaction. CBLDCTRN('BEGIN ')

Enable commitment in chained mode. CBLDCTRN('C-COMMIT')

Enable rollback in chained mode. CBLDCTRN('C-ROLL ')

Report the information about the
current transaction.

CBLDCTRN('INFO ')

Enable commitment in unchained
mode.

CBLDCTRN('U-COMMIT')

Enable rollback in unchained mode. CBLDCTRN('U-ROLL ')

Online tester
management

Report the test status of a user server. CBLDCUTO('T-STATUS')

SUP operating
conditions

Facility
available
with SUP

Names of facilities available with SUPs and request
codes specified as data name at the beginning of

COBOL-UAP creation program

Outside Inside

System
operation
management

Execute an operation command. 'COMMAND' Y Y

Report the completion of user
server start processing.

'COMPLETE' Y N

Report the status of a user
server.

'STATUS ' Y Y

DAM file
service

Close a logical file. 'DCDAMSVC', 'CLOS' Y Y

OpenTP1 facility Program called with CALL statement

1. Creating Application Programs

7

Terminate using an
unrecoverable DAM file.

'DCDAMSVC', 'END ' Y Y

Shut down a logical file. 'DCDAMSVC', 'HOLD' Y Y

Open a logical file. 'DCDAMSVC', 'OPEN' Y Y

Input a logical file block. 'DCDAMSVC', 'READ' Y Y

Update a logical file block. 'DCDAMSVC', 'REWT' (Y) Y

Release a logical file from the
shutdown state.

'DCDAMSVC', 'RLES' Y Y

Reference the status of a logical
file.

'DCDAMSVC', 'STAT' Y Y

Start using an unrecoverable
DAM file.

'DCDAMSVC', 'STRT' Y Y

Output a logical file block. 'DCDAMSVC', 'WRIT' (Y) Y

IST service Close an internode shared table. 'DCISTSVC', 'CLOS' Y Y

Open an internode shared table. 'DCISTSVC', 'OPEN' Y Y

Input an internode shared table
record.

'DCISTSVC', 'READ' Y Y

Output an internode shared table
record.

'DCISTSVC', 'WRIT' Y Y

User journal
acquisition

Acquire a user journal. 'UJPUT ' Y Y

Lock for
resources

Enable locking of a resource. 'GET ' N Y

Release all the resources from
lock.

'RELALL ' N Y

Release resource from lock
specified by name.

'RELNAME' N Y

Audit log
output

Output audit log data. 'PRINT ' Y Y

SUP operating
conditions

Facility
available
with SUP

Names of facilities available with SUPs and request
codes specified as data name at the beginning of

COBOL-UAP creation program

Outside Inside

1. Creating Application Programs

8

Output
message log

Output message log. 'PRINT ' Y Y

Performance
verification
trace

Report the sequential number
for an acquired performance
verification trace.

'PRFGETN' Y Y

Acquire user-specific
performance verification traces.

'PRFPUT ' Y Y

Remote API
facility

Establish a connection with a
RAP- processing listener.

'CONNECT'

'CONNECTX'

Y N

Release a connection with a
RAP- processing listener.

'DISCNCT' Y N

Remote
procedure call

Request a remote service. 'CALL ' Y Y

Terminate an application
program.

'CLOSE ' Y N

Reject the receiving of
processing results.

'DISCARDF' Y Y

Reject acceptance of specific
processing results.

'DISCARDS' Y Y

Acquire the descriptor of an
asynchronous response-type
RPC request which has
encountered an error.

'GETERDES' Y Y

Reference the schedule priority
of a service request.

'GETSVPRI' Y Y

Reference the service response
waiting interval.

'GETWATCH' Y Y

Start an application program. 'OPEN ' Y N

Receive processing results in
asynchronous mode.

'POLLANYR' Y Y

Set a schedule priority of a
service request.

'SETSVPRI' Y Y

SUP operating
conditions

Facility
available
with SUP

Names of facilities available with SUPs and request
codes specified as data name at the beginning of

COBOL-UAP creation program

Outside Inside

1. Creating Application Programs

9

Legend:

Outside: Outside the transaction processing range

Update the service response
waiting interval.

'SETWATCH' Y Y

Real-time
statistical
information
service

Acquire real-time statistical
information for arbitrary
section.

'RTSPUT ' Y Y

TAM file
service

Delete a TAM table record. 'ERS'/'ERSR'/'ZRS
'/'ZRSR'

N Y

Input a TAM table record. 'FxxR'/'FxxU'/
'VxxR'/'VxxU'

N Y

Acquire TAM table status. 'GST' Y Y

Acquire TAM table information. 'INFO ' Y Y

Update/add a TAM table record. 'MFY'/'MFYS'/'STR
'/'WFY'/'WFYS'/
'YTR'

N Y

Transaction
control

Start a transaction. 'BEGIN' Y N

Enable commitment in chained
mode.

'C-COMMIT' N Y

Enable rollback in chained
mode.

'C-ROLL ' N Y

Report the information about the
current transaction.

'INFO ' Y Y

Enable commitment in
unchained mode.

'U-COMMIT' N Y

Enable rollback in unchained
mode.

'U-ROLL ' N Y

Online tester
management

Report the test status of a user
server.

'T-STATUS' Y Y

SUP operating
conditions

Facility
available
with SUP

Names of facilities available with SUPs and request
codes specified as data name at the beginning of

COBOL-UAP creation program

Outside Inside

1. Creating Application Programs

10

Inside: Inside the transaction processing range

Y: Can be used with SUPs.

(Y): Can be used only when accessing an unrecoverable DAM file.

N: Cannot be used with SUPs.

(2) Facilities and programs available with SPPs
Table 1-3 lists the facilities which can be used with SPPs and their request codes.

Table 1-3: Facilities available with SPPs and their request codes

SPP operating
conditions

Facility
available
with SPP

Names of facilities available with SUPs and request
codes specified as data name at the beginning of

COBOL-UAP creation program

Outside Inside

Root Not
root

System
operation
management

Execute an operation command. 'COMMAND ' Y Y Y

Report the status of a user server. 'STATUS ' Y Y Y

DAM file
service

Close a logical file. 'DCDAMSVC','CLOS' Y Y Y

Terminate using an
unrecoverable DAM file.

'DCDAMSVC','END ' Y Y Y

Shut down a logical file. 'DCDAMSVC','HOLD' Y Y Y

Open a logical file. 'DCDAMSVC','OPEN' Y Y Y

Input a logical file block. 'DCDAMSVC','READ' Y Y Y

Update a logical file block. 'DCDAMSVC','REWT' (Y) Y Y

Release a logical file from the
shutdown state.

'DCDAMSVC','RLES' Y Y Y

Reference the status of a logical
file.

'DCDAMSVC','STAT' Y Y Y

Start using an unrecoverable
DAM file.

'DCDAMSVC','STRT' Y Y Y

Output a logical file block. 'DCDAMSVC','WRIT' (Y) Y Y

1. Creating Application Programs

11

IST service Close an internode shared table. 'DCISTSVC','CLOS' Y Y Y

Open an internode shared table. 'DCISTSVC','OPEN' Y Y Y

Input an internode shared table
record.

'DCISTSVC','READ' Y Y Y

Output an internode shared table
record.

'DCISTSVC','WRIT' Y Y Y

User journal
acquisition

Acquire a user journal. 'UJPUT ' Y Y Y

Lock for
resources

Enable locking of a resource. 'GET ' N Y Y

Release all the resources from
lock.

'RELALL ' N Y Y

Release resource from lock
specified by name.

'RELNAME ' N Y Y

Audit log
output

Output audit log data. 'PRINT ' Y Y Y

Output
message log

Output message log. 'PRINT ' Y Y Y

Message
exchange
processing

Close the MCF environment. 'CLOSE ' O N N

Activate an application
program.

'EXECAP ' N Y Y

Open the MCF environment. 'OPEN ' O N N

Receive a synchronous message. 'RECVSYNC' Y Y Y

Resend a message. 'RESEND ' N Y Y

Send a message. 'SEND ' N Y Y

SPP operating
conditions

Facility
available
with SPP

Names of facilities available with SUPs and request
codes specified as data name at the beginning of

COBOL-UAP creation program

Outside Inside

Root Not
root

1. Creating Application Programs

12

Exchange a synchronous
message.

'SENDRECV' Y Y Y

Send a synchronous message. 'SENDSYNC' Y Y Y

Cancel user timer monitoring. 'TIMERCAN' Y Y Y

Set user timer monitoring. 'TIMERSET' Y Y Y

Performance
verification
trace

Report the sequential number
for an acquired performance
verification trace.

'PRFGETN ' Y Y Y

Acquire user-specific
performance verification traces.

'PRFPUT ' Y Y Y

Remote API
facility

Establish a connection with a
RAP- processing listener.

'CONNECT '

'CONNECTX'

Y N N

Release a connection with a
RAP-processing listener.

'DISCNCT ' Y N N

Remote
procedure call

Request a remote service. 'CALL ' Y Y Y

Terminate an application
program.

'CLOSE ' O N N

Report data to CUP
unidirectionally.

'CLTSEND ' Y Y Y

Reject the receiving of
processing results.

'DISCARDF' Y Y Y

Reject acceptance of specific
processing results.

'DISCARDS' Y Y Y

Acquire the node address of a
client UAP.

'GETCLADR' Y Y Y

Acquire the descriptor of an
asynchronous response-type
RPC request which has
encountered an error.

'GETERDES' Y Y Y

SPP operating
conditions

Facility
available
with SPP

Names of facilities available with SUPs and request
codes specified as data name at the beginning of

COBOL-UAP creation program

Outside Inside

Root Not
root

1. Creating Application Programs

13

Acquire the node address of a
gateway.

'GETGWADR' Y Y Y

Reference the schedule priority
of a service request.

'GETSVPRI' Y Y Y

Reference the service response
waiting interval.

'GETWATCH' Y Y Y

Start an application program. 'OPEN ' O N N

Receive processing results in
asynchronous mode.

'POLLANYR' Y Y Y

Set a schedule priority of a
service request.

'SETSVPRI' Y Y Y

Update the service response
waiting interval.

'SETWATCH' Y Y Y

Retry a service program. 'SVRETRY ' Y N N

Start an SPP service. 'MAINLOOP' O N N

Real time
statistical
information
service

Acquire real-time statistical
information for arbitrary
section.

'RTSPUT ' Y Y Y

TAM file
service

Delete a TAM table record. 'ERS '/'ERSR'/'ZRS
'/'ZRSR'

N Y Y

Input a TAM table record. 'FxxR'/'FxxU'/
'VxxR'/'VxxU'

N Y Y

Acquire TAM table status. 'GST ' Y Y Y

Acquire TAM table information. 'INFO ' Y Y Y

Update/add a TAM table record. 'MFY '/'MFYS'/'STR
'/'WFY'/'WFYS'/'YTR
'

N Y Y

SPP operating
conditions

Facility
available
with SPP

Names of facilities available with SUPs and request
codes specified as data name at the beginning of

COBOL-UAP creation program

Outside Inside

Root Not
root

1. Creating Application Programs

14

Legend:

Outside: Outside the transaction processing range

Inside: Inside the transaction processing range

Y: Can be used with SPPs.

(Y): Can be used only when accessing an unrecoverable DAM file.

O: Can be used only from the main program.

N: Cannot be used with SPPs.

Note
Root in the table indicates a root transaction branch. Not root indicates a
transaction branch other than the root transaction branch.

(3) Facilities and programs available with MHPs
Table 1-4 lists the facilities which can be used with MHPs and their request codes.

Transaction
control

Start a transaction. 'BEGIN ' Y N N

Enable commitment in chained
mode.

'C-COMMIT' N Y N

Enable rollback in chained
mode.

'C-ROLL ' N Y N

Report the information about the
current transaction.

'INFO ' Y Y Y

Enable commitment in
unchained mode.

'U-COMMIT' N Y N

Enable rollback in unchained
mode.

'U-ROLL ' N Y Y

Online tester
management

Report the test status of a user
server.

'T-STATUS' Y Y Y

SPP operating
conditions

Facility
available
with SPP

Names of facilities available with SUPs and request
codes specified as data name at the beginning of

COBOL-UAP creation program

Outside Inside

Root Not
root

1. Creating Application Programs

15

Table 1-4: Facilities available with MHPs and their request codes

MHP operating
conditions

Facility
available
with MHP

Names of facilities available with MHPs and request
codes specified as data name at the beginning of

COBOL-UAP creation program

Outside Inside

System
operation
management

Execute an operation command. 'COMMAND ' Y Y

Report the status of a user
server.

'STATUS ' Y Y

DAM file
service

Close a logical file. 'DCDAMSVC','CLOS' Y Y

Terminate using an
unrecoverable DAM file.

'DCDAMSVC','END ' Y Y

Shut down a logical file. 'DCDAMSVC','HOLD' Y Y

Open a logical file. 'DCDAMSVC','OPEN' Y Y

Input a logical file block. 'DCDAMSVC','READ' Y Y

Update a logical file block. 'DCDAMSVC','REWT' (Y) Y

Release a logical file from the
shutdown state.

'DCDAMSVC','RLES' Y Y

Reference the status of a logical
file.

'DCDAMSVC','STAT' Y Y

Start using an unrecoverable
DAM file.

'DCDAMSVC','STRT' Y Y

Output a logical file block. 'DCDAMSVC','WRIT' (Y) Y

IST service Close an internode shared table. 'DCISTSVC','CLOS' Y Y

Open an internode shared table. 'DCISTSVC','OPEN' Y Y

Input an internode shared table
record.

'DCISTSVC','READ' Y Y

Output an internode shared table
record.

'DCISTSVC','WRIT' Y Y

User journal
acquisition

Acquire a user journal. 'UJPUT ' Y Y

1. Creating Application Programs

16

Look for
resources

Enable locking of a resource. 'GET ' N Y

Release all the resources from
lock.

'RELALL ' N Y

Release resource from lock
specified by name.

'RELNAME ' N Y

Audit log
output

Output audit log data. 'PRINT ' Y Y

Output
message log

Output message log. 'PRINT ' Y Y

Message
exchange
processing

Report the application
information.

'APINFO ' NO Y

Close the MCF environment. 'CLOSE ' O O

Commit an MHP. 'COMMIT ' N Y

Terminate
continuous-inquiry-response
processing.

'CONTEND ' NO Y

Activate an application
program.

'EXECAP ' NO Y

Start an MHP service. 'MAINLOOP' O N

Open the MCF environment. 'OPEN ' O O

Receive a message. 'RECEIVE ' NO Y

Receive a synchronous message. 'RECVSYNC' Y Y

Send a response message. 'REPLY ' NO Y

Resend a message. 'RESEND ' N Y

Enable MHP rollback. 'ROLLBACK' N Y

Send a message. 'SEND ' NO Y

MHP operating
conditions

Facility
available
with MHP

Names of facilities available with MHPs and request
codes specified as data name at the beginning of

COBOL-UAP creation program

Outside Inside

1. Creating Application Programs

17

Exchange a synchronous
message.

'SENDRECV' Y Y

Send a synchronous message. 'SENDSYNC' Y Y

Accept temporary-stored data. 'TEMPGET ' NO Y

Update temporary-stored data. 'TEMPPUT ' NO Y

Cancel user timer monitoring. 'TIMERCAN' Y Y

Set user timer monitoring. 'TIMERSET' Y Y

Performance
verification
trace

Report the sequential number
for an acquired performance
verification trace.

'PRFGETN ' Y Y

Acquire user-specific
performance verification traces.

'PRFPUT ' Y Y

Remote API
facility

Establish a connection with a
RAP- processing listener.

'CONNECT '

'CONNECTX'

Y N

Release a connection with a
RAP-processing listener.

'DISCNCT ' Y N

Remote
procedure call

Request a remote 'CALL ' O Y

Terminate an application
program

'CLOSE ' O N

Report data to CUP
unidirectionally.

'CLTSEND ' Y Y

Reject the receiving of
processing results.

'DISCARDF' Y Y

Reject acceptance of specific
processing results.

'DISCARDS' Y Y

Acquire the descriptor of an
asynchronous-response type
RPC request which has
encountered an error.

'GETERDES' Y Y

MHP operating
conditions

Facility
available
with MHP

Names of facilities available with MHPs and request
codes specified as data name at the beginning of

COBOL-UAP creation program

Outside Inside

1. Creating Application Programs

18

Reference the schedule priority
of a service request.

'GETSVPRI' Y Y

Reference the service response
waiting interval.

'GETWATCH' Y Y

Start an application program. 'OPEN ' O N

Receive processing results in
asynchronous mode.

'POLLANYR' O Y

Set a schedule priority of a
service request.

'SETSVPRI' Y Y

Update the service response
waiting interval.

'SETWATCH' Y Y

Real time
statistical
information
service

Acquire real-time statistical
information for arbitrary
section.

'RTSPUT ' Y Y

TAM file
service

Delete a TAM table record. 'ERS '/'ERSR'/'ZRS
'/'ZRSR'

N Y

Input a TAM table record. 'FxxR'/'FxxU'/
'VxxR'/'VxxU'

N Y

Acquire TAM table status. 'GST ' Y Y

Acquire TAM table information. 'INFO' Y Y

Update/add a TAM table record. 'MFY '/'MFYS'/'STR
'/'WFY'/'WFYS'/'YTR
'

N Y

Transaction
control

Start a transaction. 'BEGIN ' O N

Enable commitment in
unchained mode.

'U-COMMIT' N O

Report the information about the
current transaction

'INFO ' Y Y

Enable rollback in unchained
mode.

'U-ROLL ' N O

MHP operating
conditions

Facility
available
with MHP

Names of facilities available with MHPs and request
codes specified as data name at the beginning of

COBOL-UAP creation program

Outside Inside

1. Creating Application Programs

19

Legend:

Outside: Outside the transaction processing range

Inside: Inside the transaction processing range

Y: Can be used with an MHP.

(Y): Can be used only when accessing an unrecoverable DAM file.

O: Can be used only from the main program.

NO: The function can be used only in the service-program range of
nontransaction attribute MHPs.

N: Cannot be used with an MHP.

Note
Outside the transaction processing range means the range of nontransaction
attribute MHPs or MHP main programs.

(4) Facilities and programs available with UAPs that handles offline work
Table 1-5 lists the facilities which can be used with UAPs that handle offline work and
their request codes.

Table 1-5: Facilities available with UAPs that handle offline work and their
request codes

Online tester
management

Report the test status of a user
server.

'T-STATUS' Y Y

Facility available with UAP
That handles offline work

Names of facilities available with UAP that handles offline work
and request codes specified as data name at the beginning of

COBOL-UAP creation program

DAM file service Seek a physical file block. 'DCDAMINT','BSEK'

Close a physical file. 'DCDAMINT','CLOS'

Allocate a physical file. 'DCDAMINT','CRAT'

Input directly a physical file block. 'DCDAMINT','DGET'

Output directly a physical file block. 'DCDAMINT','DPUT'

MHP operating
conditions

Facility
available
with MHP

Names of facilities available with MHPs and request
codes specified as data name at the beginning of

COBOL-UAP creation program

Outside Inside

1. Creating Application Programs

20

1.1.2 Coding rules
(1) Notes on coding

Write UAPs to be used with OpenTP1 by coding them in COBOL/2# or COBOL85.
OpenTP1 facilities are made available by using COBOL-UAP creation programs
residing in the OpenTP1 library.

In addition, any system calls and program libraries can also be used. However, it is
recommendable to use OS-provided standard statements and system calls when
writing UAPs in order to assure high portability of the UAPs.

When creating UAPs in the COBOL language which use system calls and arbitrary
program libraries, note the following:

1. When issuing a signal from the UAP, do not register the type of a signal handler
(SIGILL or SIGBUS) which creates a core file during operation with the signal
default specified. If the signal handler is registered, a core file is not created even
when the program terminates abnormally. As a result, troubleshooting is
impossible.

2. When issuing a signal from the UAP, do not use COBOL-UAP creation programs
in the OpenTP1 library from the signal handler.

3. Do not use the following system call:

• chdir (change of the current working directory)

Input a physical file block. 'DCDAMINT','GET '

Open a physical file. 'DCDAMINT','OPEN'

Output a physical file block. 'DCDAMINT','PUT '

Journal data editing Close the jnlrput output file. 'CLOSERPT'

Open the jnlrput output file. 'OPENRPT '

Input journal data of the jnlrput output
file.

'RDGETRPT'

Performance verification trace Report the sequential number for an
acquired performance verification
trace.

'PRFGETN '

Acquire user-specific performance
verification traces.

'PRFPUT '

Facility available with UAP
That handles offline work

Names of facilities available with UAP that handles offline work
and request codes specified as data name at the beginning of

COBOL-UAP creation program

1. Creating Application Programs

21

4. Do not use the following system calls after the UAP start statement:

• fork (new process creation)

• exec (file execution)

• system (shell command issuance)

5. Do not use a jump statement (e.g., GOTO statement) which extends over service
programs.

6. When using another program library, do not use Xlib and OSF/Motif programs
which control event-driven dispatching.

7. When creating UAPs using the COBOL language, make sure that data areas such
as unique-name-1 always begin at an even address. If a data area such as
unique-name-1 begins at an odd address, a bus error will occur.

Suppose that a unique-name-3 data area that is to be used in CBLDCMCF is defined
in an array, the send data length in bytes is an odd number, and SYNC is not
specified for the structure (in other words, no boundary alignment will be
performed). In this situation, if a second data item in the array is set as an
argument in CBLDCMCF, a bus error will occur when function processing is
attempted.

8. The MCF event information area for MCF event processing MHPs (C system or
V system) that was created in the COBOL language must have a spare area length
at least 2 bytes longer than the spare area length of the MCF event information
area for C.

If the OS is HP-UX, the bind mode for linkage must be specified as immediate. If an
executable file created in another mode is used as an OpenTP1 UAP, the system
operation is unpredictable. To check that the bind mode of the created UAP is
immediate, use the chatr command of the OS.

#

COBOL/2 cannot be used depending on the OS.

(2) Notes on naming
We recommend that you include a certain prefix character string in names of any
variables or definitions coded by the user. If any names duplicate those used by the OS
or OpenTP1, system operation is unpredictable.

(a) Service program names, program names, and entry names
Service programs must be given names which are 20 or less alphanumeric characters
in length and begin with an alphabetic character. Do not give service programs or
entries the following names:

• Names beginning with dc

1. Creating Application Programs

22

• Names beginning with CBLDC

• Names beginning with tx or TX

• Names beginning with tp or TP

(b) External variable names
Do not give external variables the following names except when such names are used
according to the instructions in this manual:

• Names beginning with dc

• Names beginning with CBLDC

• Names beginning with tx or TX

• Names beginning with tp or TP

(3) Termination method
Programs (main programs) which are directly activated by OpenTP1 must terminate
with STOP RUN. Service programs must terminate with EXIT PROGRAM. If a main
program does not terminate with STOP RUN, COBOL85 count and other information
will not be output for the program.

(4) When using Windows
When using OpenTP1 (TP1/LiNK) with Windows, compile and link-edit a UAP
conforming to the specifications of the COBOL complier for Windows.

1. Creating Application Programs

23

1.2 Creating application programs (TCP/IP)

1.2.1 Procedure for creating application programs
(1) Procedure for creating an SUP

The figure below shows the procedure for creating an SUP.

1. Creating Application Programs

24

Figure 1-1: Procedure for creating SUPs

(2) Procedure for creating an SPP
The SPP creation procedure depends on whether the SPP uses a stub or uses dynamic
loading of service functions.

1. Creating Application Programs

25

(a) Creating an SPP by using a stub
The figure below shows the procedure for creating an SPP by using a stub.

1. Creating Application Programs

26

Figure 1-2: Procedure for creating an SPP by using a stub

1. Creating Application Programs

27

(b) Creating an SPP that dynamically loads service functions
The figure below shows the procedure for creating an SPP that dynamically loads
service functions.

Figure 1-3: Procedure for creating an SPP that dynamically loads service
functions

1. Creating Application Programs

28

(3) Procedure for creating an MHP
The MHP creation procedure depends on whether the MHP uses a stub or uses
dynamic loading of service functions.

(a) Procedure for creating an MHP (when using a stub)
The figure below shows the procedure for creating an MHP that uses a stub.

1. Creating Application Programs

29

Figure 1-4: Procedure for creating an MHP (when using a stub)

1. Creating Application Programs

30

(b) Procedure for creating an MHP (when using dynamic loading of service
functions)
The figure below shows the procedure for creating an MHP that uses dynamic loading
of service functions.

Figure 1-5: Procedure for creating an MHP (when using dynamic loading of
service functions)

1. Creating Application Programs

31

(4) Procedure for creating a UAP that handles offline work
The figure below shows the procedure for creating a UAP that handles offline work.

Figure 1-6: Procedure for creating UAPs that handle offline work

1.2.2 Creating stubs
UAPs used with the OpenTP1 require libraries for fulfilling inter-UAP service
requests. One of these libraries is called a stub.

(1) UAPs requiring stubs
Of all UAPs used with OpenTP1, UAPs having service programs (SPP, MHP) require

1. Creating Application Programs

32

a stub. However, a stub is not required when all service functions are put in the UAP
shared library from where they are dynamically loaded. The UAP shared library is a
shared library created by linking the UAP object files compiled from UAP source files.

Note that neither UAPs that handle offline work nor SUPs require a stub because they
do not have a service function.

(2) Stub creation procedure
Before creating a stub, create a file (RPC interface definition file) in which UAP
service programs are defined. Execute the stbmake command with this file as the
argument.

When the stbmake command is executed, a source file (C-language source file) for
the stub is created. Compile this file with the C-language compiler and link it to the
object file of the UAP.

When modifying the stub, create the UAP from scratch. Modify the RPC interface
definition file, recreate the stub, and link it to the object file of the recompiled UAP.

The figure below shows the stub creation procedure.

Figure 1-7: Stub creation procedure

(3) Creation of RPC interface definition file
When creating a stub, create a file which defines program IDs to the SPP and MHP
services. What is defined here is called the RPC interface definition. The file
containing this definition is called the RPC interface definition file.

1. Creating Application Programs

33

Create an RPC interface definition file for each executable file of the SPP or MHP.

(a) Format of RPC interface definition
Write the RPC interface definition in the following format:

Format

Description

This statement specifies the names of the program-IDs to the SPP and MHP
service programs. Each program ID name must be a COBOL program name. Use
20 characters or fewer to specify each program ID.

The program IDs must correspond to the service names as specified in the user
service definition.

Comments can be added to the RPC interface definition. Begin each comment
with a forward slash asterisk combination (/*) and terminate it with an asterisk
forward-slash combintaion (*/). Comments cannot be nested. Comments cannot
be written within a keyword, identifier, or other character string.

More than one entry statement can be written in one file. An example of RPC
interface definition is given below.

Example

Specification of RPC interface definition for a UAP which has service programs
with their program IDs identified by sv01 and sv02 (use either format below)

(4) Name of RPC interface definition file
The name of an RPC interface definition file must be appended with a suffix.def
which indicates that the file is an RPC interface definition file. The RPC interface
definition file may be placed under any directory that the stbmake command can
search.

The name of an RPC interface definition file is up to 255 characters long. Note,
however, that a lower upper limit is used under some OSs.

After the stbmake command is executed, stub source files are created under names

entry "program-ID"["program-ID"...];

entry "sv01";
entry "sv02";

entry "sv01" "sv02";

1. Creating Application Programs

34

different from those in the RPC interface definition file. Therefore, the RPC interface
definition file will not be used when the OpenTP1 is active.

1.2.3 Creating stub source file
To create the source file of the stub, execute the stbmake command with the RPC
interface definition file name as the argument.

(1) File created by stbmake command
When the stbmake command is executed, the following file is created (xxxxx is the
RPC interface definition file name minus the suffix.def).

• Stub source file (file name: xxxxx_sstb.c)

The name of the source file can be changed using an option to the command.

The name of a source file is up to 255 characters long. Note, however, that a lower
upper limit is used under some OSs.

Compile the stub source file with the C-language compiler and link it with the UAP
object file.

1.2.4 stbmake - Stub source file creation
(1) Format

(2) Description
Creates a stub source file from the RPC interface definition file.

To create a UAP that will use both OpenTP1 remote procedure calls and the XATMI
interface, see the explanation about the stbmake command in A. Using OpenTP1
Remote Procedure Calls and XATMI-interfaced API Functions in Combination.

(3) Options
-s stub-source-file-name ~ <pathname>

Specify the pathname of the stub source file to be created. If no pathname is specified
here, the source file name is the same as the RPC interface definition file name except
that the suffix.def is replaced with _sstb.c and the source file is created in the
current directory.

If a source file with the specified file name is already present, it is replaced with the
created source file and is lost.

(4) Flags
definition-file-name ~ <pathname>

stbmake [-s [stub-source-file-name]] definition-file-name

1. Creating Application Programs

35

Specify the pathname of the RPC interface definition file.

(5) Note
The names of files that the stbmake command can take as input or create as output
are up to 255 characters long. Note, however, that a lower upper limit is used under
some OSs.

(6) Example
An example of using the stbmake command is given below.

Example:

Creating a stub source file from an RPC interface definition file test.def in the
current directory.

Format 1:

A stub source file test_sstb.c is created from an RPC interface definition file
test.def in the current directory.

Format 2:

A directory stub is created under the current directory and a stub source file test.c
is created in the created directory.

1.2.5 Compiling and linking application program
For details on how to compile and link UAPs, see the reference manual of the OS to
be used.

Note on UAP creation

Be careful of the OpenTP1 version in creating a UAP. Some system services do
not accept statements from UAPs in old versions. To use a UAP created in an old
version, the UAP should be recompiled in the OpenTP1 version.

(1) UAP compilation
To create the object file of a UAP written in COBOL language, compile the source
program with the COBOL compiler.

See the COBOL Language manual for details on how to compile UAPs.

(2) Stub compilation
To create the object file of a stub, compile the stub source file with the C compiler.

stbmake test.def

stbmake -s stub/test.c test.def

1. Creating Application Programs

36

(3) Linkage
The following notes (#1 to #3) apply to files treated in (a) to (d) below.

#1:

The object file for transaction control is required to execute transactions that
access the resource manager via the XA interface. Note that any resource manager
provided by OpenTP1 is accessed by the XA interface. An object file for
transaction control is created by using an OpenTP1 command (trnmkobj
command). For details on the trnmkobj command, see the manual OpenTP1
Operation.

#2:

The object file provided by resource manager is required to access the resource
manager. The following arguments can be specified in the linkage command to
link object files provided by OpenTP1:

Arguments for using the message exchange facility: -lmcf and -lmnet

Argument for using the DAM access facility: -ldam

Argument for using the TAM access facility: -ltam

Arguments for using the ISAM facility: -lismb, -lisam, and -lrsort

Argument specified for using message queuing: -lmqacb

For details on how to link object files for a non-Hitachi resource manager, see the
documentation for the resource manager.

#3:

The object file provided by online tester is required to use the
CBLDCUTO('T-STATUS') function, which reports the user server test status. The
following argument is specified to link the object file for the online tester:

Argument for reporting the user server test status: -luto

(a) Files to be linked to SPP and MHP
The executable file of an SPP or MHP is linked to the following files when it is created:

• UAP object file (main and service programs)

• Stub object file

• Object file for transaction control#1

• Object file provided by resource manager#2

• Object file provided by online tester#3

1. Creating Application Programs

37

• OpenTP1 library

• COBOL library (COBOL85 library if the UAP was created in the COBOL85
language)

(b) Files to be linked to SUP
The executable file of a UAP that handles offline work is linked to the following files
when it is created:

• UAP object file (main program)

• Object file for transaction control#1

• Object file provided by resource manager#2

• Object file provided by online tester#3

• OpenTP1 library

• COBOL library (COBOL85 library if the UAP was created in the COBOL85
language)

(c) Files to be linked to UAP that handles offline work
The executable file of a UAP that handles offline work is linked to the following files
when it is created:

• UAP object file (main program)

• OpenTP1 library

• COBOL library (COBOL85 library if the UAP was created in the COBOL85
language)

(d) Files to be linked to an SPP or MHP that performs dynamic loading of
service functions
The executable file of an SPP that dynamically loads service functions is linked to the
following files when the file is created:

• UAP object file (main function)

• OpenTP1 library

• Object file for transaction control#1

• Object file provided by resource manager#2

• Object file provided by online tester#3

In addition to the above files, the following files are required when the SPP also uses
a service search that employs a stub:

1. Creating Application Programs

38

• UAP object file (service function)

• Stub object file

(4) Note
If the OS is HP-UX, the bind mode for linkage must be specified as immediate. If an
executable file created in another mode is used as an OpenTP1 UAP, the system
operation is unpredictable. To check that the bind mode of the created UAP is
immediate, use the chatr command of the OS.

1. Creating Application Programs

39

1.3 Creating XATMI interface application programs (TCP/IP, OSI TP)

This section explains how to create a UAP that uses the XATMI interface when the
communication protocol is TCP/IP or OSI TP.

A UAP that uses the XATMI interface can be created in the same manner as for
OpenTP1 UAPs except for the following two points: (1) stub creation method
(execution formats of stbmake and tpstbmk commands) and (2) files to be linked
with the UAP. For the UAP creation procedure, see 1.1 Coding application program
and 1.4 Executing application programs.

1.3.1 Procedure for creating XATMI-Interfaced application programs
The figure below shows the procedure for creating UAP.

1. Creating Application Programs

40

Figure 1-8: Procedure for creating UAP (XATMI interface TCP/IP, OSI TP)

1. Creating Application Programs

41

1.3.2 Creating stubs for XATMI interface
This subsection explains how to create the stub for the XATMI interface. For UAP
communication through the XATMI interface, stubs are necessary on both the client
and server UAPs.

Before creating a stub, create a file (XATMI interface definition file) in which
information about the XATMI interface is defined, then execute one of the following
stub creation commands:

• For a UAP that supports TCP/IP communication: stbmake command

• For a UAP that supports OSI TP communication: tpstbmk command

Compile the created stub source file with the C-language compiler and link it to the
UAP object file.

The figure below outlines the procedure for creating the stub for the XATMI interface.

1. Creating Application Programs

42

Figure 1-9: Procedure for creating stub for XATMI interface

(1) XATMI interface definition (for client UAP)
The XATMI interface definition for the client UAP (SUP or SPP) is in the format
explained below.

Format

Description

called_servers={"server-definition-file-name"
 [,"server-definition-file-name"]...};

1. Creating Application Programs

43

Specify all XATMI interface definition file names defined in the server UAP.
When a server UAP definition file is specified, the typed record defined in the
server definition file can be used by the client UAP process.

Parameters

• server-definition-file-name
Specify the file name of the XATMI interface definition file of the server
UAP. The definition file name must have a suffix.def.

Multiple definition files names can be specified in braces {} in one
called_servers statement. It is also possible to write multiple
called_servers statements in one XATMI interface definition file.

Example

Defining a client UAP which communicates with server UAP1 and server UAP2
through the XATMI interface (assuming that the server UAP1 definition file name
is serv1.def and the server UAP2 definition file name is serv2.def).

Format 1:

Format 2:

(2) XATMI interface definition (for server UAP)
For the XATMI interface definition of a server UAP, the following items must be
specified in any order:

• Definition of the typed record to be used

• Definition of service function name and argument information

• called_servers statement (if the server UAP is to call another server UAP)

(a) Definition of the typed record to be used
Format

Description

called_servers = {"serv1.def" ,"serv2.def"};

called_servers = {"serv1.def" };
called_servers = {"serv2.def" };

type-name subtype-name{
 data-type data-name;
 [data-type data-name;]
 :
 :
 } ;

1. Creating Application Programs

44

Define the type, subtype, and structure of the typed record to be used with the
server UAP. If the server UAP is to call service from another server UAP process,
the typed record which can be used by the calling process can also be used by any
local process. Therefore, define here only the typed record to be used for I/O by
the service function within the local process. However, X_OCTET will always be
recognized. If X_OCTET is defined, the execution of the stub creation command
(stbmake or tpstbmk) will encounter an error.

X_C_TYPE cannot be used for COBOL APIs. If X_C_TYPE is defined, the
execution of the stub creation command (stbmake or tpstbmk) with the -b
option specified results in an error.

Parameters

• type-name
Specify the type name of the typed record to be used with the server UAP.

• subtype-name
Specify the subtype name of the typed record to be used with the server UAP.

• data-type
Specify the data type of the data contained in the structure of the typed record
to be used with the server UAP.

• data-name
Specify the data name of the data contained in the structure of the typed
record to be used with the server UAP.

Data types that can be used for type arguments

Table 1-6 lists the data types that can be used as types. The Identifier column indicates
the data type to be specified in the XATMI interface definition. The COBOL data
column indicates the typed record to be actually defined for the stub. When converting
the data type for communication with a non-OpenTP1 system, include the identifier to
be converted in the XATMI interface definition.

Table 1-6: Data types that can be used for type arguments

Type Identifier COBOL data Communication
protocol

Remarks

TCP/IP OSI TP

X_OCTET --#1 --#1 Y Y None

1. Creating Application Programs

45

Legend:

Y: Available with the communication protocol

N: Unavailable with the communication protocol

--: Always treated as an identifier not to be converted

#1: X_OCTET will always be recognized, regardless of whether it is defined. If
X_OCTET is specified in the XATMI interface definition, the execution of a stub
creation command will encounter an error.

#2: This identifier is available. However, the following identifier should be used for
new stub creation:

octet or tchar for X_COMMON

str or tstr for X_C_TYPE

X_COMMON short a PIC S9(9) COMP-5 Y Y None

short
a[n]

PIC S9(9) COMP-5 OCCURS
n TIMES

Y Y None

long a PIC S9(9) COMP-5 Y Y None

long a[n] PIC S9(9) COMP-5 OCCURS
n TIMES

Y Y None

char a#2 PIC X Y Y Array not to be
converted

octet a PI C X Y Y Array not to be
converted

tchar a PIC X O Y Array to be
converted

X_COMMON char

a[n]#2
PIC X(n) Y Y Array not to be

converted

octet
a[n]

PIC X(n) Y Y Array not to be
converted

tchar
a[n]

PIC X(n) O Y Array to be
converted

X_C_TYPE --#3 --#3 N N None

Type Identifier COBOL data Communication
protocol

Remarks

TCP/IP OSI TP

1. Creating Application Programs

46

#3: X_C_TYPE cannot be used for COBOL APIs. If X_C_TYPE is defined, the
execution of a stub creation command (stbmake or tpstbmk) with the -b option
specified results in an error.

Example

(b) Definition of service function name and argument information
Format

Description

Specify the program name of the service program in the server UAP and the type
name and subtype name of the typed record to be passed as the arguments. The
argument is the data member of the svc_info structure which is the actual
argument to the service program.

For the X_OCTET type, specify only the type name because there is no subtype. If
intended processing does not involve reference to the data member of the
svc_info structure in the service program, assign nothing or void to the
argument.

The TPCALL, TPACALL, and TPCONNECT can call a service program without
sending the typed record. If data indicated by a member of the svcinfo structure
with a service program is not to be referenced explicitly, assign nothing or void to
the argument.

To call a specified service program, set NULL for the pointer to the typed record
sent with the TPCALL, TPACALL, or TPCONNECT functions at the client side. For
the X_OCTET type, a specified service program can be called even if NULL is not
set for the pointer or the length of the sent data is zero.

If specification is not to limit the typed record to be received as an argument,
assign ALL to the argument. The service program defined with argument ALL can
receive any type of typed records as long as they are recognizable in the local
process.

Parameters

• service-program-name
Specify the program name in the server UAP.

X_COMMON subtype1 {
 char name[8];
 long data[10];
 long flags;
 };

service service-program-name {
 (type-name [subtype-name])(ALL)([void])};

1. Creating Application Programs

47

• type-name
Specify the type name given to the argument to the function.

• subtype-name
Specify the subtype name given to the argument to the function.

Examples

Example 1:

Example 2 (argument type is X_OCTET):

Example 3 (service program without argument reception):

Example 4 (service program without argument limitation):

(c) If the server UAP is to call another server UAP:
Specify the XATMI interface definition (called_servers statement) of the client
UAP.

(3) Name of XATMI interface definition file
The name of an XATMI interface definition file must be appended with a suffix.def
which indicates that the file is an XATMI interface definition file. The XATMI
interface definition file may be placed under any directory that the stub creation
command (stbmake or tpstbmk) can search.

The name of an XATMI interface definition file is up to 255 characters long. Note,
however, that a lower upper limit is used under some OSs.

After the stub creation command (stbmake or tpstbmk) is executed, stub source files
are created under names different from those in the XATMI interface definition file.
Therefore, the XATMI interface definition file will not be used when the OpenTP1 is
active.

(4) Including the definition file
If the same typed record is to be used by different processes, the user can create a
definition file for the shared typed record and include it in the definition file for each
process.

service svc_func1(X_COMMON subtype1);

service svc_func2(X_OCTET);

service svc_func3(void); or service svc_func3();

service svc_func4(ALL);

1. Creating Application Programs

48

The statement for including the definition file is in the same format as in the C
language as follows:

The include file will be read through the search path specified by the -i option to the
stub creation command (stbmake or tpstbmk command). If the appropriate file is not
found in the search path, the current directory will finally be searched.

The file to be included may be given any name (the suffix need not be .h). However,
if the file is directly specified in the stub creation command (stbmake or tpstbmk)
as the XATMI interface definition file, observe the definition naming convention.

The contents of the file to be included are the same as those of the XATMI interface
definition file. However, the file should not contain the definition of a service function
within the local process in order to avoid name duplication.

(5) Naming conventions
1. Service programs and subtypes must be named according to the OpenTP1 rules

as follows:

• Any name cannot begin with dc, DC, CBLDC, tx, TX, tp, or TP.

• Service program names must be 20 characters or less long.

• The maximum subtype name length is 32 characters. Of these characters, the
first 16 characters are valid. These 16 characters are checked for duplication.

• Up to 32 characters can be used for the data names of data used in the
structures of typed records.

2. Service program names must be unique within the same process.

3. Subtype names may be duplicate in the same process only if the types and
structures are identical. Otherwise, the stub creation command (stbmake or
tpstbmk) returns with an error.

4. Identical service program names or subtype names may be used in different
processes. However, processes treated as different servers will be regarded as the
same process by the client if they are called from one client.

1.3.3 Creating stub source files for XATMI interface
Create a stub for the XATMI from the created XATMI interface definition file.

Before creating a stub, create a file (XATMI interface definition file) in which
information about the XATMI interface is defined, and then execute one of the
following stub creation commands:

• stbmake command (when the UAP is for TCP/IP communication)

#include <file-name> or #include "file-name"

1. Creating Application Programs

49

• tpstbmk command (when the UAP is for OSI TP communication)

Create stubs for the client and server UAPs in the following way:

(1) Files created by the stbmake command or tpstbmk command
The following three files are created by executing the stbmake command (xxxxx is the
XATMI interface definition file name minus the suffix.def):

• XATMI stub source file (default file name: xxxxx_stbx.c)

• XATMI stub header file (default file name: xxxxx_stbx.h)

• XATMI stub copy file (the file name consists of the subtype name followed
by.cbl)

(a) XATMI stub source file
The XATMI stub source file will be compiled with the C-language compiler and linked
to the UAP object file.

(b) XATMI stub header file
The XATMI stub header file will be included in the UAP source file and XATMI stub
source file.

(c) XATMI stub copy file
The created XATMI stub copy file is invoked by the COPY statement from UAPs
written in COBOL. It makes typed records available.

The name of an XATMI stub copy file is up to 255 characters long. Note, however, that
a lower upper limit is used under some OSs.

The file name and the directory containing the file can be changed using appropriate
command options.

1.3.4 stbmake - Stub source file creation for XATMI interface
(1) Format

(2) Description
Creates XATMI stub source files needed when XATMI-interfaced communication is
to be used under TCP/IP. The stbmake command creates the following files by
referring to the XATMI interface definition file:

• XATMI stub source file

stbmake [-x] [-b] [-S stub-source-file-name]
 [-H stub-header-file-name]
 [-i include-file-pathname]
 [-m server-definition-file-pathname]
 [-p] definition-file-name

1. Creating Application Programs

50

• XATMI stub header file (used with UAPs written in C)

• XATMI stub copy file (used with UAPs written in COBOL)

When creating a UAP that uses OpenTP1 remote procedure calls and XATMI interface
functions in combination, see the descriptions of the stbmake command in A. Using
OpenTP1 Remote Procedure Calls and XATMI-interfaced API Functions in
Combination.

(3) Options
-x

Indicates that the stub created will serve the UAP which uses the XATMI
interface. The -x option can be omitted.

-b

Specify this option when creating an XATMI stub copy file which is to be used
with COBOL UAPs. If this option is omitted, any XATMI stub copy file will not
be created.

The name of an XATMI stub copy file is output in the format of
subtype-name.cbl. The XATMI interface for the COBOL language does not
support X_C_TYPE as a record type. If X_C_TYPE is specified in the XATMI
interface definition, the stbmake command with the -b option specified will
return with an error.

-S stub-source-file-name ~ <pathname>

Specify this option if the XATMI stub source file created is to be renamed. The
relative or absolute pathname may be used for this file name.

If this option is omitted, the file will be created with name xxxxx_stbx.c in the
current directory.

-H stub-header-file-name ~ <pathname>

Specify this option if the XATMI stub header file created is to be renamed. The
relative or absolute pathname may be used for this file name.

If this option is omitted, the file will be created with name xxxxx_stbx.h in the
current directory.

-i include-file-pathname ~ <pathname>

Specify the search path containing the include file specified by the #include
statement to be used. The stbmake command searches the directory identified by
the -i option for the include file.

If the -i option is omitted, the current directory is searched for the include file.

The -i option can be specified only once. If more than one search path is needed,

1. Creating Application Programs

51

-i must be followed by the desired paths separated by colons (:). The search order
is the order in which the paths are written as the argument to the -i option.

Use alphanumeric characters, underscore (_), slash (/), and period (.) when
specifying a search pathname.

-m server-definition-file-pathname ~ <pathname>

Specify the search path containing the server definition file to be used. The
stbmake command searches the directory identified by the -m option for the
server definition file specified by the called_servers statement.

If the -m option is omitted, the current directory is searched for the definition file.

The -m option can be specified only once. If more than one search path is needed,
-m must be followed by the desired paths separated by colons (:). The search order
is the order in which the paths are written as the argument to the -m option.

Use alphanumeric characters, underscore (_), slash (/), and period (.) when
specifying a search pathname.

-p

Specify this option to output the allocation status of the typed record in memory
to the standard output. In the case of testing by the online tester, use the -p option
to learn about how XATMI structure members are allocated in memory.

When the -p option is specified, the stbmake command creates no files. Thus,
output file names specified in the -S and -H option are ignored. Specify the -m
and -i options to search for files as needed.

(4) Command argument
definition-file-name

Specify the XATMI interface definition file name. Its suffix must be.def.

(5) Notes
• Each option to the stbmake command for XATMI stub creation can be specified

only once. If an option is specified more than once, the last specified value will
be valid.

• The names of files that the stbmake command can take as input or create as
output are up to 255 characters long. Note, however, that a lower upper limit is
used under some OSs.

1. Creating Application Programs

52

1.3.5 tpstbmk - XATMI-interfaced stub creation for OSI TP
communication
(1) Format

(2) Description
Creates XATMI stub source files needed when XATMI-interfaced communication is
to be used under OSI TP. The tpstbmk command creates the following files by
referring to the XATMI interface definition file:

• XATMI stub source file

• XATMI stub header file (used with UAPs written in C)

• XATMI stub copy file (used with UAPs written in COBOL)

To create a UAP that will use both OpenTP1 remote procedure calls and the XATMI
interface, see the explanation about the tpstbmk command in A. Using OpenTP1
Remote Procedure Calls and XATMI-interfaced API Functions in Combination.

(3) Options
-b

Specify this option when creating an XATMI stub copy file which is to be used
with COBOL UAPs. If this option is omitted, any XATMI stub copy file will not
be created.

The name of an XATMI stub copy file is output in the format of
subtype-name.cbl. The XATMI interface for the COBOL language does not
support X_C_TYPE as a record type. If X_C_TYPE is specified in the XATMI
interface definition, the tpstbmk command with the -b option specified will return
with an error.

-S stub-source-file-name ~ <pathname>

Specify the relative or absolute pathname of the XATMI stub source file to be
created.

If this option is omitted, an XATMI stub source file named XXXXX_stbx.c will
be created in the current directory.

-H stub-header-file-name ~ <pathname>

Specify the relative or absolute pathname of the XATMI stub header file to be

tpstbmk [-b] [-S stub-source-file-name]
 [-H stub-header-file-name]
 [-i include-file-pathname]
 [-m server-definition-file-pathname]
 definition-file-name

1. Creating Application Programs

53

created.

If this option is omitted, an XATMI stub header file named XXXXX_stbx.h will
be created in the current directory.

-i include-file-pathname ~ <pathname>

Specify the search path of the include file assigned to the #include statement in
the XATMI interface definition file. The tpstbmk command searches the
directory identified by the -i option for the include file.

If the -i option is omitted, the current directory is searched for the include file.

The -i option can be specified only once. If more than one search path is needed,
-i must be followed by the desired paths separated by colons (:). The paths are
searched in the order in which they are specified.

When specifying a search path, you can use alphanumeric characters, underscores
(_), slashes (/), and periods (.).

-m server-definition-file-pathname ~ <pathname>

Specify the search path of the server definition file given in the
called_servers statement in the XATMI interface definition file. The
tpstbmk command searches the directory identified by the -m option for the
server definition file.

If the -m option is omitted, the current directory is searched for the server
definition file.

The -m option can be specified only once. If more than one search path is needed,
-m must be followed by the desired paths separated by colons (:). The paths are
searched in the order in which they are specified.

When specifying a search path, you can use alphanumeric characters, underscores
(_), slashes (/), and periods (.).

(4) Command argument
definition-file-name ~ <pathname>

Specify the XATMI interface definition file name. Its suffix must be.def.

(5) Notes
• Each option to the tpstbmk command can be specified only once. If an option is

specified more than once, the last specified value will be in effect.

• The names of files that the tpstbmk command can take as input or create as
output are up to 255 characters long. Note, however, that a lower upper limit is
used under some OSs.

1. Creating Application Programs

54

1.4 Executing application programs

This section explains how to start and terminate UAPs and what environments are
needed for executing UAPs.

1.4.1 Starting and terminating application programs
(1) Starting and terminating SUP

(a) Starting
The SUP is started when:

• OpenTP1 starts if the server name of the SUP is specified in the user service
configuration definition, or

• The dcsvstart command is executed if the server name of the SUP is not
specified in the user service configuration definition.

Before the SUP can request an SPP for service, the SPP must start. The SPP must have
started before the SUP has.

(b) Terminating
Once an SUP has been started, it cannot be terminated normally by OpenTP1. Even
when a command to exit OpenTP1 normally is executed, OpenTP1 will not terminate
until all the SUPs in OpenTP1 termination.

When coding the SUP, design it so that it will terminate by itself. To cause the SUP to
terminate abnormally if a problem occurs, design the SUP using a COBOL statement
to exit the program so that it will terminate by itself.

The SUP cannot be terminated normally by the dcsvstop command. However, the
SUP can be brought into forced termination by the dcsvstop -f command.

Do not terminate any SUP process by the kill command.

(2) Starting and terminating SPP and MHP
(a) Starting

The SPPs and MHPs belonging to one user server (service group) start at once. They
start when:

• OpenTP1 starts if the server name of the SPPs and MHPs is specified in the user
service configuration definition, or

• The dcsvstart command is executed if the server name of the SPPs and MHPs
is not specified in the user service configuration definition.

If the multiserver facility is in use, the same number of user server processes as the

1. Creating Application Programs

55

specified number of resident processes are acquired. If the number of service requests
increases, nonresident processes will start as well.

(b) Terminating
The SPP or MHP terminates when:

• Termination processing begins because one of the following OpenTP1 terminate
commands is executed:

dcstop (normal termination)

dcstop -n (forced normal termination)

dcstop -a (planned termination A)

dcstop -b (planned termination B)

dcstop -f (forced termination)

• The active online process enters termination steps because one of the following
server termination commands is executed:

dcsvstop (normal termination)

dcsvstop -f (normal termination)

• The active online process is brought into termination by OpenTP1 because the
maximum number of processes in the user service definition is exceeded;

• The SPP or MHP which is executing as a nonresident process finishes service
processing; or

• The number of requests addressed to the service group decreases if loads on SPPs
are distributed using a multiserver configuration.

Do not terminate any SPP or MHP process by the kill command.

(3) Starting and terminating UAPs that handle offline work
Users can start UAPs that handle offline work by any method. The UAPs are
terminated by terminating the processes by the shell. Users are responsible for starting
and terminating UAPs that handle offline work.

1.4.2 Operating environment of application programs started by
OpenTP1

• The standard input (stdin), standard output (stdout), and standard error output
(stderr) of SUPs, SPPs, and MHPs are redirected by OpenTP1.

• Input from an operator is not accepted even when the operator uses the COBOL
STOP instruction. The DISPLAY instruction is available. However, the output data
might be mixed with data output from another UAP if the DISPLAY instruction is
used.

1. Creating Application Programs

56

• When a UAP is activated, a directory $DCDIR/tmp/home/user-server-name.XX
(where XX is a sequence number) is created. The UAP runs with this directory as
the current working directory.

You can change this directory by setting the prc_current_work_path operand
in the system common definition.

• The user ID (UID) and group ID (GID) have the values specified at environment
setup for the user server.

• The root directory remains as a forward slash (/).

• The following file descriptors are open during UAP execution:

File descriptor 0: Standard input file descriptor

File descriptor 1: Standard output file descriptor

File descriptor 2: Standard error output file descriptor

• umask is 000.

• No control terminal is used.

• When creating a UAP process, OpenTP1 sets a UAP signal for the process
automatically. Table 1-7 lists UAP signals which are set by OpenTP1.

Table 1-7: UAP signals set by OpenTP1

Signal name Setting at the time of UAP process creation Operation

SIGHUP SIG_DFL (default) exit

SIGINT SIG_IGN (ignored) ignore

SIGQUIT SIG_DFL (default) core

SIGILL SIG_DFL (default) core

SIGTRAP SIG_IGN (ignored) ignore

SIGIOT# SIG_DFL (default) core

SIGABRT# SIG_DFL (default) core

SIGEMT SIG_DFL (default) core

SIGFEP SIG_DFL (default) core

SIGKILL -- exit

SIGBUS SIG_DFL (default) core

SIGSEGV SIG_DFL (default) core

1. Creating Application Programs

57

Legend:

--: Not applicable.

Note
When specifying signal operations using UAP, do not stop the process by
invoking exit() or abort() within the specified signal handler. When the
process is stopped in the signal handler, the OpenTP1 system will shut down
even if the signal interruption occurs during critical OpenTP1 processing.
Furthermore, do not overwrite the value of the external variable errno in the
signal handler.

#: These signals cannot be reset. When creating a UAP, do not reset the
operation of the signal within the program.

1.4.3 Environment variables of application programs
UAP environment variables can be set for each user server at environment setup for
the user server. However, the following environment variables are set by OpenTP1.

OpenTP1 sets the environment variables listed below:

• DCDIR: OpenTP1 home directory

• DCCONFPATH: Directory containing the OpenTP1 system definition file.

• DCSVNAME: User server name

• DCSVGNAME: Service group name (can be referenced only for SPP or MHP)

• DCUAPCONFPATH: Directory containing OpenTP1 user service definition files
(only set when the files are to be stored in a different directory from
DCCONFPATH)

In addition to the above, environment variables beginning with DC are used by
OpenTP1. Since these environment variables are for reference only, do not change

SIGSYS SIG_DFL (default) core

SIGPIPE# SIG_IGN (ignored) ignore

SIGALRM SIG_IGN (ignored) ignore

SIGTERM SIG_DFL (default) exit

SIGUSR1 SIG_IGN (ignored) ignore

SIGUSR2 SIG_IGN (ignored) ignore

SIGCLD SIG_DFL (default) ignore

Signal name Setting at the time of UAP process creation Operation

1. Creating Application Programs

58

them. If changed, the system operation is undefined.

SUPs, SPPs, and MHPs that run under OpenTP1 do not inherit the environment
variables set when the user logs in as OpenTP1 system administrator using telnet or
other means. Set these environment variables again in the user service definition.

1.4.4 Troubleshooting
When using COBOL, specify environment variables as follows:

With COBOL/2:

Specify 0x00000efc for the environment variable

COBSIGMASK.

With COBOL85:

Specify 1 for the environment variable CBLCORE.

(This value is set by OpenTP1 as default.)

If the environment variables are not specified as shown in the above, troubleshooting
is impossible because a core file is not created when the UAP process terminates
abnormally.

59

Chapter

2. Syntax of OpenTP1 Programs for
COBOL-UAP Creation Programs

This chapter explains the syntax of UAP creation programs to be used when creating
OpenTP1 UAPs in the COBOL language.

This chapter contains the following sections:

Format for explaining COBOL-UAP creation programs
Creating main and service programs
System operation management (CBLDCADM)
Audit log output (CBLDCADT)
DAM file service (online facility: CBLDCDAM, offline facility: CBLDCDMB)
IST service (CBLDCIST)
User journal acquisition (CBLDCJNL)
Journal data editing (CBLDCJUP)
Resource lock control (CBLDCLCK)
Message log output (CBLDCLOG)
Message exchange (CBLDCMCF)
Performance verification trace (CBLDCPRF)
Remote API facilities (CBLDCRAP)
Remote procedure calls (CBLDCRPC, CBLDCRSV)
Real time statistical information service (CBLDCRTS)
TAM file service (CBLDCTAM)
Transaction control (CBLDCTRN)
Online tester management (CBLDCUTO)

Format for explaining COBOL-UAP creation programs

60

Format for explaining COBOL-UAP creation programs

To create an OpenTP1 UAP in COBOL language, call the COBOL-UAP creation
program corresponding to the function in the OpenTP1 library by issuing the CALL
statement. COBOL/2 and COBOL85 are available for coding in COBOL language.

COBOL-UAP creation programs are explained in the following format:

Format
Explanations given under "Format" cover the format in which the COBOL-UAP
creation program corresponding to a function in the OpenTP1 library is called with the
CALL statement as well as how to specify the area.

The format is common to COBOL/2 and COBOL85. Specify a value for a data name
according to the data format of the PICTURE clause shown here. If the value to be
specified is determined, the value is written in the VALUE clause. For files and data
which must have unique names, assign a specific name to each file and data unless
otherwise specified. The length of a character string specified as a data name must
comply with the specifications of COBOL in use.

When writing a program in COBOL, the COBOL language templates, which are
OpenTP1 samples, can be used. Modifying the templates according to the program to
be coded saves programmers the trouble of coding DATA DIVISION from the
beginning. The COBOL language templates are stored in the /$DCDIR/examples/
COBOL/ directory. Each template is stored in a file named according to each system
service. The template file name is DCxxx.cbl (xxx is the last three characters of the
COBOL-UAP creation program name.)

Description
Describes the facilities of the COBOL-UAP creation programs. From here on, the
format of a COBOL-UAP creation program is represented as follows:

Data areas set in the UAP
Indicates the names of data which is specified in DATA DIVISION and for which
values are specified in data areas when the COBOL-UAP creation program is called.

Format for explaining COBOL-UAP creation programs

61

Specify a value for each data name according to the explanation. If a value is not
always specified in a data area, the explanation of the data name is enclosed in brackets
[] when the value is specified for the argument.

Data area(s) to which a value(s) is returned from OpenTP1
Indicates the names of data which is specified in DATA DIVISION and to which a
value(s) is returned from OpenTP1 after the CALL statement is executed. After
executing the CALL statement, reference the contents of the data area indicated with
the data name. If a value is not always returned to a data area from OpenTP1, the
explanation of the data name is enclosed in brackets [] when the value is returned.

Data area(s) to which a value(s) is passed from the client UAP
Indicates a data area(s) to which a value(s) is returned from the client UAP when the
service program is used. Execute service program processing referencing the contents
of the data area.

Data area(s) to which a value(s) is returned from the server UAP
Indicates the names of data whose a value(s) is returned from the service program
when a synchronous-response-type RPC or asynchronous-response-type RPC is used.
The UAP that called CBLDCRPC('CALL ') or CBLDCRPC('POLLANYR') can
reference the value of the data area shown here.

Status codes
Status codes returned when the CALL statement is executed are explained in a table.
The status code indicates whether the COBOL-UAP creation program was executed
normally. If an error occurs, the status code indicates the error status.

A COBOL language status code comprises five digits. It is included in the first unique
name specified in the USING clause. The following explains the relationship between
the status code and unique names specified in the USING clause of the CALL statement:

CALL 'name-of-program-to-be-called' USING unique-name-1 unique-name-2...

Format for explaining COBOL-UAP creation programs

62

Example
Provided only for COBOL-UAP creation programs with which specification samples
are necessary.

Note(s)
Explains a note(s) on using the facilities of COBOL-UAP creation programs.

Creating main and service programs

63

Creating main and service programs

This section explains the syntax of main and service programs in OpenTP1 UAPs.
Main and service programs must be created for an SPP or MHP; only a main program
must be created for an SUP.

• Create a main program (SUP, SPP, MHP)

• Create a service program (SPP)

• Create a service program (MHP)

TP1/LiNK can use only SUPs and SPPs as OpenTP1 UAPs. MHPs, CGWs, and SGWs
are not available for TP1/LiNK.

Create a main program (SUP, SPP, MHP)

64

Create a main program (SUP, SPP, MHP)

Format
When creating main programs, comply with the specifications of the COBOL
language for coding. To terminate processing, issue STOP RUN. OpenTP1 does not
limit creation of main programs except that STOP RUN must be issued to terminate
processing.

Description
After the UAP process starts, the OS first calls the main program.

SUP main program

The following OpenTP1 COBOL-UAP creation programs are always issued in the
SUP main program:

1. CBLDCRPC('OPEN ')

Start an application program

2. CBLDCADM('COMPLETE')

Report the completion of user server start processing

3. CBLDCRPC('CLOSE ')

Terminate an application program (called after job termination)

In addition to the above COBOL-UAP creation programs, those for requesting the
initialization processing of UAP processes required for jobs, termination processing,
and remote procedure call (CBLDCRPC('CALL ')) can also be used in the SUP main
program.

SPP main program

Service programs created as services which are provided by an SPP are grouped into
one executable file. An executable file comprising one main program and multiple
service programs corresponds to a service group.

The following OpenTP1 COBOL-UAP creation programs are always called from the
SPP main program:

1. CBLDCRPC('OPEN ')

Start an application program

2. CBLDCRSV('MAINLOOP')

Start an SPP service

Create a main program (SUP, SPP, MHP)

65

3. CBLDCRPC('CLOSE ')

Terminate an application program (called after job termination)

To use an MCF facility (call CBLDCMCF) with an SPP service, call the following
COBOL-UAP creation programs:

• CBLDCMCF('OPEN ') - Open the MCF environment (between (1)and (2))

• CBLDCMCF('CLOSE ') - Close the MCF environment (between (2)and (3))

After initialization processing, the main program stops when
CBLDCRSV('MAINLOOP') is called. Meanwhile, the main program performs
processing requested by service programs. In addition to the above OpenTP1 CALL
statements, CALL statements for requesting the initialization of SPP processes required
for jobs, termination processing, and remote procedure call (CBLDCRPC('CALL
')) can also be used in the main program.

MHP main program
Service programs created as applications for message processing are grouped into one
executable file. An executable file comprising one main program and multiple service
programs corresponds to a service group. The service group name must be unique in
the domain (in the entire network).

The following OpenTP1 COBOL-UAP creation programs are always called from the
MHP main program:

1. CBLDCRPC('OPEN ')

Start an application program

2. CBLDCMCF('OPEN ')

Open the MCF environment

3. CBLDCMCF('MAINLOOP')

Start an MHP service

4. CBLDCMCF('CLOSE ')

Close the MCF environment (called after job termination)

5. CBLDCRPC('CLOSE ')

Terminate an application program (called after job termination)

The MHP having the service program corresponding to the application name is started.
After initialization processing, the main program stops when
CBLDCMCF('MAINLOOP') is called. Meanwhile, the main program performs
processing requested by service programs. In addition to the above COBOL-UAP
creation programs, those for requesting the initialization processing of UAP processes
required for jobs, termination processing, and remote procedure call

Create a main program (SUP, SPP, MHP)

66

(CBLDCRPC('CALL ')) can also be used in the MHP main program.

Note
When creating a main program with COBOL, use STOP RUN to terminate processing
when the creation terminates normally. Do not use EXIT PROGRAM.

Create a service program (SPP)

67

Create a service program (SPP)

Format

Description
The SPP service program executes a service and returns the results. CBLDCRPC('CALL
') called from the client UAP requests a service.

Create the service program in the above format as required. The service name
corresponds to the program ID of the service program. Specify the correspondence
when setting the UAP execution environment. The methods of setting the UAP
execution environment are as follows:

• For TP1/Server Base, specify it in the user service definition.

• For TP1/LiNK, specify it interactively by executing a command for setting the
UAP execution environment.

Data area specification
The values listed below are passed to the data areas of the service program. These
values are specified by the client UAP for CBLDCRPC('CALL ').

• Input parameter (data-name-A)

• Input parameter length (data-name-B)

• Response length (data-name-D)

The values specified for the input parameter and input parameter length in the
client UAP are passed to the service program as they are. (The expression formats

PROGRAM-ID. program-name.
LINKAGE SECTION.
01 unique-name-1.
 02 data-name-A PIC X(n).
01 unique-name-2.
 02 data-name-B PIC S9(9) COMP.
01 unique-name-3.
 02 data-name-C PIC X(n).
01 unique-name-4.
 02 data-name-D PIC S9(9) COMP.
PROCEDURE DIVISION USING unique-name-1 unique-name-2
 unique-name-3 unique-name-4
 :
 :
Service processing
 :
 :
EXIT PROGRAM.

Create a service program (SPP)

68

of character codes and numbers are not converted.) The length specified in the
client UAP is passed as the response length.

Specify the following values for the data areas of the service program:

• Service program response (data-name-C)

• Length of the service program response (data-name-D)

Set a response for data-name-C, set the response length for data-name-D then return
the service program.

A response is sent to the service client UAP regardless of whether the service program
was executed as a transaction or whether commitment or rollback processing was
executed. Create a response with which the service program informs the client UAP of
the occurrence of an error if necessary.

If the service program terminates abnormally because the program malfunctions, this
abnormal termination is not reported to the client UAP. The client UAP gets to know
the abnormal termination of the service program when the maximum response wait
time specified in the user service definition is exceeded.

Data areas to which values are passed from the client UAP
data-name-A
The input parameter set in the client UAP is passed.

data-name-B
The input parameter length set in the client UAP is passed.

data-name-D
The response length set in the client UAP is passed.

Data areas whose values are set in the UAP
data-name-C
The response from the service program is set here. Before the service program can
return, it must set the processing result in the data-named area.

data-name-D
Specify the length of the actual response from the service program. Set a numeric value
which is equal to or smaller than the data-name-D value passed from the client UAP.

Notes on service program processing
1. The service program called by CBLDCRPC('CALL ') (with 1 set in

data-name-C) of a non-response-type RPC cannot reference data-name-C or
data-name-D.

Create a service program (SPP)

69

2. If the service program is a COBOL initialization program (INITIAL clause
specified in the program header), the data item values are initialized each time a
service request is used. If the INITIAL clause is not specified in the program
header, the values upon the previous service request remain in the data items.
Thus, initialize the values before using them if necessary.

3. The following COBOL-UAP creation programs cannot be called from the SPP
service program:

• CBLDCRPC('OPEN ') - Start an application program

• CBLDCADM('COMPLETE') - Report the completion of user server start
processing

• CBLDCRSV('MAINLOOP') - Start an SPP service

• CBLDCRPC('CLOSE ') - Terminate an application program

Do not use a statement in the service program to exit the program. If used, UAP
operation is not guaranteed. Once a system call is used to create a child process,
COBOL-UAP creation programs can no longer be called from the child process.

4. In order to call an MCF facility (CBLDCMCF) from the SPP service program, the
main program should call the following COBOL-UAP creation programs:

• CBLDCMCF('OPEN ') - Open the MCF environment

• CBLDCMCF('CLOSE ') - Close the MCF environment

5. An SPP service program cannot call CBLDCMCF('RECEIVE ').

6. Do not execute an operation or reference that extends beyond the area of the input
parameter length passed to data-name-B, for the input parameter passed to
data-name-A. If you execute such an operation or reference, operation cannot be
guaranteed. The process may terminate abnormally.

7. Before an MCF function (CBLDCMCF) can be called from an SPP service program,
data areas such as unique-name-1 must begin at an even-numbered address. If a
data area such as unique-name-1 begins at an odd-numbered address, a bus error
will occur.

For example, assume that the unique-name-3 data area to be used for CBLDCMCF
is defined as an array, the send data contains an odd number of bytes, and SYNC
is not specified in the structure (no boundary adjustment used). In this situation,
using the second element of the array as a CBLDCMCF parameter will cause a bus
error during function execution.

Relationship between transactions and the service program
When the transaction attribute has been specified in the UAP execution environment,
and the client UAP has been executed as a transaction, the service program is also
executed as a transaction. In this case, do not call CBLDCTRN('BEGIN ') from the

Create a service program (SPP)

70

service program.

Commitment or rollback processing is ensured for all global transaction services.
When the service program operating as a transaction branch is terminated by EXIT
PROGRAM, the service program is assumed to request normal termination of the
transaction branch.

When the transaction attribute has been specified in the UAP execution environment,
but the client UAP has not been executed as a transaction, the service program is not
executed as a transaction. To execute the service program as a transaction, call
CBLDCTRN('BEGIN ') and the program which acquires a synchronization point at
any time.

When no transaction attribute is specified in the UAP execution environment, the
service program cannot be executed as a transaction by CBLDCTRN('BEGIN ') from
the service program.

Status code
There is no status code. OpenTP1 does not reference status codes. The return of -1
from the service program would not mean a request for rollback.

Create a service program (MHP)

71

Create a service program (MHP)

Format

Description
The MHP service program executes a service and returns the execution results. When
the MCF receives a message, the MHP having the service program that corresponds to
the application name is started.

Create the MHP service program in the above format as required. The service name
corresponds to the program ID of the service program. Specify this correspondence in
the user service definition of the process that executes the service program.

Specify the correspondence of the service name and the application name in the MCF
application definition.

Data area specification
None

Notes on service program processing
1. If the service program is a COBOL initialization program (the INITIAL clause is

specified in the program header), the values of data items and others are initialized
each time the service program is executed. If the INITIAL clause is not specified
in the program header, data items still assume the values which were given during
the previous service program processing. Initialize them if necessary.

2. The following COBOL-UAP creation programs cannot be called from the MHP
service program:

CBLDCRPC('OPEN ') - Start an application program

CBLDCRPC('CLOSE ') - Terminate an application program

PROGRAM-ID. program-name.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
 :
DATA DIVISION.
WORKING-STORAGE SECTION.
 :
 :
PROCEDURE DIVISION.
 :
 :
Service processing
 :
 :
EXIT PROGRAM.

Create a service program (MHP)

72

CBLDCADM('COMPLETE') - Report the completion of user server start
processing

CBLDCRSV('MAINLOOP') - Start an SPP service

CBLDCMCF('MAINLOOP') - Start an MHP service

CBLDCMCF('OPEN ') - Open the MCF environment

CBLDCMCF('CLOSE ') - Close the MCF environment

Do not use the statement in the service program to exit the program. If used, UAP
operation is not guaranteed. Once a system call is used to create a child process,
COBOL-UAP creation programs can no longer be called from the child process.

3. Another UAP cannot request a service to the MHP service program by
CBLDCRPC('CALL ').

4. Data areas such as CBLDCMCF unique-name-1 must begin at an even-numbered
address. If a data area such as unique-name-1 begins at an odd-numbered address,
a bus error will occur.

For example, assume that the unique-name-3 data area to be used for CBLDCMCF
is defined as an array, the send data contains an odd number of bytes, and SYNC
is not specified in the structure (no boundary adjustment used). In this situation,
using the second element of the array as a CBLDCMCF parameter will cause a bus
error during function execution.

Status code
There is no status code. The return of -1 from the service program would not mean a
request for rollback.

System operation management (CBLDCADM)

73

System operation management (CBLDCADM)

This section gives the syntax and other information of the following COBOL-UAP
creation programs which allow the UAP to use various OpenTP1 system facilities:

• CBLDCADM('COMMAND ') - Execute an operation command

• CBLDCADM('COMPLETE') - Report the completion of user server start
processing

• CBLDCADM('STATUS ') - Report the status of a user server

The COBOL-UAP creation programs for system operation management can be used
in UAPs of both TP1/Server Base and TP1/LiNK.

When defining DATA DIVISION of COBOL-UAP creation programs, the COBOL
language templates can be used as samples. The COBOL language template for system
operation management (CBLDCADM) is stored in DCADM.cbl under the /BeTRAN/
examples/COBOL/ directory.

CBLDCADM ('COMMAND ') - Execute an operation command

74

CBLDCADM ('COMMAND ') - Execute an operation command

Format
PROCEDURE DIVISION specification

DATA DIVISION specification

Description
CBLDCADM('COMMAND ') passes data name G from the UAP to sh(1) as in the case
of command entry in online mode. The process waits until the shell completes its
processing, and returns the exit status of the shell. When the command processing
ends, the standard output information and standard error information are returned to
the respective areas.

If you want to use UAPs which execute a command, add the directory containing the
commands to the search path. Use any of the following methods for addition to the
search path.

• Specify the path name of the command in the prcsvpath operand of the process
service definition.

• Add the search path with the prcpath command.

• Specify environment variable putenv PATH in the user service definition.

CALL 'CBLDCADM' USING unique-name-1 unique-name-2
 unique-name-3 unique-name-4

01 unique-name-1.
 02 data-name-A PIC X(8) VALUE 'COMMAND '.
 02 data-name-B PIC X(5).
 02 FILLER PIC X(3).
 02 data-name-Z PIC S9(9) COMP VALUE ZERO.
 02 data-name-C PIC S9(9) COMP.
01 unique-name-2.
 02 data-name-E PIC 9(9) COMP.
 02 data-name-G PIC X(n).
01 unique-name-3.
 02 data-name-H PIC 9(9) COMP.
 02 data-name-J PIC X(n).
01 unique-name-4.
 02 data-name-K PIC 9(9) COMP.
 02 data-name-M PIC X(n).

CBLDCADM ('COMMAND ') - Execute an operation command

75

Data areas whose values are set in the UAP
data-name-A
Specify VALUE 'COMMAND ' for the request code of the command to be executed.

data-name-Z
Specify 0.

data-name-E
Specify the length of the command set for data-name-G.

data-name-G
Specify the character string of the command.

data-name-H
The execution results of the command are output to the standard output file. Specify
the size of the contents (value returned to data-name-J) in bytes. Pre-allocate the area
in size of the number of bytes that is to be specified for data-name-H. The area must
begin from the address pointed to by data-name-J. The number of bytes to be specified
for data-name-H must be decided according to the command executed by the UAP.

After processing terminates, the length of the character string stored in data-name-J is
returned from OpenTP1. The length of data-name-H itself is not included.

data-name-K
The execution results of the command are output to the standard error output file.
Specify the size of the contents (value returned to data-name-M) in bytes. Pre-allocate
the area in size of the number of bytes that is to be specified for data-name-K. The area
must begin from the address pointed to by data-name-M. The number of bytes to be
specified for data-name-K must be decided according to the command executed by the
UAP.

After processing terminates, the length of the character string stored in data-name-M
is returned from OpenTP1. The length of data-name-K itself is not included.

Data areas to which values are returned from OpenTP1
data-name-B
A status code of 5 digits is returned.

data-name-C

A shell termination code# is returned indicating whether the command terminated
normally or abnormally.

#: Denotes an sh(1) termination status in the format specified by waitpid(2).

CBLDCADM ('COMMAND ') - Execute an operation command

76

data-name-H
The length of the character string stored in data-name-J is returned after processing
terminates. The length of data-name-H itself is not included.

data-name-J
This area stores characters output to the standard output file by the operation
command. The maximum length of a character string which can be stored is as
specified for data-name-H. If the length of a character string exceeds the value
specified for data-name-H, the excess characters are truncated. If the character string
exceeds the capacity of the pipe, the excess characters are also truncated.

data-name-K
The length of the character string stored in data-name-M is returned after processing
terminates. The length of data-name-K itself is not included.

data-name-M
This area stores characters output to the standard error output file by the operation
command. The maximum length of a character string which can be stored is as
specified for data-name-K. If the length of a character string exceeds the value
specified for data-name-K, the excess characters are truncated. If the character string
exceeds the capacity of the pipe, the excess characters are also truncated.

Status codes
Status code Explanation

00000 The shell termination code is 0 (normal termination of the command execution). The
character string was stored in the standard output area and the standard error output area.

01801 The shell termination code is not 0 (abnormal termination of the command execution).
Standard output data and standard error output data were stored in the areas.

01802 The value specified for the data name is invalid. This error also occurs if the request code
(data-name-A) is invalid.

01803 All the standard output data could not be stored in the area.

01804 All the standard error output data could not be stored in the area.

01805 Both the standard output data and the standard error output data could not be stored in the
areas.

01806 A system call (close, pipe, dup, or read) could not be executed.

01807 CBLDCRPC('OPEN ') was not called.

01808 The memory became insufficient.

CBLDCADM ('COMMAND ') - Execute an operation command

77

Note
Be careful not to duplicate the command name between directories that are specified
as search paths. The correct command will not execute if the command name is
duplicated. In addition, be careful not to duplicate the command name with that of the
command group provided by OpenTP1 (under $DCDIR/bin).

CBLDCADM ('COMPLETE') - Report the completion of user server start processing

78

CBLDCADM ('COMPLETE') - Report the completion of user server
start processing

Format
PROCEDURE DIVISION specification

DATA DIVISION specification

Description
CBLDCADM('COMPLETE') notifies OpenTP1 that SUP activation has been completed.
SUP activation is completed when CBLDCADM('COMPLETE') returns normally.

For SPPs and MHPs, the normal termination of CBLDCRSV('MAINLOOP') and
CBLDCMCF('MAINLOOP') is regarded as the completion of activation. Therefore,
there is no need for calling CBLDCADM('COMPLETE').

CBLDCADM('COMPLETE') cannot be called from a UAP that handles offline work.

Data areas whose values are set in the UAP
data-name-A
VALUE 'COMPLETE' is assigned to the request code indicating the report that user
server activation has been completed.

data-name-Z
Specify 0.

Data areas to which values are returned from OpenTP1
data-name-B
A status code of 5 digits is returned.

Status codes

CALL 'CBLDCADM' USING unique-name-1

01 unique-name-1.
 02 data-name-A PIC X(8) VALUE 'COMPLETE'.
 02 data-name-B PIC X(5).
 02 FILLER PIC X(3).
 02 data-name-Z PIC S9(9) COMP VALUE ZERO.

Status code Explanation

00000 Normal termination

CBLDCADM ('COMPLETE') - Report the completion of user server start processing

79

01802 The request code (data-name-A) is invalid.

01830 An error occurred during communication between processes.

01831 The value specified for the data name is invalid.

01832 A status information input/output error occurred.

01833 The user server is not being started/restarted normally.

Status code Explanation

CBLDCADM('STATUS ') - Report the status of a user server

80

CBLDCADM('STATUS ') - Report the status of a user server

Format
PROCEDURE DIVISION specification

DATA DIVISION specification

Description
CBLDCADM ('STATUS ') reports the status of the user server that called the
program. The user server status is reported with the status code.

Data areas whose values are set in the UAP
data-name-A
VALUE 'STATUS ' is assigned to the request code for the report of user server
status.

data-name-Z
Specify 0.

Data areas to which values are returned from OpenTP1
data-name-B
A status code of 5 digits is returned.

data-name-C
The user server status is returned when 00000 is returned to data-name-B.

Status codes
Status codes returned to data-name-B (indicating whether an error occurred):

CALL 'CBLDCADM' USING unique-name-1

01 unique-name-1.
 02 data-name-A PIC X(8) VALUE 'STATUS '.
 02 data-name-B PIC X(5).
 02 FILLER PIC X(3).
 02 data-name-C PIC X(5).
 02 data-name-Z PIC S9(9) COMP VALUE ZERO.

Status code Explanation

00000 Normal termination

CBLDCADM('STATUS ') - Report the status of a user server

81

Status codes returned to data-name-C (indicating the user server status) when 00000
is returned to data-name-B (indicates the status of the user server):

01802 The request code (data-name-A) is invalid.

01830 An error occurred during communication between processes.

01831 The value specified for the data name is invalid.

01832 A status information input/output error occurred.

01833 This program was called from a UAP that handles offline work. This program cannot
be called from a UAP that handles offline work.

CBLDCRPC('OPEN') was not called.

Status code Explanation

00001 The user server is being started normally.

00002 The user server is being restarted normally.

00003 The user server is in online mode.

00004 The user server is being terminate.

Status code Explanation

Audit log output (CBLDCADT)

82

Audit log output (CBLDCADT)

This section gives the syntax and other information of the following COBOL-UAP
creation program which is used to output audit log data from a UAP:

• CBLDCADT('PRINT ') - Output audit log data

CBLDCADT('PRINT ') - Output audit log data

83

CBLDCADT('PRINT ') - Output audit log data

Format
PROCEDURE DIVISION specification

DATA DIVISION specification

Description
CBLDCADT('PRINT ') outputs to the audit log file the following information
items, in addition to the information specified as arguments: header information, serial
number, date and time, relevant program name, relevant process ID, location, subject
identification information, object information, object location information, request
sender host, and location identification information. The relevant program is
OpenTP1, which generates the audit log data. If an error occurs during output of audit
log data, an error message is sent to the standard error output and syslog.

In OpenTP1, numbers from 34000 to 34999 are assigned for message IDs used by
CBLDCADT('PRINT '). If you create a UAP, make sure that the message IDs output
by the UAP are in the range from 34000 to 34999.

For details on the items output as audit log data, see the manual OpenTP1
Programming Guide.

Data areas whose values are set in the UAP
data-name-A
Specify VALUE 'PRINT ' as the request code that indicates a request for outputting
audit log data.

CALL 'CBLDCADT' USING unique-name-1 unique-name-2 unique-name-3

01 unique-name-1.
 02 data-name-A PIC X(8) VALUE 'PRINT '.
 02 data-name-B PIC X(5).
 02 FILLER PIC X(3).
 02 data-name-Z PIC S9(9) COMP VALUE ZERO.
01 unique-name-2.
 02 data-name-C PIC X(12).
 02 data-name-D PIC X(3).
 02 FILLER PIC X(1).
 02 data-name-E PIC S9(9) COMP.
 02 data-name-F PIC S9(9) COMP.
 02 data-name-G PIC S9(9) COMP.
01 unique-name-3.
 02 data-name-H PIC S9(9) COMP.
 02 data-name-I PIC X(n).

CBLDCADT('PRINT ') - Output audit log data

84

data-name-Z
Specify the value 0.

data-name-C
Specify the identifier of an audit log entry (message ID).

Specify the identifier in the format KFCAnnnnn-x (11 characters) and follow the
identifier with a null character. For nnnnn, specify a five-digit serial number in the
range from 34000 to 34999. For x, specify E, W, or I as the message type according to
the type of information provided by the audit log entry to be output.

data-name-D
Specify any value that identifies the UAP that called the function CBLDCADT('PRINT
') (calling program ID). The value you set must be two numeric characters, alphabetic
characters, or symbols followed by a null character. In the audit log, the format is *AA,
with an asterisk (*) prefixed (AA: character string specified in data-name-D).

data-name-E
Specify one of the following numeric values as the audit event type to be included in
the audit log data.

For details on audit event types, see the manual OpenTP1 Operation.

data-name-F
Specify one of the following values as the audit event result to be included in the audit

Audit event type Value Meaning

StartStop 1000 Audit event related to a start or stop operation

Authentication 1001 Audit event related to identification or authentication

AccessControl 1002 Audit event related to access control

ConfigurationAccess 1003 Audit event related to the configuration definition

Failure 1004 Audit event related to failures

LinkStatus 1005 Audit event related to the linkage status

ExternalService 1006 Audit event related to external services

ContentAccess 1007 Audit event related to access to important information

Maintenance 1008 Audit event related to maintenance

AnomalyEvent 1009 Audit event related to anomalies

ManagementAction 1010 Audit event related to management operation

CBLDCADT('PRINT ') - Output audit log data

85

log data:

data-name-G
Specify the value to be included as operation information in the audit log data. Make
sure that you specify one of the following reserved words according to the audit event
type specified by data-name-E. If you specify the value 0, this item will not be
included in the audit log data.

Table 2-1: Correspondence between audit event types and reserved words

Audit event result Value Meaning

Success 2000 Successful event

Failure 2001 Failed event

Occurrence 2002 Event that cannot be categorized as success or failure

Audit event type Reserved
word

Value Meaning

StartStop (start or stop
operation)

Start 3000 Start or activation

Stop 3001 Termination or stop

Authentication (identification
or authentication)

Login 3002 Login

Logout 3003 Logout

Logon 3004 Logon

Logoff 3005 Logoff

Disable 3006 Account disabled

AccessControl (access control) Enforce 3007 Enforcement

ConfigurationAccess
(configuration definition)

Refer 3008 Reference

Add 3009 Addition

Update 3010 Updating

Delete 3011 Deletion

Failure (failures) Occur 3012 Occurrence

LinkStatus (linkage status) Up 3013 Linkage active

Down 3014 Linkage inactive

CBLDCADT('PRINT ') - Output audit log data

86

data-name-H
Specify the length of the character string to be included as the freely specified
description in the audit log data. If you specify the value 0, this item will not be
included in the audit log data.

data-name-I
Set the freely specified description to be included in the audit log data.

You can use numeric characters, alphabetic characters, symbols, spaces, double
quotation marks ("), and commas (,). The description can have a maximum of 1024
characters.

The description specified in data-name-I is enclosed in double quotation marks ("). If
a double quotation mark (") is included in the description, the double quotation mark
is prefixed by another double quotation mark.

ExternalService (external
services)

Request 3015 Request

Response 3016 Response

Send 3017 Sending

Receive 3018 Receiving

ContentAccess (access to
important information)

Refer 3008 Reference

Add 3009 Addition

Update 3010 Updating

Delete 3011 Deletion

Maintenance (maintenance) Install 3019 Installation

Uninstall 3020 Uninstallation

Update 3010 Updating

Backup 3021 Backup

Maintain 3022 Maintenance work

AnomalyEvent (anomalies) Occur 3012 Occurrence

ManagementAction
(management operation)

Invoke 3023 Invocation (the administrator)

Notify 3024 Notification (the administrator)

Audit event type Reserved
word

Value Meaning

CBLDCADT('PRINT ') - Output audit log data

87

Data areas whose values are set in OpenTP1
data-name-B
A five-digit number is returned as the status code.

Status code
Status code Meaning

00001 Output of audit log data has been disabled. Possible causes are as follows:
• The log_audit_out operand in the log service definition has been set to N or has

not been specified.
• The log_audit_suppress operand has been set to Y in the log service definition.

The message ID specified in data-name-C has not been specified in the
log_audit_message operand in the log service definition.

An invalid message has been specified.

00000 The function terminated normally.

01900 The value specified in a data area is incorrect.

01904 Definition analysis failed.

01999 The dc_rpc_open function was not issued.

01997 An error other than the above occurred.

DAM file service (online facility: CBLDCDAM, offline facility: CBLDCDMB)

88

DAM file service (online facility: CBLDCDAM, offline facility:
CBLDCDMB)

This section gives the syntax and other information of the following COBOL-UAP
creation programs which are used for DAM file service:

Functions that can only be used in an online environment

• CBLDCDAM('CLOS') - Close a logical file

• CBLDCDAM('END ') - Terminate using an unrecoverable DAM file

• CBLDCDAM('HOLD') - Shut down a logical file

• CBLDCDAM('OPEN') - Open a logical file

• CBLDCDAM('READ') - Input a logical file block

• CBLDCDAM('REWT') - Update a logical file block

• CBLDCDAM('RLES') - Release a logical file from the shutdown state

• CBLDCDAM('STAT') - Reference the status of a logical file

• CBLDCDAM('STRT') - Start using an unrecoverable DAM file

• CBLDCDAM('WRIT') - Output a logical file block

Functions that can only be used in an offline environment

• CBLDCDMB('BSEK') - Seek a physical file block

• CBLDCDMB('CLOS') - Close a physical file

• CBLDCDMB('CRAT') - Allocate a physical file

• CBLDCDMB('DGET') - Input directly a physical file block

• CBLDCDMB('DPUT') - Output directly a physical file block

• CBLDCDMB('GET ') - Input a physical file block

• CBLDCDMB('OPEN') - Open a physical file

• CBLDCDMB('PUT ') - Output a physical file block

The COBOL-UAP creation programs for DAM file service can be used only in UAPs
of TP1/Server Base. They cannot be used in UAPs of TP1/LiNK.

When defining DATA DIVISION of COBOL-UAP creation programs, the COBOL
language templates can be used as samples. The COBOL language templates for DAM
file service (CBLDCDAM, CBLDCDMB) are stored in DCDAM.cbl and DCDMB.cbl
under the /BeTRAN/examples/COBOL/ directory.

CBLDCDAM('CLOS') - Close a logical file

89

CBLDCDAM('CLOS') - Close a logical file

Format
PROCEDURE DIVISION specification

DATA DIVISION specification

Description
CBLDCDAM ('CLOS') closes logical files.

• When accessing a recoverable DAM file:

If a logical file is not closed before transaction processing terminates, the DAM
service closes the file if it was opened in the transaction range when
synchronization point processing was executed. However, the DAM service does
not close a logical file which was opened outside the transaction range (before
CBLDCTRN('BEGIN ') was called) or which was an unrecoverable DAM file.

If you open a logical file before starting the transaction, close the file when
terminating the UAP processing.

• When accessing an unrecoverable DAM file:

Since this type of file does not synchronize with transaction processing,
CBLDCDAM('CLOS') can be called as required when a logical file is closed. Note
that the open logical file should be closed by CBLDCDAM('CLOS') before calling
CBLDCDAM('END ').

When closing a logical file, specify the file descriptor returned from

CALL 'CBLDCDAM' USING unique-name-1 unique-name-2

01 unique-name-1.
 02 data-name-A PIC X(8) VALUE 'DCDAMSVC'.
 02 data-name-B PIC X(5).
 02 FILLER PIC X(3).
 02 data-name-C PIC X(8).
 02 FILLER PIC S9(9) COMP.
 02 FILLER PIC S9(9) COMP.
 02 data-name-H PIC S9(9) COMP.
 02 FILLER PIC X(28).
01 unique-name-2.
 02 data-name-E PIC X(4) VALUE 'CLOS'.
 02 FILLER PIC X(1).
 02 FILLER PIC X(1).
 02 FILLER PIC X(1).
 02 FILLER PIC X(1).
 02 data-name-Z PIC S9(9) COMP VALUE ZERO.

CBLDCDAM('CLOS') - Close a logical file

90

CBLDCDAM('OPEN').

Data areas whose values are set in the UAP
data-name-A
Specify VALUE 'DCDAMSVC' for the interface code used with the DAM file.

data-name-C
Specify a logical file name with up to 8 characters. If the specified logical file name
comprises less than 8 characters, pad the remaining portion with space.

data-name-E
Specify VALUE 'CLOS' for the request code indicating that the logical file is closed.

data-name-H
Specify the file descriptor returned when the logical file was opened.

data-name-Z
Specify 0.

Data area to which a value is returned from OpenTP1
data-name-B
A status code of 5 digits is returned.

Status codes
Status code Explanation

00000 The logical file was closed normally.

01600 CBLDCRPC('OPEN ') was not called.

A DAM file opened outside the transaction range is closed within the transaction range.
(This error is returned only when accessing a recoverable DAM file.)

'N' is specified for atomic_update in the user service definition. (This error is
returned only when accessing a recoverable DAM file.)

CBLDCDAM('STRT') was not called. (This error is returned only when accessing an
unrecoverable DAM file.)

The UAP is incorrectly linked as follows:
• The library (-1tdam) to be used for access to a TAM file using the DAM service

API is linked incorrectly.
• The definition of the resource manager for transaction control object files is

incorrect.

CBLDCDAM('CLOS') - Close a logical file

91

01603 The specified file descriptor is not the one which was acquired by opening the file
normally.

The DAM file is not open.

01690 The interface code (data-name-A) is invalid.

01691 The request code (data-name-E) is invalid.

Status code Explanation

CBLDCDAM('END ') - Terminate using an unrecoverable DAM file

92

CBLDCDAM('END ') - Terminate using an unrecoverable DAM file

Format
PROCEDURE DIVISION specification

DATA DIVISION specification

Description
CBLDCDAM('END ') declares that use of an unrecoverable DAM file is terminated.

Call CBLDCDAM('END ') whenever calling CBLDCDAM('STRT'). Otherwise, the
resource used to access an unrecoverable DAM file remains unreleased until the UAP
terminates.

Data areas whose values are set in the UAP
data-name-A
Specify VALUE 'DCDAMSVC' for the interface code used with the DAM file.

data-name-C
Specify VALUE 'END ' for the request code indicating that use of an unrecoverable
DAM file is terminated.

data-name-Z
Specify 0.

CALL 'CBLDCDAM' USING unique-name-1 unique-name-2
 unique-name-3

01 unique-name-1.
 02 data-name-A PIC X(8) VALUE 'DCDAMSVC'.
 02 data-name-B PIC X(5).
 02 FILLER PIC X(3).
 02 FILLER PIC X(8).
 02 FILLER PIC S9(9) COMP.
 02 FILLER PIC S9(9) COMP.
 02 FILLER PIC S9(9) COMP.
 02 FILLER PIC X(28).
01 unique-name-2.
 02 data-name-C PIC X(4) VALUE 'END '.
 02 FILLER PIC X(1).
 02 FILLER PIC X(1).
 02 FILLER PIC X(1).
 02 FILLER PIC X(1).
 02 data-name-Z PIC S9(9) COMP VALUE ZERO.

CBLDCDAM('END ') - Terminate using an unrecoverable DAM file

93

Data area to which a value is returned from OpenTP1
data-name-B
The status code of 5 digit is returned.

Status codes
Status code Explanation

00000 Normal termination. Use of an unrecoverable DAM file is terminated.

01600 CBLDCRPC('OPEN ') was not called.

01605 CBLDCDAM('STRT') was not called.

01690 The interface code (data-name-A) is invalid.

01691 The request code (data-name-C) is invalid.

CBLDCDAM('HOLD') - Shut down a logical file

94

CBLDCDAM('HOLD') - Shut down a logical file

Format
PROCEDURE DIVISION specification

DATA DIVISION specification

Description
CBLDCDAM ('HOLD') shuts down a logical file. After a logical file is logically shut
down, a logical shutdown error is always returned if another UAP issues an access
request for the logical file specified here.

• When accessing a recoverable DAM file:

If the logical file specified here is under commitment processing in another
transaction when CBLDCDAM('HOLD') is called, the logical file is shut down
after the commitment processing terminates. Even if the commitment processing
is not completed, control returns to the UAP that called CBLDCDAM('HOLD').

Data areas whose values are set in the UAP
data-name-A
Specify VALUE 'DCDAMSVC' for the interface code used with the DAM file.

data-name-C
Specify a logical file name with up to 8 characters. If the specified logical file name
comprises less than 8 characters, pad the remaining portion with space.

CALL 'CBLDCDAM' USING unique-name-1 unique-name-2

01 unique-name-1.
 02 data-name-A PIC X(8) VALUE 'DCDAMSVC'.
 02 data-name-B PIC X(5).
 02 FILLER PIC X(3).
 02 data-name-C PIC X(8).
 02 FILLER PIC S9(9) COMP.
 02 FILLER PIC S9(9) COMP.
 02 FILLER PIC X(32).
01 unique-name-2.
 02 data-name-E PIC X(4) VALUE 'HOLD'.
 02 FILLER PIC X(1).
 02 FILLER PIC X(1).
 02 FILLER PIC X(1).
 02 FILLER PIC X(1).
 02 data-name-Z PIC S9(9) COMP VALUE ZERO.

CBLDCDAM('HOLD') - Shut down a logical file

95

data-name-E
Specify VALUE 'HOLD' for the request code indicating that the logical file is in
shutdown state.

data-name-Z
Specify 0.

Data area to which a value is returned from OpenTP1
data-name-B
A status code of 5 digits is returned.

Status codes
Status code Explanation

00000 The specified logical file was shut down normally.

01600 CBLDCRPC('OPEN ') was not called.

'N' is specified for atomic_update in the user service definition. (This error is
returned only when accessing a recoverable DAM file.)

CBLDCDAM('STRT') was not called. (This error is returned only when accessing an
unrecoverable DAM file.)

The UAP is incorrectly linked as follows:
• The library (-1tdam) to be used for access to a TAM file using the DAM service

API is linked incorrectly.
• The definition of the resource manager for transaction control object files is

incorrect.

01601 The specified logical file name has not been defined.

01607 The memory became insufficient.

01610 The value specified as the logical file name is invalid.

01618 The version of the DAM library linked to the UAP does not allow the UAP to operate
with the current DAM service.

01625 The logical file name specified for data-name-C is in logical shutdown state.

01626 The logical file name specified for data-name-C is in shutdown state due to an error.

01628 The DAM file to be accessed is protected by the security facility. The UAP attempting
to shut down the logical file has no access permission.

01646 The DAM file to be shut down is protected by the security facility. No ACL exists for
the file.

01690 The interface code (data-name-A) is invalid.

CBLDCDAM('HOLD') - Shut down a logical file

96

01691 The request code (data-name-E) is invalid.

Status code Explanation

CBLDCDAM('OPEN') - Open a logical file

97

CBLDCDAM('OPEN') - Open a logical file

Format
PROCEDURE DIVISION specification

DATA DIVISION specification

Description
CBLDCDAM ('OPEN') opens a logical file.

• When accessing a recoverable DAM file:

Whether to apply file lock or block lock to the logical file is specified. File lock
can be specified if:

• The logical file is opened within the transaction range under the condition
that lock control for individual transaction branches is specified.

In the following condition, file lock cannot be specified. Specify block lock:

• The logical file is opened outside the transaction range.

• Lock control for individual global transaction units is specified.

