
OpenTP1 Version 7
Programming Reference C Language

3000-3-D54-30(E)

Relevant program products
Note: In the program products listed below, those marked with an asterisk (*) might be released later than the other program
products.
For AIX 5L V5.1, AIX 5L V5.2, AIX 5L V5.3, and AIX V6.1
P-1M64-2131 uCosminexus TP1/Server Base 07-03*
P-1M64-2331 uCosminexus TP1/FS/Direct Access 07-03*
P-1M64-2431 uCosminexus TP1/FS/Table Access 07-03*
P-1M64-2531 uCosminexus TP1/Client/W 07-02
P-1M64-2631 uCosminexus TP1/Offline Tester 07-00
P-1M64-2731 uCosminexus TP1/Online Tester 07-00
P-1M64-2831 uCosminexus TP1/Multi 07-00
P-1M64-2931 uCosminexus TP1/High Availability 07-00
P-1M64-3131 uCosminexus TP1/Message Control 07-03
P-1M64-3231 uCosminexus TP1/NET/Library 07-04
P-1M64-8131 uCosminexus TP1/Shared Table Access 07-00
P-1M64-8331 uCosminexus TP1/Resource Manager Monitor 07-00
P-1M64-8531 uCosminexus TP1/Extension 1 07-00
P-1M64-C371 uCosminexus TP1/Message Queue 07-01
P-1M64-C771 uCosminexus TP1/Message Queue - Access 07-01
P-F1M64-31311 uCosminexus TP1/Message Control/Tester 07-00
P-F1M64-32311 uCosminexus TP1/NET/User Agent 07-00
P-F1M64-32312 uCosminexus TP1/NET/HDLC 07-00
P-F1M64-32313 uCosminexus TP1/NET/X25 07-00
P-F1M64-32314 uCosminexus TP1/NET/OSI-TP 07-00
P-F1M64-32315 uCosminexus TP1/NET/XMAP3 07-01
P-F1M64-32316 uCosminexus TP1/NET/HSC 07-00
P-F1M64-32317 uCosminexus TP1/NET/NCSB 07-00
P-F1M64-32318 uCosminexus TP1/NET/OSAS-NIF 07-01
P-F1M64-3231B uCosminexus TP1/NET/Secondary Logical Unit - TypeP2 07-00
P-F1M64-3231C uCosminexus TP1/NET/TCP/IP 07-02
P-F1M64-3231D uCosminexus TP1/NET/High Availability 07-00
P-F1M64-3231U uCosminexus TP1/NET/User Datagram Protocol 07-00
R-1M45F-31 uCosminexus TP1/Web 07-00
For AIX 5L V5.3 and AIX V6.1
P-1M64-1111 uCosminexus TP1/Server Base(64) 07-03*
P-1M64-1311 uCosminexus TP1/FS/Direct Access(64) 07-03*
P-1M64-1411 uCosminexus TP1/FS/Table Access(64) 07-03*
P-1M64-1911 uCosminexus TP1/High Availability(64) 07-00
P-1M64-1L11 uCosminexus TP1/Extension 1(64) 07-00
For HP-UX 11i V1 (PA-RISC) and HP-UX 11i V2 (PA-RISC)
P-1B64-3F31 uCosminexus TP1/NET/High Availability 07-00
P-1B64-8531 uCosminexus TP1/Extension 1 07-00
P-1B64-8931 uCosminexus TP1/High Availability 07-00
R-18451-41K uCosminexus TP1/Client/W 07-00
R-18452-41K uCosminexus TP1/Server Base 07-00