If a logical file is closed and is again opened in the same transaction branch, the
status before the logical file is closed is inherited.

• When accessing an unrecoverable DAM file:

Since this type of file does not synchronize with transaction processing, there is

CALL 'CBLDCDAM' USING unique-name-1 unique-name-2

01 unique-name-1.
 02 data-name-A PIC X(8) VALUE 'DCDAMSVC'.
 02 data-name-B PIC X(5).
 02 FILLER PIC X(3).
 02 data-name-C PIC X(8).
 02 FILLER PIC S9(9) COMP.
 02 FILLER PIC S9(9) COMP.
 02 data-name-H PIC S9(9) COMP.
 02 FILLER PIC X(28).
01 unique-name-2.
 02 data-name-E PIC X(4) VALUE 'OPEN'.
 02 data-name-F PIC X(1).
 02 data-name-G PIC X(1).
 02 FILLER PIC X(1).
 02 FILLER PIC X(1).
 02 data-name-Z PIC S9(9) COMP VALUE ZERO.

CBLDCDAM('OPEN') - Open a logical file

98

no restriction for lock.

Data areas whose values are set in the UAP
data-name-A
Specify VALUE 'DCDAMSVC' for the interface code used with the DAM file.

data-name-C
Specify a logical file name with up to 8 characters. If the specified logical file name
comprises less than 8 characters, pad the remaining portion with space.

data-name-E
Specify VALUE 'OPEN' for the request code indicating that the logical file is open.

data-name-F
Specify files or in blocks-based lock.

VALUE 'B': Blocks-based lock

VALUE 'F': Files-based lock

File lock can be specified if:

• The recoverable DAM file is opened within the transaction range.

• The unrecoverable DAM file is opened.

data-name-G
Specify whether the program is to wait for the resource to be released from lock if a
lock error occurs. When VALUE 'F' is specified for data-name-F, the action depends
on whether the DAM file to be used is recoverable or not.

VALUE 'W': The program waits for the resource to be released from lock.

VALUE 'N': The program does not wait for the resource to be released from lock, and
returns with an error.

If both values are omitted, VALUE 'N' is assumed.

The values which can be specified for data-name-F and data-name-G depend on
whether the DAM file to be used is recoverable or not. The following describes the
values specified for recoverable and unrecoverable DAM files:

• When accessing a recoverable DAM file:

The value specified for data-name-G can be invalid if a lock error occurs not in
CBLDCDAM('OPEN'), but in CBLDCDAM('READ') and CBLDCDAM('WRIT')
when accessing a logical file which has already been opened. If a lock error
occurs in CBLDCDAM('OPEN'), an error is unconditionally returned with the
status code 01602.

CBLDCDAM('OPEN') - Open a logical file

99

The table below shows the correspondence between the values specified for
data-name-F and data-name-G and the specified type of lock when accessing a
recoverable DAM file.

Legend:

: Specify a space (' ').

#: If 'B' is specified for data-name-F and the value for data-name-G is omitted,
'N' is assumed.

• When accessing an unrecoverable DAM file:

The value specified for data-name-G from lock can be invalid if a lock error
occurs. If a lock error occurs in CBLDCDAM('OPEN'), CBLDCDAM('READ') and
CBLDCDAM('WRIT'), whether to wait for release from lock or not is determined
according to the value of data-name-G. If a lock error occurs when data-name-G
is set to 'N' or omitted, an error is returned with the status code 01602.

The table below shows the correspondence between the values specified for
data-name-F and data-name-G and the specified type of lock when accessing an
unrecoverable DAM file.

#: The default is 'N'.

Regardless of whether the file is recoverable or not, no lock error occurs in
CBLDCDAM('READ') and CBLDCDAM('WRIT') when files-based lock is
specified for data-name-F. This is because the file is entirely locked.
Therefore, whether to wait for release from lock cannot be specified. The
value specified for data-name-G in CBLDCDAM('READ') and

data-name-F data-name-G# Specified lock

'F' Files-based lock

'B' 'W' Blocks-based lock, and waiting for release from lock if a lock error
occurs

'N' Blocks-based lock, and error return if a lock error occurs

data-name-F data-name-G# Specified lock

'F' 'W' Files-based lock, and waiting for release from lock if a lock error occurs

'N' Files-based lock, and error return if a lock error occurs

'B' 'W' Blocks-based lock, and waiting for release from lock if a lock error
occurs

'N' Blocks-based lock, and error return if a lock error occurs

CBLDCDAM('OPEN') - Open a logical file

100

CBLDCDAM('WRIT') is ignored.

data-name-Z
Specify 0.

Data areas to which values are returned from OpenTP1
data-name-B
A status code of 5 digits is returned.

data-name-H
The file descriptor is returned.

Status codes
Status code Explanation

00000 The file descriptor was specified for data-name-H normally.

01600 CBLDCRPC('OPEN ') was not called.

'N' is specified for atomic_update in the user service definition. (This error is returned
only when accessing a recoverable DAM file.)

The CBLDCDAM('STRT') function is not called when N is specified for the
atomic_update operand in the user service definition. (This value is returned only
when an unrecoverable DAM file is accessed.)

The UAP is incorrectly linked as follows:
• The library (-1tdam) to be used for access to a TAM file using the DAM service API

is linked incorrectly.
• The definition of the resource manager for transaction control object files is incorrect.

DAM file lock is specified from outside the transaction range. (This error is returned only
when accessing a recoverable DAM file.)

Files-based lock is specified for the DAM file under lock control for individual global
transaction units. (This error is returned only when accessing a recoverable DAM file.)

01601 The logical file name specified for data-name-C has not been defined.

01602 A lock error occurred.

01605 The CBLDCDAM('STRT') function is not called when Y is specified for the
atomic_update operand in the user service definition. (This value is returned only
when an unrecoverable DAM file is accessed.)

01607 The memory became insufficient.

01608 The logical file specified for data-name-C is open.

01610 The value specified as the logical file name is invalid.

CBLDCDAM('OPEN') - Open a logical file

101

01611 The value specified for data-name-F or data-name-G is invalid.

01621 The file specified for data-name-C is in logical shutdown state.

01622 The file specified for data-name-C is in shutdown state due to an error.

01627 The number of open character special files exceeds the specified limit.

01628 The access permission for character special files has not been granted.

01629 A transaction service error occurred.
(This error is returned only when accessing an unrecoverable DAM file.)

01642 A deadlock occurred.
(This error is returned only when accessing an unrecoverable DAM file.)

01643 The resource could not be acquired because a timeout occurred since the wait time
specified in the lock service definition was exceeded. (This error is returned only when
accessing an unrecoverable DAM file.)

01645 The number of lock requests exceeds the specified maximum number of concurrent lock
requests.

01646 The DAM file to be opened is protected by the security facility. No ACL exists for the
file.

01690 The interface code (data-name-A) is invalid.

01691 The request code (data-name-E) is invalid.

Status code Explanation

CBLDCDAM('READ') - Input a logical file block

102

CBLDCDAM('READ') - Input a logical file block

Format
PROCEDURE DIVISION specification

DATA DIVISION specification

Description
CBLDCDAM('READ') inputs a block (which is in the specified range) for reference or
update processing from the specified logical file.

• When accessing a recoverable DAM file:

Blocks-based lock is enabled as specified when the logical file was opened. The
block of a logical file can be input from a process out of the transaction range. In

CALL 'CBLDCDAM' USING unique-name-1 unique-name-2
 unique-name-n

01 unique-name-1.
 02 data-name-A PIC X(8) VALUE 'DCDAMSVC'.
 02 data-name-B PIC X(5).
 02 FILLER PIC X(3).
 02 data-name-C PIC X(8).
 02 data-name-D PIC S9(9) COMP.
 02 data-name-E PIC S9(9) COMP.
 02 data-name-H PIC S9(9) COMP.
 02 FILLER PIC X(28).
01 unique-name-2.
 02 data-name-F PIC X(4) VALUE 'READ'.
 02 data-name-G PIC X(1).
 02 data-name-L PIC X(1).
 02 data-name-M PIC X(1).
 02 FILLER PIC X(1).
 02 data-name-Z PIC S9(9) COMP VALUE ZERO.
 02 unique-name-3.
 03 data-name-I PIC S9(9) COMP.
 03 data-name-J PIC S9(9) COMP.
 02 unique-name-4.
 03 data-name-I PIC S9(9) COMP.
 03 data-name-J PIC S9(9) COMP.
 :
 :
 02 unique-name-m.
 03 data-name-I PIC S9(9) COMP.
 03 data-name-J PIC S9(9) COMP.
01 unique-name-n.
 02 data-name-K PIC X(n).

CBLDCDAM('READ') - Input a logical file block

103

this case, however, the statement can be used only for reference and lock cannot
be specified. When an request is made to input multiple blocks by specifying the
block numbers, an error returned if even one of the blocks causes an error. In this
case, the blocks are not input to the input buffer. All the blocks for which an input
request was made are released from lock at this time.

Lock which is enabled for a block input for reference processing is released in the
following case:

After the block is input for reference processing, an input request for update
processing is made for the same block. Then, an input error occurs during the
update processing.

Even if block update during a transaction is specified
(dam_update_block_over=flush in the DAM service definition), an error is
returned with the status code 01613 in the following case:

• DAM file blocks are not updated (REWRITE) in one transaction branch. The
block input for update processing (READ) is called. Eventually, the number
of blocks exceeds the maximum number of blocks collectively updated (the
value specified for dam_update_block of the DAM service definition).

Call CBLDCDAM('READ') within the transaction range to input a recoverable
DAM file block.

• When accessing an unrecoverable DAM file:

When an unrecoverable DAM file block is input, there is no restriction for
conditions to call CBLDCDAM('READ').

If unrecoverable DAM file blocks exceeding the value specified for
dam_update_block in the DAM service definition are input for update
processing, an error is returned with the status code 01648.

When inputting a logical file block, specify the file descriptor returned from
CBLDCDAM('OPEN').

Data areas whose values are set in the UAP
data-name-A
Specify VALUE 'DCDAMSVC' for the interface code used with the DAM file.

data-name-C
Specify a logical file name with up to 8 characters. If the specified logical file name
comprises less than 8 characters, pad the remaining portion with space.

data-name-D
Specify the number of blocks from unique-name-3 to unique-name-m (number of sets
of data-name-I and data-name-J).

CBLDCDAM('READ') - Input a logical file block

104

data-name-E
Specify the length of the input buffer. The buffer length must be equal to or greater than
(number of blocks to be input x block length to be input).

'Number of blocks to be input' is the sum of blocks specified with the number of blocks
from unique-name-3 to unique-name-m (number of sets of data-name-I and
data-name-J).

data-name-H
Specify the file descriptor returned when the logical file was opened.

data-name-F
Specify VALUE 'READ' for the request code indicating the input of a logical file block.

data-name-G
Specify an input request type with VALUE 'R' or VALUE 'M'.

VALUE 'R': Input request for reference

VALUE 'M': Input request for update

data-name-L
Specify whether to apply lock if the input request is for reference. If 'E' is specified,
lock will remain until processing reaches the synchronization point.

If a block is input from an unlocked logical file, the block could be updated by another
transaction during the input processing. In this case, the details input to the block
depend on the update processing status of the other transaction. Therefore, to reference
the latest block contents, be sure to specify 'E'.

If the input request is for update, set a blank here; any other value will be ignored.

VALUE 'E': Lock is enabled.

VALUE 'N': Lock is not enabled.

Lock cannot be applied when accessing a recoverable DAM file outside the transaction
for reference processing.

If VALUE 'M' is specified for data-name-G, specify space (' ') for data-name-L.

data-name-M
Specify whether the program is to wait for the resource to be released from lock if a
lock error occurs. If VALUE 'N' is specified for data-name-L, specify space (' ') for
data-name-M.

VALUE 'W': The program waits for the resource to be released from lock.

VALUE 'N': The program does not wait for the resource to be released from lock, and

CBLDCDAM('READ') - Input a logical file block

105

returns with an error.

VALUE SPACE : Processing is done according to the value specified for data-name-G
of CBLDCDAM('OPEN').

If VALUE SPACE is specified or no value is specified, the subsequent processing is as
follows:

• If VALUE 'W' is specified for data-name-G of CBLDCDAM('OPEN'), the
program waits for the resource to be released from lock.

• If VALUE 'N' is specified for data-name-G of CBLDCDAM('OPEN') or if no
value is specified, the program does not wait for the resource to be released from
lock, and returns with an error.

However, if files-based lock is specified as the lock type in CBLDCDAM('OPEN') with
the file descriptor specified for data-name-H, the value specified for data-name-M is
meaningless.

The table below shows the correspondence between the values specified for data
names G, L, and M and the specified type of lock.

Legend:

: Specify space (' ').

#1: If 'R' is specified for data-name-G and the value for the data-name-L is omitted,
'N' is assumed.

#2: If space (' ') is specified for data-name-M in the following situation, the value
specified for opening the logical file (waiting for release from lock or error return) is
assumed:

If 'R' is specified for data-name-G and 'E' is specified for data-name-L
If 'M' is specified for data-name-G

data-name-G data-name-L#1 data-name-M#2 Specified lock type

'R' 'E' 'W' Input for reference, lock used, and waiting for
release from lock if a lock error occurs

'N' Input for reference, lock used, and error return if
a lock error occurs

'N' Input for reference, lock not used#3

'M' 'W' Input for update, and waiting for release from
lock if a lock error occurs

'N' Input for update, and error return if a lock error
occurs

CBLDCDAM('READ') - Input a logical file block

106

#3: When accessing a recoverable DAM file, the statement for input a logical file block
can be called from a process out of the transaction range only if 'R' is specified for
data-name-G and 'N' is specified for data-name-L. If the statement for input a logical
file block is called with the other values specified, it returns with an error, giving the
status code 01600.

data-name-I
Specify the first relative block number of the block to be accessed.

data-name-J
Specify the last relative block number of the block to be accessed. If 0 is specified, only
the relative block number specified for data-name-I is input.

data-name-K
Specify an input data area.

data-name-Z
Specify 0.

Data area to which a value is returned from OpenTP1
data-name-B
A status code of 5 digits is returned.

Status codes
Status code Explanation

00000 All blocks were input normally.

01600 CBLDCRPC('OPEN ') was not called.

A block is input for update processing or a locked block is input for reference processing
outside the transaction range. (This error is returned only when accessing a recoverable
DAM file.)

'N' is specified for atomic_update in the user service definition. (This error is
returned only when accessing a recoverable DAM file.)

CBLDCDAM('STRT') was not called. (This error is returned only when accessing an
unrecoverable DAM file.)

The UAP is incorrectly linked as follows:
• The library (-1tdam) to be used for access to a TAM file using the DAM service

API is linked incorrectly.
• The definition of the resource manager for transaction control object files is

incorrect.

01602 A lock error occurred.

CBLDCDAM('READ') - Input a logical file block

107

01603 The file descriptor specified for data-name-H is not the one which was acquired by
opening the file normally.

The DAM file is not open.

01604 The specified input buffer is too small to contain all blocks.

01606 The relative block number is invalid.

01607 The memory became insufficient.

01609 The value specified for data-name-D is smaller than 1.

01611 The value specified for data-name-G or L is invalid.

01613 The number of block updates exceeded the maximum number of blocks that can be
updated during one transaction according to the DAM service definition.

01618 The version of the DAM library linked to the UAP does not allow the UAP to operate
with the current DAM service.

01620 An input error occurred.

01621 The specified file is in logical shutdown state.

01622 The specified file is in shutdown state due to an error.

01628 The DAM file to be accessed is protected by the security facility. The UAP attempting
to input a logical file block has no access permission.

01629 A transaction service error occurred. (This error is returned only when accessing a
recoverable DAM file.)

01642 A deadlock occurred.

01643 The resource could not be acquired because a timeout occurred (the wait time specified
in the lock service definition was exceeded).

01645 The number of lock requests exceeds the specified maximum number of concurrent lock
requests.

01648 The number of blocks exceeded the number of blocks accessible for an unrecoverable
DAM file. (This error is returned only when accessing an unrecoverable DAM file.)

01690 The interface code (data-name-A) is invalid.

01691 The request code (data-name-F) is invalid.

Status code Explanation

CBLDCDAM('REWT') - Update a logical file block

108

CBLDCDAM('REWT') - Update a logical file block

Format
PROCEDURE DIVISION specification

DATA DIVISION specification

Description
CBLDCDAM('REWT') outputs a block, input from the logical file for update
processing. CBLDCDAM('REWT') also cancels an update request.

The timing of updating blocks is shown below:

• When accessing a recoverable DAM file:

The updated data is stored in the part of shared memory that is allocated for DAM

CALL 'CBLDCDAM' USING unique-name-1 unique-name-2
 unique-name-n

01 unique-name-1.
 02 data-name-A PIC X(8) VALUE 'DCDAMSVC'.
 02 data-name-B PIC X(5).
 02 FILLER PIC X(3).
 02 data-name-C PIC X(8).
 02 data-name-D PIC S9(9) COMP.
 02 data-name-E PIC S9(9) COMP.
 02 data-name-H PIC S9(9) COMP.
 02 FILLER PIC X(28).
01 unique-name-2.
 02 data-name-F PIC X(4) VALUE 'REWT'.
 02 data-name-G PIC X(1).
 02 FILLER PIC X(1).
 02 FILLER PIC X(1).
 02 FILLER PIC X(1).
 02 data-name-Z PIC S9(9) COMP VALUE ZERO.
 02 unique-name-3.
 03 data-name-I PIC S9(9) COMP.
 03 data-name-J PIC S9(9) COMP.
 02 unique-name-4.
 03 data-name-I PIC S9(9) COMP.
 03 data-name-J PIC S9(9) COMP.
 :
 :
 02 unique-name-m.
 03 data-name-I PIC S9(9) COMP.
 03 data-name-J PIC S9(9) COMP.
01 unique-name-n.
 02 data-name-K PIC X(n).

CBLDCDAM('REWT') - Update a logical file block

109

service, and the actual file is updated when the transaction is committed. If
deferred update is specified for the DAM file, the file contents are updated
asynchronously with the commitment of the transaction.

• When accessing an unrecoverable DAM file:

The contents of the DAM file are updated when CBLDCDAM('REWT') returns.

When multiple blocks are specified at a time and if even one of the specified blocks
causes an error, processing is stopped and an error is returned. Update processing is
not done in this case.

When updating a logical file block, specify the logical file name and the file descriptor
returned from CBLDCDAM('OPEN').

Data areas whose values are set in the UAP
data-name-A
Specify VALUE 'DCDAMSVC' for the interface code used with the DAM file.

data-name-C
Specify a logical file name with up to 8 characters. If the specified logical file name
comprises less than 8 characters, pad the remaining portion with space.

data-name-D
Specify the number of blocks from unique-name-3 to unique-name-m (number of sets
of data-name-I and data-name-J).

data-name-E
Specify the length of the update data. The update data length must be equal to or
greater than (block length to be updated x number of blocks to be updated).

'Number of blocks to be updated' is the sum of blocks specified with the number of
blocks from unique-name-3 to unique-name-m (number of sets of data-name-I and
data-name-J).

data-name-H
Specify the file descriptor returned when the logical file was opened.

data-name-F
Specify VALUE 'REWT' for the request code indicating the update of a logical file
block.

data-name-G
Specify an update request type with VALUE 'U' or VALUE 'C'.

VALUE 'U': Update request

CBLDCDAM('REWT') - Update a logical file block

110

VALUE 'C': Update request cancel

data-name-I
Specify the first relative block number of the block to be accessed.

data-name-J
Specify the last relative block number of the block to be accessed. If 0 is specified, only
the relative block number specified for data-name-I is input.

data-name-K
Specify an update data area.

data-name-Z
Specify 0.

Data area to which a value is returned from OpenTP1
data-name-B
A status code of 5 digits is returned.

Status codes
Status code Explanation

00000 All blocks were updated normally.

01600 CBLDCRPC('OPEN ') was not called.

CBLDCDAM('REWT') was called outside the transaction range. (This error is returned
only when accessing a recoverable DAM file.)

'N' is specified for atomic_update in the user service definition. (This error is
returned only when accessing a recoverable DAM file.)

CBLDCDAM('STRT') was not called. (This error is returned only when accessing an
unrecoverable DAM file.)

The UAP is incorrectly linked as follows:
• The library (-1tdam) to be used for access to a TAM file using the DAM service

API is linked incorrectly.
• The definition of the resource manager for transaction control object files is

incorrect.

01603 The file descriptor specified for data-name-H is not the one which was acquired by
opening the file normally.

The DAM file is not open.

01604 The update data length (block length to be updated x number of blocks to be updated)
is too short.

CBLDCDAM('REWT') - Update a logical file block

111

01605 The logical file block was not input for update processing.

01606 The relative block number is invalid.

01607 The memory became insufficient.

01609 The value specified for data-name-D is smaller than 1.

01611 The value specified for data-name-G is invalid.

01613 The number of block updates exceeded the maximum number of blocks that can be
updated during one transaction according to the DAM service definition. (This error is
returned only when accessing a recoverable DAM file.)

01620 An output error occurred. (This error is returned only when accessing an unrecoverable
DAM file.)

01621 The specified file is in logical shutdown state.

01622 The specified file is in shutdown state due to an error.

01629 The transaction service encountered an error.
(This error is returned only when accessing a recoverable DAM file.)

01641 The update data length (block length to be updated x number of blocks to be updated)
is too long.

01690 The interface code (data-name-A) is invalid.

01691 The request code (data-name-F) is invalid.

Status code Explanation

CBLDCDAM('RLES') - Release a logical file from the shutdown state

112

CBLDCDAM('RLES') - Release a logical file from the shutdown state

Format
PROCEDURE DIVISION specification

DATA DIVISION specification

Description
CBLDCDAM('RLES') releases a logical file which has been held by
CBLDCDAM('HOLD'). It also releases a logical file which has been shut down due to
an error.

Data areas whose values are set in the UAP
data-name-A
Specify VALUE 'DCDAMSVC' for the interface code used with the DAM file.

data-name-C
Specify a logical file name with up to 8 characters. If the specified logical file name
comprises less than 8 characters, pad the remaining portion with space.

data-name-E
Specify VALUE 'RLES' for the request code indicating release of a logical file from
the shutdown state.

data-name-F
Specify a shutdown release type with VALUE 'L' or VALUE 'O'.

CALL 'CBLDCDAM' USING unique-name-1 unique-name-2

01 unique-name-1.
 02 data-name-A PIC X(8) VALUE 'DCDAMSVC'.
 02 data-name-B PIC X(5).
 02 FILLER PIC X(3).
 02 data-name-C PIC X(8).
 02 FILLER PIC S9(9) COMP.
 02 FILLER PIC S9(9) COMP.
 02 FILLER PIC X(32).
01 unique-name-2.
 02 data-name-E PIC X(4) VALUE 'RLES'.
 02 data-name-F PIC X(1).
 02 FILLER PIC X(1).
 02 FILLER PIC X(1).
 02 FILLER PIC X(1).
 02 data-name-Z PIC S9(9) COMP VALUE ZERO.

CBLDCDAM('RLES') - Release a logical file from the shutdown state

113

VALUE 'L': The file is released from the logical shutdown state.

VALUE 'O': The file is released from the shutdown state due to an error.

data-name-Z
Specify 0.

Data area to which a value is returned from OpenTP1
data-name-B
A status code of 5 digits is returned.

Status codes
Status code Explanation

00000 The specified logical file was released from the shutdown state normally.

01600 CBLDCRPC('OPEN ') was not called.

'N' is specified for atomic_update in the user service definition. (This error is returned
only when accessing a recoverable DAM file.)

CBLDCRPC('STRT') was not called. (This error is returned only when accessing an
unrecoverable DAM file.)

The UAP is incorrectly linked as follows:
• The library (-1tdam) to be used for access to a TAM file using the DAM service API

is linked incorrectly.
• The definition of the resource manager for transaction control object files is incorrect.

01601 The logical file specified for data-name-C has not been defined.

01607 The memory became insufficient.

01610 The value specified as the logical file name is invalid.

01611 The value specified for data-name-F is invalid.

01618 The OpenTP1 file system version does not much the OpenTP1 system version.

01619 The physical file corresponding to the logical file specified for data-name-C does not
exist.

01620 An input error occurred.

01623 The specified logical file is not in logical shutdown state.

01624 The specified logical file is not in shutdown state due to an error.

01627 The number of open character special files exceeds the specified maximum number.

CBLDCDAM('RLES') - Release a logical file from the shutdown state

114

01628 The access permission for character special files has not been granted.

The DAM file to be accessed is protected by the security facility. The UAP attempting to
release the logical file from the shutdown state has no access permission.

01632 The physical file is not a character special file, or the device corresponding to the
specified special file does not exist.

01633 The physical file corresponding to the logical file specified for data-name-C has not been
initialized as an OpenTP1 file system.

01638 The access permission for the physical file that corresponds to the logical file specified
for data-name-C has not been granted.

01646 The DAM file to be released from the shutdown state is protected by the security facility.
No ACL exists for the file.

01690 The interface code (data-name-A) is invalid.

01691 The request code (data-name-E) is invalid.

Status code Explanation

CBLDCDAM('STAT') - Reference the status of a logical file

115

CBLDCDAM('STAT') - Reference the status of a logical file

Format
PROCEDURE DIVISION specification

DATA DIVISION specification

Description
CBLDCDAM('STAT') returns the current status of a logical file. The contents to be
returned are shown below:

• Number of blocks of the logical file

• Block length of the logical file

• Physical file name corresponding to the logical file

• Current status of the logical file (whether in the shutdown state or not)

• Attribute of the logical file specified in the DAM service definition

• Security attribute of the logical file specified in the DAM service definition

CALL 'CBLDCDAM' USING unique-name-1 unique-name-2
 unique-name-3

01 unique-name-1.
 02 data-name-A PIC X(8) VALUE 'DCDAMSVC'.
 02 data-name-B PIC X(5).
 02 FILLER PIC X(3).
 02 data-name-C PIC X(8) COMP.
 02 data-name-E PIC S9(9) COMP VALUE ZERO.
 02 data-name-F PIC S9(9) COMP.
 02 data-name-G PIC S9(9) COMP.
 02 FILLER PIC S9(9) COMP.
 02 data-name-H PIC X(1).
 02 data-name-I PIC X(1).
 02 data-name-J PIC X(1).
 02 FILLER PIC X(1).
 02 FILLER PIC X(20).
01 unique-name-2.
 02 data-name-D PIC X(4) VALUE 'STAT'.
 02 FILLER PIC X(1).
 02 FILLER PIC X(1).
 02 FILLER PIC X(1).
 02 FILLER PIC X(1).
 02 data-name-Z PIC S9(9) COMP VALUE ZERO.
01 unique-name-3.
 02 data-name-K PIC X(64).

CBLDCDAM('STAT') - Reference the status of a logical file

116

The status of a logical file can be referenced whether the logical file is opened or not.

When referencing the status of a logical file, specify the logical file name.

Data areas whose values are set in the UAP
data-name-A
Specify VALUE 'DCDAMSVC' for the interface code used with the DAM file.

data-name-C
Specify a logical file name with up to 8 characters. If the specified logical file name
comprises less than 8 characters, pad the remaining portion with space.

data-name-E
Specify 0.

data-name-D
Specify VALUE 'STAT' for the request code indicating the reference of the status of
a logical file.

data-name-Z
Specify 0.

Data areas to which values are returned from OpenTP1
data-name-B
The status code of 5 digit is returned.

data-name-F
Block length of a logical file is returned.

data-name-G
The number of blocks of a logical file is returned.

data-name-H
The current status of a logical file is set to one of the following values:

VALUE 'N' ... The logical file is accessible.

VALUE 'L' ... The logical file is in logical shutdown state.

VALUE 'O' ... The logical file is in shutdown state due to an error.

VALUE 'H' ... The logical file is requested to be shut down.

data-name-I
The attribute of a logical file specified in the DAM service definition is set to one of

CBLDCDAM('STAT') - Reference the status of a logical file

117

the following values:

VALUE 'Q' ... The DAM file is not a target for deferred update processing.

VALUE 'D' ... The DAM file is a target for deferred update processing.

VALUE 'N' ... The DAM file is unrecoverable.

VALUE 'C' ... Unrecoverable DAM file specified by a cache-less access.

data-name-J
The security attribute of a logical file specified in the DAM service definition is set to
one of the following values:

VALUE 'N' ... Security is not required.

VALUE 'S' ... Security is required.

data-name-K
A physical file name corresponding to the logical file is set here.

Status codes
Status code Explanation

00000 The status of the logical name was set to data-name-H normally.

01600 CBLDCRPC('OPEN ') was not called.

'N' is specified for atomic_update in the user service definition. (This error is
returned only when accessing a recoverable DAM file.)

CBLDCDAM('STRT') was not called. (This error is returned only when accessing an
unrecoverable DAM file.)

01601 The logical file name specified for data-name-C has not been defined.

01607 The memory became insufficient.

01610 The logical file name specified for data-name-C is invalid.

01611 The value specified for data-name-E is invalid.

01612 The value set to a data name to which a value is returned from OpenTP1 is invalid or
not a space.

01618 The version of the DAM library linked to the UAP does not allow the UAP to operate
with the current DAM service.

01628 The DAM file of which the status was attempted to be referenced is protected by the
security facility. The UAP that called CBLDCDAM('STAT') has no access permission.

01646 The DAM file of which the status was attempted to be referenced is protected by the
security facility. No ACL exists for the file.

CBLDCDAM('STAT') - Reference the status of a logical file

118

Note
When referencing the status of a DAM file, the DAM service applies lock to get
information. Therefore, frequent calls of CBLDCDAM('STAT') may decrease
throughput due to the waiting time for release from lock. Hold the frequency of
referencing the status of a DAM file in online mode to a minimum.

01690 The interface code (data-name-A) is invalid.

01691 The request code (data-name-D) is invalid.

Status code Explanation

CBLDCDAM('STRT') - Start using an unrecoverable DAM file

119

CBLDCDAM('STRT') - Start using an unrecoverable DAM file

Format
PROCEDURE DIVISION specification

DATA DIVISION specification

Description
CBLDCDAM('STRT') declares that unrecoverable DAM files are used.

Whenever an unrecoverable DAM file is used, call CBLDCDAM('STRT') for each
UAP process before opening a logical file.

When CBLDCDAM('STRT') returns normally, the environment for accessing an
unrecoverable DAM file is prepared.

Data areas whose values are set in the UAP
data-name-A
Specify VALUE 'DCDAMSVC' for the interface code used with the DAM file.

data-name-C
Specify VALUE 'STRT' for the request code indicating that using the unrecoverable
DAM file is started.

data-name-Z
Specify 0.

CALL 'CBLDCDAM' USING unique-name-1 unique-name-2
 unique-name-3

01 unique-name-1.
 02 data-name-A PIC X(8) VALUE 'DCDAMSVC'.
 02 data-name-B PIC X(5).
 02 FILLER PIC X(3).
 02 FILLER PIC X(8).
 02 FILLER PIC S9(9) COMP.
 02 FILLER PIC S9(9) COMP.
 02 FILLER PIC S9(9) COMP.
 02 FILLER PIC X(28).
01 unique-name-2.
 02 data-name-C PIC X(4) VALUE 'STRT'.
 02 FILLER PIC X(1).
 02 FILLER PIC X(1).
 02 FILLER PIC X(1).
 02 FILLER PIC X(1).
 02 data-name-Z PIC S9(9) COMP VALUE ZERO.

CBLDCDAM('STRT') - Start using an unrecoverable DAM file

120

Data area to which a value is returned from OpenTP1
data-name-B
The status code of 5 digit is returned.

Status codes
Status code Explanation

00000 Normal termination. Unrecoverable DAM files can now be used.

01600 CBLDCRPC('OPEN ') was not called.

01607 The memory became insufficient.

01618 The version of the DAM library linked to the UAP does not allow the UAP to operate
with the current DAM service.

01647 CBLDCDAM('STRT') has already been called.

01690 The interface code (data-name-A) is invalid.

01691 The request code (data-name-C) is invalid.

CBLDCDAM('WRIT') - Output a logical file block

121

CBLDCDAM('WRIT') - Output a logical file block

Format
PROCEDURE DIVISION specification

DATA DIVISION specification

Description
CBLDCDAM('WRIT') outputs a specified block. The timing of outputting blocks is
shown below:

• When accessing a recoverable DAM file:

The updated data is stored in the part of shared memory that is allocated for DAM
service, and the actual file is updated when the transaction is committed. If

CALL 'CBLDCDAM' USING unique-name-1 unique-name-2
 unique-name-n

01 unique-name-1.
 02 data-name-A PIC X(8) VALUE 'DCDAMSVC'.
 02 data-name-B PIC X(5).
 02 FILLER PIC X(3).
 02 data-name-C PIC X(8).
 02 data-name-D PIC S9(9) COMP.
 02 data-name-E PIC S9(9) COMP.
 02 data-name-H PIC S9(9) COMP.
 02 FILLER PIC X(28).
01 unique-name-2.
 02 data-name-F PIC X(4) VALUE 'WRIT'.
 02 data-name-G PIC X(1).
 02 FILLER PIC X(1).
 02 FILLER PIC X(1).
 02 FILLER PIC X(1).
 02 data-name-Z PIC S9(9) COMP VALUE ZERO.
 02 unique-name-3.
 03 data-name-I PIC S9(9) COMP.
 03 data-name-J PIC S9(9) COMP.
 02 unique-name-4.
 03 data-name-I PIC S9(9) COMP.
 03 data-name-J PIC S9(9) COMP.
 :
 :
 02 unique-name-m.
 03 data-name-I PIC S9(9) COMP.
 03 data-name-J PIC S9(9) COMP.
01 unique-name-n.
 02 data-name-K PIC X(n).

CBLDCDAM('WRIT') - Output a logical file block

122

deferred output is specified for the DAM file, the file contents are output
asynchronously with the commitment of the transaction.

• When accessing an unrecoverable DAM file:

The contents of the DAM file are output when CBLDCDAM('WRIT') returns.

When a request is made to output multiple blocks at a time and if even one of the
specified blocks causes an error, processing is stopped and an error is returned. The
blocks are not output in this case.

Lock which is enabled for a block input for reference processing is released in the
following case:

After the block is input for reference processing, an input request for update processing
is made for the same block. Then, an input error occurs during the update processing.

When outputting a logical file block, specify the logical file name and the file
descriptor returned from CBLDCDAM('OPEN').

Data areas whose values are set in the UAP
data-name-A
Specify VALUE 'DCDAMSVC' for the interface code used with the DAM file.

data-name-C
Specify a logical file name with up to 8 characters. If the specified logical file name
comprises less than 8 characters, pad the remaining portion with space.

data-name-D
Specify the number of blocks from unique-name-3 to unique-name-m (number of sets
of data-name-I and data-name-J).

data-name-E
Specify the length of output data. The output data length must be (block length to be
output x number of blocks to be output).

'Number of blocks to be output' is the sum of blocks specified with the number of
blocks from unique-name-3 to unique-name-m (number of sets of data-name-I and
data-name-J).

data-name-H
Specify the file descriptor returned when the logical file was opened.

data-name-F
Specify VALUE 'WRIT' for the request code indicating the output of a logical file
block.

CBLDCDAM('WRIT') - Output a logical file block

123

data-name-G
Specify whether the program is to wait for the resource to be released from lock if a
lock error occurs.

VALUE 'W': The program waits for the resource to be released from lock.

VALUE 'N': The program does not wait for the resource to be released from lock, and
returns with an error.

VALUE SPACE : Processing is done according to the value specified for data-name-G
of CBLDCDAM('OPEN').

If VALUE SPACE is specified or no value is specified, the subsequent processing is as
follows:

• If VALUE 'W' is specified for data-name-G of CBLDCDAM('OPEN'), the
program waits for the resource to be released from lock.

• If VALUE 'N' is specified for data-name-G of CBLDCDAM('OPEN') or if no
value is specified, the program does not wait for the resource to be released from
lock, and returns with an error.

However, if files-based lock is specified as the lock type in CBLDCDAM('OPEN') with
the file descriptor specified for data-name-H, the value specified for data-name-G is
meaningless.

data-name-Z
Specify 0.

data-name-I
Specify the first relative block number of the block to be accessed.

data-name-J
Specify the last relative block number of the block to be accessed. If 0 is specified, only
the relative block number specified for data-name-I is output.

data-name-K
Specify an output data area (buffer).

Data area to which a value is returned from OpenTP1
data-name-B
A status code of 5 digits is returned.

Status codes
Status code Explanation

00000 All blocks were output normally.

CBLDCDAM('WRIT') - Output a logical file block

124

01600 CBLDCRPC('OPEN ') was not called.

CBLDCDAM('WRIT') was called outside the transaction range. (This error is returned
only when accessing a recoverable DAM file.)

'N' is specified for atomic_update in the user service definition. (This error is returned
only when accessing a recoverable DAM file.)

CBLDCDAM('STRT') was not called. (This error is returned only when accessing an
unrecoverable DAM file.)

The UAP is incorrectly linked as follows:
• The library (-1tdam) to be used for access to a TAM file using the DAM service API

is linked incorrectly.
• The definition of the resource manager for transaction control object files is incorrect.

01602 A lock error occurred.

01603 The file descriptor specified for data-name-H is not the one which was acquired by
opening the file normally.

The DAM file is not open.

01604 The output data length (block length to be output x number of blocks to be output) is too
short.

01605 The sequence for accessing the DAM file is invalid.

01606 The relative block number is invalid.

01607 The memory became insufficient.

01609 The value specified for data-name-D is smaller than 1.

01611 The value specified for data-name-G is invalid.

01613 The number of block updates exceeded the maximum number of blocks that can be
updated during one transaction according to the DAM service definition. (This error is
returned only when accessing a recoverable DAM file.)

01620 An output error occurred. (This error is returned only when accessing an unrecoverable
DAM file.)

01621 The specified file is in logical shutdown state.

01622 The specified file is in shutdown state due to an error.

01628 The DAM file to be accessed is protected by the security facility. The UAP attempting to
input a logical file block has no access permission.

01629 A transaction service error occurred. (This error is returned only when accessing a
recoverable DAM file.)

Status code Explanation

CBLDCDAM('WRIT') - Output a logical file block

125

Note
If the status code 01613 or 01648 is returned, take the following actions:

• Make the number of blocks to be output less than or equal to the maximum
number of blocks to be updated.

• Update the blocks which have not been updated by CBLDCDAM('REWT') before
calling CBLDCDAM('WRIT'), if any.

01641 The output data length (block length to be output x number of blocks to be output) is too
long.

01642 A deadlock occurred.

01643 The resource could not be acquired because a timeout occurred (the wait time specified
in the lock service definition was exceeded).

01645 The number of lock requests exceeds the specified maximum number of concurrent lock
requests.

01648 The number of blocks exceeded the maximum number of accessible blocks. (This error
is returned only when accessing an unrecoverable DAM file.)

01690 The interface code (data-name-A) is invalid.

01691 The request code (data-name-F) is invalid.

Status code Explanation

CBLDCDMB('BSEK') - Seek a physical file block

126

CBLDCDMB('BSEK') - Seek a physical file block

Format
PROCEDURE DIVISION specification

DATA DIVISION specification

Description
CBLDCDMB('BSEK') specifies a relative block number of the physical file to locate
the corresponding block. Call CBLDCDMB('BSEK') after opening a physical file with
a re-creation output request.

When the relative block number exists in the file, the relative block number is returned.

When seeking a physical file block, specify the file descriptor returned from
CBLDCDMB('OPEN').

Data areas whose values are set in the UAP
data-name-A
Specify VALUE 'DCDAMINT' for the interface code used with the DAM file.

data-name-C
Specify the physical file name which comprises 63 characters (special file name + 14
characters) or less. If the specified physical file name has less than 63 characters, pad
the remaining portion with space.

CALL 'CBLDCDMB' USING unique-name-1 unique-name-2
 unique-name-3

01 unique-name-1.
 02 data-name-A PIC X(8) VALUE 'DCDAMINT'.
 02 data-name-B PIC X(5).
 02 FILLER PIC X(1).
 02 data-name-C PIC X(63).
 02 FILLER PIC X(3).
 02 data-name-H PIC S9(9) COMP.
 02 data-name-E PIC S9(9) COMP.
 02 FILLER PIC S9(9) COMP.
 02 data-name-I PIC S9(9) COMP.
01 unique-name-2.
 02 data-name-D PIC X(4) VALUE 'BSEK'.
 02 FILLER PIC X(1).
 02 FILLER PIC X(1).
 02 FILLER PIC X(1).
 02 FILLER PIC X(1).
 02 data-name-Z PIC S9(9) COMP VALUE ZERO.

CBLDCDMB('BSEK') - Seek a physical file block

127

data-name-E
Specify the file descriptor.

data-name-I
Specify the relative block number of the block to be sought.

data-name-D
Specify VALUE 'BSEK' for the request code indicating that a physical file is sought.

data-name-Z
Specify 0.

Data areas to which values are returned from OpenTP1
data-name-B
The status code of 5 digit is returned.

data-name-H
The relative block number of the sought block is returned.

Status codes
Status code Explanation

00000 The relative block number was set to data-name-H normally.

01603 The file descriptor specified for data-name-E is not the one which was acquired by
opening the DAM file normally.

The DAM file is not open.

01605 The sequence of accessing the DAM file is invalid.

01606 The relative block number is invalid.

01620 An output error occurred.

01690 The interface code (data-name-A) is invalid.

01691 The request code (data-name-D) is invalid.

CBLDCDMB('CLOS') - Close a physical file

128

CBLDCDMB('CLOS') - Close a physical file

Format
PROCEDURE DIVISION specification

DATA DIVISION specification

Description
CBLDCDMB('CLOS') closes a physical file created in the OpenTP1 file system.

If a file is not filled with data, the remaining part up to the end of the file is padded with
space while the remaining part is padded with blocks of null characters only in the
following cases:

• A creation output request has been specified for data-name-I of
CBLDCDMB('OPEN').

• CBLDCDMB('CRAT') has been called.

When closing a physical file, specify the physical file name and the file descriptor
returned from CBLDCDMB('OPEN') or CBLDCDMB('CRAT').

Data areas whose values are set in the UAP
data-name-A
Specify VALUE 'DCDAMINT' for the interface code used with the DAM file.

CALL 'CBLDCDMB' USING unique-name-1 unique-name-2

01 unique-name-1.
 02 data-name-A PIC X(8) VALUE 'DCDAMINT'.
 02 data-name-B PIC X(5).
 02 FILLER PIC X(1).
 02 data-name-C PIC X(63).
 02 FILLER PIC X(3).
 02 FILLER PIC S9(9) COMP.
 02 data-name-E PIC S9(9) COMP.
 02 FILLER PIC S9(9) COMP.
 02 FILLER PIC X(4).
01 unique-name-2.
 02 data-name-D PIC X(4) VALUE 'CLOS'.
 02 FILLER PIC X(1).
 02 FILLER PIC X(1).
 02 FILLER PIC X(1).
 02 FILLER PIC X(1).
 02 data-name-Z PIC S9(9) COMP VALUE ZERO.

CBLDCDMB('CLOS') - Close a physical file

129

data-name-C
Specify a physical file name with a path name which comprises 63 characters (special
file name + 14 characters) or less. If the physical file name comprises less than 63
characters, pad the remaining portion with space.

data-name-E
Specify the file descriptor.

data-name-D
Specify VALUE 'CLOS' for the request code indicating that the physical file is closed.

data-name-Z
Specify 0.

Data area to which a value is returned from OpenTP1
data-name-B
A status code of 5 digits is returned.

Status codes
Status code Explanation

00000 The file was closed normally.

01603 The file descriptor specified for data-name-E is not the one which was acquired by
opening the file normally.

The DAM file is not open.

01620 An output error occurred.

01690 The interface code (data-name-A) is invalid.

01691 The request code (data-name-D) is invalid.

CBLDCDMB('CRAT') - Allocate a physical file

130

CBLDCDMB('CRAT') - Allocate a physical file

Format
PROCEDURE DIVISION specification

DATA DIVISION specification

Description
CBLDCDMB('CRAT') allocates a physical file to the OpenTP1 file system.

The size of a physical file is (block length + 8) x (number of blocks + 1).

There is no need to open the physical file after the physical file is allocated.

The following COBOL-UAP creation programs cannot be called after the physical file
is allocated by CBLDCDMB('CRAT'):

• CBLDCDMB ('GET ')

• CBLDCDMB ('BSEK')

• CBLDCDMB ('DGET')

• CBLDCDMB ('DPUT')

The size of an output buffer is (block length + 8) x (number of blocks collectively
processed).

The default is assumed if 'N' is specified for access permissions (no access

CALL 'CBLDCDMB' USING unique-name-1 unique-name-2

01 unique-name-1.
 02 data-name-A PIC X(8) VALUE 'DCDAMINT'.
 02 data-name-B PIC X(5).
 02 FILLER PIC X(1).
 02 data-name-C PIC X(63).
 02 FILLER PIC X(3).
 02 data-name-D PIC S9(9) COMP.
 02 data-name-E PIC S9(9) COMP.
 02 data-name-G PIC S9(9) COMP.
 02 data-name-H PIC S9(9) COMP.
01 unique-name-2.
 02 data-name-F PIC X(4) VALUE 'CRAT'.
 02 data-name-I PIC X(1).
 02 data-name-J PIC X(1).
 02 data-name-K PIC X(1).
 02 FILLER PIC X(1).
 02 data-name-Z PIC S9(9) COMP VALUE ZERO.

CBLDCDMB('CRAT') - Allocate a physical file

131

permission).

When allocating a physical file, specify the physical file name.

Data areas whose values are set in the UAP
data-name-A
Specify VALUE 'DCDAMINT' for the interface code used with the DAM file.

data-name-C
Specify the name of the physical file to be created, with a pathname which comprises
63 characters (special file name + 14 characters) or less. If the physical file name
comprises less than 63 characters, pad the remaining portion with space.

data-name-D
Specify the length of a block to be allocated in the OpenTP1 file system.

data-name-G
Specify the number of blocks to be allocated in the OpenTP1 file system.

data-name-H
Specify the number of blocks collectively processed which is used as an input/output
unit.

data-name-F
Specify VALUE 'CRAT' for the request code indicating physical file allocation.

data-name-I
Specify the access permission of the file owner.

VALUE 'N': No access permission

VALUE 'R': Read permission only

VALUE 'W': Write permission only

VALUE 'B': Both read permission and write permission

data-name-J
Specify the access permission of the file owner group.

VALUE 'N': No access permission

VALUE 'R': Read permission only

VALUE 'W': Write permission only

VALUE 'B': Both read permission and write permission

CBLDCDMB('CRAT') - Allocate a physical file

132

data-name-K
Specify the access permission of those who are not the file owner.

VALUE 'N': No access permission

VALUE 'R': Read permission only

VALUE 'W': Write permission only

VALUE 'B': Both read permission and write permission

data-name-Z
Specify 0.

Data areas to which values are returned from OpenTP1
data-name-B
A status code of 5 digits is returned.

data-name-E
The file descriptor is returned.

Status codes
Status code Explanation

00000 The file descriptor was specified for data-name-E normally.

01607 The memory became insufficient.

01608 The physical file specified for data-name-C is open.

01611 The value specified for data-name-I, J, or K is invalid.

01614 The physical file name is invalid.

01615 The value specified for the number of blocks collectively processed is invalid.

01617 The same physical file name already exists.

01618 The OpenTP1 file system versions used for creation and allocation do not match each
other.

01620 An input/output error occurred.

01628 The access permission for special files has not been granted.

The DAM file to be allocated is protected by the security facility. The UAP that called
CBLDCDMB('CRAT') has no access permission.

01630 The value specified for the block length is not suitable.

CBLDCDMB('CRAT') - Allocate a physical file

133

01631 The value specified for the number of blocks is not suitable.

01632 The physical file is not a character special file, or the device corresponding to the special
file does not exist.

01633 The specified OpenTP1 file has not been initialized as an OpenTP1 file system.

01634 When the OpenTP1 file was initialized as an OpenTP1 file system, an attempt was made
to allocate more OpenTP1 files (physical files) than specified.

01635 The specified value exceeds the maximum number of files which can be opened in the
process being executed.

01636 The physical file specified for data-name-C is being used in online mode, or it is being
used by another process.

01640 The OpenTP1 file system does not have a free area large enough to allocate physical files.

01646 The DAM file to be allocated is protected by the security facility. No ACL exists for the
file.

01690 The interface code (data-name-A) is invalid.

01691 The request code (data-name-F) is invalid.

Status code Explanation

CBLDCDMB('DGET') - Input directly a physical file block

134

CBLDCDMB('DGET') - Input directly a physical file block

Format
PROCEDURE DIVISION specification

DATA DIVISION specification

Description
CBLDCDMB('DGET') inputs a block corresponding to the specified relative block
number from a physical file. Call CBLDCDMB('DGET') after opening a physical file
with a re-creation output request.

If the block length is less than the buffer length, the length of the input block is returned
to data-name-H. If the block length is greater than the buffer length,
CBLDCDMB('DGET') returns with an error.

When directly inputting a physical file block, specify the file descriptor returned from
CBLDCDMB('OPEN').

Data areas whose values are set in the UAP
data-name-A
Specify VALUE 'DCDAMINT' for the interface code used with the DAM file.

CALL 'CBLDCDMB' USING unique-name-1 unique-name-2
 unique-name-3

01 unique-name-1.
 02 data-name-A PIC X(8) VALUE 'DCDAMINT'.
 02 data-name-B PIC X(5).
 02 FILLER PIC X(1).
 02 data-name-C PIC X(63).
 02 FILLER PIC X(3).
 02 data-name-H PIC S9(9) COMP.
 02 data-name-E PIC S9(9) COMP.
 02 data-name-G PIC S9(9) COMP.
 02 data-name-I PIC S9(9) COMP.
01 unique-name-2.
 02 data-name-D PIC X(4) VALUE 'DGET'.
 02 FILLER PIC X(1).
 02 FILLER PIC X(1).
 02 FILLER PIC X(1).
 02 FILLER PIC X(1).
 02 data-name-Z PIC S9(9) COMP VALUE ZERO.
01 unique-name-3.
 02 data-name-F PIC X(n).

CBLDCDMB('DGET') - Input directly a physical file block

135

data-name-C
Specify the physical file name which comprises 63 characters (special file name + 14
characters) or less. If the specified physical file name has less than 63 characters, pad
the remaining portion with space.

data-name-E
Specify the file descriptor.

data-name-G
Specify the length of the input buffer.

data-name-I
Specify the relative block number of the block to be input.

data-name-D
Specify VALUE 'DGET' for the request code indicating the direct input of a physical
file block.

data-name-F
Specify the input buffer.

data-name-Z
Specify 0.

Data areas to which values are returned from OpenTP1
data-name-B
The status code of 5 digit is returned.

data-name-H
The length of the sought block is returned.

Status codes
Status code Explanation

00000 The input block length was set to data-name-H normally.

01603 The file descriptor specified for data-name-E is not the one which was acquired by
opening the DAM file normally.

The DAM file is not open.

01604 The value specified for data-name-G is less than the block length.

01605 The sequence of accessing the DAM file is invalid.

CBLDCDMB('DGET') - Input directly a physical file block

136

01606 The relative block number is invalid.

01620 An input error occurred.

01628 The DAM file to be accessed is protected by the security facility. The UAP attempting
to input a physical file block has no access permission.

01646 The DAM file to be accessed is protected by the security facility. No ACL exists for the
file.

01690 The interface code (data-name-A) is invalid.

01691 The request code (data-name-D) is invalid.

Status code Explanation

CBLDCDMB('DPUT') - Output directly a physical file block

137

CBLDCDMB('DPUT') - Output directly a physical file block

Format
PROCEDURE DIVISION specification

DATA DIVISION specification

Description
CBLDCDMB('DPUT') outputs a block corresponding to the specified relative block
number to a physical file. Call CBLDCDMB('DPUT') after opening a physical file with
a re-creation output request.

If the length of the data to be output is less than the block length, some blocks are filled
with the output data, and the remaining blocks are padded with null characters. Then,
the block length is returned to data-name-H. If the length of the data to be output is
greater than the block length, CBLDCDMB('DPUT') returns with an error.

When directly outputting a physical file block, specify the file descriptor returned from
CBLDCDMB('OPEN').

Data areas whose values are set in the UAP
data-name-A
Specify VALUE 'DCDAMINT' for the interface code used with the DAM file.

CALL 'CBLDCDMB' USING unique-name-1 unique-name-2
 unique-name-3

01 unique-name-1.
 02 data-name-A PIC X(8) VALUE 'DCDAMINT'.
 02 data-name-B PIC X(5).
 02 FILLER PIC X(1).
 02 data-name-C PIC X(63).
 02 FILLER PIC X(3).
 02 data-name-H PIC S9(9) COMP.
 02 data-name-E PIC S9(9) COMP.
 02 data-name-G PIC S9(9) COMP.
 02 data-name-I PIC S9(9) COMP.
01 unique-name-2.
 02 data-name-D PIC X(4) VALUE 'DPUT'.
 02 FILLER PIC X(1).
 02 FILLER PIC X(1).
 02 FILLER PIC X(1).
 02 FILLER PIC X(1).
 02 data-name-Z PIC S9(9) COMP VALUE ZERO.
01 unique-name-3.
 02 data-name-F PIC X(n).

CBLDCDMB('DPUT') - Output directly a physical file block

138

data-name-C
Specify the physical file name which comprises 63 characters (special file name + 14
characters) or less. If the specified physical file name has less than 63 characters, pad
the remaining portion with space.

data-name-E
Specify the file descriptor.

data-name-G
Specify the length of the data to be output.

data-name-I
Specify the relative block number of the block to be output.

data-name-D
Specify VALUE 'DPUT' for the request code indicating the direct output of a physical
file block.

data-name-F
Specify the data to be output.

data-name-Z
Specify 0.

Data areas to which values are returned from OpenTP1
data-name-B
The status code of 5 digit is returned.

data-name-H
The length of the output block is returned.

Status codes
Status code Explanation

00000 Normal termination.

01603 The file descriptor specified for data-name-E is not the one which was acquired by
opening the DAM file normally.

The DAM file is not open.

01604 The value specified for the length of the data to be output is greater than the block
length.

01605 The sequence of accessing the DAM file is invalid.

CBLDCDMB('DPUT') - Output directly a physical file block

139

01606 The relative block number is invalid.

01620 An output error occurred.

01628 The DAM file to be accessed is protected by the security facility. The UAP attempting
to input a physical file block has no access permission.

01646 The DAM file to be accessed is protected by the security facility. No ACL exists for the
file.

01690 The interface code (data-name-A) is invalid.

01691 The request code (data-name-D) is invalid.

Status code Explanation

CBLDCDMB('GET ') - Input a physical file block

140

CBLDCDMB('GET ') - Input a physical file block

Format
PROCEDURE DIVISION specification

DATA DIVISION specification

Description
CBLDCDMB('GET ') sequentially inputs data in blocks from a physical file of the
OpenTP1 file system. Input the physical file block after opening the physical file.

If the value specified for the block length is smaller than the value specified for the
buffer length, the length of the input block is returned to data-name-H. If the value
specified for the block length is greater than the value specified for buffer length, an
error is returned.

When inputting a physical file block, specify the physical file name and the file
descriptor returned from CBLDCDMB('OPEN').

Data areas whose values are set in the UAP
data-name-A
Specify VALUE 'DCDAMINT' for the interface code used with the DAM file.

CALL 'CBLDCDMB' USING unique-name-1 unique-name-2
 unique-name-3

01 unique-name-1.
 02 data-name-A PIC X(8) VALUE 'DCDAMINT'.
 02 data-name-B PIC X(5).
 02 FILLER PIC X(1).
 02 data-name-C PIC X(63).
 02 FILLER PIC X(3).
 02 data-name-H PIC S9(9) COMP.
 02 data-name-E PIC S9(9) COMP.
 02 data-name-G PIC S9(9) COMP.
 02 FILLER PIC X(4).
01 unique-name-2.
 02 data-name-D PIC X(4) VALUE 'GET '.
 02 FILLER PIC X(1).
 02 FILLER PIC X(1).
 02 FILLER PIC X(1).
 02 FILLER PIC X(1).
 02 data-name-Z PIC S9(9) COMP VALUE ZERO.
01 unique-name-3.
 02 data-name-F PIC X(n).

CBLDCDMB('GET ') - Input a physical file block

141

data-name-C
Specify the physical file name, with a path name which comprises 63 characters
(special file name + 14 characters) or less. If the physical file name comprises less than
63 characters, pad the remaining portion with space.

data-name-E
Specify the file descriptor.

data-name-G
Specify the length of the input buffer.

data-name-D
Specify VALUE 'GET ' for the request code indicating the input of a block from the
physical file.

data-name-F
Specify the input buffer.

data-name-Z
Specify 0.

Data areas to which values are returned from OpenTP1
data-name-B
A status code of 5 digits is returned.

data-name-H
The length of the input block is returned.

Status codes
Status code Explanation

00000 The input block length was specified for data-name-H normally.

01603 The file descriptor specified for data-name-E is not the one which was acquired by
opening the file normally.

The DAM file is not open.

01604 The value specified for the block length is greater than the value specified for the
buffer length.

01605 The sequence of accessing the DAM file is invalid.

01620 An input error occurred.

CBLDCDMB('GET ') - Input a physical file block

142

01628 The DAM file to be accessed is protected by the security facility. The UAP attempting
to input a physical file block has no access permission.

01637 The file end was reached.

01646 The DAM file to be accessed is protected by the security facility. No ACL exists for
the file.

01690 The interface code (data-name-A) is invalid.

01691 The request code (data-name-D) is invalid.

Status code Explanation

CBLDCDMB('OPEN') - Open a physical file

143

CBLDCDMB('OPEN') - Open a physical file

Format
PROCEDURE DIVISION specification

DATA DIVISION specification

Description
CBLDCDMB('OPEN') opens a physical file created in the OpenTP1 file system.
However, it cannot open a physical file being used in online mode.

Data areas whose values are set in the UAP
data-name-A
Specify VALUE 'DCDAMINT' for the interface code used with the DAM file.

data-name-C
Specify the physical file name, with a path name which comprises 63 characters
(special file name + 14 characters) or less. If the physical file name comprises less than
63 characters, pad the remaining portion with space.

data-name-H
Specify the number of blocks collectively processed which is used as an input/output
unit.

CALL 'CBLDCDMB' USING unique-name-1 unique-name-2

01 unique-name-1.
 02 data-name-A PIC X(8) VALUE 'DCDAMINT'.
 02 data-name-B PIC X(5).
 02 FILLER PIC X(1).
 02 data-name-C PIC X(63).
 02 FILLER PIC X(3).
 02 FILLER PIC S9(9) COMP.
 02 data-name-E PIC S9(9) COMP.
 02 FILLER PIC S9(9) COMP.
 02 data-name-H PIC S9(9) COMP.
01 unique-name-2.
 02 data-name-F PIC X(4) VALUE 'OPEN'.
 02 data-name-I PIC X(1).
 02 FILLER PIC X(1).
 02 FILLER PIC X(1).
 02 FILLER PIC X(1).
 02 data-name-Z PIC S9(9) COMP VALUE ZERO.

CBLDCDMB('OPEN') - Open a physical file

144

data-name-F
Specify VALUE 'OPEN' for the request code indicating that the physical file is open.

data-name-I
Specify the type of request (creation output request or re-creation (overwrite) output
request). The value specified here determines whether to pad the remaining area with
space when the file is closed. The value set here will come into effect when
CBLDCDMB('CLOS') call subsequent to CBLDCDMB('PUT ') brings about normal
termination. Even though CBLDCDMB('PUT ') is called, the remaining area will not
be padded with blocks of null characters provided that UAP processing is terminated
without calling CBLDCDMB('CLOS').

VALUE 'I': Creation output request

VALUE 'O': Re-creation output request

data-name-Z
Specify 0.

Data areas to which values are returned from OpenTP1
data-name-B
A status code of 5 digits is returned.

data-name-E
The file descriptor in return for open processing is returned.

Status codes
Status code Explanation

00000 The file descriptor was specified for data-name-E normally.

01607 The memory became insufficient.

01608 The physical file specified for data-name-C is open.

01611 The value specified for data-name-I is invalid.

01614 The physical file name specified is invalid.

01615 The value specified for the number of blocks collectively processed is invalid.

01616 The physical file specified for data-name-C is not a DAM file.

01618 The OpenTP1 file system versions used for creation and allocation do not match each
other.

01619 The physical file specified for data-name-C does not exist.

CBLDCDMB('OPEN') - Open a physical file

145

01620 An input/output error occurred.

01628 The access permission for special files has not been granted.

01632 The physical file is not a character special file, or the device corresponding to the special
file does not exist.

01633 The physical file specified for data-name-C has not been initialized as an OpenTP1 file
system.

01635 The specified value exceeds the maximum number of files which can be opened in the
process.

01636 The physical file specified for data-name-C is being used in online mode, or it is being
used by another process.

01638 The access permission for physical files has not been granted.

01639 Physical file damage was detected.

01690 The interface code (data-name-A) is invalid.

01691 The request code (data-name-F) is invalid.

Status code Explanation

CBLDCDMB('PUT ') - Output a physical file block

146

CBLDCDMB('PUT ') - Output a physical file block

Format
PROCEDURE DIVISION specification

DATA DIVISION specification

Description
CBLDCDMB('PUT ') sequentially outputs data in blocks to a physical file created in
the OpenTP1 file system. If the value specified for the data length is smaller than the
value specified for the block length, the remaining part following the data is padded
with space. If the value specified for the data length is greater than the value specified
for the block length, an error is returned.

When outputting a physical file block, specify the physical file name and the file
descriptor returned from CBLDCDMB('OPEN') or CBLDCDMB('CRAT').

Data areas whose values are set in the UAP
data-name-A
Specify VALUE 'DCDAMINT' for the interface code used with the DAM file.

CALL 'CBLDCDMB' USING unique-name-1 unique-name-2
 unique-name-3

01 unique-name-1.
 02 data-name-A PIC X(8) VALUE 'DCDAMINT'.
 02 data-name-B PIC X(5).
 02 FILLER PIC X(1).
 02 data-name-C PIC X(63).
 02 FILLER PIC X(3).
 02 FILLER PIC S9(9) COMP.
 02 data-name-E PIC S9(9) COMP.
 02 data-name-G PIC S9(9) COMP.
 02 FILLER PIC X(4).
01 unique-name-2.
 02 data-name-D PIC X(4) VALUE 'PUT '.
 02 FILLER PIC X(1).
 02 FILLER PIC X(1).
 02 FILLER PIC X(1).
 02 FILLER PIC X(1).
 02 data-name-Z PIC S9(9) COMP VALUE ZERO.
01 unique-name-3.
 02 data-name-F PIC X(n).

CBLDCDMB('PUT ') - Output a physical file block

147

data-name-C
Specify the physical file name, with a path name which comprises 63 characters
(special file name + 14 characters) or less. If the physical file name comprises less than
63 characters, pad the remaining portion with space.

data-name-E
Specify the file descriptor.

data-name-G
Specify the length of the data to be output.

data-name-D
Specify VALUE 'PUT ' for the request code indicating block output to the physical
file.

data-name-F
Specify the data to be output.

data-name-Z
Specify 0.

Data area to which a value is returned from OpenTP1
data-name-B
A status code of 5 digits is returned.

Status codes
Status code Explanation

00000 The data specified for data-name-F was output normally.

01603 The specified file descriptor is not the one which was acquired by opening the DAM file
normally.

The DAM file is not open.

01604 The value specified for the data length is greater than the value specified for the block
length.

01605 The sequence for accessing the DAM file is invalid.

01620 An output error occurred.

01628 The DAM file to be accessed is protected by the security facility. The UAP attempting to
output a physical file block has no access permission.

01637 The end of the file was reached.

CBLDCDMB('PUT ') - Output a physical file block

148

01646 The DAM file to be accessed is protected by the security facility. No ACL exists for the
file.

01690 The interface code (data-name-A) is invalid.

01691 The request code (data-name-D) is invalid.

Status code Explanation

IST service (CBLDCIST)

149

IST service (CBLDCIST)

This section gives the syntax and other information of the following COBOL-UAP
creation programs which access an internode shared table:

• CBLDCIST('CLOS') - Close an internode shared table

• CBLDCIST('OPEN') - Open an internode shared table

• CBLDCIST('READ') - Input an internode shared table record

• CBLDCIST('WRIT') - Output an internode shared table record

The COBOL-UAP creation programs for IST service (CBLDCIST) can be used only in
UAPs of TP1/Server Base. They cannot be used in UAPs of TP1/LiNK.

When defining DATA DIVISION of COBOL-UAP creation programs, the COBOL
language templates can be used as samples. The COBOL language template for IST
service (CBLDCIST) is stored in DCIST.cbl under the /BeTRAN/examples/
COBOL/ directory.

CBLDCIST('CLOS') - Close an internode shared table

150

CBLDCIST('CLOS') - Close an internode shared table

Format
PROCEDURE DIVISION specification

DATA DIVISION specification

Description
CBLDCIST('CLOS') closes the specified internode shared table.

Data areas whose values are set in the UAP
data-name-A
Specify VALUE 'DCISTSVC' for the interface code used with the internode shared
table.

data-name-C
Specify the name of an internode shared table to be closed with up to 8 characters. If
the specified name comprises less than 8 characters, pad the remaining portion with
space.

data-name-F
Specify the table descriptor returned when the internode shared table is opened.

data-name-G
Specify VALUE 'CLOS' for the request code indicating that the internode shared table

CALL 'CBLDCIST' USING unique-name-1 unique-name-2

01 unique-name-1.
 02 data-name-A PIC X(8) VALUE'DCISTSVC'.
 02 data-name-B PIC X(5).
 02 FILLER PIC X(3).
 02 data-name-C PIC X(8).
 02 FILLER PIC S9(9) COMP.
 02 FILLER PIC S9(9) COMP.
 02 data-name-F PIC S9(9) COMP.
 02 FILLER PIC X(12).
01 unique-name-2.
 02 data-name-G PIC X(4) VALUE 'CLOS'.
 02 FILLER PIC X(1).
 02 FILLER PIC X(1).
 02 FILLER PIC X(1).
 02 FILLER PIC X(1).
 02 data-name-H PIC S9(9) COMP VALUE ZERO.

CBLDCIST('CLOS') - Close an internode shared table

151

is closed.

data-name-H
Specify 0.

Data area to which a value is returned from OpenTP1
data-name-B
A status code of 5 digits is returned.

Status codes
Status code Explanation

00000 The internode shared table was closed normally.

03800 The sequence of accessing the internode shared table is invalid.

03803 The table descriptor specified for data-name-F is not the one which was acquired by
opening the internode shared table normally.

The internode shared table is not open.

03811 The value specified for data-name-H is invalid.

03890 The interface code (data-name-A) is invalid.

03891 The request code (data-name-G) is invalid.

CBLDCIST('OPEN') - Open an internode shared table

152

CBLDCIST('OPEN') - Open an internode shared table

Format
PROCEDURE DIVISION specification

DATA DIVISION specification

Description
CBLDCIST('OPEN') opens the specified internode shared table. When the internode
shared table is opened normally, the table descriptor is returned.

Data areas whose values are set in the UAP
data-name-A
Specify VALUE 'DCISTSVC' for the interface code used with the internode shared
table.

data-name-C
Specify the name of an internode shared table to be opened with up to 8 characters. If
the specified name comprises less than 8 characters, pad the remaining portion with
space.

data-name-G
Specify VALUE 'OPEN' for the request code indicating the internode shared table is
opened.

CALL 'CBLDCIST' USING unique-name-1 unique-name-2

01 unique-name-1.
 02 data-name-A PIC X(8) VALUE 'DCISTSVC'.
 02 data-name-B PIC X(5).
 02 FILLER PIC X(3).
 02 data-name-C PIC X(8).
 02 FILLER PIC S9(9) COMP.
 02 FILLER PIC S9(9) COMP.
 02 data-name-F PIC S9(9) COMP.
 02 FILLER PIC X(12).
01 unique-name-2.
 02 data-name-G PIC X(4) VALUE 'OPEN'.
 02 FILLER PIC X(1).
 02 FILLER PIC X(1).
 02 FILLER PIC X(1).
 02 FILLER PIC X(1).
 02 data-name-H PIC S9(9) COMP VALUE ZERO.

CBLDCIST('OPEN') - Open an internode shared table

153

data-name-H
Specify 0.

Data areas to which values are returned from OpenTP1
data-name-B
A status code of 5 digits is returned.

data-name-F
The table descriptor of the internode shared table is returned.

Status codes
Status code Explanation

00000 The table descriptor was returned in data-name-F normally.

03800 The sequence of accessing the internode shared table is invalid.

03801 The internode shared table name specified for data-name-C has not been defined.

03807 The memory became insufficient.

03808 The internode shared table whose name is specified for data-name-C has already been
opened.

03810 The length of the value specified for the internode shared table name is invalid.

03811 The value specified for data-name-H is invalid.

03890 The interface code (data-name-A) is invalid.

03891 The request code (data-name-G) is invalid.

CBLDCIST('READ') - Input an internode shared table record

154

CBLDCIST('READ') - Input an internode shared table record

Format
PROCEDURE DIVISION specification

DATA DIVISION specification

Description
CBLDCIST('READ') inputs record(s) in the specified range from the specified
internode shared table for reference. When multiple records are specified at a time and
the specified records contain an error, CBLDCIST('READ') does not input any record
to the input buffer and returns with an error.

When inputting an internode shared table record, specify the internode shared table
name and the table descriptor returned from CBLDCIST('OPEN').

CALL 'CBLDCIST' USING unique-name-1 unique-name-2
 unique-name-n

01 unique-name-1.
 02 data-name-A PIC X(8) VALUE 'DCISTSVC'.
 02 data-name-B PIC X(5).
 02 FILLER PIC X(3).
 02 data-name-C PIC X(8).
 02 data-name-D PIC S9(9) COMP.
 02 data-name-E PIC S9(9) COMP.
 02 data-name-F PIC S9(9) COMP.
 02 FILLER PIC X(12).
01 unique-name-2.
 02 data-name-G PIC X(4) VALUE 'READ'.
 02 FILLER PIC X(1).
 02 FILLER PIC X(1).
 02 FILLER PIC X(1).
 02 FILLER PIC X(1).
 02 data-name-H PIC S9(9) COMP VALUE ZERO.
 02 unique-name-3.
 03 data-name-I PIC S9(9) COMP.
 03 data-name-J PIC S9(9) COMP.
 02 unique-name-4.
 03 data-name-I PIC S9(9) COMP.
 03 data-name-J PIC S9(9) COMP.
 :
 :
 02 unique-name-m.
 03 data-name-I PIC S9(9) COMP.
 03 data-name-J PIC S9(9) COMP.
01 data-name-n.
 02 data-name-K PIC X(n).

CBLDCIST('READ') - Input an internode shared table record

155

Data areas whose values are set in the UAP
data-name-A
Specify VALUE 'DCISTSVC' for the interface code used with the internode shared
table.

data-name-C
Specify the name of an internode shared table to be accessed with up to 8 characters.
If the specified name comprises less than 8 characters, pad the remaining portion with
space.

data-name-D
Specify the number of records from unique-name-2 to unique-name-m (the number of
sets of data-name-I and data-name-J).

data-name-E
Specify the length of the input buffer with a value which is greater than or equal to
(input record length x number of input records).

data-name-F
Specify the table descriptor returned when the internode shared table is opened.

data-name-G
Specify VALUE 'READ' for the request code indicating that an internode shared table
record(s) is input.

data-name-H
Specify 0.

data-name-I
Specify the relative record number of the first record to be accessed.

data-name-J
Specify the relative record number of the last record to be accessed. If 0 is specified,
only the record whose relative record number is specified for data-name-I is input.

data-name-K
Specify the input data area (buffer).

Data area to which a value is returned from OpenTP1
data-name-B
A status code of 5 digits is returned.

CBLDCIST('READ') - Input an internode shared table record

156

Status codes
Status code Explanation

00000 The entire specified record(s) was input normally.

03800 The sequence of accessing the internode shared table is invalid.

03803 The table descriptor specified for data-name-F is not the one which was acquired by
opening the internode shared table normally.

The internode shared table is not open.

03804 The input buffer length specified for data-name-E is less than the total length of the
record(s).

03806 The relative record number is invalid.

03807 The memory became insufficient.

03809 The value specified for data-name-D is less than 1.

03811 The value specified for data-name-H is invalid.

03890 The interface code (data-name-A) is invalid.

03891 The request code (data-name-G) is invalid.

CBLDCIST('WRIT') - Output an internode shared table record

157

CBLDCIST('WRIT') - Output an internode shared table record

Format
PROCEDURE DIVISION specification

DATA DIVISION specification

Description
CBLDCIST('WRIT') outputs record(s) in the specified range to the specified
internode shared table. When multiple records are specified at a time and the specified
records contain an error, CBLDCIST('WRIT') does not output any record to the
output buffer and returns with an error.

When CBLDCIST('WRIT') terminates normally, the contents of record(s) at the local
node are updated. The contents of record(s) at other nodes are updated presently after
normal termination of CBLDCIST('WRIT').

CALL 'CBLDCIST' USING unique-name-1 unique-name-2 unique-name-n

01 unique-name-1.
 02 data-name-A PIC X(8) VALUE 'DCISTSVC'.
 02 data-name-B PIC X(5).
 02 FILLER PIC X(3).
 02 data-name-C PIC X(8).
 02 data-name-D PIC S9(9) COMP.
 02 data-name-E PIC S9(9) COMP.
 02 data-name-F PIC S9(9) COMP.
 02 FILLER PIC X(12).
01 unique-name-2.
 02 data-name-G PIC X(4) VALUE 'WRIT'.
 02 FILLER PIC X(1).
 02 FILLER PIC X(1).
 02 FILLER PIC X(1).
 02 FILLER PIC X(1).
 02 data-name-H PIC S9(9) COMP VALUE ZERO.
 02 unique-name-3.
 03 data-name-I PIC S9(9) COMP.
 03 data-name-J PIC S9(9) COMP.
 02 unique-name-4.
 03 data-name-I PIC S9(9) COMP.
 03 data-name-J PIC S9(9) COMP.
 :
 :
 02 unique-name-m.
 03 data-name-I PIC S9(9) COMP.
 03 data-name-J PIC S9(9) COMP.
01 data-name-n.
 02 data-name-K PIC X(n).

CBLDCIST('WRIT') - Output an internode shared table record

158

When outputting internode shared table record(s), specify the internode shared table
name and the table descriptor returned from CBLDCIST('OPEN').

Data areas whose values are set in the UAP
data-name-A
Specify VALUE 'DCISTSVC' for the interface code used with the internode shared
table.

data-name-C
Specify the name of an internode shared table to be accessed with up to 8 characters.
If the specified name comprises less than 8 characters, pad the remaining portion with
space.

data-name-D
Specify the number of records from unique-name-2 to unique-name-m (the number of
sets of data-name-I and data-name-J).

data-name-E
Specify the length of the output buffer with a value which is greater than or equal to
(output record length x number of output records).

data-name-F
Specify the table descriptor returned when the internode shared table is opened.

data-name-G
Specify VALUE 'WRIT' for the request code indicating an internode shared table
record(s) is output.

data-name-H
Specify 0.

data-name-I
Specify the relative record number of the first record to be accessed.

data-name-J
Specify the relative record number of the last record to be accessed. If 0 is specified,
only the record whose relative record number is specified for data-name-I is output.

data-name-K
Specify the output data area (buffer).

CBLDCIST('WRIT') - Output an internode shared table record

159

Data area to which a value is returned from OpenTP1
data-name-B
A status code of 5 digits is returned.

Status codes
Status code Explanation

00000 The entire specified record(s) was output normally.

03800 The sequence of accessing the internode shared table is invalid.

03803 The table descriptor specified for data-name-F is not the one which was acquired by
opening the internode shared table normally.

The internode shared table is not open.

03804 The output buffer length specified for data-name-E is less than the total length of the
record(s).

03806 The relative record number is invalid.

03807 The memory became insufficient.

03809 The value specified for data-name-D is less than 1.

03811 The value specified for data-name-H is invalid.

03841 The output buffer length is too much longer than the total length of the record(s) to be
output.

03890 The interface code (data-name-A) is invalid.

03891 The request code (data-name-G) is invalid.

User journal acquisition (CBLDCJNL)

160

User journal acquisition (CBLDCJNL)

This section gives the syntax and other information of the following COBOL-UAP
creation program which is used for user journal acquisition:

• CBLDCJNL('UJPUT ') - Acquire a user journal

The COBOL-UAP creation program for user journal acquisition (CBLDCJNL) can be
used only in UAPs of TP1/Server Base. It cannot be used in UAPs of TP1/LiNK.

When defining DATA DIVISION of COBOL-UAP creation programs, the COBOL
language templates can be used as samples. The COBOL language template for user
journal acquisition (CBLDCJNL) is stored in DCJNL.cbl under the /BeTRAN/
examples/COBOL/ directory.

CBLDCJNL('UJPUT ') - Acquire a user journal

161

CBLDCJNL('UJPUT ') - Acquire a user journal

Format
PROCEDURE DIVISION specification

DATA DIVISION specification

Description
CBLDCJNL('UJPUT ') acquires a user journal (UJ), which is UAP historical
information, into the system journal file (system_jnl_file). The unit of UJ
acquired by CBLDCJNL('UJPUT ') once is called a UJ record.

A user journal is not output to the system journal file immediately after
CBLDCJNL('UJPUT ') is called. The UJ record is output to the system journal file
when the journal buffer becomes full or when the transaction processing is committed.

CBLDCJNL('UJPUT ') can be called only after CBLDCRPC('OPEN ') has been
called and before CBLDCRPC('CLOSE ') is called. Even if an error occurs in the
transaction processing that called CBLDCJNL('UJPUT '), the UJ record that has
already been output cannot be invalidated through rollback processing (partial
recovery). Even when rollback processing is executed for the transaction processing
that called CBLDCJNL('UJPUT '), the UJ record is output to the system journal file.

Data areas whose values are set in the UAP
data-name-A
Specify VALUE 'UJPUT ' for the request code indicating user journal acquisition.

data-name-Z
Using one of the following values, specify whether to output the UJ record to the
system journal file at acquisition of the UJ record.

1: Output the UJ record to the system journal file at acquisition of the UJ record. If the

CALL 'CBLDCJNL' USING unique-name-1 unique-name-2

01 unique-name-1.
 02 data-name-A PIC X(8) VALUE 'UJPUT '.
 02 data-name-B PIC X(5).
 02 FILLER PIC X(3).
 02 data-name-Z PIC S9(9) COMP VALUE ZERO.
01 unique-name-2.
 02 data-name-C PIC 9(9) COMP.
 02 data-name-D PIC 9(9) COMP.
 02 data-name-E PIC X(n).

CBLDCJNL('UJPUT ') - Acquire a user journal

162

UJ record is acquired inside the transaction, this setting is ignored.

0: Do not output the UJ record to the system journal file at acquisition of the UJ record.

data-name-C
Specify the length of the UJ to be acquired. The specified length must be in the range
from 1 to (the value specified for the jnl_max_datasize operand of the system
journal file service definition at the acquisition destination - 8).

data-name-D
Specify a value from 0 to 255 as a UJ code.

data-name-E
Specify the UJ data to be acquired. The length of valid data as UJ can be up to the
length specified for data-name-C.

Data area to which a value is returned from OpenTP1
data-name-B
A status code of 5 digits is returned.

Status codes

Note
A UJ record that is outside the transaction is output to the system journal file when the
journal buffer becomes full or when a transaction of another application terminates
normally (when the transaction processing is committed). To acquire the UJ record
using an application that does not generate transactions, call CBLDCJNL('UJPUT ')
in which 1 is set for data-name-Z at the appropriate timing.

Status code Explanation

00000 Normal termination.

01101 The value specified for the data-name is invalid.
This error also occurs if the request code (data-name-A) is invalid.

01102 The value specified for the length of user journal (data-name-C) is 0 or less.

01103 The value specified for the length of user journal (data-name-C) exceeds the limit.

01105 The CBLDCRPC('OPEN ') function has not been called. Or, the CBLDCJNL('UJPUT
') function cannot be used because the execution environment of the applicable system
is in the journal fileless mode.

Journal data editing (CBLDCJUP)

163

Journal data editing (CBLDCJUP)

This section gives the syntax and other information of the following COBOL-UAP
creation programs handling journal data output with the jnlrput command. For the
relationship between options of the jnlrput command and output data and the output
format, see the description of syntax of the jnlrput command in the OpenTP1
Operation manual.

• CBLDCJUP('CLOSERPT') - Close the jnlrput output file

• CBLDCJUP('OPENRPT ') - Open the jnlrput output file

• CBLDCJUP('RDGETRPT') - Input journal data of the jnlrput output file

The COBOL-UAP creation programs for journal data editing (CBLDCJUP) can be
used only in UAPs of TP1/Server Base. They cannot be used in UAPs of TP1/LiNK.

When defining DATA DIVISION of COBOL-UAP creation programs, the COBOL
language templates can be used as samples. The COBOL language template for journal
data editing (CBLDCJUP) is stored in DCJUP.cbl under the /BeTRAN/examples/
COBOL/ directory.

CBLDCJUP('CLOSERPT') - Close the jnlrput output file

164

CBLDCJUP('CLOSERPT') - Close the jnlrput output file

Format
PROCEDURE DIVISION specification

DATA DIVISION specification

Description
CBLDJUP('CLOSERPT') closes the execution result file of the jnlrput command.
Specify the file descriptor returned from CBLDCJUP('OPENRPT') for
CBLDCJUP('CLOSERPT').

Data areas whose values are set in the UAP
data-name-A
Specify VALUE 'CLOSERPT' for the request code indicating that the jnlrput
command output file is closed.

data-name-Z
Specify 0.

data-name-C
Specify the file descriptor.

Data area to which a value is returned from OpenTP1
data-name-B
A status code of 5 digits is returned.

CALL 'CBLDCJUP' USING unique-name-1 unique-name-2

01 unique-name-1.
 02 data-name-A PIC X(8) VALUE 'CLOSERPT'.
 02 data-name-B PIC X(5).
 02 FILLER PIC X(3).
 02 data-name-Z PIC S9(9) COMP VALUE ZERO.
01 unique-name-2.
 02 FILLER PIC X(256).
 02 data-name-C PIC S9(9) COMP.
 02 FILLER PIC 9(9) COMP.
 02 FILLER PIC 9(9) COMP.

CBLDCJUP('CLOSERPT') - Close the jnlrput output file

165

Status codes
Status code Explanation

00000 The jnlrput command output file was closed normally.

01101 The request code (data-name-A) is invalid.

01271 The file descriptor specified for data-name-C is not the one which was acquired by
opening the jnlrput command output file normally.

The jnlrput command output file is not open.

CBLDCJUP('OPENRPT ') - Open the jnlrput output file

166

CBLDCJUP('OPENRPT ') - Open the jnlrput output file

Format
PROCEDURE DIVISION specification

DATA DIVISION specification

Description
CBLDJUP('OPENRPT ') opens the execution file of the jnlrput command.

Specify the name created at execution of the jnlrput command as the name of the
execution file to be opened.

If an input error or memory shortage occurs, CBLDJUP('OPENRPT ') closes the
execution file of the jnlrput command and returns.

Data areas whose values are set in the UAP
data-name-A
Specify VALUE 'OPENRPT ' for the request code indicating that the jnlrput
command output file is opened.

data-name-Z
Specify 0.

CALL 'CBLDCJUP' USING unique-name-1 unique-name-2
 unique-name-3

01 unique-name-1.
 02 data-name-A PIC X(8) VALUE 'OPENRPT '.
 02 data-name-B PIC X(5).
 02 FILLER PIC X(3).
 02 data-name-Z PIC S9(9) COMP VALUE ZERO.
01 unique-name-2.
 02 data-name-C PIC X(256).
 02 data-name-D PIC S9(9) COMP.
 02 FILLER PIC 9(9) COMP.
 02 FILLER PIC 9(9) COMP.
01 unique-name-3.
 02 data-name-E PIC 9(9) COMP.
 02 data-name-F PIC X(4).
 02 data-name-G PIC X(8).
 02 data-name-H PIC 9(9) COMP.
 02 data-name-I PIC 9(9) COMP.
 02 data-name-J PIC 9(9) COMP.
 02 data-name-K PIC X(4).
 02 FILLER PIC X(96).

CBLDCJUP('OPENRPT ') - Open the jnlrput output file

167

data-name-C
Specify the name of the jnlrput command output file, with a pathname which
comprises 256 characters or less. If the specified name comprises less than 256
characters, pad the remaining portion with space.

Data areas to which values are returned from OpenTP1
data-name-B
A status code of 5 digits is returned.

data-name-D
The file descriptor is returned.

data-name-E
The length of unique-name-3 is returned.

data-name-F
The identifier of the jnlrput command output file, JUP, is returned.

data-name-G
The node identifier is returned.

data-name-H
The length of record management information of the jnlrput command output file
is returned.

data-name-I
The length of record data header of the jnlrput command output file is returned.

data-name-J
The maximum record length of the jnlrput command output file is returned.

data-name-K
The format version of the jnlrput command output file is returned.

Status codes
Status code Explanation

00000 The file descriptor was set in data-name-D normally.

01101 The request code (data-name-A) is invalid.

CBLDCJUP('OPENRPT ') - Open the jnlrput output file

168

01272 The jnlrput command output file whose name is specified for data-name-C is not
found.

An input error (open error) occurred.

01273 The file whose name is specified for data-name-C is not the jnlrput command output
file.

01274 An input error (read error) occurred.

01278 The jnlrput command output file whose name is specified for data-name-C has already
been opened.

01270 The memory became insufficient.

Status code Explanation

CBLDCJUP('RDGETRPT') - Input journal data of the jnlrput output file

169

CBLDCJUP('RDGETRPT') - Input journal data of the jnlrput output
file

Format
PROCEDURE DIVISION specification

DATA DIVISION specification

CALL 'CBLDCJUP' USING unique-name-1 unique-name-2
 unique-name-3 unique-name-4 unique-name-5

01 unique-name-1.
 02 data-name-A PIC X(8) VALUE 'RDGETRPT'.
 02 data-name-B PIC X(5).
 02 FILLER PIC X(3).
 02 data-name-Z PIC S9(9) COMP VALUE ZERO.
01 unique-name-2.
 02 FILLER PIC X(256).
 02 data-name-C PIC S9(9) COMP.
 02 data-name-D PIC 9(9) COMP.
 02 data-name-E PIC 9(9) COMP.
01 unique-name-3.
 02 data-name-F PIC 9(9) COMP.
 02 data-name-G PIC X(1).
 02 data-name-Y PIC X(1).
 02 FILLER PIC X(2).
 02 data-name-H PIC X(4).
 02 data-name-I PIC X(8).
 02 data-name-J PIC X(9).
 02 FILLER PIC X(3).
 02 data-name-K PIC X(4).
 02 data-name-L PIC X(8).
 02 FILLER PIC X(12).
 02 data-name-M PIC X(12).
 02 data-name-N PIC X(12).
 02 FILLER PIC X(1).
 02 FILLER PIC X(3).
 02 FILLER PIC 9(9) COMP.
 02 data-name-W PIC X(4).
 02 FILLER PIC X(36).

CBLDCJUP('RDGETRPT') - Input journal data of the jnlrput output file

170

01 unique-name-4.
 02 data-name-O.
 03 data-name-O1 PIC 9(9) COMP.
 03 data-name-O2 PIC 9(9) COMP.
 03 FILLER PIC X(120).
 02 data-name-P REDEFINES data-name-O.
 03 data-name-P1 PIC X(2).
 03 data-name-P2 PIC X(1).
 03 data-name-P3 PIC X(1).
 03 data-name-P4 PIC X(4).
 03 data-name-P5 PIC X(4).
 03 data-name-P6 PIC X(4).
 03 data-name-P7 PIC X(4).
 03 data-name-P8 PIC X(9).
 03 FILLER PIC X(3).
 03 data-name-P9 PIC X(32).
 03 data-name-P10 PIC X(4).
 03 data-name-P11 PIC X(4).
 03 data-name-P12 PIC X(4).
 03 data-name-P13 PIC X(4).
 03 data-name-P14 PIC X(4).
 03 data-name-P15 PIC X(4).
 03 FILLER PIC X(40).
 02 data-name-Q REDEFINES data-name-O.
 03 data-name-Q1 PIC X(16).
 03 data-name-Q2 PIC X(10).
 03 FILLER PIC X(2).
 03 data-name-Q3 PIC X(12).
 03 data-name-Q4 PIC X(9).
 03 FILLER PIC X(3).
 03 data-name-Q5 PIC X(1).
 03 data-name-Q6 PIC X(1).
 03 FILLER PIC X(2).
 03 data-name-Q7 PIC 9(9) COMP.
 03 FILLER PIC X(68).
 02 data-name-R REDEFINES data-name-O.
 03 data-name-R1 PIC X(16).
 03 data-name-R2 PIC X(10).
 03 data-name-R3 PIC X(1).
 03 data-name-R4 PIC X(1).
 03 FILLER PIC X(2).
 03 data-name-R5 PIC 9(9) COMP.
 03 FILLER PIC X(88).

CBLDCJUP('RDGETRPT') - Input journal data of the jnlrput output file

171

Description
CBLDCJUP('RDGETRPT') inputs journal data in units of (record management
information (unique-name-3) + record data header (unique-name-4) + record data
(unique-name-5)) sequentially from the jnlrput command output file.

Open the jnlrput command output file with CBLDCJUP('OPENRPT ') before
inputting journal data with CBLDCJUP('RDGETRPT').

Specify the length of the journal data input buffer for data-name-V. Specify the same
length as the specified journal data length. If the length specified for data-name-V is
less than the journal data length, operation of CBLDCJUP('RDGETRPT') is undefined.

When the journal data length specified for data-name-D is greater than the actual
journal data, the journal data is input and the length of the actual journal data is
returned in data-name-E.

If the journal data length specified for data-name-D is less than the actual journal data,
CBLDCJUP('RDGETRPT') returns with an error.

If an input error occurs, CBLDCJUP('RDGETRPT') closes the jnlrput command
output file and returns.

 02 data-name-S REDEFINES data-name-O.
 03 data-name-S1 PIC X(16).
 03 data-name-S2 PIC X(10).
 03 FILLER PIC X(2).
 03 data-name-S3 PIC X(1).
 03 data-name-S4 PIC X(1).
 03 FILLER PIC X(2).
 03 data-name-S5 PIC 9(9) COMP.
 03 data-name-S6 PIC 9(9) COMP.
 03 FILLER PIC X(88).
 02 data-name-T REDEFINES data-name-O.
 03 data-name-T1 PIC X(16).
 03 data-name-T2 PIC X(10).
 03 FILLER PIC X(2).
 03 data-name-T3 PIC X(1).
 03 data-name-T4 PIC X(1).
 03 FILLER PIC X(2).
 03 data-name-T5 PIC 9(9) COMP.
 03 FILLER PIC X(92).
 02 data-name-U REDEFINES data-name-O.
 03 data-name-U1 PIC X(16).
 03 data-name-U2 PIC X(10).
 03 FILLER PIC X(2).
 03 data-name-U3 PIC X(12).
 03 data-name-U4 PIC 9(9) COMP.
 03 FILLER PIC X(84).
01 unique-name-5.
 02 data-name-V PIC X(n).

CBLDCJUP('RDGETRPT') - Input journal data of the jnlrput output file

172

When end of file is detected, no journal data is returned.

Specify the file descriptor returned from CBLDCJUP('OPENRPT ') for
CBLDCJUP('RDGETRPT').

Data areas whose values are set in the UAP
data-name-A
Specify VALUE 'RDGETRPT' for the request code indicating that journal data of the
jnlrput command output file is input.

data-name-Z
Specify 0.

data-name-C
Specify the file descriptor.

data-name-D
Specify the length of journal data to be input. The length can be 1 to the value of the
jnl_max_datasize operand in the target system journal service definition.

Data areas to which values are returned from OpenTP1
data-name-B
A status code of 5 digits is returned.

data-name-E
The length of input journal data is returned.

data-name-F
The total length of unique-name-3, unique-name-4, and unique-name-5 is returned.

data-name-G
The record type of input journal data is returned:

'U': UJ record is returned.

'S': SJ record is returned.

'I': IJ record is returned.

'M': MJ record is returned.

'O': OJ record is returned.

'A': AJ record is returned.

'G' : GJ record is returned.

CBLDCJUP('RDGETRPT') - Input journal data of the jnlrput output file

173

data-name-Y
A value indicating whether transaction ID setting information exists in input journal
data is returned.

0x00: Transaction ID setting information does not exist.

0x80: Transaction ID setting information exists. If this value is returned, the record
transaction global identifier is returned to data-name-M and the record transaction
branch identifier is returned to data-name-N.

data-name-H
The record acquisition time in input journal data is returned.

data-name-I
The record acquisition requesting node identifier in input journal data is returned.

data-name-J
The record acquisition requesting server name in input journal data is returned.

data-name-K
The record acquisition requesting server time stamp in input journal data is returned.

data-name-L
The record user information in input journal data is returned.

data-name-M
The record transaction global identifier in input journal data is returned. If the UJ is
outside the transaction, 0 is returned.

data-name-N
The record transaction branch identifier in input journal data is returned. If the UJ is
outside the transaction, 0 is returned.

data-name-W
The record acquisition time (in microseconds) of the input journal data is returned.

However, if you input a file to which you previously edited and output journal data of
a version earlier than TP1/Server Base 06-01 using the jnlrput command, 0 is
returned.

data-name-O
The data header information of input UJ data is returned. The value returned in
data-name-O is valid only when U is returned in data-name-G.

• data-name-O1

CBLDCJUP('RDGETRPT') - Input journal data of the jnlrput output file

174

The data length in input UJ data is returned.

• data-name-O2
The UJ code in input UJ data is returned.

data-name-P
The data header information of input SJ data is returned. The value returned in
data-name-P is valid only when S is returned in data-name-G.

• data-name-P1
The resolution type of transaction and child transaction branch in input SJ data is
returned:

'C': Commit decision

'R': Rollback decision

'HC': Commit decision with a command

'HR': Rollback decision with a command

'HM': Mix decision with a command

'HH': Hazard decision with a command

• data-name-P2
The process type in input SJ data is returned:

'U': Decided in a user server process

'R': Decided in a recovery process

• data-name-P3
The resolution type of transaction branch in input SJ data is returned:

'C': Commit decision

'R': Rollback decision

• data-name-P4
Branch execution time second data in input SJ data is returned.

• data-name-P5
Branch execution time fraction-of-a-second data in input SJ data is returned.

• data-name-P6
Branch synchronization point processing execution time second data in input SJ
data is returned.

• data-name-P7

CBLDCJUP('RDGETRPT') - Input journal data of the jnlrput output file

175

Branch synchronization point processing execution time fraction-of-a-second
data in input SJ data is returned.

• data-name-P8
The user server name in input SJ data is returned.

• data-name-P9
The service name in input SJ data is returned.

• data-name-P10
Transaction total CPU time (in microseconds) in input SJ data is returned.

• data-name-P11
CPU time for OpenTP1 (in microseconds) in input SJ data is returned.

• data-name-P12
CPU time for UAPs (in microseconds) in input SJ data is returned.

• data-name-P13
CPU time for TP1/FS/Direct Access (in microseconds) in input SJ data is
returned.

• data-name-P14
CPU time for TP1/FS/Table Access (in microseconds) in input SJ data is returned.

• data-name-P15
CPU time for ISAM/B (in microseconds) in input SJ data is returned.

data-name-Q
The data header information of input IJ data is returned. The value returned in
data-name-Q is valid only when I is returned in data-name-G.

• data-name-Q1
The input destination logical terminal name in input IJ data is returned.

• data-name-Q2
The application name in input IJ data is returned.

• data-name-Q3
The input message sequence number in input IJ data is returned.

• data-name-Q4
The map name in input IJ data is returned.

• data-name-Q5

CBLDCJUP('RDGETRPT') - Input journal data of the jnlrput output file

176

The input message type in input IJ data is returned.

• data-name-Q6
The sequence identifier in input IJ data is returned.

• data-name-Q7
The input message length in input IJ data is returned.

data-name-R
The data header information of input MJ data is returned. The value returned in
data-name-R is valid only when M is returned in data-name-G.

• data-name-R1
The logical terminal name in input MJ data is returned.

• data-name-R2
The connection name in input MJ data is returned.

• data-name-R3
The MJ type in input MJ data is returned.

• data-name-R4
The sequence identifier in input MJ data is returned.

• data-name-R5
The message length in input MJ data is returned.

data-name-S
The data header information of input OJ data is returned. The value returned in
data-name-S is valid only when O is returned in data-name-G.

• data-name-S1
The output destination logical terminal name in input OJ data is returned.

• data-name-S2
The application name in input OJ data is returned.

• data-name-S3
The output message type in input OJ data is returned.

• data-name-S4
The existence of output sequence number in input OJ data is returned.

• data-name-S5

CBLDCJUP('RDGETRPT') - Input journal data of the jnlrput output file

177

The output message sequence number in input OJ data is returned.

• data-name-S6
The output message length in input OJ data is returned.

data-name-T
The data header information of input AJ data is returned. The value returned in
data-name-T is valid only when A is returned in data-name-G.

• data-name-T1
The output destination logical terminal name in input AJ data is returned.

• data-name-T2
The application name in input AJ data is returned.

• data-name-T3
The output message type in input AJ data is returned.

• data-name-T4
The existence of output sequence number in input AJ data is returned.

• data-name-T5
The output message sequence number in input AJ data is returned.

data-name-U
The data header information of input GJ data is returned. The value returned in
data-name-U is valid only when G is returned in data-name-G.

• data-name-U1
The input destination logical terminal name in input GJ data is returned.

• data-name-U2
The application name in input GJ data is returned.

• data-name-U3
The input message sequence number in input GJ data is returned.

• data-name-U4
The input message length in input UJ data is returned.

data-name-V
The input journal data is returned. The data invalid as journal data is in the length
returned in data-name-E.

The value returned in data-name-V is valid only when U, I, M, O, or G is returned in

CBLDCJUP('RDGETRPT') - Input journal data of the jnlrput output file

178

data-name-G.

Status codes
Status code Explanation

00000 The file descriptor was set in data-name-D normally.

01275 End of file was detected.

01101 The request code (data-name-A) is invalid.

01271 The file descriptor specified for data-name-C is not the one which was acquired by
opening the jnlrput command output file normally.

The jnlrput command output file is not open.

01276 The length specified for data-name-D is less than the data length.

01274 An input error (read error) occurred.

Resource lock control (CBLDCLCK)

179

Resource lock control (CBLDCLCK)

This section gives the syntax and other information of the following COBOL-UAP
creation programs which are used to lock arbitrary user files:

• CBLDCLCK('GET ') - Enable locking of a resource

• CBLDCLCK('RELALL ') - Release all resources from lock

• CBLDCLCK('RELNAME ') - Release resource from lock specified by name

The COBOL-UAP creation programs for resource lock control can be used only in
UAPs of TP1/Server Base. They cannot be used in UAPs of TP1/LiNK.

When defining DATA DIVISION of COBOL-UAP creation programs, the COBOL
language templates can be used as samples. The COBOL language template for
resource lock control (CBLDCLCK) is stored in DCLCK.cbl under the /BeTRAN/
examples/COBOL/ directory.

CBLDCLCK('GET ') - Enable locking of a resource

180

CBLDCLCK('GET ') - Enable locking of a resource

Format
PROCEDURE DIVISION specification

DATA DIVISION specification

Description
CBLDCLCK('GET ') specifies lock for resources to be used by UAPs. The
resource indicated by data-name-C is handled under lock. Lock is managed in global
transactions which are managed by the OpenTP1 transaction manager.

The lock specified here is released by COBOL-UAP creation program (releasing all
resources from lock or specifying a resource name and releasing the resource from
lock). The lock is also released when the synchronization point of the global
transaction that called CBLDCLCK('GET ') is acquired.

Data areas whose values are set in the UAP
data-name-A
Specify VALUE 'GET ' for the request code indicating lock for resources.

data-name-Z
Specify 0.

data-name-C
Specify the name of the resource for which lock is to be specified. The name can be

CALL 'CBLDCLCK' USING unique-name-1 unique-name-2

01 unique-name-1.
 02 data-name-A PIC X(8) VALUE 'GET '.
 02 data-name-B PIC X(5).
 02 FILLER PIC X(3).
 02 data-name-Z PIC S9(9) COMP VALUE ZERO.
01 unique-name-2.
 02 data-name-C PIC X(16).
 02 data-name-D PIC X(2).
 02 FILLER PIC X(6).
 02 data-name-E PIC X(6).
 02 FILLER PIC X(2).
 02 data-name-F PIC X(6).
 02 FILLER PIC X(2).
 02 data-name-G PIC X(7) VALUE 'MIGRATE'.
 02 FILLER PIC X(1).

CBLDCLCK('GET ') - Enable locking of a resource

181

specified with up to 16-byte alphanumeric characters. The OpenTP1 lock service
manages the lock on the basis of the specified resource name.

The lock service does not check the contents of the character string. Specify a logically
correct name. If a value other than alphanumeric characters is used to specify the
resource name, the deadlock information, the timeout information, and the lckls
command might not be displayed normally.

data-name-D
Specify a lock mode with VALUE 'PR' or VALUE 'EX'.

VALUE 'PR': The resource is referenced. Other UAPs are permitted to reference the
resource but are not permitted to update it.

VALUE 'EX': The resource is updated. Other UAPs are not permitted to reference or
update the resource.

data-name-E
Specify processing if the program competes for the resource with another UAP. (The
program returns with an error or the program waits until the resource is released.) The
following values are available:

VALUE 'WAIT ': If the program competes for the resource with another UAP, the
program waits until the resource is released.

VALUE 'NOWAIT': If the program competes for the resource with another UAP, the
program returns with an error.

data-name-F
Specify whether the lock specified here is test lock or not. The following values are
available:

VALUE 'TEST ': Test lock

VALUE 'NOTEST': Not test lock

When test lock is specified, note that the resource specified for data-name-C is not
under lock even if CBLDCLCK('GET ') terminates normally.

data-name-G
Specify VALUE 'MIGRATE'.

Data area to which a value is returned from OpenTP1
data-name-B
A status code of 5 digits is returned.

CBLDCLCK('GET ') - Enable locking of a resource

182

Status codes
Status code Explanation

00000 Normal termination.

00401 The value specified for the data-name is invalid.
This error also occurs if the request code (data-name-A) is invalid.

00450 Another UAP is using the specified resource.

00452 A deadlock occurred.

00453 The resource could not be acquired because a timeout occurred (the wait time specified
in the OpenTP1 lock service definition was exceeded).

00454 The table for lock is insufficient.

00455 CBLDCLCK('GET ') was called from a UAP which was not operating as a transaction.

00457 The OpenTP1 library version does not match the lock service version.

CBLDCLCK('RELALL ') - Release all resources from lock

183

CBLDCLCK('RELALL ') - Release all resources from lock

Format
PROCEDURE DIVISION specification

DATA DIVISION specification

Description
BLDCLCK('RELALL ') releases all the resources from lock which was specified in
CBLDCLCK('GET '). Use this program when releasing the resources from lock
before the synchronization point is acquired.

When the global transaction with lock specified terminates, the OpenTP1 lock service
automatically releases the resources from lock. In this case, there is no need to specify
release from lock in the UAP.

Data areas whose values are set in the UAP
data-name-A
Specify VALUE 'RELALL ' for the request code indicating that all resources are
released from lock.

data-name-Z
Specify 0.

data-name-C
Specify VALUE 'MIGRATE'.

Data area to which a value is returned from OpenTP1
data-name-B
A status code of 5 digits is returned.

CALL 'CBLDCLCK' USING unique-name-1 unique-name-2

01 unique-name-1.
 02 data-name-A PIC X(8) VALUE 'RELALL '.
 02 data-name-B PIC X(5).
 02 FILLER PIC X(3).
 02 data-name-Z PIC S9(9) COMP VALUE ZERO.
01 unique-name-2.
 02 data-name-C PIC X(7) VALUE 'MIGRATE'.
 02 FILLER PIC X(1).

CBLDCLCK('RELALL ') - Release all resources from lock

184

Status codes
Status code Explanation

00000 Normal termination.

00401 The value specified for the data-name is invalid.
This error also occurs if the request code (data-name-A) is invalid.

00455 CBLDCLCK('RELALL ') was called from a UAP which was not operating as a
transaction.

00456 The resource could not be acquired in the transaction that called this program.

00457 The OpenTP1 library version does not match the lock service version.

CBLDCLCK('RELNAME ') - Release resource from lock specified by name

185

CBLDCLCK('RELNAME ') - Release resource from lock specified by
name

Format
PROCEDURE DIVISION specification

DATA DIVISION specification

Description
CBLDCLCK('RELNAME ') specifies the name of a resource for which
CBLDCLCK('GET ') specified lock, and releases the resource from the lock. Use this
program when releasing the resource from lock before the synchronization point is
acquired.

When the global transaction with lock specified terminates, the OpenTP1 lock service
automatically releases the resource from lock. In this case, there is no need to specify
release from lock in the UAP.

Data areas whose values are set in the UAP
data-name-A
Specify VALUE 'RELNAME ' for the request code indicating release from lock by
specifying the resource name.

data-name-Z
Specify 0.

data-name-C
Specify the name of the resource to be released from lock. The resource name must be
the same name as when lock was specified for the resource.

CALL 'CBLDCLCK' USING unique-name-1 unique-name-2

01 unique-name-1.
 02 data-name-A PIC X(8) VALUE 'RELNAME '.
 02 data-name-B PIC X(5).
 02 FILLER PIC X(3).
 02 data-name-Z PIC S9(9) COMP VALUE ZERO.
01 unique-name-2.
 02 data-name-C PIC X(16).
 02 data-name-D PIC X(7) VALUE 'MIGRATE'.
 02 FILLER PIC X(1).

CBLDCLCK('RELNAME ') - Release resource from lock specified by name

186

data-name-D
Specify VALUE 'MIGRATE'.

Data area to which a value is returned from OpenTP1
data-name-B
A status code of 5 digits is returned.

Status codes
Status code Explanation

00000 Normal termination

00401 The value specified for the data-name is invalid.
This error also occurs if the request code (data-name-A) is invalid.

00456 The resource that corresponds to the resource name specified for release from lock does
not exist.

00455 CBLDCLCK('RELNAME ') was called from a UAP which was not operating as a
transaction.

00457 The OpenTP1 library version does not match the lock service version.

Message log output (CBLDCLOG)

187

Message log output (CBLDCLOG)

This section gives the syntax and other information of the following COBOL-UAP
creation program which is used for message log output from a UAP:

• CBLDCLOG('PRINT ') - Output message log

The COBOL-UAP creation programs for message log output can be used in UAPs of
both TP1/Server Base and TP1/LiNK.

When defining DATA DIVISION of COBOL-UAP creation programs, the COBOL
language templates can be used as samples. The COBOL language template for
message log output (CBLDCLOG) is stored in DCLOG.cbl under the /BeTRAN/
examples/COBOL/ directory.

CBLDCLOG('PRINT ') - Output message log

188

CBLDCLOG('PRINT ') - Output message log

Format
PROCEDURE DIVISION specification

DATA DIVISION specification

Description
CBLDCLOG('PRINT ') outputs the character string specified for data-name-G to
the message log file. Before the output, it adds the following information to the
character string through OpenTP1:

• Line header

• OpenTP1 ID

• Date and time

• Request source node name

• Request source program ID

• Message ID

The OpenTP1 assigns ID numbers 05000 to 06999 to the messages used for
CBLDCLOG('PRINT '). To messages output from your UAP, assign ID numbers in
the range from 05000 to 06999.

Even if an error occurs, the status code 00000 might be returned. Consequently, a
message log might be missing. The missing message log can be identified by checking

CALL 'CBLDCLOG' USING unique-name-1 unique-name-2
 unique-name-3

01 unique-name-1.
 02 data-name-A PIC X(8) VALUE 'PRINT '.
 02 data-name-B PIC X(5).
 02 FILLER PIC X(3).
 02 data-name-Z PIC S9(9) COMP VALUE ZERO.
 02 data-name-C PIC X(12).
 02 data-name-D PIC X(3).
 02 FILLER PIC X(1).
 02 data-name-E PIC S9(9) COMP.
01 unique-name-2.
 02 data-name-F PIC S9(9) COMP.
 02 data-name-G PIC X(n).
01 unique-name-3.
 02 data-name-H PIC S9(9) COMP.

CBLDCLOG('PRINT ') - Output message log

189

the message log serial numbers in the message log file.

If the message log is output more than once from one process, the sequence of output
to the message log file is ensured. However, if the message log is output from each of
multiple processes, the message logs might not be output to the message log file in the
call sequence.

If a communication error (01901) or a log service inactive error (01905) occurs, the
message output from the UAP is edited in the UAP process and is output to the
standard error output file. Either of the following codes which indicate the causes of
errors is added to the end of the message:

• E1: Indicates that the message log could not be output to the message log file
because the log service was not activated.

• E2: Indicates that the message log could not be output to the message log file due
to a communication error.

Examples:

KFCA05201-I SPP1: A service request was received (E1)

KFCA05410-I SPP1: Update processing is starting (E2)

When an error other than E1 or E2 is detected, the OpenTP1 prints a log message
which indicates the cause of the error to the standard error output. This message is
assigned the message ID number specified by CBLDCLOG('PRINT ').

Data area whose values are set in the UAP
data-name-A
Specify VALUE 'PRINT ' for the request code indicating a request of message log
output.

data-name-Z
Specify 0.

data-name-C
Specify the message ID to be assigned to each message log. The message ID must be
in the KFCAn1n2n3n4n5-x format (11 characters) and end with a null character.
Specify a value from 05000 to 06999 for the serial number (n1n2n3n4n5) output from
the UAP.

data-name-D
Specify a user-selected value (request source program ID) for identifying the UAP that
output the message log. The value must comprise two alphanumeric characters and end
with a null character.

CBLDCLOG('PRINT ') - Output message log

190

data-name-E
Specify the display color of the message log specified in CBLDCLOG('PRINT ')
when the message log is output to the NETM operation support terminal. The
following colors are available:

VALUE '1': Green

VALUE '2': Red

VALUE '3': White

VALUE '4': Blue

VALUE '5': Purple

VALUE '6': Sky blue

VALUE '7': Yellow

If a value other than the above or space is specified, green is assumed to be specified.

data-name-F
Specify the length of the character string that is to be output as a message log to the
message log file. The length can be specified with up to 222 bytes.

data-name-G
Specify the character string that is to be output as a message log to the message log file.

data-name-H
Specify 0.

Data area to which a value is returned from OpenTP1
data-name-B
A status code of 5 digits is returned.

Status codes
Status code Explanation

00000 Normal termination.

01900 The value specified for the data-name is invalid.
This error also occurs if the request code (data-name-A) is invalid.

01901 A communication error occurred or CBLDCRPC('OPEN ') was not issued.

01902 The memory became insufficient.

01904 The system definition is invalid.

CBLDCLOG('PRINT ') - Output message log

191

Note
When a large log is output, return of the CBLDCLOG('PRINT ') may be delayed. For
example, when the volume of output messages greatly increases upon occurrence of
an error, the transaction processing time increases. Note that this may cause a
slowdown.

01905 The message log service is not active.

01906 An error occurred when the message log service acquired the information to be added to
the message log.

Status code Explanation

Message exchange (CBLDCMCF)

192

Message exchange (CBLDCMCF)

This section gives the syntax and other information of the following COBOL-UAP
creation programs which are used for message exchange communication:

• CBLDCMCF('ADLTAP '): Delete an application timer start request

• CBLDCMCF('APINFO '): Report the application information

• CBLDCMCF('CLOSE '): Close the MCF environment

• CBLDCMCF('COMMIT '): Commit an MHP

• CBLDCMCF('CONTEND '): Terminate continuous-inquiry-response processing

• CBLDCMCF('EXECAP '): Activate an application program

• CBLDCMCF('MAINLOOP'): Start an MHP service

• CBLDCMCF('OPEN '): Open the MCF environment

• CBLDCMCF('RECEIVE '): Receive a message#

• CBLDCMCF('RECVSYNC'): Receive a synchronous message#

• CBLDCMCF('REPLY '): Send a response message#

• CBLDCMCF('RESEND '): Resend a message#

• CBLDCMCF('ROLLBACK'): Enable MHP rollback

• CBLDCMCF('SEND '): Send a message#

• CBLDCMCF('SENDRECV'): Exchange a synchronous message#

• CBLDCMCF('SENDSYNC'): Send a synchronous message#

• CBLDCMCF('TACTCN '): Establish connection#

• CBLDCMCF('TACTLE '): Release a logical terminal from shutdown status#

• CBLDCMCF('TDCTCN '): Release connection#

• CBLDCMCF('TDCTLE '): Shut down a logical terminal#

• CBLDCMCF('TDLQLE '): Delete a logical terminal's output queue

• CBLDCMCF('TEMPGET '): Accept temporary-stored data

• CBLDCMCF('TEMPPUT '): Update temporary-stored data

• CBLDCMCF('TIMERCAN'): Cancel user timer monitoring

Message exchange (CBLDCMCF)

193

• CBLDCMCF('TIMERSET'): Set user timer monitoring

• CBLDCMCF('TLSCN '): Acquire a connection status#

• CBLDCMCF('TLSCOM '): Acquire status of MCF communication services

• CBLDCMCF('TLSLE '): Acquire a logical terminal status#

• CBLDCMCF('TLSLN '): Acquire the acceptance status for a server-type
connection establishment request#

• CBLDCMCF('TOFLN '): Stop accepting server-type connection establishment
requests#

• CBLDCMCF('TONLN '): Start accepting server-type connection establishment
requests#

#: For details on the syntax of COBOL-UAP creation programs, see the applicable
OpenTP1 Protocol manual.

The COBOL-UAP creation programs for message exchange can be used only in UAPs
of TP1/Server Base. They cannot be used in UAPs of TP1/LiNK.

When defining DATA DIVISION of COBOL-UAP creation programs, the COBOL
language templates can be used as samples. The COBOL language template for
message exchange (CBLDCMCF) is stored in DCMCF.cbl under the /BeTRAN/
examples/COBOL/ directory. For the usage of the API stored in DCMCF.cbl, see the
syntax description in the applicable OpenTP1 Protocol manual.

Note
In the DATA DIVISION specification, the first character of the unique name must be
placed at the boundary of the word length.

CBLDCMCF('ADLTAP ') - Delete an application timer start request

194

CBLDCMCF('ADLTAP ') - Delete an application timer start request

Format
PROCEDURE DIVISION specification

DATA DIVISION specification

Description
CBLDCMCF('ADLTAP ') deletes a specified application timer start request and
cancels startup of the application. Note that this function cannot delete application
timer start requests of the ans and cont types.

Data areas whose values are set in the UAP
data-name-A
Specify VALUE 'ADLTAP ' for the request code indicating deletion of an
application timer start request.

data-name-C, data-name-D
Specify a space.

data-name-E
Specify the application start process identifier of the application start service that has
the target application that is to be processed. The permitted value range is from 1 to

CALL 'CBLDCMCF' USING unique-name-1 unique-name-2

01 unique-name-1.
 02 data-name-A PIC X(8) VALUE 'ADLTAP '.
 02 data-name-B PIC X(5).
 02 FILLER PIC X(3).

 02 data-name-C PIC X(4) VALUE SPACE.
 02 data-name-D PIC X(28) VALUE SPACE.
 02 data-name-E PIC 9(9) COMP.
 02 data-name-F1 PIC X(8).
 02 data-name-F2 PIC X(56) VALUE SPACE.
 02 data-name-G PIC X(8) VALUE SPACE.
 02 data-name-H PIC X(8) VALUE SPACE.
 02 data-name-I PIC X(144) VALUE SPACE.
 02 data-name-J PIC X(184) VALUE SPACE.
 02 data-name-K PIC 9(9) COMP VALUE ZERO.
01 unique-name-2.
 02 data-name-L PIC 9(9) COMP VALUE ZERO.

CBLDCMCF('ADLTAP ') - Delete an application timer start request

195

239.

data-name-F1
Specify the name of the application whose start is to be canceled. Express the
application name as a maximum of 8 bytes. If the specified name is shorter than 8
bytes, pad the name with trailing spaces.

data-name-F2, data-name-G, data-name-H, data-name-I, data-name-J
Specify a space.

data-name-K, data-name-L
Specify 0.

Data area to which a value is returned from OpenTP1
data-name-B
A status code of 5 digits is returned.

Status codes
Status code Explanation

00000 Normal termination.

71001 CBLDCMCF('ADLTAP ') cannot be accepted because MCF is under start processing.

71002 CBLDCMCF('ADLTAP ') cannot be accepted because MCF is under termination
processing.

71004 A memory shortage occurred during CBLDCMCF('ADLTAP ') processing.

71005 A communication error occurred. For the cause, see the message log file.

71006 An internal error occurred. For the cause, see the message log file.

71007 The specified application name has not been registered.

No timer start request has been issued for the specified application name.

The specified application name belongs to an application whose type is inquiry-response
or continuous-inquiry-response.

71009 CBLDCMCF('ADLTAP ') is not supported by the applicable application start process.

71010 Although the request to delete the specified application timer start request was issued, the
request was not accepted. For the cause, see the message log file.

72028 The value specified for data-name-A is invalid.

72052 A nonzero value is specified for data-name-K.

CBLDCMCF('ADLTAP ') - Delete an application timer start request

196

72053 A nonzero value is specified for data-name-L.

72058 The value specified for data-name-C is not a space.

72059 The value specified for data-name-D is not a space.

72061 A value of 0 or smaller or greater than 239 is specified for data-name-E.

72063 data-name-F1 begins with a space.

72065 The value specified for data-name-F2 is not a space.

72066 The value specified for data-name-G is not a space.

72068 The value specified for data-name-H is not a space.

72070 The value specified for data-name-I is not a space.

72072 The value specified for data-name-J is not a space.

72074 The character string specified for data-name-F1 contains an invalid character.

Status code Explanation

CBLDCMCF('APINFO ') - Report the application information

197

CBLDCMCF('APINFO ') - Report the application information

Format
PROCEDURE DIVISION specification

DATA DIVISION specification

Description
CBLDCMCF('APINFO ') acquires various types of information on the application
from an MHP.

The application information on the MHP that called CBLDCMCF('APINFO ') or the
other MHP is reported.

CALL 'CBLDCMCF' USING unique-name-1 unique-name-2

01 unique-name-1.
 02 data-name-A PIC X(8) VALUE 'APINFO '.
 02 data-name-B PIC X(5).
 02 FILLER PIC X(3).
 02 data-name-C PIC X(4).
 02 data-name-D PIC X(4).
 02 data-name-E PIC X(2).
 02 data-name-F PIC X(2).
 02 data-name-G PIC X(8).
 02 data-name-H PIC X(28).
01 unique-name-2.
 02 data-name-I PIC X(4).
 02 data-name-J PIC X(8).
 02 data-name-K PIC X(2).
 02 data-name-L PIC X(2).
 02 data-name-M PIC X(4).
 02 data-name-M1 PIC X(1).
 02 data-name-M2 PIC X(3).
 02 data-name-N PIC X(31).
 02 data-name-N1 PIC X(4).
 02 data-name-N2 PIC X(4).
 02 data-name-N3 PIC X(1).
 02 data-name-O PIC X(31).
 02 data-name-P PIC X(4).
 02 data-name-Q PIC X(5).
 02 data-name-R PIC 9(9) COMP.
 02 data-name-S PIC 9(9) COMP.
 02 data-name-T PIC 9(9) COMP.
 02 data-name-U PIC X(4).
 02 data-name-V PIC X(1).
 02 data-name-W PIC X(79).

CBLDCMCF('APINFO ') - Report the application information

198

The application information becomes effective only when CBLDCMCF('APINFO ')
is normally terminated.

Data area whose values are set in the UAP
data-name-A
Specify VALUE 'APINFO ' for the request code indicating an application
information report.

data-name-C
Specify one of the following values according to the application to be referenced:

'SELF': Specify this value to acquire the application information on MHP that called
CBLDCMCF('APINFO ').

'OTHE': Specify this value to acquire the information on a specific application
according to the process identifier for MCF communication service in which the
application definition is included, and application name.

data-name-D
Specify space.

data-name-E
Specify the process identifier.

• When specifying 'SELF' for data-name-C
Specify space.

• When specifying 'OTHE' for data-name-C
Specify the MCF communication process identifier or application startup process
identifier in which the definition of the application to be referenced is included.

data-name-F
Specify space.

data-name-G
Specify the application name.

• When specifying 'SELF' for data-name-C
Specify space.

• When specifying 'OTHE' for data-name-C
Specify the name of the application to be referenced.

When specifying an error event name (ERREVT1, ERREVT2, ERREVT3, or
ERREVT4), the default value of the application definition, the NO-response type

CBLDCMCF('APINFO ') - Report the application information

199

('N') is set for data-name-M1.

data-name-H
Specify LOW_VALUE.

data-name-I, data-name-L, data-name-M2, data-name-N3, and data-name-Q
Specify space.

data-name-W
Specify LOW_VALUE.

Data area to which a value is returned from OpenTP1
data-name-B
A status code of 5 digits is returned.

data-name-J
The name of the application whose information is to be reported is returned.

data-name-K
The process identifier for MCF communication service that includes the definition of
the application whose information is to be reported is returned.

data-name-M
The shutdown or release shutdown status of the application is returned as follows:

'INDA': Input shutdown status

'SCDA': Schedule shutdown status

'DACT': Input and schedule shutdown status

'ACT ': Release shutdown status

data-name-M1
The type of the application is returned as follows:

(The type specified in the type operand of the -n option in the MCF application
definition mcfaalcap is set here).

'A': Response type

'N': NO-response type

'C': Continuous-inquiry-response type

When specifying 'OTHE' for data-name-C and specifying an error event name
(ERREVT1, ERREVT2, ERREVT3, or ERREVT4) for data-name-G, the actual type is not
reported. In this case, the default value of the application definition, NO-response type

CBLDCMCF('APINFO ') - Report the application information

200

('N') is set here.

data-name-N
The name of the service group corresponding to the application is returned.

data-name-N1
The shutdown or release shutdown status of the service group is returned as follows:

'INDA': Input shutdown status

'SCDA': Schedule shutdown status

'DACT': Input and schedule shutdown status

'ACT ': Release shutdown status

data-name-N2
The holding or release holding status of the service group is returned as follows:

'INHO': Input holding status

'SCHO': Schedule holding status

'HOLD': Input and schedule holding status

'RLSS': Release holding status

data-name-O
The name of the service corresponding to the application is returned.

data-name-P
The shutdown or release shutdown status of the service is returned as follows:

'INDA': Input shutdown status

'SCDA': Schedule shutdown status

'DACT': Input and schedule shutdown status

'ACT ': Release shutdown status

data-name-R
The limit elapsed time for the non-transaction attribute MHP in seconds is returned.

When 'TRN ' is set in data-name-U, 0 is set here.

(The value specified in the ntmetim operand of the -v option in the MCF application
definition mcfaalcap is set here. If the MCF application definition is omitted, the
value specified in the ntmetim operand of the -u option in the MCF manager
definition mcfmuap is used.)

CBLDCMCF('APINFO ') - Report the application information

201

data-name-S
The size of the temporary-stored data storage area for the continuous-inquiry response
is returned.

When the value set in data-name-M1 is not 'C', 0 is set here.

(The value specified in the tempsize operand of the -n option in the MCF application
definition mcfaalcap is set here.)

data-name-T
The maximum number of input messages that can be stored is returned.

(The value specified in the msgcnt operand of the -n option in the MCF application
definition mcfaalcap is set here.)

data-name-U
The transaction attribute of the application is returned as follows:

(The value specified in the trnmode operand of the -n option in the MCF application
definition mcfaalcap is set here.)

'TRN ': Managed as a transaction

'NTRN': Not managed as a transaction

data-name-V
The queue to which the received message is assigned is returned as follows:

(The value specified in the quekind operand of the -g option in the MCF application
definition mcfaalcap is set here.)

'D': When the message is assigned to the disk queue

'M': When the message is assigned to the memory queue

Status codes
Status code Explanation

00000 Normal termination.

72000 CBLDCMCF('APINFO ') was called from a service other than the MHP service.

72001 The value specified for data-name-G is invalid.
Combination of the values specified for data-name-G and data-name-E is invalid.

72016 The value specified for data-name-C is invalid.
The value specified for data-name-E is invalid.
The value specified for data-name-H is invalid.
The value specified for data-name-W is invalid.

CBLDCMCF('APINFO ') - Report the application information

202

Note
When two or more MHPs for ERREVT1, ERREVT2, ERREVT3, and ERREVT4 are
started at the same time, the MHPs for the same error event name may have a different
application type. For the MHPs other than the MHP that called CBLDCMCF('APINFO
'), the application type for the error event (ERREVT1, ERREVT2, ERREVT3, or
ERREVT4) is not reported. In this case, the default value of the MCF application
definition, NO-response type is reported.

72028 The value specified for data-name-A is invalid.

Other than the above Unprecedented error (e.g., program damage) occurred.

Status code Explanation

CBLDCMCF('CLOSE ') - Close the MCF environment

203

CBLDCMCF('CLOSE ') - Close the MCF environment

Format
PROCEDURE DIVISION specification

DATA DIVISION specification

Description
CBLDCMCF('CLOSE ') closes the environment in which MCF facilities are used.
Call CBLDCMCF('CLOSE ') only once in the process before the UAP that called
CBLDCMCF('OPEN ') calls CBLDCRPC('CLOSE ') in the main program.

Data area whose values are set in the UAP
data-name-A
Specify VALUE 'CLOSE ' for the request code indicating MHP termination.

data-name-C
Specify 0.

data-name-D
Specify LOW-VALUE.

Data area to which a value is returned from OpenTP1
data-name-B
A status code of 5 digits is returned.

Status codes

CALL 'CBLDCMCF' USING unique-name-1

01 unique-name-1.
 02 data-name-A PIC X(8) VALUE 'CLOSE '.
 02 data-name-B PIC X(5).
 02 FILLER PIC X(3).
 02 data-name-C PIC S9(9).
 02 data-name-D PIC X(12).

Status code Explanation

00000 Normal termination.

72016 The value specified for data-name-D is invalid.

CBLDCMCF('CLOSE ') - Close the MCF environment

204

72028 The value specified for data-name-A is invalid.

Other than the above An unprecedented error (e.g., program damage) occurred.

Status code Explanation

CBLDCMCF('COMMIT ') - Commit an MHP

205

CBLDCMCF('COMMIT ') - Commit an MHP

Format
PROCEDURE DIVISION specification

DATA DIVISION specification

Description
CBLDCMCF('COMMIT ') notifies the UAP at the transaction branch as a root
transaction branch making up the transaction, the transaction service, and the resource
manager that the global transaction initiated by the MHP has terminated processing
normally (the global transaction has been committed).

When the CBLDCMCF('COMMIT ') returns normally, a new global transaction is
started.

If a global transaction consists of multiple transaction branches (it involves programs
other than the MHP which called this CBLDCMCF('COMMIT ')), the entire global
transaction will not be committed until each transaction branch is committed. If the
global transaction is composed of multiple resource managers, it will not be committed
until the results of each resource manager's processing are committed. If the global
transaction is not committed, all the transaction branches are rolled back and the
program returns with an error, giving the status code of 70906.

CBLDCMCF('COMMIT ') can be used only by an MHP specified as nonresponse type
(type=noans) in the MCF application definition. If it is used by an MHP of another
type, it returns with an error, giving the status code of 72000. If it is called by a UAP
other than an MHP, it also returns with an error, giving the status code of 72000.

Data areas whose values are set in the UAP
data-name-A
Specify VALUE 'COMMIT ' as the request code indicating MHP commitment.

data-name-C
Specify LOW-VALUE.

CALL 'CBLDCMCF' USING unique-name-1

01 unique-name-1.
 02 data-name-A PIC X(8) VALUE 'COMMIT '.
 02 data-name-B PIC X(5).
 02 FILLER PIC X(3).
 02 data-name-C PIC X(16).

CBLDCMCF('COMMIT ') - Commit an MHP

206

Data area to which a value is returned from OpenTP1
data-name-B
A status code of 5 digits is returned.

Status codes

Notes
Even when CBLDCMCF('COMMIT ') returns normally, the input message is not
deleted from the input queue. This means that when message processing is restarted
after the MHP is rescheduled, the already committed range (up to what point the results
of processing have been committed) is unknown. The MHP is rescheduled when:

• An MCF event is reported to schedule an MHP for MCF event processing.

Status code Explanation

00000 Normal termination. If this status code returns, the process which called
CBLDCMCF('COMMIT ') has started a new transaction.

70906 The transaction was not committed, but was rolled back. If this status code returns, the
process which called CBLDCMCF('COMMIT ') has started a new transaction.

70907 The global transaction which called CBLDCMCF('COMMIT ') was subjected to a
heuristic decision which brought about the following:
Some transaction branches were committed, whereas other transaction branches were
rolled back. If this status code returns, the process which called CBLDCMCF('COMMIT
') has started a new transaction.

70908 The transaction branch of the global transaction was completed heuristically. However,
the synchronization point of the heuristically completed transaction branch cannot be
identified because of an error. If this status code returns, the process which called
CBLDCMCF('COMMIT ') has started a new transaction.
The status code 00904 will also be returned if 00000001 is assigned to the
trn_extend_function operand in the transaction service definition and if the resource
manager returns XAER_NOTA after a one-phase commit.

72000 Return at MHP execution:
The MHP called CBLDCMCF('COMMIT ') before CBLDCMCF('RECEIVE ') for
receiving the first segment.
CBLDCMCF('COMMIT ') was called by an MHP which is not nonresponse type
(type=noans).
CBLDCMCF('COMMIT ') was called by an MHP with the nontransaction attribute.

Return at SPP execution:
CBLDCMCF('COMMIT ') cannot be called by SPPs.

72028 The value specified for data-name-A is invalid.

Others than the above An unprecedented error (e.g., program damage) occurred.

CBLDCMCF('COMMIT ') - Commit an MHP

207

• Since the system is terminated abnormally, OpenTP1 reschedules the MHP for the
process.

If message processing is to be continued by the rescheduled MHP, the user is
responsible for learning the committed range of processing results.

CBLDCMCF('CONTEND ') - Terminate continuous-inquiry-response processing

208

CBLDCMCF('CONTEND ') - Terminate continuous-inquiry-response
processing

Format
PROCEDURE DIVISION specification

DATA DIVISION specification

Description
CBLDCMCF('CONTEND ') terminates continuous-inquiry-response processing.
Before terminating continuous-inquiry-response processing, verify that data-name-R
of CBLDCMCF('REPLY ') called from the MHP indicates space and that
CBLDCMCF('EXECAP ') for activating a cont type MHP has not been called. If the
MHP to be activated next is specified for data-name-R of CBLDCMCF('REPLY ') or
if CBLDCMCF('EXECAP ') for activating a cont type MHP has been called,
CBLDCMCF('CONTEND ') returns with an error.

After CBLDCMCF('CONTEND ') is called, temporary-stored data cannot be accessed.

Data area whose values are set in the UAP
data-name-A
Specify 'VALUE 'CONTEND ' for the request code indicating termination of
continuous-inquiry-response processing.

data-name-C
Specify LOW-VALUE.

Data area to which a value is returned from OpenTP1
data-name-B
A status code of 5 digits is returned.

CALL 'CBLDCMCF' USING unique-name-1

01 unique-name-1.
 02 data-name-A PIC X(8) VALUE 'CONTEND '.
 02 data-name-B PIC X(5).
 02 FILLER PIC X(3).
 02 data-name-C PIC X(16).

CBLDCMCF('CONTEND ') - Terminate continuous-inquiry-response processing

209

Status codes
Status code Explanation

00000 Normal termination.

72000 Return at MHP execution:
The MHP called CBLDCMCF('CONTEND ') before CBLDCMCF('RECEIVE') for
receiving the first segment.

Return at SPP execution:
CBLDCMCF('CONTEND ') cannot be called by SPPs.

72016 The value specified for data-name-C is invalid.

72028 The value specified for data-name-A is invalid.

72101 CBLDCMCF('CONTEND ') was called by an MHP which is not
continuous-inquiry-response type (type=cont).

72107 CBLDCMCF('CONTEND ') has already been called.

72111 The cont type application to be activated next was specified, CBLDCMCF('REPLY ')
was called, then CBLDCMCF('CONTEND ') was called.

The cont type application to be activated next was specified, CBLDCMCF('EXECAP
') was called, then CBLDCMCF('CONTEND ') was called.

Other than the above An unprecedented error (e.g., program damage) occurred.

CBLDCMCF('EXECAP ') - Activate an application program

210

CBLDCMCF('EXECAP ') - Activate an application program

Format
PROCEDURE DIVISION specification

DATA DIVISION specification

Description
CBLDCMCF('EXECAP ') starts the MHP or SPP of the application name specified
for data-name-N from a UAP (SPP or MHP). After the transaction or service function

CALL 'CBLDCMCF' USING unique-name-1 unique-name-2
 unique-name-3

01 unique-name-1.
 02 data-name-A PIC X(8) VALUE 'EXECAP '.
 02 data-name-B PIC X(5).
 02 FILLER PIC X(3).
 02 data-name-C PIC X(4).
 02 data-name-D PIC X(4).
 02 data-name-E PIC 9(8).
 02 data-name-F PIC 9(8).
 02 data-name-G PIC 9(9) COMP.
 02 data-name-H PIC X(4).
 02 data-name-I PIC X(4).
 02 data-name-J PIC X(4).
 02 data-name-K PIC X(4).
 02 data-name-L PIC X(8).
 02 data-name-M PIC X(4).
 02 data-name-N PIC X(8).
 02 data-name-O1 PIC X(4).
 02 data-name-O2 PIC 9(9) COMP.
 02 data-name-O3 PIC 9(9) COMP.
 02 data-name-O4 PIC X(1).
 02 data-name-O5 PIC X(1).
 02 data-name-P PIC X(14).
01 unique-name-2.
 02 data-name-Q PIC X(4).
 02 data-name-R PIC X(8).
 02 data-name-S PIC X(8).
 02 data-name-T PIC X(6).
 02 data-name-U PIC X(2).
 02 data-name-V PIC X(28).
01 unique-name-3.
 02 data-name-W PIC 9(x) COMP.
 02 data-name-X PIC X(x).
 02 data-name-Y PIC X(n).

CBLDCMCF('EXECAP ') - Activate an application program

211

has terminated, the MHP or SPP with the application name specified for data-name-N
can be started immediately or after a preset length of time.

To start an application program from an SPP, process the SPP as a transaction and call
CBLDCMCF('OPEN ') in the SPP main function.

If an MHP is activated from another MHP, the name in the first-received message is
used as the logical terminal name of the input source that receives messages through
the activated MHP. If the application program is started from the MHP, the name in the
first-received message is also used as the logical terminal name of the input source that
receives messages.

If an MHP is activated from an SPP, "*" is used as the logical terminal name of the
input source that receives messages through the activated MHP. If the application
program is started from the MHP, "*" is also used as the logical terminal name of the
input source that receives messages.

The maximum length of a single message segment that can be sent is 32 kilobytes.
Note that the actual value might be smaller depending on the protocol. For details, see
the applicable OpenTP1 Protocol manual.

The figure below shows the format of the area (indicated by unique-name-3) of the
segment which is passed to the MHP to be started.

Data areas whose values are set in the UAP
data-name-A
Specify VALUE 'EXECAP ' for the request code indicating activation of an
application program.

CBLDCMCF('EXECAP ') - Activate an application program

212

data-name-C, data-name-D
Specify space.

data-name-E, data-name-F
These areas are used by the MCF.

data-name-G
Specify 0.

data-name-H
Specify whether the segment to be passed to the MHP or SPP is the last segment of a
logical message. The following values are available:

'ESI ': Specify this value to pass the first segment or an intermediate segment. If
CBLDCMCF('EXECAP ') with 'ESI ' specified is used, CBLDCMCF('EXECAP
') with 'EMI ' specified for data-name-H must be used.

'EMI ': Specify this value to pass the last segment. If the logical message comprises
only a single segment, also specify 'EMI '.

Also specify 'EMI ' if the sending of the first or an intermediate segment is to be
followed by the notice of the completion of message sending.

data-name-I, data-name-J, data-name-K
Specify space.

data-name-L
• Interval timer start (specification of 'INTV' for data-name-O1)

Specify the period of time which will elapse from the calling
CBLDCMCF('EXECAP ') to the activation of the MHP or SPP. The value must
be specified in the format of HHMMSS00 (where HH indicates hours, MM indicates
minutes, SS indicates seconds, and 00 is fixed) in the range from '00000100'
(activation after 1 second) to '99595900' (activation after 99 hours 59 minutes
59 seconds).

• Time-point timer start (specification of 'TIME' for data-name-O1)

Specify when to activate the MHP or SPP. The time must be specified in the
format of HHMMSS00 (where HH indicates hours, MM indicates minutes, SS
indicates seconds, and 00 is fixed) in the range from '00000000' (activation at
00:00:00) to '23595900' (activation at 23:59:59) in local time.

The value specified for data-name-L is valid only for timer-start. If immediate
start is specified, the value specified for data-name-L is ignored.

Since OpenTP1 checks whether the activation time has been reached at regular
intervals, there is a difference between the time specified for data-name-L and the

CBLDCMCF('EXECAP ') - Activate an application program

213

actual activation time. The accuracy of time monitoring depends on the value for
the time monitoring interval specified for the btim operand in the -t option of
the MCF communication configuration definition mcfttim.

data-name-M
Specify space.

data-name-N
Specify the application name of the MHP or SPP to be started after the MHP that called
CBLDCMCF('EXECAP ') terminates. The application name can be specified with
up to 8 bytes. The application name must end with space. If the specified name
comprises less than 8 bytes, pad the remaining portion with space.

data-name-O1
Specify when to activate the MHP. The following values are available:

'JUST': Specify this value for immediate start. When VALUE 'JUST' is specified,
the value specified for data-name-L is ignored.

'INTV': Specify this value for interval timer start. The MHP will start the time
specified for data-name-L after CBLDCMCF('EXECAP ') is called.

'TIME': Specify this value for time point timer start. The MHP or SPP will start at the
time specified for data-name-L.

Space: The default value 'JUST' (immediate start) is assumed.

data-name-O2, data-name-O3
Specify 0.

data-name-O4
Specify space.

data-name-O5
Specify the buffer format to be used. The following values are available:

'1': Specify this value to use buffer format 1.

'2': Specify this value to use buffer format 2.

Space: The specification for data-name-O5 is assumed to be omitted. '1' (buffer
format 1) is assumed.

data-name-P
Specify LOW-VALUE.

data-name-Q, data-name-R, data-name-S, data-name-T, data-name-U
Specify space.

CBLDCMCF('EXECAP ') - Activate an application program

214

data-name-V
Specify LOW-VALUE.

data-name-W
With buffer format 1: PIC 9(9)

Specify the send segment length.

With buffer format 2: PIC 9(4)

Specify the send segment length + 4.

Specify 0 as the send segment length if the sending of the first or an intermediate
segment is to be followed by the notice of the completion of message sending.

data-name-X
With buffer format 1: PIC X(8)

With buffer format 2: PIC X(2)

This area is used by the MCF.

data-name-Y
Specify the contents of the message segment to be passed to the MHP or SPP to be
activated. Specify data-name-Y also when the sending of the first or an intermediate
segment is to be followed by the notice of the completion of message sending.

Data area to which a value is returned from OpenTP1
data-name-B
A status code of 5 digits is returned.

Status codes
Status code Explanation

00000 Normal termination.

71002 An error occurred during input/output processing for the message queue.

The message queue is in descriptor state.

No message queue was allocated.

The value specified for the segment length exceeds 32,000 bytes.

The MHP or SPP specified for data-name-N cannot be activated because the MCF is
being terminated.

71003 The message queue is full.

CBLDCMCF('EXECAP ') - Activate an application program

215

71004 The buffer for storing messages could not be acquired in the memory.

71108 An attempt was made to start the MHP or SPP of the application name specified for
data-name-N, but the MHP or SPP management table could not be acquired.

The local memory of the process is insufficient.

72000 Return at MHP execution:
The MHP called CBLDCMCF('EXECAP ') before CBLDCMCF('RECEIVE ') for
receiving the first segment.

Return at SPP execution:
CBLDCMCF('EXECAP ') was called from a nontransactional SPP process.

72001 The specified application name is not defined with the MCF.

The application name is incorrect.

The application startup process name is not specified in the communication service
definition (mcfmcname definition command) included in the MCF manager definition.

No application startup process identifier is specified in the environment definition (-p
option to the mcfaenv definition command) included in the MCF application definition
for the application startup process.

The following two values do not match:
• Application startup process identifier specified in the application environment

definition (-p option to the mcfaenv definition command)
• Application startup process identifier specified in the communication configuration

definition (mcftenv definition command) for the application startup process

If a non-response type MHP or SPP is to be started:
• No logical terminal (the lname operand of the -n option to the mcfaalcap definition

command) is specified in the application attribute definition for the application to be
started.

• The logical terminal specified in the application attribute definition for the
application to be started is not defined in the communication configuration definition
(mcftalcle definition command) for the application startup process.

• The logical terminal specified in the application attribute definition of the application
to be started is not for send-only communication (mcftalcle -t=send).

• The logical terminal specified in the application attribute definition for the
application to be started cannot use the application startup process.

Status code Explanation

CBLDCMCF('EXECAP ') - Activate an application program

216

If an MHP of the response type or continuous inquiry-response type is to be started:
• No internal communication path (cname operand of the -n option to the mcfaalcap

definition command) is specified in the application attribute definition for the
application to be started.

• The internal communication path specified in the application attribute definition for
the application to be started is not defined in the communication configuration
definition (-c option to the mcftpsvr definition command) for the application
startup process.

• The inquiry logical terminal (mcftalcle -t=request) is not specified in the
communication configuration definition (mcftalcle definition command) of the
application start process.

If an application is to be started from an SPP:
• The mcf_psv_id operand in the user service definition or user service default

definition for the caller UAP is assigned no application startup process identifier.
• The following two values do not match:

Application startup process identifier assigned to the mcf_psv_id operand in the
user service definition or user service default definition for the caller UAP
Application startup process identifier specified in the communication configuration
definition (-s option to the mcftenv definition command) for the application startup
process or in the application environment definition (-p option to the mcfaenv
definition command)

• The following two values do not match:
MCF manager identifier assigned to the mcf_mgrid operand in the user service
definition or user service default definition for the caller UAP
Identifier of the MCF manager to which the application startup process belongs

72005 A value less than 1 byte (with buffer format 1) or less than 5 bytes (with buffer format 2)
was specified for the message segment length (data-name-W) in CBLDCMCF('EXECAP
') in which 'ESI ' was specified for data-name-H.

72007 From a response type (type=ans) MHP that called CBLDCMCF('REPLY '), another
response type MHP was started by calling CBLDCMCF('EXECAP ').

From a continuous-inquiry-response type (type=cont) MHP that called
CBLDCMCF('REPLY '), another continuous-inquiry-response type MHP was started
by calling CBLDCMCF('EXECAP ').

72009 CBLDCMCF('EXECAP ') was called more than once from a response type (type=ans)
MHP.

CBLDCMCF('EXECAP ') was called more than once from a
continuous-inquiry-response type (type=cont) MHP.

72011 From an MHP which is not response type (type=ans), a response type MHP was started
by calling CBLDCMCF('EXECAP ').

From an MHP which is not continuous-inquiry-response type (type=cont), a
continuous-inquiry-response type MHP was started by calling CBLDCMCF('EXECAP
').

Status code Explanation

CBLDCMCF('EXECAP ') - Activate an application program

217

Notes
1. The activation order of application programs varies depending on the mcfmuap

-c order specification in the UAP common definition of the MCF manager
definition.

2. If you use a single service function to update a TAM or DAM file and call the
function CBLDCMCF('EXECAP ') to start an application that will reference the
updated file, make sure that the application will lock the file. If the application
references the file without locking the file, the data existing before the file was
updated might be referenced.

72016 The value specified for data-name-O1, data-name-O2, data-name-O3, data-name-P, or
data-name-V is invalid.

72024 The value specified for data-name-Q is invalid.

72026 The value specified as the segment type for data-name-H is invalid. 'EMI ' must be
specified for the last segment. 'ESI ' must be specified for a segment other than the
last segment.

72028 The value specified for data-name-A is invalid.

72041 When the logical message comprised a single segment, the CBLDCMCF('EXECAP ') in
which send segment length = 0 (with buffer format 1) or send segment length = 4 or less
(with buffer format 2) was specified was called.

72044 From a continuous-inquiry-response type (type=cont) MHP that called
CBLDCMCF('CONTEND '), another continuous-inquiry-response type MHP was started
by CBLDCMCF('EXECAP ').

72108 The value specified for data-name-L exceeds the limit.

72109 An attempt was made to activate an MHP, for which type=cont
(continuous-inquiry-response type) was specified, by CBLDCMCF('EXECAP ') with
timer start specified.

77001 The logical terminal (LE) corresponding to the application to be activated is being started
and cannot be used, or no logical terminals are available.

Other than the above An unprecedented error (e.g., program damage) occurred.

Status code Explanation

CBLDCMCF('MAINLOOP') - Start an MHP service

218

CBLDCMCF('MAINLOOP') - Start an MHP service

Format
PROCEDURE DIVISION specification

DATA DIVISION specification

Description
CBLDCMCF('MAINLOOP') accepts scheduling to a service program corresponding to
the application name. Call CBLDCMCF('MAINLOOP') only once in the process from
the MHP main program.

CBLDCMCF('MAINLOOP') does not return until it receives a termination request for
the MHP from OpenTP1.

Data areas whose values are set in the UAP
data-name-A
Specify VALUE 'MAINLOOP' for the request code indicating MHP service start.

data-name-C
Specify LOW-VALUE.

Data area to which a value is returned from OpenTP1
data-name-B
A status code of 5 digits is returned.

Status codes

CALL 'CBLDCMCF' USING unique-name-1

01 unique-name-1.
 02 data-name-A PIC X(8) VALUE 'MAINLOOP'.
 02 data-name-B PIC X(5).
 02 FILLER PIC X(3).
 02 data-name-C PIC X(16).

Status code Explanation

00000 The program received a termination request for the MHP from OpenTP1. The MHP
must immediately execute termination processing for its process. Then the MHP must
call CBLDCMCF('CLOSE ') and CBLDCRPC('CLOSE ') to exit the main program
with STOP RUN.

70900 The value specified for a data-name is invalid.

CBLDCMCF('MAINLOOP') - Start an MHP service

219

70901 CBLDCRPC('OPEN ') was not called before CBLDCMCF('MAINLOOP').

70902 The service could not be started.

70903 The local memory became insufficient.

72016 The value specified for data-name-C is invalid.

72028 The value specified for data-name-A is invalid.

Status code Explanation

CBLDCMCF('OPEN ') - Open the MCF environment

220

CBLDCMCF('OPEN ') - Open the MCF environment

Format
PROCEDURE DIVISION specification

DATA DIVISION specification

Description
CBLDCMCF('OPEN ') constructs the environment in which MCF facilities are
used. Call CBLDCMCF('OPEN ') for UAPs which use MCF facilities
(CBLDCMCF).

After CBLDCRPC('OPEN ') is called, CBLDCMCF('OPEN ') must be called
in the main program. Call CBLDCMCF('OPEN ') only once in the process before
CBLDCMCF('MAINLOOP') (CBLDCRSV('MAINLOOP') for an SPP). The following
figure shows when to call CBLDCMCF('OPEN '):

Data area whose value is set in the UAP
data-name-A
Specify 'VALUE 'OPEN ' for the request code indicating opening of the MCF
environment.

Data areas to which values are returned from OpenTP1
data-name-B
A status code of 5 digits is returned.

CALL 'CBLDCMCF' USING unique-name-1

01 unique-name-1.
 02 data-name-A PIC X(8) VALUE 'OPEN '.
 02 data-name-B PIC X(5).
 02 FILLER PIC X(3).
 02 data-name-C PIC S9(9) COMP.
 02 data-name-D PIC X(12).

CALL 'CBLDCRPC' (OPEN)
CALL 'CBLDCMCF' (OPEN)
CALL 'CBLDCMCF' (MAINLOOP) (CALL 'CBLDCRSV' (MAINLOOP) for an SPP)
 :
 :
CALL 'CBLDCMCF' (CLOSE)
CALL 'CBLDCRPC' (CLOSE)

CBLDCMCF('OPEN ') - Open the MCF environment

221

data-name-C
Specify 0.

data-name-D
Specify LOW-VALUE.

Status codes
Status code Explanation

00000 Normal termination.

70900 The value specified for data-name-C is invalid.

70901 CBLDCRPC('OPEN ') was not called.

CBLDCMCF('OPEN ') was called.

70902 Initialization processing was unsuccessful.

70903 The memory became insufficient.

72016 The value specified for data-name-D is invalid.

72028 The value specified for data-name-A is invalid.

CBLDCMCF('RECEIVE ') - Receive a message

222

CBLDCMCF('RECEIVE ') - Receive a message

Format
PROCEDURE DIVISION specification

DATA DIVISION specification

Description
CBLDCMCF('RECEIVE ') receives a segment of a message. When a whole logical
message is received, call CBLDCMCF('RECEIVE ') as many times as there are
segments.

CALL 'CBLDCMCF' USING unique-name-1 unique-name-2
 unique-name-3

01 unique-name-1.
 02 data-name-A PIC X(8) VALUE 'RECEIVE '.
 02 data-name-B PIC X(5).
 02 FILLER PIC X(3).
 02 data-name-C PIC X(4).
 02 data-name-D PIC X(4).
 02 data-name-E PIC 9(8).
 02 data-name-F PIC 9(8).
 02 data-name-G PIC 9(9) COMP.
 02 data-name-H PIC X(4).
 02 data-name-I PIC X(4).
 02 data-name-J PIC X(4).
 02 data-name-K PIC X(4).
 02 data-name-L PIC X(8).
 02 data-name-M1 PIC X(4).
 02 data-name-M2 PIC X(8).
 02 data-name-M3 PIC X(4).
 02 data-name-M4 PIC 9(9) COMP.
 02 data-name-M5 PIC 9(9) COMP.
 02 data-name-M6 PIC X(1).
 02 data-name-M7 PIC X(1).
 02 data-name-N PIC X(14).
01 unique-name-2.
 02 data-name-O PIC X(4).
 02 data-name-P PIC X(8).
 02 data-name-Q PIC X(8).
 02 data-name-R PIC X(8).
 02 data-name-T PIC X(28).
01 unique-name-3.
 02 data-name-U PIC 9(x) COMP.
 02 data-name-V PIC X(x).
 02 data-name-W PIC X(n).

CBLDCMCF('RECEIVE ') - Receive a message

223

CBLDCMCF('RECEIVE ') can receive the following messages:

• Messages which are sent from the remote system via a protocol

• MCF events which are reported from the local system

• Messages which are sent by CBLDCMCF('EXECAP ') (Activate an application
program) from a UAP of the local system

• Messages which are sent by executing the mcfuevt command on the local system

When receiving a message which is sent from the remote system via a protocol, the
syntax of CBLDCMCF('RECEIVE ') varies from one protocol to another. For the
syntax of CBLDCMCF('RECEIVE ') which receives a message from the remote
system, see the applicable OpenTP1 Protocol manual.

The maximum length of a single segment that can be received is 1 megabyte. Note that
the actual value might be smaller depending on the protocol. For details, see the
applicable OpenTP1 Protocol manual.

The figure below shows the format of the receive message area (area indicated with
unique-name-3).

Data areas whose values are set in the UAP
data-name-A
Specify VALUE 'RECEIVE ' for the request code indicating that the message was

CBLDCMCF('RECEIVE ') - Receive a message

224

received.

data-name-C
Specify whether the first segment of the message is received with one of the following:

'FRST': Specify 'FRST' to receive the first segment. If the message comprises only
a single segment, also specify 'FRST'.

'SEG ': Specify 'SEG ' to receive an intermediate segment or the last segment.

data-name-D
Specify space.

data-name-G
Specify the length of the receive segment area.

data-name-H, data-name-I, data-name-J, data-name-K, data-name-L, data-name-M1,
data-name-M2, data-name-M3
Specify space.

data-name-M4, data-name-M5
Specify 0.

data-name-M6
Specify space.

data-name-M7
Specify the buffer format to be used:

'1': Specify '1' to use buffer format 1. In general, buffer format 1 is used.

'2': Specify '2' to use buffer format 2.

Space: '1' (buffer format 1) is assumed as default.

data-name-N
Specify LOW-VALUE.

data-name-O
Specify space.

data-name-P [when an intermediate segment or the last segment is received]

Specify the input logical terminal name. Specify the logical terminal name returned
when the first segment is received.

data-name-Q
This area is used by the MCF.

CBLDCMCF('RECEIVE ') - Receive a message

225

data-name-R
Specify space.

data-name-T
Specify LOW-VALUE.

data-name-V
With buffer format 1: PIC X(8)

With buffer format 2: PIC X(2)

This area is used by the MCF.

Data areas to which values are returned from OpenTP1
data-name-B
A status code of 5 digits is returned.

data-name-E
The date when the message is received is returned in the format of YYYYMMDD (where
YYYY is year, MM is month, and DD is day).

data-name-F
The time when the message is received is returned in the format of HHMMSS00 (where
HH indicates hours, MM indicates minutes, SS indicates seconds, and 00 is fixed).

data-name-P [when the first segment is received]

The input logical terminal name is returned.

Specify the returned logical terminal name for data-name-P when an intermediate
segment or the last segment is received.

data-name-U
With buffer format 1: PIC 9(9)

The length of the receive segment is returned.

With buffer format 2: PIC 9(4)

(The length of the receive segment + 4) is returned.

data-name-W
The contents of the receive segment are returned.

CBLDCMCF('RECEIVE ') - Receive a message

226

Status codes
Status code Explanation

00000 Normal termination.

71000 CBLDCMCF('RECEIVE ') for receiving the first segment was called more than once. To
receive an intermediate segment or the last segment, call CBLDCMCF('RECEIVE ') with
'SEG ' specified for data-name-C.

71001 CBLDCMCF('RECEIVE ') for receiving the next segment was called after the last
segment of the message was received. CBLDCMCF('RECEIVE ') called immediately
before receives a message completely. If CBLDCMCF('RECEIVE ') is called again after
this status code is returned, the status code 72000 is returned.

71002 An error occurred during input processing for the message queue.

The message queue is in shutdown state.

71108 The local memory for processes became insufficient.

72000 Return at MHP execution:
BLDCMCF('RECEIVE ') for receiving an intermediate segment or the last segment was
called before CBLDCMCF('RECEIVE ') for receiving the first segment was called. To
receive the first segment, call CBLDCMCF('RECEIVE ') with FRST specified for
data-name-C.
CBLDCMCF('RECEIVE ') was called again after the status code 71001 was returned.

Return at SPP execution:
CBLDCMCF('RECEIVE ') cannot be called from an SPP.

72001 The logical terminal name specified for data-name-P is invalid.

72013 A segment exceeding the length of the receive area was received. The excess portion was
truncated.

A segment exceeding 32,767 bytes was received in the case of buffer format 2. The
excess portion was truncated.

72016 The value specified for data-name-D is invalid.

The value specified for data-name-N or data-name-T is invalid.

The value specified for data-name-M7 is invalid.

72024 The value specified for data-name-O is invalid.

72025 The value specified for data-name-C is invalid.

72028 The value specified for data-name-A is invalid.

72036 The segment receive area is insufficient. Allocate an area of 9 bytes or more for buffer
format 1; 5 bytes or more for buffer format 2.

CBLDCMCF('RECEIVE ') - Receive a message

227

Other than the above An unprecedented error (e.g., program damage) occurred.

Status code Explanation

CBLDCMCF('RECVSYNC') - Receive a synchronous message

228

CBLDCMCF('RECVSYNC') - Receive a synchronous message

Format
For details on the format, see the applicable OpenTP1 Protocol manual.

Description
CBLDCMCF('RECVSYNC') makes an active UAP receive a logical message from other
system.

The maximum length of a single segment that can be received is 1 megabyte. Note that
the actual value might be smaller depending on the protocol. For details, see the
applicable OpenTP1 Protocol manual.

The values to be set in the data areas and the status codes vary from one protocol to
another. For details, see the applicable OpenTP1 Protocol manual.

CBLDCMCF('REPLY ') - Send a response message

229

CBLDCMCF('REPLY ') - Send a response message

Format
For details on the format, see the applicable OpenTP1 Protocol manual.

Description
CBLDCMCF('REPLY ') sends a logical message as a response to other system. The
response message can be sent only by MHPs whose application type is ans or cont.

The maximum length of a single message segment that can be sent is 32 kilobytes.
Note that the actual value might be smaller depending on the protocol. For details, see
the applicable OpenTP1 Protocol manual.

The values to be set in the data areas and the status codes vary from one protocol to
another. For details, see the applicable OpenTP1 Protocol manual.

CBLDCMCF('RESEND ') - Resend a message

230

CBLDCMCF('RESEND ') - Resend a message

Format
For details on the format, see the applicable OpenTP1 Protocol manual.

Description
CBLDCMCF('RESEND ') resends an already sent logical message to other system.
The resent message is treated as a new message separate from the already sent
message.

The values to be set in the data areas and the status codes vary from one protocol to
another. For details, see the applicable OpenTP1 Protocol manual.

Note
The message resend order varies depending on the mcfmuap -c order specification
in the UAP common definition of the MCF manager definition.

CBLDCMCF('ROLLBACK') - Enable MHP rollback

231

CBLDCMCF('ROLLBACK') - Enable MHP rollback

Format
PROCEDURE DIVISION specification

DATA DIVISION specification

Description
CBLDCMCF('ROLLBACK') cancels processing between when the MHP service
program that defines the transaction attribute is started and when the rollback is
required. If 'RTRY' is specified for data-name-C, processing between when the MHP
is started and when the rollback is called is canceled, and the canceled MHP processing
is rescheduled.

Data areas whose values are set in the UAP
data-name-A
Specify VALUE 'ROLLBACK' for the request code indicating partial recovery.

data-name-C
Specify the type of rollback. The following values are available:

'RTRY': Processing between when the MHP is started and when
CBLDCMCF('ROLLBACK') is called is canceled, and the canceled MHP processing is
rescheduled (any received messages are stored at the end of the relevant input queue
and the MHP is rescheduled). Control does not return from the rollback statement, and
the process is terminated.

'RTN ': Processing between the MHP is started and when the
CBLDCMCF('ROLLBACK') is called is canceled, and control returns. Processing after
the normal return of the rollback with 'RTN ' specified is treated as another
transaction.

'NRTN': Processing between the MHP is started and when the
CBLDCMCF('ROLLBACK') is called is canceled. Control does not return from
CBLDCMCF('ROLLBACK'), and the process is terminated.

CALL 'CBLDCMCF' USING unique-name-1

01 unique-name-1
 02 data-name-A PIC X(8) VALUE 'ROLLBACK'.
 02 data-name-B PIC X(5).
 02 FILLER PIC X(3).
 02 data-name-C PIC X(4).
 02 data-name-D PIC X(12).

CBLDCMCF('ROLLBACK') - Enable MHP rollback

232

data-name-D
Specify LOW-VALUE.

Data area whose value is returned from OpenTP1
data-name-B
A status code of 5 digits is returned.

Status codes
Status Code Explanation

00000 Normal termination.

72000 <Return at MHP execution>
The MHP called CBLDCMCF('ROLLBACK') with 'RTN ' specified for data-name-C
before CBLDCMCF('RECEIVE') for receiving the first segment.
CBLDCMCF('ROLLBACK') was called by an MHP with the nontransaction attribute.

<Return at SPP execution>
CBLDCMCF('ROLLBACK') cannot be called from an SPP.

72016 The value specified for data-name-D is invalid.

72027 The value specified for data-name-C (type of rollback) is invalid.

72028 The value specified for data-name-A is invalid.

Other than the above An unprecedented error (e.g., program damage) occurred.

CBLDCMCF('SEND ') - Send a message

233

CBLDCMCF('SEND ') - Send a message

Format
For details on the format, see the applicable OpenTP1 Protocol manual.

Description
CBLDCMCF('SEND ') sends a logical message to other system.

The maximum length of a single message segment that can be sent is 32 kilobytes.
Note that the actual value might be smaller depending on the protocol. For details, see
the applicable OpenTP1 Protocol manual.

The values to be set in the data areas and the status codes vary from one protocol to
another. For details, see the applicable OpenTP1 Protocol manual.

Notes
CBLDCMCF('SEND ') registers messages in the OTQ in the same order in which
the messages were issued. The messages will be processed on a first-in, first-out basis
at each logical terminal. If a message is at the start of the OTQ of a particular logical
terminal and the corresponding transaction has been committed (for a non-transaction
MHP, when the service function has returned a value), the message is fetched from the
OTQ and processed.

If multiple UAPs issue CBLDCMCF('SEND ') to the same logical terminal at the
same time, the first message in the OTQ will be processed first, provided that it
satisfies the above conditions. The subsequent messages in the OTQ registered by
other UAPs will not be processed until the first message is processed. Therefore, if the
service function does not return after CBLDCMCF('SEND ') is issued, or if
CBLDCMCF('COMMIT ') has not been issued, message transmission (or application
activation) from other UAPs to the same logical terminal will be delayed. Be careful
not to cause delays from CBLDCMCF('SEND ') issuance to service function return
or CBLDCMCF('COMMIT ') issuance.

Note
The message send order varies depending on the mcfmuap -c order specification in
the UAP common definition of the MCF manager definition.

CBLDCMCF('SENDRECV') - Exchange a synchronous message

234

CBLDCMCF('SENDRECV') - Exchange a synchronous message

Format
For details on the format, see the applicable OpenTP1 Protocol manual.

Description
CBLDCMCF('SENDRECV') sends a logical message from a UAP to the remote system
and receives a response. The UAP waits during the period from the time the logical
message is sent to the time a response is received. Upon receiving a response, it begins
subsequent processing.

The maximum length of a single segment that can be received is 1 megabyte. Note that
the actual value might be smaller depending on the protocol. The maximum length of
a single message segment that can be sent is 32 kilobytes. Note that the actual value
might be smaller depending on the protocol. For details, see the applicable OpenTP1
Protocol manual.

The values to be set in the data areas and the status codes vary from one protocol to
another. For details, see the applicable OpenTP1 Protocol manual.

CBLDCMCF('SENDSYNC') - Send a synchronous message

235

CBLDCMCF('SENDSYNC') - Send a synchronous message

Format
For details on the format, see the applicable OpenTP1 Protocol manual.

Description
CBLDCMCF('SENDSYNC') sends a logical message from an active UAP to other
system. The UAP waits until the MCF finishes sending the message. Upon completing
the sending, it begins subsequent processing.

The maximum length of a single message segment that can be sent is 32 kilobytes.
Note that the actual value might be smaller depending on the protocol. For details, see
the applicable OpenTP1 Protocol manual.

The values to be set in the data areas and the status codes vary from one protocol to
another. For details, see the applicable OpenTP1 Protocol manual.

CBLDCMCF('TACTCN ') - Establish connection

236

CBLDCMCF('TACTCN ') - Establish connection

Format
PROCEDURE DIVISION specification

DATA DIVISION specification

Description
CBLDCMCF('TACTCN ') establishes connection.

Normal termination of CBLDCMCF('TACTCN ') indicates that the connection
establishment request was accepted successfully by the protocol product. However,
this does not necessarily mean that connection with the remote system has been
established.

If you intend to perform any connection-related operation after calling
CBLDCMCF('TACTCN '), first use CBLDCMCF('TLSCN ') to check the
connection status.

Data areas whose values are set in the UAP
data-name-A
Specify VALUE 'TACTCN ' for the request code indicating connection

CALL 'CBLDCMCF' USING unique-name-1 unique-name-2

01 unique-name-1.
 02 data-name-A PIC X(8) VALUE 'TACTCN '.
 02 data-name-B PIC X(5).
 02 FILLER PIC X(3).

 02 data-name-C PIC X(4).
 02 data-name-D1 PIC X(1) VALUE SPACE.
 02 data-name-D2 PIC X(1).
 02 data-name-D3 PIC X(26) VALUE SPACE.
 02 data-name-E PIC 9(9) COMP.
 02 data-name-F1 PIC X(8).
 02 data-name-F2 PIC X(56) VALUE SPACE.
 02 data-name-G PIC X(8) VALUE SPACE.
 02 data-name-H PIC X(8) VALUE SPACE.
 02 data-name-I PIC X(144) VALUE SPACE.
 02 data-name-J PIC X(184) VALUE SPACE.
 02 data-name-K1 PIC 9(9) COMP.
 02 data-name-K2 PIC X(n).
01 unique-name-2.
 02 data-name-L PIC 9(9) COMP VALUE ZERO.

CBLDCMCF('TACTCN ') - Establish connection

237

establishment.

data-name-C
Specify how to specify the connection that is to be established.

'LE '

Specifies that a logical terminal name is specified for the connection that is to be
established. This argument is not supported by TP1/NET/NCSB or TP1/NET/
X25-Extended.

'CN '

Specifies that a connection ID is specified for the connection that is to be
established.

Space

'LE ' (specification of a logical terminal name) is assumed.

data-name-D1
Specify a space.

data-name-D2
Specifies whether functionality that depends on the communication protocol is being
used.

'1'

Specifies that functionality that depends on the communication protocol is being
used.

'0'

Specifies that functionality that depends on the communication protocol is not
being used.

Space

'0' (functionality that depends on the communication protocol is not being used)
is assumed.

data-name-D3
Specify a space.

data-name-E
Specify the MCF communication process identifier of the MCF communication
service for the connection that is to be processed. The permitted value range is from 0
to 239.

This argument is ignored when a logical terminal name is used to request connection

CBLDCMCF('TACTCN ') - Establish connection

238

establishment.

If you specify 0, the system searches for the MCF communication service to which the
specified connection ID belongs. In a configuration where many MCF communication
services are running or when you issue this function many times from a UAP, we
recommend that you specify the MCF communication process identifier.

data-name-F1
Specify the logical terminal name or connection ID of the connection that is to be
established. Express the logical terminal name or connection ID as a maximum of 8
bytes. If the specified name is shorter than 8 bytes, pad the name with trailing spaces.

data-name-F2, data-name-G, data-name-H, data-name-I, data-name-J
Specify a space.

data-name-K1
Specify the length of a protocol-specific area. You can specify a maximum of 1024
bytes.

If you do not use functionality that depends on the communication protocol, specify 0.

data-name-K2
Specify contents for the protocol-specific area.

The permitted value depends on the communication protocol being used. For details,
see the applicable OpenTP1 Protocol manual.

data-name-L
Specify 0.

Data area to which a value is returned from OpenTP1
data-name-B
A status code of 5 digits is returned.

Status codes
Status code Explanation

00000 Normal termination.

71001 CBLDCMCF('TACTCN ') cannot be accepted because MCF is under start processing.

71002 CBLDCMCF('TACTCN ') cannot be accepted because MCF is under termination
processing.

71004 A memory shortage occurred during CBLDCMCF('TACTCN ') processing.

71005 A communication error occurred. For the cause, see the message log file.

CBLDCMCF('TACTCN ') - Establish connection

239

71006 An internal error occurred. For the cause, see the message log file.

71007 The specified connection name has not been registered.

71008 The specified logical terminal name has not been registered.

71009 CBLDCMCF('TACTCN ') is not supported by the applicable communication process.

71010 Although the request to establish connection was issued to the MCF communication
process, the request was not accepted. For the cause, see the message log file.

71011 CBLDCMCF('TACTCN ') cannot be accepted because the connection has been deleted.

71014 The specified logical terminal name belongs to TP1/NET/NCSB or TP1/NET/
X25-Extended; or, the specified connection group name belongs to TP1/NET/OSI-TP
or TP1/NET/TCP/IP.

72028 The value specified for data-name-A is invalid.

72052 <If '0' or a space is specified for data-name-D2>
A nonzero value is specified for data-name-K1.

<If '1' is specified for data-name-D2>
A value smaller than 0 or greater than 1024 is specified for data-name-K1.

72053 A nonzero value is specified for data-name-L.

72058 The value specified for data-name-C is not 'LE ', CN ', or a space.

72059 The value specified for data-name-D1 or data-name-D3 is not a space.

The value specified for data-name-D2 is not 1, 0, or a space.

72061 A value smaller than 0 or greater than 239 is specified for data-name-E.

72063 A space is specified for data-name-F1.

72065 The value specified for data-name-F2 is not a space.

72066 The value specified for data-name-G is not a space.

72068 The value specified for data-name-H is not a space.

72070 The value specified for data-name-I is not a space.

72072 The value specified for data-name-J is not a space.

72074 The character string specified for data-name-F1 contains an invalid character.

Status code Explanation

CBLDCMCF('TACTLE ') - Release a logical terminal from shutdown status

240

CBLDCMCF('TACTLE ') - Release a logical terminal from shutdown
status

Format
PROCEDURE DIVISION specification

DATA DIVISION specification

Description
CBLDCMCF('TACTLE ') releases a logical terminal from shutdown status.

Normal termination of CBLDCMCF('TACTLE ') indicates that the logical terminal
shutdown release request was accepted successfully by the protocol product. However,
this does not necessarily mean that the logical terminal has been released from the
shutdown status.

If you intend to perform any operation related to the logical terminal after calling
CBLDCMCF('TACTLE '), first use CBLDCMCF('TLSLE ') to check the logical
terminal's status.

CALL 'CBLDCMCF' USING unique-name-1 unique-name-2

01 unique-name-1.
 02 data-name-A PIC X(8) VALUE 'TACTLE '.
 02 data-name-B PIC X(5).
 02 FILLER PIC X(3).

 02 data-name-C PIC X(4) VALUE SPACE.
 02 data-name-D1 PIC X(1) VALUE SPACE.
 02 data-name-D2 PIC X(1).
 02 data-name-D3 PIC X(26) VALUE SPACE.
 02 data-name-E PIC 9(9) COMP.
 02 data-name-F1 PIC X(8).
 02 data-name-F2 PIC X(56) VALUE SPACE.
 02 data-name-G PIC X(8) VALUE SPACE.
 02 data-name-H PIC X(8) VALUE SPACE.
 02 data-name-I PIC X(144) VALUE SPACE.
 02 data-name-J PIC X(184) VALUE SPACE.
 02 data-name-K1 PIC 9(9) COMP.
 02 data-name-K2 PIC X(n).
01 unique-name-2.
 02 data-name-L PIC 9(9) COMP VALUE ZERO.

CBLDCMCF('TACTLE ') - Release a logical terminal from shutdown status

241

Data areas whose values are set in the UAP
data-name-A
Specify VALUE 'TACTLE ' for the request code indicating release of a logical
terminal from shutdown status.

data-name-C, data-name-D1
Specify a space.

data-name-D2
Specifies whether functionality that depends on the communication protocol is being
used.

'1'

Specifies that functionality that depends on the communication protocol is being
used.

'0'

Specifies that functionality that depends on the communication protocol is not
being used.

Space

'0' (functionality that depends on the communication protocol is not being used)
is assumed.

data-name-D3
Specify a space.

data-name-E
Specify the MCF communication process identifier of the MCF communication
service that has the logical terminal to be processed. The permitted value range is from
0 to 239.

If you specify 0, the system searches for the MCF communication service to which the
specified connection ID belongs. In a configuration where many MCF communication
services are running or when you issue this function many times from a UAP, we
recommend that you specify the MCF communication process identifier.

data-name-F1
Specify the name of the logical terminal that is to be released from shutdown status.
Express the logical terminal name as a maximum of 8 bytes. If the specified name is
shorter than 8 bytes, pad the name with trailing spaces.

data-name-F2, data-name-G, data-name-H, data-name-I, data-name-J
Specify a space.

CBLDCMCF('TACTLE ') - Release a logical terminal from shutdown status

242

data-name-K1
Specify the length of a protocol-specific area. You can specify a maximum of 1024
bytes.

If you do not use functionality that depends on the communication protocol, specify 0.

data-name-K2
Specify contents for the protocol-specific area.

The permitted value depends on the communication protocol being used. For details,
see the applicable OpenTP1 Protocol manual.

data-name-L
Specify 0.

Data area to which a value is returned from OpenTP1
data-name-B
A status code of 5 digits is returned.

Status codes
Status code Explanation

00000 Normal termination.

71001 CBLDCMCF('TACTLE ') cannot be accepted because MCF is under start processing.

71002 CBLDCMCF('TACTLE ') cannot be accepted because MCF is under termination
processing.

71004 A memory shortage occurred during CBLDCMCF('TACTLE ') processing.

71005 A communication error occurred. For the cause, see the message log file.

71006 An internal error occurred. For the cause, see the message log file.

71008 The specified logical terminal name has not been registered.

71009 CBLDCMCF('TACTLE ') is not supported by the applicable communication process.

71010 Although the request to release the logical terminal from shutdown status was issued
to the MCF communication process, the request was not accepted. For the cause, see
the message log file.

71011 CBLDCMCF('TACTLE ') cannot be accepted because the logical terminal has been
deleted.

72028 The value specified for data-name-A is invalid.

CBLDCMCF('TACTLE ') - Release a logical terminal from shutdown status

243

72052 <If '0' or a space is specified for data-name-D2>
A nonzero value is specified for data-name-K1.

<If '1' is specified for data-name-D2>
A value smaller than 0 or greater than 1024 is specified for data-name-K1.

72053 A nonzero value is specified for data-name-L.

72058 The value specified for data-name-C is not a space.

72059 The value specified for data-name-D1 or data-name-D3 is not a space.

The value specified for data-name-D2 is not 1, 0, or a space.

72061 A value smaller than 0 or greater than 239 is specified for data-name-E.

72063 data-name-F1 begins with a space.

72065 The value specified for data-name-F2 is not a space.

72066 The value specified for data-name-G is not a space.

72068 The value specified for data-name-H is not a space.

72070 The value specified for data-name-I is not a space.

72072 The value specified for data-name-J is not a space.

72074 The character string specified for data-name-F1 contains an invalid character.

Status code Explanation

CBLDCMCF('TDCTCN ') - Release connection

244

CBLDCMCF('TDCTCN ') - Release connection

Format
PROCEDURE DIVISION specification

DATA DIVISION specification

Description
CBLDCMCF('TDCTCN ') releases connection.

Normal termination of CBLDCMCF('TDCTCN ') indicates that the connection release
request was accepted successfully by the protocol product. However, this does not
necessarily mean that connection with the remote system has been released.

If you intend to perform any connection-related operation after calling
CBLDCMCF('TDCTCN '), first use CBLDCMCF('TLSCN ') to check the status of
the connection.

Data areas whose values are set in the UAP
data-name-A
Specify VALUE 'TDCTCN ' for the request code indicating connection release.

CALL 'CBLDCMCF' USING unique-name-1 unique-name-2

01 unique-name-1.
 02 data-name-A PIC X(8) VALUE 'TDCTCN '.
 02 data-name-B PIC X(5).
 02 FILLER PIC X(3).

 02 data-name-C PIC X(4).
 02 data-name-D1 PIC X(1).
 02 data-name-D2 PIC X(1).
 02 data-name-D3 PIC X(26) VALUE SPACE.
 02 data-name-E PIC 9(9) COMP.
 02 data-name-F1 PIC X(8).
 02 data-name-F2 PIC X(56) VALUE SPACE.
 02 data-name-G PIC X(8) VALUE SPACE.
 02 data-name-H PIC X(8) VALUE SPACE.
 02 data-name-I PIC X(144) VALUE SPACE.
 02 data-name-J PIC X(184) VALUE SPACE.
 02 data-name-K1 PIC 9(9) COMP.
 02 data-name-K2 PIC X(n).
01 unique-name-2.
 02 data-name-L PIC 9(9) COMP VALUE ZERO.

CBLDCMCF('TDCTCN ') - Release connection

245

data-name-C
Specify how to specify the connection that is to be released.

'LE '

Specifies that a logical terminal name is specified for the connection that is to be
released. This argument is not supported by TP1/NET/NCSB or TP1/NET/
X25-Extended.

'CN '

Specifies that a connection ID is specified for the connection that is to be released.

Space

'LE ' (specification of a logical terminal name) is assumed.

data-name-D1
Specify whether the connection is to be released forcibly.

'1'

Release connection forcibly.

'0'

Release connection normally.

Space

'0' (normal release) is assumed.

data-name-D2
Specifies whether functionality that depends on the communication protocol is being
used.

'1'

Specifies that functionality that depends on the communication protocol is being
used.

'0'

Specifies that functionality that depends on the communication protocol is not
being used.

Space

'0' (functionality that depends on the communication protocol is not being used)
is assumed.

data-name-D3
Specify a space.

CBLDCMCF('TDCTCN ') - Release connection

246

data-name-E
Specify the MCF communication process identifier of the MCF communication
service for the connection that is to be processed. The permitted value range is from 0
to 239.

This argument is ignored when a logical terminal name is used to request connection
release.

If you specify 0, the system searches for the MCF communication service to which the
specified connection ID belongs. In a configuration where many MCF communication
services are running or when you issue this function many times from a UAP, we
recommend that you specify the MCF communication process identifier.

data-name-F1
Specify the logical terminal name or connection ID of the connection that is to be
released. Express the logical terminal name or connection ID as a maximum of 8 bytes.
If the specified name is shorter than 8 bytes, pad the name with trailing spaces.

data-name-F2, data-name-G, data-name-H, data-name-I, data-name-J
Specify a space.

data-name-K1
Specify the length of a protocol-specific area. You can specify a maximum of 1024
bytes.

If you do not use functionality that depends on the communication protocol, specify 0.

data-name-K2
Specify contents for the protocol-specific area.

The permitted value depends on the communication protocol being used. For details,
see the applicable OpenTP1 Protocol manual.

data-name-L
Specify 0.

Data area to which a value is returned from OpenTP1
data-name-B
A status code of 5 digits is returned.

Status codes
Status code Explanation

00000 Normal termination.

CBLDCMCF('TDCTCN ') - Release connection

247

71001 CBLDCMCF('TDCTCN ') cannot be accepted because MCF is under start processing.

71002 CBLDCMCF('TDCTCN ') cannot be accepted because MCF is under termination
processing.

71004 A memory shortage occurred during CBLDCMCF('TDCTCN ') processing.

71005 A communication error occurred. For the cause, see the message log file.

71006 An internal error occurred. For the cause, see the message log file.

71007 The specified connection name has not been registered.

71008 The specified logical terminal name has not been registered.

71009 CBLDCMCF('TDCTCN ') is not supported by the applicable communication process.

71010 Although the request to release the connection was issued to the MCF communication
process, the request was not accepted. For the cause, see the message log file.

71011 CBLDCMCF('TDCTCN ') cannot be accepted because the connection has been deleted.

71014 The specified logical terminal name belongs to TP1/NET/NCSB or TP1/NET/
X25-Extended; or, the specified connection group name belongs to TP1/NET/OSI-TP or
TP1/NET/TCP/IP.

72028 The value specified for data-name-A is invalid.

72052 <If '0' or a space is specified for data-name-D2>
A nonzero value is specified for data-name-K1.

<If '1' is specified for data-name-D2>
A value smaller than 0 or greater than 1024 is specified for data-name-K1.

72053 A nonzero value is specified for data-name-L.

72058 The value specified for data-name-C is not 'LE ', 'CN ', or a space.

72059 The value specified for data-name-D2 is not 1, 0, or a space.

The value specified for data-name-D3 is not a space.

72061 A value smaller than 0 or greater than 239 is specified for data-name-E.

72063 data-name-F1 begins with a space.

72065 The value specified for data-name-F2 is not a space.

72066 The value specified for data-name-G is not a space.

72068 The value specified for data-name-H is not a space.

Status code Explanation

CBLDCMCF('TDCTCN ') - Release connection

248

72070 The value specified for data-name-I is not a space.

72072 The value specified for data-name-J is not a space.

72074 The character string specified for data-name-F1 contains an invalid character.

72075 The value specified for data-name-D1 is not 1, 0, or a space.

Status code Explanation

CBLDCMCF('TDCTLE ') - Shut down a logical terminal

249

CBLDCMCF('TDCTLE ') - Shut down a logical terminal

Format
PROCEDURE DIVISION specification

DATA DIVISION specification

Description
CBLDCMCF('TDCTLE ') shuts down a logical terminal.

Normal termination of CBLDCMCF('TDCTLE ') indicates that the logical terminal
shutdown request was accepted successfully by the protocol product. However, this
does not necessarily mean that the logical terminal has been shut down.

If you intend to perform any operation related to the logical terminal after calling
CBLDCMCF('TDCTLE '), first use CBLDCMCF('TLSLE ') to check the logical
terminal's status.

Data areas whose values are set in the UAP
data-name-A
Specify VALUE 'TDCTLE ' for the request code indicating logical terminal
shutdown.

CALL 'CBLDCMCF' USING unique-name-1 unique-name-2

01 unique-name-1.
 02 data-name-A PIC X(8) VALUE 'TDCTLE '.
 02 data-name-B PIC X(5).
 02 FILLER PIC X(3).

 02 data-name-C PIC X(4) VALUE SPACE.
 02 data-name-D1 PIC X(1) VALUE SPACE.
 02 data-name-D2 PIC X(1).
 02 data-name-D3 PIC X(26) VALUE SPACE.
 02 data-name-E PIC 9(9) COMP.
 02 data-name-F1 PIC X(8).
 02 data-name-F2 PIC X(56) VALUE SPACE.
 02 data-name-G PIC X(8) VALUE SPACE.
 02 data-name-H PIC X(8) VALUE SPACE.
 02 data-name-I PIC X(144) VALUE SPACE.
 02 data-name-J PIC X(184) VALUE SPACE.
 02 data-name-K1 PIC 9(9) COMP.
 02 data-name-K2 PIC X(n).
01 unique-name-2.
 02 data-name-L PIC 9(9) COMP VALUE ZERO.

CBLDCMCF('TDCTLE ') - Shut down a logical terminal

250

data-name-C, data-name-D1
Specify a space.

data-name-D2
Specifies whether functionality that depends on the communication protocol is being
used.

'1'

Specifies that functionality that depends on the communication protocol is being
used.

'0'

Specifies that functionality that depends on the communication protocol is not
being used.

Space

'0' (functionality that depends on the communication protocol is not being used)
is assumed.

data-name-D3
Specify a space.

data-name-E
Specify the MCF communication process identifier of the MCF communication
service that has the logical terminal to be processed. The permitted value range is from
0 to 239.

If you specify 0, the system searches for the MCF communication service to which the
specified connection ID belongs. In a configuration where many MCF communication
services are running or when you issue this function many times from a UAP, we
recommend that you specify the MCF communication process identifier.

data-name-F1
Specify the name of the logical terminal that is to be shut down. Express the logical
terminal name as a maximum of 8 bytes. If the specified name is shorter than 8 bytes,
pad the name with trailing spaces.

data-name-F2, data-name-G, data-name-H, data-name-I, data-name-J
Specify a space.

data-name-K1
Specify the length of a protocol-specific area. You can specify a maximum of 1024
bytes.

If you do not use functionality that depends on the communication protocol, specify 0.

CBLDCMCF('TDCTLE ') - Shut down a logical terminal

251

data-name-K2
Specify contents for the protocol-specific area.

The permitted value depends on the communication protocol being used. For details,
see the applicable OpenTP1 Protocol manual.

data-name-L
Specify 0.

Data area to which a value is returned from OpenTP1
data-name-B
A status code of 5 digits is returned.

Status codes
Status code Explanation

00000 Normal termination.

71001 CBLDCMCF('TDCTLE ') cannot be accepted because MCF is under start processing.

71002 CBLDCMCF('TDCTLE ') cannot be accepted because MCF is under termination
processing.

71004 A memory shortage occurred during CBLDCMCF('TDCTLE ') processing.

71005 A communication error occurred. For the cause, see the message log file.

71006 An internal error occurred. For the cause, see the message log file.

71008 The specified logical terminal name has not been registered.

71009 CBLDCMCF('TDCTLE ') is not supported by the applicable communication process.

71010 Although the request to shut down the logical terminal was issued to the MCF
communication process, the request was not accepted. For the cause, see the message log
file.

71011 CBLDCMCF('TDCTLE ') cannot be accepted because the logical terminal has been
deleted.

72028 The value specified for data-name-A is invalid.

72052 <If '0' or a space is specified for data-name-D2>
A nonzero value is specified for data-name-K1.

<If '1' is specified for data-name-D2>
A value smaller than 0 or greater than 1024 is specified for data-name-K1.

72053 A nonzero value is specified for data-name-L.

CBLDCMCF('TDCTLE ') - Shut down a logical terminal

252

72058 The value specified for data-name-C is not a space.

72059 The value specified for data-name-D2 is not 1, 0, or a space.

The value specified for data-name-D3 is not a space.

72061 A value smaller than 0 or greater than 239 is specified for data-name-E.

72063 data-name-F1 begins with a space.

72065 The value specified for data-name-F2 is not a space.

72066 The value specified for data-name-G is not a space.

72068 The value specified for data-name-H is not a space.

72070 The value specified for data-name-I is not a space.

72072 The value specified for data-name-J is not a space.

72074 The character string specified for data-name-F1 contains an invalid character.

72075 The value specified in data-name-D1 is not a space.

Status code Explanation

CBLDCMCF('TDLQLE ') - Delete a logical terminal's output queue

253

CBLDCMCF('TDLQLE ') - Delete a logical terminal's output queue

Format
PROCEDURE DIVISION specification

DATA DIVISION specification

Description
CBLDCMCF('TDLQLE ') deletes a logical terminal's output queue.

When the function deletes the output queue successfully, it sends an MCF event that
reports discarding of an unprocessed send mesage (ERREVTA).

Data areas whose values are set in the UAP
data-name-A
Specify VALUE 'TDLQLE ' for the request code indicating deletion of a logical
teminal's output queue.

data-name-C, data-name-D
Specify a space.

data-name-E
Specify the MCF communication process identifier of the MCF communication
service that has the logical terminal to be processed. The permitted value range is from

CALL 'CBLDCMCF' USING unique-name-1 unique-name-2

01 unique-name-1.
 02 data-name-A PIC X(8) VALUE 'TDLQLE '.
 02 data-name-B PIC X(5).
 02 FILLER PIC X(3).

 02 data-name-C PIC X(4) VALUE SPACE.
 02 data-name-D PIC X(28) VALUE SPACE.
 02 data-name-E PIC 9(9) COMP.
 02 data-name-F1 PIC X(8).
 02 data-name-F2 PIC X(56) VALUE SPACE.
 02 data-name-G PIC X(8) VALUE SPACE.
 02 data-name-H PIC X(8) VALUE SPACE.
 02 data-name-I PIC X(144) VALUE SPACE.
 02 data-name-J PIC X(184) VALUE SPACE.
 02 data-name-K PIC 9(9) COMP VALUE ZERO.
01 unique-name-2.
 02 data-name-L PIC 9(9) COMP VALUE ZERO.

CBLDCMCF('TDLQLE ') - Delete a logical terminal's output queue

254

0 to 239.

If you specify 0, the system searches for the MCF communication service to which the
specified logical terminal name belongs. In a configuration where many MCF
communication services are running or when you issue this function many times from
a UAP, we recommend that you specify the MCF communication process identifier.

data-name-F1
Specify the name of the logical terminal whose output queue is to be deleted. Express
the logical terminal name as a maximum of 8 bytes. If the specified name is shorter
than 8 bytes, pad the name with trailing spaces.

data-name-F2, data-name-G, data-name-H, data-name-I, data-name-J
Specify a space.

data-name-K, data-name-L
Specify 0.

Data area to which a value is returned from OpenTP1
data-name-B
A status code of 5 digits is returned.

Status codes
Status code Explanation

00000 Normal termination.

71001 CBLDCMCF('TDLQLE ') cannot be accepted because MCF is under start processing.

71002 CBLDCMCF('TDLQLE ') cannot be accepted because MCF is under termination
processing.

71004 A memory shortage occurred during CBLDCMCF('TDLQLE ') processing.

71005 A communication error occurred. For the cause, see the message log file.

71006 An internal error occurred. For the cause, see the message log file.

71008 The specified logical terminal name has not been registered.

71009 CBLDCMCF('TDLQLE ') is not supported by the applicable communication process.

71010 Although the request to delete the logical terminal's output queue was issued to the MCF
communication process, the request was not accepted. For the cause, see the message log
file.

71011 CBLDCMCF('TDLQLE ') cannot be accepted because the logical terminal has been
deleted.

CBLDCMCF('TDLQLE ') - Delete a logical terminal's output queue

255

71017 CBLDCMCF('TDLQLE ') cannot be accepted because the logical terminal has not been
shut down.

71018 CBLDCMCF('TDLQLE ') cannot be accepted because the session has not been closed.

71019 CBLDCMCF('TDLQLE ') cannot be accepted because an alternate send operation is under
way.

72028 The value specified for data-name-A is invalid.

72052 A nonzero value is specified for data-name-K.

72053 A nonzero value is specified for data-name-L.

72058 The value specified for data-name-C is not a space.

72059 The value specified for data-name-D is not a space.

72061 A value smaller than 0 or greater than 239 is specified for data-name-E.

72063 data-name-F1 begins with a space.

72065 The value specified for data-name-F2 is not a space.

72066 The value specified for data-name-G is not a space.

72068 The value specified for data-name-H is not a space.

72070 The value specified for data-name-I is not a space.

72072 The value specified for data-name-J is not a space.

72074 The character string specified for data-name-F1 contains an invalid character.

Status code Explanation

CBLDCMCF('TEMPGET ') - Accept temporarily-stored data

256

CBLDCMCF('TEMPGET ') - Accept temporarily-stored data

Format
PROCEDURE DIVISION specification

DATA DIVISION specification

Description
CBLDCMCF('TEMPGET ') receives data stored in the temporary memory area.

For data-name-G, specify a value from 1 to 32,000 bytes. If the temporary-stored data
exceeds the length specified for data-name-G, the excess portion is truncated. If the

CALL 'CBLDCMCF' USING unique-name-1 unique-name-2
 unique-name-3

01 unique-name-1.
 02 data-name-A PIC X(8) VALUE 'TEMPGET '.
 02 data-name-B PIC X(5).
 02 FILLER PIC X(3).
 02 data-name-C PIC X(4).
 02 data-name-D PIC X(4).
 02 data-name-E PIC 9(8).
 02 data-name-F PIC 9(8).
 02 data-name-G PIC 9(9) COMP.
 02 data-name-H PIC X(4).
 02 data-name-I PIC X(4).
 02 data-name-J PIC X(4).
 02 data-name-K PIC X(4).
 02 data-name-L PIC X(8).
 02 data-name-M1 PIC X(4).
 02 data-name-M2 PIC X(8).
 02 data-name-M3 PIC X(4).
 02 data-name-M4 PIC 9(9) COMP.
 02 data-name-M5 PIC 9(9) COMP.
 02 data-name-M6 PIC X(1).
 02 data-name-M7 PIC X(1).
 02 data-name-N PIC X(14).
01 unique-name-2.
 02 data-name-O PIC X(4).
 02 data-name-P PIC X(8).
 02 data-name-Q PIC X(8).
 02 data-name-R PIC X(8).
 02 data-name-S PIC X(28).
01 unique-name-3.
 02 data-name-T PIC 9(x) COMP.
 02 data-name-U PIC X(x).
 02 data-name-V PIC X(n).

CBLDCMCF('TEMPGET ') - Accept temporarily-stored data

257

temporary-stored data is shorter than the length specified for data-name-G, no
processing is done for the remaining receive area.

If there is no temporary-stored data, the temporary-stored data is received on the
assumption that (00)16 equivalent to the length specified for tempsize in the MCF
application definition is specified.

The figure below shows the format of the receive segment area (indicated by
unique-name-3).

Data area whose values are set in the UAP
data-name-A
Specify VALUE 'TEMPGET ' for the request code indicating to accept
temporarily-stored data.

data-name-C, data-name-D
Specify space.

data-name-E, data-name-F
These areas are used by the MCF.

data-name-G
Specify the length of the area for receiving temporary-stored data. The number of bytes

CBLDCMCF('TEMPGET ') - Accept temporarily-stored data

258

to be specified varies depending on the buffer format.

data-name-H, data-name-I, data-name-J, data-name-K, data-name-L, data-name-M1,
data-name-M2, data-name-M3
Specify space.

data-name-M4, data-name-M5
Specify 0.

data-name-M6
Specify space.

data-name-M7
Specify the buffer format to be used. The following values are available:

'1': Specify this value to use buffer format 1.

'2': Specify this value to use buffer format 2.

data-name-N
Specify LOW-VALUE.

data-name-O, data-name-P, data-name-Q, data-name-R
Specify space.

data-name-S
Specify LOW-VALUE.

data-name-U
With buffer format 1: PIC X(8)

With buffer format 2: PIC X(4)

This area is used by the MCF.

Data values whose values are returned from OpenTP1
data-name-B
A status code of 5 digits is returned.

data-name-T
With buffer format 1: PIC 9(9)

With buffer format 2: PIC 9(4)

The length of the previously updated data is set.

CBLDCMCF('TEMPGET ') - Accept temporarily-stored data

259

data-name-V
The temporary-stored data is returned.

Status codes
Status code Explanation

00000 Normal termination.

72000 The temporary-stored data cannot be received from an SPP.

72013 Temporary-stored data exceeding the length of the receive area was received. The
excess portion was truncated. With buffer format 2, the excess portion is truncated if the
data exceeds 32,761 bytes.

72016 The value specified for data-name-N or S is invalid.

72028 The value specified for data-name-A is invalid.

72036 The receive area length specified for data-name-G is less than 9 bytes (with buffer
format 1) or less than 7 bytes (with buffer format 2).

72101 CBLDCMCF('TEMPGET ') was called from an MHP for which type=cont
(continuous-inquiry- response type) was not specified in the MCF application
definition.

72106 CBLDCMCF('TEMPGET ') was called before the memory receive statement for
receiving the first segment.

72107 CBLDCMCF('TEMPGET ') was called after a termination request for
continuous-inquiry-response processing.

Other than the above An unprecedented error (e.g., program damage) occurred.

CBLDCMCF('TEMPPUT ') - Update temporarily-stored data

260

CBLDCMCF('TEMPPUT ') - Update temporarily-stored data

Format
PROCEDURE DIVISION specification

DATA DIVISION specification

Description
CBLDCMCF('TEMPPUT ') updates data stored in the temporary memory area which
is used for continuous-inquiry-response processing.

The figure below shows the format of the send segment area (indicated by

CALL 'CBLDCMCF' USING unique-name-1 unique-name-2
 unique-name-3

01 unique-name-1.
 02 data-name-A PIC X(8) VALUE 'TEMPPUT '.
 02 data-name-B PIC X(5).
 02 FILLER PIC X(3).
 02 data-name-C PIC X(4).
 02 data-name-D PIC X(4).
 02 data-name-E PIC 9(8).
 02 data-name-F PIC 9(8).
 02 data-name-G PIC 9(9) COMP.
 02 data-name-H PIC X(4).
 02 data-name-I PIC X(4).
 02 data-name-J PIC X(4).
 02 data-name-K PIC X(4).
 02 data-name-L PIC X(8).
 02 data-name-M1 PIC X(4).
 02 data-name-M2 PIC X(8).
 02 data-name-M3 PIC X(4).
 02 data-name-M4 PIC 9(9) COMP.
 02 data-name-M5 PIC 9(9) COMP.
 02 data-name-M6 PIC X(1).
 02 data-name-M7 PIC X(1).
 02 data-name-N PIC X(14).
01 unique-name-2.
 02 data-name-O PIC X(4).
 02 data-name-P PIC X(8).
 02 data-name-Q PIC X(8).
 02 data-name-R PIC X(8).
 02 data-name-S PIC X(28).
01 unique-name-3.
 02 data-name-T PIC 9(x) COMP.
 02 data-name-U PIC X(x).
 02 data-name-V PIC X(n).

CBLDCMCF('TEMPPUT ') - Update temporarily-stored data

261

unique-name-3).

Data area whose values are set in the UAP
data-name-A
Specify VALUE 'TEMPPUT ' for the request code indicating updating of
temporarily-stored data.

data-name-C, data-name-D
Specify space.

data-name-E, data-name-F
These areas are used by the MCF.

data-name-G
Specify 0.

data-name-H, data-name-I, data-name-J, data-name-K, data-name-L, data-name-M1,
data-name-M2, data-name-M3
Specify space.

data-name-M4, data-name-M5
Specify 0.

data-name-M6
Specify space.