R-18453-41K uCosminexus TP1/FS/Direct Access 07-00
R-18454-41K uCosminexus TP1/FS/Table Access 07-00
R-18455-41K uCosminexus TP1/Message Control 07-03*
R-18456-41K uCosminexus TP1/NET/Library 07-04*
R-18459-41K uCosminexus TP1/Offline Tester 07-00
R-1845A-41K uCosminexus TP1/Online Tester 07-00
R-1845C-41K uCosminexus TP1/Shared Table Access 07-00
R-1845D-41K uCosminexus TP1/Resource Manager Monitor 07-00
R-1845E-41K uCosminexus TP1/Multi 07-00
R-1845F-41K uCosminexus TP1/Web 07-00
R-F18455-411K uCosminexus TP1/Message Control/Tester 07-00
R-F18456-411K uCosminexus TP1/NET/User Agent 07-00
R-F18456-415K uCosminexus TP1/NET/XMAP3 07-01*
R-F18456-41CK uCosminexus TP1/NET/TCP/IP 07-02*
For HP-UX 11i V2 (IPF) and HP-UX 11i V3 (IPF)
P-1J64-3F21 uCosminexus TP1/NET/High Availability 07-00
P-1J64-4F11 uCosminexus TP1/NET/High Availability(64) 07-00
P-1J64-8521 uCosminexus TP1/Extension 1 07-00
P-1J64-8611 uCosminexus TP1/Extension 1(64) 07-00
P-1J64-8921 uCosminexus TP1/High Availability 07-00
P-1J64-8A11 uCosminexus TP1/High Availability(64) 07-00
P-1J64-C371 uCosminexus TP1/Message Queue 07-01
P-1J64-C571 uCosminexus TP1/Message Queue(64) 07-01
P-1J64-C871 uCosminexus TP1/Message Queue - Access(64) 07-00
R-18451-21J uCosminexus TP1/Client/W 07-02
R-18452-21J uCosminexus TP1/Server Base 07-03*
R-18453-21J uCosminexus TP1/FS/Direct Access 07-03*
R-18454-21J uCosminexus TP1/FS/Table Access 07-03*
R-18455-21J uCosminexus TP1/Message Control 07-03*
R-18456-21J uCosminexus TP1/NET/Library 07-04*
R-18459-21J uCosminexus TP1/Offline Tester 07-00
R-1845A-21J uCosminexus TP1/Online Tester 07-00
R-1845C-21J uCosminexus TP1/Shared Table Access 07-00
R-1845D-21J uCosminexus TP1/Resource Manager Monitor 07-00
R-1845E-21J uCosminexus TP1/Multi 07-00
R-1845F-21J uCosminexus TP1/Web 07-00
R-1B451-11J uCosminexus TP1/Client/W(64) 07-02
R-1B452-11J uCosminexus TP1/Server Base(64) 07-03*
R-1B453-11J uCosminexus TP1/FS/Direct Access(64) 07-03*
R-1B454-11J uCosminexus TP1/FS/Table Access(64) 07-03*
R-1B455-11J uCosminexus TP1/Message Control(64) 07-03*
R-1B456-11J uCosminexus TP1/NET/Library(64) 07-04*
R-F18455-211J uCosminexus TP1/Message Control/Tester 07-00
R-F18456-215J uCosminexus TP1/NET/XMAP3 07-01*

R-F18456-21CJ uCosminexus TP1/NET/TCP/IP 07-02*
R-F1B456-11CJ uCosminexus TP1/NET/TCP/IP(64) 07-02*
For Solaris 8, Solaris 9, and Solaris 10
P-9D64-3F31 uCosminexus TP1/NET/High Availability 07-00
P-9D64-8531 uCosminexus TP1/Extension 1 07-00
P-9D64-8931 uCosminexus TP1/High Availability 07-00
R-19451-216 uCosminexus TP1/Client/W 07-00
R-19452-216 uCosminexus TP1/Server Base 07-00
R-19453-216 uCosminexus TP1/FS/Direct Access 07-00
R-19454-216 uCosminexus TP1/FS/Table Access 07-00
R-19455-216 uCosminexus TP1/Message Control 07-03*
R-19456-216 uCosminexus TP1/NET/Library 07-04*
R-19459-216 uCosminexus TP1/Offline Tester 07-00
R-1945A-216 uCosminexus TP1/Online Tester 07-00
R-1945C-216 uCosminexus TP1/Shared Table Access 07-00
R-1945D-216 uCosminexus TP1/Resource Manager Monitor 07-00
R-1945E-216 uCosminexus TP1/Multi 07-00
R-F19456-2156 uCosminexus TP1/NET/XMAP3 07-01*
R-F19456-21C6 uCosminexus TP1/NET/TCP/IP 07-02*
For Red Hat Enterprise Linux AS 4 (AMD64 & Intel EM64T), Red Hat Enterprise Linux AS 4 (x86), Red Hat Enterprise Linux ES
4 (AMD64 & Intel EM64T), and Red Hat Enterprise Linux ES 4 (x86)
P-9S64-2161 uCosminexus TP1/Server Base 07-00
P-9S64-2351 uCosminexus TP1/FS/Direct Access 07-00
P-9S64-2451 uCosminexus TP1/FS/Table Access 07-00
P-9S64-2551 uCosminexus TP1/Client/W 07-00
P-9S64-3151 uCosminexus TP1/Message Control 07-00
P-9S64-3251 uCosminexus TP1/NET/Library 07-00
P-9S64-C371 uCosminexus TP1/Message Queue 07-01
P-F9S64-3251C uCosminexus TP1/NET/TCP/IP 07-00
P-F9S64-3251U uCosminexus TP1/NET/User Datagram Protocol 07-00
R-1845F-A15 uCosminexus TP1/Web 07-00
For Red Hat Enterprise Linux AS 4 (AMD64 & Intel EM64T), Red Hat Enterprise Linux AS 4 (x86), Red Hat Enterprise Linux ES
4 (AMD64 & Intel EM64T), Red Hat Enterprise Linux ES 4 (x86), Red Hat Enterprise Linux 5 (AMD/Intel 64), Red Hat Enterprise
Linux 5 (x86), Red Hat Enterprise Linux 5 Advanced Platform (AMD/Intel 64), and Red Hat Enterprise Linux 5 Advanced Platform
(x86)
P-9S64-2951 uCosminexus TP1/High Availability 07-00
P-9S64-8551 uCosminexus TP1/Extension 1 07-00
P-9S64-C771 uCosminexus TP1/Message Queue - Access 07-01
P-F9S64-3251D uCosminexus TP1/NET/High Availability 07-00
For Red Hat Enterprise Linux 5 (AMD/Intel 64), Red Hat Enterprise Linux 5 (x86), Red Hat Enterprise Linux 5 Advanced Platform
(AMD/Intel 64), and Red Hat Enterprise Linux 5 Advanced Platform (x86)
P-9S64-2171 uCosminexus TP1/Server Base 07-03
P-9S64-2361 uCosminexus TP1/FS/Direct Access 07-03
P-9S64-2461 uCosminexus TP1/FS/Table Access 07-03
P-9S64-2561 uCosminexus TP1/Client/W 07-02
P-9S64-3161 uCosminexus TP1/Message Control 07-03*