CBLDCMCF('TEMPPUT ') - Update temporarily-stored data

262

data-name-M7
Specify the buffer format to be used. The following values are available:

'1': Specify this value to use buffer format 1.

'2': Specify this value to use buffer format 2.

data-name-N
Specify LOW-VALUE.

data-name-O, data-name-P, data-name-Q, data-name-R
Specify space.

data-name-S
Specify LOW-VALUE.

data-name-T
With buffer format 1: PIC 9(9)

With buffer format 2: PIC 9(4)

Specify the length of the temporary-stored data to be updated.

data-name-U
With buffer format 1: PIC X(8)

With buffer format 2: PIC X(4)

This area is used by the MCF.

data-name-V
Specify the area storing the temporary-stored data to be updated.

Data value whose value is returned from OpenTP1
data-name-B
A status code of 5 digits is returned.

Status codes
Status code Explanation

00000 Normal termination.

71103 The area for updating the temporary-stored data could not be acquired.

72000 The temporary-stored data cannot be updated from an SPP.

72016 The value specified for data-name-N or S is invalid.

CBLDCMCF('TEMPPUT ') - Update temporarily-stored data

263

72028 The value specified for data-name-A is invalid.

72035 The value specified for the data update length (data-name-T) exceeds the value specified
for the temporary-stored data, area for storing length in the MCF application definition.

Alternatively, the value specified for the data update length is less than 1 byte (with buffer
format 1) or less than 7 bytes (with buffer format 2).

72101 CBLDCMCF('TEMPPUT ') was called from an MHP for which type=cont
(continuous-inquiry-response type) was not specified in the MCF application definition.

72105 CBLDCMCF('TEMPPUT ') was called before CBLDCMCF('TEMPGET')

72106 CBLDCMCF('TEMPPUT ') was called before CBLDCMCF('RECEIVE') for receiving the
first segment.

72107 CBLDCMCF('TEMPPUT ') was called after CBLDCMCF('CONTEND ').

Other than the above An unprecedented error (e.g., program damage) occurred.

Status code Explanation

CBLDCMCF('TIMERCAN') - Cancel user timer monitoring

264

CBLDCMCF('TIMERCAN') - Cancel user timer monitoring

Format
PROCEDURE DIVISION specification

DATA DIVISION specification

Description
CBLDCMCF('TIMERCAN') cancels the user timer monitor that was set by
CBLDCMCF('TIMERSET').

This program cancels the user timer monitor as soon as CBLDCMCF('TIMERCAN')
returns normally.

If the user timer monitor has reached timeout and an MHP has already been started at
the time CBLDCMCF('TIMERCAN') is called, CBLDCMCF('TIMERCAN') returns with
the error 70910.

Only a user server can call CBLDCMCF('TIMERCAN').

Data areas whose values are set in the UAP
data-name-A
Specify VALUE 'TIMERCAN' for the request code indicating cancellation of user timer
monitoring.

data-name-C
Specify LOW-VALUE.

data-name-D
Specify 0.

CALL 'CBLDCMCF' USING unique-name-1 unique-name-2.

01 unique-name-1.
 02 data-name-A PIC X(8) VALUE 'TIMERCAN'.
 02 data-name-B PIC X(5).
 02 FILLER PIC X(3).
 02 data-name-C PIC X(16).
01 unique-name-2.
 02 data-name-D PIC 9(9) COMP.
 02 data-name-E PIC 9(9) COMP.
 02 data-name-F PIC X(16).
 02 data-name-G PIC X(8).
 02 data-name-H PIC X(8).
 02 data-name-I PIC X(16).

CBLDCMCF('TIMERCAN') - Cancel user timer monitoring

265

data-name-E
Specify the same timer request identifier as that specified when the user timer monitor
was set by CBLDCMCF('TIMERSET').

data-name-F
Specify LOW-VALUE.

data-name-G
Specify the same logical terminal name as that specified when the user timer monitor
was set by CBLDCMCF('TIMERSET'). When specifying a name consisting of fewer
than 8 characters, pad the name by entering spaces after the name.

data-name-H
Specify LOW-VALUE.

data-name-I
Specify LOW-VALUE.

Data area to which a value is returned from OpenTP1
data-name-B
A status code of 5 digits is returned.

Status codes
Status code Explanation

00000 Normal termination.

72016 The value specified for data-name-C is invalid.

The value specified for data-name-I is invalid.

72028 The value specified for data-name-A is invalid.

70910 The value specified for data-name-E is invalid.

The timer request identifier specified for data-name-E is not
registered.

Timeout already occurred and the application has started, or the user
timer monitor was already canceled.

70911 The value specified for data-name-F is invalid.

70912 The value specified for data-name-G is invalid.

70916 The requested facility is not defined in the MCF.

Other than the above An unprecedented error (e.g., program damage) occurred.

CBLDCMCF('TIMERSET') - Set user timer monitoring

266

CBLDCMCF('TIMERSET') - Set user timer monitoring

Format
PROCEDURE DIVISION specification

DATA DIVISION specification

Description
Use CBLDCMCF('TIMERSET') from a UAP to set the user timer monitor for
monitoring the desired interval. To call CBLDCMCF('TIMERSET'), you must specify
usertime=yes in the -p option of the MCF communication configuration definition
mcfttim.

Only a user server can call CBLDCMCF('TIMERSET').

When the time (in seconds) specified for data-name-D elapses (when timeout occurs),
the logical terminal specified for data-name-G generates an event and starts the MHP
having the application name specified for data-name-H.

The MHP to be started when timeout occurs must be a non-response-type (noans type)
MHP. The figure below shows the format of the area indicated by unique-name-3 and
the segment area passed to the MHP when a message is passed to the MHP.

CALL 'CBLDCMCF' USING unique-name-1 unique-name-2
 unique-name-3.

01 unique-name-1.
 02 data-name-A PIC X(8) VALUE 'TIMERSET'.
 02 data-name-B PIC X(5).
 02 FILLER PIC X(3).
 02 data-name-C PIC X(16).
01 unique-name-2.
 02 data-name-D PIC 9(9) COMP.
 02 data-name-E PIC 9(9) COMP.
 02 data-name-F PIC X(16).
 02 data-name-G PIC X(8).
 02 data-name-H PIC X(8).
 02 data-name-I PIC X(16).
01 unique-name-3.
 02 data-name-J PIC 9(9) COMP.
 02 data-name-K PIC X(n).

CBLDCMCF('TIMERSET') - Set user timer monitoring

267

To cancel the user timer monitor set by CBLDCMCF('TIMERSET'), call the
CBLDCMCF('TIMERCAN') function with the same values specified for data-name-E
and data-name-G as specified in CBLDCMCF('TIMERSET').

The time monitor starts as soon as CBLDCMCF('TIMERSET') is called.

The maximum number of time monitors you can run concurrently is indicated by the
maximum number of time monitoring requests specified for the timereqno operand
in the -p option of the MCF communication configuration definition mcfttim.

Data areas whose values are set in the UAP
data-name-A
Specify VALUE 'TIMERSET' for the request code indicating specification of user
timer monitoring.

data-name-C
Specify LOW-VALUE.

data-name-D
Specify the number of seconds that are to elapse before the MHP is started after
CBLDCMCF('TIMERSET') is called. The specifiable range is 1 to 360000 (from 1
second to 100 hours).

Since OpenTP1 monitors timeout at fixed intervals, an error arises between the time
specified for data-name-D and the time that elapses before actual detection of timeout.
The accuracy of time monitoring depends on the value of the interval of time

CBLDCMCF('TIMERSET') - Set user timer monitoring

268

monitoring specified for the btim operand in the -t option of the MCF
communication configuration definition mcfttim.

data-name-E
Specify the timer request identifier.

data-name-E provides information for identifying this timer. Be sure to specify a value
for data-name-E that is unique in the logical terminal specified for data-name-G.
data-name-F
Specify LOW-VALUE.

data-name-G
Specify the name of the logical terminal that is to generate an event when timeout
occurs. When specifying a name consisting of fewer than 8 characters, pad the name
by entering spaces after the name.

data-name-H
Specify the application name of the MHP to be started. Define the attribute of the
application in the application attribute definition (mcfaalcap) in the MCF application
definition specified for the -a option of the MCF communication configuration
definition mcftenv of the MCF communication server having the logical terminal
name specified for data-name-G. When specifying a name consisting of fewer than 8
characters, pad the name by entering spaces after the name. The MHP must be a
non-response-type (noans type) MHP. The specified application name must be a user
event.

data-name-I
Specify LOW-VALUE.

data-name-J
Specify the length of the message segment to be passed to the MHP to be started. If no
segment is to be passed to the MHP to be started, specify 0. The specifiable range is 0
to 256. The maximum specifiable value depends on the maximum message length
specified for the msgsize operand in the -p option of the MCF communication
configuration definition mcfttim.

data-name-K
Specify the contents of the message segment to be passed to the MHP to be started.
You cannot specify multiple segments. If no segment is to be passed to the MHP to be
started, specify a null character.

CBLDCMCF('TIMERSET') - Set user timer monitoring

269

Data area to which a value is returned from OpenTP1
data-name-B
A status code of 5 digits is returned.

Status codes
Status code Explanation

00000 Normal termination.

72016 The value specified for data-name-C is invalid.

72028 The value specified for data-name-A is invalid.

70900 The value specified for data-name-I is invalid.

70909 The value specified for data-name-D is invalid.

70910 The value specified for data-name-E is invalid.

The specified timer request identifier is already registered.

70911 The value specified for data-name-F is invalid.

70912 The value specified for data-name-G is invalid.

70913 The value specified for data-name-H is invalid.

70914 The value specified for data-name-J is invalid.

70915 The value specified for data-name-K is invalid.

70916 The requested facility is not defined in the MCF.

70917 User timer monitoring cannot be configured because there is no free space in the
timer registration area. To obtain the necessary space in the timer registration area,
change the value assigned to the timereqno operand of the -p option in the MCF
communication configuration definition mcfttim. If necessary, also verify the
value assigned to the -p option of the MCF manager definition mcfmcomn and the
value assigned to the static_shmpool_size operand in the system environment
definition.

Other than the above An unprecedented error (e.g., program damage) occurred.

CBLDCMCF('TLSCN ') - Acquire a connection status

270

CBLDCMCF('TLSCN ') - Acquire a connection status

Format
PROCEDURE DIVISION specification

DATA DIVISION specification

Description
CBLDCMCF('TLSCN ') acquires the status of a connection.

Data areas whose values are set in the UAP
data-name-A
Specify VALUE 'TLSCN ' for the request code indicating connection status
acquisition.

data-name-C
Specifies how to specify the connection whose status is to be acquired.

CALL 'CBLDCMCF' USING unique-name-1 unique-name-2 unique-name-3

01 unique-name-1.
 02 data-name-A PIC X(8) VALUE 'TLSCN '.
 02 data-name-B PIC X(5).
 02 FILLER PIC X(3).

 02 data-name-C PIC X(4).
 02 data-name-D PIC X(28) VALUE SPACE.
 02 data-name-E PIC 9(9) COMP.
 02 data-name-F1 PIC X(8).
 02 data-name-F2 PIC X(56) VALUE SPACE.
 02 data-name-G PIC X(8) VALUE SPACE.
 02 data-name-H PIC X(8) VALUE SPACE.
 02 data-name-I PIC X(144) VALUE SPACE.
 02 data-name-J PIC X(184) VALUE SPACE.
 02 data-name-K PIC 9(9) COMP VALUE ZERO.
01 unique-name-2.
 02 data-name-L PIC 9(9) COMP VALUE ZERO.
01 unique-name-3.
 02 data-name-M PIC 9(9) COMP.

 02 unique-name-4.
 03 data-name-N PIC X(8).
 03 data-name-O PIC X(4).
 03 data-name-P PIC X(4).
 03 data-name-Q PIC X(40) VALUE LOW-VALUE.

CBLDCMCF('TLSCN ') - Acquire a connection status

271

'LE '

Specifies that a logical terminal name is specified for the connection whose status
is to be acquired. This value cannot be specified for TP1/NET/NCSB or TP1/
NET/X25-Extended.

'CN '

Specifies that a connection ID is specified for the connection whose status is to be
acquired.

Space

'LE ' (specification of a logical terminal name) is assumed.

data-name-D
Specify a space.

data-name-E
Specify the MCF communication process identifier of the MCF communication
service for the connection that is to be processed. The permitted value range is from 0
to 239.

This argument is ignored when a logical terminal name is used to request connection
status acquisition.

If you specify 0, the system searches for the MCF communication service to which the
specified connection ID belongs. In a configuration where many MCF communication
services are running or when you issue this function many times from a UAP, we
recommend that you specify the MCF communication process identifier.

data-name-F1
Specify the logical terminal name or connection ID of the connection whose status is
to be acquired. Express the logical terminal name or connection ID as a maximum of
8 bytes. If the specified name is shorter than 8 bytes, pad the name with trailing spaces.

data-name-F2, data-name-G, data-name-H, data-name-I, data-name-J
Specify a space.

data-name-K, data-name-L
Specify 0.

data-name-M
Specify 1 as the number of unique names from unique-name-4 to unique-name-n
(number of sets of data-name-N, data-name-O, data-name-P, and data-name-Q).

When the processing is completed, the number of corresponding connections is
returned.

CBLDCMCF('TLSCN ') - Acquire a connection status

272

data-name-Q
This is an area used by MCF.

Data area to which a value is returned from OpenTP1
data-name-B
A status code of 5 digits is returned.

data-name-M
Returns the number of connections that were processed by this function.

data-name-N
Sets the connection ID of the requested connection.

data-name-O
Sets one of the following values as the protocol type of the requested connection:

'UA '

TP1/NET/User Agent (OSAS/UA protocol)

'hds '

TP1/NET/HDLC (HDLC protocol)

'X25 '

TP1/NET/X25 (X.25 protocol)

'TP '

TP1/NET/OSI-TP (OSI TP protocol)

'XP '

TP1/NET/XMAP3

'HS1 '

TP1/NET/HSC (HSC1 protocol)

'HS2 '

TP1/NET/HSC (HSC2 protocol)

'CSB '

TP1/NET/NCSB (NCSB protocol)

'NIF '

TP1/NET/OSAS-NIF (NIF/OSI protocol)

'SL2 '

CBLDCMCF('TLSCN ') - Acquire a connection status

273

TP1/NET/Secondary Logical Unit - TypeP2 (SLUTYPE-P protocol (secondary
station))

'TCP '

TP1/NET/TCP/IP (TCP/IP protocol)

'X2E '

TP1/NET/X25-Extended (X.25 protocol)

data-name-P
Sets one of the following values as the status of the requested connection:

'ACT '

Connection has been established.

'ACTB'

Connection establishment processing is under way.

'DCT '

Connection has been released.

'DCTB'

Connection release processing is under way.

Status codes
Status code Explanation

00000 Normal termination.

71001 CBLDCMCF('TLSCN ') cannot be accepted because MCF is under start processing.

71004 A memory shortage occurred during CBLDCMCF('TLSCN ') processing.

71005 A communication error occurred. For the cause, see the message log file.

71006 An internal error occurred. For the cause, see the message log file.

71007 The specified connection name has not been registered.

71008 The specified logical terminal name has not been registered.

71009 CBLDCMCF('TLSCN ') is not supported by the applicable communication process.

71010 Although the request to acquire the connection status was issued to the MCF
communication process, the request was not accepted. For the cause, see the message log
file.

71011 CBLDCMCF('TLSCN ') cannot be accepted because the connection has been deleted.

CBLDCMCF('TLSCN ') - Acquire a connection status

274

71014 The specified logical terminal name belongs to TP1/NET/NCSB or TP1/NET/
X25-Extended; or, the specified connection group name belongs to TP1/NET/OSI-TP or
TP1/NET/TCP/IP.

72028 The value specified for data-name-A is invalid.

72052 A nonzero value is specified for data-name-K.

72053 A nonzero value is specified for data-name-L.

72058 The value specified for data-name-C is not 'LE ', 'CN ', or a space.

72059 The value specified for data-name-D is not a space.

72061 A value smaller than 0 or greater than 239 is specified for data-name-E.

72063 data-name-F1 begins with a space.

72065 The value specified for data-name-F2 is not a space.

72066 The value specified for data-name-G is not a space.

72068 The value specified for data-name-H is not a space.

72070 The value specified for data-name-I is not a space.

72072 The value specified for data-name-J is not a space.

72074 The character string specified for data-name-F1 contains an invalid character.

72076 The value 1 is not specified for data-name-M.

Status code Explanation

CBLDCMCF('TLSCOM ') - Acquire status of MCF communication services

275

CBLDCMCF('TLSCOM ') - Acquire status of MCF communication
services

Format
PROCEDURE DIVISION specification

DATA DIVISION specification

Description
CBLDCMCF('TLSCOM ') acquires the statuses of the MCF communication services
or application start services.

CALL 'CBLDCMCF' USING unique-name-1 unique-name-2 unique-name-3

01 unique-name-1.
 02 data-name-A PIC X(8) VALUE 'TLSCOM '.
 02 data-name-B PIC X(5).
 02 FILLER PIC X(3).

 02 data-name-C PIC X(4).
 02 data-name-D PIC X(28) VALUE SPACE.
 02 data-name-E PIC 9(9) COMP VALUE ZERO.
 02 data-name-F PIC X(64) VALUE SPACE.
 02 data-name-G PIC X(8) VALUE SPACE.
 02 data-name-H PIC X(8) VALUE SPACE.
 02 data-name-I PIC X(144) VALUE SPACE.
 02 data-name-J PIC X(184) VALUE SPACE.
 02 data-name-K PIC 9(9) COMP VALUE ZERO.
01 unique-name-2.
 02 data-name-L PIC 9(9) COMP VALUE ZERO.
01 unique-name-3.
 02 data-name-M PIC 9(9) COMP.

 02 unique-name-4.
 03 data-name-N PIC 9(9) COMP.
 03 data-name-O PIC X(8).

 03 data-name-P PIC X(20).
 03 data-name-Q PIC X(12).

 03 data-name-R PIC X(20) VALUE LOW-VALUE.
 :

 02 unique-name-n.
 03 data-name-N PIC 9(9) COMP.
 03 data-name-O PIC X(8).

 03 data-name-P PIC X(20).
 03 data-name-Q PIC X(12).

 03 data-name-R PIC X(20) VALUE LOW-VALUE.

CBLDCMCF('TLSCOM ') - Acquire status of MCF communication services

276

Data areas whose values are set in the UAP
data-name-A
Specify VALUE 'TLSCOM ' for the request code indicating aquisition of MCF
communication service status or application start service status.

data-name-C, data-name-D
Specify a space.

data-name-E
Specify 0.

data-name-F, data-name-G, data-name-H, data-name-I, data-name-J
Specify a space.

data-name-K, data-name-L
Specify 0.

data-name-M
Specify the number of unique names from unique-name-4 to unique-name-n (number
of sets of data-name-N, data-name-O, data-name-P, data-name-Q, and data-name-R).

When the processing is completed, the number of MCF communication services or
application start services that have been registered in the MCF service is returned.

data-name-R
This is an area used by MCF.

Data area to which a value is returned from OpenTP1
data-name-B
A status code of 5 digits is returned.

data-name-M
Returns the number of MCF communication services or application start services that
have been registered in the MCF service.

data-name-N
Sets an MCF communication process identifier or application start process identifier.

data-name-O
Sets the MCF communication service name.

data-name-P
Sets the protocol type.

CBLDCMCF('TLSCOM ') - Acquire status of MCF communication services

277

'MCF '

Application start service for TP1/Message Control

'User Agent '

TP1/NET/User Agent (OSAS/UA protocol)

'HDLC '

TP1/NET/HDLC (HDLC protocol)

'X25 '

TP1/NET/X25 (X.25 protocol)

'TP '

TP1/NET/OSI-TP (OSI TP protocol)

'XMAP3 '

TP1/NET/XMAP3

'HSC '

TP1/NET/HSC (HSC protocol)

'NCSB '

TP1/NET/NCSB (NCSB protocol)

'OSAS-NIF '

TP1/NET/OSAS-NIF (NIF/OSI protocol)

'NET/SLUP2 '

TP1/NET/Secondary Logical Unit - TypeP2 (SLUTYPE-P protocol (secondary
station))

'TCP/IP '

TP1/NET/TCP/IP (TCP/IP protocol)

'X25-EX '

TP1/NET/X25-Extended (X.25 protocol)

'UDP/IP '

TP1/NET/User Datagram Protocol (UDP protocol)

data-name-Q
Sets one of the following values as the status of the MCF communication service or
application start service:

CBLDCMCF('TLSCOM ') - Acquire status of MCF communication services

278

'OFFLINE '

Service is stopped.

'STARTING '

Service is under preparation processing.

'ONLINE '

Service has started or is under preparation processing for termination.

'PREENDING '

Service is under preparation processing for terminating partial stop.

'ENDING '

Service is under stop processing.

Status codes
Status code Explanation

00000 Normal termination.

71001 CBLDCMCF('TLSCOM ') cannot be accepted because MCF is under start processing.

71004 A memory shortage occurred during CBLDCMCF('TLSCOM ') processing.

71005 A communication error occurred. For the cause, see the message log file.

71006 An internal error occurred. For the cause, see the message log file.

72013 The number of MCF communication services or application start services exceeded the
value specified in data-name-M. Information about the excess services was discarded.

72028 The value specified for data-name-A is invalid.

72052 A nonzero value is specified for data-name-K.

72053 A nonzero value is specified for data-name-L.

72058 The value specified for data-name-C is not a space.

72059 The value specified for data-name-D is not a space.

72061 A nonzero value is specified for data-name-E.

72065 The value specified for data-name-F is not a space.

72066 The value specified for data-name-G is not a space.

72068 The value specified for data-name-H is not a space.

72070 The value specified for data-name-I is not a space.

CBLDCMCF('TLSCOM ') - Acquire status of MCF communication services

279

72072 The value specified for data-name-J is not a space.

72076 A value of 0 or smaller is specified for data-name-M.

Status code Explanation

CBLDCMCF('TLSLE ') - Acquire a logical terminal status

280

CBLDCMCF('TLSLE ') - Acquire a logical terminal status

Format
PROCEDURE DIVISION specification

DATA DIVISION specification

Description
CBLDCMCF('TLSLE ') acquires a logical terminal's status.

Data areas whose values are set in the UAP
data-name-A
Specify VALUE 'TLSLE ' for the request code indicating acquisition of logical
terminal status.

data-name-C, data-name-D
Specify a space.

CALL 'CBLDCMCF' USING unique-name-1 unique-name-2 unique-name-3

01 unique-name-1.
 02 data-name-A PIC X(8) VALUE 'TLSLE '.
 02 data-name-B PIC X(5).
 02 FILLER PIC X(3).

 02 data-name-C PIC X(4) VALUE SPACE.
 02 data-name-D PIC X(28) VALUE SPACE.
 02 data-name-E PIC 9(9) COMP.
 02 data-name-F1 PIC X(8).
 02 data-name-F2 PIC X(56) VALUE SPACE.
 02 data-name-G PIC X(8) VALUE SPACE.
 02 data-name-H PIC X(8) VALUE SPACE.
 02 data-name-I PIC X(144) VALUE SPACE.
 02 data-name-J PIC X(184) VALUE SPACE.
 02 data-name-K PIC 9(9) COMP VALUE ZERO.
01 unique-name-2.
 02 data-name-L PIC 9(9) COMP VALUE ZERO.
01 unique-name-3.
 02 data-name-M PIC 9(9) COMP.

 02 unique-name-4.
 03 data-name-N PIC X(8).
 03 data-name-O PIC X(4) VALUE LOW-VALUE.
 03 data-name-P PIC X(4).
 03 data-name-Q PIC X(40) VALUE LOW-VALUE.

CBLDCMCF('TLSLE ') - Acquire a logical terminal status

281

data-name-E
Specify the MCF communication process identifier of the MCF communication
service that has the logical terminal to be processed. The permitted value range is from
0 to 239.

If you specify 0, the system searches for the MCF communication service to which the
specified connection ID belongs. In a configuration where many MCF communication
services are running or when you issue this function many times from a UAP, we
recommend that you specify the MCF communication process identifier.

data-name-F1
Specify the name of the logical terminal whose status is to be acquired. Express the
logical terminal name as a maximum of 8 bytes. If the specified name is shorter than
8 bytes, pad the name with trailing spaces.

data-name-F2, data-name-G, data-name-H, data-name-I, data-name-J
Specify a space.

data-name-K, data-name-L
Specify 0.

data-name-M
Specify 1 as the number of unique names from unique-name-4 to unique-name-n
(number of sets of data-name-N, data-name-O, data-name-P, and data-name-Q).

When the processing is completed, the number of corresponding logical terminals is
returned.

data-name-O, data-name-Q
This is an area used by MCF.

Data area to which a value is returned from OpenTP1
data-name-B
A status code of 5 digits is returned.

data-name-M
The number of logical terminals processed by this function is returned.

data-name-N
Sets the name of the requested logical terminal.

data-name-P
Sets one of the following values as the status of the requested logical terminal:

'ACT '

CBLDCMCF('TLSLE ') - Acquire a logical terminal status

282

Logical terminal has been released from shutdown status.

'DCT '

Logical terminal has been shut down.

Status codes
Status code Explanation

00000 Normal termination.

71001 CBLDCMCF('TLSLE ') cannot be accepted because MCF is under start processing.

71004 A memory shortage occurred during CBLDCMCF('TLSLE ') processing.

71005 A communication error occurred. For the cause, see the message log file.

71006 An internal error occurred. For the cause, see the message log file.

71008 The specified logical terminal name has not been registered.

71009 CBLDCMCF('TLSLE ') is not supported by the applicable communication process.

71010 Although the request to acquire the logical terminal status was issued to the MCF
communication process, the request was not accepted. For the cause, see the message
log file.

71011 CBLDCMCF('TDLQLE ') cannot be accepted because the logical terminal has been
deleted.

72028 The value specified for data-name-A is invalid.

72052 A nonzero value is specified for data-name-K.

72053 A nonzero value is specified for data-name-L.

72058 The value specified for data-name-C is not a space.

72059 The value specified for data-name-D is not a space.

72061 A value smaller than 0 or greater than 239 is specified for data-name-E.

72063 data-name-F1 begins with a space.

72065 The value specified for data-name-F2 is not a space.

72066 The value specified for data-name-G is not a space.

72068 The value specified for data-name-H is not a space.

72070 The value specified for data-name-I is not a space.

72072 The value specified for data-name-J is not a space.

CBLDCMCF('TLSLE ') - Acquire a logical terminal status

283

72074 The character string specified for data-name-F1 contains an invalid character.

72076 The value 1 is not specified for data-name-M.

Status code Explanation

CBLDCMCF('TLSLN ') - Acquire the acceptance status for a server-type connection establishment request

284

CBLDCMCF('TLSLN ') - Acquire the acceptance status for a
server-type connection establishment request

Format
PROCEDURE DIVISION specification

DATA DIVISION specification

Description
CBLDCMCF('TLSLN ') acquires the acceptance status for a server-type connection
establishment request.

Data areas whose values are set in the UAP
data-name-A
Specify VALUE 'TLSLN 'for the request code indicating acquisition of acceptance
status for a connection establishment request.

data-name-C, data-name-D
Specify a space.

CALL 'CBLDCMCF' USING unique-name-1 unique-name-2 unique-name-3

01 unique-name-1.
 02 data-name-A PIC X(8) VALUE 'TLSLN '.
 02 data-name-B PIC X(5).
 02 FILLER PIC X(3).

 02 data-name-C PIC X(4) VALUE SPACE.
 02 data-name-D PIC X(28) VALUE SPACE.
 02 data-name-E PIC 9(9) COMP.
 02 data-name-F PIC X(64) VALUE SPACE.
 02 data-name-G PIC X(8) VALUE SPACE.
 02 data-name-H PIC X(8) VALUE SPACE.
 02 data-name-I PIC X(144) VALUE SPACE.
 02 data-name-J PIC X(184) VALUE SPACE.
 02 data-name-K PIC 9(9) COMP VALUE ZERO.
01 unique-name-2.
 02 data-name-L PIC 9(9) COMP VALUE ZERO.
01 unique-name-3.
 02 data-name-M PIC 9(9) COMP VALUE 1.

 02 unique-name-4.
 03 data-name-N PIC X(4).
 03 data-name-O PIC X(60) VALUE LOW-VALUE.

CBLDCMCF('TLSLN ') - Acquire the acceptance status for a server-type connection establishment request

285

data-name-E
Specify the MCF communication process identifier of the MCF communication
service that is to be processed. The permitted value range is from 1 to 239.

data-name-F, data-name-G, data-name-H, data-name-I, data-name-J
Specify a space.

data-name-K, data-name-L
Specify 0.

data-name-M
Specify 1.

data-name-O
This is an area used by MCF.

Data area to which a value is returned from OpenTP1
data-name-B
A status code of 5 digits is returned.

data-name-N
Sets one of the following values as the acceptance status of the server-type connection
establishment request:

'LSTN'

The acceptance process for the server-type connection establishment request has
started.

'RTRY'

The acceptance process for the server-type connection establishment request is
under start processing.

'ON_W'

The acceptance process for the server-type connection establishment request is in
start request wait status.

'INIT'

The acceptance process for the server-type connection establishment request has
ended.

The table below shows the relationship between the status and function availability.

CBLDCMCF('TLSLN ') - Acquire the acceptance status for a server-type connection establishment request

286

Legend:

Y: Can be used

N: Cannot be used

Status codes

Value of data-name-N Available COBOL-UAP creation program

CBLDCMCF('TONLN ') CBLDCMCF('TOFLN ')

LSTN N Y

RTRY N Y

ON_W Y Y

INIT Y N

Status code Explanation

00000 Normal termination.

71001 CBLDCMCF('TLSLN ') cannot be accepted because MCF is under start processing.

71002 CBLDCMCF('TLSLN ') cannot be accepted because MCF is under termination
processing.

71004 A memory shortage occurred during CBLDCMCF('TLSLN ') processing.

71005 A communication error occurred. For the cause, see the message log file.

71006 An internal error occurred. For the cause, see the message log file.

71009 CBLDCMCF('TLSLN ') is not supported by the applicable communication process.

71010 Although the request to acquire the acceptance status of the server-type connection
establishment request was issued to the MCF communication process, the request was
not accepted. For the cause, see the message log file.

72028 The value specified for data-name-A is invalid.

72052 A nonzero value is specified for data-name-K.

72053 A nonzero value is specified for data-name-L.

72058 The value specified for data-name-C is not a space.

72059 The value specified for data-name-D is not a space.

72061 A value of 0 or smaller or greater than 239 is specified for data-name-E.

72065 The value specified for data-name-F is not a space.

CBLDCMCF('TLSLN ') - Acquire the acceptance status for a server-type connection establishment request

287

72066 The value specified for data-name-G is not a space.

72068 The value specified for data-name-H is not a space.

72070 The value specified for data-name-I is not a space.

72072 The value specified for data-name-J is not a space.

72076 The value 1 is not specified for data-name-M.

Status code Explanation

CBLDCMCF('TOFLN ') - Stop accepting server-type connection establishment requests

288

CBLDCMCF('TOFLN ') - Stop accepting server-type connection
establishment requests

Format
PROCEDURE DIVISION specification

DATA DIVISION specification

Description
CBLDCMCF('TOFLN ') stops accepting server-type connection establishment
requests.

Data areas whose values are set in the UAP
data-name-A
Specify VALUE 'TOFLN ' for the request code indicating that acceptance of
connection establishment requests is to be stopped.

data-name-C, data-name-D
Specify a space.

data-name-E
Specify the MCF communication process identifier of the MCF communication
service that is to be processed. The permitted value range is from 1 to 239.

CALL 'CBLDCMCF' USING unique-name-1 unique-name-2

01 unique-name-1.
 02 data-name-A PIC X(8) VALUE 'TOFLN '.
 02 data-name-B PIC X(5).
 02 FILLER PIC X(3).

 02 data-name-C PIC X(4) VALUE SPACE.
 02 data-name-D PIC X(28) VALUE SPACE.
 02 data-name-E PIC 9(9) COMP.
 02 data-name-F PIC X(64) VALUE SPACE.
 02 data-name-G PIC X(8) VALUE SPACE.
 02 data-name-H PIC X(8) VALUE SPACE.
 02 data-name-I PIC X(144) VALUE SPACE.
 02 data-name-J PIC X(184) VALUE SPACE.
 02 data-name-K PIC 9(9) COMP VALUE ZERO.
01 unique-name-2.
 02 data-name-L PIC 9(9) COMP VALUE ZERO.

CBLDCMCF('TOFLN ') - Stop accepting server-type connection establishment requests

289

data-name-F, data-name-G, data-name-H, data-name-I, data-name-J
Specify a space.

data-name-K, data-name-L
Specify 0.

Data area to which a value is returned from OpenTP1
data-name-B
A status code of 5 digits is returned.

Status codes
Status code Explanation

00000 Normal termination.

71001 CBLDCMCF('TOFLN ') cannot be accepted because MCF is under start processing.

71002 CBLDCMCF('TOFLN ') cannot be accepted because MCF is under termination
processing.

71004 A memory shortage occurred during CBLDCMCF('TOFLN ') processing.

71005 A communication error occurred. For the cause, see the message log file.

71006 An internal error occurred. For the cause, see the message log file.

71009 CBLDCMCF('TOFLN ') is not supported by the applicable communication process.

71010 Although the request to stop accepting server-type connection establishment requests was
issued to the MCF communication process, the request was not accepted. For the cause,
see the message log file.

72028 The value specified for data-name-A is invalid.

72052 A nonzero value is specified for data-name-K.

72053 A nonzero value is specified for data-name-L.

72058 The value specified for data-name-C is not a space.

72059 The value specified for data-name-D is not a space.

72061 A value of 0 or smaller or greater than 239 is specified for data-name-E.

72065 The value specified for data-name-F is not a space.

72066 The value specified for data-name-G is not a space.

72068 The value specified for data-name-H is not a space.

72070 The value specified for data-name-I is not a space.

CBLDCMCF('TOFLN ') - Stop accepting server-type connection establishment requests

290

72072 The value specified for data-name-J is not a space.

Status code Explanation

CBLDCMCF('TONLN ') - Start accepting server-type connection establishment requests

291

CBLDCMCF('TONLN ') - Start accepting server-type connection
establishment requests

Format
PROCEDURE DIVISION specification

DATA DIVISION specification

Description
CBLDCMCF('TONLN ') starts accepting server-type connection establishment
requests.

Data areas whose values are set in the UAP
data-name-A
Specify VALUE 'TONLN ' for the request code indicating start of acceptance of
connection establishment requests.

data-name-C, data-name-D
Specify a space.

data-name-E
Specify the MCF communication process identifier of the MCF communication
service that is to be processed. The permitted value range is from 1 to 239.

CALL 'CBLDCMCF' USING unique-name-1 unique-name-2

01 unique-name-1.
 02 data-name-A PIC X(8) VALUE 'TONLN '.
 02 data-name-B PIC X(5).
 02 FILLER PIC X(3).

 02 data-name-C PIC X(4) VALUE SPACE.
 02 data-name-D PIC X(28) VALUE SPACE.
 02 data-name-E PIC 9(9) COMP.
 02 data-name-F PIC X(64) VALUE SPACE.
 02 data-name-G PIC X(8) VALUE SPACE.
 02 data-name-H PIC X(8) VALUE SPACE.
 02 data-name-I PIC X(144) VALUE SPACE.
 02 data-name-J PIC X(184) VALUE SPACE.
 02 data-name-K PIC 9(9) COMP VALUE ZERO.
01 unique-name-2.
 02 data-name-L PIC 9(9) COMP VALUE ZERO.

CBLDCMCF('TONLN ') - Start accepting server-type connection establishment requests

292

data-name-F, data-name-G, data-name-H, data-name-I, data-name-J
Specify a space.

data-name-K, data-name-L
Specify 0.

Data area to which a value is returned from OpenTP1
data-name-B
A status code of 5 digits is returned.

Status codes
Status code Explanation

00000 Normal termination.

71001 CBLDCMCF('TONLN ') cannot be accepted because MCF is under start processing.

71002 CBLDCMCF('TONLN ') cannot be accepted because MCF is under termination
processing.

71004 A memory shortage occurred during CBLDCMCF('TONLN ') processing.

71005 A communication error occurred. For the cause, see the message log file.

71006 An internal error occurred. For the cause, see the message log file.

71009 CBLDCMCF('TONLN ') is not supported by the applicable communication process.

71010 Although the request to start accepting server-type connection establishment requests
was issued to the MCF communication process, the request was not accepted. For the
cause, see the message log file.

72028 The value specified for data-name-A is invalid.

72052 A nonzero value is specified for data-name-K.

72053 A nonzero value is specified for data-name-L.

72058 The value specified for data-name-C is not a space.

72059 The value specified for data-name-D is not a space.

72061 A value of 0 or smaller or greater than 239 is specified for data-name-E.

72065 The value specified for data-name-F is not a space.

72066 The value specified for data-name-G is not a space.

72068 The value specified for data-name-H is not a space.

72070 The value specified for data-name-I is not a space.

CBLDCMCF('TONLN ') - Start accepting server-type connection establishment requests

293

72072 The value specified for data-name-J is not a space.

Status code Explanation

Performance verification trace (CBLDCPRF)

294

Performance verification trace (CBLDCPRF)

This section describes the programs available for the performance verification trace.
The COBOL-UAP creation programs for the performance verification trace are as
follows:

• CBLDCPRF('PRFGETN ') - Report the sequential number for an acquired
performance verification trace

• CBLDCPRF('PRFPUT ') - Acquire user-specific performance verification
traces

The COBOL-UAP creation programs (CBLDCPRF) for the performance verification
trace are available on UAPs that run TP1/Server Base or TP1/LiNK. However, you
must have installed TP1/Extension 1 before you can use this facility. Note that if TP1/
Extension 1 has not been installed, system operation is unpredictable.

You can use the COBOL language template as a sample when defining the data part
(DATA DIVISION) of the COBOL-UAP creation programs. The COBOL language
template of the performance verification trace (CBLDCPRF) is located in DCPRF.cbl
under the /BeTRAN/examples/COBOL/ directory.

CBLDCPRF('PRFGETN ') - Report the sequential number for an acquired performance verification trace

295

CBLDCPRF('PRFGETN ') - Report the sequential number for an
acquired performance verification trace

Format
PROCEDURE DIVISION specification

DATA DIVISION specification

Description
CBLDCPRF('PRFGETN ') reports the acquired sequential trace number within the
process of the latest performance verification trace (prf trace) acquired before the
program was called. It reports this information to the CBLDCPRF('PRFGETN ') call
source.

If no performance verification trace has been acquired in the process that called
CBLDCPRF('PRFGETN '), the acquired sequential trace number within the process is
0.

Data areas whose values are set in the UAP
data-name-A
Specify VALUE 'PRFGETN ' for the request code indicating report the sequential
number for an acquired performance verification trace.

data-name-Z
Specify 0.

Data areas to which values are returned from OpenTP1
data-name-B
A status code of 5 digits is returned.

unique-name-2
The sequential number for an acquired performance verification trace is returned.

CALL 'CBLDCPRF' USING unique-name-1 unique-name-2

01 unique-name-1.
 02 data-name-A PIC X(8) VALUE 'PRFGETN '.
 02 data-name-B PIC X(5).
 02 FILLER PIC X(3).
 02 data-name-Z PIC S9(9) COMP VALUE ZERO.

01 unique-name-2 PIC 9(4) COMP.

CBLDCPRF('PRFGETN ') - Report the sequential number for an acquired performance verification trace

296

Status codes
Status code Explanation

00000 Normal termination.

04601 The value specified for the data name is invalid.
This status code includes cases in which the request code (data-name-A) is invalid.

CBLDCPRF('PRFPUT ') - Acquire user-specific performance verification traces

297

CBLDCPRF('PRFPUT ') - Acquire user-specific performance
verification traces

Format
PROCEDURE DIVISION specification

PROCEDURE DIVISION specification

Description
CBLDCPRF('PRFPUT ') acquires a user-specific performance verification trace (prf
trace).

Data areas whose values are set in the UAP
data-name-A
Specify VALUE 'PRFPUT ' for the request code indicating acquisition of a
user-specific performance verification trace.

data-name-Z
Specify 0.

data-name-C
Specify the event ID of the event to be acquired. The range of available event IDs is
0x0001 to 0x0040.

data-name-D
Specify the data length of the trace data to be acquired. The specifiable data length is
4 bytes to 256 bytes. The data length must be a multiple of 4 bytes.

data-name-E
Specify the trace data to be acquired. Data that fits within the length specified for

CALL 'CBLDCPRF' USING unique-name-1 unique-name-2

01 unique-name-1.
 02 data-name-A PIC X(8) VALUE 'PRFPUT '.
 02 data-name-B PIC X(5).
 02 FILLER PIC X(3).
 02 data-name-Z PIC S9(9) COMP VALUE ZERO.
01 unique-name-2.
 02 data-name-C PIC 9(4) COMP.
 02 data-name-D PIC 9(4) COMP.
 02 data-name-E PIC X(n).

CBLDCPRF('PRFPUT ') - Acquire user-specific performance verification traces

298

data-name-D is valid as trace data.

Data area to which a value is returned from OpenTP1
data-name-B
A status code of 5 digits is returned.

Status codes

Note
Even if CBLDCPRF('PRFPUT ') returns the status code 00000, the trace has not
necessarily been properly acquired. This is because data may be lost during trace
acquisition processing if multiple processes issue acquisition requests simultaneously
because no lock is used.

Status code Explanation

00000 Normal termination.

04601 The value specified for the data name is invalid.This status code includes cases in which
the request code (data-name-A) is invalid.

Remote API facilities (CBLDCRAP)

299

Remote API facilities (CBLDCRAP)

This section explains the programs to be used when the user uses remote API facilities
to manage establishment and release of connections. The COBOL-UAP creation
programs provided by the remote API facilities are as follows:

• CBLDCRAP('CONNECT ') - Establish a connection with a RAP-processing
listener

• CBLDCRAP('CONNECTX') - Establish a connection with a RAP-processing
listener

• CBLDCRAP('DISCNCT ') - Release a connection with a RAP-processing
listener

The COBOL-UAP creation programs (CBLDCRAP) provided by the remote API
facilities can be used in UAPs of TP1/Server Base or TP1/LiNK.

When the user defines DATA DIVISION of COBOL-UAP creation programs, the
COBOL language templates can be used as samples. The COBOL language template
for the remote API facilities (CBLDCRAP) is stored in DCRAP.cbl under the /
BeTRAN/examples/COBOL/ directory.

CBLDCRAP('CONNECT ') - Establish connection with a RAP-processing listener

300

CBLDCRAP('CONNECT ') - Establish connection with a
RAP-processing listener

Format
PROCEDURE DIVISION specification

DATA DIVISION specification

Description
CBLDCRAP('CONNECT ') establishes a connection between a RAP-processing
listener and a RAP-processing client.

Data areas whose values are set in the UAP
data-name-A
Specify VALUE 'CONNECT ' for the request code indicating the request for
establishment of a connection with a RAP-processing listener.

data-name-C
Specify 0.

data-name-E
Specify the host name of the OpenTP1 node on which the RAP-processing listener was
activated.

The specified host name must consist of 1 to 64 characters. To specify a host name
longer than 65 characters, use CBLDCRAP('CONNECTX').

data-name-F
Specify the port number of the well-known port being used by the RAP-processing
listener.

CALL 'CBLDCRAP' USING unique-name-1 unique-name-2

01 unique-name-1.
 02 data-name-A PIC X(8) VALUE 'CONNECT '.
 02 data-name-B PIC X(5).
 02 FILLER PIC X(3).
 02 data-name-C PIC S9(9) COMP VALUE ZERO.
 02 data-name-D PIC S9(9) COMP.
01 unique-name-2.
 02 data-name-E PIC X(64).
 02 data-name-F PIC S9(9) COMP.

CBLDCRAP('CONNECT ') - Establish connection with a RAP-processing listener

301

Data areas whose values are returned from OpenTP1
data-name-B
A status code of 5 digits is returned.

data-name-D
This area receives the service ID.

A service ID is returned when a connection with the RAP-processing listener was
established successfully. Use the same service ID in CBLDCRAP('DISCNCT ') when
releasing the connection.

Status codes
Status code Explanation

00000 Normal termination. A connection was established with the RAP-processing listener.

05501 Either the value specified in a data area is invalid, or a data area has not been set. Check the
following items:
• Values of data-name-A and data-name-C ('CONNECT ' and 0, respectively)
• Number of characters set in data-name-E (1 to 64)
• Allowable range of the data-name-F value (1 to 65535)
• Data area data-name-D

05502 The protocol is invalid. Possible causes are as follows:
• CBLDCRPC('OPEN ') was not called.
• Although the rpc_rap_auto_connect operand in the user service definition had been

set to Y, the function CBLDCRAP('CONNECT ') was called.
• The -w option was not specified in the dcsvgdef definition command in the user service

network definition.

05503 The memory became insufficient.

05517 The specified value exceeds the maximum number of CBLDCRAP('CONNECT ') functions
which can be called from a single process.

05505 A network error occurred during communication with the RAP-processing listener.

05506 A timeout occurred during communication with the RAP-processing listener.

05507 The number of sockets became insufficient.

05508 The host name cannot be resolved.

05521 The RAP-processing listener is being terminated.

05522 An error which prevents continuation of processing occurred. Possible causes of the error are
as follows:
• An unexpected message was received.
• A message was received unexpectedly from a remote system.

CBLDCRAP('CONNECT ') - Establish connection with a RAP-processing listener

302

Note
If CBLDCRAP('CONNECT ') returns with an error and the status code is a value other
than 05529, connection was not established with the RAP-processing listener.

The error code acquired by the UAP trace is as follows:

0: No error

1: No value was specified for unique-name-1.

2: The request code (data-name-A) is invalid.

3: No value was specified for unique-name-2.

6: CBLDCRAP('CONNECT') was called while the value Y was specified in the
rpc_rap_auto_connect operand in the user service definition. Another possibility
is that the user service network has not been defined.

05523 An unexpected error occurred during system call.

05531 An attempt was made to establish a connection with a RAP-processing listener which is on
an unconnected network.

05520 The memory became insufficient on the RAP-processing listener or RAP-processing server.

05532 A connection could not be established within the message exchange monitoring time
specified in the rap_watch_time operand of the RAP-processing listener service definition.

05533 A system error occurred in the RAP-processing listener.

05528 The RAP-processing listener is being started or terminated.

05529 A connection has already been established with the RAP-processing listener.

05534 The specified value exceeds the maximum number of requests which can be accepted for
connection with a RAP-processing client that is managed by a RAP-processing listener.

Status code Explanation

CBLDCRAP('CONNECTX') - Establish connection with a RAP-processing listener

303

CBLDCRAP('CONNECTX') - Establish connection with a
RAP-processing listener

Format
PROCEDURE DIVISION specification

DATA DIVISION specification

Description
CBLDCRAP('CONNECTX') establishes a connection between a RAP-processing
listener and a RAP-processing client. The host name area is a variable-length area. It
can accommodate a host name longer than 65 characters.

Data areas whose values are set in the UAP
data-name-A
Specify VALUE 'CONNECTX' for the request code indicating the request for
establishment of a connection with a RAP-processing listener.

data-name-C
Specify 1.

data-name-E
Specify the port number of the well-known port being used by the RAP-processing
listener.

data-name-F
Specify the host name of the OpenTP1 node on which the RAP-processing listener was
activated. The specified host name must consist of 1 to 255 characters.

CALL 'CBLDCRAP' USING unique-name-1 unique-name-2

01 unique-name-1.
 02 data-name-A PIC X(8) VALUE 'CONNECTX'.
 02 data-name-B PIC X(5).
 02 FILLER PIC X(3).
 02 data-name-C PIC S9(9) COMP VALUE 1.
 02 data-name-D PIC S9(9) COMP.
01 unique-name-2.
 02 data-name-E PIC S9(9) COMP.
 02 data-name-F PIC X(n).
 02 FILLER PIC X(1) VALUE LOW-VALUE.

CBLDCRAP('CONNECTX') - Establish connection with a RAP-processing listener

304

Data areas whose values are returned from OpenTP1
data-name-B
A status code of 5 digits is returned.

data-name-D
This area receives the service ID.

A service ID is returned when a connection with the RAP-processing listener was
established successfully. Use the same service ID in CBLDCRAP('DISCNCT ') when
releasing the connection.

Status codes
Status code Explanation

00000 Normal termination. A connection was established with the RAP-processing listener.

05501 The value specified for a data area is invalid or a required data area is not specified.
Review the following values:
• Values of data-name-A and data-name-C ('CONNECTX' and 1, respectively)
• Allowable range of the data-name-E value (1 to 65535)
• Number of characters in data-name-F (1 to 255)
• Area of data-name-D

05502 The protocol is invalid. Possible causes are as follows:
• CBLDCRPC('OPEN ') was not called.
• Although the rpc_rap_auto_connect operand in the user service definition had

been set to Y, the function CBLDCRAP('CONNECTX') was called.
• The -w option was not specified in the dcsvgdef definition command in the user

service network definition.

05503 The memory became insufficient.

05505 A network error occurred during communication with the RAP-processing listener.

05506 A timeout occurred during communication with the RAP-processing listener.

05507 The number of sockets became insufficient.

05508 The host name cannot be resolved. Verify data-name-F or the DNS server.

05517 The maximum number of CBLDCRAP('CONNECTX') calls from a single process was
exceeded.

05520 The memory became insufficient on the RAP-processing listener or RAP-processing
server.

05521 The RAP-processing listener is being terminated. Alternatively, verify data-name-E.

CBLDCRAP('CONNECTX') - Establish connection with a RAP-processing listener

305

Note
If CBLDCRAP('CONNECTX') returns with an error and the status code is a value other
than 05529, connection was not established with the RAP-processing listener.

The error code acquired by the UAP trace is as follows:

0: No error

1: No value was specified for unique-name-1.

2: The request code (data-name-A) is invalid.

3: No value was specified for unique-name-2.

6: CBLDCRAP('CONNECT') was called even though the value specified for the
rpc_rap_auto_connect operand in the user service definition is Y. Alternatively,
the user service network has not been defined.

05522 An error which prevents continuation of processing occurred. Possible causes of the error
are as follows:
• An unexpected message was received.
• A message was received unexpectedly from a remote system.

05523 An unexpected error occurred during system call.

05528 The RAP-processing listener is being started or terminated.

05529 A connection has already been established with the RAP-processing listener.

05531 An attempt was made to establish a connection with a RAP-processing listener which is
on an unconnected network.

05532 A connection could not be established within the message exchange monitoring time
specified in the rap_watch_time operand of the RAP-processing listener service
definition.

05533 A system error occurred in the RAP-processing listener.

05534 The specified value exceeds the maximum number of requests which can be accepted for
connection with a RAP-processing client that is managed by a RAP-processing listener.

Status code Explanation

CBLDCRAP('DISCNCT ') - Release a connection with a RAP-processing listener

306

CBLDCRAP('DISCNCT ') - Release a connection with a
RAP-processing listener

Format
PROCEDURE DIVISION specification

DATA DIVISION specification

Description
CBLDCRAP('DISCNCT ') releases a connection established between a
RAP-processing listener and a RAP-processing client.

Data areas whose values are set in the UAP
data-name-A
Specify VALUE 'DISCNCT ' for the request code indicating the request for release of
a connection with a RAP-processing listener.

data-name-C
Specify 0.

data-name-D
Specify the service ID that was received for CBLDCRAP('CONNECT ').

Data area whose value is returned from OpenTP1
data-name-B
A status code of 5 digits is returned.

Status codes

CALL 'CBLDCRAP' USING unique-name-1

01 unique-name-1.
 02 data-name-A PIC X(8) VALUE 'DISCNCT '.
 02 data-name-B PIC X(5).
 02 FILLER PIC X(3).
 02 data-name-C PIC S9(9) COMP VALUE ZERO.
 02 data-name-D PIC S9(9) COMP.

Status Code Explanation

00000 Normal termination. The connection with the RAP-processing listener was released.

CBLDCRAP('DISCNCT ') - Release a connection with a RAP-processing listener

307

Note
If the CBLDCRAP('DISCNCT ') function returns with an error and the status code is
a value other than 05501 or 05502, the connection with the RAP-processing listener
was released.

The error code acquired by the UAP trace is as follows:

0: No error

1: No value was specified for unique-name-1.

2: The request code (data-name-A) is invalid.

05501 Either the value specified in a data area is invalid, or a data area has not been set. Check
the following items:
• Values of data-name-A and data-name-C ('CONNECT ' and 0, respectively)
• Data area data-name-D

05502 The protocol is invalid. Possible causes are as follows:
• CBLDCRPC('OPEN ') was not called.
• Although the rpc_rap_auto_connect operand in the user service definition had

been set to Y, the function CBLDCRAP('DISCNCT ') was called.
• The -w option was not specified in the dcsvgdef definition command in the user

service network definition.

05503 The memory became insufficient.

05505 A network error occurred during communication with the RAP-processing listener.

05506 A timeout occurred during communication with the RAP-processing listener.

05521 The RAP-processing listener is being terminated.

05522 An error which prevents continuation of processing occurred. Possible causes of the error
are as follows:
• An unexpected message was received.
• A message was received unexpectedly from a remote system.

05523 An unexpected error occurred during system call.

Status Code Explanation

Remote procedure calls (CBLDCRPC, CBLDCRSV)

308

Remote procedure calls (CBLDCRPC, CBLDCRSV)

This section gives the syntax and other information of the following COBOL-UAP
creation programs which are used via OpenTP1 remote procedure calls for client/
server communication:

• CBLDCRPC('CALL ') - Request a remote service

• CBLDCRPC('CLOSE ') - Terminate an application program

• CBLDCRPC('CLTSEND ') - Report data to CUP unidirectionally

• CBLDCRPC('DISCARDF ') - Reject the receiving of processing results

• CBLDCRPC('DISCARDS ') - Reject acceptance of specific processing results

• CBLDCRPC('GETCLADR ') - Acquire the node address of a client UAP

• CBLDCRPC('GETERDES ') - Acquire the descriptor of an asynchronous
response-type RPC request which has encountered an error

• CBLDCRPC('GETGWADR ') - Acquire the node address of a gateway

• CBLDCRPC('GETSVPRI ') - Reference the schedule priority of a service
request

• CBLDCRPC('GETWATCH ') - Reference the service response waiting interval

• CBLDCRPC('OPEN ') - Start an application program

• CBLDCRPC('POLLANYR ') - Receive processing results in asynchronous mode

• CBLDCRPC('SETSVPRI ') - Set a schedule priority of a service request

• CBLDCRPC('SETWATCH ') - Update the service response waiting interval

• CBLDCRPC('SVRETRY ') - Retry a service program

• CBLDCRSV('MAINLOOP ') - Start an SPP service

The COBOL-UAP creation programs for remote procedure calls (CBLDCRPC,
CBLDCRSV) can be used in UAPs of both TP1/Server Base and TP1/LiNK.

When defining DATA DIVISION of COBOL-UAP creation programs, the COBOL
language templates can be used as samples. The COBOL language templates for
remote procedure calls (CBLDCRPC, CBLDCRSV) are stored in DCRPC.cbl and
DCRSV.cbl under the /BeTRAN/examples/COBOL/ directory.

CBLDCRPC('CALL ') - Request a remote service

309

CBLDCRPC('CALL ') - Request a remote service

Format
PROCEDURE DIVISION specification

DATA DIVISION specification

Description
CBLDCRPC('CALL ') requests an SPP service. This function can be called without
consideration of the node containing the requesting service.

Specify a service group name and service name for a data area of CBLDCRPC('CALL
') to request a service. A service request is addressed to the service program
corresponding to the specified names.

A UAP which calls CBLDCRPC('CALL ') can be used regardless of whether it
has been executed as a transaction. When a service is requested by CBLDCRPC('CALL
') from the process which has been executed as a transaction, the requested service
process runs as a transaction branch.

Before this function can be used, the OpenTP1 at the node containing the server UAP
to which the service request is addressed must be active.

Receiving a signal while waiting for a response after execution of CBLDCRPC('CALL
') does not cause CBLDCRPC('CALL ') to be returned.

The following items are described after the list of status codes. See each description
for details on CBLDCRPC('CALL ').

CALL 'CBLDCRPC' USING unique-name-1 unique-name-2
 unique-name-3

01 unique-name-1.
 02 data-name-A PIC X(8) VALUE 'CALL '.
 02 data-name-B PIC X(5).
 02 FILLER PIC X(3).
 02 data-name-C PIC S9(9) COMP VALUE ZERO.
 02 data-name-D PIC S9(9) COMP.
 02 data-name-E PIC X(32).
 02 data-name-F PIC X(n).
01 unique-name-2.
 02 data-name-G PIC S9(9) COMP.
 02 data-name-H PIC X(n).
01 unique-name-3.
 02 data-name-I PIC S9(9) COMP.
 02 data-name-J PIC X(n).

CBLDCRPC('CALL ') - Request a remote service

310

(1) Data areas of CBLDCRPC('CALL ')

(2) Error cases of CBLDCRPC('CALL ')

(3) Timing when CBLDCRPC('CALL ') results in error

(4) Specification for reexecuting the service request if CBLDCRPC('CALL ')
results in error

(5) When a priority is given to a service request

(6) Difference between status codes 00310 and 00306

(7) Specification for the return of status code 00378

(8) Relationship between status codes and synchronization point processing

(9) Notes on requesting a service

(10) When a service is requested with domain qualification

Data areas whose values are set in the UAP
data-name-A
Specify VALUE 'CALL ' for the request code indicating that a remote service is
requested.

data-name-C
Specify the RPC mode and option with a value:

0: Synchronous response-type RPC

2: Asynchronous response-type RPC

1: Nonresponse-type RPC

4: Chained RPC

Add 32 to the value indicating the RPC mode to avoid having the requested processing
handled as a transaction. When 32 is added, the processing of the service function is
not handled as a transaction even if the service request is issued from the transaction.

Add 256 to the value indicating the RPC mode when the service group name is
specified with domain qualification. An RPC with domain qualification cannot be a
transaction branch. Therefore, add (256 + 32) to the value indicating the RPC mode
whenever CBLDCRPC('CALL ') is used from the transaction.

Example 1:

When a nontransaction service is requested by using a synchronous response-type
RPC, specify 32 (0 + 32) for data-name-C.

Example 2:

CBLDCRPC('CALL ') - Request a remote service

311

When a service is requested by using a synchronous response-type RPC with
domain qualification from the transaction, specify 290 (2 + 256 + 32) for
data-name-C.

data-name-E
Specify the SPP service name with an ASCII character string of up to 31 bytes. End
the character string with space. The space is not counted in the length of the character
string.

data-name-F
Specify the SPP service group name with an ASCII character string of up to 31 bytes.
End the character string with space. The space is not counted in the length of the
character string.

When requesting a service with domain qualification, specify the service group name
suffixed by an at mark (@) and the DNS domain name, and end the character string
with space.

data-name-G
Specify the input parameter length of the service (the length of data-name-H) within
the range from 1 to DCRPC_MAX_MESSAGE_SIZE#. DCRPC_MAX_MESSAGE_SIZE is
defined in dcrpc.h.

#: If you used the rpc_max_message_size operand, the value of this data area is the
value specified in the rpc_max_message_size operand and not the value of
DCRPC_MAX_MESSAGE_SIZE (1 megabyte).

data-name-H
Specify the input parameter of the service.

data-name-I
Specify the length of the response (the length of data-name-J) within the range from 1
to DCRPC_MAX_MESSAGE_SIZE#. DCRPC_MAX_MESSAGE_SIZE is defined in
dcrpc.h.

#: If you used the rpc_max_message_size operand, the value of this data area is the
value specified in the rpc_max_message_size operand and not the value of
DCRPC_MAX_MESSAGE_SIZE (1 megabyte).

Data areas to which values are returned from server UAP
data-name-B
A status code of 5 digits is returned.

data-name-D
The descriptor is returned when asynchronous response-type RPCs are used.

CBLDCRPC('CALL ') - Request a remote service

312

data-name-I
The length of the response set by the service program is returned.

data-name-J
The response set by the service program is returned.

Status codes
The following status codes are returned from OpenTP1, not from the service program.

Status code Explanation

00000 Normal termination. In the case of asynchronous response-type RPC, the descriptor was
set in data-name-D.

00301 The value specified for the data-name is invalid. This error also occurs if the request code
(data-name-A) is invalid.

00302 CBLDCRPC('OPEN ') was not called.

00304 A memory shortage occurred. Or, a service request was not accepted because a space
shortage occurred in the message storage buffer pool (message_store_buflen
operand) of the SPP to which the service was requested.
If necessary, revise the message_store_buflen operand in the user service default
definition or in the user service definition of the SPP to which the service was requested.

00306 A communication failure occurred.
Check if a network failure has occurred.

00307 The response wait time in CBLDCRPC('CALL ') has elapsed.
If necessary, revise the response wait time specified in CBLDCRPC('CALL ')
(watch_time operand and arguments in CBLDCRPC('SETWATCH')).

The SPP to which the service was requested terminated abnormally during execution of
a service program.
Check the cause of abnormal termination of the SPP to which the service was requested.

00308 The input parameter length specified in data-name-G exceeded the maximum.
If necessary, revise the data-name-G setting.

00309 The length of the response (data-name-D of the service program) set in the service
program of the SPP to which the service was requested exceeded the response length
(data-name-I of the service program) in CBLDCRPC('CALL ').
If necessary, revise the response length (data-name-D of the service program) set in the
service program of the SPP to which the service was requested.

00310 The service group name set in data-name-F is invalid, or the SPP to which the service
was requested with the service group set in data-name-F was not running.
If necessary, revise the data-name-F setting, or start the SPP to which the service was
requested with the service group set in data-name-F.

CBLDCRPC('CALL ') - Request a remote service

313

00311 The service name set in data-name-E is invalid, or the service name set in data-name-E
by the SPP to which the service was requested has not been specified in the service
operand in the user service definition file.
If necessary, revise the data-name-E setting, or specify the service name set in
data-name-E also in the service operand for the SPP to which the service was
requested.

00312 The SPP to which the service was requested with the service group set in data-name-F is
under server shutdown or service shutdown status.
Check the cause of the shutdown, and then release the SPP from shutdown status.

00313 The SPP to which the service was requested is under termination processing.

00314 The SPP to which the service was requested with the service group set in data-name-F is
not running, or a communication failure might have occurred during the service request
send processing.
Start the SPP to which the service was requested with the service group set in
data-name-F. If the SPP is already running, check to see if a network failure has
occurred.

While 0 was specified for the service request response time (watch_time operand and
an argument in CBLDCRPC('SETWATCH')), the SPP to which the service was requested
terminated abnormally during execution of a service program.
Check the cause of abnormal termination of the SPP to which the service was requested.

00315 OpenTP1 for the SPP to which the service was requested is not running. OpenTP1 might
be under termination processing or a communication failure might have occurred during
the service request send processing.
Start OpenTP1 for the SPP to which the service was requested, or check for a network
failure.

00316 A system error (internal conflict) occurred in the SPP to which the service was requested.

00317 A memory shortage occurred in the SPP to which the service was requested.

00318 A system error (internal conflict) occurred in the UAP that requested the service.

00319 The response length (data-name-D of the service program) set by a service program of
the SPP to which the service was requested is outside the range from 1 to the value
defined in DCRPC_MAX_MESSAGE_SIZE.#
If necessary, revise the response length (data-name-D of the service program) in the
service program of the SPP to which the service was requested.

00320 OpenTP1 for the SPP to which the service was requested is under start processing.

00323 A memory shortage occurred in the UAP that is requesting the service or the SPP to
which the service was requested. When this value is returned, the transaction branch rolls
back.
Check if unneeded memory is allocated by the UAP that is requesting the service or the
SPP to which the service was requested.

Status code Explanation

CBLDCRPC('CALL ') - Request a remote service

314

00324 A system error (internal conflict) occurred in the UAP that requested the service. When
this value is returned, the transaction branch rolls back.

00325 A system error (internal conflict) occurred in the SPP to which the service was requested.
When this value is returned, the transaction branch rolls back.

00326 The response length (data-name-D of the service program) set in the service program of
the SPP to which the service was requested exceeded the response length (data-name-I
of the service program) in CBLDCRPC('CALL '). When this value is returned, the
transaction branch rolls back.
If necessary, revise the response length (data-name-D of the service program) set in the
service program of the SPP to which the service was requested.

00327 When the inter-node load-balancing facility and the extended internode load-balancing
facility are used, the transaction attributes (atomic_update operand) do not match
among the SPPs with the same service group name to which the service was requested.
Another possibility is that the inter-node load-balancing facility and the extended
internode load-balancing facility cannot be used because the version of OpenTP1 at the
node to which loads are to be distributed is earlier than that of the OpenTP1 for the UAP
that is requesting the service.
This value is returned only when the service request is issued to an SPP that uses the
inter-node load-balancing facility and the extended internode load-balancing facility.
If necessary, revise the transaction attribute (atomic_update operand) of the SPP that
uses the inter-node load-balancing facility and the extended internode load-balancing
facility, or revise if necessary the version of OpenTP1.

The dcsvgdef definition command was used to issue a service request to a user server
with the non-transaction attribute (atomic_update is N in the user service definition or
jnl_fileless_option is Y in the system common definition). However, 32 was not
added to data-name-C for CBLDCRPC('CALL ').

00328 The domain name of the service group name with the domain qualification in
data-name-F is invalid.
If necessary, revise the domain name.

00329 A service was requested with a domain qualification in data-name-F, but the port number
of the domain representative schedule service was not found.
If necessary, revise the domain_masters_port operand setting in the system common
definition and the port number setting for the domain representative schedule service in
/etc/services.

00356 The SPP to which the service was requested (the server that receives requests from
socket) cannot receive the service request.
If necessary, revise the max_socket_msg and max_socket_msglen operands in the
user service definition or the user service default definition for the SPP to which the
service was requested.

Status code Explanation

CBLDCRPC('CALL ') - Request a remote service

315

#: If you used the rpc_max_message_size operand, the value of this data area is the
value specified in the rpc_max_message_size operand and not the value of
DCRPC_MAX_MESSAGE_SIZE (1 megabyte).

00366 When the online tester was being used, a service request was issued from a UAP in the
test mode to an SPP in the nontest mode or from a UAP in the nontest mode to an SPP in
the test mode.
If necessary, revise the UAP's test mode setting.

00367 CBLDCRPC('CALL ') with nontransaction setting specified for data-name-C was
called to request a service after a chained RPC with the transaction attribute was
executed.

00370 The SPP to which the service was requested is protected by the security facility.
The UAP that requested the service by executing CBLDCRPC('CALL ') does not have
permission to access the SPP to which the service was requested. If necessary, revise the
access permissions for the SPP to which the service was requested.

00372 The transaction branch cannot be started because it exceeds the maximum number of
transaction branches that can be activated concurrently in the OpenTP1 for the SPP to
which the service was requested.
If necessary, revise the setting in the trn_tran_process_count operand in the
transaction service definition.

The transaction branch cannot be started because it exceeds the maximum number of
child transaction branches that can be activated from one transaction branch by the UAP
that is requesting the service.
If necessary, revise the setting in the trn_max_subordinate_count operand in the
transaction service definition.

32 is not added to the value specified for data-name-C when a service with domain
qualification specified in a transaction is requested.

Transaction branching cannot start because the SPP to which the service was requested
encountered a resource manager (RM) error.
Eliminate the cause of the resource manager (RM) error and then re-execute the function.

In the System Environment window of TP1/LiNK, the Transaction Facility item is not
set to Yes.
If necessary, revise the Transaction Facility setting in the System Environment window
of TP1/LiNK.

00378 The SPP that received the service request terminated abnormally during execution of the
service program.
If necessary, revise the service program processing of the SPP that received the service
request. This status code is returned only when "00000001" is specified in the
pc_extend_function operand in the user service definition of the UAP that requested
the service. When "00000000" is specified in the rpc_extend_function operand or
when this operand is omitted, status code 00307 or 00314 is returned, instead of 00378.

Status code Explanation

CBLDCRPC('CALL ') - Request a remote service

316

(1) Data areas of CBLDCRPC('CALL ')
Data areas of CBLDCRPC('CALL ') are explained below.

Values passed to server UAP

Allocate an area (data-name-J) for the response from the service program before
requesting a service. The client UAP sets the following values in CBLDCRPC('CALL
').

• Input parameter (data-name-H)

• Input parameter length (data-name-G)

• Response length (data-name-I)
The input parameter, input parameter length, and response length values which are set
in CBLDCRPC('CALL ') of the client UAP are passed to the service program as
is. Change the notation of character codes or digits in the processing of the client UAP
or requested service program if required. If a service request is addressed to a service
program which does not return any response, the specified response length is ignored.

The maximum values of input parameter length and response length are declared as
DCRPC_MAX_MESSAGE_SIZE# in the header file dcrpc.h. See the contents of
dcrpc.h to confirm the maximum values.

#: If you used the rpc_max_message_size operand, the value of this data area is the
value specified in the rpc_max_message_size operand and not the value of
DCRPC_MAX_MESSAGE_SIZE (1 megabyte).

Values returned from server UAP

When the service program terminates and response is returned, the following values
can be referenced:

• Response from service program (data-name-J)

• Length of response from service program (data-name-I)
The value of data-name-I is the length of the response which is actually returned from
the service program. The values of data-name-J and data-name-I can be referenced in
the following cases depending on the RPC mode:

• In the case of synchronous response-type RPC and chained RPC

The values of data-name-J and data-name-I can be referenced when
CBLDCRPC('CALL ') returns.

• In the case of asynchronous response-type RPC

The value of data-name-J can be referenced when CBLDCRPC('POLLANYR')
which receives the response returns. The value of data-name-I cannot be
referenced.

CBLDCRPC('CALL ') - Request a remote service

317

• In the case of nonresponse-type RPC

The values of data-name-J and data-name-I cannot be referenced.

If CBLDCRPC('CALL ') or CBLDCRPC('POLLANYR') returns with an error, the
values of data-name-J and data-name-I cannot be referenced.

If the returned response is larger than the response area acquired by the client UAP
(data-name-I), CBLDCRPC('CALL ') returns with an error, giving the status code
00309.

Value specified for data-name-C

The value specified for data-name-C and the execution result of CBLDCRPC('CALL
') are explained below.

• Synchronous response-type RPC (when 0 is specified for data-name-C)

CBLDCRPC('CALL ') will not return until a response returns or a
communication error occurs.

• Asynchronous response-type RPC (when 2 is specified for data-name-C)

CBLDCRPC('CALL ') will return immediately. The response can be
referenced after the response is received asynchronously in
CBLDCRPC('POLLANYR'). Do not free the response storage area (data-name-J)
until the asynchronous response-type RPC is terminated due to one of the
following causes:

• A response is received by CBLDCRPC('POLLANYR')

• The receiving of responses is rejected by CBLDCRPC('DISCARDF')

• Commitment or rollback is performed when a service is requested from a
transaction.

When an asynchronous response-type RPC is used in a transaction, receive responses
by using CBLDCRPC('POLLANYR') before performing the synchronization point
processing (commitment or rollback). No response can be received by
CBLDCRPC('POLLANYR') after the synchronization point processing. To designate a
specific response received by CBLDCRPC('POLLANYR'), specify the positive integer
(descriptor), which is returned by CBLDCRPC('CALL '), as the argument of
CBLDCRPC('POLLANYR'). Thus, hold the value of data-name-D of
CBLDCRPC('CALL ') to designate a specific response received.

To receive responses after the synchronization point processing in non-transaction
processing, specify the corresponding option in rpc_extend_function of the system
service definition. For details about rpc_extend_function, see the manual OpenTP1
System Definition.

• Nonresponse-type RPC (when 1 is specified for data-name-C)

CBLDCRPC('CALL ') - Request a remote service

318

CBLDCRPC('CALL ') will return immediately without waiting for
completion of the service program processing. The service program is treated as
a function which does not return any response. Therefore, the UAP requesting a
service cannot determine whether the service program has been performed. With
this specification, the response (data-name-J) and its length (data-name-I) cannot
be referenced.

• Chained RPC (when 4 is specified for data-name-C)

CBLDCRPC('CALL ') will not return until a response is returned or a
communication error occurs. When the same service is requested more than once
using a chained RPC, the process used for the first request can be used for the
subsequent requests.

There are the following restrictions on the use of chained RPCs:

1. The shutdown state of the user server or service cannot be detected by the
second and subsequent calls of CBLDCRPC('CALL ').

2. The entire user server enters shutdown state if an error occurs during the
service program processing of the second and subsequent calls of
CBLDCRPC('CALL '). Services do not enter shutdown state
individually.

(2) Error cases of CBLDCRPC('CALL ')
Reasons why CBLDCRPC('CALL ') returns with an error are explained below.

If the OpenTP1 at the node containing the server UAP is not active

If the OpenTP1 to which the service is requested is not running, CBLDCRPC('CALL
') returns with an error and sets one of the following status code values:

00306

00314

00315

00320

If the server UAP is not active

When the server UAP is a multiserver, the service request is dealt with a new process
which is activated by the OpenTP1 even if the server UAP is being terminated
abnormally or being partially recovered. However,CBLDCRPC('CALL ') returns
with an error in the following cases:

1. No service request can be addressed to the SPP in shutdown state. If the service
group is shut down, CBLDCRPC('CALL ') returns with an error, giving the
status code 00312.

2. If the SPP is being terminated or has been terminated by the stop command for

CBLDCRPC('CALL ') - Request a remote service

319

the user server (dcsvstop command) or for OpenTP1 (dcstop command),
CBLDCRPC('CALL ') returns with an error and sets one of the following
status code values:

00310

00312

00313

Which status code returns depends on the timing when CBLDCRPC('CALL ')
was called.

3. If the OpenTP1 is being started, CBLDCRPC('CALL ') returns with an error,
giving the status code 00320. In this case, a service may be requested normally
after activation of the server UAP or OpenTP1 is completed. Since activation of
the OpenTP1 is completed when a message log with the message ID
KFCA01809-I is output, request a service again after this message appears.

When a service request is issued in an environment where internode load-balancing
and extended internode load-balancing are in use:

If a service request is issued in an environment where internode load- balancing and
extended internode load-balancing are in use and the requested service at the addressed
node is unavailable because of a closed schedule, the OpenTP1 automatically transfers
that service request to another node. If one of the following events occurs, however,
CBLDCRPC('CALL ') returns with an error, giving the status code 00327:

1. The service was requested from a transaction process and the transaction attribute
of the service at the transfer destination node disagrees with that of the closed
service.

2. The version of the OpenTP1 residing in the transfer destination node is earlier
than the version of the OpenTP1 residing in the node that requested the service.

If the above error return occurs, take actions to reach consistency among:

1. Transaction attributes of SPPs that participate in internode load-balancing and
extended internode load-balancing.

2. Versions of OpenTP1 that participate in internode load-balancing and extended
internode load-balancing.

When a service request is addressed to the server that receives requests from a socket

The server that receives requests from a socket controls message congestion according
to the specified values for max_socket_msg and max_socket_msglen in the user
service definition. It is probable that service requests cannot be accepted if a message
reaches the defined value. In this case, CBLDCRPC('CALL ') returns with an error,
giving the status code 00356. If this status code is returned, the client UAP can
sometimes reissue the service request successfully after waiting for a while.

CBLDCRPC('CALL ') - Request a remote service

320

When a chained RPC is used

If CBLDCRPC('CALL ') which is not a transaction is called from the UAP using
a chained RPC which is processed as a transaction to the same server UAP,
CBLDCRPC('CALL ') returns with an error, giving the status code 00367.

When the online tester is used

If the online tester is in use and CBLDCRPC('CALL ') is called from a UAP in
test mode to a UAP in nontest mode or vice versa, CBLDCRPC('CALL ') returns
with an error, giving the status code 00366.

When the security facility is used

If the desired service is protected with the security facility and the client UAP which
called CBLDCRPC('CALL ') does not have the access permission for the SPP,
CBLDCRPC('CALL ') returns with an error, giving the status code 00370.

(3) Timing when CBLDCRPC('CALL ') results in error
The following explains the timing when an error is returned to the client UAP if the
SPP to which the service request is addressed terminates abnormally.

• Synchronous response-type RPC or chained RPC (when 0 or 4 is specified for
data-name-C)

If an SPP which executes a service terminates abnormally before completion of
the processing, CBLDCRPC('CALL ') returns with an error, giving the status
code 00307. If an infinite period of time is specified in the watch_time operand
in the user service definition of the client UAP, the function returns with an error,
giving the status code 00314.

• Asynchronous response-type RPC (when 2 is specified for data-name-C)

If an SPP which executes a service terminates abnormally before completion of
the processing, CBLDCRPC('POLLANYR') returns with an error, giving the status
code 00307. If an infinite period of time is specified in the watch_time operand
in the user service definition of the client UAP, the function returns with an error,
giving the status code 00314.

• Nonresponse-type RPC (when 1 is specified for data-name-C)

The client UAP cannot detect abnormal termination of server UAP.

When CBLDCRPC('CALL ') results in error due to time monitoring of the client
UAP

In the following cases, CBLDCRPC('CALL ') returns with an error, giving the
status code 00307, after the time specified in the watch_time operand in the user
service definition of the client UAP has elapsed:

• The entire OpenTP1 at the node containing the SPP terminates abnormally.

CBLDCRPC('CALL ') - Request a remote service

321

• An error occurs before the server UAP receives service request data or before the
client UAP receives the result after the server UAP processing is completed.

(4) Specification for reexecuting the service request if CBLDCRPC('CALL
') results in error

Even if the OpenTP1 to which the service request is issued is not active because it is
being started or is engaged in system switching, you can have the OpenTP1 re-execute
the requested search and service request transmission without treating
CBLDCRPC('CALL ') processing as an error.

To re-execute the requested search and service request transmission, specify Y in the
rpc_retry operand in the system common definition. You use the
rpc_retry_count and rpc_retry_interval operands to specify the
re-executions count and re-execution interval, respectively, for a requested search and
service request transmission. If this count value exceeds the re-executions count value
specified in the system common definition, CBLDCRPC('CALL ') returns with an
error and sets one of the following status code values:

00301

00306

00310

00314

00315

00320

(5) When a priority is given to a service request
To specify a schedule priority for a service request, call CBLDCRPC('SETSVPRI')
immediately before CBLDCRPC('CALL '). If no schedule priority is specified, the
priority of the service request is determined according to the default interpretation of
the schedule service.

(6) Difference between status codes 00310 and 00306
These status codes are returned if the user server corresponding to the service group
name is not found.

• 00310

Indicates the user server is not found after searching all nodes specified for
all_node in the system common definition.

• 00306

Indicates a communication error occurred on one or more nodes specified for
all_node during the search. This return value may indicate the corresponding

CBLDCRPC('CALL ') - Request a remote service

322

OpenTP1 system is not found.

(7) Specification for the return of status code 00378
You can use the status code 00378 instead of 00307 or 00314 to check whether the
SPP that was asked to offer its service abnormally terminated before processing was
completed. For this purpose, assign 00000001 to the rpc_extend_function
operand in the user service definition. With this specification, the status code 00378
will return if the above error occurs. If nothing or 00000000 is assigned to the
rpc_extend_function operand, the status code 00307 or 00314 will be returned,
instead of 00378.

(8) Relationship between status codes and synchronization point
processing

The relationship between status codes of CBLDCRPC('CALL ') and
synchronization point processing (commitment and rollback) is explained below. The
description applies to the service request which is a transaction, rather than the service
request which is not a transaction (including the case when 32 is added to the value of
data-name-C indicating the RPC mode).

When commitment is performed even though CBLDCRPC('CALL ') returns with an
error

The status code 00307 may be returned due to abnormal termination of the service
program which the service request is addressed, a node error, or network error.
However, when the client UAP is not a transaction, the service program to which the
service request is addressed may terminate normally and database may be updated.

Status codes which require rollback processing

If CBLDCRPC('CALL ') called from a transaction returns with an error, some
status codes always require rollback processing for the transaction (the server UAP
enters rollback_only state). In this case, rollback processing is always performed
even if either of the COBOL-UAP creation programs for commitment and rollback is
used. The following status codes of CBLDCRPC('CALL ') always require rollback
processing for the transaction:

00311

00317

00319

00326

(9) Notes on requesting a service
1. Define the service group name and service name at server UAP environment

setup. These names are set in CBLDCRPC('CALL '). If a service is requested
while invalid service group name or service name is set in CBLDCRPC('CALL

CBLDCRPC('CALL ') - Request a remote service

323

'), the function returns with an error, giving the status code 00310 or 00311. If
the service program does not return response, CBLDCRPC('CALL ') does not
return with an error, giving the status code 00310.

2. The process of the server UAP is different from that of the client UAP. Therefore,
the following matters are different from ordinary procedure calls:

• Attributes which are given to the process of the client UAP by the OS
(environment variables, schedule priority (nice value), etc.) are not passed
on to the server UAP.

• Environment settings of the OpenTP1 specified at the node of the client UAP
(existence of specification of transaction attribute, time limit of transaction
branch, schedule priority, etc.) are not passed on to the OpenTP1 of the
server UAP.

3. Do not specify the same buffer area for the input parameter and the response from
the service program.

4. If 1 is specified for data-name-C, the following status codes will not return:

• Errors which never occur

00309

00319

• Errors which cannot be detected even though they could occur

00311

00312

00313

00316

00318

00320

00370

In addition, OpenTP1 does not output a message when an error occurs. If errors
must be detected, consider specifying 0 to data-name-C
(synchronous-response-type RPC).

5. When a service group is requested by CBLDCRPC('CALL ') from a
transaction, an SPP is occupied until the transaction terminates. When the same
service is requested more than once by CBLDCRPC('CALL ') from the same
transaction, perform the following:

• Re-estimate the values specified for the balance_count operand and
parallel_count operand in the user service definition according to the

CBLDCRPC('CALL ') - Request a remote service

324

number of usages.

• Request a service by using chained RPCs so that the number of processes
will not increase.

If the values specified for the balance_count operand and parallel_count
operand are incorrect, the transaction will shut down abnormally and a deadlock
may occur.

6. When an asynchronous response-type RPC is used, the server UAP may be
occupied until CBLDCRPC('POLLANYR') receives all asynchronous responses or
CBLDCRPC('DISCARDF') rejects the receiving of asynchronous responses. This
may occur regardless of whether it is a transaction or not. Increase the number of
resident processes according to how many times an asynchronous response-type
RPC is used.

An asynchronous response-type RPC requires many resources in addition to
occupying the server UAP. To prevent responses from degrading performance of
UAP processing and activation of unnecessary SPPs, ensure that responses are
received or the receiving of responses is rejected after CBLDCRPC('CALL ')
of an asynchronous response-type RPC is used.

7. To receive a response after using the service request in
asynchronous-response-type RPC for more than one time continuously, specify a
different response storage area as shown below for each service request when
requesting an asynchronous-response-type RPC service. If the same area is
specified, the response that comes in later will be overwritten and an accurate
response cannot be received.

8. The server UAP (SPP) that requested a service using an asynchronous
response-type RPC sends a response soon after the service function is executed,
regardless of whether the process that executed the asynchronous response-type
RPC issued the CBLDCRPC('POLLANYR'). If the same asynchronous
response-type RPC is executed numerous times simultaneously without the
CBLDCRPC('POLLANYR') being issued, the response sent by the SPP may stay
in the TCP/IP buffer and the SPP may fail to send a response. If the SPP fails to
send a response, no response can be received from the SPP even if the source of
the asynchronous response-type RPC issues the CBLDCRPC('POLLANYR').

01 unique-name-3-1.
 02 data-name-I1 PIC S9(9) COMP.
 02 data-name-J1 PIC X(n).
01 unique-name-3-2.
 02 data-name-I2 PIC S9(9) COMP.
 02 data-name-J2 PIC X(n).
01 unique-name-3-3.
 02 data-name-I3 PIC S9(9) COMP.
 02 data-name-J3 PIC X(n).

CBLDCRPC('CALL ') - Request a remote service

325

9. If a large number of asynchronous response-type RPCs or non-response type
RPCs having the transaction attribute are executed, messages about transactions
sent by the SPP can no longer be received. In this case, the transactions may roll
back.

(10) When a service is requested with domain qualification
Specifying a service group name with domain qualification enables requesting an
OpenTP1 service in the DNS domain. Specify the service group name suffixed by an
at mark (@) and the DNS domain name for domain qualification.

Notes on requesting a service with domain qualification

1. To request a service with domain qualification, add (256 + 32) to the value of
data-name-C of CBLDCRPC('CALL ') indicating the RPC mode. If the
service group name with domain qualification is specified without addition,
CBLDCRPC('CALL ') returns with an error, giving the status code 00310.

2. If an RPC with domain qualification is used, a transaction cannot be extended
even if the process which called CBLDCRPC('CALL ') is a transaction.
Therefore, to request a service with domain qualification from a transaction, add
(256 + 32) to the value of data-name-C of CBLDCRPC('CALL ') indicating
the RPC mode in order not to have the transaction extended. When the local
domain is specified for the domain name, the transaction also cannot be extended.

3. When an RPC with domain qualification is used, a service request can be
addressed only to a server that receives requests from a queue, rather than a server
that receives requests from a socket.

4. A service request with domain qualification is sent to the domain-alternate
schedule service which is activated on the host registered with the
namdomainsetup command. Obtain the port number of the domain-alternate
schedule service from /etc/services. If an error occurs while transferring the
service request and multiple host names are registered with the
namdomainsetup command, the service request is transferred to other hosts
sequentially. Even if the RPC with domain qualification terminates normally, an
error may occur during transfer to the domain-alternate schedule service.

Preparation for requesting a service with domain qualification

Perform the following environment setup for an RPC with domain qualification:

1. Register the name of the host on which the domain-alternate schedule service is
activated by using the namdomainsetup command.

2. Define as follows the port number of the domain-alternate schedule service in /
etc/services of the host on which the OpenTP1 which requests a service with
domain qualification is activated:
OpenTP1scd port-number/tcp

CBLDCRPC('CALL ') - Request a remote service

326

3. Specify the well-known port of the domain-alternate schedule service for the
scd_port operand in the schedule service definition for the OpenTP1 which
activates the domain-alternate schedule service.

Example
Client UAP which executes the service ADD

Server UAP which executes the service ADD

01 unique-name-1.
 02 data-name-A PIC X(8) VALUE 'CALL '.
 02 STATUS-CODE PIC X(5) VALUE SPACES.
 02 FILLER PIC X(3).
 02 FLAGS PIC S9(9) COMP VALUE ZERO.
 02 DESCRIPTOR PIC S9(9) COMP VALUE ZERO.
 02 SERVICE-NAME PIC X(32) VALUE SPACES.
 02 GROUP-NAME PIC X(32) VALUE SPACES.
01 unique-name-2.
 02 NAME-LENG PIC S9(9) COMP.
 02 NAME PIC X(32) VALUE SPACES.
01 unique-name-3.
 02 RESULT-LENG PIC S9(9) COMP.
 02 RESULT PIC X(20).
*
MOVE 'ADDRESS-BOOK' TO GROUP-NAME.
MOVE 'ADD' TO SERVICE-NAME.
MOVE 'SATO' TO NAME.
MOVE 4 TO NAME-LENG.
MOVE 20 TO RESULT-LENG.
CALL 'CBLDCRPC' USING unique-name-1 unique-name-2
 unique-name-3.
IF STATUS-CODE NOT = '00000' THEN
 DISPLAY 'FAILED'
END-IF.
STOP RUN.

CBLDCRPC('CALL ') - Request a remote service

327

Note
Assume that you want to perform a transactional RPC on an OpenTP1 system other
than the domain specified in the all_node clause of the system common definition.
In this case, you must ensure that the node identifiers (node_id clause of the system
common definition) of all OpenTP1 systems in the local domain and remote domain
are unique. In addition, all the OpenTP1 systems must be version 03-02 or later. If
these conditions are not met, the transaction may not recover properly.

PROGRAM-ID. ADD.
DATA DIVISION.
LINKAGE SECTION.
01 unique-name-1.
 02 ADD-NAME PIC X(20).
01 unique-name-2.
 02 NAME-LENG PIC S9(9) COMP.
01 unique-name-3.
 02 RESULT PIC X(20).
01 unique-name-4.
 02 RESULT-LENG PIC S9(9) COMP.
 :
 :
PROCEDURE DIVISION USING unique-name-1 unique-name-2
 unique-name-3 unique-name-4.
 :
* Processes the contents of the received unique-name-1
 :
MOVE 'ADD-COMPLETE' TO RESULT.
MOVE 12 TO RESULT-LENG.
EXIT PROGRAM.

CBLDCRPC('CLOSE ') - Terminate an application program

328

CBLDCRPC('CLOSE ') - Terminate an application program

Format
PROCEDURE DIVISION specification

DATA DIVISION specification

Description
CBLDCRPC('CLOSE ') closes the environment for using various types of OpenTP1
COBOL-UAP creation programs. OpenTP1 COBOL-UAP creation programs cannot
be called after CBLDCRPC('CLOSE ').

CBLDCRPC('CLOSE ') must be called from the main program. Call it only once in
the process.

CBLDCRPC('CLOSE ') also informs OpenTP1 of normal termination of a UAP. If a
UAP terminates without CBLDCRPC('CLOSE ') called, OpenTP1 assumes that the
UAP terminated abnormally. Consequently, the service group might be shut down or
the process might be restarted. To make matters worse, various OpenTP1 resources
might not be released, which affects the subsequent processing. If CBLDCRPC('OPEN
') is called from any UAP used with OpenTP1, CBLDCRPC('CLOSE ') must be
called before the UAP terminates with STOP RUN.

Call CBLDCRPC('CLOSE ') even if CBLDCRPC('OPEN ') returns with an error.

After CBLDCRPC('CLOSE ') is called, CBLDCRPC('OPEN ') cannot be called.

Data areas whose values are set in the UAP
data-name-A
Specify VALUE 'CLOSE ' for the request code indicating UAP termination.

data-name-C
Specify 0.

CALL 'CBLDCRPC' USING unique-name-1

01 unique-name-1.
 02 data-name-A PIC X(8) VALUE 'CLOSE '.
 02 data-name-B PIC X(5).
 02 FILLER PIC X(3).
 02 data-name-C PIC S9(9) COMP VALUE ZERO.

CBLDCRPC('CLOSE ') - Terminate an application program

329

Data area whose value is returned from OpenTP1
data-name-B
A status code of 5 digits is returned.

Status codes
Status code Explanation

00000 Normal termination.

00301 The value specified for the data-name is invalid.
This error also occurs if the request code (data-name-A) is invalid.

Other than the above An unprecedented error (e.g., program damage) occurred.

CBLDCRPC('CLTSEND ') - Report data to CUP unidirectionally

330

CBLDCRPC('CLTSEND ') - Report data to CUP unidirectionally

Format
PROCEDURE DIVISION specification

DATA DIVISION specification

Description
CBLDCRPC('CLTSEND ') sends data to the CUP unidirectionally.
CBLDCRPC('CLTSEND ') sends data specified for data-name-G of the length
specified for data-name-F to the process (CUP) corresponding to the port number of
the host specified for data-name-D and data-name-E. The possible sending data length
is in the range of bytes from 0 to DCRPC_MAX_MESSAGE_SIZE#.

#: If you used the rpc_max_message_size operand, the value of this data area is the
value specified in the rpc_max_message_size operand and not the value of
DCRPC_MAX_MESSAGE_SIZE (1 megabyte).

Data sent by CBLDCRPC('CLTSEND ') is received by the TP1/Client library function
dc_clt_chained_accept_notification() or
dc_clt_accept_notification(). For the function
dc_clt_chained_accept_notification() or
dc_clt_accept_notification(), see the OpenTP1 TP1/Client User's Guide
TP1/Client/W, TP1/Client/P manual.

Data areas whose values are set in the UAP
data-name-A
Specify VALUE 'CLTSEND' for the request code indicating that data is reported to
UAP unidirectionally.

CALL 'CBLDCRPC' USING unique-name-1 unique-name-2

01 unique-name-1.
 02 data-name-A PIC X(8) VALUE 'CLTSEND '.
 02 data-name-B PIC X(5).
 02 FILLER PIC X(3).
 02 data-name-C PIC S9(9) COMP VALUE ZERO.
 02 data-name-D PIC S9(9) COMP.
 02 data-name-E PIC X(n).
01 unique-name-2.
 02 data-name-F PIC S9(9) COMP.
 02 data-name-G PIC X(n).

CBLDCRPC('CLTSEND ') - Report data to CUP unidirectionally

331

data-name-C
Specify 0.

data-name-D
Specify the number of the port to which data is sent.

data-name-E
Specify the name of the host to which data is sent. The specified host name must be a
1 to 255 byte character string. End the character string with space.

data-name-F
Specify the length of data to be sent.

data-name-G
Specify data to be sent.

Data area whose value is returned from OpenTP1
data-name-B
A status code of 5 digits is returned.

Status codes

#: If you used the rpc_max_message_size operand, the value of this data area is the
value specified in the rpc_max_message_size operand and not the value of
DCRPC_MAX_MESSAGE_SIZE (1 megabyte).

Notes
1. Use CBLDCRPC('CLTSEND ') only when the calling of the TP1/Client function

Status code Explanation

00000 Normal termination.

00301 The value specified for the argument is invalid. This error also occurs if the status
code (data-name-A) is invalid.

00306 A network error occurred.

00302 CBLDCRPC('OPEN ') was not called.

00304 The memory became insufficient.

00308 The length of data to be sent exceeds DCRPC_MAX_MESSAGE_SIZE#.

00314 There is no process at the destination.

A network error occurred.

CBLDCRPC('CLTSEND ') - Report data to CUP unidirectionally

332

dc_clt_chained_accept_notification() or
dc_clt_accept_notification() by the process of destination is obvious. If
the process of the destination is not active, CBLDCRPC('CLTSEND ') returns
with an error, giving the status code 00314.

2. Normal return of CBLDCRPC('CLTSEND ') indicates that sending at RPC
communication protocol (TCP/IP) level is completed. Therefore, normal
termination of CBLDCRPC('CLTSEND ') does not guarantee that the data is
received normally by the CUP using the function
dc_clt_chained_accept_notification() or
dc_clt_accept_notification().

3. CBLDCRPC('CLTSEND ') can report data only to the function
dc_clt_chained_accept_notification() or
dc_clt_accept_notification() used by the CUP. Data cannot be sent to
SPP processes and local processes.

4. To specify a host name consisting of 80 to 255 characters in TP1/Server Base for
AIX, recompile and relink the UAP using libbetran2.a.

CBLDCRPC('DISCARDF') - Reject the receiving of processing results

333

CBLDCRPC('DISCARDF') - Reject the receiving of processing results

Format
PROCEDURE DIVISION specification

DATA DIVISION specification

Description
CBLDCRPC('DISCARDF') specifies that no more responses (which have not been
returned) will be received through an asynchronous-response-type RPC. After
CBLDCRPC('DISCARDF') is used, returned responses are discarded instead of being
received.

To stop receiving further processing results of an asynchronous-response-type RPC,
use CBLDCRPC('DISCARDF'). Otherwise, CBLDCRPC('POLLANYR') might receive
unnecessary responses.

Use CBLDCRPC('DISCARDF') in the following cases:

• After a response wait timeout occurs, the buffer for holding the processing results
is released.

• An asynchronous-response-type RPC has been used more than once, but only the
first response is necessary.

Data areas whose values are set in the UAP
data-name-A
Specify VALUE 'DISCARDF' for the request code indicating that the receiving of
processing results is refused.

data-name-C
Specify 0.

CALL 'CBLDCRPC' USING unique-name-1

01 unique-name-1.
 02 data-name-A PIC X(8) VALUE 'DISCARDF'.
 02 data-name-B PIC X(5).
 02 FILLER PIC X(3).
 02 data-name-C PIC S9(9) COMP VALUE ZERO.

CBLDCRPC('DISCARDF') - Reject the receiving of processing results

334

Data area whose value is returned from OpenTP1
data-name-B
A status code of 5 digits is returned.

Status codes
Status code Explanation

00000 Normal termination

00301 The value specified for the data-name is invalid. This error also occurs if the request code
(data-name-A) is invalid.

Other than the above An unprecedented error (e.g., program damage) occurred.

CBLDCRPC('DISCARDS') - Reject acceptance of specific processing results

335

CBLDCRPC('DISCARDS') - Reject acceptance of specific processing
results

Format
PROCEDURE DIVISION specification

DATA DIVISION specification

Description
CBLDCRPC('DISCARDS') declares that the UAP will no longer receive a specific
response which has not yet returned. This function is applicable when an
asynchronous-response type RPC is used. To specify the asynchronous response
whose acceptance is to be rejected, specify the descriptor returned when an
asynchronous-response type RPC returned in data-name-D. Of the responses that
return after CBLDCRPC('DISCARDS') is called, responses having the same descriptor
as the specified descriptor are discarded without being received.

Data areas whose values are set in the UAP
data-name-A
Specify VALUE 'DISCARDS' for the request code indicating the acquisition of the
node address of a gateway.

data-name-C
Specify 0.

data-name-D
Specify the descriptor returned when CBLDCRPC('CALL ') of an
asynchronous-response type RPC terminated normally.

Data areas whose values are returned from OpenTP1
data-name-B
A status code of 5 digits is returned.

CALL 'CBLDCRPC' USING unique-name-1

01 unique-name-1.
 02 data-name-A PIC X(8) VALUE 'DISCARDS'.
 02 data-name-B PIC X(5).
 02 FILLER PIC X(3).
 02 data-name-C PIC S9(9) COMP VALUE ZERO.
 02 data-name-D PIC S9(9) COMP.

CBLDCRPC('DISCARDS') - Reject acceptance of specific processing results

336

Status codes
Status code Explanation

00000 Normal termination.

00301 The value specified for the data-name is invalid.
This error also occurs if the request code (data-name-A) is invalid.

00302 CBLDCRPC('OPEN ') was not called.

00322 The descriptor specified for data-name-D does not exist. An asynchronous-response type
RPC corresponding to the specified descriptor was not sent, or a response has already
been received through an asynchronous-response type RPC, or acceptance of a response
was rejected.

CBLDCRPC('GETCLADR') - Acquire the node address of a client UAP

337

CBLDCRPC('GETCLADR') - Acquire the node address of a client UAP

Format
PROCEDURE DIVISION specification

DATA DIVISION specification

Description
CBLDCRPC('GETCLADR') allows the server UAP to acquire the address of the node
at which the client UAP process is working. Security checking for the client UAP can
be performed using the address obtained by this program.

The address obtained by CBLDCRPC('GETCLADR') cannot be used for sending a
service response or error response.

CBLDCRPC('GETCLADR') must be called from a service program. Otherwise,
processing is unpredictable.

Data areas whose values are set in the UAP
data-name-A
Specify VALUE 'GETCLADR' for the request code indicating that the node address of
the client UAP be acquired.

data-name-C
Specify 0.

Data areas whose values are returned from OpenTP1
data-name-B
A status code of 5 digits is returned.

data-name-D
The node address of the client UAP is returned.

CALL 'CBLDCRPC' USING unique-name-1

01 unique-name-1.
 02 data-name-A PIC X(8) VALUE 'GETCLADR'.
 02 data-name-B PIC X(5).
 02 FILLER PIC X(3).
 02 data-name-C PIC S9(9) COMP VALUE ZERO.
 02 data-name-D PIC S9(9) COMP.

CBLDCRPC('GETCLADR') - Acquire the node address of a client UAP

338

Status codes

Note
When both the following conditions occur, the node address of the client UAP returned
by CBLDCRPC('GETCLADR') may differ from the node address actually used by the
client UAP during communication.

• A service request was accepted using the remote API facility.

• The host containing the client UAP is a multi-homed host mode.

Status code Explanation

00000 Normal termination.

00301 The value specified for the data-name is invalid.
This error also occurs if the request code (data-name-A) is invalid.

Other than the above An unprecedented error (e.g., program damage) occurred.

CBLDCRPC('GETERDES') - Acquire the descriptor of an asynchronous response-type RPC request which has encoun-
tered an error

339

CBLDCRPC('GETERDES') - Acquire the descriptor of an
asynchronous response-type RPC request which has encountered
an error

Format
PROCEDURE DIVISION specification

DATA DIVISION specification

Description
CBLDCRPC('GETERDES') acquires the descriptor of a service request which has
encountered an error when it is called just after CBLDCRPC('POLLANYR') without a
particular asynchronous response specified returns with an error.

It can acquire the descriptor only when the error has occurred on the SPP. If an error
has occurred on the CBLRPC('POLLANYR') caller, CBLDCRPC('GETERDES')
cannot acquire the descriptor.

Data areas whose values are set in the UAP
data-name-A
Specify VALUE 'GETERDES' for the request code indicating descriptor acquisition.

data-name-C
Specify 0.

Data areas whose values are returned from OpenTP1
data-name-B
A status code of 5 digits is returned.

data-name-D
The descriptor is returned if it is acquired. Otherwise, 0 is set here.

CALL 'CBLDCRPC' USING unique-name-1

01 unique-name-1.
 02 data-name-A PIC X(8) VALUE 'GETERDES'.
 02 data-name-B PIC X(5).
 02 FILLER PIC X(3).
 02 data-name-C PIC S9(9) COMP VALUE ZERO.
 02 data-name-D PIC S9(9) COMP.

CBLDCRPC('GETERDES') - Acquire the descriptor of an asynchronous response-type RPC request which has encoun-
tered an error

340

Status codes
Status code Explanation

00000 Normal termination.

00301 The value specified for the data name is invalid. This error also occurs when the request
code (data-name-A) is invalid.

CBLDCRPC('GETGWADR') - Acquire the node address of a gateway

341

CBLDCRPC('GETGWADR') - Acquire the node address of a gateway

Format
PROCEDURE DIVISION specification

DATA DIVISION specification

Description
CBLDCRPC('GETGWADR') acquires the node address of a gateway from the server
UAP when a service request was received from a client UAP via a gateway, such as
the application gateway FireWall.

The server UAP can acquire the node address of the gateway when a service was
requested using the remote API facilities.

A service response or error response cannot be sent using the address that is returned.

Call CBLDCRPC('GETGWADR') from the service program. Processing is not
guaranteed if CBLDCRPC('GETGWADR') is called from a program other than the
service program.

Data areas whose values are set in the UAP
data-name-A
Specify VALUE 'GETGWADR' for the request code indicating the acquisition of the
node address of a gateway.

data-name-C
Specify 0.

Data areas whose values are returned from OpenTP1
data-name-B
A status code of 5 digits is returned.

CALL 'CBLDCRPC' USING unique-name-1

01 unique-name-1.
 02 data-name-A PIC X(8) VALUE 'GETGWADR'.
 02 data-name-B PIC X(5).
 02 FILLER PIC X(3).
 02 data-name-C PIC S9(9) COMP VALUE ZERO.
 02 data-name-D PIC S9(9) COMP.

CBLDCRPC('GETGWADR') - Acquire the node address of a gateway

342

data-name-D
The node address is returned. The value 0 is set when the remote API facilities were
not used.

Status codes
Status code Explanation

00000 Normal termination.

00301 The value specified for the data-name is invalid. This error also occurs if the request
code (data-name-A) is invalid.

00302 CBLDCRPC('GETGWADR') was not called from the service program.

CBLDCRPC('GETSVPRI') - Reference the schedule priority of a service request

343

CBLDCRPC('GETSVPRI') - Reference the schedule priority of a
service request

Format
PROCEDURE DIVISION specification

DATA DIVISION specification

Description
CBLDCRPC('GETSVPRI') references that schedule priority of a service request which
was set by CBLDCRPC('SETSVPRI'). The value obtained by
CBLDCRPC('GETSVPRI') remains unchanged until the UAP calls
CBLDCRPC('SETSVPRI') again.

CBLDCRPC('GETSVPRI') returns the default value (4) to data-name-C in the
following cases:

• The UAP has not called CBLDCRPC('SETSVPRI').

• CBLDCRPC('SETSVPRI') has been called with 0 specified for data-name-C.

Data areas whose values are set in the UAP
data-name-A
Specify VALUE 'GETSVPRI' for the request code indicating that the schedule priority
of the service request be referenced.

Data areas whose values are returned from OpenTP1
data-name-B
A status code of 5 digits is returned.

data-name-C
The schedule priority is returned in a range from 1 to 8.

CALL 'CBLDCRPC' USING unique-name-1

01 unique-name-1.
 02 data-name-A PIC X(8) VALUE 'GETSVPRI'.
 02 data-name-B PIC X(5).
 02 FILLER PIC X(3).
 02 data-name-C PIC S9(9) COMP VALUE ZERO.

CBLDCRPC('GETSVPRI') - Reference the schedule priority of a service request

344

Status codes
Status code Explanation

00000 Normal termination.

00301 The value specified for the data-name is invalid.
This error also occurs if the request code (data-name-A) is invalid.

Other than the above An unprecedented error (e.g., program damage) occurred.

CBLDCRPC('GETWATCH') - Reference the service response waiting interval

345

CBLDCRPC('GETWATCH') - Reference the service response waiting
interval

Format
PROCEDURE DIVISION specification

DATA DIVISION specification

Description
CBLDCRPC('GETWATCH') references the current response waiting interval of a
service request. CBLDCRPC('GETWATCH') is used for saving the current value of the
response waiting interval of a service request before temporarily changing it using
CBLDCRPC('SETWATCH').

CBLDCRPC('GETWATCH') returns the service response waiting interval changed by
CBLDCRPC('SETWATCH'). When the interval has not been changed, the following
value is returned:

• For TP1/Server Base: Value of the watch_time operand in the system common
definition

• For TP1/LiNK: 180 seconds

The value obtained by CBLDCRPC('GETWATCH') can be used by the OpenTP1 remote
service request (CBLDCRPC('CALL ')).

Data areas whose values are set in the UAP
data-name-A
Specify VALUE 'GETWATCH' for the request code indicating that the service response
waiting interval be referenced.

data-name-C
Specify 0.

CALL 'CBLDCRPC' USING unique-name-1

01 unique-name-1.
 02 data-name-A PIC X(8) VALUE 'GETWATCH'.
 02 data-name-B PIC X(5).
 02 FILLER PIC X(3).
 02 data-name-C PIC S9(9) COMP VALUE ZERO.

CBLDCRPC('GETWATCH') - Reference the service response waiting interval

346

Data areas whose values are returned from OpenTP1
data-name-B
A status code of 5 digits is returned.

data-name-C
The current service response waiting interval is returned. If 0 is returned, it indicates
that a response will be awaited indefinitely.

Status codes
Status code Explanation

00000 Normal termination.

00301 The value specified for the data-name is invalid.
This error also occurs if the request code (data-name-A) is invalid.

Other than the above An unprecedented error (e.g., program damage) occurred.

CBLDCRPC('OPEN ') - Start an application program

347

CBLDCRPC('OPEN ') - Start an application program

Format
PROCEDURE DIVISION specification

DATA DIVISION specification

Description
CBLDCRPC('OPEN ') prepares to use the various types of OpenTP1 service
programs. CBLDCRPC('OPEN ') must be called in the main program. Call
CBLDCRPC('OPEN ') only once in the process before any other OpenTP1
COBOL-UAP creation program. To initialization procedure in the main program is as
follows:

1. Open the entry point for communication between processes.

2. Acquire shared memory used with OpenTP1.

3. Report the UAP start to OpenTP1 to request OpenTP1 to supervise processes.

4. Initialize the OpenTP1 facilities to be used according to the user service
definition.

If the transaction attribute is specified in the user service definition, the OpenTP1
transaction service and the process service must be in progress at the node.
CBLDCRPC('OPEN ') can be called only after OpenTP1 starts normally when the
OS starts or after OpenTP1 is started normally by entering the dcstart command. If
CBLDCRPC('OPEN ') is called before the normal start of OpenTP1, the program
returns with the status code 00315. In this case, SPP services cannot be requested.

UAP trace is acquired for all OpenTP1 COBOL-UAP creation programs called after
CBLDCRPC('OPEN ') terminates normally. If CBLDCRPC('OPEN ') returns
with an error, the UAP trace is not always acquired.

Data areas whose values are set in the UAP
data-name-A
Specify VALUE 'OPEN ' for the request code indicating UAP service start.

CALL 'CBLDCRPC' USING unique-name-1

01 unique-name-1.
 02 data-name-A PIC X(8) VALUE 'OPEN '.
 02 data-name-B PIC X(5).
 02 FILLER PIC X(3).
 02 data-name-C PIC S9(9) COMP VALUE ZERO.

CBLDCRPC('OPEN ') - Start an application program

348

data-name-C
Specify 0.

Data area whose value is returned from OpenTP1
data-name-B
A status code of 5 digits is returned.

Status codes
Status code Explanation

00000 Normal termination.

00301 The value specified for the data-name is invalid.
This error also occurs if the request code (data-name-A) is invalid.

00302 CBLDCRPC('OPEN ') has already been called.

00303 Initialization was unsuccessful. OpenTP1 COBOL-UAP creation programs can no longer
be called.

00315 OpenTP1 of the node at which the UAP exists was not executed.

00369 The stand-by user server received a stand-by termination request.

00371 When OpenTP1 uses the security facility, an error occurred during initialization of
security environment.

CBLDCRPC('POLLANYR') - Receive processing results in asynchronous mode

349

CBLDCRPC('POLLANYR') - Receive processing results in
asynchronous mode

Format
PROCEDURE DIVISION specification

DATA DIVISION specification

Description
CBLDCRPC('POLLANYR') receives the processing results of a service requested
through an asynchronous-response-type RPC.

To receive a particular asynchronous response, specify 1 or 17 for data-name-C. If one
of these values is specified, CBLDCRPC('POLLANYR') receives the response from an
asynchronous-response-type RPC which has returned the descriptor specified by
data-name-E.

To receive any asynchronous response, specify 0 or 16 for data-name-C. In this case,
the value assigned to data-name-E is ignored. When CBLDCRPC('POLLANYR') with
0 or 16 specified for data-name-C normally ends, it returns the same value as the
descriptor of the asynchronous response it has received.

CBLDCRPC('POLLANYR') returns in the following cases:

• A response is received from an asynchronous-response-type RPC.

• A response wait timeout occurs. (The response wait time specified for
data-name-F has passed.)

When CBLDCRPC('POLLANYR') terminate normally, a response is set to
CBLDCRPC('CALL ') in asynchronous-response-type RPC.

The following items are described after the list of status codes. See each description
for details on CBLDCRPC('POLLANYR').

(1) data-name-F of CBLDCRPC('POLLANYR')

CALL 'CBLDCRPC' USING unique-name-1

01 unique-name-1.
 02 data-name-A PIC X(8) VALUE 'POLLANYR'.
 02 data-name-B PIC X(5).
 02 FILLER PIC X(3).
 02 data-name-C PIC S9(9) COMP VALUE ZERO.
 02 data-name-D PIC S9(9) COMP.
 02 data-name-E PIC S9(9) COMP.
 02 data-name-F PIC S9(9) COMP.

CBLDCRPC('POLLANYR') - Receive processing results in asynchronous mode

350

(2) Timing when CBLDCRPC('POLLANYR') results in error

(3) Specification for the return of status code 00378

(4) Relationship between status codes and synchronization point processing

(5) When a response cannot be received by CBLDCRPC('POLLANYR')

(6) Notes on using CBLDCRPC('POLLANYR')

Data areas whose values are set in the UAP
data-name-A
Specify VALUE 'POLLANYR' for the request code indicating processing results are
asynchronously received.

data-name-C
Specify one of the following:

0

The wait time is specified in seconds and CBLDCRPC('POLLANYR') will receive
any asynchronous response.

1

The wait time is specified in seconds and CBLDCRPC('POLLANYR') will receive
the response from an asynchronous-response-type RPC which returns the
descriptor specified by data-name-E.

16

The wait time is specified in milliseconds and CBLDCRPC('POLLANYR') will
receive any asynchronous response.

17

The wait time is specified in milliseconds and CBLDCRPC('POLLANYR') will
receive the response from an asynchronous-response-type RPC which returns the
descriptor specified by data-name-E.

data-name-E
Specify the descriptor which was returned when CBLDCRPC('CALL ') (2
specified for data-name-C) carried on an asynchronous-response-type RPC terminated
normally. If 0 or 16 is specified for data-name-C, the value specified here is ignored.

data-name-F
Specify the wait time in seconds from the calling of CBLDCRPC('POLLANYR') to the
return of a response. The specified wait time must be in the range from -1 to the
maximum value which can be indicated by S9(9) COMP.

CBLDCRPC('POLLANYR') - Receive processing results in asynchronous mode

351

When CBLDCRPC('POLLANYR') receives an asynchronous response, the response
waiting interval specified in the UAP is not referenced.

If 0 is specified here, 0 or 1 is specified for data-name-C, and no response is returned,
then CBLDCRPC('POLLANYR') will immediately return with the status code 00307.
If 16 or 17 is specified for data-name-C, the wait time will be 50 milliseconds.

When -1 is specified, CBLDCRPC('POLLANYR') continues to wait until a response is
returned.

data-name-D
Specify 0.

Data areas whose values are returned from OpenTP1
data-name-B
A status code of 5 digits is returned.

data-name-D
The descriptor of the received asynchronous response is returned. This descriptor is
returned when CBLDCRPC('POLLANYR') with 0 or 16 specified for data-name-C
ends normally. If CBLDCRPC('POLLANYR') with 1 or 17 specified for data-name-C
ends normally, 0 is set here.

Status codes
Status code Explanation

00000 Normal termination.

00321 The results of processing for the service requested with asynchronous response-type
RPCs are received completely.

00322 The descriptor specified for data-name-E does not exist. This value is returned when 1
is specified for data-name-C.

00301 The value specified for the data-name is invalid. This error also occurs if the status code
(data-name-A) is invalid.

00302 CBLDCRPC('OPEN ') was not called.

00304 The memory became insufficient.

00306 A network error occurred.

00307 CBLDCRPC('CALL ') encountered timeout.

An SPP to which the service request was addressed terminated abnormally before
completion of the requested service.

CBLDCRPC('POLLANYR') - Receive processing results in asynchronous mode

352

00308 The input parameter length specified for data-name-G of CBLDCRPC('CALL ')
exceeded the maximum.

00309 The returned response is longer than the area prepared by the client UAP.

00310 The service group name specified for data-name-F of CBLDCRPC('CALL ') is not
defined.

00311 The service name specified for data-name-E of CBLDCRPC('CALL ') is not defined.

00312 The service group containing the service of which name is specified for data-name-E of
CBLDCRPC('CALL ') is in shutdown state.

00313 The service specified for data-name-E of CBLDCRPC('CALL ') is being terminated.

00314 The UAP process of the service specified for data-name-E of CBLDCRPC('CALL ')
is not active.

An SPP to which the service request was addressed terminated abnormally before
completion of the requested service when -1 is specified for data-name-F.

00315 The OpenTP1 at the node containing the service specified for data-name-E of
CBLDCRPC('CALL ') is not active. The cause may be one of the following:
abnormal termination, being-suspended, being-terminated, or communication error.

00316 A system error occurred in the specified service for CBLDCRPC('CALL ').

00317 The memory became insufficient in the specified service for CBLDCRPC('CALL ').

00318 A system error occurred.

00319 The length of the response returned from the service function to the OpenTP1 is not in
the range from 1 to DCRPC_MAX_MESSAGE_SIZE#.

00320 The OpenTP1 at the node to which the service request is addressed is being started.

00323 The memory became insufficient. If this status code is returned, the transaction branch
cannot be committed.

00324 A system error occurred. If this status code is returned, the transaction branch cannot be
committed.

00325 A system error occurred when the specified service was executed. If this status code is
returned, the transaction branch cannot be committed.

00326 The returned response is too large to be stored in the area prepared by the client UAP.
If this status code is returned, the transaction branch cannot be committed.

Status code Explanation

CBLDCRPC('POLLANYR') - Receive processing results in asynchronous mode

353

#: If you used the rpc_max_message_size operand, the value of this data area is the
value specified in the rpc_max_message_size operand and not the value of
DCRPC_MAX_MESSAGE_SIZE (1 megabyte).

(1) data-name-C of CBLDCRPC('POLLANYR')
The monitoring time for receiving an asynchronous response is reset each time a
response is returned. Therefore, when a specific asynchronous response received is
designated (If 1 or 17 is specified for data-name-C), a response may be received even
if the time specified for data-name-F has elapsed. Alternatively,
CBLDCRPC('POLLANYR') may not return with an error, giving the status code 00307
even if the time specified for data-name-F has elapsed.

00327 The transaction attributes of multiple SPPs do not match in an environment where the
inter-node load-balancing facility and the extended internode load-balancing facility are
in use. This status code will be returned only when the service request is addressed to
an SPP which uses the inter-node load-balancing facility and the extended internode
load-balancing facility.

00328 The domain name of the service group name with domain qualification is invalid.

00329 When a service is requested with domain qualification, the port number of the
domain-alternate schedule service is not found.

00356 The server that receives requests from the socket to which the service request is
addressed cannot receive the service request.

00366 When the online tester was in use, a service was requested from a UAP in test mode to
an SPP in nontest mode or from a UAP in nontest mode to an SPP in test mode.

00370 An SPP to which the service request is addressed is protected with the security facility.
The UAP that requests the service by using CBLDCRPC('CALL ') has no access
permission for the SPP.

00372 The transaction branch cannot be started since it exceeds the maximum number of
transaction branches which can be activated concurrently.

The transaction branch cannot be started since it exceeds the maximum number of child
transaction branches which can be activated from one transaction branch.

Transaction branching cannot start because the resource manager (RM) has encountered
an error.

00378 The SPP that was asked to offer its service abnormally terminated before processing
was completed. This status code will be returned only when 00000001 is assigned to
the rpc_extend_function operand in the user service definition of the client UAP. If
nothing or 00000000 is assigned to the rpc_extend_function operand, the status
code 00307 or 00314 will be returned, instead of 00378.

Status code Explanation

CBLDCRPC('POLLANYR') - Receive processing results in asynchronous mode

354

(2) Timing when CBLDCRPC('POLLANYR') results in error
The following explains the timing when an error is returned from the client UAP if the
SPP to which the service request is addressed terminates abnormally.

If an SPP to execute a service terminates abnormally before completion of the
processing, CBLDCRPC('POLLANYR') returns with an error, giving the status code
00307. If -1 is specified for data-name-F of CBLDCRPC('POLLANYR'),
CBLDCRPC('POLLANYR') returns with an error, giving the status code 00314.

When CBLDCRPC('POLLANYR') results in error due to time monitoring for
CBLDCRPC('POLLANYR')

In the following cases, CBLDCRPC('POLLANYR') returns with an error, giving the
status code 00307, after the time specified for data-name-F of
CBLDCRPC('POLLANYR') has elapsed:

• The entire OpenTP1 at the node containing the SPP terminates abnormally.

• An error occurs before the server UAP receives service request data or before the
client UAP receives the result after the server UAP processing is completed.

(3) Specification for the return of status code 00378
You can use the status code 00378 instead of 00307 or 00314 to check whether the
SPP that was asked to offer its service abnormally terminated before processing was
completed. For this purpose, assign 00000001 to the rpc_extend_function
operand in the user service definition. With this specification, the status code 00378
will return if the above error occurs. If nothing or 00000000 is assigned to the
rpc_extend_function operand, the status code 00307 or 00314 will be returned,
instead of 00378.

(4) Relationship between status codes and synchronization point
processing

The relationship between status codes of CBLDCRPC('POLLANYR') and
synchronization point processing (commitment and rollback) is explained below. The
description applies to the service request which is a transactions, rather than service
requests which are not transactions (including the case when 32 is added to the value
of data-name-C of CBLDCRPC('CALL ')).

If commitment is performed even though CBLDCRPC('POLLANYR') returns with an
error

The status code 00307 may be returned due to abnormal termination of the service
program which the service request is addressed, a node error, or network error.
However, when the client UAP is not a transaction, the SPP which the service request
is addressed may terminate normally and database may be updated.

CBLDCRPC('POLLANYR') - Receive processing results in asynchronous mode

355

Status codes which require rollback processing

If CBLDCRPC('POLLANYR') called from a transaction returns with an error, some
status codes always require rollback processing for the transaction (the server UAP
enters in rollback_only state). In this case, rollback processing is always performed
even if either of commitment or rollback processing is executed. The following status
codes of CBLDCRPC('POLLANYR') always require rollback processing for the
transaction:

00309

00311

00317

00319

(5) When a response cannot be received by CBLDCRPC('POLLANYR')
CBLDCRPC('POLLANYR') cannot receive a response if either of the following
COBOL-UAP creation programs is called by the UAP requesting a service with an
asynchronous response-type RPC.

1. The receiving of asynchronous responses is rejected by
CBLDCRPC('DISCARDF')

2. Commitment or rollback processing is performed in the COBOL-UAP creation
program for synchronization point processing when a service is requested from a
transaction.

The response returned after the above COBOL-UAP creation program is called is
discarded. Receive all required asynchronous responses by using
CBLDCRPC('POLLANYR') before calling the above COBOL-UAP creation program
when an asynchronous response-type RPC is used.

(6) Notes on using CBLDCRPC('POLLANYR')
1. When CBLDCRPC('POLLANYR') is called with 0 specified for the wait time (0

specified for data-name-F), the response may not be received even if it arrives,
due to the scheduling of the multi-thread environment. Note that the UAP may fall
into an endless loop, which calls CBLDCRPC('POLLANYR') to receive all
responses with 0 specified for the wait time.

2. If CBLDCRPC('POLLANYR') without a specific descriptor identified returns with
an error, the descriptor of the response involving the error cannot be identified.
Specify 1 or 17 for data-name-C if you want to identify the descriptor when
CBLDCRPC('POLLANYR') returns with an error.

CBLDCRPC('SETSVPRI') - Set a schedule priority of a service request

356

CBLDCRPC('SETSVPRI') - Set a schedule priority of a service
request

Format
PROCEDURE DIVISION specification

DATA DIVISION specification

Description
CBLDCRPC('SETSVPRI') sets a priority of a service request. It is used when
controlling schedule priorities for individual service requests. The priority set remains
unchanged until it is updated by CBLDCRPC('SETSVPRI'). Therefore, if service
requests are to be used at once with the same priority, use CBLDCRPC('SETSVPRI')
only once.

The priority set by CBLDCRPC('SETSVPRI') will be reported to the server via the
schedule queue by CBLDCRPC('CALL ') which is called immediately after
CBLDCRPC('SETSVPRI').

If CBLDCRPC('SETSVPRI') is not called at all, the value 4, which is the default
interpretation of the schedule service, is set as the priority of service requests.

Data areas whose values are set in the UAP
data-name-A
Specify VALUE 'SETSVPRI' for the request code indicating that a service request
schedule priority be set.

data-name-C
Specify 0 or a number from 1 to 8 as a service request schedule priority. The
specification of data-name-C is mandatory. The highest priority is represented by 1
and the lowest priority is represented by 8. If 0 is specified, the default interpretation
by the schedule service is in effect. If any other value is specified,
CBLDCRPC('SETSVPRI') is ignored.

CALL 'CBLDCRPC' USING unique-name-1

01 unique-name-1.
 02 data-name-A PIC X(8) VALUE 'SETSVPRI'.
 02 data-name-B PIC X(5).
 02 FILLER PIC X(3).
 02 data-name-C PIC S9(9) COMP VALUE ZERO.

CBLDCRPC('SETSVPRI') - Set a schedule priority of a service request

357

Data area whose value is returned from OpenTP1
data-name-B
A status code of 5 digits is returned.

Status codes

Notes
1. In the case of a queue-receiving server, the specified service request priority is

valid only if service_priority_control=Y (priority control in effect) is
specified in the user service definition of the server UAP. If priority control is not
used on the server UAP to which the service request is addressed,
CBLDCRPC('SETSVPRI') has no effect even when used.

2. CBLDCRPC('SETSVPRI') is invalid if called for a service request specified in
CBLDCRPC('CALL ') carried on the second or subsequent chained RPC or
CBLDCRPC('CALL ') called to terminate chained RPCs.

3. CBLDCRPC('CALL ') does not reset the value changed by
CBLDCRPC('SETSVPRI'). To reset the service request priority, call
CBLDCRPC('SETSVPRI') again with 0 assigned to data-name-C.

Status code Explanation

00000 Normal termination.

00301 The value specified for the data-name is invalid.
This error also occurs if the request code (data-name-A) is invalid.

Other than the above An unprecedented error (e.g., program damage) occurred.

CBLDCRPC('SETWATCH') - Update the service response waiting interval

358

CBLDCRPC('SETWATCH') - Update the service response waiting
interval

Format
PROCEDURE DIVISION specification

DATA DIVISION specification

Description
CBLDCRPC('SETWATCH') changes the response waiting interval of service request.
The value set by CBLDCRPC('SETWATCH') remains valid until CBLDCRPC('CLOSE
') is called.

To reset the response waiting interval of service request to the value which was in
effect before CBLDCRPC('SETWATCH') is called, supply CBLDCRPC('SETWATCH')
with the original value returned by CBLDCRPC('GETWATCH').

CBLDCRPC('SETWATCH') does not affect the value assigned to the watch_time
operand in the system common definition.

The value set by CBLDCRPC('SETWATCH') influences only CBLDCRPC('CALL
') which will be called later.

Data areas whose values are set in the UAP
data-name-A
Specify VALUE 'SETWATCH' for the request code indicating that the response waiting
interval of service request be changed.

data-name-C
Specify a number from 1 to 65535 as the new service response waiting interval.
Specify 0 to wait for a response indefinitely.

Data area whose value is returned from OpenTP1
data-name-B
A status code of 5 digits is returned.

CALL 'CBLDCRPC' USING unique-name-1

01 unique-name-1.
 02 data-name-A PIC X(8) VALUE 'SETWATCH'.
 02 data-name-B PIC X(5).
 02 FILLER PIC X(3).
 02 data-name-C PIC S9(9) COMP VALUE ZERO.

CBLDCRPC('SETWATCH') - Update the service response waiting interval

359

Status codes
Status code Explanation

00000 Normal termination.

00301 The value specified for the data-name is invalid.
This error also occurs if the request code (data-name-A) is invalid.

Other than the above An unprecedented error (e.g., program damage) occurred.

CBLDCRPC('SVRETRY ') - Retry a service program

360

CBLDCRPC('SVRETRY ') - Retry a service program

Format
PROCEDURE DIVISION specification

DATA DIVISION specification

Description
CBLDCRPC('SVRETRY ') allows you to retry processing for a running service
program. To retry a service program, invoke CBLDCRPC('SVRETRY ') on the service
program to be retried and make it return. After this, the same service program is
restarted from the same process.

If a service program invoked from a response-type RPC is retried, the values (response
storage area and response length) set by the service program before the retry are
invalidated.

If CBLDCRPC('SVRETRY ') is invoked after the retry count assigned to the
rpc_service_retry_count operand in the user service definition is exceeded (or
when 0 is assigned to the rpc_service_retry_count operand),
CBLDCRPC('SVRETRY ') returns with an error, giving the status code 00377. The
service program will not be retried. If the service program was invoked by a
response-type RPC, CBLDCRPC('SVRETRY ') returns the contents of the response
storage area to the client UAP.

Data areas whose values are set in the UAP
data-name-A
Specify VALUE 'SVRETRY ' as a request code for service program retry.

data-name-C
Specify 0.

CALL 'CBLDCRPC' USING unique-name-1

01 unique-name-1.
 02 data-name-A PIC X(8) VALUE 'SVRETRY '.
 02 data-name-B PIC X(5).
 02 FILLER PIC X(3).
 02 data-name-C PIC S9(9) COMP VALUE ZERO.

CBLDCRPC('SVRETRY ') - Retry a service program

361

Data area whose value is returned from OpenTP1
data-name-B
A status code of 5 digits is returned.

Status codes

Notes
1. Before invoking CBLDCRPC('SVRETRY '), make sure that the following

conditions are fulfilled. Otherwise, CBLDCRPC('SVRETRY ') returns with an
error.

• CBLDCRPC('SVRETRY ') must be invoked from within the service
program.

• The running service program must not be within the range of a global
transaction.

2. The service program which invokes CBLDCRPC('SVRETRY ') can reference
data passed from a client UAP, but cannot modify it. If data in an input data area
is modified, the system operation is unpredictable.

3. CBLDCRPC('SVRETRY ') can be invoked only from a service program which
was asked to offer its service using the OpenTP1-specific remote procedure call
CBLDCRPC('CALL '). Processing for other service programs cannot be retried
using CBLDCRPC('SVRETRY ').

Status code Explanation

00000 Normal termination.

00301 The value (request code) specified for data-name-A is invalid.

00377 An attempt was made to invoke CBLDCRPC('SVRETRY ') beyond the maximum
service retry count assigned to the rpc_service_retry_count operand in the user
service definition. No more service program can be retried.

00302 The condition for invoking CBLDCRPC('SVRETRY ') is incorrect. Probable causes
include:
• CBLDCRPC('SVRETRY ') is not invoked from within the service program.
• CBLDCRPC('SVRETRY ') is invoked within the range of a global transaction.

CBLDCRSV('MAINLOOP') - Start an SPP service

362

CBLDCRSV('MAINLOOP') - Start an SPP service

Format
PROCEDURE DIVISION specification

DATA DIVISION specification

Description
CBLDCRSV('MAINLOOP') starts the receiving of service requests to a service
program of the SPP which is being executed in the process.
CBLDCRSV('MAINLOOP') must be called in the main program. Use
CBLDCRSV('MAINLOOP') only once in the process.

CBLDCRSV('MAINLOOP') does not return until it receives a termination request from
OpenTP1. CBLDCRSV('MAINLOOP') receives a termination request from OpenTP1
in the following cases:

• Termination processing starts because one of the following OpenTP1 stop
commands has been accepted:

dcstop command (normal termination)

dcstop-n command (forced normal termination)

dcstop -a command (planned termination A)

dcstop -b command (planned termination B)

• The following server stop command is entered to start termination processing for
the processes of the SPP:

dcsvstop command (normal termination)

• OpenTP1 terminates the processes of the SPP because the number of processes
exceeds the maximum number specified in the user service definition.

• Service processing terminates if the SPP is executed by a nonresident process.

• The number of service requests addressed to the service group is reduced if the
SPP is subjected to load balancing in a multiserver configuration.

CALL 'CBLDCRSV' USING unique-name-1

01 unique-name-1.
 02 data-name-A PIC X(8) VALUE 'MAINLOOP'.
 02 data-name-B PIC X(5).
 02 FILLER PIC X(3).
 02 data-name-C PIC S9(9) COMP VALUE ZERO.

CBLDCRSV('MAINLOOP') - Start an SPP service

363

Data areas whose values are set in the UAP
data-name-A
Specify VALUE 'MAINLOOP' for the request code indicating SPP service start.

data-name-C
Specify 0.

Data area whose value is returned from OpenTP1
data-name-B
A status code of 5 digits is returned.

Status codes

Notes
CBLDCRSV('MAINLOOP') returns when it receives a termination request from
OpenTP1. However, CBLDCRSV('MAINLOOP') does not return but the process
terminates in the following cases:

• The SPP enters termination processing because the OpenTP1 forced termination
command (dcstop -f command) or server forced termination command
(dcsvstop -f command) is executed.

• A process terminates abnormally because the UAP or OpenTP1 malfunctions.

• The service program uses abort () or exit ().

• Hardware, the operating system, or OpenTP1 causes an error.

Even if the SPP is created in such a way that termination processing will be executed
after CBLDCRSV('MAINLOOP') returns normally, the processing is not executed in
the above cases.

Status code Explanation

00000 A termination request was received from OpenTP1. Execute termination processing for
the SPP immediately, then call CBLDCRPC('CLOSE ') to enable exit().

00301 The value specified for the data-name is invalid.
This error also occurs if the request code (data-name-A) is invalid.

00302 CBLDCRPC('OPEN ') was not called, or CBLDCMCF('MAINLOOP') or
CBLDCRSV('MAINLOOP') was called.

00303 The SPP service could not be started.

Real time statistical information service (CBLDCRTS)

364

Real time statistical information service (CBLDCRTS)

This section gives the syntax and other information of the following COBOL-UAP
creation programs which are used as real-time statistical information service
programs:

• CBLDCRTS('RTSPUT ') - Acquire real-time statistical information for arbitrary
section

CBLDCRTS('RTSPUT ') - Acquire real-time statistical information for arbitrary section

365

CBLDCRTS('RTSPUT ') - Acquire real-time statistical information for
arbitrary section

Format
PROCEDURE DIVISION specification

DATA DIVISION specification

Description
CBLDCRTS('RTSPUT ') acquires the execution time and the number of executions
for the item assigned to data-name-C while the UAP executions over an arbitrary
section, as real-time statistical information.

Data areas whose values are set in the UAP
data-name-A
Specify VALUE 'RTSPUT ' for the request code of the command to be executed.

data-name-C
Specify the ID of the real-time statistical item to be acquired.

The specified ID must be within the range from 1000000 to 2147483647.

data-name-D
Specify the operation to be performed.

VALUE 'S'

Starts measuring the execution time for the item ID assigned to data-name-C.

Note that real-time statistical information acquisition does not start when
CBLDCRTS('RTSPUT ') is called with VALUE'S' specified.

CALL 'CBLDCRTS' USING unique-name-1 unique-name-2

01 unique-name-1.
 02 data-name-A PIC X(8) VALUE 'RTSPUT '.
 02 data-name-B PIC X(5).
 02 FILLER PIC X(3).
 02 data-name-Z PIC S9(9) COMP VALUE ZERO.

01 unique-name-2.
 02 data-name-C PIC S9(9) COMP.
 02 data-name-D PIC X(1).
 02 FILLER PIC X(3).

CBLDCRTS('RTSPUT ') - Acquire real-time statistical information for arbitrary section

366

VALUE 'E'

Ends measurement after acquiring the execution time for the item ID assigned to
data-name-C.

VALUE ' '

Specifies that only the number of executions for the item ID assigned to
data-name-C be acquired. The returned execution time will be 0 (in seconds).

data-name-Z
Specify 0.

Data area whose value is returned from OpenTP1
data-name-B
A status code of 5 digits is returned.

Status codes
Status code Explanation

00000 Normal termination.

07801 The request code (data-name-A) is invalid.

07802 The value specified for the data name is invalid.

07803 CBLDCRPC('OPEN ') was not called

CBLDCRTS('RTSPUT ') was called with 'S' assigned to data-name-D, but execution
time measurement has already started for the item identified by the ID assigned to
data-name-C.

CBLDCRTS('RTSPUT ') was called with 'E' assigned to data-name-D, but execution
time measurement has not started for the item identified by the ID assigned to
data-name-C.

07804 Information cannot be acquired because the number of items to be acquired exceeds the
value assigned to the rts_item_max operand in the real-time statistical information
service definition.

07805 Information cannot be acquired because the number of items to be acquired for each server
exceeds the value assigned to the rts_item_max operand in the real-time statistical
information service definition. If CBLDCRTS('RTSPUT ') returns with this status code,
it has already acquired statistical information on individual services or non-service
processings.

07806 Information cannot be acquired because the number of items to be acquired for each
service or non-service processings exceeds the value assigned to the rts_item_max
operand in the real-time statistical information service definition. If CBLDCRTS('RTSPUT
') returns with this status code, it has already acquired statistical information on
individual servers.

CBLDCRTS('RTSPUT ') - Acquire real-time statistical information for arbitrary section

367

Notes
1. CBLDCRTS('RTSPUT ') cannot acquire system-wide real-time statistical

information.

2. If a UAP that uses multi-server features concurrently calls multiple
CBLDCRTS('RTSPUT ') instances for which the same caller service and the
same data names are specified from multiple processes, it may not acquire
statistical information for some processes. This is because multiple writes occur
at the same time as no lock control is in effect on statistical information
acquisition.

3. For a UAP that uses the XATMI interface, service-specific real-time statistical
information cannot be acquired. All statistical information will be acquired as
statistical information for non-service processings.

4. CBLDCRTS('RTSPUT ') does not acquire UAP trace data.

5. This note applies after the function CBLDCRTS('RTSPUT '), called by
specifying 'S' in data-name-D, returns status code 07808 or 07809. If the
real-time statistical information service is started and the calling UAP is added as
a target of acquisition processing before CBLDCRTS('RTSPUT ') is called by
specifying 'E' in data-name-D and specify the same ID (data-name-C), the
function returns status code 07803.

07807 Processing cannot be performed because the process memory is insufficient.

07808 The real-time statistical information service is not started.

07809 The caller of the function CBLDCRTS('RTSPUT ') has not been registered as a recipient
for the acquisition of real-time statistical information on a server or service basis.

07810 The UAP is linked with a library whose version is not supported by the currently operating
real-time statistical information service.

Status code Explanation

TAM file service (CBLDCTAM)

368

TAM file service (CBLDCTAM)

This section gives the syntax and other information of the following COBOL-UAP
creation programs which are used as TAM file service programs:

• CBLDCTAM('ERS '/'ERSR'/'ZRS '/'ZRSR') - Delete a TAM table record

• CBLDCTAM('FxxR'/'FxxU'/'VxxR'/'VxxU') - Input a TAM table record

• CBLDCTAM('GST ') - Acquire TAM table status

• CBLDCTAM('INFO') - Acquire TAM table information

• CBLDCTAM('MFY '/'MFYS'/'STR '/'WFY '/'WFYS'/'YTR ') - Update/
add a TAM table record

The COBOL-UAP creation programs for TAM file service (CBLDCTAM) can be used
only in UAPs of TP1/Server Base. They cannot be used in UAPs of TP1/LiNK.

When defining DATA DIVISION of COBOL-UAP creation programs, the COBOL
language templates can be used as samples. The COBOL language template for TAM
file service (CBLDCTAM) is stored in DCTAM.cbl under the /BeTRAN/examples/
COBOL/ directory.

CBLDCTAM('ERS '/'ERSR'/'ZRS '/'ZRSR') - Delete a TAM table record

369

CBLDCTAM('ERS '/'ERSR'/'ZRS '/'ZRSR') - Delete a TAM table record

Format
PROCEDURE DIVISION specification

DATA DIVISION specification

Description
CBLDCTAM('ERS '/'ERSR'/'ZRS '/'ZRSR') deletes a record indicated as a key
value from a TAM table. The record to be deleted can be saved in the buffer. However,
if the program that deletes TAM table record returns with an error, the buffer contents
cannot be ensured.

When a record is to be deleted, lock in tables must be enabled with lock for update
processing.

If the program that deletes TAM table record returns with an error, all the resources
specified in this program are released, and the status before this program was called is
regained. However, if an attempt is made to delete a TAM table which was acquired
under lock for reference processing before this statement was called, lock for update
processing is enabled. (Lock for reference processing is not regained.)

CALL 'CBLDCTAM' USING unique-name-1 unique-name-2
 unique-name-3 unique-name-4

01 unique-name-1.
 02 data-name-A PIC X(4).
 02 data-name-B PIC X(5).
 02 FILLER PIC X(3).
 02 data-name-C PIC X(32).
 02 FILLER PIC X(68).
 02 data-name-D PIC S9(4) COMP.
 02 FILLER PIC X(398).
 02 data-name-J PIC S9(9) COMP.
 02 FILLER PIC X(2).
01 unique-name-2.
 02 data-name-E PIC X(4).
 02 FILLER PIC X(3).
 02 data-name-I PIC X(1).
01 unique-name-3.
 02 data-name-F PIC X(m).
01 unique-name-4.
 02 data-name-G PIC X(n).

CBLDCTAM('ERS '/'ERSR'/'ZRS '/'ZRSR') - Delete a TAM table record

370

Data areas whose values are set in the UAP
data-name-A
Specify the TAM ID. The TAM service does not reference the value specified here.

data-name-C
Specify the name of the TAM table of the record to be deleted. The name can be
specified with up to 32 characters. If the specified name comprises less than 32
characters, pad the remaining portion with space.

data-name-D
Specify a buffer length of 32767 bytes or less if the record to be deleted is to be saved.
The buffer length must be equal to or greater than the record length. The setting here
is valid only when VALUE 'ZRSR' is specified for data-name-E.

data-name-J
Specify a buffer length in the range from 1 to 32767 bytes if the record to be deleted is
to be saved. The buffer length must be equal to or greater than the record length. The
setting here is valid only when VALUE 'ZRSR' is specified for data-name-E.

data-name-E
Specify one of the following request codes:

VALUE 'ERS ' or VALUE 'ZRS ': The record to be deleted is not saved.

VALUE 'ERSR' or VALUE 'ZRSR': The record to be deleted is saved.

data-name-F
Specify the key value with the length of the key area of the record to be deleted.

data-name-G
If the record to be deleted is to be saved, specify the buffer for storing the record. The
setting here is invalid if VALUE 'ERS ' or VALUE 'ZRS ' (the record to be deleted
is not saved) is specified for data-name-E.

data-name-I
Specify whether to wait for release from lock with one of the following values. The
value specified for data-name-I is valid when 2 is specified for tam_cbl_level in
the TAM service definition.

VALUE 'W': Wait for release from lock

VALUE 'N': Error return without waiting for release from lock

If 0 or 1 is specified for tam_cbl_level in the TAM service definition, specifying a
value for data-name-I is unnecessary.

CBLDCTAM('ERS '/'ERSR'/'ZRS '/'ZRSR') - Delete a TAM table record

371

Data areas whose values are returned from OpenTP1
data-name-B
A status code of 5 digits is returned.

data-name-G
If VALUE 'ERSR' or VALUE 'ZRSR' is specified and record deletion is normally
completed, the deleted record is saved.

Status codes
Status code Explanation

00000 The record was deleted normally.

01701 The table name specified for data-name-C is invalid.

01702 The key value specified for data-name-F is invalid.

01704 The value specified for data-name-G is invalid.

01705 The buffer length specified for data-name-D or J is too short.

01708 The value specified for data-name-E or I is invalid.

01709 The table specified for data-name-C is not a TAM table.

01710 The TAM table has not been defined.

01720 The TAM service is being terminated.

01721 The sequence of accessing the TAM table is invalid.

The resource manager registration of the object file for control of transactions having a
linkage with the UAP is invalid. Alternatively, there is no linkage between the object
file for control of transactions and the UAP.

atomic_update=N (nontransaction attribute) is specified in the user service definition
of the UAP which called CBLDCTAM.

01723 The TAM table was deleted.

01724 The TAM table was not loaded.

01727 The TAM table is in logical descriptor state.

01728 The TAM table is in descriptor state due to an error.

01730 Execution is impossible in the access mode of the TAM table specified in the TAM
service definition.

01731 The specified record does not exist.

CBLDCTAM('ERS '/'ERSR'/'ZRS '/'ZRSR') - Delete a TAM table record

372

Notes
If the process used to delete all records in a hash-formatted TAM table involves
repetitions of a sequence that calls for finding a target record using the first-retrieval
method and deleting the found record, the CPU load may become high. To delete all
records, use the following procedure:

1. Use the first-retrieval method to find a target record and save the key value of the
found record as variable-1.

2. Search for the next record that matches the key value of variable-1.

3. Save the key value of the record found in step 2 above, as variable-2.

01736 A lock error occurred. If you specified 0 in the tam_cbl_level operand of the TAM
service definition, or if you specified 2 in the tam_cbl_level operand and set W in
data-name-I, the resource could not be acquired because the wait time specified in the
lock service definition reached timeout.

01737 A deadlock occurred.

01760 The version of the TAM library linked to the UAP does not allow the UAP to operate
with the current TAM table.

01761 The version of the TAM library linked to the UAP does not allow the UAP to operate
with the current OpenTP1 file service.

01762 The version of the TAM library linked to the UAP does not allow the UAP to operate
with the current TAM service.

01764 The record has been damaged.

01765 The number of transactions exceeds the maximum number of transactions which can be
managed by the TAM service.

01766 The number of open character special files exceeds the specified limit.

01767 The access permission for special files has not been granted.

01768 The access permission for TAM files has not been granted.

01769 The memory became insufficient.

01770 An input/output error occurred.

01771 A transaction service error occurred.

01772 The deleting TAM file is protected by the security facility. No ACL exists for the file.

01773 The accessing TAM file is protected by the security facility. The UAP attempting to
delete a record from the TAM table has no access permission.

Status code Explanation

CBLDCTAM('ERS '/'ERSR'/'ZRS '/'ZRSR') - Delete a TAM table record

373

4. Delete the record with the key value saved as variable-1.

5. Save the key value of variable-2 as variable-1.

6. Repeat steps 2 to 5 (search for the next record) until an error occurs in step 2.

7. After an error occurs in step 2, delete the record with the key value last saved as
variable-1.

CBLDCTAM('FxxR'/'FxxU'/'VxxR'/'VxxU') - Input a TAM table record

374

CBLDCTAM('FxxR'/'FxxU'/'VxxR'/'VxxU') - Input a TAM table record

Format
PROCEDURE DIVISION specification

DATA DIVISION specification

Description
According to the search type specified for data-name-E, CBLDCTAM('FxxR'/
'FxxU'/'VxxR'/'VxxU') inputs a TAM table record for reference or update
processing. Table 2-1 shows the relationship between search types and index types.

Table 2-2: Relationship between search types and index types

CALL 'CBLDCTAM' USING unique-name-1 unique-name-2
 unique-name-3 unique-name-4

01 unique-name-1.
 02 data-name-A PIC X(4).
 02 data-name-B PIC X(5).
 02 FILLER PIC X(3).
 02 data-name-C PIC X(32).
 02 FILLER PIC X(68).
 02 data-name-D PIC S9(4) COMP.
 02 FILLER PIC X(398).
 02 data-name-J PIC S9(9) COMP.
 02 FILLER PIC X(392).
01 unique-name-2.
 02 data-name-E PIC X(4).
 02 data-name-F PIC X(1).
 02 FILLER PIC X(2).
 02 data-name-I PIC X(1).
01 unique-name-3.
 02 data-name-G PIC X(m).
01 unique-name-4.
 02 data-name-H PIC X(n).

Search type Outline of search processing

Index type: hash format Index type: tree format

'key-value='search The record having the specified key
value is searched for.
If the record having the specified key
value is not found, an error is returned.

The record having the specified key value
is searched for.
If the record having the specified key value
is not found, an error is returned.

CBLDCTAM('FxxR'/'FxxU'/'VxxR'/'VxxU') - Input a TAM table record

375

#: All the records in the TAM table can be searched for by using the first record search
and NEXT search in the following conditions:

The hash format is specified as the index type.

When a TAM table file is created, a key value is assigned to the data part (the -s
option not specified in the tamcre command).

If lock is specified with input for reference processing, lock in tables and lock in
records are enabled with lock for reference processing. If a TAM table open under lock
in records is input for update processing, lock in tables is enabled with lock for
reference processing, and lock in records is enabled with lock for update processing.

However, if table nonlock mode is specified as the access-time table lock mode in the
TAM service definition, tables whose access type is reference or update without
addition or deletion, their lock cannot be enabled.

If the program that inputs TAM table record returns with an error, all the resources
specified in this program are released, and the status before this program was called is
regained. However, if a record which was acquired under lock for reference processing
before this program was called is input for update processing, lock for update
processing is enabled. (Lock for reference processing is not regained.) If an error is
returned, the buffer contents cannot be ensured.

'key-value<='search An error is returned. The record having a key value equal to or
greater than the specified key value is
searched for.

'key-value<'search An error is returned. The record having a key value greater than
the specified key value is searched for.

'key-value>='search An error is returned. The record having a key value equal to or
smaller than the specified key value is
searched for.

'key-value>'search An error is returned. The record having a key value smaller than
the specified key value is searched for.

First record search# The first record that was hashed in
correspondence with the key value is
searched for. The key value specified for
data-name-G is ignored.

An error is returned.

NEXT search# The next record that was hashed in
correspondence with the key value is
searched for.

An error is returned.

Search type Outline of search processing

Index type: hash format Index type: tree format

CBLDCTAM('FxxR'/'FxxU'/'VxxR'/'VxxU') - Input a TAM table record

376

Data areas whose values are set in the UAP
data-name-A
Specify the TAM ID. The TAM service does not reference this value.

data-name-C
Specify the name of the TAM table of the record to be input. The name can be specified
with up to 32 characters. If the specified name comprises less than 32 characters, pad
the remaining portion with space.

data-name-D
Specify a buffer length if the input record is 32767 bytes or less. The buffer length must
be equal to or greater than the record length. The setting here is valid only when VALUE
'Fxxx' is specified for data-name-E.

data-name-J
Specify a buffer length if the input record is 32768 bytes or more. The buffer length
must be equal to or greater than the record length. The setting here is valid only when
VALUE 'Vxxx' is specified for data-name-E.

data-name-E
Specify one of the following request codes:

VALUE 'FCHR', VALUE 'VCHR': Search for key-value= for reference (hash/tree
format).

VALUE 'FGER', VALUE 'VGER': Search for key-value<= for reference (tree format).

VALUE 'FGTR', VALUE 'VGTR': Search for key-value< for reference (tree format).

VALUE 'FLER', VALUE 'VLER': Search for key-value>= for reference (tree format).

VALUE 'FLTR', VALUE 'VLTR': Search for key-value> for reference (tree format).

VALUE 'FTPR', VALUE 'VTPR': Search for the specified key value from the first
record for reference (hash format).

VALUE 'FNXR', VALUE 'VNXR': Search for the specified key value from the next
record for reference (hash/tree format).

VALUE 'FCHU', VALUE 'VCHU': Search for key-value= for updating (hash/tree
format).

VALUE 'FGEU', VALUE 'VGEU': Search for key-value<= for updating (tree format).

VALUE 'FGTU', VALUE 'VGTU': Search for key-value< for updating (tree format).

VALUE 'FLEU', VALUE 'VLEU': Search for key-value>= for updating (tree format).

VALUE 'FLTU', VALUE 'VLTU': Search for key-value> for updating (tree format).

CBLDCTAM('FxxR'/'FxxU'/'VxxR'/'VxxU') - Input a TAM table record

377

VALUE 'FTPU', VALUE 'VTPU': Search for the specified key value from the first
record for updating (hash format).

VALUE 'FNXU', VALUE 'VNXU': Search for the specified key value from the next
record for updating (hash/tree format).

data-name-F
If a record is input for reference processing, specify a lock enabled/disabled type.

VALUE ' ': Lock is enabled. (Lock is reset at the synchronization point.)

VALUE 'D': Lock is enabled. (Lock is reset when this CALL statement terminates.)

VALUE 'N': Lock is disabled.

data-name-G
Specify the key value with the length of the key area of the record to be searched for.

data-name-H
Specify the data area (buffer) to which the record is input.

data-name-I
Specify whether to wait for release from lock with one of the following values. The
value specified for data-name-I is valid when 2 is specified for tam_cbl_level in
the TAM service definition.

VALUE 'W': Wait for release from lock

VALUE 'N': Error return without waiting for release from lock

If 0 or 1 is specified for tam_cbl_level in the TAM service definition, specifying a
value for data-name-I is unnecessary.

Data areas whose values are returned from OpenTP1
data-name-B
A status code of 5 digits is returned.

data-name-H
The input record is returned.

Status codes
Status code Explanation

00000 The TAM table record was input normally.

01701 The TAM table name specified for data-name-C is invalid.

01702 The key value specified for data-name-G is invalid.

CBLDCTAM('FxxR'/'FxxU'/'VxxR'/'VxxU') - Input a TAM table record

378

01704 The value specified for data-name-H is invalid.

01705 The buffer length specified for data-name-D or J is too short.

01708 The value specified for data-name-E, F or I is invalid.

01709 The table specified for data-name-C is not a TAM table.

01710 The TAM table has not been defined.

01720 The TAM service is being terminated.

01721 The sequence of accessing the TAM table is invalid.

The resource manager registration of the object file for control of transactions having
a linkage with the UAP is invalid. Alternatively, there is no linkage between the object
file for control of transactions and the UAP.

atomic_update=N (nontransaction attribute) is specified in the user service
definition of the UAP which called CBLDCTAM.

01723 The TAM table was deleted.

01724 The TAM table was not loaded.

01727 The TAM table is in logical descriptor state.

01728 The TAM table is in descriptor state due to an error.

01729 Execution is impossible with the index type of the TAM table specified for creation of
a TAM table file.

01730 Execution is impossible in the access mode of the TAM table specified in the TAM
service definition.

01731 A record satisfying the search conditions specified for data-name-E is not found.

01736 A lock error occurred. If you specified 0 in the tam_cbl_level operand of the TAM
service definition, or if you specified 2 in the tam_cbl_level operand and set W in
data-name-I, the resource could not be acquired because the wait time specified in the
lock service definition reached timeout.

01737 A deadlock occurred.

01760 The version of the TAM library linked to the UAP does not allow the UAP to operate
with the current TAM table.

01761 The version of the TAM library linked to the UAP does not allow the UAP to operate
with the current OpenTP1 file service.

01762 The version of the TAM library linked to the UAP does not allow the UAP to operate
with the current TAM service.

Status code Explanation

CBLDCTAM('FxxR'/'FxxU'/'VxxR'/'VxxU') - Input a TAM table record

379

01764 The record has been damaged.

01765 The number of transactions exceeds the maximum number of transactions which can
be managed by the TAM service.

01766 The number of open character special files exceeds the specified limit.

01767 The access permission for special files has not been granted.

01768 The access permission for TAM files has not been granted.

01769 The memory became insufficient.

01770 An input/output error occurred.

01771 A transaction service error occurred.

01772 The opening TAM file is protected by the security facility. No ACL exists for the file.

01773 The accessing TAM file is protected by the security facility. The UAP attempting to
input a record from the TAM table has no access permission.

Status code Explanation

CBLDCTAM('GST ') - Acquire TAM table status

380

CBLDCTAM('GST ') - Acquire TAM table status

Format
PROCEDURE DIVISION specification

DATA DIVISION specification

Description
CBLDCTAM('GST ') acquires the status of a TAM table. The TAM table status to be
acquired includes the following:

• Open state

• Closed state

• Logical shutdown state

• Shutdown state due to an error

The program that acquires TAM table information can be called both outside and
inside the transaction.

Even if the TAM table is accessed by another processing, the program that acquires

CALL 'CBLDCTAM' USING unique-name-1 unique-name-2
 unique-name-3

01 unique-name-1.
 02 data-name-A PIC X(4).
 02 data-name-B PIC X(5).
 02 FILLER PIC X(35).
 02 data-name-C PIC X(4).
 02 FILLER PIC X(64).
 02 data-name-D PIC S9(4) COMP.
 02 FILLER PIC X(398).
01 unique-name-2.
 02 data-name-E PIC X(4).
 02 FILLER PIC X(4).
01 unique-name-3.
 02 unique-name-4.
 03 data-name-F PIC X(32).
 03 data-name-G PIC X(2).
 03 FILLER PIC X(6).
 :
 :
 02 unique-name-n.
 03 data-name-F PIC X(32).
 03 data-name-G PIC X(2).
 03 FILLER PIC X(6).

CBLDCTAM('GST ') - Acquire TAM table status

381

TAM table information returns assuming that the TAM table is open.

Data areas whose values are set in the UAP
data-name-A
Specify the TAM ID. The TAM service does not reference this value.

data-name-D
Specify the length of the TAM table information area (length of unique-name-3).

data-name-E
Specify VALUE 'GST ' for the request code indicating acquisition of TAM table
information.

data-name-F
Specify the name of the TAM table whose status is to be acquired. The name can be
specified with up to 32 characters. If the specified name comprises less than 32
characters, pad the remaining portion with space.

Data areas whose values are returned from OpenTP1
data-name-B
A status code of 5 digits is returned.

data-name-C
The status of the specified TAM table is returned to the 4-byte area. Table 2-2 explains
the status indicated by each byte.

Table 2-3: TAM table status

Byte Status Explanation

0 L There is a TAM table in logical shutdown state.

Space There is not a TAM table in logical shutdown state.

1 B There is a TAM table in shutdown state due to an error.

Space There is not a TAM table in shutdown state due to an error.

2 O There is a TAM table in open state.

Space There is not a TAM table in open state.

3 C There is a TAM table in closed state.

Space There is not a TAM table in closed state.

CBLDCTAM('GST ') - Acquire TAM table status

382

data-name-G
The status of the specified TAM table is returned.

VALUE 'RO': Open state

VALUE 'RC': Closed state

VALUE 'HL': Logical shutdown state

VALUE 'HB': Shutdown state due to an error

Status codes
Status code Explanation

00000 TAM table information was acquired normally.

01701 The TAM table name specified for data-name-F is invalid.

01705 The value specified for data-name-G is invalid.

01708 The value specified for data-name-E is invalid.

01710 The TAM table has not been defined.

01720 The TAM service is being terminated.

01721 The sequence of accessing the TAM table is invalid.

The resource manager registration of the object file for control of transactions having a
linkage with the UAP is invalid. Alternatively, there is no linkage between the object file
for control of transactions and the UAP.

atomic_update=N (nontransaction attribute) is specified in the user service definition
of the UAP which called CBLDCTAM.

01762 The version of the TAM library linked to the UAP does not allow the UAP to operate with
the current TAM service.

01772 The accessing TAM file is protected by the security facility. No ACL exists for the file.

01773 The accessing TAM file is protected by the security facility. The UAP attempting to get
the status of the TAM table has no access permission.

CBLDCTAM('INFO') - Acquire TAM table information

383

CBLDCTAM('INFO') - Acquire TAM table information

Format
PROCEDURE DIVISION specification

DATA DIVISION specification

Description
CBLDCTAM('INFO') returns TAM table information. The following values are

CALL 'CBLDCTAM' USING unique-name-1 unique-name-2
 unique-name-3

01 unique-name-1.
 02 data-name-A PIC X(4).
 02 data-name-B PIC X(5).
 02 FILLER PIC X(103).
 02 data-name-C PIC S9(4) COMP.
 02 FILLER PIC X(398).
01 unique-name-2.
 02 data-name-D PIC X(4).
 02 FILLER PIC X(4).
01 unique-name-3.
 02 unique-name-4.
 03 data-name-E PIC X(32).
 03 data-name-F PIC X(2).
 03 data-name-G PIC X(64).
 03 FILLER PIC X(2).
 03 data-name-H PIC S9(9) COMP.
 03 data-name-I PIC S9(9) COMP.
 03 data-name-J PIC X(1).
 03 data-name-K PIC X(1).
 03 data-name-L PIC X(1).

 03 FILLER PIC X(1).
 03 data-name-M PIC S9(9) COMP.
 03 data-name-N PIC S9(9) COMP.
 03 data-name-O PIC S9(9) COMP.
 03 data-name-P PIC X(1).
 03 FILLER PIC X(3).
 :
 :
 :
 02 unique-name-n.
 03 data-name-E PIC X(32).
 03 data-name-F PIC X(2).
 :
 03 data-name-P PIC X(1).
 03 FILLER PIC X(3).

CBLDCTAM('INFO') - Acquire TAM table information

384

returned by CBLDCTAM('INFO'):

• TAM file name

• TAM table status

• Number of records in use

• Maximum number of records

• Index type

• Access type

• Loading opportunity

• TAM record length

• Key length

• Key start position

• Security attribute

TAM table information can be acquired from inside or outside of a transaction.

Data areas whose values are set in the UAP
data-name-A
Specify the TAM identifier. The TAM service does not reference this value.

data-name-C
Specify the length of area that receives TAM table information (the length of
unique-name-3).

data-name-D
Specify VALUE 'INFO' for the request code indicating that TAM table information is
acquired.

data-name-E
Specify the name of the TAM table from which information is acquired with up to 32
characters. End the character string with space.

Data areas whose values are returned from OpenTP1
data-name-B
A status code of 5 digits is returned.

data-name-F
The TAM table status is returned as follows:

CBLDCTAM('INFO') - Acquire TAM table information

385

VALUE 'RO': The TAM table is opened.

VALUE 'RC': The TAM table is closed.

VALUE 'HL': The TAM table is in logical shutdown state.

VALUE 'HB': The TAM table is in shutdown state due to an error.

data-name-G
The TAM file name of the TAM table is returned.

data-name-H
The number of records currently used in the TAM table is returned. However, this
value is not assured if a record is added or deleted after CBLDCTAM('INFO') is called.

data-name-I
The maximum number of records for the TAM table is returned.

data-name-J
The index type of the TAM table is returned as follows:

VALUE 'H': The TAM table adopts hash format.

VALUE 'T': The TAM table adopts tree format.

data-name-K
The access type of the TAM table is returned as follows:

VALUE 'R': The TAM table is reference-only type.

VALUE 'W': The TAM table is overwrite type (any record cannot be added or deleted).

VALUE 'A': The TAM table is update type (records can be added or deleted).

VALUE 'L': The TAM table is update type (records can be added and deleted without
locking the table).

data-name-L
The loading opportunity of the TAM table is returned as follows:

VALUE 'S': The TAM table is loaded when the TAM service is started.

VALUE 'L': The TAM table is loaded when the TAM table is opened by the function
dc_tam_open().

VALUE 'C': The TAM table is loaded when the tamload command is executed.

data-name-M
The record length of the TAM table is returned.

CBLDCTAM('INFO') - Acquire TAM table information

386

data-name-N
The key length of the TAM table is returned.

data-name-O
The key start position in the TAM table data is returned.

data-name-P
The security attribute of the TAM table specified in the TAM service definition is
returned as follows:

VALUE 'N': Security is not specified.

VALUE 'S': Security is specified.

Status codes
Status Code Explanation

00000 Information was acquired from the TAM table normally.

01701 The value specified for data-name-E is invalid.

01705 The value specified for data-name-C is invalid.

01708 The value specified for data-name-D (request code) is invalid.

01709 The name specified for data-name-E is not a TAM table.

01710 The TAM table has not been defined.

01720 The TAM service is being terminated.

01721 The sequence of accessing the TAM table is invalid.

The resource manager registration of the object file for control of transactions having
a linkage with the UAP is invalid. Alternatively, there is no linkage between the object
file for control of transactions and the UAP.

atomic_update=N (nontransaction attribute) is specified in the user service
definition of the UAP which called CBLDCTAM.

01760 The version of the TAM library linked to the UAP does not allow the UAP to operate
with the current TAM table.

01762 The version of the TAM library linked to the UAP does not allow the UAP to operate
with the current TAM service.

01766 The number of open character special files exceeds the specified limit.

01767 The access permission for special files has not been granted.

01769 The memory became insufficient.

CBLDCTAM('INFO') - Acquire TAM table information

387

01770 An input/output error occurred.

01772 The TAM table from which information is acquired is protected with the security
facility. There is no ACL for the corresponding TAM table.

01773 The TAM table from which information is acquired is protected with the security
facility. The UAP that called CBLDCTAM('INFO') has no access permission.

Status Code Explanation

CBLDCTAM('MFY '/'MFYS'/'STR '/'WFY '/'WFYS'/'YTR ') - Update/add a TAM table record

388

CBLDCTAM('MFY '/'MFYS'/'STR '/'WFY '/'WFYS'/'YTR ') - Update/add
a TAM table record

Format
PROCEDURE DIVISION specification

DATA DIVISION specification

Description
CBLDCTAM('MFY '/'MFYS'/'STR '/'WFY '/'WFYS'/'YTR ') updates/adds a
record indicated with a key value in/to a TAM table.

If a TAM table is open under lock in records, lock in records is enabled with lock for
update processing as explained below.

• When the access type is "update" (VALUE 'MFY ' or VALUE 'WFY ' specified
for data-name-E):

Lock in tables is enabled with lock for reference processing, and lock in records
is enabled with lock for update processing.

However, if table nonlock mode is specified as the access-time table lock mode in the
TAM service definition, tables whose access type is reference or update without
addition or deletion, their lock cannot be enabled.

CALL 'CBLDCTAM' USING unique-name-1 unique-name-2
 unique-name-3 unique-name-4

01 unique-name-1.
 02 data-name-A PIC X(4).
 02 data-name-B PIC X(5).
 02 FILLER PIC X(3).
 02 data-name-C PIC X(32).
 02 FILLER PIC X(68).
 02 data-name-D PIC S9(4) COMP.
 02 FILLER PIC X(2).
 02 data-name-J PIC S9(9) COMP.
 02 FILLER PIC X(392).
01 unique-name-2.
 02 data-name-E PIC X(4).
 02 FILLER PIC X(3).
 02 data-name-I PIC X(1).
01 unique-name-3.
 02 data-name-F PIC X(m).
01 unique-name-4.
 02 data-name-G PIC X(n).

CBLDCTAM('MFY '/'MFYS'/'STR '/'WFY '/'WFYS'/'YTR ') - Update/add a TAM table record

389

• When the access type is "update or addition" or "addition" (VALUE 'MFYS',
VALUE 'WFYS', VALUE 'STR ' or VALUE 'YTR ' specified for data-name-E):

Lock in tables is enabled with lock for update processing.

If the program that updates/adds TAM table record returns with an error, all the
resources specified in this program are released, and the status before this program was
called is regained. However, if a TAM table which was acquired under lock for
reference processing before this program was called is updated/added, lock for update
processing is enabled. (Lock for reference processing is not regained.)

The key value storage location in the data to be updated/added and the key area length
are as specified in the tamcre command used for creation of a TAM table file.

The data part has a key value if the key value is assigned to the data part (the -s option
not specified in the tamcre command) when a TAM table file is created. Therefore,
an error is returned if the key value specified in the program that updates/adds TAM
table record is not found in the data to be updated/added. The data part has no key value
if no key value is assigned to the data part (the -s option specified in the tamcre
command). In this case, no check is made on the contents of the data to be updated/
added.

Data areas whose values are set in the UAP
data-name-A
Specify the TAM ID. The TAM service does not reference this value.

data-name-C
Specify the name of the TAM table whose record is to be updated/added. The name
can be specified with up to 32 characters. If the specified name comprises less than 32
characters, pad the remaining portion with space.

data-name-D
Specify a data length in the range from 1 to 32767 bytes for the data to be updated or
added. The data length must be equal to or greater than the record length. The setting
here is valid only when VALUE 'MFY ', VALUE 'MFYS' or VALUE 'STR ' is
specified for data-name-E.

data-name-J
Specify a data length of 32768 bytes or more for the data to be updated or added. The
data length must be equal to or greater than the record length. The setting here is valid
only when VALUE 'WFY ', VALUE'WFYS' or VALUE 'YTR ' is specified for
data-name-E.

data-name-E
Specify one of the following request codes:

CBLDCTAM('MFY '/'MFYS'/'STR '/'WFY '/'WFYS'/'YTR ') - Update/add a TAM table record

390

VALUE 'MFY ', VALUE 'WFY ': Record updating only

VALUE 'MFYS', VALUE 'WFYS': Record updating or addition

VALUE 'STR ', VALUE 'YTR ': Record addition only

data-name-F
Specify the key value with the length of the key area of the record to be updated/added.

data-name-G
Specify the data area (buffer) to/in which the record is updated/added.

data-name-I
Specify whether to wait for release from lock with one of the following values. The
value specified for data-name-I is valid when 2 is specified for tam_cbl_level in
the TAM service definition.

VALUE 'W': Wait for release from lock

VALUE 'N': Error return without waiting for release from lock

If 0 or 1 is specified for tam_cbl_level in the TAM service definition, specifying a
value for data-name-I is unnecessary.

Data area whose value is returned from OpenTP1
data-name-B
A status code of 5 digits is returned.

Status codes
Status code Explanation

00000 The TAM table record was updated/added normally.

01701 The TAM table name specified for data-name-C is invalid.

01702 The key value specified for data-name-F is invalid.

01706 The value specified for data-name-G is invalid.

01707 The value specified for data-name-D or J is invalid.

01708 The value specified for data-name-E or I is invalid.

01709 The table specified for data-name-C is not a TAM table.

01710 The TAM table has not been defined.

01720 The TAM service is being terminated.

CBLDCTAM('MFY '/'MFYS'/'STR '/'WFY '/'WFYS'/'YTR ') - Update/add a TAM table record

391

01721 The sequence of accessing the TAM table is invalid.

The resource manager registration of the object file for control of transactions having
a linkage with the UAP is invalid. Alternatively, there is no linkage between the object
file for control of transactions and the UAP.

atomic_update=N (nontransaction attribute) is specified in the user service
definition of the UAP which called CBLDCTAM.

01723 The TAM table was deleted.

01724 The TAM table was not loaded.

01727 The TAM table is in logical shutdown state.

01728 The TAM table is in shutdown state due to an error.

01730 Execution is impossible in the access mode of the TAM table specified in the TAM
service definition.

01731 The specified record does not exist.

01735 The record cannot be added because the key value specified for data-name-F exists in
the TAM table.

01736 A lock error occurred. If you specified 0 in the tam_cbl_level operand of the TAM
service definition, or if you specified 2 in the tam_cbl_level operand and set W in
data-name-I, the resource could not be acquired because the wait time specified in the
lock service definition reached timeout.

01737 A deadlock occurred.

01760 The version of the TAM library linked to the UAP does not allow the UAP to operate
with the current TAM table.

01761 The version of the TAM library linked to the UAP does not allow the UAP to operate
with the current OpenTP1 file service.

01762 The version of the TAM library linked to the UAP does not allow the UAP to operate
with the current TAM service.

01763 The TAM table has no free record.

01764 The record has been damaged.

01765 The number of transactions exceeds the maximum number of transactions which can
be managed by the TAM service.

01766 The number of open character special files exceeds the specified limit.

01767 The access permission for special files has not been granted.

Status code Explanation

CBLDCTAM('MFY '/'MFYS'/'STR '/'WFY '/'WFYS'/'YTR ') - Update/add a TAM table record

392

01768 The access permission for TAM files has not been granted.

01769 The memory became insufficient.

01770 An input/output error occurred.

01771 A transaction service error occurred.

01772 The opening TAM file is protected by the security facility. No ACL exists for the file.

01773 The accessing TAM file is protected by the security facility. The UAP attempting to
update or add a record to the TAM table has no access permission.

Status code Explanation

Transaction control (CBLDCTRN)

393

Transaction control (CBLDCTRN)

This section gives the syntax and other information of the following COBOL-UAP
creation programs which are used as OpenTP1-specific transaction control:

• CBLDCTRN('BEGIN ') - Start a transaction

• CBLDCTRN('C-COMMIT ') - Enable commitment in chained mode

• CBLDCTRN('C-ROLL ') - Enable rollback in chained mode

• CBLDCTRN('INFO ') - Report the information about the current transaction

• CBLDCTRN('U-COMMIT ') - Enable commitment in unchained mode

• CBLDCTRN('U-ROLL ') - Enable rollback in unchained mode

The COBOL-UAP creation programs for transaction control (CBLDCTRN) can be used
in UAPs of both TP1/Server Base and TP1/LiNK.

When defining DATA DIVISION of COBOL-UAP creation programs, the COBOL
language templates can be used as samples. The COBOL language template for
transaction control (CBLDCTRN) is stored in DCTRN.cbl under the /BeTRAN/
examples/COBOL/ directory.

CBLDCTRN('BEGIN ') - Start a transaction

394

CBLDCTRN('BEGIN ') - Start a transaction

Format
PROCEDURE DIVISION specification

DATA DIVISION specification

Description
CBLDCTRN('BEGIN ') starts a global transaction from the process that calls the
program. CBLDCTRN('BEGIN ') that started the transaction becomes the root
transaction branch of the global transaction.

For the UAP that starts the transaction, specify transaction attribute. Once the
transaction is started in a global transaction, the transaction cannot be restarted from
any transaction branch of the global transaction. If the transaction is started more than
once in a global transaction, an error is returned.

Data area whose value is set in the UAP
data-name-A
Specify VALUE 'BEGIN ' for the request code indicating transaction start. The
contents remain unchanged for processing after the transaction starts.

Data area whose value is returned from OpenTP1
data-name-B
A status code of 5 digits is returned.

Status codes

CALL 'CBLDCTRN' USING unique-name-1

01 unique-name-1.
 02 data-name-A PIC X(8) VALUE 'BEGIN '.
 02 data-name-B PIC X(5).

Status code Explanation

00000 Normal termination. A global transaction was generated, and the process that called
CBLDCTRN('BEGIN ') is in the range of the global transaction.

00905 A service was requested to the service program from an invalid context (e.g., already in
the transaction). Alternatively, the transaction could not be started because the
execution environment was in non-journal operation mode.

00906 A resource manager (RM) error occurred. A transaction could not be generated.

CBLDCTRN('BEGIN ') - Start a transaction

395

Example

00907 A transaction could not be generated because a transaction service error occurred. The
value assigned to the trn_tran_process_count operand in the transaction service
definition may be too small. If this code is returned, re-execute processing. The
re-execution is very likely to be successful.

00908 The request code is invalid.

01 MISC.
 02 CMD-CODE PIC X(8).
 02 STATUS-CODE PIC X(5).
 :
 :
MOVE 'BEGIN' TO CMD-CODE OF MISC.
CALL 'CBLDCTRN' USING MISC.
IF STATUS-CODE OF MISC NOT EQUAL TO '00000' THEN
 MOVE 'CANNOT BEGIN TRANSACTION' TO ERRMSG OF
 OUT-ERROR-REC
 WRITE OUT-ERROR-REC
END IF.

Status code Explanation

CBLDCTRN('C-COMMIT') - Enable commitment in chained mode

396

CBLDCTRN('C-COMMIT') - Enable commitment in chained mode

Format
PROCEDURE DIVISION specification

DATA DIVISION specification

Description
CBLDCTRN('C-COMMIT') acquires the synchronization point of a transaction. The
normal termination of processing (commitment) is reported from the root transaction
branch to the UAPs, transaction services, and resource managers of transaction
branches which form the transaction.

When CBLDCTRN('C-COMMIT') terminates normally, a new global transaction is
started. The process that called CBLDCTRN('C-COMMIT') is in the range of this
transaction. However, this does not mean the specification of a transaction mode for a
UAP other than the UAP that called CBLDCTRN('C-COMMIT').

When a global transaction consists of multiple transaction branches (not only with the
UAP that called CBLDCTRN('C-COMMIT')), commitment processing is executed
only when the processing results of each transaction branch are committed.

CBLDCTRN('C-COMMIT') can be called only from the root transaction branch (the
UAP that started the transaction. If CBLDCTRN('C-COMMIT') is called from another
UAP, the status code 00905 is returned.

Only the process that started the UAP created correctly according to the specification
in this manual is permitted to call CBLDCTRN('C-COMMIT').

CBLDCTRN('C-COMMIT') returns with normal or abnormal termination when
synchronization point processing is completed. To terminate the service that called
CBLDCTRN('C-COMMIT') normally, the transaction attribute must be set in the UAP
execution environment.

Data area whose value is set in the UAP
data-name-A
Specify VALUE 'C-COMMIT' for the request code indicating transaction commit in
chained mode. The contents remain unchanged for processing after the chained mode

CALL 'CBLDCTRN' USING unique-name-1

01 unique-name-1.
 02 data-name-A PIC X(8) VALUE 'C-COMMIT'.
 02 data-name-B PIC X(5).

CBLDCTRN('C-COMMIT') - Enable commitment in chained mode

397

commit is executed.

Data area whose value is returned from OpenTP1
data-name-B
A status code of 5 digits is returned.

Status codes
Status code Explanation

00000 Normal termination. Even after CBLDCTRN('C-COMMIT') terminates, this process is
under the transaction and it is in the range of the global transaction.

00902 The current transaction was rolled back because it could not be committed. After the
completion of processing, this process is under the transaction and it is in the range of
the global transaction.

00903 The global transaction that called CBLDCTRN('C-COMMIT') was determined
heuristically. Consequently, a transaction branch was committed, and another
transaction branch was rolled back.
This code is returned if the results of heuristic decision do not match the results of the
synchronization point of the global transaction.
Refer to the message log file for the results of the synchronization point of the UAP,
resource manager, or global transaction that caused this code to be returned.
Even after this code is returned, this process is under the transaction and it is in the
range of the global transaction.

00904 A transaction branch of the global transaction was completed heuristically. However,
the results of the synchronization point of the heuristically completed transaction
branch are not known due to an error.
Refer to the message log file for the results of the synchronization point of the UAP,
resource manager, or global transaction that caused this code to be returned.
Even after this code is returned, this process is under the transaction and it is in the
range of the global transaction.
This function returns the status code 00904 even when you specify 00000001 for the
trn_extend_function operand in the transaction service definition and the return
value from the resource manager at one-phase commit is XAER_NOTA.

00905 CBLDCTRN('C-COMMIT') was called from an invalid context (e.g., already not in the
transaction). The transaction mode is not affected.

00908 The request code is invalid.

00924 The commitment processing terminated normally, but the new transaction could not
be started. After this code is returned, this process is no longer under the transaction.

00925 The transaction to be committed was rolled back because it could not be committed.
The new transaction could not be started. After this code is returned, this process is no
longer under transaction.

CBLDCTRN('C-COMMIT') - Enable commitment in chained mode

398

Example

00926 The global transaction that called CBLDCTRN('C-COMMIT') was determined
heuristically. Consequently, a transaction branch was committed, and another
transaction branch was rolled back. This error is returned if the result of heuristic
decision do not match the results of the synchronization point of the global transaction.
Refer to the contents of the message log file for the results of the synchronization point
of the UAP, resource manager, or global transaction that caused this code to be
returned. The new transaction could not be started. After this code is returned, this
process is no longer under transaction.

00927 A transaction branch of the global transaction was completed heuristically. However,
the results of the synchronization point of the heuristically completed transaction
branch are not known, due to an error. Refer to the contents of the message log file for
the results of the synchronization point of the UAP, resource manager, or global
transaction that caused this code to be returned.
The new transaction could not be started. After this code is returned, this process is no
longer under transaction.
This function returns the status code 00927 even when you specify 00000001 for the
trn_extend_function operand in the transaction service definition and the return
value from the resource manager is XAER_NOTA.

01 MISC.
 02 CMD-CODE PIC X(8).
 02 STATUS-CODE PIC X(5).
 :
 :
MOVE 'C-COMMIT' TO CMD-CODE OF MISC.
CALL 'CBLDCTRN' USING MISC.
IF STATUS-CODE OF MISC NOT EQUAL TO '00000' THEN
 MOVE 'CANNOT COMMIT TRANSACTION' TO ERRMSG OF
 OUT-ERROR-REC
 WRITE OUT-ERROR-REC
END IF.

Status code Explanation

CBLDCTRN('C-ROLL ') - Enable rollback in chained mode

399

CBLDCTRN('C-ROLL ') - Enable rollback in chained mode

Format
PROCEDURE DIVISION specification

DATA DIVISION specification

Description
CBLDCTRN('C-ROLL ') rolls back a transaction. A transaction is generated
immediately after CBLDCTRN('C-ROLL ') is called.

By calling CBLDCTRN('C-ROLL '), rollback processing is reported from the root
transaction branch of the global transaction to the UAPs, transaction services, and
resource managers of transaction branches which form the transaction.

When CBLDCTRN('C-ROLL ') terminates normally, the process that called the
program returns after rollback processing. Then, a new global transaction is started.
The process that calls CBLDCTRN('C-ROLL ') is in the range of this transaction.
However, this does not mean the specification of a transaction mode for a UAP other
than the UAP that called this program.

CBLDCTRN('C-ROLL ') can be called only from the root transaction branch (the
UAP that called CBLDCTRN('BEGIN ')) of a global transaction. If
CBLDCTRN('C-ROLL ') is called from another UAP, the status code 00905 is
returned.

Only the process that started the UAP executable file correctly linked according to the
specification in this manual is permitted to call CBLDCTRN('C-ROLL '). To
terminate CBLDCTRN('C-ROLL '), specify the transaction attribute at UAP
execution environment setup.

Data area whose value is set in the UAP
data-name-A
Specify VALUE 'C-ROLL ' for the request code indicating rollback in chained
mode. The contents remain unchanged for processing after the chained mode rollback
is executed.

CALL 'CBLDCTRN' USING unique-name-1

01 unique-name-1.
 02 data-name-A PIC X(8) VALUE 'C-ROLL '.
 02 data-name-B PIC X(5).

CBLDCTRN('C-ROLL ') - Enable rollback in chained mode

400

Data area whose value is returned from OpenTP1
data-name-B
A status code of 5 digits is returned.

Status codes
Status Code Explanation

00000 Normal termination. Even after CBLDCTRN('C-ROLL ') terminates, this
process is under the transaction and it is in the range of the global transaction.

00903 The global transaction that called CBLDCTRN('C-ROLL ') was determined
heuristically. Consequently, a transaction branch was committed, and another
transaction branch was rolled back.
This code is returned if the results of heuristic decision do not match the results of
the synchronization point of the global transaction.
Refer to the message log file for the results of the synchronization point of the UAP,
resource manager, or global transaction that caused this code to be returned.
Even after this code is returned, this process is under the transaction and it is in the
range of the global transaction.

00904 A transaction branch of the global transaction was completed heuristically.
However, the results of the synchronization point of the heuristically completed
transaction branch are not known due to an error.
Refer to the message log file for the results of the synchronization point of the UAP,
resource manager, or global transaction that caused this code to be returned.
Even after this code is returned, this process is under the transaction and it is in the
range of the global transaction.

00905 CBLDCTRN('C-ROLL ') was called from an invalid context (e.g., already not
in the transaction). The transaction mode is not affected.

00908 The request code is invalid.

00924 The rollback processing terminated normally, but the new transaction could not be
started. After this code is returned, this process is no longer under the transaction.

00926 The global transaction that called CBLDCTRN('C-ROLL ') was determined
heuristically. Consequently, a transaction branch was committed, and another
transaction branch was rolled back. This error is returned if the result of heuristic
decision do not match the results of the synchronization point of the global
transaction. Refer to the contents of the message log file for the results of the
synchronization point of the UAP, resource manager, or global transaction that
caused this code to be returned. The new transaction could not be started. After this
code is returned, this process is no longer under transaction.

CBLDCTRN('C-ROLL ') - Enable rollback in chained mode

401

Example

00927 A transaction branch of the global transaction was completed heuristically.
However, the results of the synchronization point of the heuristically completed
transaction branch are not known, due to an error. Refer to the contents of the
message log file for the results of the synchronization point of the UAP, resource
manager, or global transaction that caused this code to be returned.
The new transaction could not be started. After this code is returned, this process
is no longer under transaction.

01 MISC.
 02 CMD-CODE PIC X(8).
 02 STATUS-CODE PIC X(5).
 :
 :
MOVE 'C-ROLL ' TO CMD-CODE OF MISC.
CALL 'CBLDCTRN' USING MISC.
IF STATUS-CODE OF MISC NOT EQUAL TO '00000' THEN
 MOVE 'CANNOT ROLLBACK TRANSACTION' TO ERRMSG OF
 OUT-ERROR-REC
 WRITE OUT-ERROR-REC
END IF.

Status Code Explanation

CBLDCTRN('INFO ') - Report the information about the current transaction

402

CBLDCTRN('INFO ') - Report the information about the current
transaction

Format
PROCEDURE DIVISION specification

DATA DIVISION specification

Description
CBLDCTRN('INFO ') reports whether the UAP that called CBLDCTRN('INFO
') is operating as the current transaction.

Only the process that started the UAP created correctly according to the specification
in this manual is permitted to call CBLDCTRN('INFO '). To terminate the service
that called CBLDCTRN('INFO ') normally, the transaction attribute must be set in
the UAP execution environment.

Data areas whose values are set in the UAP
data-name-A
Specify VALUE 'INFO ' for the request code indicating that information about
the current transaction is reported. The contents remain unchanged for processing after
CBLDCTRN('INFO ') is executed.

data-name-C
This area stores information about the current transaction. Specify 0.

data-name-D
Specify 0.

Data area whose value is returned from OpenTP1
data-name-B
A status code of 5 digits is returned.

CALL 'CBLDCTRN' USING unique-name-1

01 unique-name-1.
 02 data-name-A PIC X(8) VALUE 'INFO '.
 02 data-name-B PIC X(5).
 02 FILLER PIC X.
 02 data-name-C.
 03 data-name-D PIC S9(4) COMP VALUE ZERO.

CBLDCTRN('INFO ') - Report the information about the current transaction

403

Status codes

Example

Note
This API does not obtain a UAP trace.

Status code Explanation

00001 The process that called CBLDCTRN('INFO ') is operating as a transaction.

00000 The process that called CBLDCTRN('INFO ') is not operating as a transaction.

00908 The request code is invalid.

01 MISC.
 02 CMD-CODE PIC X(8).
 02 STATUS-CODE PIC X(5).
 02 FILLER PIC X.
 02 TRAN-INFO.
 03 LEN PIC S9(4) COMP.
 :
 :
MOVE ZERO TO LEN OF TRAN-INFO OF MISC.
MOVE 'INFO' TO CMD-CODE OF MISC.
CALL 'CBLDCTRN' USING MISC.
IF STATUS-CODE OF MISC NOT EQUAL TO '00001' THEN
 MOVE 'NOW IN TRANSACTION' TO ERRMSG OF OUT-ERROR-REC
 WRITE OUT-ERROR-REC
END IF.

CBLDCTRN('U-COMMIT') - Enable commitment in unchained mode

404

CBLDCTRN('U-COMMIT') - Enable commitment in unchained mode

Format
PROCEDURE DIVISION specification

DATA DIVISION specification

Description
CBLDCTRN('U-COMMIT') reports the normal termination of a global transaction
(commitment) to the UAPs, transaction services, and resource managers of transaction
branches which form the transaction. After CBLDCTRN('U-COMMIT') terminates
normally, a new global transaction is not generated.

When a global transaction consists of multiple transaction branches (not only with the
UAP that called CBLDCTRN('U-COMMIT')), commitment processing is executed
only when the processing results of each transaction branch is committed.

The CBLDCTRN('U-COMMIT') can be called only from the root transaction branch
(the UAP that called CBLDCTRN('U-COMMIT')) of a global transaction. If
CBLDCTRN('U-COMMIT') is called from another UAP, the status code 00905 is
returned.

Only the process that started the UAP executable file correctly linked according to the
specification in this manual is permitted to call CBLDCTRN('U-COMMIT').

CBLDCTRN('U-COMMIT') returns with normal or abnormal termination when
synchronization point processing is completed. To terminate
CBLDCTRN('U-COMMIT') normally, specify the transaction attribute at UAP
execution environment setup.

Data area whose value is set in the UAP
data-name-A
Specify VALUE 'U-COMMIT' for the request code indicating transaction commit in
unchained mode. The contents remain unchanged for processing after the unchained
mode commit statement is executed.

CALL 'CBLDCTRN' USING unique-name-1

01 unique-name-1.
 02 data-name-A PIC X(8) VALUE 'U-COMMIT'.
 02 data-name-B PIC X(5).

CBLDCTRN('U-COMMIT') - Enable commitment in unchained mode

405

Data area whose value is returned from OpenTP1
data-name-B
A status code of 5 digits is returned.

Status codes
Status code Explanation

00000 Normal termination. This process is not under the transaction and it is not in the range of the
global transaction.

00902 The current transaction was rolled back because it could not be committed. This process is not
in the range of the global transaction.

00903 The global transaction that called CBLDCTRN('U-COMMIT') was determined heuristically.
Consequently, a transaction branch was committed, and another transaction branch was rolled
back.
This code is returned if the results of heuristic decision do not match the results of the
synchronization point of the global transaction.
Refer to the message log file for the results of the synchronization point of the UAP, resource
manager, or global transaction that caused this code to be returned.
After this code is returned, this process is not under the transaction and it is not in the range
of the global transaction.

00904 A transaction branch of the global transaction was completed heuristically. However, the
results of the synchronization point of the heuristically completed transaction branch are not
known due to an error.
Refer to the message log file for the results of the synchronization point of the UAP, resource
manager, or global transaction that caused this code to be returned.
After this code is returned, this process is not under the transaction and it is not in the range
of the global transaction.
This function returns the status code 00904 even when you specify 00000001 for the
trn_extend_function operand in the transaction service definition and the return value
from the resource manager at one-phase commit is XAER_NOTA.

00905 CBLDCTRN('U-COMMIT') was called from an invalid context (e.g., already not in the
transaction). The transaction mode is not affected.

00908 The request code is invalid.

CBLDCTRN('U-COMMIT') - Enable commitment in unchained mode

406

Example
01 MISC.
 02 CMD-CODE PIC X(8).
 02 STATUS-CODE PIC X(5).
 :
 :
MOVE 'U-COMMIT' TO CMD-CODE OF MISC.
CALL 'CBLDCTRN' USING MISC.
IF STATUS-CODE OF MISC NOT EQUAL TO '00000' THEN
 MOVE 'CANNOT COMMIT TRANSACTION' TO ERRMSG OF
 OUT-ERROR-REC
 WRITE OUT-ERROR-REC
END IF.

CBLDCTRN('U-ROLL ') - Enable rollback in unchained mode

407

CBLDCTRN('U-ROLL ') - Enable rollback in unchained mode

Format
PROCEDURE DIVISION specification

DATA DIVISION specification

Description
CBLDCTRN('U-ROLL ') rolls back a transaction. After CBLDCTRN('U-ROLL
') terminates normally, a new global transaction is not generated.

CBLDCTRN('U-ROLL ') can be called from any transaction branch of a global
transaction. If CBLDCTRN('U-ROLL ') is called from the root transaction branch,
a new transaction is not started after CBLDCTRN('U-ROLL ') returns. If
CBLDCTRN('U-ROLL ') is called from a transaction branch other than the root
transaction branch, CBLDCTRN('U-ROLL ') puts the transaction branch into
rollback_only state and returns to the client UAP. In this case, the transaction
branch is in the range of the global transaction until the synchronization point
processing of the root transaction branch is completed.

Only the process that started the UAP executable file correctly linked according to the
specification in this manual is permitted to call CBLDCTRN('U-ROLL '). To
terminate CBLDCTRN('U-ROLL ') normally, specify the transaction attribute at
UAP execution environment setup.

Data area whose value is set in the UAP
data-name-A
Specify VALUE 'U-ROLL ' for the request code indicating rollback in unchained
mode. The contents remain unchanged for processing after the unchained mode
rollback is executed.

Data area whose value is returned from OpenTP1
data-name-B
A status code of 5 digits is returned.

CALL 'CBLDCTRN' USING unique-name-1

01 unique-name-1.
 02 data-name-A PIC X(8) VALUE 'U-ROLL '.
 02 data-name-B PIC X(5).

CBLDCTRN('U-ROLL ') - Enable rollback in unchained mode

408

Status codes

Example

Status code Explanation

00000 Normal termination. If CBLDCTRN('U-ROLL ') is called from the root transaction
branch, this process is not under the transaction and it is not in the range of the global
transaction. If CBLDCTRN('U-ROLL ') is called from a transaction branch other than
the root transaction branch, this process is put into rollback_only state.

00903 The global transaction that called CBLDCTRN('U-ROLL ') was determined
heuristically. Consequently, a transaction branch was committed, and another transaction
branch was rolled back.
This code is returned if the results of heuristic decision do not match the results of the
synchronization point of the global transaction.
Refer to the message log file for the results of the synchronization point of the UAP,
resource manager, or global transaction that caused this code to be returned.
After this code is returned, this process is not under the transaction and it is not in the
range of the global transaction.

00904 A transaction branch of the global transaction was completed heuristically. However, the
results of the synchronization point of the heuristically completed transaction branch are
not known due to an error.
Refer to the message log file for the results of the synchronization point of the UAP,
resource manager, or global transaction that caused this code to be returned.
After this code is returned, this process is not under the transaction and it is not in the
range of the global transaction.

00905 CBLDCTRN('U-ROLL ') was called from an invalid context (e.g., already not in the
transaction). The transaction mode is not affected.

00908 The request code is invalid.

01 MISC.
 02 CMD-CODE PIC X(8).
 02 STATUS-CODE PIC X(5).
 :
 :
MOVE 'U-ROLL ' TO CMD-CODE OF MISC.
CALL 'CBLDCTRN' USING MISC.
IF STATUS-CODE OF MISC NOT EQUAL TO '00000' THEN
 MOVE 'CANNOT ROLLBACK TRANSACTION' TO ERRMSG OF
 OUT-ERROR-REC
 WRITE OUT-ERROR-REC
END IF.

Online tester management (CBLDCUTO)

409

Online tester management (CBLDCUTO)

This section gives the syntax and other information of the following COBOL-UAP
creation program which is used to manage the status of TP1/Online Tester from a user
server when it is used by OpenTP1.

• CBLDCUTO('T-STATUS') - Report the test status of a user server

The COBOL-UAP creation program for online tester management (CBLDCUTO) can be
used only in UAPs of TP1/Server Base. It cannot be used in UAPs of TP1/LiNK.

When defining DATA DIVISION of COBOL-UAP creation programs, the COBOL
language templates can be used as samples. The COBOL language template for online
tester management (CBLDCUTO) is stored in DCUTO.cbl under the /BeTRAN/
examples/COBOL/ directory.

CBLDCUTO('T-STATUS') - Report the test status of a user server

410

CBLDCUTO('T-STATUS') - Report the test status of a user server

Format
PROCEDURE DIVISION specification

DATA DIVISION specification

Description
CBLDCUTO('T-STATUS') reports the test status of the user server that called
CBLDCUTO('T-STATUS'). When CBLDCUTO('T-STATUS') terminates normally,
the test status is set to data-name-D, data-name-E, data-name-F, data-name-G, and
data-name-H. If CBLDCUTO('T-STATUS') returns with an error, the test status
information is not guaranteed.

Data areas whose values are set in the UAP
data-name-A
Specify VALUE 'T-STATUS' for the request code indicating the report of the test
status of a user server.

data-name-Z
Specify 0.

Data areas to which values are returned from OpenTP1
data-name-B
The status code of 5 digit is returned.

CALL 'CBLDCUTO' USING unique-name-1 unique-name-2

01 unique-name-1.
 02 data-name-A PIC X(8) VALUE 'T-STATUS'.
 02 data-name-B PIC X(5).
 02 FILLER PIC X(3).
 02 data-name-Z PIC S9(9) COMP VALUE ZERO.
01 unique-name-2.
 02 data-name-C PIC X(4).
 02 data-name-D PIC X(1).
 02 data-name-E PIC X(1).
 02 data-name-F PIC X(1).
 02 data-name-G PIC X(1).
 02 data-name-H PIC X(1).
 02 FILLER PIC X(22).

CBLDCUTO('T-STATUS') - Report the test status of a user server

411

data-name-C
The test user ID (the value specified for the environment variable DCUTOKEY) is set
here.

data-name-D
Whether the user server is operating in test mode or not is set here.

VALUE 'T': The user server is operating in test mode.

VALUE 'N': The user server is not operating in test mode.

data-name-E
The status of global transaction processing is set here.

VALUE 'C': The global transaction is committed in synchronization point processing.

VALUE 'R': The global transaction is rolled back in synchronization point processing.

VALUE 'N': Non-transaction status

Space: The user server is not in test mode or an MHP linked to the MCF library is used.

data-name-F
The test type specified for test_mode operand in the user service definition is set
here.

VALUE 'T': Test as UAP only for testing (target)

VALUE 'U': Test as usable UAP (usable)

VALUE 'S': Test as simulate MHP (simmhp)

VALUE 'N': MHP not intended for test (no)

data-name-G
The handling of the synchronization point of transaction specified for
test_transaction_commit operand in the user service definition is set here.

VALUE 'C': The transaction is committed at synchronization point (Y).

VALUE 'R': The transaction is rolled back at synchronization point (N).

Space: The user server is not in test mode or an MHP linked to the MCF library is used.

data-name-H
The handling of the results of command execution specified for
test_adm_call_command operand in the user service definition is set here.

VALUE 'D': The command is executed. (do)

VALUE 'S': An assumed value is specified as the results of execution. (skip)

CBLDCUTO('T-STATUS') - Report the test status of a user server

412

VALUE 'F': Data from the operation command data results file is used. (file)

Space: The user server is not in test mode or an MHP linked to the MCF library is used.

Status codes

Note
When CBLDCUTO('T-STATUS') is called from the MHP linked to the MCF library,
the following values are set to each data area:

• data-name-C: Test user ID

• data-name-D: Current operating service mode

• data-name-E: Space

• data-name-F: 'N'

• data-name-G: Space

• data-name-H: Space

Status code Explanation

00000 Normal termination. The test status is set to each data area.

02701 CBLDCRPC('OPEN ') was not called.

02734 The version of the OpenTP1 library linked to the UAP does not allow the UAP to
operate with the current transaction service.

02757 The value specified for data-name-Z is invalid.

02759 The request code (data-name-A) is invalid.

413

Chapter

3. Syntax of OpenTP1 Programs for
COBOL-UAP Creation Programs
(DML Interface)

This chapter explains the syntax of UAP creation programs (DML interface) which are
used to create OpenTP1 UAPs in the COBOL language.

This chapter contains the following sections:

Coding in data manipulation language
Data communication facility
Service facility

Coding in data manipulation language

414

Coding in data manipulation language

When a UAP is created in COBOL language, OpenTP1 message exchange facilities
can be created in Data Manipulation Language (DML). CALL statements and DML can
coexist when one service is coded.

DML can be used only with the TP1/Server Base. It cannot be used with the TP1/
LiNK.

The DML consists of a communication description entry for defining a work area and
a communication statement used as an instruction.

Table 3-1 lists message exchange facilities provided in DML.

Table 3-1: DML provided by OpenTP1

Note

Communication statement Facility Corresponding CALL
interface

Data
communication
facility

RECEIVE#1 Receive a message. CBLDCMCF('RECEIVE ')

Receive a synchronous message. CBLDCMCF('RECVSYNC')

SEND#1 Send a message. CBLDCMCF('SEND ')

Send a response message. CBLDCMCF('REPLY ')

Send a synchronous message. CBLDCMCF('SENDSYNC')

Exchange a synchronous message. CBLDCMCF('SENDRECV')

ENABLE#2 Send a synchronous message. CBLDCMCF('SENDSYNC')

DISABLE#2 Send a synchronous message. CBLDCMCF('SENDSYNC')

Service facility DISABLE Terminate continuous-inquiry-
response processing.

CBLDCMCF('CONTEND ')

RECEIVE Accept temporary-stored data. CBLDCMCF('TEMPGET ')

ROLLBACK Enable MHP rollback. CBLDCMCF('ROLLBACK')

SEND Activate an application program. CBLDCMCF('EXECAP ')

SEND Update temporary-stored data. CBLDCMCF('TEMPPUT ')

SEND Execute an operation command. CBLDCADM('COMMAND ')

SEND Acquire a user journal. CBLDCJNL('UJPUT ')

Coding in data manipulation language

415

There is no DML interface for the message resend

(CBLDCMCF('RESEND ')).

#1: For details on the syntax, see the applicable OpenTP1 Protocol manual.

#2: Can be used only when TP1/NET/OSI-TP is used. See the OpenTP1 Protocol TP1/
NET/OSI-TP manual for details on the syntax.

The UAP trace information of a UAP created in DML is equivalent to the
information of the facility library which is called by a UAP created with a CALL
interface of the COBOL or C language.

General syntax rules
The DML of a UAP operating under OpenTP1 consists of a communication section,
communication statements, and a part coded in the original COBOL syntax. This
section explains the coding rules of the communication section and communication
statements, and the syntax rules that must apply to coding of the original COBOL
language. Items not explained in this section must comply with the syntax rules of the
COBOL language. For details about the general syntax rules of the COBOL language,
see an appropriate COBOL language guide.

Coding symbols

The following table explains the symbols used in the coding format shown in this
section:

Unique names and data names

The unique names and data names in this manual have the same meanings as those
used with COBOL85.

Example

A subscript and indicator are added to unique names, but not to data names.
However, a subscript and indicator are not added to unique names in
communication statements.

Coding
symbol

Explanation

[] Indicates that items enclosed in brackets [] are optional. Example: [BEFORE ERASING]

{ } Indicates that items enclosed in braces { } represent alternative items. Only one of the items
can be specified.

____ Indicates that a underlined reserved word is mandatory and cannot be omitted. A reserved
word without double underlines is optional. (It is not always necessary to write the word.)

Coding in data manipulation language

416

Formats
Communication section coding rules

The communication section is written in the data division. The figure below shows the
data division including the communication section. Each section of the data division
must be written in the format shown below.

Write the communication section beginning from the section header (a reserved word
list called COMMUNICATION SECTION which is ended with a period and space). Write
at least one communication description entry (CD) following the header.

Communication description entry (CD) coding rules

A communication description entry defines the type of communication and the
interface areas of UAP and OpenTP1. The following figure shows the general
communication description entry format:

• Write the communication description entry beginning from CD which is a level
indication word, and end the level indication word CD with a period and space.

• Write the FOR clause following the level indication word CD. Clauses following
the FOR clause can be written in any sequence.

• For the communication description entry name and data names 1 to 11, specify

DATA DIVISION.
 [FILE SECTION.
 :]
 [WORKING-STORAGE SECTION.
 :]
 [LINKAGE SECTION.
 :]
 [COMMUNICATION SECTION.
 communication-description-entry
 :]
 [REPORT SECTION.
 :]

CD communication-description-name
FOR {INPUT|OUTPUT|I-O} [STORAGE|JOURNAL|PROGRAM|COMMAND]
 [STATUS KEY IS data-name-1]
 [SYMBOLIC TERMINAL IS data-name-2]
 [MESSAGE DATE IS data-name-3]
 [MESSAGE TIME IS data-name-4]
 [MAP NAME IS data-name-5]
 [SYNCHRONOUS MODE IS {SYNC|ASYNC|data-name-6}]
 [SWITCHING MODE IS {NORMAL|PRIOR|data-name-7}]
 [NEXT TRANSACTION IS data-name-8]
 [ACTIVE INTERVAL IS data-name-9]
 [DETAIL MODE IS data-name-10]
 [WAITING TIME IS data-name-11]

Coding in data manipulation language

417

names which can be used with the COBOL language to be used. Do not specify
names which cannot be used with OpenTP1 UAPs.

• Write one communication description entry within 20 lines. The COBOL
continuation line facility cannot be used. Also, a comment line or null line cannot
be inserted into one communication description entry.

• End the communication description entry with a period and space.

Communication statement coding rules

A communication statement is used in the procedure division. The following figure
shows the general communication statement format:

• Write each communication statement clause in the sequence shown in the general
format.

• The communication description name in a communication statement must be
defined in the communication section.

• Only a unique name defined in the working storage section can be specified in a
communication statement.

• A communication statement can be written extending over multiple lines.
However, it is not permitted to write a hyphen (-) in the indicator area
(continuation line coding method). Also, a comment line or a null line cannot be
inserted into one communication statement.

• Do not write a communication statement in the line in which the original
COBOL85 statement or a paragraph name is written.

• Only unique names at 01 or 77 level can be written in communication statements.

Communication description entry coding rules

Communication description entries used in a communication statement can be shared
with multiple communication statements. The communication description entries
include data names whose values are set in the UAP and data names whose values are
returned from OpenTP1. The contents of data names other than data names whose
values are returned from OpenTP1 are identical before and after the communication
statement is issued. Therefore, there is no need to respecify a data name in the
following case:

RECEIVE communication-description-name {[FIRST]SEGMENT|MESSAGE}
 [INTO unique-name-1] [BEFORE ERASING].
SEND communication-description-name [FROM unique-name-1]
 WITH {ESI|EMI|unique-name-2}]
 [BEFORE RECEIVING MESSAGE INTO unique-name-3].
DISABLE communication-description-name [WITH unique-name-1].
ROLLBACK [WITH STOPPING]

Coding in data manipulation language

418

The same communication description entry is used in multiple lines, and the same
contents as for the previously issued communication statement are used.

Table 3-2 shows clauses for specifying data names in a communication description
entry, and their edit formats.

Table 3-2: Clauses for specifying data names in communication description
entry and their edit formats

Legend:

1.: RECEIVE - Receive a message (the first segment)

2.: RECEIVE - Receive a message (An intermediate segment or the last segment)

3.: SEND - Send a message (the first segment)

Clause for specifying
data name

Data area format Specification source of data area value#

1. 2. 3. 4. 5. 6. 7. 8. 9. 10.

STATUS KEY data-name-1 PIC
X(5).

B B B B B B B B B B

SYMBOLIC TERMINAL data-name-2 PIC
X(8).

B -- U U U U U U -- --

MESSAGE DATE data-name-3 PIC
9(6).

B -- -- -- -- -- -- -- -- --

MESSAGE TIME data-name-4 PIC
9(8).

B -- -- -- -- -- -- -- -- --

MAP NAME data-name-5 PIC
X(8).

b -- U U -- -- -- -- -- --

SYNCHRONOUS MODE data-name-6 PIC
X(1).

-- -- u u -- -- -- -- -- --

SWITCHING MODE data-name-7 PIC
X(1).

-- -- u u -- -- -- -- -- --

NEXT TRANSACTION data-name-8 PIC
X(8).

-- -- u -- -- -- -- -- -- --

ACTIVE INTERVAL data-name-9 PIC
X(8).

-- -- -- -- -- -- u -- -- --

DETAIL MODE data-name-10 PIC
X(1).

-- -- u u -- -- -- -- -- --

WAITING TIME data-name-11 PIC
1(32) BIT.

-- -- u u -- -- -- -- -- --

Coding in data manipulation language

419

4.: SEND - Send a message (An intermediate segment or the last segment)

5.: DISABLE - Terminate continuous-inquiry-response processing

6.: RECEIVE - Accept temporary-stored data

7.: SEND - Activate an application program

8.: SEND - Update temporary-stored data

9.: SEND - Execute an operation command

10.: SEND - Acquire a user journal

B: The value is returned from OpenTP1.

b: The value is returned from OpenTP1 under the specified conditions.

U: The value is specified in the UAP.

u: The value is specified in the UAP under the specified conditions.

--: Not applicable.

#: The ROLLBACK statement does not use a communication description entry.

Data communication facility

420

Data communication facility

This section explains the programs used for the DML data communication facility. The
COBOL-UAP creation programs for the data communication facility are as follows:

• RECEIVE - Receive a message

• SEND - Send a message

The above DML format, the values to be set in the data areas, and status codes vary
from one protocol to another. For details, see the applicable OpenTP1 Protocol
manual.

RECEIVE - Receive a message

421

RECEIVE - Receive a message

Format
DATA DIVISION (communication description entry) specification

PROCEDURE DIVISION (communication statement) specification

Description
RECEIVE enables the following CALL interface facility:

• CBLDCMCF('RECEIVE ') - Receive a message.

• CBLDCMCF('RECVSYNC') - Receive a synchronous message.

The maximum length of a single segment that can be received is 32763 bytes. Note that
the actual maximum length might be smaller than this value depending on the protocol.
For details, see the relevant description in the applicable OpenTP1 Protocol manual.

In the case of receiving a message sent from a remote system via a protocol, the syntax
of the RECEIVE statement varies from one protocol to another. For the syntax of the
RECEIVE statement for receiving a message from a remote system, also see the
relevant description in the applicable OpenTP1 Protocol manual.

Items specified in the communication description entry
FOR clause

Specify one of the following:

INPUT: Receive a non-inquiry message

I-O: Receive an inquiry message

CD communication-description-name
 FOR {INPUT|I-O}
 [STATUS KEY IS data-name-1]
 [SYMBOLIC TERMINAL IS data-name-2]
 [MESSAGE DATE IS data-name-3]
 [MESSAGE TIME IS data-name-4].

01 unique-name-1.
 02 data-name-5 PIC 9(4) COMP.
 02 data-name-6 PIC X(4).
 02 data-name-7 PIC X(n).

RECEIVE communication-description-name
 [FIRST] SEGMENT
 INTO unique-name-1.

RECEIVE - Receive a message

422

STATUS KEY clause

Specify this clause to receive a status code. If this clause is omitted, a status code
cannot be received.

SYMBOLIC TERMINAL clause

Specify the data item for referencing the logical terminal name of the message input
source.

MESSAGE DATE clause

Specify the data item for referencing the date when the message is received in the
format of YYMMDD (where YY indicates the year, MM indicates the month, and DD
indicates the day).

MESSAGE TIME clause

Specify the data item for referencing the time when the message is received in the
format of HHMMSS00 (where HH indicates hours, MM indicates minutes, SS indicates
second, and 00 is fixed).

Items specified in the communication statement
FIRST

Specify this item to receive the first segment.

unique-name-1
Specify the data item indicating the area for receiving a segment. When the message
is sent from the local system, the maximum length of receiving segment is 32000
bytes. When the message is sent from the remote system, the maximum length of
receiving segment depends on the communication protocol supporting product.

RECEIVE - Receive a message

423

Status codes
Status code Explanation

00000 Normal termination.

A segment shorter than the receive area was received. The blank area after the segment
will be padded with spaces.

71000 The RECEIVE statement for receiving the first segment was executed more than once.
To receive an intermediate segment or the last segment, execute the RECEIVE statement
without specifying FIRST.

71001 The RECEIVE statement for receiving the next segment was executed after the last
segment of the message was received. The RECEIVE statement executed immediately
before receives a message completely. If the RECEIVE statement is executed again after
this status code is returned, the status code "72000" is returned.

71002 An error occurred during input/output processing for the message queue.

The message queue is in shutdown state.

72000 Return at MHP execution:
The RECEIVE statement for receiving an intermediate segment or the last segment was
executed before the RECEIVE statement for receiving the first segment was executed.
To receive the first segment, execute the RECEIVE statement specifying FIRST.
The RECEIVE statement was executed again after the status code "71000" was returned.

Return at SPP execution:
The RECEIVE statement cannot be executed from an SPP.

72001 The logical terminal name specified for the SYMBOLIC TERMINAL clause is invalid.

The specified logical terminal cannot execute the RECEIVE statement.

72013 A segment exceeding the length of the receive area was received. The excess portion
was truncated.

A segment exceeding 32,767 bytes was received in the case of buffer format 2. The
excess portion was truncated.

72020 The value specified for the SYNCHRONOUS MODE clause is invalid.

72024 The value specified for the FOR clause is invalid.

72036 The segment receive area (unique-name-1) is insufficient. Allocate an area of 5 bytes or
more.

Other than the above An unprecedented error (e.g., program damage) occurred.

SEND - Send a message

424

SEND - Send a message

Format
For details on the format, see the applicable OpenTP1 Protocol manual.

Description
SEND enables the following CALL interface facilities:

• CBLDCMCF('REPLY ') - Send a response message

• CBLDCMCF('SEND ') - Send a message

• CBLDCMCF('SENDRECV') - Exchange a synchronous message

• CBLDCMCF('SENDSYNC') - Send a synchronous message

The maximum length of a single segment that can be received is 32763 bytes. The
maximum length of a single message segment that can be sent is 32 kilobytes. Note
that the actual maximum length might be smaller than this value depending on the
protocol. For details, see the relevant description in the applicable OpenTP1 Protocol
manual.

The syntax of the SEND statement for sending a message varies from one protocol to
another. For the syntax of the SEND statement for sending a message to a remote
system, also see the relevant description in the applicable OpenTP1 Protocol manual.

Note
When a capability equivalent to CBLDCMCF('SEND') is used, the message send order
varies depending on the mcfmuap -c order specification in the UAP common
definition of the MCF manager definition.

Service facility

425

Service facility

This section gives the syntax and other information of the following COBOL-UAP
creation programs which are used for the DML service facility:

• DISABLE - Terminate continuous-inquiry-response processing

• RECEIVE - Accept temporary-stored data

• ROLLBACK - Enable MHP rollback

• SEND - Activate an application program

• SEND - Update temporary-stored data

• SEND - Execute an operation command

• SEND - Acquire a user journal

DISABLE - Terminate continuous-inquiry-response processing

426

DISABLE - Terminate continuous-inquiry-response processing

Format
DATA DIVISION (communication description entry) specification

PROCEDURE DIVISION specification

Description
DISABLE enables the following CALL interface facility:

• CBLDCMCF('CONTEND')

- Terminate continuous-inquiry-response processing.

Items specified in the communication description entry
STATUS KEY clause

Specify this clause to receive a status code. If this clause is omitted, a status code
cannot be received.

Item specified in the communication statement
None

Status codes

CD communication-description-name
 FOR I-O STORAGE
 [STATUS KEY IS data-name-1]

DISABLE communication-description-name.

Status code Explanation

00000 Normal termination.

72000 <Return at MHP execution>
The DISABLE statement that terminates continuous-inquiry-response was used out of
sequence. The DISABLE statement that terminates continuous-inquiry-response
termination was used before the RECEIVE statement that receives first segment was
called from the MHP.

<Return at SPP execution>
The DISABLE statement that terminates continuous-inquiry-response cannot be used
from an SPP.

DISABLE - Terminate continuous-inquiry-response processing

427

72101 The DISABLE statement that terminates continuous-inquiry-response was used from
an MHP for which type=cont (continuous-inquiry-response type) was not specified
in the MCF application definition.

72107 The DISABLE statement that terminates continuous-inquiry-response termination was
already used.

72111 The SEND statement that sends response message in which the name of the
continuous-inquiry-response type application to be activated next was specified was
used, then the DISABLE statement that terminates continuous-inquiry-response was
used.

The SEND statement that starts application program in which the name of the
continuous-inquiry-response type application to be activated next was specified was
used, then the DISABLE statement that terminates continuous-inquiry-response was
used.

Other than the above An unprecedented error (e.g., program damage) occurred.

Status code Explanation

RECEIVE - Accept temporarily-stored data

428

RECEIVE - Accept temporarily-stored data

Format
DATA DIVISION (communication description entry) specification

PROCEDURE DIVISION specification

Description
RECEIVE enables the following CALL interface facility:

• CBLDCMCF('TEMPGET') - Receive temporary-stored data.

Items specified in the communication description entry
FOR clause

Specify INPUT STORAGE or I-O STORAGE.

STATUS KEY clause

Specify this clause to receive a status code. If this clause is omitted, a status code
cannot be received.

Items specified in the communication statement
MESSAGE, SEGMENT

Specify MESSAGE or SEGMENT.

unique-name-1
Specify the data item indicating the area for receiving temporary-stored data. The
following figure shows the format of unique-name-1 after the message is received:

CD communication-description-name
 FOR {INPUT|I-O} STORAGE
 [STATUS KEY IS data-name-1] .

01 unique-name-1.
 02 data-name-2 PIC 9(4) COMP.
 02 data-name-3 PIC X(4).
 02 data-name-4 PIC X(n).

RECEIVE communication-description-name {MESSAGE|SEGMENT}
 INTO unique-name-1.

RECEIVE - Accept temporarily-stored data

429

Status codes
Status codes Status codes

00000 Normal termination.

72000 The RECEIVE statement that receives temporary-stored data cannot be used from an
SPP.

72013 Temporary-stored data exceeding the receive area length was received. The excess
portion was truncated because the data exceeds 32,761 bytes.

72036 The value specified for the receive area length is less then 7 bytes.

72101 RECEIVE statement that receives the temporary-stored data was used by an MHP which
is not continuous-inquiry-response type (type=cont).

72106 RECEIVE statement that receives the temporary-stored data was used before RECEIVE
statement that receives the first segment.

72107 RECEIVE statement that receives the temporary-stored data was used after DISABLE
statement that terminates the continuous inquiry response.

Other than the above An unprecedented error (e.g., program damage) occurred.

ROLLBACK - Enable MHP rollback

430

ROLLBACK - Enable MHP rollback

Format
PROCEDURE DIVISION specification

Description
ROLLBACK enables the following CALL interface facility:

• CBLDCMCF('ROLLBACK') Enable MHP rollback.

The ROLLBACK statement used from an SPP is ignored. The ROLLBACK statement is
ignored if it is used from an MHP with the nontransaction attribute.

Item specified in the communication statement
WITH STOPPING clause

Specify this clause to stop returning control to an MHP when the MHP is terminated
abnormally. Omit this clause to return control to the MHP. If the ROLLBACK statement
with this clause omitted is used before a message is received, the ROLLBACK statement
is ignored.

Status codes
There is no status code of the ROLLBACK statement.

ROLLBACK [WITH STOPPING] .

SEND - Activate an application program

431

SEND - Activate an application program

Format 1
(When specifying the message to be passed to the application program to be activated
and activating the application program)

DATA DIVISION (communication description entry) specification

PROCEDURE DIVISION specification

Format 2
(When reporting termination of message transfer after a request to transfer a segment
other than the last segment is sent)

DATA DIVISION (communication description entry) specification

PROCEDURE DIVISION specification

Description
SEND enables the following CALL interface facility:

• CBLDCMCF('EXECAP ') Activate an application program.

CD communication-description-name
 FOR OUTPUT PROGRAM
 [STATUS KEY IS data-name-1]
 SYMBOLIC TERMINAL IS data-name-2
 [ACTIVE {INTERVAL|TIME} IS data-name-9].

01 unique-name-1.
 02 data-name-10 PIC 9(4) COMP.
 02 data-name-11 PIC X(2).
 02 data-name-12 PIC X(n).
01 unique-name-2.
 02 data-name-13 PIC X(1).

SEND communication-description-name FROM unique-name-1
 [WITH {ESI|EMI|unique-name-2}] .

CD communication-description-name
 FOR OUTPUT PROGRAM
 [STATUS KEY IS data-name-1]
 SYMBOLIC TERMINAL IS data-name-2.

SEND communication-description-name WITH EMI.

SEND - Activate an application program

432

The maximum length of a single message segment that can be sent is 32 kilobytes.
Note that the actual maximum length might be smaller than this value depending on
the protocol. For details, see the relevant description in the applicable OpenTP1
Protocol manual.

Items specified in the communication description entry
FOR clause

Specify OUTPUT indicating a send-only message.

STATUS KEY clause

Specify this clause to receive a status code. If this clause is omitted, a status code
cannot be received.

SYMBOLIC TERMINAL clause

Specify the data item for which the logical terminal name was specified.

ACTIVE clause

This clause is specified to timer-start the application program.

INTERVAL: Interval timer start

TIME: Time point timer start

data-name-9
Interval timer start

Specify a period of time in hours, minutes, and seconds. The MHP or SPP
will start the specified period of time after the application program start
statement is issued. The period of time is specified in the format of
HHMMSS00 where HH indicates hours, MM indicates minutes, SS indicates
seconds, and 00 is fixed. The range of specifiable times is from 00000100
(start after one second) to 99595900 (start after 99 hours 59 minutes 59
seconds).

Time point timer start

Specify the time at which the MHP or SPP is to start. The time is specified
in the format of HHMMSS00 where HH indicates hours, MM indicates minutes,
SS indicates seconds, and 00 is fixed. The range of specifiable times is from
00000000 (start at 00:00:00) to 23595900 (start at 23:59:59) in local time.

If nothing is specified, immediate start is assumed.

Since OpenTP1 monitors timeout at fixed intervals, an error arises between the time
specified for timer (for COBOL, data-name-D) of the function
dc_mcf_timer_set() [CBLDCMCF('TIMERSET')] and the time that elapses before
actual detection of timeout. The accuracy of time monitoring depends on the value for

SEND - Activate an application program

433

the time monitoring interval specified for the btim operand in the -t option of the
MCF communication configuration definition mcfttim.

Items specified in the communication statement
unique-name-1
Specify the data item indicating the send area of the message segment which is to be
passed to the application program to be activated. The following figure shows the
format of the segment which is passed to MHP to be activated.

WITH clause

Specify whether the segment to be passed to the application program to be activated is
the last segment of a logical message.

ESI: Specify ESI for the first segment or an intermediate segment.

EMI: Specify EMI for the last segment. EMI must also be specified if the message to
be passed consists of a single segment.

unique-name-2: Data item for which either of the following values was specified

'1': ESI (first or intermediate segment)

'2': EMI (last or single segment)

If this clause is omitted, EMI (last or single segment) is assumed.

Status codes
Status code Explanation

00000 Normal termination.

71002 An error occurred during input/output processing for the message queue.

The message queue is in shutdown state.

The message queue was not allocated.

The value specified for the segment length exceeds 32000 bytes.

SEND - Activate an application program

434

The SEND statement that starts application program cannot be accepted because the
MCF is being terminated.

71003 The message queue is full.

71004 The buffer for storing messages could not be acquired in the memory.

71008 An attempt was made to start the application program, but the management table
of the send destination could not be acquired.

The local memory of the process is insufficient.

72000 <Return at MHP execution>
The SEND statement that starts application program was used out of sequence. The
SEND statement that starts application program was used before the RECEIVE
statement that receives first segment was used from the MHP.

<Return at SPP execution>
The SEND statement that starts application program was called from SPP
processing which was not transaction.

72001 The specified application name is not defined with the MCF.

The application name is incorrect.

The application startup process name is not specified in the communication service
definition (mcfmcname definition command) included in the MCF manager
definition.

No application startup process identifier is specified in the environment definition
(-p option to the mcfaenv definition command) included in the MCF application
definition for the application startup process.

The following two values do not match:
• Application startup process identifier specified in the application environment

definition (-p option to the mcfaenv definition command).
• Application startup process identifier specified in the communication

configuration definition (mcftenv definition command) for the application
startup process.

Status code Explanation

SEND - Activate an application program

435

If a non-response type MHP or SPP is to be started:
• No logical terminal (the lname operand of the -n option to the mcfaalcap

definition command) is specified in the application attribute definition for the
application to be started.

• The logical terminal specified in the application attribute definition for the
application to be started is not defined in the communication configuration
definition (mcftalcle definition command) for the application startup
process.

• The logical terminal specified in the application attribute definition for the
application to be started is not of the send-only (=send) type.

• The logical terminal specified in the application attribute definition for the
application to be started cannot use the application startup process.

If an MHP of the response type or continuous inquiry-response type is to be started:
• No internal communication path (cname operand of the -n option to the

mcfaalcap definition command) is specified in the application attribute
definition for the application to be started.

• The internal communication path specified in the application attribute
definition for the application to be started is not defined in the communication
configuration definition (-c option to the mcftpsvr definition command) for
the application startup process.

• The logical terminal specified in the communication configuration definition
(mcftalcle definition command) for the application startup process is not of
the inquiry-response type (=request).

If an application is to be started from an SPP:
• The mcf_psv_id operand in the user service definition or user service default

definition for the caller UAP is assigned no application startup process
identifier.

• The following two values do not match:
Application startup process identifier assigned to the mcf_psv_id operand in
the user service definition or user service default definition for the caller UAP
Application startup process identifier specified in the communication
configuration definition (-s option to the mcftenv definition command) for
the application startup process or in the application environment definition (-p
option to the mcfaenv definition command)

• The following two values do not match:
MCF manager identifier assigned to the mcf_mgrid operand in the user
service definition or user service default definition for the caller UAP
Identifier of the MCF manager to which the application startup process be/
longs

72005 The value specified for the send segment length was less than 5 bytes when the
application program with ESI (first or intermediate segment) specified for the
WITH clause was activated.

72007 From a response type (type=ans) MHP, another response type MHP was started
after the response message is sent.

Status code Explanation

SEND - Activate an application program

436

Notes
1. The activation order of application programs varies depending on the mcfmuap

-c order specification in the UAP common definition of the MCF manager
definition.

2. If you use a single service function to update a TAM or DAM file and call the
SEND statement to start an application that will reference the updated file, make
sure that the application will lock the file. If the application references the file
without locking the file, the data existing before the file was updated might be
referenced.

From a continuous-inquiry-response type (type=cont) MHP, another
continuous-inquiry-response type MHP was started after the response message is
sent.

72009 A response type (type=ans) MHP was started more than once.

A continuous-inquiry-response type (type=cont) MHP was started more than
once.

72011 From an MHP which is not response type (type=cont), a response type MHP was
started.

From an MHP which is not continuous-inquiry-response type (type=cont), a
continuous-inquiry-response type MHP was started.

72023 The contents of data-name-3 specified for the ACTIVE TIME clause are null.

72024 The value specified for the FOR clause is invalid.

72026 The value specified for the WITH clause is invalid.

72041 The SEND statement that starts application program was used incorrectly. The value
specified for the send segment length was less than 4 bytes when a single segment
was sent.

72044 The continuous-inquiry-response termination statement was used, the name of the
application to be activated next was specified, then the SEND statement that starts
application program was used.

72108 The value specified for data-name-9 exceeds the limit.

72109 An MHP for which type=cont (continuous-inquiry-response type) was specified
in the MCF application definition was activated with timer start specified.

77001 The logical terminal (LE) corresponding to the application to be activated is being
started and cannot be used, or it is not available due to another factor.

Other than the above An unprecedented error (e.g., program damage) occurred.

Status code Explanation

SEND - Update temporarily-stored data

437

SEND - Update temporarily-stored data

Format
DATA DIVISION (communication description entry) specification

PROCEDURE DIVISION specification

Description
SEND enables the following CALL interface facility:

• CBLDCMCF('TEMPPUT ') Updates temporary-stored data.

Items specified in the communication description entry
FOR clause

Specify I-O STORAGE.

STATUS KEY clause

Specify this clause to receive a status code. If this clause is omitted, a status code
cannot be received.

Item specified in the communication statement
unique-name-1
Specify the data item storing temporary-stored data. The following figure shows the
send segment format:

CD communication-description-name
 FOR I-O STORAGE
 [STATUS KEY IS data-name-1].

01 unique-name-1.
 02 data-name-2 PIC 9(4) COMP.
 02 data-name-3 PIC X(4).
 02 data-name-4 PIC X(n).

SEND communication-description-name FROM unique-name-1.

SEND - Update temporarily-stored data

438

Status codes
Status code Explanation

00000 Normal termination.

71103 The area for updating temporary-stored data could not be acquired.

72000 The SEND statement that updates temporary-stored data cannot be used from an SPP.

72024 The value specified for the FOR clause is invalid.

72035 The specified update data length exceeds the length of the temporary-stored data
storage area specified in the MCF application definition.

The value specified for the update data length is less than 7 bytes.

72101 SEND statement that updates the temporary-stored data was used by an MHP which is
not continuous-inquiry-response type (type=cont).

72105 SEND statement that receives the temporary-stored data was used before RECEIVE
statement.

72106 SEND statement that updates the temporary-stored data was used before RECEIVE
statement that receives the first segment.

72107 SEND statement that updates the temporary-stored data was used after DISABLE
statement that terminates the continuous inquiry response.

Other than the above An unprecedented error (e.g., program damage) occurred.

SEND - Execute an operation command

439

SEND - Execute an operation command

Format
DATA DIVISION (communication description entry) specification

PROCEDURE DIVISION specification

Description
SEND enables the following CALL interface facility:

• CBLDCADM('COMMAND') Execute an operation command.

Note the following points on using commands with DML unlike when using CALL
interface commands:

• Only the standard error information of command processing results is returned.
The character string output to the standard output file (e.g., display command
(~ls) execution results) cannot be received. To receive the character string output
to the standard output file, use the CBLDCADM('COMMAND ').

• When the command for output to the standard output file is executed, the status
code is not 00000 even if the shell termination code is 0.

• Status code 01804 or 01805 is returned indicating that the data output to the
standard error output file was too large to be stored in the area in the following
case:

• The statement with OUTPUT COMMAND specified for the FOR clause was
executed and the data was output to the standard error file.

• COBOL85 is a prerequisite for this DML.

CD communication-description-name
 FOR {OUTPUT|I-O} COMMAND
 [STATUS KEY IS data-name-1].

01 unique-name-1.
 02 data-name-2 PIC 9(4) COMP.
 02 data-name-3 PIC X(2) VALUE LOW-VALUE.
 02 data-name-4 PIC X(n).
01 unique-name-2.
 02 data-name-5 PIC 9(4) COMP.
 02 data-name-6 PIC X(2) VALUE LOW-VALUE.
 02 data-name-7 PIC X(n).

SEND communication-description-name FROM unique-name-1
 [BEFORE RECEIVING MESSAGE INTO unique-name-2] .

SEND - Execute an operation command

440

Items specified in the communication description entry
FOR clause

Specify either of the following value.

OUTPUT COMMAND: Specify OUTPUT COMMAND when not receiving the command
execution results output to the standard error output file. When this value is specified,
0 is assumed for the length of the area for receiving data output to the standard error
output file.

I-O COMMAND: Specify I-O COMMAND when receiving the command execution results
output to the standard error output file.

STATUS KEY clause

Specify this clause to receive a status code. If this clause is omitted, a status code
cannot be received.

Items specified in the communication statement
unique-name-1
This area is used to specify the command to be executed by using SEND statement. The
following figure shows the format for specifying the character string of the command:

BEFORE clause

Specify this clause to receive the character string output to the standard error output
file when the command is executed. The BEFORE clause must be specified when I-O
command is specified for the FOR clause.

unique-name-2: Data item for storing the character string output to the standard error
output file. A character string which can be stored is up to (unique-name-2 area length)
- 4. The excess portion is truncated.

The following figure shows the format of the receive character string (unique-name-2):

SEND - Execute an operation command

441

Status codes
Status code Explanation

00000 The shell termination code is 0 (normal termination of command execution). When
I-O COMMAND was specified for the FOR clause, the character string output to the
standard error output file was stored.

01801 The shell termination code is not 0 (abnormal termination of command execution).
When I-O COMMAND was specified for the FOR clause, the character string output to
the standard error output file was stored.

01802 The value specified for the data-name is invalid. Verify that there are no errors in the
area length specification set in unique name 1 and unique name 2 and in locations
where 0 must be specified.

01803 Data was output to the standard output file. (This statement cannot receive the
character string output to the standard output file.)

01804 The data output to the standard error output file was too large to be stored in the area.

01805 Data was output to the standard output file (this statement cannot receive the character
string output to the standard output file), and the data output to the standard error
output file was too large to be stored in the area.

01806 A system call (close, pipe, dup, or read) could not be used.

01807 CBLDCRPC('OPEN ') was not called.

01808 The memory became insufficient.

SEND - Acquire a user journal

442

SEND - Acquire a user journal

Format
DATA DIVISION (communication description entry) specification

PROCEDURE DIVISION specification

Description
SEND enables the following CALL interface facility:

• CBLDCJNL('UJPUT ') - Acquire a user journal.

TP1/Message Control and COBOL85 are required to use this DML.

Items specified in the communication description entry
FOR clause

Specify OUTPUT JOURNAL.

STATUS KEY clause

Specify this clause to receive a status code. If this clause is omitted, a status code
cannot be received.

Item specified in the communication statement
unique-name-1
UAP historical information is stored in the specified area. For unique-name-1, specify
the item defined in the working storage section or the linkage section.

The figure below shows the format of the UAP historical information (unique-name-1)
to be stored. Create/specify this area in the UAP.

CD communication-description-name
 FOR OUTPUT JOURNAL
 [STATUS KEY IS data-name-1] .

01 unique-name-1.
 02 data-name-2 PIC 9(4) COMP.
 02 data-name-3 PIC X(2).
 02 data-name-4 PIC X(1).
 02 data-name-5 PIC X(n).

SEND communication-description-name FROM unique-name-1.

SEND - Acquire a user journal

443

Status codes
Status code Explanation

00000 Normal termination.

01101 The parameter format is invalid.

01102 The value specified for the user journal length is less than 5 byte.

01103 The specified user journal length exceeds the limit.

01104 The SEND statement for acquiring user journals was used from UAP processing which
was not a transaction.

01105 Preparation to start the UAP has not been done.

445

Chapter

4. X/Open-compliant Application
Programming Interface

This chapter explains the syntax of COBOL-UAP creation programs compliant with
application programming interfaces stipulated by X/Open.

This chapter contains the following sections:

X/Open-compliant function
XATMI-interfaced application programming interface (TP~)
TX-interfaced application programming interface (TX~)

X/Open-compliant function

446

X/Open-compliant function

Table 4-1 gives the relationship between X/Open-compatible APIs (XATMI and TX
interfaces) and functions. Table 4-2 gives the relationship between X/
Open-compatible API functions and OpenTP1 UAPs.

Table 4-1: Relationship between X/Open-compatible APIs and functions

API Name and role of X/Open-compatible function

XATMI interface TPACALL Send a service request.

TPADVERTISE Advertise a service name.

TPCALL Send a service request and synchronously await its
reply.

TPCANCEL Cancel a communication handle for an outstanding
reply.

TPCONNECT Establish a conversational service connection.

TPDISCON Terminate a conversational service connection
abortively.

TPGETRPLY Get a reply from a previous service request.

TPRECV Receive a message in a conversational connection.

TPRETURN Return from a service routine.

TPSEND Send a message in a conversational connection.

TPSVCSTART Start a service routine.

TPUNADVERTISE Unadvertise a service name.

TX interface TXBEGIN Begin a global transaction.

TXCLOSE Close a set of resource managers.

TXCOMMIT Commit a global transaction.

TXINFORM Return global transaction information.

TXOPEN Open a set of resource managers.

TXROLLBACK Roll back a global transaction.

TXSETCOMMITRET Set commit_return characteristic.

TXSETTIMEOUT Set transaction_timeout characteristic.

X/Open-compliant function

447

Table 4-2: Relationship between X/Open-compatible API functions and
OpenTP1 UAPs

TXSETTRANCTL Set transaction_control characteristic.

X/Open-compatible
API

SUP SPP MHP UAP
that

handl
es

offlin
ewor

k

Outside
transacti
on range

Inside
transact

ion
range
(root)

Outside
transact

ion
range

Transaction
range

Outsi
de

trans
actio

n
range

Insid
e

trans
actio

n
range
(root)

Root Non
root

TPACALL Y Y Y Y Y -- -- --

TPADVERTISE -- -- Y#1 Y#1 Y#1 -- -- --

TPCALL Y Y Y Y Y -- -- --

TPCANCEL Y Y Y Y Y -- -- --

TPCONNECT Y Y Y Y Y -- -- --

TPDISCON Y Y Y Y Y -- -- --

TPGETRPLY Y Y Y Y Y -- -- --

TPRECV Y Y Y Y Y -- -- --

TPRETURN -- -- Y#2 Y#2 Y#2 -- -- --

TPSEND Y Y Y Y Y -- -- --

TPSVCSTART#3 -- -- -- -- -- -- -- --

TPUNADVERTISE -- -- Y#1 Y#1 Y#1 -- -- --

TXBEGIN#4 Y -- Y -- -- Y -- --

TXCLOSE Y -- Y -- -- -- -- --

TXCOMMIT with
TX_CHAINED
specified#4

-- Y Y -- -- -- -- --

API Name and role of X/Open-compatible function

X/Open-compliant function

448

Legend:

Y: The function can be called from the UAP.

--: The function cannot be called from the UAP.

Note:
Outside transaction range for MHP means the range of MHPs with the
nontransaction attribute or the MHP main program.

#1: Functions marked#3 can be invoked only from within service programs.

#2: Functions marked#4 are used only to make XATMI-interfaced service programs
return.

#3: TPSVCSTART is an API function that service programs always invoke.

#4: For the UAP which issues a function marked#2, specify atomic_update=Y in the

TXCOMMIT with
TX_UNCHAINED
specified#4

-- Y Y -- -- -- -- --

TXINFORM Y Y Y Y Y -- -- --

TXOPEN Y -- Y -- -- -- -- --

TXROLLBACK with
TX_CHAINED
specified#4

-- Y -- Y -- -- -- --

TXROLLBACK with
TX_UNCHAINED
specified#4

-- Y -- Y -- -- -- --

TXSETCOMMIITRET#4 Y Y Y Y Y -- -- --

TXSETTIMEOUT#4 Y Y Y Y Y -- -- --

TXSETTRANCTL#4 Y Y Y Y Y -- -- --

X/Open-compatible
API

SUP SPP MHP UAP
that

handl
es

offlin
ewor

k

Outside
transacti
on range

Inside
transact

ion
range
(root)

Outside
transact

ion
range

Transaction
range

Outsi
de

trans
actio

n
range

Insid
e

trans
actio

n
range
(root)

Root Non
root

X/Open-compliant function

449

user service definition.

XATMI-interfaced application programming interface (TP~)

450

XATMI-interfaced application programming interface (TP~)

This section explains the syntax of the API functions which implement the XATMI
interface. The text in this section is quoted from 7. COBOL Language Reference
Manual Pages which is the syntax reference section of the X/Open CAE Specification
Distributed TP: The XATMI Specification published by X/Open Company Limited.

Additional notes on using these functions from OpenTP1 UAPs are enclosed in << >>
symbols.

The XATMI interface has the following API functions. The function TPINTRO defines
data areas invoked from API functions using the COPY statement.

• TPINTRO - COPY files for the XATMI interface

• TPACALL - Send a service request.

• TPADVERTISE - Advertise a service name.

• TPCALL - Send a service request and synchronously await its reply.

• TPCANCEL - Cancel a communication handle for an outstanding reply.

• TPCONNECT - Establish a conversational service connection.

• TPDISCON - Terminate a conversational service connection abortively.

• TPGETRPLY - Get a reply from a previous service request.

• TPRECV - Receive a message in a conversational connection.

• TPRETURN - Return from a service routine.

• TPSEND - Send a message in a conversational connection.

• TPSVCSTART - Start a service routine.

• TPUNADVERTISE - Unadvertise a service name.

XATMI-interfaced API functions whose names begin with TP can be used only with
the TP1/Server Base. They cannot be used with the TP1/LiNK.

TPINTRO - COPY files for the XATMI interface

451

TPINTRO - COPY files for the XATMI interface

Description
The following return codes and setting definitions are used by the COBOL XATMI
routines. XATMI interface providers supply these definitions in the four COPY files
listed below. Shown for each are the minimum set of record definitions and settings
that must be defined in each COPY file.

<<The COBOL records shown below are stored in the $DCDIR/include/COBOL/
directory. When compiling the UAP, you must designate this directory as the location
of the COPY file. For details about the specifications needed for compilation, see a
manual for the COBOL language version you are using.>>

The following COBOL record is used whenever sending or receiving application data.
REC-TYPE indicates the type of data record that is to be sent. SUB-TYPE indicates the
name of the sub-type for a particular type. LEN contains the amount of data to send and
the amount received.

*
* TPSTATUS.cbl
*
 05 TP-STATUS PIC S9(9) COMP-5.
 88 TPOK VALUE 0.
 88 TPEBADDESC VALUE 2.
 88 TPEBLOCK VALUE 3.
 88 TPEINVAL VALUE 4.
 88 TPELIMIT VALUE 5.
 88 TPENOENT VALUE 6.
 88 TPEOS VALUE 7.
 88 TPEPROTO VALUE 9.
 88 TPESVCERR VALUE 10.
 88 TPESVCFAIL VALUE 11.
 88 TPESYSTEM VALUE 12.
 88 TPETIME VALUE 13.
 88 TPETRAN VALUE 14.
 88 TPEGOTSIG VALUE 15.
 88 TPEITYPE VALUE 17.
 88 TPEOTYPE VALUE 18.
 88 TPEEVENT VALUE 22.
 88 TPEMATCH VALUE 23.
 05 TP-EVENT PIC S9(9) COMP-5.
 88 TPEV-NOEVENT VALUE 0.
 88 TPEV-DISCONIMM VALUE 1.
 88 TPEV-SENDONLY VALUE 2.
 88 TPEV-SVCERR VALUE 3.
 88 TPEV-SVCFAIL VALUE 4.
 88 TPEV-SVCSUCC VALUE 5.

TPINTRO - COPY files for the XATMI interface

452

The following COBOL record is used by functions to pass settings to and from the
communication resource manager.

The following COBOL record is used by TPRETURN to indicate the status of the
transaction.

*
* TPTYPE.cbl
*
 05 REC-TYPE PIC X(8).
 88 X-OCTET VALUE "X-OCTET".
 88 X-COMMON VALUE "X-COMMON".
 05 SUB-TYPE PIC X(16).
 05 LEN PIC S9(9) COMP-5.
 88 NO-LENGTH VALUE 0.
 05 TPTYPE-STATUS PIC S9(9) COMP-5.
 88 TPTYPEOK VALUE 0.
 88 TPTRUNCATE VALUE 1.

*
* TPSVCDEF.cbl
*
 05 COMM-HANDLE PIC S9(9) COMP-5.
 05 TPBLOCK-FLAG PIC s9(9) COMP-5.
 88 TPBLOCK VALUE 0.
 88 TPNOBLOCK VALUE 1.
 05 TPTRAN-FLAG PIC S9(9) COMP5.
 88 TPTRAN VALUE 0.
 88 TPNOTRAN VALUE 1.
 05 TPREPLY-FLAG PIC S9(9) COMP5.
 88 TPREPLY VALUE 0.
 88 TPNOREPLY VALUE 1.
 05 TPTIME-FLAG PIC S9(9) COMP5.
 88 TPTIME VALUE 0.
 88 TPNOTIME VALUE 1.

 05 TPSIGRSTRT-FLAG PIC S9(9) COMP5.
 88 TPNOSIGRSTRT VALUE 0.
 88 TPSIGRSTRT VALUE 1.
 05 TPGETANY-FLAG PIC S9(9) COMP5.
 88 TPGETHANDLE VALUE 0.
 88 TPGETANY VALUE 1.
 05 TPSENDRECV-FLAG PIC S9(9) COMP5.
 88 TPSENDONLY VALUE 0.
 88 TPRECVONLY VALUE 1.
 05 TPNOCHANGE-FLAG PIC S9(9) COMP5.
 88 TPCHANGE VALUE 0.
 88 TPNOCHANGE VALUE 1.
 05 TPSERVICETYPE-FLAG PIC S9(9) COMP5.
 88 TPREQRSP VALUE 0.
 88 TPCONV VALUE 1.
 05 SERVICE-NAME PIC X(15).

TPINTRO - COPY files for the XATMI interface

453

*
* TPSVCRET.cbl
*
 05 TP-RETURN-VAL PIC S9(9) COMP-5.
 88 TPSUCCESS VALUE 0.
 88 TPFAIL VALUE 1.
 05 APPL-CODE PIC S9(9) COMP-5.

TPACALL - Send a service request

454

TPACALL - Send a service request

Format

Description
TPACALL sends a request message to the service named by SERVICE-NAME.
DATA-REC is the record to be sent and LEN specifies the amount of data in DATA-REC
that should be sent. Note that if DATA-REC is a record of a type that does not require a
length to be specified, LEN is ignored (and may be 0). If DATA-REC is a record type in
which the length must be specified, do not specify 0 in LEN. If REC-TYPE does not
have a subtype, SUB-TYPE is ignored (and may be SPACES). If REC-TYPE is SPACES,
DATA-REC and LEN are ignored and a request is sent with no data portion, REC-TYPE
and SUB-TYPE must match one of the types and sub-types recognized by
SERVICE-NAME. Note that for each request sent while in transaction mode, a
corresponding reply must ultimately be received.

<<Data areas>>
<<TPSVCDEF-REC

Specify a value indicating the TPACALL operation. The value specified here
determines the return value. The specifiable values and their meanings will be
explained later.>>

<<TPTYPE-REC

Indicates the record type and subtype record name of the send data.>>

<<DATA-REC

Points to the send data.>>

<<TPSTATUS-REC

Will be assigned the return value indicating the result of TPACALL execution.>>

The valid settings of TPSVCDEF-REC are as follows:

01 TPSVCDEF-REC.
 COPY TPSVCDEF.
01 TPTYPE-REC.
 COPY TPTYPE.
01 DATA-REC.
 COPY Data record definition.
01 TPSTATUS-REC.
 COPY TPSTATUS.

CALL "TPACALL" USING TPSVCDEF-REC TPTYPE-REC
 DATA-REC TPSTATUS-REC.

TPACALL - Send a service request

455

TPNOTRAN

If the caller is in transaction mode and this setting is used, when SERVICE-NAME
is invoked, it is not performed on behalf of the caller's transaction. If
SERVICE-NAME does not support transactions, this setting must be used when the
caller is in transaction mode. A caller in transaction mode that uses this setting is
still subject to the transaction timeout (and no other). If a service fails that was
invoked with this setting, the caller's transaction is not affected. Either TPNOTRAN
or TPTRAN must be set.

TPTRAN

If the caller is in transaction mode and this setting is used, when SERVICE-NAME
is invoked, it is performed on behalf of the caller's transaction. This setting is
ignored if the caller is not in transaction mode. Either TPNOTRAN or TPTRAN must
be set.

TPNOREPLY

This setting informs TPACALL that a reply is not expected. When TPNOREPLY is
set, the routine returns TPOK on success and sets COMM-HANDLE to 0, an invalid
communication handle. When the caller is in transaction mode, this setting cannot
be used when TPTRAN is also set. Either TPNOREPLY or TPREPLY must be set.

TPREPLY

This setting informs TPACALL that a reply is expected. When TPREPLY is set, the
routine returns TPOK on success and sets COMM-HANDLE to a valid communication
handle. When the caller is in transaction mode, this setting must be used when
TPTRAN is also set. Either TPNOREPLY or TPREPLY must be set.

TPNOBLOCK

The request is not sent if a blocking condition exists (for example, the internal
buffers into which the message is transferred are full). Either TPNOBLOCK or
TPBLOCK must be set.

TPBLOCK

When TPBLOCK is specified and a blocking condition exists, the caller blocks
until the condition subsides or a timeout occurs (either transaction or blocking
timeout). Either TPNOBLOCK or TPBLOCK must be set.

TPNOTIME

This setting signifies that the caller is willing to block indefinitely and wants to
be immune to blocking timeouts. Transaction timeouts may still occur. Either
TPNOTIME or TPTIME must be set.

TPTIME

This setting signifies that the caller receives blocking timeouts if a blocking

TPACALL - Send a service request

456

condition exists and the blocking time is reached. Either TPNOTIME or TPTIME
must be set.

TPSIGRSTRT

If a signal interrupts any underlying system calls, the interrupted system call is
re-issued. Either TPNOSIGRSTRT or TPSIGRSTRT must be set.

TPNOSIGRSTRT

If a signal interrupts any underlying system calls, the interrupted system call is not
restarted and the routine fails. Either TPNOSIGRSTRT or TPSIGRSTRT must be
set.

Return value
Upon successful completion, TPACALL sets TP-STATUS to TPOK. In addition, if
TPREPLY was set in TPSVCDEF-REC, TPACALL returns a valid communication handle
in COMM-HANDLE that can be used to receive the reply of the request sent.

Errors

Under the following conditions, TPACALL fails and sets TP-STATUS to one of the
values below. Unless otherwise noted, failure does not affect the caller's transaction, if
one exists.

TPEINVAL

Invalid arguments were given (for example, settings in TPSVCDEF-REC are
invalid).

TPENOENT

Cannot send to SERVICE-NAME because it does not exist.

TPEITYPE

The pair REC-TYPE and SUB-TYPE is not one of the allowed types and sub-types
that SERVICE-NAME accepts.

TPELIMIT

The caller's request was not sent because the maximum number of outstanding
asynchronous requests has been reached.

TPETRAN

SERVICE-NAME does not support transactions and TPTRAN was set.

TPETIME

A timeout occurred. If the caller is in transaction mode, a transaction timeout
occurred and the transaction is marked rollback-only; otherwise, a blocking
timeout occurred and both TPBLOCK and TPTIME were specified. If a transaction

TPACALL - Send a service request

457

timeout occurred, any attempts to send new requests or receive outstanding
replies fail with TPETIME until the transaction has been rolled back.

TPEBLOCK

A blocking condition exists and TPNOBLOCK was specified.

TPEGOTSIG

A signal was received and TPNOSIGRSTRT was specified.

TPEPROTO

TPACALL was called in an improper context.

TPESYSTEM

A communication resource manager system error has occurred. The exact nature
of the error is determined in a product-specific manner.

TPEOS

An operating system error has occurred. The exact nature of the error is
determined in a product-specific manner.

See also
TPCALL, TPCANCEL, TPGETRPLY

<<Notes on use with OpenTP1>>
1. <<The value TPNOBLOCK is invalid under the relevant version of the OpenTP1.

Therefore, the error code TPEBLOCK will not be returned to TP-STATUS. The
OpenTP1 is designed so that if communication is impossible because of blocking,
TPESYSTEM is returned as when communication is impossible because of
network failure.>>

2. <<The value TPNOTIME is invalid under the relevant version of the OpenTP1.>>

3. <<The value TPSIGRSTRT is invalid. Regardless of whether this value is set,
when a signal is received, the interrupted system call is reinvoked. TPEGOTSIG
will never return.>>

4. <<Under the relevant version of the OpenTP1, TPEITYPE will not return. If a
record of a type unavailable with SERVICE-NAME is passed, the function
TPACALL normally returns, but TPESYSTEM or TPESVCERR will return when the
function TPGETRPLY is called. Therefore, the error condition is identified. If the
calling program is in transaction mode, the rollback_only state comes into
effect.>>

5. <<Under the OpenTP1, when a process encounters transaction timeout, it
terminates abnormally. Therefore, TPETIME returns only when blocking timeout
occurs.>>

TPACALL - Send a service request

458

6. <<Under the relevant version of the OpenTP1, a record which requires rollback
causes the return of TPESYSTEM unless otherwise specified by the X/Open.
However, the rollback_only state may not come into effect even when
TPESYSTEM returns.>>

7. <<Under the relevant version of the OpenTP1, TPELIMIT will not return.>>

8. <<For OSI TP communication using the TP1/NET/OSI-TP-Extended, the length
of the send data must not exceed the value assigned to the length operand of the
NET buffer group definition (nettbuf) contained in the NET/Library common
definition.>>

TPADVERTISE - Advertise a service name

459

TPADVERTISE - Advertise a service name

Format

Description
TPADVERTISE allows a server to advertise the services that it offers. By default, a
server's services are advertised when it is booted and unadvertised when it is
shutdown.

TPADVERTISE advertises SERVICE-NAME for the server. SERVICE-NAME should be
15 characters or fewer, but cannot be SPACES. Longer names are accepted and
truncated to 15 characters. Users should make sure that truncated names do not match
other service names. PROGRAM-NAME is the name of a service program. This program
is invoked whenever a request for SERVICE-NAME is received by the server.
PROGRAM-NAME cannot be SPACES.

If SERVICE-NAME is already advertised for the server and PROGRAM-NAME matches its
current program, TPADVERTISE returns success (this includes truncated names that
match already advertised names). However, if SERVICE-NAME is already advertised
for the server but PROGRAM-NAME does not match its current program, an error is
returned (this can happen if truncated names match already advertised names).

<<Data areas>>
<<SERVICE-NAME

Specify the name of the service to be advertised.>>

<<PROGRAM-NAME

Specify the name of the service program.>>

<<TPSTATUS-REC

Will be assigned the return value indicating the result of TPADVERTISE execution.>>

Return value
Upon successful completion, TPADVERTISE sets TP-STATUS to TPOK.

01 SERVICE-NAME PIC X(15).
01 PROGRAM-NAME PIC X(32).
01 TPSTATUS-REC.
 COPY TPSTATUS.

CALL "TPADVERTISE" USING SERVICE-NAME PROGRAM-NAME
 TPSTATUS-REC.

TPADVERTISE - Advertise a service name

460

Errors

Under the following conditions, TPADVERTISE fails and sets TP-STATUS to one of the
following values:

TPEINVAL

Either SERVICE-NAME or PROGRAM-NAME is SPACES, or PROGRAM-NAME is not
the name of a valid program.

TPELIMIT

SERVICE-NAME cannot be advertised because of space limitations.

TPEMATCH

SERVICE-NAME is already advertised for the server but with a program other than
PROGRAM-NAME. Although TPADVERTISE fails, SERVICE-NAME remains
advertised with its current program (that is, PROGRAM-NAME does not replace the
current program).

TPEPROTO

TPADVERTISE was called in an improper context.

TPESYSTEM

A communication resource manager system error has occurred. The exact nature
of the error is determined in a product-specific manner.

TPEOS

An operating system error has occurred. The exact nature of the error is
determined in a product-specific manner.

See also
TPSVCSTART, TPUNADVERTISE.

<<Notes on use with OpenTP1>>
1. <<The function TPADVERTISE can be called only by SPPs. When the server

starts, all services specified in the user service definition are automatically
advertised. Combinations of service names and programs can be advertised only
when they are specified in the user service definition of this function.>>

2. <<Under the OpenTP1, if the service group of UAPs which invoke the function
TPADVERTISE is the same as the service group of UAPs which have advertised
the services, this function returns normally on the assumption that advertisement
is completed. If the two groups do not match, the function returns with an error.>>

3. <<Under the OpenTP1, the maximum length of PROGRAM-NAME is 20
characters.>>

TPCALL - Send a service request and synchronously await its reply

461

TPCALL - Send a service request and synchronously await its reply

Format

Description
TPCALL sends a request and synchronously awaits its reply. A call to this routine is the
same as calling TPACALL immediately followed by TPGETRPLY. TPCALL sends a
request to the service named by SERVICE-NAME. The data portion of a request is
specified by IDATA-REC and LEN in ITPTYPE-REC specifies how much of
IDATA-REC to send. Note that if ITYPE-REC is a record of a type that does not require
a length to be specified, LEN in ITPTYPE-REC is ignored (and may be 0). If
IDATA-REC is a record of a type that does require a length, LEN in ITPTYPE-REC must
not be zero. If REC-TYPE in ITPTYPE-REC does not have a subtype, SUB-TYPE in
ITPTYPE-REC is ignored (and may be SPACES). If REC-TYPE in ITPTYPE-REC is
SPACES, IDATA-REC and LEN in ITPTYPE-REC are ignored and a request is sent with
no data portion. REC-TYPE in ITPTYPE-REC and SUB-TYPE in ITPTYPE-REC must
match one of the types and sub-types recognized by SERVICE-NAME.

ODATA-REC specifies where the reply is read into, and, on input, LEN in OTPTYPE-REC
indicates the maximum number of bytes that should be moved into ODATA-REC. If the
same record is to be used for both sending and receiving, redefine ODATA-REC
(REDEFINES) to IDATA-REC. Upon successful return from TPCALL, LEN in
OTPTYPE-REC contains the actual number of bytes moved into ODATA-REC.
REC-TYPE in OTPTYPE-REC and SUB-TYPE in OTPTYPE-REC contain the reply's type
and sub-type, respectively. If the reply is larger than ODATA-REC, ODATA-REC
contains only as many bytes as fit in the record. The remainder of the reply is discarded
and TPCALL sets TPTRUNCATE.

If LEN in OTPTYPE-REC is 0 upon successful return, the reply has no data portion and
ODATA-REC was not modified. It is an error for LEN in OTPTYPE-REC to be 0 on input.

01 TPSVCDEF-REC.
 COPY TPSVCDEF.
01 ITPTYPE-REC.
 COPY TPTYPE.
01 IDATA-REC.
 COPY Data record definition.
01 OTPTYPE-REC.
 COPY TPTYPE.
01 ODATA-REC.
 COPY Data record definition.
01 TPSTATUS-REC.
 COPY TPSTATUS.

CALL "TPCALL" USING TPSVCDEF-REC ITPTYPE-REC IDATA-REC
 OTPTYPE-REC ODATA-REC TPSTATUS-REC.

TPCALL - Send a service request and synchronously await its reply

462

<<Data areas>>
<<TPSVCDEF-REC

Specify a value indicating the TPCALL operation. The specifiable values and their
meanings will be explained later.>>

<<ITPTYPE-REC

Indicates the record type and subtype record name of the send data.>>

<<IDATA-REC

Points to the send data.>>

<<OTPTYPE-REC

Indicates the record type and subtype record name of the receive data.>>

<<ODATA-REC

Points to the receive data.>>

<<TPSTATUS-REC

Will be assigned the return value indicating the result of TPCALL execution.>>

The valid settings of TPSVCDEF-REC are as follows:

TPNOTRAN

If the caller is in transaction mode and this setting is used, when SERVICE-NAME
is invoked, it is not performed on behalf of the caller's transaction. If
SERVICE-NAME does not support transactions, this setting must be used when the
caller is in transaction mode. A caller in transaction mode that uses this setting is
still subject to the transaction timeout (and no other). If a service fails that was
invoked with this setting, the caller's transaction is not affected. Either TPNOTRAN
or TPTRAN must be set.

TPTRAN

If the caller is in transaction mode and this setting is used, when SERVICE-NAME
is invoked, it is performed on behalf of the caller's transaction. This setting is
ignored if the caller is not in transaction mode. Either TPNOTRAN or TPTRAN must
be set.

TPNOCHANGE

When this setting is used, the type of ODATA-REC is not allowed to change. That
is, the type and sub-type of the reply record must match REC-TYPE in
OTPTYPE-REC and SUB-TYPE in OTPTYPE-REC, respectively. Either
TPNOCHANGE or TPCHANGE must be set.

TPCHANGE

TPCALL - Send a service request and synchronously await its reply

463

The type and/or subtype of the reply record are allowed to differ from those
specified in REC-TYPE in OTPTYPE-REC and SUB-TYPE in OTPTYPE-REC,
respectively, so long as the receiver recognizes the incoming record type. Either
TPNOCHANGE or TPCHANGE must be set.

TPNOBLOCK

The request is not sent if a blocking condition exists (for example, the internal
buffers into which the message is transferred are full). Note that this setting
applies only to the send portion of TPCALL: the routine may block waiting for the
reply. Either TPNOBLOCK or TPBLOCK must be set.

TPBLOCK

When TPBLOCK is specified and a blocking condition exists, the caller blocks
until the condition subsides or a timeout occurs (either transaction or blocking
timeout). Either TPNOBLOCK or TPBLOCK must be set.

TPNOTIME

This setting signifies that the caller is willing to block indefinitely and wants to
be immune to blocking timeouts. Transaction timeouts may still occur. Either
TPNOTIME or TPTIME must be set.

TPTIME

This setting signifies that the caller receives blocking timeouts if a blocking
condition exists and the blocking time is reached. Either TPNOTIME or TPTIME
must be set.

TPSIGRSTRT

If a signal interrupts any underlying system calls, the interrupted system call is
re-issued. Either TPNOSIGRSTRT or TPSIGRSTRT must be set.

TPNOSIGRSTRT

If a signal interrupts any underlying system calls, the interrupted system call is not
restarted and the routine fails. Either TPNOSIGRSTRT or TPSIGRSTRT must be
set.

Return value
Upon successful completion, TPCALL sets TP-STATUS to TPOK. When TP-STATUS is
set to either TPOK or TPESVCFAIL, APPL-RETURN-CODE contains an
application-defined value that was sent as part of TPRETURN. If the size of the
incoming message is larger than the size specified in LEN in OTPTYPE-REC on input,
then TPTRUNCATE is set in OTPTYPE-REC and only LEN in OTPTYPE-REC bytes are
moved into ODATA-REC. The remaining bytes are discarded.

TPCALL - Send a service request and synchronously await its reply

464

Errors

Under the following conditions, TPCALL fails and sets TP-STATUS to one of the values
below. Unless otherwise noted, failure does not affect the caller's transaction, if one
exists.

TPEINVAL

Invalid arguments were given (for example, settings in TPSVCDEF-REC are
invalid).

TPENOENT

Cannot send to SERVICE-NAME because it does not exist.

TPEITYPE

The pair REC-TYPE in ITPTYPE-REC and SUB-TYPE in ITPTYPE-REC is not
one of the allowed types and sub-types that SERVICE-NAME accepts.

TPEOTYPE

Either the type and sub-type of the reply are not known to the caller, or
TPNOCHANGE was set and REC-TYPE in OTPTYPE-REC and SUB-TYPE in
OTPTYPE-REC do not match the type and sub-type of the reply sent by the service.
Neither ODATA-REC nor OTPTYPE-REC are changed. If the service request was
made on behalf of the caller's current transaction, the transaction is marked
rollback-only since the reply is discarded.

TPETRAN

SERVICE-NAME does not support transactions and TPTRAN was set.

TPETIME

A timeout occurred. If the caller is in transaction mode, a transaction timeout
occurred and the transaction is marked rollback-only; otherwise, a blocking
timeout occurred and both TPBLOCK and TPTIME were specified. In either case,
neither ODATA-REC nor OTPTYPE-REC are changed. If a transaction timeout
occurred, any attempts to send new requests or receive outstanding replies fail
with TPETIME until the transaction has been rolled back.

TPESVCFAIL

The service routine sending the caller's reply called TPRETURN with TPFAIL.
This is an application-level failure. The contents of the service's reply, if one was
sent, are available in ODATA-REC. If the service request was made on behalf of
the caller's current transaction, the transaction is marked rollback-only. Note that
so long as the transaction has not timed out, further communication may be
attempted before rolling back the transaction. Such attempts may be processed
normally or may fail (producing an error return to event). Such attempts should
be made with TPNOTRAN set if they are to have any lasting effect. Any work

TPCALL - Send a service request and synchronously await its reply

465

performed on behalf of the caller's transaction is rolled back upon transaction
completion.

TPESVCERR

An error was encountered either in invoking a service routine or during its
completion in TPRETURN (for example, bad arguments were passed). No reply
data is returned when this error occurs (that is, neither ODATA-REC nor
OTPTYPE-REC are changed). If the service request was made on behalf of the
caller's transaction, the transaction is marked rollback-only. Note that so long as
the transaction has not timed out, further communication may be attempted before
rolling back the transaction. Such attempts may be processed normally or may fail
(producing an error return or event). Such attempts should be made with
TPNOTRAN set if they are to have any lasting effect. Any work performed on
behalf of the caller's transaction is rolled back upon transaction completion.

TPEBLOCK

A blocking condition was found on the send portion of TPCALL and TPNOBLOCK
was specified.

TPEGOTSIG

A signal was received and TPNOSIGRSTRT was specified.

TPEPROTO

TPCALL was called in an improper context.

TPESYSTEM

A communication resource manager system error has occurred. The exact nature
of the error is determined in a product-specific manner.

TPEOS

An operating system error has occurred. The exact nature of the error is
determined in a product-specific manner.

See also
TPACALL, TPGETRPLY, TPRETURN.

<<Notes on use with OpenTP1>>
1. <<The value TPNOBLOCK is invalid under the relevant version of the OpenTP1.

Therefore, the error code TPEBLOCK will not be returned to TP-STATUS. The
OpenTP1 is designed so that if communication is impossible because of blocking,
TPESYSTEM is returned as when communication is impossible because of
network failure.>>

2. <<Under the relevant version of the OpenTP1, the value TPNOTIME is valid only

TPCALL - Send a service request and synchronously await its reply

466

when a response is received. It is invalid when blocking occurs at the time of
service request transmission.>>

3. <<The value TPSIGRSTRT is invalid. Regardless of whether this value is set,
when a signal is received, the interrupted system call is reinvoked. TPEGOTSIG
will never return.>>

4. <<Under the relevant version of the OpenTP1, TPEITYPE will not return. If a
record of a type unavailable with SERVICE-NAME is passed, TPESYSTEM will
return. If the calling program is in transaction mode, the rollback_only state
comes into effect.>>

5. <<Under the OpenTP1, when a process encounters transaction timeout, it
terminates abnormally. Therefore, TPETIME returns only when blocking timeout
occurs.>>

6. <<Under the relevant version of the OpenTP1, an error which raises need for
rollback causes the return of TPESYSTEM unless otherwise specified by the X/
Open. However, the rollback_only state may not come into effect even when
TPESYSTEM returns.>>

7. <<If the SPP that was asked to offer its service abnormally terminates, the
function could return with a TPETIME error before the time assigned to
watch_time in the definition elapses. If watch_time is assigned 0 (infinitely
wait for a response), the function could return with a TPEPROTO error.>>

8. <<If the service request is not validated when OpenTP1 security is in use, the
function returns with a TPEPROTO error. To determine whether the error return
was caused by an invalidated service request, refer to the detailed information in
the UAP trace.>>

9. <<If a line error occurs during OSI TP communication using the TP1/NET/
OSI-TP-Extended, the function returns with a TPESVCERR error.>>

10. <<For OSI TP communication using the TP1/NET/OSI-TP-Extended, the length
of the send or receive data must not exceed the value assigned to the length
operand of the NET buffer group definition (nettbuf) contained in the NET/
Library common definition.>>

TPCANCEL - Cancel a communication handle for an outstanding reply

467

TPCANCEL - Cancel a communication handle for an outstanding
reply

Format

Description
TPCANCEL cancels a communication handle, COMM-HANDLE, returned by TPACALL. It
is an error to attempt to cancel a communication handle associated with a global
transaction.

Upon success, COMM-HANDLE is no longer valid and any reply received (by the
communication resource manager) on behalf of COMM-HANDLE is silently discarded.

<<Data areas>>
<<COMM-HANDLE

Specify the communication handle to be canceled.>>

<<TPSTATUS-REC

Will be assigned the return value indicating the result of TPCANCEL execution.>>

Return value
Upon successful completion, TPCANCEL sets TP-STATUS to TPOK.

Errors

Under the following conditions, TPCANCEL fails and sets TP-STATUS to one of the
following values:

TPEBADDESC

COMM-HANDLE contains an invalid communication handle.

TPETRAN

COMM-HANDLE is associated with the caller's global transaction. COMM-HANDLE
remains valid and the caller's current transaction is not affected.

TPEPROTO

TPCANCEL was called in an improper context.

01 TPSVCDEF-REC.
 COPY TPSVCDEF.
01 TPSTATUS-REC.
 COPY TPSTATUS.

CALL "TPCANCEL" USING TPSVCDEF-REC TPSTATUS-REC.

TPCANCEL - Cancel a communication handle for an outstanding reply

468

TPESYSTEM

A communication resource manager system error has occurred. The exact nature
of the error is determined in a product-specific manner.

TPEOS

An operating system error has occurred. The exact nature of the error is
determined in a product-specific manner.

See also
TPACALL.

TPCONNECT - Establish a conversational service connection

469

TPCONNECT - Establish a conversational service connection

Format

Description
TPCONNECT allows a program to set up a half-duplex connection to a conversational
service, SERVICE-NAME.

As part of setting up a connection, the caller can pass application-defined data to the
receiving service routine. If the caller chooses to pass data, DATA-REC contains the
data and LEN specifies how much of the record to send. Note that if DATA-REC is a
record of a type that does not require a length to be specified, LEN is ignored (and may
be 0). If DATA-REC is a record of a type that does require a length, LEN must not be
zero. If REC-TYPE does not have a subtype, SUB-TYPE is ignored (and may be
SPACES). If REC-TYPE is SPACES, DATA-REC and LEN are ignored (no application
data is passed to the conversational service). REC-TYPE and SUB-TYPE must match
one of the types and sub-types recognized by SERVICE-NAME.

Because the conversational service receives DATA-REC and LEN upon successful
return from TPSVCSTART, the service does not call TPRECV to get the data sent by
TPCONNECT.

<<Data areas>>
<<TPSVCDEF-REC

Specify a value indicating the TPCONNECT operation. The value specified here
determines the return value. The specifiable values and their meanings will be
explained later.>>

<<TPTYPE-REC

Indicates the data type and subtype record name of the send data.>>

<<DATA-REC

Points to the send data.>>

01 TPSVCDEF-REC.
 COPY TPSVCDEF.
01 TPTYPE-REC.
 COPY TPTYPE.
01 DATA-REC.
 COPY Data record definition.
01 TPSTATUS-REC.
 COPY TPSTATUS.

CALL "TPCONNECT" USING TPSVCDEF-REC TPTYPE-REC DATA-REC
 TPSTATUS-REC.

TPCONNECT - Establish a conversational service connection

470

<<TPSTATUS-REC

Will be assigned the return value indicating the result of TPCONNECT execution.>>

The valid settings of TPSVCDEF-REC are as follows:

TPNOTRAN

If the caller is in transaction mode and this setting is used, when SERVICE-NAME
is invoked, it is not performed on behalf of the caller's transaction. If
SERVICE-NAME does not support transactions, this setting must be used when the
caller is in transaction mode. A caller in transaction mode that uses this setting is
still subject to the transaction timeout (and no other). If a service fails that was
invoked with this setting, the caller's transaction is not affected. Either TPNOTRAN
or TPTRAN must be set.

TPTRAN

If the caller is in transaction mode and this setting is used, when SERVICE-NAME
is invoked, it is performed on behalf of the caller's transaction. This setting is
ignored if the caller is not in transaction mode. Either TPNOTRAN or TPTRAN must
be set.

TPSENDONLY

The caller wants the connection to be set up initially such that it can send data and
the called service can only receive data (that is, the caller initially has control of
the connection). Either TPSENDONLY or TPRECVONLY must be specified.

TPRECVONLY

The caller wants the connection to be set up initially such that it can only receive
data and the called service can send data (that is, the service being called initially
has control of the connection). Either TPSENDONLY or TPRECVONLY must be
specified.

TPNOBLOCK

The connection is not established and the data is not sent if a blocking condition
exists (for example, the internal buffers into which the message is transferred are
full). Either TPNOBLOCK or TPBLOCK must be set.

TPBLOCK

When TPBLOCK is specified and a blocking condition exists, the caller blocks
until the condition subsides or a timeout occurs (either transaction or blocking
timeout). Either TPNOBLOCK or TPBLOCK must be set.

TPNOTIME

This setting signifies that the caller is willing to block indefinitely and wants to
be immune to blocking timeouts. Transaction timeouts may still occur. Either

TPCONNECT - Establish a conversational service connection

471

TPNOTIME or TPTIME must be set.

TPTIME

This setting signifies that the caller receives blocking timeouts if a blocking
condition exists and the blocking time is reached. Either TPNOTIME or TPTIME
must be set.

TPSIGRSTRT

If a signal interrupts any underlying system calls, the interrupted system call is
re-issued. Either TPNOSIGRSTRT or TPSIGRSTRT must be set.

TPNOSIGRSTRT

If a signal interrupts any underlying system calls, the interrupted system call is not
restarted and the routine fails. Either TPNOSIGRSTRT or TPSIGRSTRT must be
set.

Return value
Upon successful completion, TPCONNECT sets TP-STATUS to TPOK and returns a valid
communication handle in COMM-HANDLE that is used to refer to the connection in
subsequent calls.

Errors

Under the following conditions, TPCONNECT fails and sets TP-STATUS to one of the
values below. Unless otherwise noted, failure does not affect the caller's transaction, if
one exists.

TPEINVAL

Invalid arguments were given (for example, settings in TPSVCDEF-REC are
invalid).

TPENOENT

Cannot initiate a connection to SERVICE-NAME because it does not exist.

TPEITYPE

The pair REC-TYPE and SUB-TYPE is not one of the allowed types and sub-types
that SERVICE-NAME accepts.

TPELIMIT

The connection was not established because the maximum number of outstanding
connections has been reached.

TPETRAN

SERVICE-NAME does not support transactions and TPTRAN was set.

TPETIME

TPCONNECT - Establish a conversational service connection

472

A timeout occurred. If the caller is in transaction mode, a transaction timeout
occurred and the transaction is marked rollback-only; otherwise, a blocking
timeout occurred and both TPBLOCK and TPTIME were specified. If a transaction
timeout occurred, any attempts to send or receive messages on any connections
or to start a new connection fail with TPETIME until the transaction has been
rolled back.

TPEBLOCK

A blocking condition exists and TPNOBLOCK was specified.

TPEGOTSIG

A signal was received and TPNOSIGRSTRT was specified.

TPEPROTO

TPCONNECT was called in an improper context.

TPESYSTEM

A communication resource manager system error has occurred. The exact nature
of the error is determined in a product-specific manner.

TPEOS

An operating system error has occurred. The exact nature of the error is
determined in a product-specific manner.

See also
TPDISCON, TPRECV, TPSEND, TPSVCSTART.

<<Notes on use with OpenTP1>>
1. <<The value TPNOBLOCK is invalid under the relevant version of the OpenTP1.

Therefore, the error code TPEBLOCK will not be returned to TP-STATUS. The
OpenTP1 is designed so that if communication is impossible because of blocking,
TPESYSTEM is returned as when communication is impossible because of
network failure.>>

2. <<The value TPNOTIME is invalid under the relevant version of the OpenTP1.>>

3. <<The value TPSIGRSTRT is invalid. Regardless of whether this value is set,
when a signal is received, the interrupted system call is reinvoked. TPEGOTSIG
will never return.>>

4. <<Under the relevant version of the OpenTP1, TPEITYPE will not return. If a
record of a type unavailable with SERVICE-NAME is passed, TPESYSTEM or
TPESVCERR will return. If the calling program is in transaction mode, the
rollback_only state comes into effect.>>

5. <<Under the OpenTP1, when a process encounters transaction timeout, it

TPCONNECT - Establish a conversational service connection

473

terminates abnormally. Therefore, TPETIME returns only when blocking timeout
occurs.>>

6. <<Under the relevant version of the OpenTP1, an error which raises need for
rollback causes the return of TPESYSTEM unless otherwise specified by the X/
Open. However, the rollback_only state may not come into effect even when
TPESYSTEM returns.>>

7. <<If the function returns with a TPEPROTO error. To determine whether the error
return was caused by an invalidated service request, refer to the detailed
information in the UAP trace.>>

8. <<When OSI TP communication using the TP1/NET/OSI-TP-Extended is in
progress, it cannot be used for conversational services. If an attempt is made to do
so, the system operation is unpredictable.>>

9. <<If the server AP is in shutdown status, the system operates as follows
depending on whether the request destination SPP that is shutdown is on a local
node or on a remote node:

When the request destination SPP on a local node is shutdown:

tpconnect() returns -1 and sets the value TPEPROTO in tperrno.

When the request destination SPP on a remote node is shutdown:

In the transaction mode, the server AP terminates abnormally due to
transaction time-out.

In the non-transaction mode, tpconnect() returns -1 and sets the value
TPETIME in tperrno.>>

TPDISCON - Terminate a conversational service connection abortively

474

TPDISCON - Terminate a conversational service connection
abortively

Format

Description
TPDISCON immediately terminates the connection specified by COMM-HANDLE and
generates a TPEV-DISCONIMM event on the other end of the connection.

TPDISCON can be called only by the originator of the conversation. TPDISCON cannot
be called within a conversational service on the communication handle with which it
was invoked. Rather, a conversational service must use TPRETURN to signify that it has
completed its part of the conversation. Similarly, even though a program
communicating with a conversational service can issue TPDISCON, the preferred way
is to let the service terminate the connection in TPRETURN; doing so ensures correct
results.

TPDISCON causes the connection to be terminated immediately (that is, abortively
rather than orderly). Any data that has not yet reached its destination may be lost.
TPDISCON can be issued even when the program on the other end of the connection is
participating in the caller's transaction. In this case, the transaction must be rolled back.
Also, the caller does not need to have control of the connection when TPDISCON is
called.

<<Data areas>>
<<TPSVCDEF-REC

Specify the communication handle of the connection indicated by COMM-HANDLE to be
aborted.>>

<<TPSTATUS-REC

Will be assigned the return value indicating the result of TPDISCON execution.>>

Return value
Upon successful completion, TPDISCON sets TP-STATUS to TPOK.

Errors

Under the following conditions, TPDISCON fails and sets TP-STATUS to one of the

01 TPSVCDEF-REC.
 COPY TPSVCDEF.
01 TPSTATUS-REC.
 COPY TPSTATUS.

CALL "TPDISCON" USING TPSVCDEF-REC TPSTATUS-REC.

TPDISCON - Terminate a conversational service connection abortively

475

following values:

TPEBADDESC

Either COMM-HANDLE is invalid or it is the communication handle with which a
conversational service was invoked.

TPETIME

A timeout occurred. The communication handle is no longer valid.

TPEPROTO

TPDISCON was called in an improper context.

TPESYSTEM

A communication resource manager system error has occurred. The exact nature
of the error is determined in a product-specific manner.

TPEOS

An operating system error has occurred. The exact nature of the error is
determined in a product-specific manner.

See also
TPCONNECT, TPRECV, TPRETURN, TPSEND.

<<Notes on use with OpenTP1>>
1. <<The error code TPETIME will not be returned to TP-STATUS under the relevant

version of the OpenTP1.>>

2. <<When OSI TP communication using the TP1/NET/OSI-TP-Extended is in
progress, it cannot be used for conversational services. If an attempt is made to do
so, the system operation is unpredictable.>>

TPGETRPLY - Get a reply from a previous service request

476

TPGETRPLY - Get a reply from a previous service request

Format

Description
TPGETRPLY returns a reply from a previously sent request. TPGETRPLY either returns
a reply for a particular request, or it returns any reply that is available. Both options are
described below.

DATA-REC specifies where the reply is read into, and, on input, LEN indicates the
maximum number of bytes that should be moved into DATA-REC. Upon successful
return from TPGETRPLY, LEN contains the actual number of bytes moved into
DATA-REC. REC-TYPE and SUB-TYPE contain the data's type and sub-type,
respectively. If the reply is larger than DATA-REC, DATA-REC contain only as many
bytes as fit in the record. The remainder of the reply is discarded and TPGETRPLY sets
TPTRUNCATE.

If LEN is 0 upon successful return, the reply has no data portion and DATA-REC was
not modified. It is an error for LEN to be 0 on input.

<<Data areas>>
<<TPSVCDEF-REC

Specify a value indicating the TPGETRPLY operation and a communication handle.
The specifiable values and their meanings will be explained later.>>

<<TPTYPE-REC

Indicates the data type and subtype record name of the data to be received.>>

<<DATA-REC

Points to the data to be received.>>

<<TPSTATUS-REC

Will be assigned the return value indicating the result of TPGETRPLY execution.>>

01 TPSVCDEF-REC.
 COPY TPSVCDEF.
01 TPTYPE-REC.
 COPY TPTYPE.
01 DATA-REC.
 COPY Data record definition.
01 TPSTATUS-REC.
 COPY TPSTATUS.

CALL "TPGETRPLY" USING TPSVCDEF-REC TPTYPE-REC DATA-REC
 TPSTATUS-REC.

TPGETRPLY - Get a reply from a previous service request

477

The valid settings of TPSVCDEF-REC are as follows:

TPGETANY

This setting signifies that TPGETRPLY should ignore the communication handle
indicated by COMM-HANDLE on input, return any reply available, and set
COMM-HANDLE on output to the communication handle for the reply returned. If
no replies exist, TPGETRPLY can optionally wait for one to arrive. Either
TPGETANY or TPGETHANDLE must be set.

TPGETHANDLE

This setting signifies that TPGETRPLY should use the communication handle
identified by COMM-HANDLE on input and return a reply available for that handle
only. If no replies exist, TPGETRPLY can optionally wait for one to arrive. Either
TPGETANY or TPGETHANDLE must be set.

TPNOCHANGE

When this setting is used, the type of DATA-REC is not allowed to change. That
is, the type and sub-type of the reply record must match REC-TYPE and
SUB-TYPE, respectively. Either TPNOCHANGE or TPCHANGE must be set.

TPCHANGE

The type and/or subtype of the reply record are allowed to differ from those
specified in REC-TYPE and SUB-TYPE, respectively, so long as the receiver
recognizes the incoming record type. Either TPNOCHANGE or TPCHANGE must be
set.

TPNOBLOCK

TPGETRPLY does not wait for the reply to arrive. If a reply is available,
TPGETRPLY gets the reply and returns. Either TPNOBLOCK or TPBLOCK must be
set.

TPBLOCK

When TPBLOCK is specified and no reply is available, the caller blocks until the
reply arrives or a timeout occurs (either transaction or blocking timeout). Either
TPNOBLOCK or TPBLOCK must be set.

TPNOTIME

This setting signifies that the caller is willing to block indefinitely for its reply and
wants to be immune to blocking timeouts. Transaction timeouts may still occur.
Either TPNOTIME or TPTIME must be set.

TPTIME

This setting signifies that the caller receives blocking timeouts if a blocking
condition exists and the blocking time is reached. Either TPNOTIME or TPTIME

TPGETRPLY - Get a reply from a previous service request

478

must be set.

TPSIGRSTRT

If a signal interrupts any underlying system calls, the interrupted system call is
re-issued. Either TPNOSIGRSTRT or TPSIGRSTRT must be set.

TPNOSIGRSTRT

If a signal interrupts any underlying system calls, the interrupted system call is not
restarted and the routine fails. Either TPNOSIGRSTRT or TPSIGRSTRT must be
set.

Except as noted below, COMM-HANDLE is no longer valid after its reply is received.

Return value
Upon successful completion, TPGETRPLY sets TP-STATUS to TPOK. When
TP-STATUS is set to either TPOK or TPESVCFAIL, APPL-RETURN-CODE contains an
application-defined value that was sent as part of TPRETURN. If the size of the
incoming message is larger than the size specified in LEN on input, TPTRUNCATE is set
and only LEN bytes are moved into DATA-REC. The remaining bytes are discarded.

Errors

Under the following conditions, TPGETRPLY fails and sets TP-STATUS as indicated
below. Note that if TPGETHANDLE is set, COMM-HANDLE is invalidated unless
otherwise stated. If TPGETANY is set, COMM-HANDLE identifies the descriptor for the
reply on which the failure occurred; if an error occurred before a reply could be
retrieved, COMM-HANDLE is set to 0, unless otherwise stated. Also, the failure does not
affect the caller's transaction, if one exists, unless otherwise stated.

TPEINVAL

Invalid arguments were given (for example, settings in TPSVCDEF-REC are
invalid).

TPEBADDESC

COMM-HANDLE contains an invalid communication handle.

TPEOTYPE

Either the type and sub-type of the reply are not known to the caller, or
TPNOCHANGE was set and REC-TYPE and SUB-TYPE do not match the type and
sub-type of the reply sent by the service. Neither DATA-REC nor TPTYPE-REC are
changed. If the reply was to be received on behalf of the caller's current
transaction, the transaction is marked rollback-only since the reply is discarded.

TPETIME

A timeout occurred. If the caller is in transaction mode, a transaction timeout
occurred and the transaction is marked rollback-only; otherwise, a blocking

TPGETRPLY - Get a reply from a previous service request

479

timeout occurred and both TPBLOCK and TPTIME were specified. In either case,
neither DATA-REC nor TPTYPE-REC are changed. If TPGETHANDLE was set,
COMM-HANDLE remains valid unless the caller is in transaction mode. If a
transaction timeout occurred, any attempts to send new requests or receive
outstanding replies fail with TPETIME until the transaction has been rolled back.

TPESVCFAIL

The service routine sending the caller's reply called TPRETURN with TPFAIL.
This is an application-level failure. The contents of the service's reply, if one was
sent, are available in DATA-REC. If the reply was received on behalf of the caller's
transaction, the transaction is marked rollback-only. Note that so long as the
transaction has not timed out, further communication may be attempted before
rolling back the transaction. Such attempts may be processed normally or may fail
(producing an error return or event). Such attempts should be made with
TPNOTRAN set if they are to have any lasting effect. Any work performed on
behalf of the caller's transaction is rolled back upon transaction completion.

TPESVCERR

An error was encountered either in invoking a service routine or during its
completion in TPRETURN (for example, bad arguments were passed). No reply
data is returned when this error occurs (that is, neither DATA-REC nor
TPTYPE-REC are changed). If the reply was received on behalf of the caller's
transaction, the transaction is marked rollback-only. Note that so long as the
transaction has not timed out, further communication may be attempted before
rolling back the transaction. Such attempts may be processed normally or may fail
(producing an error return or event). Such attempts should be made with
TPNOTRAN set if they are to have any lasting effect. Any work performed on
behalf of the caller's transaction is rolled back upon transaction completion.

TPEBLOCK

A blocking condition exists and TPNOBLOCK was specified. COMM-HANDLE
remains valid.

TPEGOTSIG

A signal was received and TPNOSIGRSTRT was specified.

TPEPROTO

TPGETRPLY was called in an improper context.

TPESYSTEM

A communication resource manager system error has occurred. The exact nature
of the error is determined in a product-specific manner.

TPEOS

TPGETRPLY - Get a reply from a previous service request

480

An operating system error has occurred. The exact nature of the error is
determined in a product-specific manner.

See also
TPACALL, TPCANCEL, TPRETURN.

<<Notes on use with OpenTP1>>
1. <<The value TPSIGRSTRT is invalid. Regardless of whether this value is set,

when a signal is received, the interrupted system call is reinvoked. TPEGOTSIG
will never return.>>

2. <<Under the OpenTP1, when a process encounters transaction timeout, it
terminates abnormally. Therefore, TPETIME returns only when blocking timeout
occurs.>>

3. <<Under the relevant version of the OpenTP1, data which requires rollback
causes the return of TPESYSTEM unless otherwise specified by the X/Open.
However, the rollback_only state may not come into effect even when
TPESYSTEM returns.>>

4. <<If the function TPACALL passes a record of a type that cannot be used by the
called service, it returns normally, but the function TPGETRPLY will encounter an
error. If the function TPGETRPLY encounters a TPESYSTEM or TPESVCERR error,
check the results of the function TPACALL as well.>>

5. <<If the SPP that was asked to offer its service abnormally terminates, the
function could return with a TPETIME error before the time assigned to
watch_time in the definition elapses. If watch_time is assigned 0 (infinitely
wait for a response), the function could return with a TPEPROTO error.>>

6. <<If the service request is not validated when OpenTP1 security is in use, the
function returns with a TPEPROTO error. To determine whether the error return
was caused by an invalidated service request, refer to the detailed information in
the UAP trace.>>

7. <<For OSI TP communication using the TP1/NET/OSI-TP-Extended, the length
of the receive data must not exceed the value assigned to the length operand of
the NET buffer group definition (nettbuf) contained in the NET/Library
common definition.>>

TPRECV - Receive a message in a conversational connection

481

TPRECV - Receive a message in a conversational connection

Format

Description
TPRECV is used to receive data sent across an open connection from another program.
COMM-HANDLE specifies on which open connection to receive data. COMM-HANDLE is
a communication handle returned from either TPCONNECT or TPSVCSTART.
DATA-REC specifies where the message is read into, and, on input, LEN indicates the
maximum number of bytes that should be moved into DATA-REC.

Upon successful return, and for several event types, LEN contains the actual number of
bytes moved into DATA-REC. REC-TYPE and SUB-TYPE contain the data's type and
sub-type, respectively. If the message is larger than DATA-REC, DATA-REC contains
only as many bytes as fit in the record. The remainder of the message is discarded and
TPRECV sets TPTRUNCATE.

If LEN is 0 upon successful return, the message has no data portion and DATA-REC was
not modified. It is an error for LEN to be 0 on input.

TPRECV can be issued only by the program that does not have control of the
connection.

<<Data areas>>
<<TPSVCDEF-REC

Specify a value indicating the TPRECV operation and a communication handle. The
specifiable values and their meanings will be explained later.>>

<<TPTYPE-REC

Indicates the record type and subtype record name of the data to be received.>>

<<DATA-REC

Points to the record to be received.>>

01 TPSVCDEF-REC.
 COPY TPSVCDEF.
01 TPTYPE-REC.
 COPY TPTYPE.
01 DATA-REC.
 COPY Data record definition.
01 TPSTATUS-REC.
 COPY TPSTATUS.

CALL "TPRECV" USING TPSVCDEF-REC TPTYPE-REC DATA-REC
 TPSTATUS-REC.

TPRECV - Receive a message in a conversational connection

482

<<TPSTATUS-REC

Will be assigned the return value indicating the result of TPRECV execution.>>

The valid settings of TPSVCDEF-REC are as follows:

TPNOCHANGE

When this setting is used, the type of DATA-REC is not allowed to change. That
is, the type and sub-type of the message received must match REC-TYPE and
SUB-TYPE, respectively. Either TPNOCHANGE or TPCHANGE must be set.

TPCHANGE

The type or subtype of the message received is allowed to differ from those
specified in REC-TYPE and SUB-TYPE, respectively, so long as the receiver
recognizes the incoming record type. Either TPNOCHANGE or TPCHANGE must be
set.

TPNOBLOCK

TPRECV does not wait for data to arrive. If data is already available to receive,
TPRECV gets the data and returns. Either TPNOBLOCK or TPBLOCK must be set.

TPBLOCK

When TPBLOCK is specified and no data is available to receive, the caller blocks
until data arrives. Either TPNOBLOCK or TPBLOCK must be set.

TPNOTIME

This setting signifies that the caller is willing to block indefinitely and wants to
be immune to blocking timeouts. Transaction timeouts may still occur. Either
TPNOTIME or TPTIME must be set.

TPTIME

This setting signifies that the caller receives blocking timeouts if a blocking
condition exists and the blocking time is reached. Either TPNOTIME or TPTIME
must be set.

TPSIGRSTRT

If a signal interrupts any underlying system calls, the interrupted system call is
re-issued. Either TPNOSIGRSTRT or TPSIGRSTRT must be set.

TPNOSIGRSTRT

If a signal interrupts any underlying system calls, the interrupted system call is not
restarted and the routine fails. Either TPNOSIGRSTRT or TPSIGRSTRT must be
set.

If an event exists for COMM-HANDLE, and TPRECV encounters no errors, TPRECV
returns setting TP-STATUS to TPEEVENT. The event type is returned in TP-EVENT.

TPRECV - Receive a message in a conversational connection

483

Data can be received along with the TPEV-SVCSUCC, TPEV-SVCFAIL, and
TPEV-SENDONLY events. Valid events for TPRECV are as follows:

TPEV-DISCONIMM

Received by the subordinate of a conversation, this event indicates that the
originator of the conversation has either issued an immediate disconnect on the
connection via TPDISCON, or it issued TPRETURN, TXCOMMIT or TXROLLBACK
with the connection still open. This event is also returned to the originator or
subordinate when a connection is broken due to a communications error (for
example, a server, machine, or network failure). Because this is an immediate
disconnection notification (that is, abortive rather than orderly), data in transit
may be lost. If the two programs were participating in the same transaction, the
transaction is marked rollback-only. COMM-HANDLE is no longer valid.

TPEV-SENDONLY

The program on the other end of the connection has relinquished control of the
connection. The recipient of this event is allowed to send data but cannot receive
any data until it relinquishes control.

TPEV-SVCERR

Received by the originator of a conversation, this event indicates that the
subordinate of the conversation has issued TPRETURN. TPRETURN encountered an
error that precluded the service from returning successfully. For example, bad
arguments may have been passed to TPRETURN or it may have been called while
the service had open connections to other subordinates. Due to the nature of this
event, any application-defined data or return code is not available. The connection
has been terminated and COMM-HANDLE is no longer valid. If this event occurred
as part of the recipient's transaction, the transaction is marked rollback-only.

TPEV-SVCFAIL

Received by the originator of a conversation, this event indicates that the
subordinate service on the other end of the conversation has finished
unsuccessfully as defined by the application (that is, it called TPRETURN with
TPFAIL). If the subordinate service was in control of this connection when
TPRETURN was called, it can pass a record back to the originator of the
connection. As part of ending the service routine, the server has terminated the
connection. Thus, COMM-HANDLE is no longer valid. If this event occurred as part
of the recipient's transaction, the transaction is marked rollback-only.

TPEV-SVCSUCC

Received by the originator of a conversation, this event indicates that the
subordinate service on the other end of the conversation has finished successfully
as defined by the application (that is, it called TPRETURN with TPSUCCESS). As
part of ending the service routine, the server has terminated the connection. Thus,

TPRECV - Receive a message in a conversational connection

484

COMM-HANDLE is no longer valid. If the recipient is in transaction mode, it can
either commit (if it is also the initiator) or roll back the transaction causing the
work done by the server (if also in transaction mode) to either commit or roll back.

Return value
Upon successful completion, TPRECV sets TP-STATUS to TPOK. If an event exists and
no errors were encountered, TPRECV sets TP-STATUS to TPEEVENT. When
TP-STATUS is set to TPEEVENT and TP-EVENT is either TPEV-SVCSUCC or
TPEV-SVCFAIL, APPL-RETURN-CODE contains an application-defined value that was
sent as part of TPRETURN. If the size of the incoming message is larger than the size
specified in LEN on input, TPTRUNCATE is set and only LEN bytes are moved into
DATA-REC. The remaining bytes are discarded.

Errors

Under the following conditions, TPRECV fails and sets TP-STATUS to one of the values
below. Unless otherwise noted, failure does not affect the caller's transaction, if one
exists.

TPEINVAL

Invalid arguments were given (for example, settings in TPSVCDEF-REC are
invalid).

TPEBADDESC

COMM-HANDLE contains an invalid communication handle.

TPEOTYPE

Either the type and sub-type of the incoming message are not known to the caller,
or TPNOCHANGE was set and REC-TYPE and SUB-TYPE do not match the type and
sub-type of the incoming message. If the conversation is part of the caller's current
transaction, the transaction is marked rollback-only since the incoming message
is discarded. When this error occurs, any event for COMM-HANDLE is dropped and
the conversation may now be in an indeterminate state. The caller should
terminate the conversation.

TPETIME

A timeout occurred. If the caller is in transaction mode, a transaction timeout
occurred and the transaction is marked rollback-only; otherwise, a blocking
timeout occurred and both TPBLOCK and TPTIME were specified. In either case,
neither DATA-REC nor TPTYPE-REC are changed. If a transaction timeout
occurred, any attempts to send or receive messages on any connections or to start
a new connection fail with TPETIME until the transaction has been rolled back.

TPEEVENT

An event occurred and its type is available in TP-EVENT.

TPRECV - Receive a message in a conversational connection

485

TPEBLOCK

A blocking condition exists and TPNOBLOCK was specified.

TPEGOTSIG

A signal was received and TPNOSIGRSTRT was specified.

TPEPROTO

TPRECV was called in an improper context.

TPESYSTEM

A communication resource manager system error has occurred. The exact nature
of the error is determined in a product-specific manner.

TPEOS

An operating system error has occurred. The exact nature of the error is
determined in a product-specific manner.

See also
TPCONNECT, TPDISCON, TPSEND.

<<Notes on use with OpenTP1>>
1. <<The value TPSIGRSTRT is invalid. Regardless of whether this value is set,

when a signal is received, the interrupted system call is reinvoked. TPEGOTSIG
will never return.>>

2. <<Under the OpenTP1, when a process encounters transaction timeout, it
terminates abnormally. Therefore, TPETIME returns only when blocking timeout
occurs.>>

3. <<Under the relevant version of the OpenTP1, an error which raises need for
rollback causes the return of TPESYSTEM unless otherwise specified by the X/
Open. However, the rollback_only state may not come into effect even when
TPESYSTEM returns.>>

4. <<When OSI TP communication using the TP1/NET/OSI-TP-Extended is in
progress, it cannot be used for conversational services. If an attempt is made to do
so, the system operation is unpredictable.>>

TPRETURN - Return from a service routine

486

TPRETURN - Return from a service routine

Format

Description
TPRETURN indicates that a service routine has completed. TPRETURN is a file
containing the last sequence of COBOL code to be executed in the service. It contains
references to three data record names: TPSVCRET-REC, TPTYPE-REC and DATA-REC
that may be substituted by the record names effectively used in the service routine.
Since TPRETURN contains an EXIT PROGRAM statement, it should be issued in the
same routine that was invoked by the communication resource manager so that control
can be returned to the communication resource manager (that is, TPRETURN should not
be invoked in a sub-program of the service routine since control would not return to
the communication resource manager).

TPRETURN is used to send a service's reply message. If the program receiving the reply
is waiting in TPCALL, TPGETRPLY or TPRECV, after a successful call to TPRETURN,
the reply is available in the receiver's record.

For conversational services, TPRETURN also terminates the connection. That is, the
service routine cannot call TPDISCON directly. To ensure correct results, the program
that connected to the conversational service should not call TPDISCON; rather, it
should wait for notification that the conversational service has completed (that is, it
should wait for one of the events, like TPEV-SVCSUCC or TPEV-SVCFAIL, sent by
TPRETURN).

If the service routine was in transaction mode, TPRETURN places the service's portion
of the transaction in a state where it may be either committed or rolled back when the
transaction is completed. A service may be invoked multiple times as part of the same
transaction so it is not necessarily fully committed nor rolled back until either
TXCOMMIT or TXROLLBACK is called by the originator of the transaction.

TPRETURN should be called after receiving all replies expected from service requests
initiated by the service routine. Otherwise, depending on the nature of the service,
either a TPESVCERR error or a TPEV-SVCERR event are returned to the program that

01 TPSVCRET-REC.
 COPY TPSVCRET.
01 TPTYPE-REC.
 COPY TPTYPE.
01 DATA-REC.
 COPY Data record definition.

COPY TPRETURN [REPLACING TPSVCRET-REC BY TPSVCRET-REC]
 [REPLACING TPTYPE-REC BY TPTYPE-REC]
 [REPLACING DATA-REC BY DATA-REC].

TPRETURN - Return from a service routine

487

initiated communication with the service routine. Any outstanding replies that are not
received are automatically dropped by the communication resource manager. In
addition, the communication handles for those replies become invalid.

TPRETURN should be called after closing all connections initiated by the service.
Otherwise, depending on the nature of the service, either a TPESVCERR or a
TPEV-SVCERR event is returned to the program that initiated communication with the
service routine. Also, an immediate disconnect event (that is, TPEV-DISCONIMM) is
sent over all open connections to subordinates.

Concerning control of the connection, if the service routine does not have control over
the connection with which it was invoked when it issues TPRETURN, two outcomes are
possible. Firstly, if the service routine calls TPRETURN with TP-RETURN-VAL (in
TPSVCRET-REC) set to TPFAIL and REC-TYPE (in TPTYPE-REC) set to SPACES (that
is, no data is sent), a TPEV-SVCFAIL event is sent to the originator of this
conversation. Secondly, if any other invocation of TPRETURN is used, a TPEV-SVCERR
event is sent to the originator.

Since a conversational service has only one open connection that it did not initiate, the
communication resource manager knows over which communication handle data (and
any event) should be sent. For this reason, a communication handle is not passed to
TPRETURN.

<<Data areas>>
<<TPSVCRET-REC

Specify TP-RETURN-VAL and APPL-CODE.>>

<<TPTYPE-REC

Indicates the record type and subtype record name of the send data.>>

<<DATA-REC

Points to the send data.>>

The following is a description of TPRETURN's arguments. TP-RETURN-VAL can be set
to one of the following:

TPSUCCESS

The service has terminated successfully. If data is present, it is sent (barring any
failures processing the return). If the caller is in transaction mode, TPRETURN
places the caller's portion of the transaction in a state such that it can be committed
when the transaction ultimately commits. Note that a call to TPRETURN does not
necessarily finalize an entire transaction. Also, even though the caller indicates
success, if there are any outstanding replies or open connections to subordinates,
or if any work done within the service caused its transaction to be marked
rollback-only, a failed message is sent (that is, the recipient of the reply
receives a TPESVCERR indication or a TPEV-SVCERR event). Note that if a

TPRETURN - Return from a service routine

488

transaction becomes rollback-only while in the service routine for any reason,
TP-RETURN-VAL should be set to TPFAIL. If TPSUCCESS is specified for a
conversational service, a TPEV-SVCSUCC event is generated.

TPFAIL

The service has terminated unsuccessfully from an application standpoint. An
error is reported to the program receiving the reply. That is, the call to get the reply
has failed and the recipient receives a TPSVCFAIL indication or a
TPEV-SVCFAIL event. If the caller is in transaction mode, TPRETURN marks the
transaction as rollback-only (note that the transaction may already be marked
rollback-only). Barring any failures in processing the return, the caller's data is
sent, if present. One reason for not sending the caller's data is when a transaction
timeout has occurred. In this case, the program waiting for the reply receives an
error of TPETIME.

If TP-RETURN-VAL does not contain one of these two values, TPFAIL is assumed.

An application-defined return code, APPL-CODE (in TPSVCRET-REC), may be sent to
the program receiving the service reply. This code is sent regardless of the setting of
TP-RETURN-VAL as long as a reply can be successfully sent (that is, as long as the
receiving call returns success or TPESVCFAIL, or receives one of the events
TPEV-SVCSUCC or TPEV-SVCFAIL). The value of APPL-CODE is available to the
receiver in APPL-RETURN-CODE in TPSTATUS-REC.

DATA-REC is the record to be sent and LEN (in TPTYPE-REC) specifies the amount of
data in DATA-REC that should be sent. Note that if DATA-REC is a record of a type that
does not require a length to be specified, LEN is ignored (and may be 0). If DATA-REC
is a record of a type that does require a length, LEN must not be zero. If REC-TYPE does
not specify subtype, SUB-TYPE is ignored (and may be SPACES). If REC-TYPE is
SPACES, DATA-REC and LEN are ignored. In this case, if a reply is expected by the
program that invoked the service, a reply is sent with no data portion. If no reply is
expected, TPRETURN ignores any data passed to it and returns sending no reply.

If the service is conversational, there are two cases where the data record is not
transmitted:

• If the connection has already been terminated when the call is made (that is, the
caller has received TPEV-DISCONIMM on the connection), this call simply ends
the service routine and rolls back the current transaction, if one exists. In this case,
the caller's data record cannot be transmitted.

• If the caller does not have control of the connection, either TPEV-SVCFAIL or
TPEV-SVCERR is sent to the originator of the connection as described above.
Regardless of which event the originator receives, no data record is transmitted;
however, if the originator receives the TPEV-SVCFAIL event, the return code is
available in the originator's APPL-RETURN-CODE in TPSTATUS-REC.

TPRETURN - Return from a service routine

489

Return value
Since TPRETURN contains an EXIT PROGRAM statement, no value is returned to the
caller, nor does control return to the service routine. If a service routine returns without
using TPRETURN (that is, it uses an EXIT PROGRAM statement directly or falls out of
the service routine), the server returns a service error to the service requester. In
addition, all open connections to subordinates are disconnected immediately, and any
outstanding asynchronous replies are dropped. If the server was in transaction mode at
the time of failure, the transaction is marked rollback-only. Note also that if
TPRETURN is used outside a service routine (that is, by routines that are not services),
it returns having no effect.

Errors

Since TPRETURN ends the service routine, any errors encountered either in handling
arguments or in processing cannot be indicated to the routine's caller. Such errors cause
TP-STATUS to be set to TPESVCERR for a program receiving the service's outcome via
either TPCALL or TPGETRPLY, and cause the event, TPEV-SVCERR, to be sent over the
conversation to a program using TPSEND or TPRECV.

See also
TPCALL, TPCONNECT, TPDISCON, TPSEND, TPSVCSTART.

<<Notes on use with OpenTP1>>
1. <<The effects of the COPY statement and the REPLACING clause vary depending

on the COBOL compiler. When COBOL85 is in use, write the following code:>>

COPY TPRETURN [{REPLACING [TPSVCRET-REC BY TPSVCRET-REC]
 [TPTYPE-REC BY TPTYPE-REC]
 [DATA-REC BY DATA-REC]}].

TPSEND - Send a message in a conversational connection

490

TPSEND - Send a message in a conversational connection

Format

Description
TPSEND is used to send data across an open connection to another program. The caller
must have control of the connection. COMM-HANDLE specifies the open connection
over which data is sent. COMM-HANDLE is a communication handle returned from
either TPCONNECT or TPSVCSTART.

DATA-REC contains the data to be sent and LEN specifies how much of the data to send.
Note that if DATA-REC is a record of a type that does not require a length to be
specified, LEN is ignored (and may be 0). If DATA-REC is a record of a type that does
require a length, LEN must not be zero. If REC-TYPE does not have a subtype,
SUB-TYPE is ignored (and may be SPACES). If REC-TYPE is SPACES, DATA-REC and
LEN are ignored and a message is sent with no data (this might be done, for instance,
to grant control of the connection without transmitting any data).

<<Data areas>>
<<TPSVCDEF-REC

Specify a value indicating the TPSEND operation and a communication handle. The
specifiable values and their meanings will be explained later.>>

<<TPTYPE-REC

Indicates the data type and subtype record name of the send data.>>

<<DATA-REC

Points to the send data.>>

<<TPSTATUS-REC

Will be assigned the return value indicating the result of TPSEND execution.>>

The valid settings of TPSVCDEF-REC are as follows:

01 TPSVCDEF-REC.
 COPY TPSVCDEF.
01 TPTYPE-REC.
 COPY TPTYPE.
01 DATA-REC.
 COPY Data record definition.
01 TPSTATUS-REC.
 COPY TPSTATUS

CALL "TPSEND" USING TPSVCDEF-REC TPTYPE-REC DATA-REC
 TPSTATUS-REC.

TPSEND - Send a message in a conversational connection

491

TPRECVONLY

This setting signifies that, after the caller's data is sent, the caller gives up control
of the connection (that is, the caller cannot issue any more TPSEND calls). When
the receiver on the other end of the connection receives the data sent by TPSEND,
it also receives an event (TPEV-SENDONLY) indicating that it has control of the
connection (and cannot issue any more TPRECV calls). Either TPRECVONLY or
TPSENDONLY must be set.

TPSENDONLY

This setting signifies that the caller wants to remain in control of the connection.
Either TPRECVONLY or TPSENDONLY must be set.

TPNOBLOCK

The data and any events are not sent if a blocking condition exists (for example,
the internal buffers into which the message is transferred are full). Either
TPNOBLOCK or TPBLOCK must be set.

TPBLOCK

When TPBLOCK is specified and a blocking condition exists, the caller blocks
until the condition subsides or a timeout occurs (either transaction or blocking
timeout). Either TPNOBLOCK or TPBLOCK must be set.

TPNOTIME

This setting signifies that the caller is willing to block indefinitely and wants to
be immune to blocking timeouts. Transaction timeouts may still occur. Either
TPNOTIME or TPTIME must be set.

TPTIME

This setting signifies that the caller receives blocking timeouts if a blocking
condition exists and the blocking time is reached. Either TPNOTIME or TPTIME
must be set.

TPSIGRSTRT

If a signal interrupts any underlying system calls, the interrupted system call is
re-issued. Either TPNOSIGRSTRT or TPSIGRSTRT must be set.

TPNOSIGRSTRT

If a signal interrupts any underlying system calls, the interrupted system call is not
restarted and the routine fails. Either TPNOSIGRSTRT or TPSIGRSTRT must be
set.

If an event exists for COMM-HANDLE, TPSEND returns without sending the caller's data.
The event type is returned in TP-EVENT. Valid events for TPSEND are as follows:

TPEV-DISCONIMM

TPSEND - Send a message in a conversational connection

492

Received by the subordinate of a conversation, this event indicates that the
originator of the conversation has either issued an immediate disconnect on the
connection via TPDISCON, or it issued TPRETURN, TXCOMMIT or TXROLLBACK
with the connection still open. This event is also returned to the originator or
subordinate when a connection is broken due to a communication error (for
example, a server, machine, or network failure).

TPEV-SVCERR

Received by the originator of a conversation, this event indicates that the
subordinate of the conversation has issued TPRETURN without having control of
the conversation. In addition, TPRETURN was issued in a manner different from
that described for TPEV-SVCFAIL below.

TPEV-SVCFAIL

Received by the originator of a conversation, this event indicates that the
subordinate of the conversation has issued TPRETURN without having control of
the conversation. In addition, TPRETURN was issued with the command TPFAIL
and no data record (that is, the REC-TYPE passed to TPRETURN was set to
SPACES).

Because each of these events indicates an immediate disconnection notification (that
is, abortive rather than orderly), data in transit may be lost. The communication handle
used for the connection is no longer valid. If the two programs were participating in
the same transaction, the transaction has been marked rollback-only.

Return value
Upon successful completion, TPSEND sets TP-STATUS to TPOK. When TP-STATUS is
set to TPEEVENT and TP-EVENT is TPEV-SVCFAIL, APPL-RETURN-CODE contains
an application-defined value that was sent as part of TPRETURN.

Errors

Under the following conditions, TPSEND fails and sets TP-STATUS to one of the values
below. Unless otherwise noted, failure does not affect the caller's transaction, if one
exists.

TPEINVAL

Invalid arguments were given (for example, settings in TPSVCDEF-REC are
invalid).

TPEBADDESC

COMM-HANDLE contains an invalid communication handle.

TPETIME

A timeout occurred. If the caller is in transaction mode, a transaction timeout
occurred and the transaction is marked rollback-only; otherwise, a blocking

TPSEND - Send a message in a conversational connection

493

timeout occurred and both TPBLOCK and TPTIME were specified. In either case,
neither DATA-REC nor TPTYPE-REC are changed. If a transaction timeout
occurred, any attempts to send or receive messages on any connections or to start
a new connection fail with TPETIME until the transaction has been rolled back.

TPEEVENT

An event occurred and its type is available in TP-EVENT. DATA-REC is not sent
when this error occurs.

TPEBLOCK

A blocking condition exists and TPNOBLOCK was specified.

TPEGOTSIG

A signal was received and TPNOSIGRSTRT was specified.

TPEPROTO

TPSEND was called in an improper context.

TPESYSTEM

A communication resource manager system error has occurred. The exact nature
of the error is determined in a product-specific manner.

TPEOS

An operating system error has occurred. The exact nature of the error is
determined in a product-specific manner.

See also
TPCONNECT, TPDISCON, TPRECV, TPRETURN.

<<Notes on use with OpenTP1>>
1. <<The value TPNOBLOCK is invalid under the relevant version of the OpenTP1.

Therefore, the error code TPEBLOCK will never return. The OpenTP1 is designed
so that if communication is impossible because of blocking, TPESYSTEM is
returned as when communication is impossible because of network failure.>>

2. <<The value TPNOTIME is invalid under the relevant version of the OpenTP1.>>

3. <<The value TPSIGRSTRT is invalid. Regardless of whether this value is set,
when a signal is received, the interrupted system call is reinvoked. TPEGOTSIG
will never return.>>

4. <<Under the OpenTP1, when a process encounters transaction timeout, it
terminates abnormally. Therefore, TPETIME returns only when blocking timeout
occurs.>>

5. <<Under the relevant version of the OpenTP1, an error which raises need for

TPSEND - Send a message in a conversational connection

494

rollback causes the return of TPESYSTEM unless otherwise specified by the X/
Open. However, the rollback_only state may not come into effect even when
TPESYSTEM returns.>>

6. <<Under the OpenTP1, even if the mate of conversation is running the function
TPDISCON or TPRETURN, the function TPSEND cannot generate an event provided
that the process which invoked the function TPSEND has not received an event.>>

7. <<When OSI TP communication using the TP1/NET/OSI-TP-Extended is in
progress, it cannot be used for conversational services. If an attempt is made to do
so, the system operation is unpredictable.>>

TPSVCSTART - Start a service routine

495

TPSVCSTART - Start a service routine

Format

Description
TPSVCSTART is the first routine called when writing a service routine. In fact, it is an
error to issue any other XATMI call within a service routine before calling
TPSVCSTART. TPSVCSTART is used to retrieve the service's parameters and data. This
routine is used for services that receive requests via TPCALL or TPACALL routines as
well as by services that communicate via TPCONNECT, TPSEND and TPRECV routines.

Service routines processing requests made via either TPCALL or TPACALL receive, at
most, one incoming message (upon successfully returning from TPSVCSTART) and
send, at most, one reply (upon existing the service routine with TPRETURN).

Conversational services, on the other hand, are invoked by connection requests with,
at most, one incoming message along with a means of referring to the open connection.
Upon successfully returning from TPSVCSTART, either the connecting program or the
conversational service may send and receive data as defined by the application. The
connection is half-duplex in nature meaning that one side controls the conversation
(that is, it sends data) until it explicitly gives up control to the other side of the
connection.

Concerning transactions, service routines can participate in, at most, one transaction if
invoked in transaction mode. As far as the service routine writer is concerned, the
transaction ends upon returning from the service routine. If the service routine is not
invoked in transaction mode, the service routine may originate as many transactions as
it wants using TXBEGIN, TXCOMMIT and TXROLLBACK. Note that TPRETURN is not
used to complete a transaction. Thus, it is an error to call TPRETURN with an
outstanding transaction that originated within the service routine.

DATA-REC specifies where the service's data is read into, and, on input, LEN indicates
the maximum number of bytes that should be moved into DATA-REC. Upon successful
return from TPSVCSTART, LEN contains the actual number of bytes moved into
DATA-REC. REC-TYPE and SUB-TYPE contain the data's type and sub-type,

01 TPSVCDEF-REC.
 COPY TPSVCDEF.
01 TPTYPE-REC.
 COPY TPTYPE.
01 DATA-REC.
 COPY Data record definition.
01 TPSTATUS-REC.
 COPY TPSTATUS

CALL "TPSVCSTART" USING TPSVCDEF-REC TPTYPE-REC DATA-REC
 TPSTATUS-REC.

TPSVCSTART - Start a service routine

496

respectively. If the message is larger than DATA-REC, DATA-REC contains only as
many bytes as will fit the record. The remainder of the message is discarded and
TPSVCSTART sets TPTRUNCATE.

If LEN is 0 upon successful return, the service has no incoming data and DATA-REC
was not modified. It is an error for LEN to be 0 on input.

Upon successful return, SERVICE-NAME is populated with the service name that the
requesting program used to invoke the service.

<<Data areas>>
<<TPSVCDEF-REC

Will be assigned a value that indicates how the service routine was invoked. The
specifiable values and their meanings will be explained later.>>

<<TPTYPE-REC

Will be assigned the data type and subtype record name of the receive data.>>

<<DATA-REC

Will be assigned the receive data.>>

<<TPSTATUS-REC

Will be assigned the return value indicating the result of TPSVCSTART execution.>>

The possible settings of TPSVCDEF-REC upon the return of TPSVCSTART are as
follows:

TPREQRSP

The service was invoked with either TPCALL or TPACALL. This setting is
mutually exclusive with TPCONV.

TPCONV

The service was invoked with TPCONNECT. The communication handle for the
conversation is available in COMM-HANDLE. This setting is mutually exclusive
with TPREQRSP.

TPNOTRAN

The service routine is not in transaction mode. This setting is mutually exclusive
with TPTRAN.

TPTRAN

The service routine is in transaction mode. This setting is mutually exclusive with
TPNOTRAN.

TPNOREPLY

TPSVCSTART - Start a service routine

497

The program invoking the service routine is not expecting a reply. This setting is
meaningful only when TPREQRSP is set. This setting is mutually exclusive with
TPREPLY.

TPREPLY

The program invoking the service routine is expecting a reply. This setting is
meaningful only when TPREQRSP is set. This setting is mutually exclusive with
TPNOREPLY.

TPSENDONLY

The service is invoked such that it can send data across the connection and the
program on the other end of the connection can only receive data. This setting is
meaningful only when TPCONV is set. This setting is mutually exclusive with
TPRECVONLY.

TPRECVONLY

The service is invoked such that it can only receive data from the connection and
the program on the other end of the connection can send data. This setting is
meaningful only when TPCONV is set. This setting is mutually exclusive with
TPSENDONLY.

Return value
Upon successful completion, TPSVCSTART sets TP-STATUS to TPOK. If the size of the
incoming message is larger than the size specified in LEN on input, TPTRUNCATE is set
and only LEN bytes are moved into DATA-REC. The remaining bytes are discarded.

Errors

Under the following conditions, TPSVCSTART fails and sets TP-STATUS to one of the
following values:

TPEINVAL

Invalid arguments were given (for example, LEN is 0).

TPEPROTO

TPSVCSTART was called in an improper context.

TPESYSTEM

A communication resource manager system error has occurred. The exact nature
of the error is determined in a product-specific manner.

TPEOS

An operating system error has occurred. The exact nature of the error is
determined in a product-specific manner.

TPSVCSTART - Start a service routine

498

See also
TPACALL, TPCALL, TPCONNECT, TPRETURN.

TPUNADVERTISE - Unadvertise a service name

499

TPUNADVERTISE - Unadvertise a service name

Format

Description
TPUNADVERTISE allows a server to unadvertise a service that it offers. By default, a
server's services are advertised when it is booted and they are unadvertised when it is
shutdown.

TPUNADVERTISE removes SERVICE-NAME as an advertised service for the server.
SERVICE-NAME cannot be SPACES. Also, SERVICE-NAME should be 15 characters or
fewer. Longer names are accepted and truncated to 15 characters. Care should be taken
such that truncated names do not match other service names.

<<Data areas>>
<<SERVICE-NAME

Specify the service name of the service.>>

<<TPSTATUS-REC

Will be assigned the return value indicating the result of TPUNADVERTISE
execution.>>

Return value
Upon successful completion, TPUNADVERTISE sets TP-STATUS to TPOK.

Errors

Under the following conditions, TPUNADVERTISE fails and sets TP-STATUS to one of
the following values:

TPEINVAL

SERVICE-NAME is SPACES.

TPENOENT

SERVICE-NAME is not currently advertised by the server.

TPEPROTO

TPUNADVERTISE was called in an improper context.

01 SERVICE-NAME PIC X(15).
01 TPSTATUS-REC.
 COPY TPSTATUS.

CALL "TPUNADVERTISE" USING SERVICE-NAME TPSTATUS-REC.

TPUNADVERTISE - Unadvertise a service name

500

TPESYSTEM

A communication resource manager system error has occurred. The exact nature
of the error is determined in a product-specific manner.

TPEOS

An operating system error has occurred. The exact nature of the error is
determined in a product-specific manner.

See also
TPADVERTISE.

<<Notes on use with OpenTP1>>
1. <<Suppose that load balancing is used on one node (multiserver configuration).

When the function TPUNADVERTISE is invoked from one of the processes, the
service becomes unavailable to all processes which undergo load balancing.
When the function TPADVERTISE is later invoked to advertise the service, service
requests from the processes can be accepted.>>

2. <<Suppose that load balancing is used on multiple nodes (internode
load-balancing and extended internode load-balancing). When the function
TPUNADVERTISE is invoked from a process on a node, the service becomes
unavailable on that node. However, the servers at other nodes can accept service
requests. When the function TPADVERTISE is later invoked to advertise the
service, service requests are acceptable.>>

TX-interfaced application programming interface (TX~)

501

TX-interfaced application programming interface (TX~)

This section explains the syntax of the API functions which implement the TX
interface. The text in this section is quoted from 5. COBOL Reference Manual Pages
which is the syntax reference section of the X/Open CAE Specification Distributed TP:
The TX (Transaction Demarcation) Specification published by X/Open Company
Limited.

The TX interface has the following API functions:

• TXINTRO - COBOL data structure

• TXBEGIN - Begin a global transaction.

• TXCLOSE - Close a set of resource managers.

• TXCOMMIT - Commit a global transaction.

• TXINFORM - Return global transaction information.

• TXOPEN - Open a set of resource managers.

• TXROLLBACK - Roll back a global transaction.

• TXSETCOMMITRET - Set commit_return characteristic.

• TXSETTIMEOUT - Set transaction_timeout characteristic.

• TXSETTRANCTL - Set transaction_control characteristic.

TX-interfaced API functions whose names begin with TX can be used with UAPs
under either the TP1/Server Base or TP1/LiNK.

TXINTRO - COBOL data structures

502

TXINTRO - COBOL data structures

Description
Overview

There is syntactic description in COBOL for each call of the TX interface.

Each call is described by the following items:

• Reference to the COBOL records in the Working-Storage Section needed
by that call, by a COPY statement.

• Synopsis of the call in the Procedure Division.

• A description of the call.

• List of the return codes.

Data Structures Used by the COBOL TX Interface

Two COBOL records: TX-RETURN-STATUS and TX-INFO-AREA are commonly used
by the TX calls. They are expected to be defined in the Working-Storage Section
by specification of COPY statements.

<<These two records are stored in the $DCDIR/include/COBOL. When compiling
the UAP, it is necessary to designate this directory as the location of the COPY file. For
details about the specifications needed for compilation, see a manual for the COBOL
language version you are using.>>

TX-RETURN-STATUS

Every function described in this chapter takes an instance of this record as a parameter.
It is used to return a value to the caller. This record is expected to be used in the
context:

<<Since the value TXSTATUS of TX-RETURN-STATUS cannot be referenced by each
call because FILTER is given as the data name. Redefine TX-RETURN-STATUS to
have a different name so that each call can make reference using this new name. For
details, see 6.4 Coding samples for X/Open-compliant UAPs.>>

TXSTATUS is a COBOL text library defining a signed integer that may be assigned one
of the following values:

01 TX-RETURN-STATUS.
 COPY TXSTATUS.

TXINTRO - COBOL data structures

503

TX-INFO-AREA

This record defines a data structure where the result of the TXINFORM call is stored.

It is expected to be used in the context:

TXINFDEF is a COBOL text library defining a record as follows:

 05 FILLER PIC S9(9) COMP-5.
 88 TX-NOT-SUPPORTED VALUE 1.
* Normal execution
 88 TX-OK VALUE 0.
* Normal execution
 88 TX-OUTSIDE VALUE -1.
* Application is in an RM local transaction
 88 TX-ROLLBACK VALUE -2.
* Transaction was rolled back
 88 TX-MIXED VALUE -3.
* Transaction was partially committed and partially *
rolled back
 88 TX-HAZARD VALUE -4.
* Transaction may have been partially committed and
* partially rolled back
 88 TX-PROTOCOL-ERROR VALUE -5.
* Routine invoked in an improper context
 88 TX-ERROR VALUE -6.
* Transient error
 88 TX-FAIL VALUE -7.
* Fatal error
 88 TX-EINVAL VALUE -8.
* Invalid arguments were given
 88 TX-COMMITTED VALUE -9.
* The transaction was heuristically committed
 88 TX-NO-BEGIN VALUE -100.
* Transaction committed plus new transaction could *
not be started
 88 TX-ROLLBACK-NO-BEGIN VALUE -102.
* Transaction rollback plus new transaction could
* not be started
 88 TX-MIXED-NO-BEGIN VALUE -103.
* Mixed plus new transaction could not be started
 88 TX-HAZARD-NO-BEGIN VALUE -104.
* Hazard plus new transaction could not be started
 88 TX-COMMITTED-NO-BEGIN VALUE -109.
* Heuristically committed plus transaction could
* not be started

01 TX-INFO-AREA.
 COPY TXINFDEF.

TXINTRO - COBOL data structures

504

* XID record
 05 XID_REC.
 10 FORMAT-ID PIC S9(9) COMP-5.
* A value of -1 in FORMAT-ID means that the XID is null
 10 GTRID-LENGTH PIC S9(9) COMP-5.
 10 BRANCH-LENGTH PIC S9(9) COMP-5.
 10 XID-DATA PIC X(128).
* Transaction mode settings
 05 TRANSACTION-MODE PIC S9(9) COMP-5.
 88 TX-NOT-IN-TRAN VALUE 0.
 88 TX-IN-TRAN VALUE 1.
* Commit_return settings
 05 COMMIT-RETURN PIC S9(9) COMP-5.
 88 TX-COMMIT-COMPLETED VALUE 0.
 88 TX-COMMIT-DECISION-LOGGED VALUE 1.
* Transaction_control settings
 05 TRANSACTION-CONTROL PIC S9(9) COMP-5.
 88 TX-UNCHAINED VALUE 0.
 88 TX-CHAINED VALUE 1.
* Transaction_timeout value
 05 TRANSACTION-TIMEOUT PIC S9(9) COMP-5.
 88 NO-TIMEOUT VALUE 0.
* Transaction_state information
 05 TRANSACTION-STATE PIC S9(9) COMP-5.
 88 TX-ACTIVE VALUE 0.
 88 TX-TIMEOUT-ROLLBACK-ONLY VALUE 1.
 88 TX-ROLLBACK-ONLY VALUE 2.

TXBEGIN - Begin a transaction

505

TXBEGIN - Begin a transaction

Format

Description
TXBEGIN is used to place the calling thread of control in transaction mode. The calling
thread must first ensure that its linked resource managers have been opened (by mean
of TXOPEN) before it can start transactions. TXBEGIN fails (with a
TX-RETURN-STATUS value of TX-PROTOCOL-ERROR) if the caller is already in
transaction mode or TXOPEN has not been called.

Once in transaction mode, the calling thread must call TXCOMMIT or TXROLLBACK to
complete its current transaction. There are certain cases related to transaction chaining
where TXBEGIN does not need to be called explicitly to start a transaction. See
TXCOMMIT and TXROLLBACK for details.

<<TXBEGIN cannot be called from MHPs.>>

Optional Set-up

• TXSETTIMEOUT

<<Data areas>>
<<TX-RETURN-STATUS

The results of TXBEGIN execution are returned to this area.>>

Return value
Upon successful completion, TXBEGIN sets TX-OK, a non-negative return value. <<0
is returned.>>

 Errors

Under the following conditions, TXBEGIN fails and sets one of these negative values:

TX-OUTSIDE

The transaction manager is unable to start a global transaction because the calling
thread of control is currently participating in work outside any global transaction
with one or more resource managers. All such work must be completed before a

 DATA DIVISION.
* Include TX definitions.
 01 TX-RETURN-STATUS.
 COPY TXSTATUS.

 PROCEDURE DIVISION.
 CALL "TXBEGIN" USING TX-RETURN-STATUS.

TXBEGIN - Begin a transaction

506

global transaction can be started. The caller's state with respect to the local
transaction is unchanged.

TX-PROTOCOL-ERROR

The function was called in an improper context (for example, the caller is already
in transaction mode). The caller's state with respect to transaction mode is
unchanged.

TX-ERROR

Either the transaction manager or one or more of the resource managers
encountered a transient error trying to start a new transaction. When this error is
returned, the caller is not in transaction mode. The exact nature of the error is
determined in a product-specific manner.

TX-FAIL

Either the transaction manager or one or more of the resource managers
encountered a fatal error. The nature of the error is such that the transaction
manager and/or one or more of the resource managers can no longer perform
work on behalf of the application. When this error is returned, the caller is not in
transaction mode.

See also
TXCOMMIT, TXOPEN, TXROLLBACK, TXSETTIMEOUT.

Application usage
XA-compliant resource managers must be successfully opened to be included in the
global transaction. (See TXOPEN for details.)

<<Notes on use with OpenTP1>>
1. <<Before the SPP can start transaction processing, TXBEGIN must be called. If the

caller has called TXBEGIN, the SPP considers that transaction processing has
begun.>>

2. <<Processes which create a transaction using TXBEGIN must have activated UAP
executable files which are correctly linked according to the description in this
manual.>>

3. <<TXBEGIN cannot be used along with OpenTP1 CBLDCTRN.>>

TXCLOSE - Close a set of resource managers

507

TXCLOSE - Close a set of resource managers

Format

Description
TXCLOSE closes a set of resource managers in a portable manner. It invokes a
transaction manager to read information specific to the resource manager in a manner
specific to the transaction manager and pass this information to the resource managers
linked to the caller.

TXCLOSE closes all resource managers to which the caller is linked. This function is
used in place of close calls specific to the resource manager and allows an application
program to be free of calls, which may hinder portability. Since resource managers
differ in their termination semantics, the specific information needed to close a
particular resource manager must be published by each resource manager.

TXCLOSE should be called when an application thread of control no longer wishes to
participate in global transactions. TXCLOSE fails (returning TX-PROTOCOL-ERROR) if
the caller is in transaction mode. That is, no resource managers are closed even though
some may not be participating in the current transaction.

When TXCLOSE sets success (TX-OK), all resource managers linked to the calling
thread are closed.

<<Data areas>>
<<TX-RETURN-STATUS

The results of TXCLOSE execution are returned to this area.>>

Return value
Upon successful completion, TXCLOSE sets TX-OK, a non-negative value. <<0 is
returned.>> <<The set of resource managers linked to the TXCLOSE caller is closed.>>

Errors

Under the following conditions, TXCLOSE fails and sets one of these negative values:

TX-PROTOCOL-ERROR

 DATA DIVISION.
 * Include TX definitions.
 01 TX-RETURN-STATUS.
 COPY TXSTATUS.

 PROCEDURE DIVISION.
 CALL "TXCLOSE" USING TX-RETURN-STATUS.

TXCLOSE - Close a set of resource managers

508

The function was called in an improper context (for example, the caller is in
transaction mode). No resource managers are closed.

TX-ERROR

Either the transaction manager or one or more of the resource managers
encountered a transient error. The exact nature of the error is determined in a
product-specific manner. All resource managers that could be closed are closed.

TX-FAIL

Either the transaction manager or one or more of the resource managers
encountered a fatal error. The nature of the error is such that the transaction
manager and/or one or more of the resource managers can no longer perform
work on behalf of the application.

See also
TXOPEN.

<<Notes on use with OpenTP1>>
1. <<TXCLOSE can close only resource managers complying with the X/Open XA

interface.>>

TXCOMMIT - Commit a global transaction

509

TXCOMMIT - Commit a global transaction

Format

Description
TXCOMMIT is used to commit the work of the transaction active in the caller's thread of
control.

If the transaction_control characteristic (see TXSETTRANCTL) is

TX-UNCHAINED, when TXCOMMIT returns, the caller is no longer in transaction mode.
However, if the transaction_control characteristic is

TX-CHAINED, when TXCOMMIT returns, the caller remains in transaction mode on
behalf of a new transaction (see the Return value and Errors sections below).

Optional set-up

• TXSETCOMMITRET

• TXSETTIMEOUT

• TXSETTRANCTL

<<Data areas>>
<<TX-RETURN-STATUS

The results of TXCLOSE execution are returned to this area.>>

Return value
Upon successful completion, TXCOMMIT sets TX-OK, a non-negative return value. <<0
is returned.>> <<If the transaction_control characteristic is set to TX-CHAINED,
a new transaction is started.>>

Errors

Under the following conditions, TXCOMMIT fails and sets one of these negative values:

TX-NO-BEGIN

The transaction committed successfully; however, a new transaction could not be

 DATA DIVISION.
* Include TX definitions.
 01 TX-RETURN-STATUS.
 COPY TXSTATUS.

 PROCEDURE DIVISION.
 CALL "TXCOMMIT" USING TX-RETURN-STATUS.

TXCOMMIT - Commit a global transaction

510

started and the caller is no longer in transaction mode. This return value occurs
only when the transaction_control characteristic is TX-CHAINED.

TX-ROLLBACK

The transaction could not commit and has been rolled back. In addition, if the
transaction_control characteristic is TX-CHAINED, a new transaction is
started.

TX-ROLLBACK-NO-BEGIN

The transaction could not commit and has been rolled back. In addition, a new
transaction could not be started and the caller is no longer in transaction mode.
This return value can occur only when the transaction_control
characteristic is TX-CHAINED.

TX-MIXED

The transaction was partially committed and partially rolled back. In addition, if
the transaction_control characteristic is TX-CHAINED, a new transaction is
started.

TX-MIXED-NO-BEGIN

The transaction was partially committed and partially rolled back. In addition, a
new transaction could not be started and the caller is no longer in transaction
mode. This return value can occur only when the transaction_control
characteristic is TX-CHAINED.

TX-HAZARD

Due to a failure, the transaction may have been partially committed and partially
rolled back. In addition, if the transaction_control characteristic is
TX-CHAINED, a new transaction is started.

TX-HAZARD will also be returned if 00000001 is assigned to the
trn_extend_function operand in the transaction service definition and if the
resource manager returns XAER_NOTA after a one-phase commit.

TX-HAZARD-NO-BEGIN

Due to a failure, the transaction may have been partially committed and partially
rolled back. In addition, a new transaction could not be started and the caller is no
longer in transaction mode. This return value can occur only when the
transaction_control characteristic is TX-CHAINED.

TX-HAZARD-NO-BEGIN will also be returned if 00000001 is assigned to the
trn_extend_function operand in the transaction service definition and if the
resource manager returns XAER_NOTA after a one-phase commit.

TX-PROTOCOL-ERROR

TXCOMMIT - Commit a global transaction

511

The function was called in an improper context (for example, the caller is not in
transaction mode). The caller's state with respect to transaction mode is not
changed.

TX-FAIL

Either the transaction manager or one or more of the resource managers
encountered a fatal error. The nature of the error is such that the transaction
manager and/or one or more of the resource managers can no longer perform
work on behalf of the application. The caller's state with respect to the transaction
is unknown.

See also
TXBEGIN, TXSETCOMMITRET, TXSETTRANCTL, TXSETTIMEOUT.

<<Notes on use with OpenTP1>>
1. <<TXCOMMIT can be called only by processes of the UAP which has started the

global transaction (the UAP which has issued TXBEGIN).>>

2. <<Processes which call TXCOMMIT must have activated UAP executable files
which are correctly linked according to the description in this manual.>>

3. <<TXCOMMIT cannot be used along with OpenTP1 CBLDCTRN.>>

TXINFORM - Return global transaction information

512

TXINFORM - Return global transaction information

Format

Description
TXINFORM sets global transaction information in TX-INFO-AREA. In addition, this
function sets a value indicating whether the caller is currently in transaction mode or
not.

<<Data areas>>
<<TX-INFO-AREA>>

TXINFORM populates the TX-INFO-AREA record with global transaction information.
The contents of the TX-INFO-AREA record are described under TXINTRO.

If TXINFORM is called in transaction mode, TRANSACTION-MODE is set to
TX-IN-TRAN, XID-REC is populated with a current transaction branch identifier and
TRANSACTION-STATE contains the state of the current transaction. If the caller is not
in transaction mode, TRANSACTION-MODE is set to TX-NOT-IN-TRAN and XID-REC
is populated with the null XID (see TXINTRO for details). In addition, regardless of
whether the caller is in transaction mode, COMMIT-RETURN,
TRANSACTION-CONTROL, and TRANSACTION-TIMEOUT contain the current settings
of the commit_return and transaction_control characteristics, and the
transaction timeout value in seconds.

The transaction timeout value returned reflects the setting to be used when the next
transaction is started. Thus, it may not reflect the timeout value for the caller's current
global transaction since calls made to TSXETTIMEOUT after the current transaction
was begun may have changed its value.

<<TX-RETURN-STATUS

The results of TXINFORM execution are returned to this area.>>

Return value
If the TXINFORM caller is in transaction mode, 1 is returned. If the TXINFORM caller is

 DATA DIVISION.
* Include TX definitions.
 01 TX-RETURN-STATUS.
 COPY TXSTATUS.
*
 01 TX-INFO-AREA.
 COPY TXINFDEF.

 PROCEDURE DIVISION.
 CALL "TXINFORM" USING TX-INFO-AREA TX-RETURN-STATUS.

TXINFORM - Return global transaction information

513

not in transaction mode, 0 is returned.

Errors

Under the following conditions, TXINFORM fails and sets one of these negative values:

TX-PROTOCOL-ERROR

The function was called in an improper context (for example, the caller has not
yet called TXOPEN).

TX-FAIL

The transaction manager encountered a fatal error. The nature of the error is such
that the transaction manager can no longer perform work on behalf of the
application.

Application usage
Within the same global transaction, subsequent calls to TXINFORM are guaranteed to
provide an XID with the same gtrid component, but not necessarily the same bqual
component.

See also
TXOPEN, TXSETCOMMITRET, TXSETTRANCTL, TXSETTIMEOUT.

TXOPEN - Open a set of resource managers

514

TXOPEN - Open a set of resource managers

Format

Description
TXOPEN opens a set of resource managers in a portable manner. It invokes a transaction
manager to read information specific to the resource manager in a manner specific to
the transaction manager and pass this information to the resource managers linked to
the caller.

TXOPEN attempts to open all resource managers that have been linked with the
application. This function is used in place of open calls specific to the resource
manager and allows an application program to be free of calls, which may hinder
portability. Since resource managers differ in their initialization semantics, the specific
information needed to open a particular resource manager must be published by each
resource manager.

If TXOPEN sets TX-ERROR, no resource managers are open. If TXOPEN sets TX-OK,
some or all of the resource managers have been opened. Resource managers that are
not open return errors specific to the resource manager when accessed by the
application. TXOPEN must successfully return before a thread of control participates in
global transactions.

Once TXOPEN sets success, subsequent calls to TXOPEN (before an intervening call to
TXCLOSE) are allowed. However, such subsequent calls return success, and the TM
does not attempt to reopen any RMs.

<<Data areas>>
<<TX-RETURN-STATUS

The results of TXOPEN execution are returned to this area.>>

Return value
Upon successful completion, TXOPEN sets TX-OK, a non-negative return value. <<0 is
returned.>> <<The set of one or more resource managers linked to the TXOPEN caller
is opened.>>

DATA DIVISION.
* Include TX definitions.
 01 TX-RETURN-STATUS.
 COPY TXSTATUS.

 PROCEDURE DIVISION.
 CALL "TXOPEN" USING TX-RETURN-STATUS.

TXOPEN - Open a set of resource managers

515

Errors

Under the following conditions, TXOPEN fails and sets one of these negative values:

TX-ERROR

Either the transaction manager or one or more of the resource managers
encountered a transient error. No resource managers are open.

TX-FAIL

Either the transaction manager or one or more of the resource managers
encountered a fatal error. The nature of the error is such that the transaction
manager and/or one or more of the resource managers can no longer perform
work on behalf of the application.

Alternatively, an error occurred in the transaction manager because the execution
environment was in non-journal operation mode.

See also
TXCLOSE.

<<Notes on use with OpenTP1>>
1. <<Processes which create a transaction using TXBEGIN must have activated UAP

executable files which are correctly linked according to the description in this
manual.>>

TXROLLBACK - Roll back a global transaction

516

TXROLLBACK - Roll back a global transaction

Format

Description
TXROLLBACK is used to roll back the work of the transaction active in the caller's
thread of control.

If the transaction_control characteristic (see TXSETTRANCTL) is

TX-UNCHAINED, when TXROLLBACK returns, the caller is no longer in transaction
mode. However, if the transaction_control characteristic is

TX-CHAINED, when TXROLLBACK returns, the caller remains in transaction mode on
behalf of a new transaction (see the Return value and Errors sections below).

Optional set-up

• TXSETTRANCTL

• TXSETTIMEOUT

<<TXROLLBACK cannot be called from MHPs.>>

<<Data areas>>
<<TX-RETURN-STATUS

The results of TXROLLBACK execution are returned to this area.>>

Return value
Upon successful completion, TXROLLBACK sets TX-OK, a non-negative return value.

<<0 is returned.>>

<<A new global transaction is started if the transaction_control characteristic is
TX-CHAINED.>>

<<If the SPP which has issued TXROLLBACK is not the root transaction branch, actual
rollback is not conducted, but only the fact that the transaction branch is in the
rollback_only state is recorded. Transaction mode remains in effect until a rollback
instruction is given during synchronization point processing for the root transaction

DATA DIVISION.
* Include TX definitions.
 01 TX-RETURN-STATUS.
 COPY TXSTATUS.

 PROCEDURE DIVISION.
 CALL "TXROLLBACK" USING TX-RETURN-STATUS.

TXROLLBACK - Roll back a global transaction

517

branch.>>

Errors

Under the following conditions, TXROLLBACK fails and sets one of these negative
values.

TX-NO-BEGIN

The transaction rolled back; however, a new transaction could not be started and
the caller is no longer in transaction mode. This return value occurs only when the
transaction_control characteristic is TX-CHAINED.

TX-MIXED

The transaction was partially committed and partially rolled back. In addition, if
the transaction_control characteristic is TX-CHAINED, a new transaction is
started.

TX-MIXED-NO-BEGIN

The transaction was partially committed and partially rolled back. In addition, a
new transaction could not be started and the caller is no longer in transaction
mode. This return value can occur only when the transaction_control
characteristic is TX-CHAINED.

TX-HAZARD

Due to a failure, the transaction may have been partially committed and partially
rolled back. In addition, if the transaction_control characteristic is
TX-CHAINED, a new transaction is started.

TX-HAZARD-NO-BEGIN

Due to a failure, the transaction may have been partially committed and partially
rolled back. In addition, a new transaction could not be started and the caller is no
longer in transaction mode. This return value can occur only when the
transaction_control characteristic is TX-CHAINED.

TX-COMMITTED

The transaction was heuristically committed. In addition, if the
transaction_control characteristic is TX-CHAINED, a new transaction is
started.

TX-COMMITTED-NO-BEGIN

The transaction was heuristically committed. In addition, a new transaction could
not be started and the caller is no longer in transaction mode. This return value
can occur only when the transaction_control characteristic is
TX-CHAINED.

TX-PROTOCOL-ERROR

TXROLLBACK - Roll back a global transaction

518

The function was called in an improper context (for example, the caller is not in
transaction mode).

TX-FAIL

Either the transaction manager or one or more of the resource managers
encountered a fatal error. The nature of the error is such that the transaction
manager and/or one or more of the resource managers can no longer perform
work on behalf of the application. The caller's state with respect to the transaction
is unknown.

See also
TXBEGIN, TXSETTRANCTL, TXSETTIMEOUT.

<<Notes on use with OpenTP1>>
1. <<If the transaction_control characteristic is TX-CHAINED, only the root

transaction branch (the UAP which has called TXBEGIN) can call
TXROLLBACK.>>

2. <<If the transaction_control characteristic is TX-UNCHAINED,
TXROLLBACK can be called by no-root transaction branches. However, processing
varies depending on the caller is a root or non-root transaction branch. If the caller
is the root branch, it requests non-root branches via RPC for rollback. If the
TXROLLBACK caller is a non-root branch, the caller only records
rollback_only and does not call a rollback request via RPC to the root branch.
The caller non-root branch will initiate rollback after it is instructed by the root
branch.>>

3. <<TXROLLBACK cannot be used along with OpenTP1 CBLDCTRN. >>

TXSETCOMMITRET - Set commit_return characteristic

519

TXSETCOMMITRET - Set commit_return characteristic

Format

Description
TXSETCOMMITRET sets the commit_return characteristic to the value specified in
COMMIT-RETURN. This characteristic affects the way TXCOMMIT behaves with respect
to returning control to its caller. TXSETCOMMITRET may be called regardless of
whether its caller is in transaction mode. This setting remains in effect until changed
by a subsequent call to TXSETCOMMITRET.

The initial value of the commit_return characteristic depends on the product
specification. <<For OpenTP1, the return value is TX-COMMIT-COMPLETED.>>

<<Data areas>>
<<TX-INFO-AREA>>

The valid settings for COMMIT-RETURN are as follows:

{TX-COMMIT-DECISION-LOGGED|TX-COMMIT-COMPLETED}

TX-COMMIT-DECISION-LOGGED

<<This value is not supported under the relevant version of the OpenTP1. If
TX_COMMIT-DECISION-LOGGED is assigned to TX-INFO-AREA, TXSETCOMMITRET
returns with the return value of TX-NOT-SUPPORTED.>>

This flag indicates that TXCOMMIT should return after the commit decision has been
logged by the first phase of the two-phase commit protocol but before the second phase
has completed. This setting allows for faster response to the caller of TXCOMMIT.
However, there is a risk that a transaction has a heuristic outcome, in which case the
caller does not find out about this situation by means of return codes from TXCOMMIT.
<<Note that the resource manager has made a heuristic decision using a method
specific to it.>> Under normal conditions, participants that promise to commit during
the first phase do so during the second phase. In certain unusual circumstances
however (for example, long-lasting network or node failures) phase 2 completion may

 DATA DIVISION.
* Include TX definitions.
 01 TX-RETURN-STATUS.
 COPY TXSTATUS.
*
 01 TX-INFO-AREA.
 COPY TXINFDEF.

 PROCEDURE DIVISION.
 CALL "TXSETCOMMITRET" USING TX-INFO-AREA TX-RETURN-STATUS.

TXSETCOMMITRET - Set commit_return characteristic

520

not be possible and heuristic results may occur. A transaction manager may choose not
to select this flag and returns TX-NOT-SUPPORTED to indicate that this value is not set.

• TX-COMMIT-COMPLETED

This flag indicates that TXCOMMIT should return after the two-phase commit
protocol has ended completely. Setting this flag allows the caller of TXCOMMIT to
see return codes even if heuristic results occur in phase 2 of commitment. A
transaction manager may choose not to support this feature and can include
notification indicating that the flag cannot be used in the reason for returning
TX-NOT-SUPPORTED.

Return value
<<When return value is 0>> upon successful completion, TXSETCOMMITRET returns
TX-OK, a non-negative return value. <<In this case, the commit_return
characteristic is changed to the value set in TX-INFO-AREA.>>

<<When return value is positive>> upon successful completion, TXSETCOMMITRET
returns TX-NOT-SUPPORTED, a non-negative return value.

<<The transaction manager does not support the value set in TX-INFO-AREA.>> In
this case, the commit_return characteristic remains set to its existing value. The
transaction manager must make either TX-COMMIT-COMPLETED or
X-COMMIT-DECISION-LOGGED available as the COMMIT-RETURN value. <<For
OpenTP1, the return value is TX-COMMIT-RETURN.>>

Errors

Under the following conditions, TXSETCOMMITRET does not change the setting of the
commit_return characteristic and sets one of these negative values:

TX-EINVAL

COMMIT-RETURN is not one of TX-COMMIT-DECISION-LOGGED or
TX-COMMIT-COMPLETED.

TX-PROTOCOL-ERROR

The function was called in an improper context (for example, the caller has not
yet called TXOPEN).

TX-FAIL

The transaction manager encountered a fatal error. The nature of the error is such
that the transaction manager can no longer perform work on behalf of the
application.

See also
TXCOMMIT, TXOPEN, TXINFORM.

TXSETCOMMITRET - Set commit_return characteristic

521

<<Notes on use with OpenTP1>>
1. <<TXSETCOMMITRET cannot be used along with OpenTP1 CBLDCTRN.>>

TXSETTIMEOUT - Set transaction_timeout characteristic

522

TXSETTIMEOUT - Set transaction_timeout characteristic

Format

Description
TXSETTIMEOUT sets the transaction_timeout characteristic to the value
specified in TRANSACTION-TIMEOUT. This value specifies the time period in which
the transaction must complete before becoming susceptible to transaction timeout; that
is, the interval between the AP calling TXBEGIN and TXCOMMIT or TXROLLBACK.
TXSETTIMEOUT may be called regardless of whether its caller is in transaction mode
or not. If TXSETTIMEOUT is called in transaction mode, the new timeout value does
not take effect until the next transaction.

The initial transaction_timeout value is 0 (no timeout).

<<When a value is specified for trn_expiration_time in system definition, it is
treated as the initial value.>>

<<Data areas>>
<<TX-INFO-AREA>>

TRANSACTION-TIMEOUT specifies the number of seconds allowed before the
transaction becomes susceptible to transaction timeout. It may be set to any value up
to the maximum value for an S9(9) COMP 5 as defined by the system. A
TRANSACTION-TIMEOUT value of zero disables the timeout feature.

<<TX-RETURN-STATUS

The results of TXSETTIMEOUT execution are returned to this area.>>

Return value
Upon successful completion, TXSETTIMEOUT sets TX-OK, a non-negative return
value.

<<The transaction_timeout characteristic has become the value assigned to
TX-INFO-AREA.>>

 DATA DIVISION.
* Include TX definitions.
 01 TX-RETURN-STATUS.
 COPY TXSTATUS.
*
 01 TX-INFO-AREA.
 COPY TXINFDEF.

 PROCEDURE DIVISION.
 CALL "TXSETTIMEOUT" USING TX-INFO-AREA TX-RETURN-STATUS.

TXSETTIMEOUT - Set transaction_timeout characteristic

523

Errors

Under the following conditions, TXSETTIMEOUT does not change the setting of
transaction_timeout characteristic and sets one of these negative values:

TX-EINVAL

The timeout value specified is invalid.

TX-PROTOCOL-ERROR

The function was called in an improper context. For example, the caller has not
yet called TXOPEN.

TX-FAIL

The transaction manager encountered an error. The nature of the error is such that
the transaction manager can no longer perform work on behalf of the application.

See also
TXBEGIN, TXCOMMIT, TXOPEN, TXROLLBACK, TXINFORM.

<<Notes on use with OpenTP1>>
1. <<TXSETTIMEOUT cannot be used along with OpenTP1 CBLDCTRN.>>

TXSETTRANCTL - Set transaction_control characteristic

524

TXSETTRANCTL - Set transaction_control characteristic

Format

Description
TXSETTRANCTL sets the transaction_control characteristic to the value
specified in TRANSACTION-CONTROL. This characteristic determines whether
TXCOMMIT and TXROLLBACK start a new transaction before returning to their caller.
TXSETTRANCTL may be called regardless of whether the application program is in
transaction mode. This setting remains in effect until changed by a subsequent call to
TXSETTRANCTL.

The initial setting for this characteristic is TX-UNCHAINED.

<<Data areas>>
<<TRANSACTION-CONTROL>>

The valid settings for TRANSACTION-CONTROL are as follows:

• TX-UNCHAINED

This flag indicates that TXCOMMIT and TXROLLBACK should not start a new
transaction before returning to their caller. The caller must issue TXBEGIN to start
a new transaction.

• TX-CHAINED

This flag indicates that TXCOMMIT and TXROLLBACK should start a new
transaction before returning to their caller.

Return value
Upon successful completion, TXSETTRANCTL sets TX-OK, a non-negative return
value. <<0 is returned.>> <<The transaction_control characteristic was
changed to the value of TRANSACTION-CONTROL.>>

 DATA DIVISION.
* Include TX definitions.
 01 TX-RETURN-STATUS.
 COPY TXSTATUS.
*
 01 TX-INFO-AREA.
 COPY TXINFDEF.

 PROCEDURE DIVISION.
 CALL "TXSETTRANCTL" USING TX-INFO-AREA TX-RETURN-STATUS.

TXSETTRANCTL - Set transaction_control characteristic

525

Errors

Under the following conditions, TXSETTRANCTL does not change the setting of the
transaction_control characteristic and sets one of these negative values;

TX-EINVAL

TRANSACTION-CONTROL is not one of TX-UNCHAINED or TX-CHAINED.

TX-PROTOCOL-ERROR

The function was called in an improper context (for example, the caller has not
yet called TXOPEN).

TX-FAIL

The transaction manager encountered a fatal error. The nature of the error is such
that the transaction manager can no longer perform work on behalf of the
application.

See also
TXBEGIN, TXCOMMIT, TXOPEN, TXROLLBACK, TXINFORM.

<<Notes on use with Open TP1>>
1. <<TXSETTRANCTL cannot be used along with OpenTP1 CBLDCTRN.>>

527

Chapter

5. Syntax of OpenTP1 COBOL-UAP
Creation Programs (Association
Status Notification)

Client/server communication using the OSI TP protocol requires communication event
processing SPPs. This chapter explains the COBOL-UAP creation program to be used
with the SPPs for a communication event and the format of received communication
events.

This chapter contains the following sections:

Association operation (CBLDCXAT)
Format of received communication events

Association operation (CBLDCXAT)

528

Association operation (CBLDCXAT)

This section explains the following COBOL-UAP creation program that handles
associations and is used with the SPPs for a communication event.

• CBLDCXAT('CONNECT') - Establish an association

The COBOL-UAP creation program (CBLDCXAT) for handling associations can be
used only with the TP1/Server Base. It cannot be used with the TP1/LiNK.

The function for handling associations can be invoked only by SPPs for a
communication event. It cannot be invoked by other OpenTP1 UAPs (SUPs, SPPs, and
MHPs).

The server_type operand in the user service definition for the communication event
processing SPP must be assigned betran.

If you set the DATA DIVISION of COBOL-UAP creation programs, you can use the
COBOL language templates as samples. The COBOL templates for manipulating
associations are held in DCXAT.cbl under the /BeTRAN/examples/COBOL/ directory.

CBLDCXAT('CONNECT') - Establish an association

529

CBLDCXAT('CONNECT') - Establish an association

Format
PROCEDURE DIVISION specification

DATA DIVISION specification

Description
CBLDCXAT('CONNECT') requests the XATMI communication service specified in
data-name-C to establish the association specified in data-name-D.

CBLDCXAT('CONNECT') returns after sending an association establishment request to
the remote system. It cannot be used for receiving the notification of association
establishment.

CBLDCXAT('CONNECT') can be used only for OSI TP communication using the TP1/
NET/OSI-TP-Extended.

CBLDCXAT('CONNECT') can be invoked either inside or outside the transaction
range.

Data areas whose values are set in the UAP
data-name-A
Specify VALUE 'CONNECT ' as a request code for association establishment.

data-name-C
Specify the name of the XATMI communication service that will be asked to establish
an association. The specified name must be the name of the XATMI communication
service definition file assigned to the xat_invoke_server operand in the XATMI
communication service definition. Add a space after the service name.

data-name-D
Specify the name of the association to be established. The specified name must be the

CALL 'CBLDCXAT' USING unique-name-1

01 unique-name-1.
 02 data-name-A PIC X(8) VALUE 'CONNECT '.
 02 data-name-B PIC X(5).
 02 FILLER PIC X(3).
 02 data-name-Z PIC S9(9) COMP VALUE ZERO.
 02 data-name-C PIC X(9).
 02 FILLER PIC X(3).
 02 data-name-D PIC X(9).

CBLDCXAT('CONNECT') - Establish an association

530

connection name assigned to the -c option of the nettalccn operand in the
protocol-specific definition contained in the TP1/NET/OSI-TP-Extended definition.
Add a space after the association name.

data-name-Z
Specify 0.

Data area whose value is returned from OpenTP1
data-name-B
A status code of 5 digits is returned.

Status codes
Status code Explanation

00000 Normal termination.

04570 The value specified for a data name is invalid.

04571 The memory became insufficient.

04572 CBLDCRPC('OPEN ') has not been invoked.

04575 Acquisition of address information of the XATMI communication service failed.

04576 The XATMI communication service is being terminated.

04577 The service request failed during sending to the XATMI communication service.

04578 The service request failed during receiving from the XATMI communication service.
The probable cause is that a connection establishment request is already being executed
by the XATMI communication service.

04580 The specified association name is not defined.

04581 The association has already been established.

04582 The association is being established.

04583 The association is being released.

04584 The association cannot be established because it is in recipient mode.

Format of received communication events

531

Format of received communication events

This section explains the format of the communication events that indicate the
association status. Before a communication event can be received, the service group
name and service name of the SPP for a communication event must be specified in the
XATMI communication service definition. What type of communication event can be
received depends on which operand is assigned the service group name and service
name.

xat_aso_con_event_svcname operand:

Communication event for association establishment notification

xat_aso_discon_event_svcname operand:

Communication event for normal release of association

xat_aso_failure_event_svcname operand:

Communication event for abnormal release of association

One SPP for a communication event can handle multiple communication events if you
specify the same service group name and service name to multiple operands.

Contents of communication event indicating association status
The contents of communication event indicating association status are shown below.

data-name-A
Will be assigned the identifier of the communication event. The identifier is one of the
following codes. The number enclosed in parentheses is the numerical representation
(decimal) of the code.

DCXAT_ASO_CONNECT (00000001): Association establishment

DCXAT_ASO_DISCONNECT (00000002): Normal release of association

DCXAT_ASO_FAILURE (00000003): Abnormal release of association

01 unique-name-1.
 02 data-name-A PIC S9(9) COMP.
 02 data-name-B PIC X(9).
 02 FILLER PIC X(3).
 02 data-name-C PIC S9(9) COMP.
 02 data-name-D PIC 9(9) COMP.
 02 data-name-E PIC X(9).
 02 FILLER PIC X(63).

Format of received communication events

532

data-name-B
Will be assigned the name of the association whose status is to be reported by the
communication event.

data-name-C
Will be assigned the value that indicates whether the local system is the initiating or
recipient for the established connection. The value assigned is one of the following
codes. The number enclosed in parentheses is the numerical representation (decimal)
of the code.

DCXAT_ASO_INIT (00000001): The local system is the initiating.

DCXAT_ASO_RESP (00000002): The local system is the recipient.

data-name-D
Will be assigned the reason code which will be returned when the association is
released. The value assigned is one of the following codes. The number enclosed in
parentheses is the numerical representation (decimal) of the code.

For the normal releasing of an association, one of the following values is assigned:

00000001: Releasing of an association by executing a command

00000005: Releasing of an association by the XATMI

00000007: Normal releasing of an association from the remote system

00000008: Normal releasing of an association by the TP layer

For the abnormal releasing of an association, one of the following values is assigned:

00000001: Forced releasing of an association by executing a command

00000003: Failure in a lower layer (such as a line failure and communication
management failure)

00000005: Forced releasing of an association by an XATMI communication service

00000006: Failure in association establishment

00000007: Forced releasing of an association from the remote system

data-name-E
Will be assigned the XATMI communication service name.

533

Chapter

6. Coding Samples

This chapter presents and explains application program (UAP) coding samples.

This chapter contains the following sections:

6.1 Coding samples for client/server UAPs (SUP, SPP DAM access)
6.2 Coding samples for client/server UAPs (SPP TAM access)
6.3 Coding samples for message exchange UAPs (MHP)
6.4 Coding samples for X/Open-compliant UAPs

6. Coding Samples

534

6.1 Coding samples for client/server UAPs (SUP, SPP DAM access)

The figure below shows an example of a client/server configuration UAP.

Figure 6-1: Client/server UAP configuration sample (DAM access)

Explanation

DAM file damfile0 contains a control section in its first block and data records
in the second and subsequent blocks. During service processing, the first block is
read (CBLDCDAM('READ')) and is updated (CBLDCDAM('REWT')), then the
second and subsequent blocks are directly updated using CBLDCDAM('WRIT').

This section presents a coding example based on the configuration sample shown in
the figure.

(1) SUP sample
The following shows a coding example for SUP.
 10 *
 20 **
 30 * SUP01 *
 40 **
 50 *
 60 IDENTIFICATION DIVISION.
 70 *
 80 PROGRAM-ID. MAIN.
 90 *
 100 **
 110 * Set the data area *
 120 **
 130 *
 140 DATA DIVISION.

6. Coding Samples

535

 150 WORKING-STORAGE SECTION.
 160 01 RPC-ARG1.
 170 02 REQUEST PIC X(8) VALUE SPACE.
 180 02 STATUS-CODE PIC X(5) VALUE SPACE.
 190 02 FILLER PIC X(3).
 200 02 FLAGS PIC S9(9) COMP VALUE ZERO.
 210 *
 220 01 RPC-ARG2.
 230 02 REQUEST PIC X(8) VALUE SPACE.
 240 02 STATUS-CODE PIC X(5) VALUE SPACE.
 250 02 FILLER PIC X(3).
 260 02 FLAGS PIC S9(9) COMP VALUE ZERO.
 270 02 DESCRIPTOR PIC S9(9) COMP VALUE ZERO.
 280 02 S-NAME PIC X(32) VALUE SPACE.
 290 02 G-NAME PIC X(32) VALUE SPACE.
 300 *
 310 01 RPC-ARG3.
 320 02 SEND-DATA-LENG PIC S9(9) COMP VALUE ZERO.
 330 02 SEND-DATA PIC X(32) VALUE SPACE.
 340 *
 350 01 RPC-ARG4.
 360 02 RECEIVE-DATA-LENG PIC S9(9) COMP VALUE ZERO.
 370 02 RECEIVE-DATA PIC X(32) VALUE SPACE.
 380 *
 390 01 ADM-ARG1.
 400 02 REQUEST PIC X(8) VALUE SPACE.
 410 02 STATUS-CODE PIC X(5) VALUE SPACE.
 420 02 FILLER PIC X(3).
 430 02 FLAGS PIC S9(9) COMP VALUE ZERO.
 440 02 FILLER PIC X(3).
 450 *
 460 01 TRN-ARG1.
 470 02 REQUEST PIC X(8) VALUE SPACE.
 480 02 STATUS-CODE PIC X(5) VALUE SPACE.
 490 *
 500 PROCEDURE DIVISION.
 510 *
 520 **
 530 * RPC-OPEN (start the UAP) *
 540 **
 550 *
 560 MOVE 'OPEN' TO REQUEST OF RPC-ARG1.
 570 MOVE ZERO TO FLAGS OF RPC-ARG1.
 580 CALL 'CBLDCRPC' USING RPC-ARG1.
 590 IF STATUS-CODE OF RPC-ARG1 NOT = '00000' THEN
 600 DISPLAY 'SUP01:RPC-OPEN FAILED. CODE = '
 610 STATUS-CODE OF RPC-ARG1
 620 GO TO PROG-END

6. Coding Samples

536

 630 END-IF.
 640 *
 650 ***
 660 * ADM-COMPLETE (report completion of *
 665 * user server start processing) *
 670 ***
 680 *
 690 MOVE 'COMPLETE' TO REQUEST OF ADM-ARG1.
 700 CALL 'CBLDCADM' USING ADM-ARG1.
 710 IF STATUS-CODE OF ADM-ARG1 NOT = '00000' THEN
 720 DISPLAY 'SUP01:RPC-COMPLETE FAILED. CODE = '
 730 STATUS-CODE OF ADM-ARG1
 740 GO TO PROG-END
 750 END-IF.
 760 *
 770 ***
 780 * TRN_BEGIN (start the transaction) *
 790 ***
 800 *
 810 MOVE 'BEGIN' TO REQUEST OF TRN-ARG1.
 820 CALL 'CBLDCTRN' USING TRN-ARG1.
 830 IF STATUS-CODE OF TRN-ARG1 NOT = '00000' THEN
 840 DISPLAY 'SUP01:TRN-BEGIN FAILED. CODE = '
 850 STATUS-CODE OF TRN-ARG1
 860 GO TO TRAN-END
 870 END-IF.
 880 *
 890 ***
 900 * RPC-CALL (request a remote service) *
 910 ***
 920 *
 930 MOVE 'CALL' TO REQUEST OF RPC-ARG2.
 940 MOVE 'SPP01' TO G-NAME OF RPC-ARG2.
 950 MOVE 'SVR01' TO S-NAME OF RPC-ARG2.
 960 MOVE 'SUP01:DATA OpenTP1' TO SEND-DATA OF RPC-ARG3.
 970 MOVE 32 TO SEND-DATA-LENG OF RPC-ARG3.
 980 MOVE 32 TO RECEIVE-DATA-LENG OF RPC-ARG4.
 990 CALL 'CBLDCRPC' USING RPC-ARG2 RPC-ARG3 RPC-ARG4.
1000 IF STATUS-CODE OF RPC-ARG2 NOT = '00000' THEN
1010 DISPLAY 'SUP01:RPC-CALL RETURN CODE = '
1020 STATUS-CODE OF RPC-ARG2
1030 GO TO TRAN-END
1040 END-IF.
1050 DISPLAY 'SERVICE FUNCTION RETURN = ' RECEIVE-DATA.
1060 TRAN-END.
1070 *
1080 ***
1090 * TRN-UNCHAINED-COMMIT *

6. Coding Samples

537

1095 * (commit in unchained mode) *
1100 ***
1110 *
1120 MOVE 'U-COMMIT' TO REQUEST OF TRN-ARG1.
1130 CALL 'CBLDCTRN' USING TRN-ARG1.
1140 IF STATUS-CODE OF TRN-ARG1 NOT = '00000' THEN
1150 DISPLAY 'SUP01:TRN-UNCHAINED-COMMIT FAILED.
CODE = '
1160 STATUS-CODE OF TRN-ARG1
1170 END-IF.
1180 PROG-END.
1190 *
1200 ***
1210 * RPC-CLOSE (terminate the UAP) *
1220 ***
1230 *
1240 MOVE 'CLOSE' TO REQUEST OF RPC-ARG1.
1250 MOVE ZERO TO FLAGS OF RPC-ARG1.
1260 CALL 'CBLDCRPC' USING RPC-ARG1.
1270 DISPLAY 'SUP01:SUP PROCESS ENDED'.
1280 STOP RUN.

(2) SPP sample (main program)
The following shows a coding example for the SPP main program.
 10 *
 20 **
 30 * SPP01 main program *
 40 **
 50 *
 60 IDENTIFICATION DIVISION.
 70 *
 80 PROGRAM-ID. MAIN.
 90 *
 100
**
 110 * Set the data area *
 120
**
 130 *
 140 DATA DIVISION.
 150 WORKING-STORAGE SECTION.
 160 01 FD-ID EXTERNAL.
 170 10 FD-SAVE PIC S9(9) COMP.
 180 01 RPC-ARG1.
 190 02 REQ-CODE PIC X(8) VALUE SPACE.
 200 02 STATUS-CODE PIC X(5) VALUE SPACE.
 210 02 FILLER PIC X(3).
 220 02 FLAGS PIC S9(9) COMP.

6. Coding Samples

538

 230 01 DAM-ARG1.
 240 02 REQUEST PIC X(8) VALUE SPACE.
 250 02 STATUS-CODE PIC X(5) VALUE SPACE.
 260 02 FILLER PIC X(3).
 270 02 FILE-NAME PIC X(8).
 280 02 FILLER PIC S9(9) COMP.
 290 02 FILLER PIC S9(9) COMP.
 300 02 FILDES PIC S9(9) COMP VALUE ZERO.
 310 02 FILLER PIC X(28).
 320 01 DAM-ARG2.
 330 02 ACCESS-CODE PIC X(4).
 340 02 FLAG1 PIC X(1).
 350 02 FILLER PIC X(1).
 360 02 FILLER PIC X(1).
 370 02 FILLER PIC X(1).
 380 02 FLAGS PIC S9(9) COMP VALUE ZERO.
 390 *
 400 PROCEDURE DIVISION.
 410 *
 420 **
 430 * RPC-OPEN (start the UAP) *
 440 **
 450 *
 460 MOVE 'OPEN' TO REQ-CODE OF RPC-ARG1.
 470 MOVE ZERO TO FLAGS OF RPC-ARG1.
 480 CALL 'CBLDCRPC' USING RPC-ARG1.
 490 IF STATUS-CODE OF RPC-ARG1 NOT = '00000' THEN
 500 DISPLAY 'SPP01:RPC-OPEN FAILED. CODE = '
 510 STATUS-CODE OF RPC-ARG1
 520 GO TO PROG-END
 530 END-IF.
 540 *
 550 **
 560 * DAM-OPEN (open a logical file) *
 570 **
 580 *
 590 MOVE 'DCDAMSVC' TO REQUEST OF DAM-ARG1.
 600 MOVE 'damfile0' TO FILE-NAME OF DAM-ARG1.
 610 MOVE 'OPEN' TO ACCESS-CODE OF DAM-ARG2.
 620 MOVE 'B' TO FLAG1 OF DAM-ARG2.
 630 CALL 'CBLDCDAM' USING DAM-ARG1 DAM-ARG2.
 640 IF STATUS-CODE OF DAM-ARG1 NOT = '00000' THEN
 650 DISPLAY 'SPP01:DAM-OPEN FAILED. CODE = '
 660 STATUS-CODE OF DAM-ARG1
 670 GO TO DAM-END
 680 END-IF.
 690 MOVE FILDES TO FD-SAVE.
 700 *

6. Coding Samples

539

 710 **
 720 * RPC-MAINLOOP (start the SPP service) *
 730 **
 740 *
 750 DISPLAY 'SPP01: MAINLOOP START.'
 760 MOVE 'MAINLOOP' TO REQ-CODE OF RPC-ARG1.
 770 MOVE ZERO TO FLAGS OF RPC-ARG1.
 780 CALL 'CBLDCRSV' USING RPC-ARG1.
 790 IF STATUS-CODE OF RPC-ARG1 NOT = '00000' THEN
 800 DISPLAY 'SPP01:RPC-MAINLOOP FAILED. CODE ='
 810 STATUS-CODE OF RPC-ARG1
 820 END-IF.
 830 DAM-END.
 840 *
 850 **
 860 * DAM-CLOSE (close the logical file) *
 870 **
 880 *
 890 MOVE 'damfile0' TO FILE-NAME OF DAM-ARG1.
 900 MOVE FD-SAVE TO FILDES OF DAM-ARG1.
 910 MOVE 'CLOS' TO ACCESS-CODE OF DAM-ARG2.
 920 CALL 'CBLDCDAM' USING DAM-ARG1 DAM-ARG2.
 930 IF STATUS-CODE OF DAM-ARG1 NOT = '00000' THEN
 940 DISPLAY 'SPP01:DAM-CLOSE FAILED. CODE = '
 950 STATUS-CODE OF DAM-ARG1
 960 END-IF.
 970 PROG-END.
 980 *
 990 **
1000 * RPC-CLOSE (terminate the UAP) *
1010 **
1020 *
1030 MOVE 'CLOSE' TO REQ-CODE OF RPC-ARG1.
1040 MOVE ZERO TO FLAGS OF RPC-ARG1.
1050 CALL 'CBLDCRPC' USING RPC-ARG1.
1060 *
1070 **
1080 * Terminate processing *
1090 **
1100 *
1110 DISPLAY 'SPP01:Good-by!'
1120 STOP RUN.

(3) SPP sample (service program)
The following shows a coding example for the SPP service program.
 10 *
 20 **
 30 * SPP service program SVR01 *

6. Coding Samples

540

 40 **
 50 *
 60 IDENTIFICATION DIVISION.
 70 *
 80 PROGRAM-ID. SVR01.
 90 *
 100 **
 110 * Set the data area *
 120 **
 130 *
 140 DATA DIVISION.
 150 WORKING-STORAGE SECTION.
 160 01 FD-ID EXTERNAL.
 170 10 FD-SAVE PIC S9(9) COMP.
 180 01 DAM-ARG1.
 190 02 REQUEST PIC X(8) VALUE SPACE.
 200 02 STATUS-CODE PIC X(5) VALUE SPACE.
 210 02 FILLER PIC X(3).
 220 02 FILE-NAME PIC X(8).
 230 02 KEY-NO PIC S9(9) COMP VALUE ZERO.
 240 02 BUFFER-LEN PIC S9(9) COMP VALUE ZERO.
 250 02 FILDES PIC S9(9) COMP VALUE ZERO.
 260 02 FILLER PIC X(28).
 270 01 DAM-ARG2.
 280 02 ACCESS-CODE PIC X(4).
 290 02 FLAG1 PIC X(1).
 300 02 FLAG2 PIC X(1).
 310 02 FLAG3 PIC X(1).
 320 02 FLAG4 PIC X(1).
 330 02 FLAGS PIC S9(9) COMP VALUE ZERO.
 340 02 DAMKEY.
 350 03 FIRST-BLOCK-NO PIC S9(9) COMP.
 360 03 LAST-BLOCK-NO PIC S9(9) COMP.
 370 *
 380 01 CNTL-BUFFER.
 390 02 W-COUNT PIC S9(9) COMP.
 400 02 RWT-DATA PIC X(18) VALUE SPACE.
 410 02 FILLER PIC X(483) VALUE SPACE.
 420 *
 430 01 W-BUFFER.
 440 02 FILLER PIC X(504).
 450 *
 460 LINKAGE SECTION.
 470 77 IN-DATA PIC X(32).
 480 77 IN-LENG PIC S9(9) COMP.
 490 77 OUT-DATA PIC X(32).
 500 77 OUT-LENG PIC S9(9) COMP.
 510 *

6. Coding Samples

541

 520 PROCEDURE DIVISION USING IN-DATA IN-LENG OUT-DATA
OUT-LENG.
 530 SVR01 SECTION.
 540 DISPLAY 'SVR01:PROCEDURE START' .
 550 *
 560 ***
 570 * DAM_READ(read logical file blocks) *
 580 ***
 590 *
 600 MOVE 'DCDAMSVC' TO REQUEST OF DAM-ARG1.
 610 MOVE 'damfile0' TO FILE-NAME OF DAM-ARG1.
 620 MOVE 1 TO KEY-NO OF DAM-ARG1.
 630 MOVE 504 TO BUFFER-LEN OF DAM-ARG1.
 640 MOVE FD-SAVE TO FILDES OF DAM-ARG1.
 650 MOVE 'READ' TO ACCESS-CODE OF DAM-ARG2.
 660 MOVE 'M' TO FLAG1 OF DAM-ARG2.
 670 MOVE SPACE TO FLAG2 OF DAM-ARG2.
 680 MOVE 0 TO FIRST-BLOCK-NO OF DAMKEY.
 690 MOVE 0 TO LAST-BLOCK-NO OF DAMKEY.
 700 CALL 'CBLDCDAM' USING DAM-ARG1 DAM-ARG2 CNTL-BUFFER.
 710 IF STATUS-CODE OF DAM-ARG1 NOT = '00000' THEN
 720 DISPLAY 'SVR01:DAM-READ FAILED. CODE ='
 730 STATUS-CODE OF DAM-ARG1
 740 MOVE 'SVR01: DAM READ FAILED' TO OUT-DATA
 750 MOVE 25 TO OUT-LENG
 760 GO TO PROG-END
 770 END-IF.
 780 *
 790 ***
 800 * DAM_WRITE (write to logical file blocks) *
 810 ***
 820 *
 830 DAM-WRITE.
 840 ADD 1 TO W-COUNT OF CNTL-BUFFER.
 850 MOVE 'DCDAMSVC' TO REQUEST OF DAM-ARG1.
 860 MOVE 'damfile0' TO FILE-NAME OF DAM-ARG1.
 870 MOVE 1 TO KEY-NO OF DAM-ARG1.
 880 MOVE 504 TO BUFFER-LEN OF DAM-ARG1.
 890 MOVE FD-SAVE TO FILDES OF DAM-ARG1.
 900 MOVE 'WRIT' TO ACCESS-CODE OF DAM-ARG2.
 910 MOVE W-COUNT OF CNTL-BUFFER TO FIRST-BLOCK-NO OF
DAMKEY.
 920 MOVE 0 TO LAST-BLOCK-NO OF DAMKEY.
 930 MOVE IN-DATA TO W-BUFFER.
 940 CALL 'CBLDCDAM' USING DAM-ARG1 DAM-ARG2 W-BUFFER.
 950 IF STATUS-CODE OF DAM-ARG1 NOT = '00000' THEN
 960 IF STATUS-CODE OF DAM-ARG1 = '01606' THEN
 970 MOVE 0 TO W-COUNT OF CNTL-BUFFER

6. Coding Samples

542

 980 GO TO DAM-WRITE
 990 END-IF
1000 DISPLAY 'SVR01:DAM-WRITE FAILED. CODE = '
1010 STATUS-CODE OF DAM-ARG1
1020 MOVE 'SVR01:DAM WRITE FAILED' TO OUT-DATA
1030 MOVE 26 TO OUT-LENG
1040 GO TO PROG-END
1050 END-IF.
1060 *
1070 ***
1080 * DAM_REWRITE (update logical file blocks) *
1090 ***
1100 *
1110 MOVE 'DCDAMSVC' TO REQUEST OF DAM-ARG1.
1120 MOVE 'damfile0' TO FILE-NAME OF DAM-ARG1.
1130 MOVE 1 TO KEY-NO OF DAM-ARG1.
1140 MOVE 504 TO BUFFER-LEN OF DAM-ARG1.
1150 MOVE FD-SAVE TO FILDES OF DAM-ARG1.
1160 MOVE 'REWT' TO ACCESS-CODE OF DAM-ARG2.
1170 MOVE 'U' TO FLAG1 OF DAM-ARG2.
1180 MOVE 0 TO FIRST-BLOCK-NO OF DAMKEY.
1190 MOVE 0 TO LAST-BLOCK-NO OF DAMKEY.
1200 MOVE 'REWRITE COMPLETE' TO RWT-DATA OF CNTL-BUFFER.
1210 CALL 'CBLDCDAM' USING DAM-ARG1 DAM-ARG2 CNTL-BUFFER.
1220 IF STATUS-CODE OF DAM-ARG1 NOT = '00000' THEN
1230 DISPLAY 'SVR01:DAM-REWRITE FAILED. CODE = '
1240 STATUS-CODE OF DAM-ARG1
1250 MOVE 'SVR01:DAM REWRITE FAILED' TO OUT-DATA
1260 MOVE 28 TO OUT-LENG
1270 GO TO PROG-END
1280 END-IF.
1290 MOVE 'SVR01:PROCESS COMPLETE' TO OUT-DATA.
1300 MOVE 26 TO OUT-LENG.
1310 PROG-END.
1320 DISPLAY 'SVR01:Good-By!!'.
1330 END PROGRAM SVR01.

6. Coding Samples

543

6.2 Coding samples for client/server UAPs (SPP TAM access)

The figure below shows an example of a client/server configuration UAP. This section
presents only an SPP coding sample. This example assumes that the same SUP as in
6.1 Coding samples for client/server configuration UAPs (SUP, SPP DAM access)
requests this SPP for service.

Figure 6-2: Client/server UAP configuration sample (TAM access)

This section presents a coding example based on the configuration sample shown in
the figure.

(1) SPP sample (main program)
The following shows a coding example for the SPP main program.
 10 *
 20 ***
 30 * SPP01 main program *
 40 ***
 50 *
 60 IDENTIFICATION DIVISION.
 70 PROGRAM-ID. MAIN.
 80 *
 90 ***
 100 * Set the data area *
 110 ***
 120 *
 130 DATA DIVISION.
 140 WORKING-STORAGE SECTION.
 150 01 RPC-ARG.

6. Coding Samples

544

 160 02 REQ-CODE PIC X(8) VALUE SPACE.
 170 02 STATUS-CODE PIC X(5) VALUE SPACE.
 180 02 FILLER PIC X(3).
 190 02 FLAGS PIC S9(9) COMP.
 200 PROCEDURE DIVISION.
 210 *
 220 ***
 230 * RPC-OPEN (start the UAP) *
 240 ***
 250 *
 260 MOVE 'OPEN' TO REQ-CODE OF RPC-ARG.
 270 MOVE ZERO TO FLAGS OF RPC-ARG.
 280 CALL 'CBLDCRPC' USING RPC-ARG.
 290 IF STATUS-CODE OF RPC-ARG NOT = '00000' THEN
 300 DISPLAY 'SPP01 : RPC-OPEN FAILED. CODE = '
 310 STATUS-CODE OF RPC-ARG
 320 GO TO PROG-END
 330 END-IF.
 340 *
 350 ***
 360 * RPC-MAINLOOP (start the SPP service) *
 370 ***
 380 *
 390 MOVE 'MAINLOOP' TO REQ-CODE OF RPC-ARG.
 400 MOVE ZERO TO FLAGS OF RPC-ARG.
 410 CALL 'CBLDCRSV' USING RPC-ARG.
 420 IF STATUS-CODE OF RPC-ARG NOT = '00000' THEN
 430 DISPLAY ' SPP01 : RPC-MAINLOOP FAILED. CODE = '
 440 STATUS-CODE OF RPC-ARG
 450 END-IF.
 460 *
 470 ***
 480 * RPC-CLOSE (terminate the UAP) *
 490 ***
 500 *
 510 MOVE 'CLOSE ' TO REQ-CODE OF RPC-ARG.
 520 MOVE ZERO TO FLAGS OF RPC-ARG.
 530 CALL 'CBLDCRPC' USING RPC-ARG.
 540 PROG-END.
 550 *
 560 ***
 570 * Terminate processing *
 580 ***
 590 *
 600 DISPLAY ' SPP01 : GooD-by!' .
 610 STOP RUN.

6. Coding Samples

545

(2) SPP sample (service program)
The following shows a coding example for the SPP service program.
 10 *
 20 **
 30 * SPP service program SVR01 *
 40 **
 50 *
 60 IDENTIFICATION DIVISION.
 70 PROGRAM-ID. SVR01.
 80 *
 90 **
 100 * Set the data area *
 110 **
 120 *
 130 DATA DIVISION.
 140 WORKING-STORAGE SECTION.
 150 01 TAM-ARG1.
 160 02 REQ-CODE PIC X(4) VALUE SPACE.
 170 02 STATUS-CODE PIC X(5) VALUE SPACE.
 180 02 FILLER PIC X(3).
 190 02 TABLE-NAME PIC X(32) VALUE SPACE.
 200 02 FILLER PIC X(68).
 210 02 BUF-SIZE PIC S9(4) COMP VALUE ZERO.
 220 02 FILLER PIC X(398).
 230 01 READ-ARG1.
 240 02 DML-KIND PIC X(4) VALUE SPACE.
 250 02 LOK-KIND PIC X(1) VALUE SPACE.
 260 02 FILLER PIC X(3).
 270 01 WRITE-ARG1.
 280 02 DML-KIND PIC X(4) VALUE SPACE.
 290 02 FILLER PIC X(4).
 300 01 KEY-DATA1 PIC X(10) VALUE
X'00000000000000000001'.
 310 01 KEY-DATA2 PIC X(10) VALUE
X'00000000000000000002'.
 320 01 KEY-DATA4 PIC X(10) VALUE
X'00000000000000000004'.
 330 01 KEY-ARG.
 340 02 KEYNAME PIC X(10) VALUE SPACE.
 350 01 W-BUFFER.
 360 02 KEYNAME PIC X(10) VALUE SPACE.
 370 02 DATAREA PIC X(118) VALUE SPACE.
 380 LINKAGE SECTION.
 390 77 IN-DATA PIC X(118).
 400 77 IN-LENG PIC S9(9) COMP.
 410 77 OUT-DATA PIC X(32).
 420 77 OUT-LENG PIC S9(9) COMP.

6. Coding Samples

546

 430 PROCEDURE DIVISION USING IN-DATA IN-LENG OUT-DATA
OUT-LENG.
 440 DISPLAY ' SVR01:PROCEDURE START' .
 450 *
 460 **
 470 * TAM_READ (read the first record from the *
 * TAM table) *
 480 **
 490 *
 500 MOVE 'tamtable30' TO TABLE-NAME OF TAM-ARG1.
 510 MOVE 128 TO BUF-SIZE OF TAM-ARG1.
 520 MOVE 'FCHU' TO DML-KIND OF READ-ARG1.
 530 MOVE KEY-DATA1 TO KEY-ARG.
 540 CALL 'CBLDCTAM' USING TAM-ARG1 READ-ARG1 KEY-ARG
W-BUFFER.
 550 IF STATUS-CODE OF TAM-ARG1 NOT = '00000' THEN
 560 DISPLAY 'SVR01:TAM-READ FAILED. CODE = '
 570 STATUS-CODE OF TAM-ARG1
 580 MOVE 'SVR01: TAM READ FAILED' TO OUT-DATA
 590 MOVE 22 TO OUT-LENG
 600 GO TO PROG-END
 610 END-IF.
 620 *
 630 ***
 640 * TAM_REWRITE (update the first record of *
 * TAM table on the assumption of entry) *
 650 ***
 660 *
 670 MOVE 'MFY ' TO DML-KIND OF WRITE-ARG1.
 680 MOVE IN-DATA TO DATAREA OF W-BUFFER.
 690 CALL 'CBLDCTAM' USING TAM-ARG1 WRITE-ARG1 KEY-ARG
W-BUFFER.
 700 IF STATUS-CODE OF TAM-ARG1 NOT = '00000' THEN
 710 DISPLAY 'SVR01:TAM-REWRITE FAILED. CODE = '
 720 STATUS-CODE OF TAM-ARG1
 730 MOVE 'SVR01: TAM REWRITE FAILED' TO OUT-DATA
 740 MOVE 25 TO OUT-LENG
 750 GO TO PROG-END
 760 END-IF.
 770 *
 780 ***
 790 * TAM_WRITE (update the second record of *
 * TAM table) *
 800 ***
 810 *
 820 MOVE 'MFY ' TO DML-KIND OF WRITE-ARG1.
 830 MOVE KEY-DATA2 TO KEY-ARG.
 840 MOVE KEY-DATA2 TO KEYNAME OF W-BUFFER.

6. Coding Samples

547

 850 MOVE IN-DATA TO DATAREA OF W-BUFFER.
 860 CALL 'CBLDCTAM' USING TAM-ARG1 WRITE-ARG1 KEY-ARG
W-BUFFER.
 870 IF STATUS-CODE OF TAM-ARG1 NOT = '00000' THEN
 880 DISPLAY 'SVR01:TAM-WRITE FAILED. CODE = '
 890 STATUS-CODE OF TAM-ARG1
 900 MOVE 'SVR01: TAM WRITE FAILED' TO OUT-DATA
 910 MOVE 23 TO OUT-LENG
 920 GO TO PROG-END
 930 END-IF.
 940 *
 950 ***
 960 * TAM-DELETE(delete the fourth record of *
 * the TAM table) *
 970 ***
 980 *
 990 MOVE 'ERS ' TO DML-KIND OF WRITE-ARG1.
1000 MOVE KEY-DATA4 TO KEY-ARG.
1010 CALL 'CBLDCTAM' USING TAM-ARG1 WRITE-ARG1 KEY-ARG
W-BUFFER.
1020 IF STATUS-CODE OF TAM-ARG1 NOT = '00000' THEN
1030 DISPLAY 'SVR01:TAM-DELETE FAILED. CODE = '
1040 STATUS-CODE OF TAM-ARG1
1050 MOVE 'SVR01: TAM DELETE FAILED' TO OUT-DATA
1060 MOVE 24 TO OUT-LENG
1070 END-IF.
1080 PROG-END.
1090 *
1100 ***
1110 * Terminate processing *
1120 ***
1130 *
1140 DISPLAY 'SVR01:GooD-by!'.
1150 EXIT PROGRAM.

6. Coding Samples

548

6.3 Coding samples for message exchange UAPs (MHP)

The figure below shows an example of a message exchange UAP.

Figure 6-3: Message exchange UAP configuration sample (MHP)

This section presents a coding example based on the configuration sample shown in
the figure.

(1) MHP sample (main program)
The following shows a coding example for the MHP main program.
 10 *
 20 **
 30 * MHP main program *
 40 **
 50 *
 60 IDENTIFICATION DIVISION.
 70
 80 PROGRAM-ID. CBMAIN.

6. Coding Samples

549

 90
 100 ENVIRONMENT DIVISION.
 110 CONFIGURATION SECTION.
 120 *
 130 **
 140 * Work variable *
 150 **
 160 *
 170 DATA DIVISION.
 180 WORKING-STORAGE SECTION.
 190 *
 200 **
 210 * RPC-OPEN data area *
 220 **
 230 *
 240 01 ROPEN-PARM1.
 250 02 ROPEN-NAME PIC X(8) VALUE 'OPEN '.
 260 02 ROPEN-STATUS PIC X(5).
 270 02 FILLER PIC X(3).
 280 02 RO-FLG PIC S9(9) COMP VALUE ZERO.
 290 *
 300 **
 310 * MCF-OPEN data area *
 320 **
 330 *
 340 01 MOPEN-PARM1.
 350 02 MOPEN-NAME PIC X(8) VALUE 'OPEN '.
 360 02 MOPEN-STATUS PIC X(5).
 370 02 FILLER PIC X(3).
 380 02 MO-FLG1 PIC S9(9) COMP VALUE ZERO.
 390 02 MO-RSV PIC X(12) VALUE LOW-VALUE.
 400 *
 410 **
 420 * MCF-MAINLOOP data area *
 430 **
 440 *
 450 01 MAIN-PARM1.
 460 02 MAIN-NAME PIC X(8) VALUE 'MAINLOOP'.
 470 02 MAIN-STATUS PIC X(5).
 480 02 FILLER PIC X(3).
 490 02 M-RSV PIC X(16) VALUE LOW-VALUE.
 500 *
 510 **
 520 * MCF-CLOSE data area *
 530 **
 540 *
 550 01 MCLSE-PARM1.
 560 02 MCLSE-NAME PIC X(8) VALUE 'CLOSE '.

6. Coding Samples

550

 570 02 MCLSE-STATUS PIC X(5).
 580 02 MFILLER PIC X(3).
 590 02 MC-FLG1 PIC S9(9) COMP VALUE ZERO.
 600 02 MC-RSV PIC X(12) VALUE LOW-VALUE.
 610 *
 620 ***
 630 * RPC-CLOSE data area *
 640 ***
 650 *
 660 01 RCLSE-PARM1.
 670 02 RCLSE-NAME PIC X(8) VALUE 'CLOSE '.
 680 02 RCLSE-STATUS PIC X(5).
 690 02 FILLER PIC X(3).
 700 02 RC-FLG PIC S9(9) COMP VALUE ZERO.
 710 *
 720 PROCEDURE DIVISION.
 730 *
 740 ***
 750 * RPC-OPEN (start the UAP) *
 760 ***
 770 *
 780 CALL 'CBLDCRPC' USING ROPEN-PARM1.
 790 IF ROPEN-STATUS IS NOT EQUAL TO '00000'
 800 GO TO RCLOS.
 810 *
 820 ***
 830 * MCF-OPEN (open the MCF environment) *
 840 ***
 850 *
 860 CALL 'CBLDCMCF' USING MOPEN-PARM1.
 870 IF MOPEN-STATUS IS NOT EQUAL TO '00000'
 880 GO TO RCLOS.
 890 *
 900 ***
 910 * MCF-MAINLOOP (start the MHP service) *
 920 ***
 930 *
 940 CALL 'CBLDCMCF' USING MAIN-PARM1.
 950 *
 960 ***
 970 * MCF-CLOSE (close the MCF environment) *
 980 ***
 990 *
1000 CALL 'CBLDCMCF' USING MCLSE-PARM1.
1010 *
1020 ***
1030 * RPC-CLOSE (terminate the UAP) *
1040 ***

6. Coding Samples

551

1050 *
1060 RCLOS.
1070 CALL 'CBLDCRPC' USING RCLSE-PARM1.
1080 *
1090 **
1100 * Terminate processing *
1110 **
1120 *
1130 STOP RUN.

(2) MHP sample (service program)
The following shows a coding example for the MHP service program.
 10 *
 20 **
 30 * MHP service program *
 40 **
 50 *
 60 IDENTIFICATION DIVISION.
 70
 80 PROGRAM-ID. SVRA.
 90
 100 ENVIRONMENT DIVISION.
 110 CONFIGURATION SECTION.
 120 *
 130 **
 140 * Work variable *
 150 **
 160 *
 170 DATA DIVISION.
 180 WORKING-STORAGE SECTION.
 190 *
 200 **
 210 * MCF-RECEIVE data area *
 220 **
 230 *
 240 01 RECV-PARM1.
 250 02 RECV-NAME PIC X(8) VALUE 'RECEIVE '.
 260 02 RECV-STATUS PIC X(5).
 270 02 FILLER PIC X(3).
 280 02 FRST-ID PIC X(4) VALUE 'FRST'
 290 02 RE-RSV1 PIC X(4) VALUE SPACE.
 300 02 DATE-ID PIC 9(8).
 310 02 TIME-ID PIC 9(8).
 320 02 RE-LENG PIC 9(9) COMP VALUE 1024.
 330 02 RE-RSV2 PIC X(4) VALUE SPACE.
 340 02 RE-RSV3 PIC X(4) VALUE SPACE.
 350 02 RE-RSV4 PIC X(4) VALUE SPACE.
 360 02 RE-RSV5 PIC X(4) VALUE SPACE.

6. Coding Samples

552

 370 02 RE-RSV6 PIC X(8) VALUE SPACE.
 380 02 RE-RSV7 PIC X(4) VALUE SPACE.
 390 02 RE-RSV8 PIC X(8) VALUE SPACE.
 400 02 RE-RSV9 PIC X(4) VALUE SPACE.
 410 02 RE-RSV10 PIC 9(9) COMP VALUE ZERO.
 420 02 RE-RSV11 PIC 9(9) COMP VALUE ZERO.
 430 02 RE-RSV12 PIC X(1) VALUE SPACE.
 440 02 RE-RSV13 PIC X(1) VALUE '1'.
 450 02 RE-RSV14 PIC X(14) VALUE LOW-VALUE.
 460 01 RECV-PARM2.
 470 02 RE-RSV15 PIC X(4) VALUE SPACE.
 480 02 TERM-ID PIC X(8).
 490 02 RE-RSV16 PIC X(8) VALUE SPACE.
 500 02 RE-RSV17 PIC X(8) VALUE SPACE.
 510 02 RE-RSV18 PIC X(28) VALUE LOW-VALUE.
 520 01 RECV-PARM3.
 530 02 RE-DATALENG PIC 9(9) COMP.
 540 02 RE-RSV19 PIC X(8).
 550 02 RE-DATA PIC X(1024).
 560 *
 570 **
 580 * MCF-EXECAP data area *
 590 **
 600 *
 610 01 EXEC-PARM1.
 620 02 EXEC-NAME PIC X(8) VALUE 'EXECAP '.
 630 02 EXEC-STATUS PIC X(5).
 640 02 FILLER PIC X(3).
 650 02 EX-RSV1 PIC X(4) VALUE SPACE.
 660 02 EX-RSV2 PIC X(4) VALUE SPACE.
 670 02 EX-RSV3 PIC 9(8).
 680 02 EX-RSV4 PIC 9(8).
 690 02 EX-RSV5 PIC 9(9) COMP VALUE ZERO.
 700 02 EX-EMI PIC X(4) VALUE 'EMI '.
 710 02 EX-RSV6 PIC X(4) VALUE SPACE.
 720 02 EX-RSV7 PIC X(4) VALUE SPACE.
 730 02 EX-RSV8 PIC X(4) VALUE SPACE.
 740 02 EX-TIME PIC X(8) VALUE '00000000'.
 750 02 EX-RSV9 PIC X(4) VALUE SPACE.
 760 02 EX-RSV10 PIC X(8) VALUE 'aprepB '.
 770 02 EX-EXEC PIC X(4) VALUE 'JUST'.
 780 02 EX-RSV11 PIC 9(9) COMP VALUE ZERO.
 790 02 EX-RSV12 PIC 9(9) COMP VALUE ZERO.
 800 02 EX-RSV13 PIC X(1) VALUE SPACE.
 810 02 EX-RSV14 PIC X(1) VALUE '1'.
 820 02 EX-RSV15 PIC X(14) VALUE LOW-VALUE.
 830 01 EXEC-PARM2.
 840 02 EX-RSV16 PIC X(4) VALUE SPACE.

6. Coding Samples

553

 850 02 EX-RSV17 PIC X(8) VALUE SPACE.
 860 02 EX-RSV18 PIC X(8) VALUE SPACE.
 870 02 EX-RSV19 PIC X(8) VALUE SPACE.
 880 02 EX-RSV20 PIC X(28) VALUE LOW-VALUE.
 890 01 EXEC-PARM3.
 900 02 EX-DATALENG PIC 9(9) COMP VALUE 16.
 910 02 EX-RSV21 PIC X(8).
 920 02 EX-DATA PIC X(16) VALUE 'SVRA EXECAP
DATA'.
 930 *
 940 **
 950 * MCF-REPLY data area *
 960 **
 970 *
 980 01 RPLY-PARM1.
 990 02 RPLY-NAME PIC X(8) VALUE 'REPLY '.
1000 02 RPLY-STATUS PIC X(5).
1010 02 FILLER PIC X(3).
1020 02 RP-RSV1 PIC X(4) VALUE SPACE.
1030 02 RP-RSV2 PIC X(4) VALUE SPACE.
1040 02 RP-RSV3 PIC 9(8).
1050 02 RP-RSV4 PIC 9(8).
1060 02 RP-RSV5 PIC 9(9) COMP VALUE ZERO.
1070 02 RP-EMI PIC X(4) VALUE'EMI '.
1080 02 RP-RSV6 PIC X(4) VALUE SPACE.
1090 02 RP-RSV7 PIC X(4) VALUE SPACE.
1100 02 RP-RSV8 PIC X(4) VALUE SPACE.
1110 02 RP-RSV9 PIC X(8) VALUE SPACE.
1120 02 RP-RSV10 PIC X(4) VALUE SPACE.
1130 02 RP-RSV11 PIC X(8) VALUE SPACE.
1140 02 RP-RSV12 PIC X(4) VALUE SPACE.
1150 02 RP-RSV13 PIC 9(9) COMP VALUE ZERO.
1160 02 RP-RSV14 PIC 9(9) COMP VALUE ZERO.
1170 02 RP-RSV15 PIC X(1) VALUE SPACE.
1180 02 RP-RSV16 PIC X(1) VALUE '1'.
1190 02 RP-RSV17 PIC X(14) VALUE LOW-VALUE.
1200 01 RPLY-PARM2.
1210 02 RP-RSV18 PIC X(4) VALUE SPACE.
1220 02 RP-RSV19 PIC X(8) VALUE SPACE.
1230 02 RP-RSV20 PIC X(8) VALUE SPACE.
1240 02 RP-RSV21 PIC X(8) VALUE SPACE.
1250 02 RP-RSV22 PIC X(28) VALUE LOW-VALUE.
1260 01 RPLY-PARM3.
1270 02 RP-DATALENG PIC 9(9) COMP VALUE 16.
1280 02 RP-RSV23 PIC X(8).
1290 02 RP-DATA PIC X(16) VALUE 'SVRA REPLY
DATA1'.
1300 *

6. Coding Samples

554

1310 **
1320 * MCF-ROLLBACK data area *
1330 **
1340 *
1350 01 RBK-PARM1.
1360 02 RBK-NAME PIC X(8) VALUE 'ROLLBACK'.
1370 02 RBK-STATUS PIC X(5).
1380 02 FILLER PIC X(3).
1390 02 RBK-ACTION PIC X(4) VALUE 'NRTN'.
1400 02 RBK-RSV1 PIC X(12) VALUE LOW-VALUE.
1410
1420 PROCEDURE DIVISION.
1430 *
1440 **
1450 * MCF-RECEIVE (receive messages) *
1460 **
1470 *
1480 CALL 'CBLDCMCF' USING RECV-PARM1 RECV-PARM2
RECV-PARM3.
1490 IF RECV-STATUS IS NOT EQUAL TO '00000'
1500 *
1510 **
1520 * MCF-ROLLBACK (error processing) *
1530 **
1540 *
1550 CALL 'CBLDCMCF' USING RBK-PARM1.
1560 *
1570 **
1580 * MCF-EXECAP (start the application program)*
1590 **
1600 *
1610 CALL 'CBLDCMCF' USING EXEC-PARM1 EXEC-PARM2
EXEC-PARM3.
1620 IF EXEC-STATUS IS NOT EQUAL TO '00000'
1630 *
1640 **
1650 * MCF-ROLLBACK (error processing) *
1660 **
1670 *
1680 CALL 'CBLDCMCF' USING RBK-PARM1.
1690 *
1700 **
1710 * MCF-REPLY (send a response message) *
1720 **
1730 *
1740 CALL 'CBLDCMCF' USING RPLY-PARM1 RPLY-PARM2
RPLY-PARM3.
1750 IF RPLY-STATUS IS NOT EQUAL TO '00000'

6. Coding Samples

555

1760 *
1770 **
1780 * MCF-ROLLBACK (error processing) *
1790 **
1800 *
1810 CALL 'CBLDCMCF' USING RBK-PARM1.
1820 *
1830 **
1840 * Terminate processing *
1850 **
1860 *
1870 EXIT PROGRAM.

(3) MHP sample (service program in DML)
The following shows a coding example for the MHP service program written in the
data manipulation language (DML).
 10 *
 20 **
 30 * MHP service program *
 40 **
 50 *
 60 IDENTIFICATION DIVISION.
 70
 80 PROGRAM-ID. SVRA.
 90
 100 ENVIRONMENT DIVISION.
 110 CONFIGURATION SECTION.
 120 *
 130 **
 140 * Work variable *
 150 **
 160 *
 170 DATA DIVISION.
 180 WORKING-STORAGE SECTION.
 190 *
 200 **
 210 * Area for receiving messages *
 220 **
 230 *
 240 01 RECV-AREA.
 250 02 RE-DATALENG PIC 9(4) COMP VALUE 1028.
 260 02 RE-RSV1 PIC X(2).
 270 02 RE-DATA PIC X(1024).
 280 *
 290 **
 300 * Application start message area *
 310 **

6. Coding Samples

556

 320 *
 330 01 SEND-PRO-AREA.
 340 02 PRO-DATALENG PIC 9(4) COMP VALUE 20.
 350 02 PRO-RSV1 PIC X(2).
 360 02 PRO-DATA PIC X(16) VALUE 'SVRA EXECAP
DATA'.
 370 *
 380 **
 390 * Response message transmission area *
 400 **
 410 *
 420 01 SEND-IO-AREA.
 430 02 IO-DATALENG PIC 9(4) COMP VALUE 20.
 440 02 IO-RSV1 PIC X(2).
 450 02 IO-DATA PIC X(16) VALUE 'SVRA REPLY
DATA1'.
 460 *
 470 **
 480 * Communication description entry *
 490 **
 500 *
 510 COMMUNICATION SECTION.
 520 *
 530 **
 540 * Receive messages *
 550 **
 560 *
 570 CD RECV-INF
 580 FOR INPUT
 590 STATUS KEY IS RE-STATUS
 600 SYMBOLIC TERMINAL IS RE-TERMNAM
 610 MESSAGE DATE IS RE-DATE
 620 MESSAGE TIME IS RE-TIME.
 630 *
 640 ***
 650 * Start the application program *
 660 ***
 670 *
 680 CD SEND-PRO
 690 FOR OUTPUT PROGRAM
 700 STATUS KEY IS SE-STATUS-PRO
 710 SYMBOLIC TERMINAL IS SE-TERMNAM-PRO.
 720 *
 730 ***
 740 * Send response messages *
 750 ***
 760 *
 770 CD SEND-IO

6. Coding Samples

557

 780 FOR I-O
 790 STATUS KEY IS SE-STATUS-IO
 800 SYNCHRONOUS MODE IS ASYNC.
 810
 820 PROCEDURE DIVISION.
 830
 840 *
 850 ***
 860 * Receive messages *
 870 ***
 880 *
 890 RECEIVE RECV-INF
 900 FIRST SEGMENT
 910 INTO RECV-AREA.
 920 IF RE-STATUS IS NOT EQUAL '00000'
 930 *
 940 ***
 950 * Partial recovery *
 960 ***
 970 *
 980 ROLLBACK WITH STOPPING.
 990 *
1000 ***
1010 * Start the application program *
1020 ***
1030 *
1040 MOVE 'aprepB ' TO SE-TERMNAM-PRO
1050 SEND SEND-PRO
1060 FROM SEND-PRO-AREA
1070 WITH EMI.
1080 IF SE-STATUS-PRO IS NOT EQUAL '00000'
1090 *
1100 ***
1110 * Partial recovery *
1120 ***
1130 *
1140 ROLLBACK WITH STOPPING.
1150 *
1160 ***
1170 * Send response messages *
1180 ***
1190 *
1200 SEND SEND-IO
1210 FROM SEND-IO-AREA
1220 WITH EMI.
1230 IF SE-STATUS-IO IS NOT EQUAL '00000'
1240 *
1250 ***

6. Coding Samples

558

1260 * Partial recovery *
1270 ***
1280 *
1290 ROLLBACK WITH STOPPING.
1300 *
1310 ***
1320 * Terminate processing *
1330 ***
1340 *
1350 EXIT PROGRAM.

6. Coding Samples

559

6.4 Coding samples for X/Open-compliant UAPs

6.4.1 XATMI interface samples
(1) Request/response service paradigm sample

(a) Outline of processing
The processing of the sample here is outlined below.

A service for checking hotel room availability and a service for checking airplane seat
availability are called from the SUP. The first service receives responses
asynchronously, whereas the second service receives responses synchronously.

(b) UAP configuration
The following figure shows the configuration of the sample UAP.

Figure 6-4: Communication of request/response services receiving responses
synchronously

(c) Typed records used
The following shows the structure of typed buffers used for communication.

6. Coding Samples

560

HOTEL.cbl
 05 RDATE PIC S9(9) COMP-5.
 05 PLACE PIC X(128).
 05 HNAME PIC X(128).
 05 RSTATUS PIC S9(9) COMP-5.

PLANE.cbl
 05 RDATE PIC S9(9) COMP-5.
 05 DEST PIC X(128).
 05 DEPARTURE PIC S9(9) COMP-5.
 05 RSTATUS PIC S9(9) COMP-5.

(d) SUP sample
• XATMI interface definition sample

The following shows the XATMI interface definition of the SUP used in the
example of request/response service.

 10 /* Example of XATMI interface definition of SUP *
 15 * (cvsupcb.def file) */
 20 called_servers = { "cvsppcb.def" };

• SUP coding sample

The following shows a coding example for the SUP used in the example of
request/response service.

 10 *
 20 ***
 30 * Example of SUP (rrsup.cbl file) *
 40 ***
 50 *
 60 IDENTIFICATION DIVISION.
 70 *
 80 PROGRAM-ID. MAIN.
 90 *
 100 ***
 110 * Set the data area
 120 ***
 130 *
 140 DATA DIVISION.
 150 WORKING-STORAGE SECTION.
 160 ***
 170 * Declare variables
 180 ***
 190 ***** typed record for SVHOTEL *****
 200 01 HOTEL-REQ.
 210 COPY HOTEL.
 220 ***** type information for SVHOTEL *****
 230 01 HOTELTYPE-REC.

6. Coding Samples

561

 240 COPY TPTYPE.
 250 ***** typed record for SVPLANE *****
 260 01 PLANE-REQ.
 270 COPY PLANE.
 280 ***** type information for SVPLANE *****
 290 01 PLANETYPE-REC.
 300 COPY TPTYPE.
 310 ***** WERRMSG *****
 320 01 WERRMSG-REC.
 330 COPY ERRMSG.
 340 ***** service definition for SVHOTEL *****
 350 01 HOTELDEF-REC.
 360 COPY TPSVCDEF.
 370 ***** service definition for SVPLANE *****
 380 01 PLANEDEF-REC.
 390 COPY TPSVCDEF.
 400 ***** return record *****
 410 01 STATUS-REC.
 420 COPY TPSTATUS.
 430 ***** working area is used for replies *****
 440 01 WK-AREA PIC X(264).
 450 ***** redefine working area 1 *****
 460 01 HOTEL-REP REDEFINES WK-AREA.
 470 COPY HOTEL.
 480 ***** redefine working area 2 *****
 490 01 PLANE-REP REDEFINES WK-AREA.
 500 COPY PLANE.
 510 ***** redefine working area 3 *****
 520 01 ERRMSG-REP REDEFINES WK-AREA.
 530 COPY ERRMSG.
 540 ***** typed information *****
 550 01 TYPE-REC.
 560 COPY TPTYPE.
 570 ***** others *****
 580 01 WSTATUS PIC S9(9) COMP-5.
 590 ***** dc_rpc_open *****
 600 01 RPC-OP-ARG.
 610 02 REQEST PIC X(8) VALUE 'OPEN '.
 620 02 STATUS-CODE PIC X(5) VALUE SPACE.
 630 02 FILLER PIC X(3).
 640 02 FLAGS PIC S9(9) COMP VALUE ZERO.
 650 ***** dc_rpc_close *****
 660 01 RPC-CL-ARG.
 670 02 REQEST PIC X(8) VALUE 'CLOSE '.
 680 02 STATUS-CODE PIC X(5) VALUE SPACE.
 690 02 FILLER PIC X(3).
 700 02 FLAGS PIC S9(9) COMP VALUE ZERO.
 710 *

6. Coding Samples

562

 720 01 ADM-ARG.
 730 02 REQUEST PIC X(8) VALUE 'COMPLETE'.
 740 02 STATUS-CODE PIC X(5) VALUE SPACE.
 750 02 FILLER PIC X(3).
 760 02 FLAGS PIC S9(9) COMP VALUE ZERO.
 770 02 FILLER PIC X(3).
 780 *
 790 01 FLAG PIC S9(9) COMP VALUE ZERO.
 800 *
 810 PROCEDURE DIVISION.
 820 *
 830 ***
 840 * RPC-OPEN (start the UAP)
 850 ***
 860 *
 870 CALL 'CBLDCRPC' USING RPC-OP-ARG.
 880 IF STATUS-CODE OF RPC-OP-ARG NOT = '00000' THEN
 890 DISPLAY 'CLIENT: RPC-OPEN FAILED. CODE = '
 900 STATUS-CODE OF RPC-OP-ARG
 910 GO TO PROG-END
 920 END-IF.
 930 *
 940 ***
 950 * ADM-COMPLETE (report completion of user *
 955 * server start processing) *
 960 ***
 970 *
 980 CALL 'CBLDCADM' USING ADM-ARG.
 990 IF STATUS-CODE OF ADM-ARG NOT = '00000' THEN
1000 DISPLAY 'CLIENT: ADM-COMPLETE FAILED. CODE = '
1010 STATUS-CODE OF ADM-ARG
1020 GO TO PROG-END
1030 END-IF.
1040 *
1050 ***
1060 * TPACALL (service request (SVHOTEL))
1070 ***
1080 *
1090 ***** set parameters *****
1100 *
1110 ***** set up HOTELDEF-REC *****
1120 *
1130 MOVE LOW-VALUES TO HOTELDEF-REC.
1140 MOVE "SVHOTEL" TO SERVICE-NAME OF
HOTELDEF-REC.
1150 *
1160 ***** set up HOTELTYPE-REC *****
1170 *

6. Coding Samples

563

1180 MOVE "X_COMMON" TO REC-TYPE OF
HOTELTYPE-REC.
1190 MOVE "hotel" TO SUB-TYPE OF
HOTELTYPE-REC.
1200 COMPUTE LEN OF HOTELTYPE-REC = FUNCTION
LENGTH(HOTEL-REQ).
1210 *
1220 ***** set up HOTEL-REQ *****
1230 *
1240 MOVE 940415 TO RDATE OF HOTEL-REQ.
1250 MOVE "SAPPRO" TO PLACE OF HOTEL-REQ.
1260 MOVE "PRINCE" TO HNAME OF HOTEL-REQ.
1270 MOVE 0 TO RSTATUS OF HOTEL-REQ.
1280 *
1290 ***** CALL TPACALL *****
1300 CALL "TPACALL" USING
1310 HOTELDEF-REC HOTELTYPE-REC HOTEL-REQ STATUS-REC.
1320 IF NOT TPOK OF STATUS-REC THEN
1330 DISPLAY 'CLIENT: SVHOTEL SERVICE REQ WAS
FAIL:ERROR = '
1340 TP-STATUS OF STATUS-REC
1350 GO TO PROG-END
1360 END-IF.
1370 *
1380 DISPLAY 'CLIENT: SVHOTEL SERVICE REQ WAS SUCCESS '.
1390 *
1400 *
1410 ***
1420 * TPCALL (service request (SVPLANE))
1430 ***
1440 *
1450 ***** set parameters *****
1460 *
1470 ***** set up PLANEDEF-REC *****
1480 *
1490 MOVE LOW-VALUES TO PLANEDEF-REC.
1500 MOVE "SVPLANE" TO SERVICE-NAME OF
PLANEDEF-REC.
1510 *
1520 ***** set up PLANETYPE-REC *****
1530 *
1540 MOVE "X_COMMON" TO REC-TYPE OF
PLANETYPE-REC.
1550 MOVE "plane" TO SUB-TYPE OF
PLANETYPE-REC.
1560 COMPUTE LEN OF PLANETYPE-REC = FUNCTION
LENGTH(PLANE-REQ).
1570 *

6. Coding Samples

564

1580 ***** set up PLANE-REQ *****
1590 *
1600 MOVE 940415 TO RDATE OF PLANE-REQ.
1610 MOVE "CHITOSE" TO DEST OF PLANE-REQ.
1620 MOVE 1540 TO DEPARTURE OF PLANE-REQ.
1630 MOVE 0 TO RSTATUS OF PLANE-REQ.
1640 *
1650 *
1660 ***** set up TYPE-REC *****
1670 *
1680 MOVE "X_COMMON" TO REC-TYPE OF TYPE-REC.
1690 MOVE "plane" TO SUB-TYPE OF TYPE-REC.
1700 COMPUTE LEN OF TYPE-REC = FUNCTION LENGTH(WK-AREA).
1710 *
1720 ***** CALL TPCALL *****
1730 CALL "TPCALL" USING PLANEDEF-REC PLANETYPE-REC
PLANE-REQ
1740 TYPE-REC WK-AREA STATUS-REC.
1750 *
1760 * FAILURE CASE
1770 *
1780 IF NOT TPOK OF STATUS-REC THEN
1790 DISPLAY 'CLIENT: SVPLANE SERVICE REQ WAS FAILED'
1800 DISPLAY 'CLIENT: TPCALL WAS FAILED:ERROR='
1810 TP-STATUS OF STATUS-REC
1820 IF TPESVCFAIL OF STATUS-REC THEN
1830 MOVE ERRMESSAGE IN ERRMSG-REP
1840 TO ERRMESSAGE OF WERRMSG-REC
1850 DISPLAY 'CLIENT: USER CODE = '
1860 ERRMESSAGE OF WERRMSG-REC
1870 GO TO PROG-END
1880 END-IF
1890 GO TO PROG-END
1900 END-IF.
1910 *
1920 * SUCCESS CASE
1930 *
1940 DISPLAY 'CLIENT: SVPLANE SERVICE REQ WAS SUCCESS '.
1950 MOVE RSTATUS IN PLANE-REP TO WSTATUS.
1960 IF WSTATUS = 1 THEN
1970 DISPLAY 'CLIENT: NO BORDING TICKET'
1980 ELSE
1990 DISPLAY 'CLIENT: A BORDING TICKET WAS FOUND'
2000 END-IF.
2010 *
2020 ***
2030 * TPGETRPLY (receive response messages)
2040 ***

6. Coding Samples

565

2050 *
2060 ***** set parameters *****
2070 *
2080 ***** set up TYPE-REC *****
2090 *
2100 MOVE "X_COMMON" TO REC-TYPE OF TYPE-REC.
2110 MOVE "hotel" TO SUB-TYPE OF TYPE-REC.
2120 COMPUTE LEN OF TYPE-REC = FUNCTION LENGTH(WK-AREA).
2130 *
2140 ***** CALL TPGETRPLY *****
2150 CALL "TPGETRPLY" USING HOTELDEF-REC TYPE-REC WK-AREA
2160 STATUS-REC.
2170 *
2180 * FAILURE CASE
2190 *
2200 IF NOT TPOK OF STATUS-REC THEN
2210 DISPLAY 'CLIENT: SVHOTEL SERVICE RSP WAS FAILED '
2220 DISPLAY 'CLIENT: TPGETRPLY WAS FAILED:ERROR='
2230 TP-STATUS OF STATUS-REC
2240 IF TPESVCFAIL OF STATUS-REC THEN
2250 MOVE ERRMESSAGE IN ERRMSG-REP
2260 TO ERRMESSAGE OF WERRMSG-REC
2270 DISPLAY 'CLIENT: USER CODE = '
2280 ERRMESSAGE OF WERRMSG-REC
2290 GO TO PROG-END
2300 END-IF
2310 GO TO PROG-END
2320 END-IF.
2330 *
2340 * SUCCESS CASE
2350 *
2360 DISPLAY 'CLIENT: SVHOTEL SERVICE RSP WAS SUCCESS '.
2370 MOVE RSTATUS IN HOTEL-REP TO WSTATUS.
2380 IF WSTATUS = 1 THEN
2390 DISPLAY 'CLIENT: NO ROOM'
2400 ELSE
2410 DISPLAY 'CLIENT: A ROOM WAS FOUND'
2420 END-IF.
2430 *
2440 ***
2450 * Terminate processing
2460 ***
2470 *
2480 PROG-END.
2490 *
2500 DISPLAY 'CLIENT: SEE YOU LATER'
2510 *
2520 ***

6. Coding Samples

566

2530 * RPC-CLOSE (terminate the UAP)
2540 ***
2550 *
2560 CALL 'CBLDCRPC' USING RPC-CL-ARG.
2570 *
2580 STOP RUN.

• User service definition sample

The following shows an example of user service definition of the SUP that was
presented in the example of the request/response service.

 10 # Example of user service definition (rrsup file)
 20 set module = "rrsup"
 30 set receive_from = none
 40 set trn_expiration_time = 180
 50 set trn_expiration_time_suspend = Y

(e) SPP sample
• XATMI interface definition sample

The following shows an example of XATMI interface definition of the SPP that
was presented in the example of the request/response service.

 10 /* Example of XATMI interface definition *
 15 * (rrsppcb.def file) */
 20 X_COMMON hotel {
 30 long rdate;
 40 char place[128];
 50 char hname[128];
 60 long rstatus;
 70 };
 80 X_COMMON plane {
 90 long rdate;
 100 char dest[128];
 110 long departure;
 120 long rstatus;
 130 };
 140 X_COMMON errmsg {
 150 char errmessage[128];
 160 };
 170 service SHOTEL(X_COMMON hotel) ;
 180 service SPLANE(X_COMMON plane) ;

• SPP coding sample (main program)

The following shows a coding example (main program) of the SPP that was
presented in the example of the request/response service.

 10 *
 20 ***

6. Coding Samples

567

 30 * Example of SPP (rrspp.cbl file)
 40 ***
 50 *
 60 IDENTIFICATION DIVISION.
 70 *
 80 PROGRAM-ID. MAIN.
 90 *
 100 ***
 110 * Set the data area
 120 ***
 130 *
 140 DATA DIVISION.
 150 WORKING-STORAGE SECTION.
 160 01 RPC-OP-ARG.
 170 02 REQEST PIC X(8) VALUE 'OPEN '.
 180 02 STATUS-CODE PIC X(5) VALUE SPACE.
 190 02 FILLER PIC X(3).
 200 02 FLAGS PIC S9(9) COMP VALUE ZERO.
 210 *
 220 01 RPC-CL-ARG.
 230 02 REQEST PIC X(8) VALUE 'CLOSE '.
 240 02 STATUS-CODE PIC X(5) VALUE SPACE.
 250 02 FILLER PIC X(3).
 260 02 FLAGS PIC S9(9) COMP VALUE ZERO.
 270 *
 280 01 RSV-ARG.
 290 02 REQUEST PIC X(8) VALUE 'MAINLOOP'.
 300 02 STATUS-CODE PIC X(5) VALUE SPACE.
 310 02 FILLER PIC X(3).
 320 02 FLAGS PIC S9(9) COMP VALUE ZERO.
 330 *
 340 PROCEDURE DIVISION.
 350 *
 360 ***
 370 * RPC-OPEN (start the UAP)
 380 ***
 390 *
 400 CALL 'CBLDCRPC' USING RPC-OP-ARG.
 410 IF STATUS-CODE OF RPC-OP-ARG NOT = '00000' THEN
 420 DISPLAY 'SERVER: RPC-OPEN FAILED. CODE = '
 430 STATUS-CODE OF RPC-OP-ARG
 440 GO TO PROG-END
 450 END-IF.
 460 *
 470 ***
 480 * RPC-MAINLOOP (start the SPP service)
 490 ***
 500 *

6. Coding Samples

568

 510 DISPLAY 'SERVER: ENTERING MAINLOOP...'
 520 CALL 'CBLDCRSV' USING RSV-ARG.
 530 IF STATUS-CODE OF RSV-ARG NOT = '00000' THEN
 540 DISPLAY 'SERVER: RPC-MAINLOOP FAILED. CODE = '
 550 STATUS-CODE OF RSV-ARG
 560 END-IF.
 570 *
 580 ***
 590 * End of program
 600 ***
 610 PROG-END.
 620 *
 630 ***
 640 * RPC-CLOSE (terminate the UAP)
 650 ***
 660 *
 670 CALL 'CBLDCRPC' USING RPC-CL-ARG.
 680 *
 690 ***
 700 * Terminate the processing
 710 ***
 720 *
 730 STOP RUN.

(f) SPP coding sample (service program)
The following shows a coding example (service program) of the SPP that was
presented in the example of the request/response service.

• Coding example for the SVHOTEL service
 10 *
 20 ***
 30 * Example of SPP service functions (shotel.cbl file)
 40 ***
 50 *
 60 IDENTIFICATION DIVISION.
 70 *
 80 PROGRAM-ID. SHOTEL.
 90 *
 100 ***
 110 * Set the data area
 120 ***
 130 *
 140 DATA DIVISION.
 150 WORKING-STORAGE SECTION.
 160 *
 170 ***
 180 * Declare variables
 190 ***

6. Coding Samples

569

 200 *
 210 * TPSVCDEF record
 220 *
 230 01 SVCDEF-REC.
 240 COPY TPSVCDEF.
 250 *
 260 * TPTYPE record
 270 *
 280 01 TYPE-REC.
 290 COPY TPTYPE.
 300 *
 310 * TPSTATUS record
 320 *
 330 01 STATUS-REC.
 340 COPY TPSTATUS.
 350 *
 360 * TPSVCRET record
 370 *
 380 01 SVCRET-REC.
 390 COPY TPSVCRET.
 400 *
 410 * WK-AREA is where service requests are read into
 420 *
 430 01 WK-AREA PIC X(264).
 440 *
 450 01 HOTEL-REC REDEFINES WK-AREA.
 460 COPY HOTEL.
 470 *
 480 ***
 490 * shotel processing
 500 ***
 510 *
 520 PROCEDURE DIVISION.
 530 *
 540 ***** set length *****
 550 COMPUTE LEN OF TYPE-REC = FUNCTION LENGTH(WK-AREA).
 560 *
 570 ***
 580 * TPSVCSTART
 590 ***
 600 *
 610 CALL "TPSVCSTART" USING
 620 SVCDEF-REC TYPE-REC WK-AREA STATUS-REC.
 630 *
 640 * Shotel returns status=0 if the specified hotel
 650 * can makea reservation. Shotel returns status=1
 660 * if there are no rooms in the specified hotel.
 670 * In this case, shotel return status=1 because

6. Coding Samples

570

 680 * there are no rooms.
 690 *
 700 MOVE 1 TO RSTATUS IN HOTEL-REC.
 710 *
 720 ***
 730 * TPRETURN
 740 ***
 750 *
 760 SET TPSUCCESS OF SVCRET-REC TO TRUE.
 770 MOVE 1 TO APPL-CODE OF SVCRET-REC.
 780 *
 790 COPY TPRETURN
 800 REPLACING TPSVCRET-REC BY SVCRET-REC
 810 TPTYPE-REC BY TYPE-REC
 820 DATA-REC BY WK-AREA.
 830 *
 840 ***
 850 * Terminate processing
 860 ***
 870 *
 880 *
 890 END PROGRAM SHOTEL.

• The following shows a coding example for the SVPLANE service.
 10 *
 20 ***
 30 * Example of SPP service functions (splane.cbl file)
 40 ***
 50 *
 60 IDENTIFICATION DIVISION.
 70 *
 80 PROGRAM-ID. SPLANE.
 90 *
 100 ***
 110 * Set the data area
 120 ***
 130 *
 140 DATA DIVISION.
 150 WORKING-STORAGE SECTION.
 160 *
 170 ***
 180 * Declare variables
 190 ***
 200 *
 210 * TPSVCDEF record
 220 *
 230 01 SVCDEF-REC.

6. Coding Samples

571

 240 COPY TPSVCDEF.
 250 *
 260 * TPTYPE record
 270 *
 280 01 TYPE-REC.
 290 COPY TPTYPE.
 300 *
 310 * TPSTATUS record
 320 *
 330 01 STATUS-REC.
 340 COPY TPSTATUS.
 350 *
 360 * TPSVCRET record
 370 *
 380 01 SVCRET-REC.
 390 COPY TPSVCRET.
 400 *
 410 * WK-AREA is where service requests are read into
 420 *
 430 01 WK-AREA PIC X(264).
 440 *
 450 01 PLANE-REC REDEFINES WK-AREA.
 460 COPY PLANE.
 470 *
 480 ***
 490 * splane processing
 500 ***
 510 *
 520 PROCEDURE DIVISION.
 530 *
 540 ***** set length *****
 550 COMPUTE LEN OF TYPE-REC = FUNCTION LENGTH(WK-AREA).
 560 *
 570 ***
 580 * TPSVCSTART
 590 ***
 600 *
 610 CALL "TPSVCSTART" USING
 620 SVCDEF-REC TYPE-REC WK-AREA STATUS-REC.
 630 *
 640 * Splane returns status=0 if a seat on the specified
flight
 650 * can be ticketed. Splane returns status=1 if there
aren't any
 660 * seats on the specified flight.
 670 * In this case, splane returns status=1 because there
are no
 680 * seats.

6. Coding Samples

572

 690 *
 700 MOVE 1 TO RSTATUS IN PLANE-REC.
 710 *
 720 ***
 730 * TPRETURN
 740 ***
 750 *
 760 SET TPSUCCESS OF SVCRET-REC TO TRUE.
 770 MOVE 0 TO APPL-CODE OF SVCRET-REC.
 780 *
 790 COPY TPRETURN
 800 REPLACING TPSVCRET-REC BY SVCRET-REC
 810 TPTYPE-REC BY TYPE-REC
 820 DATA-REC BY WK-AREA.
 830 *
 840 ***
 850 * Terminate processing
 860 ***
 870 *
 880 *
 890 END PROGRAM SPLANE.

• User service definition sample

The following shows an example of user service definition of the SPP that was
presented in the example of request/response service.

 10 # Example of user service definition (rrspp file)
 20 set service_group = "rrspp_svg"
 30 set module = "rrspp"
 40 set service = "SVHOTEL=shotel","SVPLANE=splane"
 50 set trn_expiration_time = 180
 60 set trn_expiration_time_suspend = Y
 70 set server_type = "xatmi"

(2) Conversational service paradigm sample
(a) Outline of processing

The processing of the sample here is outlined below.

The service program is activated through a typed record having data of ACCTREQ. The
members of ACCTREQ indicate the upper and lower limits of the account numbers. The
service program sets account data in this range in the typed record having data of
ACCTDAT and sends the data to the originator of the conversation.

(b) UAP configuration
The following figure shows the configuration of the sample UAP.

6. Coding Samples

573

Figure 6-5: Communication of conversational service

(c) Typed records used
The structures of typed records used are shown below.

Data for activating the service program

Data for communication with the conversational service

 ACCTREQ.cbl
 05 UPPERNO PIC S9(9) COMP-5.
 05 LOWERNO PIC S9(9) COMP-5.

6. Coding Samples

574

(d) SUP sample
• XATMI interface definition sample

The following shows the XATMI interface definition of the SUP for the sample
conversational service.

 10 /* Example of XATMI interface definition (rrsupcb.def
file) */
 20 called_servers = { "rrsppcb.def" } ;

• SUP coding sample

The following shows a coding example for the SUP used in the example of the
conversational service.

 10 *
 20 ***
 30 * Example of SUP (convsup.cbl file)
 40 ***
 50 *
 60 IDENTIFICATION DIVISION.
 70 *
 80 PROGRAM-ID. MAIN.
 90 *
 100 ***
 110 * Set the data area
 120 ***
 130 *
 140 DATA DIVISION.
 150 WORKING-STORAGE SECTION.
 160 ***
 170 * Declare constants
 180 ***
 190 ***
 200 * Declare variables
 210 ***
 220 ***** typed record for INQUIRY when inquiry service

 230 01 ACCTREQ-REC.
 240 COPY ACCTREQ.
 250 ***** type information for INQUIRY *****
 260 01 ACCTREQTYPE-REC.
 270 COPY TPTYPE.
 280 ***** service definition for INQUIRY *****
 290 01 ACCTREQDEF-REC.

 05 ACCTNO PIC S9(9) COMP-5.
 05 NAME PIC X(128).
 05 AMOUNT PIC S9(4) COMP-5.
 05 FILLER PIC X(2).

6. Coding Samples

575

 300 COPY TPSVCDEF.
 310 ***** return record *****
 320 01 STATUS-REC.
 330 COPY TPSTATUS.
 340 ***** received record between INQUIRY and CONVSUP
 350 01 ACCTDATA-REQ.
 360 COPY ACCTDATA.
 370 **** type information received record between INQUIRY
and CONVSUP
 380 01 ACCTDATATYPE-REC.
 390 COPY TPTYPE.
 400 ***** service definition for INQUIRY *****
 410 01 ACCTDATADEF-REC.
 420 COPY TPSVCDEF.
 430 ***** working area is used for replies *****
 440 01 WK-AREA PIC X(136).
 450 ***** redefine working area 1 *****
 460 01 ACCTREQ-REP REDEFINES WK-AREA.
 470 COPY ACCTREQ.
 480 ***** redefine working area 2 *****
 490 01 ACCTDATA-REP REDEFINES WK-AREA.
 500 COPY ACCTDATA.
 510 ***** typed information *****
 520 01 TYPE-REC.
 530 COPY TPTYPE.
 540 ***** others *****
 550 01 WSTATUS PIC S9(9) COMP-5.
 560 ***** dc_rpc_open *****
 570 01 RPC-OP-ARG.
 580 02 REQEST PIC X(8) VALUE 'OPEN '.
 590 02 STATUS-CODE PIC X(5) VALUE SPACE.
 600 02 FILLER PIC X(3).
 610 02 FLAGS PIC S9(9) COMP VALUE ZERO.
 620 ***** dc_rpc_close *****
 630 01 RPC-CL-ARG.
 640 02 REQEST PIC X(8) VALUE 'CLOSE '.
 650 02 STATUS-CODE PIC X(5) VALUE SPACE.
 660 02 FILLER PIC X(3).
 670 02 FLAGS PIC S9(9) COMP VALUE ZERO.
 680 ***** dc_adm_complete ****
 690 01 ADM-ARG.
 700 02 REQUEST PIC X(8) VALUE 'COMPLETE'.
 710 02 STATUS-CODE PIC X(5) VALUE SPACE.
 720 02 FILLER PIC X(3).
 730 02 FLAGS PIC S9(9) COMP VALUE ZERO.
 740 02 FILLER PIC X(3).
 750 *
 760 01 FLAG PIC S9(9) COMP VALUE ZERO.

6. Coding Samples

576

 770 *
 780 ****** for TX interface *****
 790 *
 800 01 TX-RETURN-STATUS.
 810 COPY TXSTATUS.
 820 *
 830 01 RS REDEFINES TX-RETURN-STATUS.
 840 05 RSVAL PIC S9(9) COMP-5.
 850 *
 860 01 TX-INFO-AREA.
 870 COPY TXINFDEF.
 880 *
 890 PROCEDURE DIVISION.
 900 *
 910 ***
 920 * RPC-OPEN (start the UAP)
 930 ***
 940 *
 950 CALL 'CBLDCRPC' USING RPC-OP-ARG.
 960 IF STATUS-CODE OF RPC-OP-ARG NOT = '00000' THEN
 970 DISPLAY 'CLIENT: RPC-OPEN FAILED. CODE = '
 980 STATUS-CODE OF RPC-OP-ARG
 990 GO TO PROG-END
1000 END-IF.
1010 *
1020 ***
1030 * TXOPEN (open the resource manager)
1040 ***
1050 *
1060 CALL "TXOPEN" USING TX-RETURN-STATUS.
1070 IF RSVAL OF RS NOT = 0 THEN
1080 DISPLAY 'CLIENT:TX-OPEN FAILED. CODE = '
1090 RSVAL OF RS
1100 GO TO PROG-END
1110 END-IF.
1120 *
1130 ***
1140 * TX-SET-TRANSACTION-TIMEOUT *
 * (set the transaction monitoring interval) *
1150 ***
1160 *
1170 MOVE 180 TO TRANSACTION-TIMEOUT OF TX-INFO-AREA.
1180 CALL "TXSETTIMEOUT" USING TX-INFO-AREA
TX-RETURN-STATUS.
1190 IF RSVAL OF RS NOT = 0 THEN
1200 DISPLAY 'CLIENT:TX-SET-TRANSACTION-TIMEOUT
FAILED. CODE = '
1210 RSVAL OF RS

6. Coding Samples

577

1220 GO TO PROG-END
1230 END-IF.
1240 *
1250 ***
1260 * ADM-COMPLETE (report completion of *
1265 * user server start processing) *
1270 ***
1280 *
1290 CALL 'CBLDCADM' USING ADM-ARG.
1300 IF STATUS-CODE OF ADM-ARG NOT = '00000' THEN
1310 DISPLAY 'CLIENT: ADM-COMPLETE FAILED. CODE = '
1320 STATUS-CODE OF ADM-ARG
1330 GO TO PROG-END
1340 END-IF.
1350 *
1360 ***
1370 * TX-SET-TRANSACTION-CONTROL
1375 * (unchained mode settings)
1380 ***
1390 *
1400 MOVE 0 TO TRANSACTION-CONTROL OF TX-INFO-AREA.
1410 CALL "TXSETTRANCTL" USING TX-INFO-AREA
TX-RETURN-STATUS.
1420 IF RSVAL OF RS NOT = 0 THEN
1430 DISPLAY 'CLIENT:TX-SET-TRANSACTION-CONTROL
FAILED. CODE ='
1440 RSVAL OF RS
1450 END-IF.
1460 *
1470 ***
1480 * TPXBEGIN (start transaction)
1490 ***
1500 *
1510 CALL "TXBEGIN" USING TX-RETURN-STATUS.
1520 IF RSVAL OF RS NOT = 0 THEN
1530 DISPLAY 'CLIENT:TX-BEGIN FAILED. CODE ='
1540 RSVAL OF RS
1550 GO TO PROG-END
1560 END-IF.
1570 *
1580 ***
1590 * TPCONNECT (request service (INQUIRY))
1600 ***
1610 *
1620 ***** set parameters *****
1630 *
1640 ***** set up ACCTREQDEF-REC *****
1650 *

6. Coding Samples

578

1660 MOVE LOW-VALUES TO ACCTREQDEF-REC.
1670 MOVE 1 TO TPSENDRECV-FLAG OF
ACCTREQDEF-REC.
1680 MOVE "INQUIRY" TO SERVICE-NAME OF
ACCTREQDEF-REC.
1690 *
1700 ***** set up ACCTREQTYPE-REC *****
1710 *
1720 MOVE "X_COMMON" TO REC-TYPE OF
ACCTREQTYPE-REC.
1730 MOVE "acctreq" TO SUB-TYPE OF
ACCTREQTYPE-REC.
1740 COMPUTE LEN OF ACCTREQTYPE-REC = FUNCTION
LENGTH(ACCTREQ-REC).
1750 *
1760 ***** set up ACCTREQ-REC *****
1770 *
1780 MOVE "100000000" TO LOWERNO OF ACCTREQ-REC.
1790 MOVE "200000000" TO UPPERNO OF ACCTREQ-REC.
1800 *
1810 ***** CALL TPCONNECT *****
1820 CALL "TPCONNECT" USING
1830 ACCTREQDEF-REC ACCTREQTYPE-REC ACCTREQ-REC
STATUS-REC.
1840 IF NOT TPOK OF STATUS-REC THEN
1850 DISPLAY 'CLIENT: INQUARY SERVICE REQ WAS FAIL.
CODE = '
1860 TP-STATUS OF STATUS-REC
1870 DISPLAY 'CLIENT:TX-ROLLBACK STARTED'
1880 CALL "TXROLLBACK" USING TX-RETURN-STATUS
1890 DISPLAY 'CLIENT:TX-ROLLBACK ENDED'
1900 IF RSVAL OF RS NOT = 0 THEN
1910 DISPLAY 'CLIENT:TX-ROLLBACK FAILED. CODE ='
1920 RSVAL OF RS
1930 END-IF
1940 GO TO PROG-END
1950 END-IF.
1960 *
1970 DISPLAY 'CLIENT: INQUIRY SERVICE REQ WAS SUCCESS '.
1980 *
1990 ***** set up ACCTDATA-REC *****
2000 *
2010 MOVE 0 TO TP-STATUS OF STATUS-REC.
2020 MOVE LOW-VALUES TO ACCTDATADEF-REC.
2030 MOVE COMM-HANDLE OF ACCTREQDEF-REC TO
2040 COMM-HANDLE OF ACCTDATADEF-REC.
2050 MOVE "X_COMMON" TO REC-TYPE OF
ACCTDATATYPE-REC.

6. Coding Samples

579

2060 MOVE "acctdata" TO SUB-TYPE OF
ACCTDATATYPE-REC.
2070 COMPUTE LEN OF ACCTDATATYPE-REC = FUNCTION
LENGTH(ACCTDATA-REQ).
2080 *
2090 PERFORM WITH TEST AFTER UNTIL NOT TPOK OF STATUS-REC
2100 *
2110 ***
2120 * TPRECV (receive data)
2130 ***
2140 MOVE 0 TO TP-STATUS OF STATUS-REC
2150 CALL "TPRECV" USING
2160 ACCTDATADEF-REC ACCTDATATYPE-REC WK-AREA
STATUS-REC
2170 IF TPOK OF STATUS-REC THEN
2180 DISPLAY 'CLIENT: RECEIVED ACOUNT INFORMATION '
2190 DISPLAY 'CLIENT: ACCOUNT NUMBER ='
2200 ACCTNO IN ACCTDATA-REP
2210 DISPLAY 'CLIENT: NAME =' ANAME IN ACCTDATA-REP
2220 DISPLAY 'CLIENT: AMOUNT =' AMOUNT IN
ACCTDATA-REP
2230 END-IF
2240 END-PERFORM.
2250 *
2260 IF TPEEVENT OF STATUS-REC THEN
2270 IF TPEV-SVCSUCC OF STATUS-REC THEN
2280 DISPLAY 'CLIENT:INQUARY SERVICE SUCCESS'
2290 *
2300 ***
2310 * TX-COMMIT (commit transaction)
2320 ***
2330 *
2340 DISPLAY 'CLIENT:TX-COMMIT STARTED'
2350 CALL "TXCOMMIT" USING TX-RETURN-STATUS
2360 DISPLAY 'CLIENT:TX-COMMIT ENDED'
2370 IF RSVAL OF RS NOT = 0 THEN
2380 DISPLAY 'CLIENT:TX-COMMIT FAILED. CODE ='
2390 RSVAL OF RS
2400 END-IF
2410 ELSE
2420 DISPLAY 'CLIENT:EVENT OCCURRED IN INQUIRY
SERVICE'
2430 DISPLAY 'CODE =' TPEVENT OF STATUS-REC
2440 *
2450 ***
2460 * TX-ROLLBAK (roll back transaction)
2470 ***
2480 *

6. Coding Samples

580

2490 DISPLAY 'CLIENT:TX-ROLLBACK STARTED'
2500 CALL "TXROLLBACK" USING TX-RETURN-STATUS
2510 DISPLAY 'CLIENT:TX-ROLLBACK ENDED'
2520 IF RSVAL OF RS NOT = 0 THEN
2530 DISPLAY 'CLIENT:TX-ROLLBACK FAILED. CODE ='
2540 RSVAL OF RS
2550 END-IF
2560 END-IF
2570 ELSE
2580 DISPLAY 'CLIENT:EVENT OCCURED IN INQUARY SERVICE'
2590 DISPLAY 'CODE =' TPEVENT OF STATUS-REC
2600 *
2610 ***
2620 * TX-ROLLBAK (roll back transaction)
2630 ***
2640 *
2650 DISPLAY 'CLIENT:TX-ROLLBACK STARTED'
2660 CALL "TXROLLBACK" USING TX-RETURN-STATUS
2670 DISPLAY 'CLIENT:TX-ROLLBACK ENDED'
2680 IF RSVAL OF RS NOT = 0 THEN
2690 DISPLAY 'CLIENT:TX-ROLLBACK FAILED. CODE ='
2700 RSVAL OF RS
2710 END-IF
2720 END-IF.
2730 *
2740 ***
2750 * Terminate processing
2760 ***
2770 *
2780 PROG-END.
2790 *
2800 DISPLAY 'CLIENT: SEE YOU LATER'
2810 *
2820 ***
2830 * RPC-CLOSE (terminate the UAP)
2840 ***
2850 *
2860 CALL 'CBLDCRPC' USING RPC-CL-ARG.
2870 *
2880 STOP RUN.

• User service definition sample

The following shows an example of a user service definition of the SPP that was
presented in the example of the conversational service.

 10 # Example of user service definition (convsup file)
 20 set module "convsup" # Name of executable file
 30 set watch_time = 180 # Maximum time to wait

6. Coding Samples

581

 # for a response
 40 set receive_from = none # Receiving method
 50 set trn_expiration_time = 180
 60 # Expiry time in transaction branch
 70 set trn_expiration_time_suspend = Y # Always specify Y

(e) SPP sample
• XATMI interface definition sample

The following shows an example of XATMI interface definition of the SPP that
was presented in the example of the conversational service.

 10 /* Example of XATMI interface definition of *
 15 * SPP (cvsppcb.def file) */
 20 X_COMMON acctreq {
 30 long upperno;
 40 long lowerno;
 50 };
 60 X_COMMON acctdata {
 70 long acctno;
 80 char name[128];
 90 short amount;
 100 };
 110 service INQUIRY(X_COMMON acctreq) ;

• SPP coding sample (main program)

The following shows a coding example (main program) of the SPP that was
presented in the example of the conversational service.

 10 *
 20 ***
 30 * Example of SPP (convspp.cbl file)
 40 ***
 50 *
 60 IDENTIFICATION DIVISION.
 70 *
 80 PROGRAM-ID. MAIN.
 90 *
 100 ***
 110 * Set the data area
 120 ***
 130 *
 140 DATA DIVISION.
 150 WORKING-STORAGE SECTION.
 160 01 RPC-OP-ARG.
 170 02 REQEST PIC X(8) VALUE 'OPEN '.
 180 02 STATUS-CODE PIC X(5) VALUE SPACE.
 190 02 FILLER PIC X(3).
 200 02 FLAGS PIC S9(9) COMP VALUE ZERO.

6. Coding Samples

582

 210 *
 220 01 RPC-CL-ARG.
 230 02 REQEST PIC X(8) VALUE 'CLOSE '.
 240 02 STATUS-CODE PIC X(5) VALUE SPACE.
 250 02 FILLER PIC X(3).
 260 02 FLAGS PIC S9(9) COMP VALUE ZERO.
 270 *
 280 01 RSV-ARG.
 290 02 REQUEST PIC X(8) VALUE 'MAINLOOP'.
 300 02 STATUS-CODE PIC X(5) VALUE SPACE.
 310 02 FILLER PIC X(3).
 320 02 FLAGS PIC S9(9) COMP VALUE ZERO.
 330 *
 340 PROCEDURE DIVISION.
 350 *
 360 ***
 370 * RPC-OPEN (start the UAP)
 380 ***
 390 *
 400 CALL 'CBLDCRPC' USING RPC-OP-ARG.
 410 IF STATUS-CODE OF RPC-OP-ARG NOT = '00000' THEN
 420 DISPLAY 'SERVER: RPC-OPEN FAILED. CODE = '
 430 STATUS-CODE OF RPC-OP-ARG
 440 GO TO PROG-END
 450 END-IF.
 460 *
 470 ***
 480 * RPC-MAINLOOP (start the SPP service)
 490 ***
 500 *
 510 DISPLAY 'SERVER: ENTERING MAINLOOP...'
 520 CALL 'CBLDCRSV' USING RSV-ARG.
 530 IF STATUS-CODE OF RSV-ARG NOT = '00000' THEN
 540 DISPLAY 'SERVER: RPC-MAINLOOP FAILED. CODE = '
 550 STATUS-CODE OF RSV-ARG
 560 END-IF.
 570 *
 580 ***
 590 * Terminate the program
 600 ***
 610 PROG-END.
 620 *
 630 ***
 640 * RPC-CLOSE (terminate the UAP)
 650 ***
 660 *
 670 CALL 'CBLDCRPC' USING RPC-CL-ARG.
 680 *

6. Coding Samples

583

 690 ***
 700 * Terminate processing
 710 ***
 720 *
 730 STOP RUN.

• SPP coding sample (service program)

The following shows a coding example (service program) of the SPP that was
presented in the example of the conversational service.

 10 *
 20 ***
 30 * INQUIRY service program (convsvc.cbl file)
 40 ***
 50 *
 60 IDENTIFICATION DIVISION.
 70 *
 80 PROGRAM-ID. INQUIRY.
 90 *
 100 ***
 110 * Set the data area
 120 ***
 130 *
 140 DATA DIVISION.
 150 WORKING-STORAGE SECTION.
 160 *
 170 ***
 180 * Declare variables
 190 ***
 200 *
 210 * TPSVCDEF record
 220 *
 230 01 SVCDEF-REC.
 240 COPY TPSVCDEF.
 250 *
 260 * TPTYPE record
 270 *
 280 01 TYPE-REC.
 290 COPY TPTYPE.
 300 *
 310 * TPSTATUS record
 320 *
 330 01 STATUS-REC.
 340 COPY TPSTATUS.
 350 *
 360 * TPSVCRET record
 370 *
 380 01 SVCRET-REC.

6. Coding Samples

584

 390 COPY TPSVCRET.
 400 *
 410 * WK-AREA is where service requests are read into
 420 *
 430 01 WK-AREA PIC X(136).
 440 *
 450 01 ACCTREQ-REC REDEFINES WK-AREA.
 460 COPY ACCTREQ.
 470 *
 480 01 ACCTDATA-REC.
 490 COPY ACCTDATA.
 500 *
 510 * TPSVCDEF record for TPSEND
 520 *
 530 01 ACCTDATADEF-REC.
 540 COPY TPSVCDEF.
 550 *
 560 * TPTYPE record for TPSEND
 570 *
 580 01 ACCTDATATYPE-REC.
 590 COPY TPTYPE.
 600 *
 610 *
 620 ***
 630 * Inquiry processing
 640 ***
 650 *
 660 PROCEDURE DIVISION.
 670 *
 680 ***** set length *****
 690 COMPUTE LEN OF TYPE-REC = FUNCTION LENGTH(WK-AREA).
 700 *
 710 ***
 720 * TPSVCSTART
 730 ***
 740 *
 750 CALL "TPSVCSTART" USING
 760 SVCDEF-REC TYPE-REC WK-AREA STATUS-REC.
 770 *
 780 * find user data files between lower and upper account
number.
 790 * In this case 2 data was found, and was replied.
 800 *
 810 ***
 820 * Set the send data
 830 ***
 840 MOVE LOW-VALUES TO ACCTDATADEF-REC.
 850 MOVE COMM-HANDLE OF SVCDEF-REC TO COMM-HANDLE OF

6. Coding Samples

585

ACCTDATADEF-REC.
 860 MOVE "X_COMMON" TO REC-TYPE OF ACCTDATATYPE-REC.
 870 MOVE "acctdata" TO SUB-TYPE OF ACCTDATATYPE-REC.
 880 COMPUTE LEN OF ACCTDATATYPE-REC =
 890 FUNCTION LENGTH(ACCTDATA-REC).
 900 *
 910 ***
 920 * TPSEND (send the first data)
 930 ***
 940 *
 950 MOVE "10000001" TO ACCTNO OF ACCTDATA-REC.
 960 MOVE "HITACHI HANAKO" TO ANAME OF ACCTDATA-REC.
 970 MOVE "2000" TO AMOUNT OF ACCTDATA-REC.
 980 CALL "TPSEND" USING ACCTDATADEF-REC ACCTDATATYPE-REC
 990 ACCTDATA-REC STATUS-REC.
1000 IF TPOK OF STATUS-REC THEN
1010 MOVE 0 TO TP-RETURN-VAL OF SVCRET-REC
1020 ELSE
1030 MOVE 1 TO TP-RETURN-VAL OF SVCRET-REC
1040 GO TO PROG-END
1050 END-IF
1060 *
1070 ***
1080 * TPSEND (send the second data)
1090 ***
1100 *
1110 MOVE "10000002" TO ACCTNO OF ACCTDATA-REC.
1120 MOVE "HITACHI TAROU" TO ANAME OF ACCTDATA-REC.
1130 MOVE "1000" TO AMOUNT OF ACCTDATA-REC.
1140 CALL "TPSEND" USING ACCTDATADEF-REC ACCTDATATYPE-REC
1150 ACCTDATA-REC STATUS-REC.
1160 IF TPOK OF STATUS-REC THEN
1170 MOVE 0 TO TP-RETURN-VAL OF SVCRET-REC
1180 ELSE
1190 MOVE 1 TO TP-RETURN-VAL OF SVCRET-REC
1200 GO TO PROG-END
1210 END-IF
1220 *
1230 ***
1240 * TPRETURN (terminate the receive program)
1250 ***
1260 *
1270 SET TPSUCCESS OF SVCRET-REC TO TRUE.
1280 MOVE 1 TO APPL-CODE OF SVCRET-REC.
1290 *
1300 PROG-END.
1310 *
1320 MOVE " " TO REC-TYPE OF TYPE-REC.

6. Coding Samples

586

1330 MOVE " " TO SUB-TYPE OF TYPE-REC.
1340 MOVE 0 TO LEN OF TYPE-REC.
1350 COPY TPRETURN
1360 REPLACING TPSVCRET-REC BY SVCRET-REC
1370 TPTYPE-REC BY TYPE-REC
1380 DATA-REC BY WK-AREA.
1390 *
1400 ***
1410 * Terminate processing
1420 ***
1430 *
1440 *
1450 END PROGRAM INQUIRY.

• User service definition sample

The following shows an example of a user service definition of the SPP that was
presented in the example of the conversational service.

 10 # Example of user service definition (convspp file)
 20 set service_group = "convspp_svg"
 25 # Service group name
 30 set module = "convspp" # Name of executable file
 40 set service = "INQUIRY=inquiry"
 50 # Service name = entry point name
 60 set watch_time = 180 # Maximum time to wait
 65 # for a response
 70 set trn_expiration_time = 240
 80 # Expiry time in transaction branch
 90 set trn_expiration_time_suspend = Y # Always
 95 # specify Y
 100 set server_type = "xatmi" # Server type
 110 set receive_from = "socket" # Receiving method

6.4.2 TX interface sample
This subsection shows a coding example for an SUP that uses the X/Open TX
interface. This SUP uses TX-interfaced transaction control for processing that was
described in 6.1 Coding samples for client/server UAPs (SUP, SPP DAM access). See
6.1 Coding samples for client/server UAPs (SUP, SPP DAM access) for the process
configuration and details of the SPP to which the service request is addressed.
However, TX-RETURN-STATUS at line numbers 460 and 470 are redefined as RS
REDEFINES TX-RETURN-STATUS because it cannot be correctly referenced if it is
directly invoked from the process.
 10 *
 20 ***
 30 * SUP01 *
 40 ***

6. Coding Samples

587

 50 *
 60 IDENTIFICATION DIVISION.
 70 *
 80 PROGRAM-ID. MAIN.
 90 *
 100 ***
 110 * Set the data area *
 120 ***
 130 *
 140 DATA DIVISION.
 150 WORKING-STORAGE SECTION.
 160 01 RPC-ARG1.
 170 02 REQUEST PIC X(8) VALUE SPACE.
 180 02 STATUS-CODE PIC X(5) VALUE SPACE.
 190 02 FILLER PIC X(3).
 200 02 FLAGS PIC S9(9) COMP VALUE ZERO.
 210 *
 220 01 RPC-ARG2.
 230 02 REQUEST PIC X(8) VALUE SPACE.
 240 02 STATUS-CODE PIC X(5) VALUE SPACE.
 250 02 FILLER PIC X(3).
 260 02 FLAGS PIC S9(9) COMP VALUE ZERO.
 270 02 DESCRIPTOR PIC S9(9) COMP VALUE ZERO.
 280 02 S-NAME PIC X(32) VALUE SPACE.
 290 02 G-NAME PIC X(32) VALUE SPACE.
 300 *
 310 01 RPC-ARG3.
 320 02 SEND-DATA-LENG PIC S9(9) COMP VALUE ZERO.
 330 02 SEND-DATA PIC X(32) VALUE SPACE.
 340 *
 350 01 RPC-ARG4.
 360 02 RECEIVE-DATA-LENG PIC S9(9) COMP VALUE ZERO.
 370 02 RECEIVE-DATA PIC X(32) VALUE SPACE.
 380 *
 390 01 ADM-ARG1.
 400 02 REQUEST PIC X(8) VALUE SPACE.
 410 02 STATUS-CODE PIC X(5) VALUE SPACE.
 420 02 FILLER PIC X(3).
 430 02 FLAGS PIC S9(9) COMP VALUE ZERO.
 440 02 FILLER PIC X(3).
 450 *
 460 01 TX-RETURN-STATUS.
 470 COPY TXSTATUS.
 480 *
 490 01 RS REDEFINES TX-RETURN-STATUS.
 500 05 RSVAL PIC S9(9) COMP-5.
 510 *
 520 01 TX-INFO-AREA.

6. Coding Samples

588

 530 COPY TXINFDEF.
 540 *
 550 PROCEDURE DIVISION.
 560 *
 570 ***
 580 * RPC-OPEN (start the UAP) *
 590 ***
 600 *
 610 MOVE 'OPEN' TO REQUEST OF RPC-ARG1.
 620 MOVE ZERO TO FLAGS OF RPC-ARG1.
 630 CALL 'CBLDCRPC' USING RPC-ARG1.
 640 IF STATUS-CODE OF RPC-ARG1 NOT = '00000' THEN
 650 DISPLAY 'SUP01:RPC-OPEN FAILED. CODE = '
 660 STATUS-CODE OF RPC-ARG1
 670 GO TO PROG-END
 680 END-IF.
 690 *
 700 ***
 710 * TX-OPEN (open the resource manager) *
 720 ***
 730 *
 740 CALL 'TXOPEN' USING TX-RETURN-STATUS.
 750 IF RSVAL OF RS NOT = 0 THEN
 760 DISPLAY 'SUP01:TX-OPEN FAILED. CODE = '
 770 RSVAL OF RS
 780 GO TO PROG-END
 790 END-IF.
 800 *
 810 ***
 820 * TX-SET-TRANSACTION-TIMEOUT *
 * (set the transaction monitoring interval) *
 830 ***
 840 *
 850 MOVE 180 TO TRANSACTION-TIMEOUT OF TX-INFO-AREA.
 860 CALL 'TXSETTIMEOUT' USING TX-INFO-AREA TX-RETURN-STATUS.
 870 IF RSVAL OF RS NOT = 0 THEN
 880 DISPLAY 'SUP01:TX-SET-TRANSACTION-TIMEOUT FAILED.
CODE = '
 890 RSVAL OF RS
 900 GO TO PROG-END
 910 END-IF.
 920 *
 930 ***
 940 * ADM-COMPLETE (report completion of user *
 * server start processing) *
 950 ***
 960 *
 970 MOVE 'COMPLETE' TO REQUEST OF ADM-ARG1.

6. Coding Samples

589

 980 CALL 'CBLDCADM' USING ADM-ARG1.
 990 IF STATUS-CODE OF ADM-ARG1 NOT = '00000' THEN
1000 DISPLAY 'SUP01:ADM-COMPLETE FAILED. CODE = '
1010 STATUS-CODE OF ADM-ARG1
1020 GO TO PROG-END
1030 END-IF.
1040 *
1050 ***
1060 * TX-BEGIN (start the transaction) *
1070 ***
1080 *
1090 CALL 'TXBEGIN' USING TX-RETURN-STATUS.
1100 IF RSVAL OF RS NOT = 0 THEN
1110 DISPLAY 'SUP01:TX-BEGIN FAILED. CODE = '
1120 RSVAL OF RS
1130 GO TO TRAN-END
1140 END-IF.
1150 *
1160 ***
1170 * TX-INFO (acquire transaction information) *
1180 ***
1190 *
1200 CALL 'TXINFORM' USING TX-INFO-AREA TX-RETURN-STATUS.
1210 IF RSVAL OF RS <= 0 THEN
1220 DISPLAY 'SUP01:NOT IN TRANSACTION. CODE = '
1230 RSVAL OF RS
1240 GO TO PROG-END
1250 ELSE
1260 IF RSVAL OF RS = 1 THEN
1270 DISPLAY 'SUP01:RETURN = ' COMMIT-RETURN
1280 DISPLAY 'SUP01:CONTROL = ' TRANSACTION-CONTROL
1290 DISPLAY 'SUP01:TIMEOUT = ' TRANSACTION-TIMEOUT
1300 DISPLAY 'SUP01:STATE = ' TRANSACTION-STATE
1310 END-IF
1320 END-IF.
1330 ***
1340 * RPC-CALL (request a remote service) *
1350 ***
1360 *
1370 MOVE 'CALL' TO REQUEST OF RPC-ARG2.
1380 MOVE 'SVR01' TO G-NAME OF RPC-ARG2.
1390 MOVE 'SVR01' TO S-NAME OF RPC-ARG2.
1400 MOVE 'SUP01:DATA OpenTP1' TO SEND-DATA OF RPC-ARG3.
1410 MOVE 32 TO SEND-DATA-LENG OF RPC-ARG3.
1420 MOVE 32 TO RECEIVE-DATA-LENG OF RPC-ARG4.
1430 CALL 'CBLDCRPC' USING RPC-ARG2 RPC-ARG3 RPC-ARG4.
1440 IF STATUS-CODE OF RPC-ARG2 NOT = '00000' THEN
1450 DISPLAY 'SUP01:RPC-CALL RETURN CODE = '

6. Coding Samples

590

1460 STATUS-CODE OF RPC-ARG2
1470 * GO TO TRAN-END
1480 END-IF.
1490 DISPLAY 'SERVICE FUNCTION RETURN = ' RECEIVE-DATA.
1500 TRAN-END.
1510 *
1520 ***
1530 * TX-SET-TRANSACTION-CONTROL (set the unchained *
1535 * mode) *
1540 ***
1550 *
1560 MOVE 0 TO TRANSACTION-CONTROL OF TX-INFO-AREA.
1570 CALL 'TXSETTRANCTL' USING TX-INFO-AREA TX-RETURN-STATUS.
1580 IF RSVAL OF RS NOT = 0 THEN
1590 DISPLAY 'SUP01:TX-SET-TRANSACTION-CONTROL FAILED.
CODE = '
1600 RSVAL OF RS
1610 END-IF.
1620 *
1630 ***
1640 * TX-COMMIT (commit in unchained mode) *
1650 ***
1660 *
1670 CALL 'TXCOMMIT' USING TX-RETURN-STATUS.
1680 IF RSVAL OF RS NOT = 0 THEN
1690 DISPLAY 'SUP01:TX-COMMIT FAILED. CODE = '
1700 RSVAL OF RS
1710 END-IF.
1720 PROG-END.
1730 *
1740 ***
1750 * RPC-CLOSE (terminate the UAP) *
1760 ***
1770 *
1780 MOVE 'CLOSE' TO REQUEST OF RPC-ARG1.
1790 MOVE ZERO TO FLAGS OF RPC-ARG1.
1800 CALL 'CBLDCRPC' USING RPC-ARG1.
1810 DISPLAY 'SUP01:SUP PROCESS ENDED'.
1820 STOP RUN.

591

Chapter

7. Reference for Application
Activation

This chapter explains user exit routines (written in C language) and MCF event
reference information which are related to the facility for activating application
programs in an environment where TP1/Message Control is used.

This chapter contains the following sections:

Function format of user exit routine that determines the inheriting timer-start
message

Data format of MCF event that reports discarding of a timer-start message
(ERREVT4)

Function format of user exit routine that determines the inheriting timer-start message

592

Function format of user exit routine that determines the inheriting
timer-start message

The user exit routine that determines the inheriting timer-start message is called in the
following format:

Format
ANSI C , C++

K&R C

Description
If the use of the timer-started application program activate (CBLDCMCF('EXECAP '))
is followed by an error which raises the need for rerunning OpenTP1, this user exit
routine can change the timer-start environment. It can perform the following:

• Inherit or cancel the current timer-start

• Make inherited timer-start immediate start

• Change the name of the application to be timer-started

When installing in the MCF the user exit routine that determines the inheriting
timer-start message, specify the address of the user exit routine function in the MCF
main function for the application startup service. The MCF main function for the
application startup service does not depend on the communication protocol.

For details on how to create the MCF main function for the application startup service,
see the OpenTP1 Operation manual.

When uoc_func (user exit routine that determines the inheriting time-start message)
is called, the following parameters are passed from the MCF to parm.

#include <dcmpsv.h>
long uoc_func (dcmpsv_uoc_rtime *parm)

#include <dcmpsv.h>
long uoc_func(parm)

dcmpsv_uoc_rtime *parm ;

Function format of user exit routine that determines the inheriting timer-start message

593

Parameters
dcmpsv_uoc_rtime

Arguments whose value is passed from MCF to user exit routine
le_name

The input source logical terminal name is set here. If the application program activate
(CBLDCMCF('EXECAP ')) is called from the SPP, '*' is set here.

ap_name

The application name specified by the UAP in the timer-started application program
activate (CBLDCMCF('EXECAP ')) is set here.

exec_time

The MHP start time specified by the UAP in the timer-started application program
activate (CBLDCMCF('EXECAP ')) is set here, as the number of seconds counted from
00:00:00 on January 1, 1970.

ap_type

The application type of the UAP which issued the timer-started application program
activate (CBLDCMCF('EXECAP ')) is set here:

'a': ans type

'n': noans type

time_type

The timer-start type specified by the UAP in the timer-started application program
activate (CBLDCMCF('EXECAP ')) is set here:

'i': Interval specification for timer start

't': Time point specification for timer start

typedef struct {
 char le_name[9] ; ... Input source logical terminal name
 char reserve1[7] ; ... Reserved
 char ap_name[9] ; ... Application name
 char reserve2[7] ; ... Reserved
 long exec_time ; ... Timer start time
 char ap_type ; ... Application type
 'a': ans type; 'n': noans type
 char time_type; ... Timer-start type
 'i': Interval specification
 for timer start
 't': Time point specification
 for timer start
 char reserve3[26] ; ... Reserved
} dcmpsv_uoc_rtime;

Function format of user exit routine that determines the inheriting timer-start message

594

Arguments whose value is set in the user exit routine
ap_name

To change the application to be timer-started, specify the new application name here.
The name specified here has effect when DCMPSV_UOC_TIME_JUST is specified for
the return value.

Return values
uoc_func() must return the following values:

The subsequent MCF processing varies depending on the return value from
uoc_func() as follows:

• DCMPSV_UOC_TIME_CONTINUE

If this value is returned from the user exit routine, the MCF counts the seconds
from 00:00:00 on January 1, 1970 to the present time and compares it with the
time specified in the application program activate (CBLDCMCF('EXECAP ')). If
the present time is later than the time specified in the function, the MCF
immediately starts the pertinent MHP. Otherwise, the application will be
timer-started.

• DCMPSV_UOC_TIME_JUST

If this value is returned from the user exit routine, the MCF immediately starts the
pertinent MHP. If this value is to be returned, the application to be immediately
started can be changed in the user exit routine. However, change to an MHP for
MCF event processing is not allowed. If the specified new application name is not
defined, ERREVT4 is reported.

If the application name of the UAP to be immediately started by the user exit
routine is changed and the application types of the old and new MHPs to be
started are different, the segments to be timer-started are deleted from the output
queue, with the output of a warning message (KFCA10711-W).

• DCMPSV_UOC_TIME_DEQ

If this value is returned from the user exit routine, the MCF cancels timer-start.
The segments to be timer-started are deleted from the output queue, with the
output of an information message (KFCA10700-I).

Return value Explanation

DCMPSV_UOC_TIME_CONTINUE Timer-start is inherited

DCMPSV_UOC_TIME_JUST Immediate start will be in effect

DCMPSV_UOC_TIME_DEQ Timer-start is canceled

Function format of user exit routine that determines the inheriting timer-start message

595

If another value is returned from the user exit routine, the segments to be timer-started
are deleted from the output queue, with the output of a warning message
(KFCA10710-W).

Notes on creating user exit routines
• Functions available to user exit routines

When creating a user exit routine, keep in mind that only the functions listed
below can be used. If a function that is not listed below is used for a user exit
routine, operation is unpredictable.

• Memory manipulation functions

Data area management (example: malloc, free)

Shared memory management (example: shmctl, shmget, shmop)

Memory manipulation (example: memcpy)

Character string manipulation (example: strcpy)

• Time acquisition functions

• User exit routine errors

If an error is detected by a user exit routine, it must be reported to the MCF using
the MCF-specified return code. If a process terminating signal or abort() is
issued in a user exit routine, the MCF will terminate abnormally.

• User exit routine execution timing

Execution timing of a user exit routine started by the MCF may not be executed
in synchronization with the OpenTP1 system and UAP startup and termination
sequences. Design the user exit routine to ensure that no problems will occur even
if the routine is executed before the UAP, or if it is called after all UAPs have
terminated.

• Local variable size of user exit routines

The sum of the sizes of the local variables used in a single user exit routine must
be within 1 kilobyte. Do not call a function recursively within a user exit routine.

Data format of MCF event that reports discarding of a timer-start message (ERREVT4)

596

Data format of MCF event that reports discarding of a timer-start
message (ERREVT4)

The format of the data passed as the first segment of the event that reports discarding
of a timer-start message (ERREVT4) is shown blow. For the format of MCF event
information other than ERREVT4, see the applicable OpenTP1 Protocol manual.

MCF event ERREVT4 information
Table 7-1 gives MCF event ERREVT4 information. Table 7-2 gives the reason codes
for ERREVT4. Formats 1 and 2 indicate buffer types 1 and 2, respectively.

Table 7-1: MCF event ERREVT4 information

Item Position (byte) Length
(bytes)

Attribute Explanation

Format 1 Format 2

Reserved
(only for
format 1)

0 -- 2 -- --

Reserved
(only for
format 1)

2 -- 2 -- --

Error event
code

4 0 3 Alphanume
ric

ERR is set here.

7 3 3 -- --

10 6 2 Alphanume
ric

A 4 ' indicating ERREVT4 is
set here.

Input source
logical
terminal
name

12 8 8 Alphanume
ric

Name of the logical terminal
from which the message was
input. A * is set here in the
following cases:
1. An error occurred in the

MHP which was started as
an application by the SPP.

2. In addition to the above
error, another error
occurred in an MHP which
was started as an
application by the MHP
that was started as an MCF
event processing MHP.

Reserved 20 16 20 -- --

Data format of MCF event that reports discarding of a timer-start message (ERREVT4)

597

Legend:

--: Not applicable.

Application
name

40 36 8 Alphanume
ric

Name of the timer-started
application which encountered
the error.

Reserved 48 44 8 -- --

Reserved 56 52 8 -- --

Reserved 64 60 8 -- --

Connection
name

72 68 8 Alphanume
ric

Name of the connection. A * is
set here in the following cases:
1. An error occurred in the

MHP which was started as
an application by the SPP.

2. In addition to the above
error, another error
occurred in an MHP which
was started as an
application by the MHP
that was started as an MCF
event processing MHP.

Reserved 80 76 16 -- --

Message
input date

96 92 8 External
decimal

Date the message was input on
the terminal, in the format of
yyyymmdd:

yyyy: Year
mm: Month
dd: Day

Message
input time

104 100 8 External
decimal

Time the message was input on
the terminal, in the format of
hhmmss00:

hh: Hour
mm: Minute
ss: Second
00: Fixed

Reason code 112 108 4 External
decimal

Reason code is set here

Reserved 116 112 12 -- --

Item Position (byte) Length
(bytes)

Attribute Explanation

Format 1 Format 2

Data format of MCF event that reports discarding of a timer-start message (ERREVT4)

598

Table 7-2: Reason codes for ERREVT4

Reason codes in
COBOL language
(external decimal)

Reason why ERREVT4 is reported

0020 The MHP or SPP could not be activated because of an RPC error or inactive server.

0030 Writing to the input queue failed due to insufficient memory.

0031 Writing to the input queue failed because the queue file became full.

0032 Writing to the input queue stopped because the number of input messages exceeded
the specified definition value for the maximum number of input messages to be
stored.

0033 An error occurred during writing to the input queue.

0040 An MHP application is in shutdown status.

0041 An MHP application is in secure status.

0042 An MHP service or service group is in shutdown status.

0043 An MHP service group is in secure status.

599

Appendix

A. Using OpenTP1 Remote Procedure Calls and XATMI-interfaced API
Functions in Combination

A. Using OpenTP1 Remote Procedure Calls and XATMI-interfaced API Functions in Combination

600

A. Using OpenTP1 Remote Procedure Calls and XATMI-interfaced
API Functions in Combination

This appendix explains how to use CBLDCRPC('CALL '), an OpenTP1-specific
interface function, together with the XATMI interface.

Only the OpenTP1-specific interface functions can be used together with the XATMI
interface. Note that the TxRPC and XATMI interfaces cannot be used in combination.

A.1 Modes of combined use
There are the following modes of combined use:

1. When the machine is an OpenTP1 RPC server and an XATMI interface
communication client

2. When the machine is an XATMI interface communication server and an OpenTP1
RPC client

In mode 1., specify RPC and XATMI interface definitions for one file when creating a
stub, and execute the stbmake command or tpstbmk command.

The figure below shows the modes of combined use of inter-process communication
and the stubs required.

A. Using OpenTP1 Remote Procedure Calls and XATMI-interfaced API Functions in Combination

601

Figure A-1: Modes of combined use of inter-process communication and the
stubs required

A.2 How to create stubs of application programs that use both
OpenTP1 remote procedure calls and XATMI-interfaced API
functions

This section explains how to create the stubs of UAPs that are called from
CBLDCRPC('CALL ') and call XATMI interface functions (TPCALL, etc). To create
the UAP:

A. Using OpenTP1 Remote Procedure Calls and XATMI-interfaced API Functions in Combination

602

1. Create an interface definition file.

For the file to be created, specify the RPC and XATMI interface definitions (for
the client). Suffix the file name with .def.

2. Execute the stbmake command or tpstbmk command.

Specify the required arguments for the stbmake command, and execute the
command. Execution of the command creates the declaration files listed below.
xxxxx indicates a character string of an interface definition file name from which
.def is excluded.

• OpenTP1 RPC stub source file (default file name: xxxxx_sstb.c)

• XATMI stub source file (default file name: xxxxx_stbx.c)

• XATMI stub header file (default file name: xxxxx_stbx.h)

• XATMI stub copy file (the file name consists of the subtype name followed
by .cbl)

If the RPC interface definition and XATMI interface definition coexist, the
XATMI stub source file, XATMI stub header file and XATMI stub copy file are
created.

3. Compile the stub source files and link them with a UAP.

Compile the source files created in step 2. with the C compiler, and link them with
a UAP.

A.3 Callable XATMI-interfaced API functions
Table A-1 lists XATMI-interfaced API functions that can be used by an SPP called by
CBLDCRPC('CALL '). The stubs explained in Appendix A.2 must have been linked
with the SPP that called these functions.

Table A-1: XATMI-interfaced API functions that can be used by an SPP called
by the function dc_rpc_call()

XATMI interface APIs Call

TPACALL Y

TPADVERTISE --

TPCALL Y

TPCANCEL Y

TPCONNECT Y

TPDISCON Y

TPGETRPLY Y

A. Using OpenTP1 Remote Procedure Calls and XATMI-interfaced API Functions in Combination

603

Legend:

Y: Can be called.

--: Cannot be called.

TPRECV Y

TPRETURN

TPSEND Y

TPSVCSTART --

TPUNADVERTISE --

XATMI interface APIs Call

605

Index

Symbols
.def 47

A
accepting temporarily-stored data 256, 428
acquiring

acceptance status for server-type connection
establishment request 284
connection status 270
descriptor of asynchronous response-type RPC
request which has encountered error 339
logical terminal status 280
node address of client UAP 337
node address of gateway 341
real-time statistical information for arbitrary
section 365
status of MCF communication service 275
TAM table information 383
TAM table status 380
user journal 161, 442
user-specific performance verification
trace 297

acronyms viii
activating

application program 210, 431
application, reference for 591

ACTIVE clause 432
adding TAM table record 388
advertising service name 459
allocating physical file 130
ap_name 593, 594
ap_type 593
application program

activating 210, 431
coding 2
creating 1
creating (TCP/IP) 23
creating (TCP/IP, OSI TP) 39

environment variable of 57
executing 54
procedure for creating 39
starting 347
starting and terminating 54
terminating 328

application programming interface
TX-interfaced 501
XATMI-interfaced 450

application timer start request, deleting 194
association operation (CBLDCXAT) 528
association, establishing 529
audit log data, outputting 83
audit log output (CBLDCADT) 82

B
BEFORE clause 440
begin transaction (TXBEGIN) 505
bind mode 21

C
called_server 43
canceling

communication handle for outstanding
reply 467
user timer monitoring 264

CBLDCADM ('COMMAND ') 74
CBLDCADM ('COMPLETE') 78
CBLDCADM('STATUS ') 80
CBLDCADT('PRINT ') 83
CBLDCDAM('CLOS') 89
CBLDCDAM('END ') 92
CBLDCDAM('HOLD') 94
CBLDCDAM('OPEN') 97
CBLDCDAM('READ') 102
CBLDCDAM('REWT') 108
CBLDCDAM('RLES') 112
CBLDCDAM('STAT') 115

Index

606

CBLDCDAM('STRT') 119
CBLDCDAM('WRIT') 121
CBLDCDMB('BSEK') 126
CBLDCDMB('CLOS') 128
CBLDCDMB('CRAT') 130
CBLDCDMB('DGET') 134
CBLDCDMB('DPUT') 137
CBLDCDMB('GET ') 140
CBLDCDMB('OPEN') 143
CBLDCDMB('PUT ') 146
CBLDCIST('CLOS') 150
CBLDCIST('OPEN') 152
CBLDCIST('READ') 154
CBLDCIST('WRIT') 157
CBLDCJNL('UJPUT ') 161
CBLDCJUP('CLOSERPT') 164
CBLDCJUP('OPENRPT ') 166
CBLDCJUP('RDGETRPT') 169
CBLDCLCK('GET ') 180
CBLDCLCK('RELALL ') 183
CBLDCLCK('RELNAME ') 185
CBLDCLOG('PRINT ') 188
CBLDCMCF('ADLTAP ') 194
CBLDCMCF('APINFO ') 197
CBLDCMCF('CLOSE ') 203
CBLDCMCF('COMMIT ') 205
CBLDCMCF('CONTEND ') 208
CBLDCMCF('EXECAP ') 210
CBLDCMCF('MAINLOOP') 218
CBLDCMCF('OPEN ') 220
CBLDCMCF('RECEIVE ') 222
CBLDCMCF('RECVSYNC') 228
CBLDCMCF('REPLY ') 229
CBLDCMCF('RESEND ') 230
CBLDCMCF('ROLLBACK') 231
CBLDCMCF('SEND ') 233
CBLDCMCF('SENDRECV') 234
CBLDCMCF('SENDSYNC') 235
CBLDCMCF('TACTCN ') 236
CBLDCMCF('TACTLE ') 240
CBLDCMCF('TDCTCN ') 244
CBLDCMCF('TDCTLE ') 249
CBLDCMCF('TDLQLE ') 253
CBLDCMCF('TEMPGET ') 256

CBLDCMCF('TEMPPUT ') 260
CBLDCMCF('TIMERCAN') 264
CBLDCMCF('TIMERSET') 266
CBLDCMCF('TLSCN ') 270
CBLDCMCF('TLSCOM ') 275
CBLDCMCF('TLSLE ') 280
CBLDCMCF('TLSLN ') 284
CBLDCMCF('TOFLN ') 288
CBLDCMCF('TONLN ') 291
CBLDCPRF('PRFGETN ') 295
CBLDCPRF('PRFPUT ') 297
CBLDCRAP('CONNECT ') 300
CBLDCRAP('CONNECTX') 303
CBLDCRAP('DISCNCT ') 306
CBLDCRPC('CALL ') 309
CBLDCRPC('CLOSE ') 328
CBLDCRPC('CLTSEND ') 330
CBLDCRPC('DISCARDF') 333
CBLDCRPC('DISCARDS') 335
CBLDCRPC('GETCLADR') 337
CBLDCRPC('GETERDES') 339
CBLDCRPC('GETGWADR') 341
CBLDCRPC('GETSVPRI') 343
CBLDCRPC('GETWATCH') 345
CBLDCRPC('OPEN ') 347
CBLDCRPC('POLLANYR') 349
CBLDCRPC('SETSVPRI') 356
CBLDCRPC('SETWATCH') 358
CBLDCRPC('SVRETRY ') 360
CBLDCRSV('MAINLOOP') 362
CBLDCRTS('RTSPUT ') 365
CBLDCTAM('ERS '/'ERSR'/'ZRS '/'ZRSR') 369
CBLDCTAM('FxxR'/'FxxU'/'VxxR'/'VxxU') 374
CBLDCTAM('GST ') 380
CBLDCTAM('INFO') 383
CBLDCTAM('MFY '/'MFYS'/'STR '/'WFY '/'WFYS'/
'YTR ') 388
CBLDCTRN('BEGIN ') 394
CBLDCTRN('C-COMMIT') 396
CBLDCTRN('C-ROLL ') 399
CBLDCTRN('INFO ') 402
CBLDCTRN('U-COMMIT') 404
CBLDCTRN('U-ROLL ') 407
CBLDCUTO('T-STATUS') 410

Index

607

CBLDCXAT('CONNECT') 529
change name of application to be timer-started 592
client UAP, data area to which value is passed
from 61
client/server UAP (SPP TAM Access), coding sample
for 543
client/server UAP (SUP, SPP DAM access), coding
sample for 534
closing

internode shared table 150
jnlrput output file 164
logical file 89
MCF environment 203
physical file 128
set of resource manager 507

COBOL data structure 502
COBOL language template 60, 73
COBOL-UAP creation program

format for explaining 60
syntax of 59

coding
application program 2
data manipulation language 414
in COBOL language 60
note on 20
rule 20

coding sample 533
client/server UAP (SPP TAM Access) 543
client/server UAP (SUP, SPP DAM
access) 534
message exchange UAP (MHP) 548
X/Open-compliant UAP 559

commit_return characteristic, setting 519
commitment in chained mode, enabling 396
commitment in unchained mode, enabling 404
committing

global transaction 509
MHP 205

communication description entry 414
communication description entry (CD) coding
rule 416
communication events that indicate association status,
format of 531

communication handle for outstanding reply,
canceling 467
communication section coding rule 416
communication statement 414
communication statement coding rule 417
compiling 35

application program 35
stub 35
UAP 35

compiling and linking 35
connection status, acquiring 270
connection with RAP-processing listener

establishing 300, 303
releasing 306

continuous-inquiry-response processing,
terminating 208, 426
conventions

acronyms viii
diagrams x
fonts and symbols xi
KB, MB, GB, and TB xiii
permitted characters xii
version numbers xiv

conversational service connection
abortively terminating 474
establishing 469

COPY file for XATMI interface 451
creating

application program 1, 23
application program (TCP/IP) 23
application program (TCP/IP, OSI TP) 39
main and service program 63
main program (SUP, SPP, MHP) 64
MHP 28
service program (MHP) 71
service program (SPP) 67
source file for XATMI interface 48
SPP 24
stub 31
stub for XATMI Interface 41
stub for XATMI interface 48
stub of application programs that use both
OpenTP1 remote procedure calls and XATMI-
interfaced API functions 601

Index

608

stub source file 34
SUP 23
UAP in COBOL language which use system
call and arbitrary program library 20
UAP that handles offline work 31
UAP that uses XATMI interface 39
XATMI-interfaced application program 39
XATMI-interfaced stub for OSI TP
communication 52

D
DAM access facility 36
DAM file service (CBLDCDAM, CBLDCDMB) 88
data area

set in UAP 60
to which value is passed from client UAP 61
to which value is returned from OpenTP1 61
to which value is returned from server
UAP 61

data communication facility 420
data format of MCF event that reports discarding of
timer-start message (ERREVT4) 596
data manipulation language 414

coding in 414
data name 60, 415

length of character string specified as 60
data type that can be used as type 44
data type that can be used for type argument 44
DCADM.cbl 73
DCCONFPATH 57
DCDAM.cbl 88
DCDIR 57
DCDMB.cbl 88
DCIST.cbl 149
DCJNL.cbl 160
DCJUP.cbl 163
DCLCK.cbl 179
DCLOG.cbl 187
DCMCF.cbl 193
DCMPSV_UOC_TIME_CONTINUE 594
DCMPSV_UOC_TIME_DEQ 594
DCMPSV_UOC_TIME_JUST 594
DCPRF.cbl 294
DCRAP.cbl 299

DCRPC.cbl 308
DCRSV.cbl 308
DCSVGNAME 57
DCSVNAME 57
DCTAM.cbl 368
DCTRN.cbl 393
DCUAPCONFPATH 57
DCUTO.cbl 409
deleting

application timer start request 194
TAM table record 369

descriptor of asynchronous response-type RPC request
which has encountered error, acquiring 339
diagram conventions x
DISABLE - terminate continuous-inquiry-response
processing 426
DML 414

service facility 425
DML interface 413

E
enabling

commitment in chained mode 396
commitment in unchained mode 404
locking of resource 180
MHP rollback 231, 430
rollback in chained mode 399
rollback in unchained mode 407

entry 33
entry name 21
environment variable 57

application program 57
beginning with DC 57

ERREVT4 596
establishing

association 529
connection 236
connection with RAP-processing
listener 300, 303
conversational service connection 469

exchanging synchronous message 234
exec_time 593
executing

application program 54

Index

609

operation command 74, 439
EXIT PROGRAM 22
external variable name 22

F
facilities and their request codes, list of 6
facilities available with

MHP and their request codes 15
SPP and their request codes 10
SUP and their request codes 6
UAP that handles offline work and their
request codes 19

facility and program
available with MHP 14
available with SPP 10
available with SUP 6
available with UAP that handles offline
work 19

file created by stbmake command 34
file name 60
file to be linked to

MHP that performs dynamic loading of service
functions 37
SPP and MHP 36
SPP that performs dynamic loading of service
functions 37
SUP 37
UAP that handles offline work 37

FIRST 422
font conventions xi
FOR clause 421, 428, 432, 437, 440, 442
forced termination 54
format

communication events that indicate
association status 531
for explaining COBOL-UAP creation
program 60
received communication event 531
XATMI interface definition for client UAP
(SUP or SPP) 42

function format of user exit routine that determines
inheriting timer-start message 592

G
GB meaning xiii
getting reply from previous service request 476
global transaction

committing 509
returning information of 512
rolling back 516

I
information about current transaction, reporting 402
inheriting or canceling current timer-start 592
inputting

internode shared table record 154
journal data of jnlrput output file 169
logical file block 102
physical file block 140
physical file block directly 134
TAM table record 374

internode shared table
closing 150
opening 152

internode shared table record
inputting 154
outputting 157

ISAM facility 36
IST service (CBLDCIST) 149
item specified for XATMI interface definition of
server UAP 43

J
jnlrput output file

closing 164
opening 166

journal data editing (CBLDCJUP) 163
journal data of jnlrput output file, inputting 169

K
KB meaning xiii

L
le_name 593
length of character string specified as data name 60
linking 36

Index

610

application program 35
object file for non-Hitachi resource
manager 36

logical file
closing 89
opening 97
referencing status of 115
releasing, from shutdown state 112
shutting down 94

logical file block
inputting 102
outputting 121
updating 108

logical terminal
acquiring status of 280
deleting output queue of 253
releasing, from shutdown status 240
shutting down 249

M
main and service program, creating 63
main program 22

called by OS after UAP process starts 64
creating 64

making inherited timer-start immediate start 592
MB meaning xiii
MCF communication service, acquiring status of 275
MCF environment

closing 203
opening 220

MCF event that reports discarding of timer-start
message (ERREVT4), data format of 596
MESSAGE 428
message

receiving 222, 421
resending 230
sending 233, 424

MESSAGE DATE clause 422
message exchange (CBLDCMCF) 192
message exchange facility 36
message exchange UAP (MHP), coding sample
for 548
message in conversational connection

receiving 481

sending 490
message log output (CBLDCLOG) 187
message log, outputting 188
message queuing 36
MESSAGE TIME clause 422
MHP 63

committing 205
facility and program 14
procedure for creating 28

MHP main program 65
OpenTP1 COBOL-UAP creation program
called from 65

MHP rollback, enabling 231, 430
MHP service program executing service and returning
execution result 71
MHP service, starting 218
MHP that performs dynamic loading of service
functions, file to be linked to 37

N
name of file that stbmake command can take as input
or create as output 51
naming convention 48
naming, note on 21
node address of client UAP, acquiring 337
node address of gateway, acquiring 341
note

coding 20
creating UAP 35
naming 21

O
object file

for transaction control 36
linking, for non-Hitachi resource manager 36

online tester management (CBLDCUTO) 409
opening

internode shared table 152
jnlrput output file 166
logical file 97
MCF environment 220
physical file 143
set of resource manager 514

OpenTP1 COBOL-UAP creation program

Index

611

called from MHP main program 65
called from SPP main program 64
issued in SUP main program 64
syntax of 59, 413, 527

OpenTP1 remote procedure call and XATMI-
interfaced API functions in combination, using 600
OpenTP1 UAP, creating in COBOL language 60
OpenTP1, data area to which value is returned
from 61
operating environment 55
operation command, executing 74, 439
outputting

audit log data 83
internode shared table record 157
logical file block 121
message log 188
physical file block 146
physical file block directly 137

P
performance verification trace (CBLDCPRF) 294
permitted character conventions xii
physical file

allocating 130
closing 128
opening 143

physical file block
inputting 140
inputting directly 134
outputting 146
outputting directly 137
seeking 126

processing result
receiving, in asynchronous mode 349
rejecting acceptance of specific 335
rejecting receiving of 333

program ID 33
program name 21

R
real-time statistical information for arbitrary section,
acquiring 365
RECEIVE - accept temporarily-stored data 428
RECEIVE - receive message 421

received communication event, format of 531
receiving

message 222
message in conversational connection 481
processing result in asynchronous mode 349
synchronous message 228

receiving message 421
referencing

schedule priority of service request 343
service response waiting interval 345
status of logical file 115

rejecting
acceptance of specific processing result 335
receiving of processing result 333

relationship
between OpenTP1 facility and program for
COBOL-UAP creation 2
between transaction and service program 69
between UAP and program 2
between X/Open-compatible API and
function 446

releasing
all resources from lock 183
connection 244
connection with RAP-processing listener 306
logical file from shutdown state 112
logical terminal from shutdown status 240
resource from lock specified by name 185

remote procedure call (CBLDCRPC,
CBLDCRSV) 308
remote service, requesting 309
reply from previous service request, getting 476
reporting

application information 197
completion of user server start processing 78
data to CUP unidirectionally 330
information about current transaction 402
sequential number for acquired performance
verification trace 295
status of user server 80
test status of user server 410

requesting remote service 309
resending message 230
resource from lock specified by name, releasing 185

Index

612

resource lock control (CBLDCLCK) 179
resources from lock, releasing 183
response message, sending 229
retrying service program 360
returning

from service routine 486
global transaction information 512

ROLLBACK - enable MHP rollback 430
rollback in chained mode, enabling 399
rollback in unchained mode, enabling 407
rolling back global transaction 516
root transaction branch 14
RPC interface definition 32

comment that can be added to 33
example of 33

RPC interface definition file
name of 33
name of, appended with suffix 33
placed in directory 33

S
same typed record to be used by different process 47
sample

TX interface 586
XATMI interface 559

schedule priority of service request
referencing 343
setting 356

seeking physical file block 126
SEGMENT 428
SEND - acquire user journal 442
SEND - activate application program 431
SEND - execute operation command 439
SEND - send message 424
SEND - update temporarily-stored data 437
sending

message 233
message in conversational connection 490
response message 229
service request 454
service request and synchronously awaiting its
reply 461
synchronous message 235

sending message 424

sequential number for acquired performance
verification trace, reporting 295
server UAP

calling another server UAP 47
data area to which value is returned from 61

server-type connection establishment request
acquiring acceptance status for 284
starting accepting 291
stopping accepting 288

service 46
service facility 425

DML 425
service group name 65
service name

advertising 459
unadvertising 499

service program
creating 67, 71
relationship between transaction and 69
retrying 360

service program name 21
service request and synchronously awaiting its reply,
sending 461
service request, sending 454
service response waiting interval

referencing 345
updating 358

service routine, starting 495
set of resource manager

closing 507
opening 514

setting
commit_return characteristic 519
schedule priority of service request 356
transaction_control characteristic 524
transaction_timeout characteristic 522
user timer monitoring 266

shutting down
logical terminal 249

shutting down logical file 94
signal 56
source file, creating 48
SPP 63

facility and program 10

Index

613

procedure for creating 24
SPP main program 64

OpenTP1 COBOL-UAP creation program
called from 64

SPP service program executing service and returning
result 67
SPP service, starting 362
SPP that performs dynamic loading of service
functions, file to be linked to 37
starting

accepting server-type connection
establishment request 291
application program 347
MHP service 218
service routine 495
SPP and MHP 54
SPP service 362
transaction 394
UAP that handles offline work 55
using unrecoverable DAM file 119

starting and terminating
application program 54
SUP 54

status code 61
relationship between unique name specified in
USING clause of CALL statement and 61

STATUS KEY clause 422, 426, 428, 432, 437, 440,
442
stbmake 34, 49
stbmake command 32, 41

file created by 34
STOP RUN 22
stopping accepting server-type connection
establishment request 288
stub 31

creating 31, 32
creating object file of 35
creating, for UAP that supports OSI TP
communication 41
creating, for UAP that supports TCP/IP
communication 41
crating, for XATMI 48
creating, for XATMI interface 41
UAP that requires 31

stub source file
creating 34
creating, for XATMI interface 49

SUP 63
facility and program available with 6
forced termination 54
procedure for creating 23
starting and terminating 54

SUP main program 64
OpenTP1 COBOL-UAP creation program
issued in 64

symbol conventions xi
SYMBOLIC TERMINAL clause 422, 432
symbols used in coding format 415
synchronous message

exchanging 234
receiving 228
sending 235

syntax of OpenTP1 COBOL-UAP creation
program 59, 413, 527
system operation management (CBLDCADM) 73

T
TAM access facility 36
TAM file service (CBLDCTAM) 368
TAM table information, acquiring 383
TAM table record

adding 388
deleting 369
inputting 374
updating 388

TAM table status, acquiring 380
TB meaning xiii
temporarily-stored data

accepting 256, 428
updating 260, 437

terminating
application program 328
continuous-inquiry-response processing 208,
426
conversational service connection
abortively 474
SPP and MHP 54
UAP that handles offline work 55

Index

614

using unrecoverable DAM file 92
termination method 22
time_type 593
TPACALL 454
TPADVERTISE 459
TPCALL 461
TPCANCEL 467
TPCONNECT 469
TPDISCON 474
TPGETRPLY 476
TPINTRO 451
TPRECV 481
TPRETURN 486
TPSEND 490
tpstbmk 52
tpstbmk command 41, 53
TPSVCSTART 495
TPUNADVERTISE 499
transaction control (CBLDCTRN) 393
transaction_control characteristic, setting 524
transaction_timeout characteristic, setting 522
trnmkobj command 36
troubleshooting 58
TX interface sample 586
TX-interfaced application programming interface
(TX~) 501
TXBEGIN 505
TXCLOSE 507
TXCOMMIT 509
TXINFORM 512
TXINTRO 502
TXOPEN 514
TXROLLBACK 516
TXSETCOMMITRET 519
TXSETTIMEOUT 522
TXSETTRANCTL 524
typed record 43

U
UAP

data area set in 60
starting 54
terminating 54

UAP execution environment, setting 67

UAP shared library 32
UAP signals which are set by OpenTP1, list of 56
UAP that handles offline work

facility and program 19
procedure for creating 31

unadvertising service name 499
unique name 60, 415
unique-name-1 422, 428, 433, 440, 442
unique-name-2 440
unrecoverable DAM file

starting using 119
terminating using 92

uoc_func 592
uoc_func() 594
updating

logical file block 108
service response waiting interval 358
TAM table record 388
temporarily-stored data 260, 437

user exit routine
that can change timer-start environment, when
error which raises need for rerunning
OpenTP1 occurs 592
that determines inheriting time-start
message 592
that determines inheriting timer-start message,
function format of 592

user journal acquisition (CBLDCJNL) 160
user journal, acquiring 161, 442
user server

reporting status of 80
reporting test status of 36, 410

user server start processing, reporting completion
of 78
user timer monitoring

canceling 264
setting 266

user-specific performance verification trace,
acquiring 297

V
version number conventions xiv

Index

615

W
Windows, when using 22
WITH clause 433
WITH STOPPING clause 430

X
X/Open-compliant application programming
interface 445
X/Open-compliant UAP, coding sample for 559
X_C_TYPE 45
X_COMMON 45
X_OCTET 44
XATMI interface 600

COPY file 451
sample 559

XATMI interface definition 602
for client UAP 42
for client UAP (SUP or SPP) 42
for server UAP 43

XATMI interface definition file 41
appended with suffix 47
name of 47

XATMI stub copy file 49
XATMI stub header file 49
XATMI stub source file 49
XATMI-interfaced API function that can be used by
SPP called by function dc_rpc_call() 602
XATMI-interfaced application programming interface
(TP~) 450

Reader’s Comment Form

We would appreciate your comments and suggestions on this manual. We will use
these comments to improve our manuals. When you send a comment or suggestion,
please include the manual name and manual number. You can send your comments
by any of the following methods:

• Send email to your local Hitachi representative.
• Send email to the following address:

 WWW-mk@itg.hitachi.co.jp
• If you do not have access to email, please fill out the following information

and submit this form to your Hitachi representative:

Manual name:

Manual number:

Your name:

Company or
organization:

Street address:

Comment:

(For Hitachi use)