P-9S64-3261 uCosminexus TP1/NET/Library 07-04*
P-9S64-C571 uCosminexus TP1/Message Queue 07-01
P-F9S64-32611 uCosminexus TP1/NET/User Agent 07-00
P-F9S64-3261C uCosminexus TP1/NET/TCP/IP 07-02
P-F9S64-3261U uCosminexus TP1/NET/User Datagram Protocol 07-00
For Red Hat Enterprise Linux 5 (AMD/Intel 64) and Red Hat Enterprise Linux 5 Advanced Platform (AMD/Intel 64)
P-9W64-2111 uCosminexus TP1/Server Base(64) 07-03
P-9W64-2311 uCosminexus TP1/FS/Direct Access(64) 07-03
P-9W64-2411 uCosminexus TP1/FS/Table Access(64) 07-03
P-9W64-2911 uCosminexus TP1/High Availability(64) 07-02
P-9W64-8511 uCosminexus TP1/Extension 1(64) 07-02
For Red Hat Enterprise Linux AS 4 (IPF)
P-9V64-2121 uCosminexus TP1/Server Base 07-00
P-9V64-2321 uCosminexus TP1/FS/Direct Access 07-00
P-9V64-2421 uCosminexus TP1/FS/Table Access 07-00
P-9V64-2521 uCosminexus TP1/Client/W 07-00
P-9V64-3121 uCosminexus TP1/Message Control 07-00
P-9V64-3221 uCosminexus TP1/NET/Library 07-00
P-9V64-C371 uCosminexus TP1/Message Queue(64) 07-01
P-9V64-C771 uCosminexus TP1/Message Queue - Access(64) 07-00
P-F9V64-3221C uCosminexus TP1/NET/TCP/IP 07-00
P-F9V64-3221U uCosminexus TP1/NET/User Datagram Protocol 07-00
For Red Hat Enterprise Linux AS 4 (IPF), Red Hat Enterprise Linux 5 (Intel Itanium), and Red Hat Enterprise Linux 5 Advanced
Platform (Intel Itanium)
P-9V64-2921 uCosminexus TP1/High Availability 07-00
P-9V64-8521 uCosminexus TP1/Extension 1 07-00
P-F9V64-3221D uCosminexus TP1/NET/High Availability 07-00
For Red Hat Enterprise Linux 5 (Intel Itanium) and Red Hat Enterprise Linux 5 Advanced Platform (Intel Itanium)
P-9V64-2131 uCosminexus TP1/Server Base 07-02
P-9V64-2331 uCosminexus TP1/FS/Direct Access 07-02
P-9V64-2431 uCosminexus TP1/FS/Table Access 07-02
P-9V64-2531 uCosminexus TP1/Client/W 07-02
P-9V64-3131 uCosminexus TP1/Message Control 07-03*
P-9V64-3231 uCosminexus TP1/NET/Library 07-04*
P-F9V64-3231C uCosminexus TP1/NET/TCP/IP 07-02*
P-F9V64-3231U uCosminexus TP1/NET/User Datagram Protocol 07-00
For Windows 2000, Windows Server 2003, Windows Server 2003 x64 Editions, Windows Server 2003 R2, Windows Server 2003
R2 x64 Editions, Windows XP, Windows Vista, and Windows Vista x64
P-2464-2144 uCosminexus TP1/Client/P 07-02
For Windows 2000, Windows Server 2003, Windows Server 2003 x64 Editions, Windows Server 2003 R2, Windows Server 2003
R2 x64 Editions, and Windows XP
R-1845F-8134 uCosminexus TP1/Web 07-00
For Windows 2000, Windows Server 2003, Windows Server 2003 x64 Editions, Windows Server 2003 R2, Windows Server 2003
R2 x64 Editions, Windows XP, Windows Vista, Windows Vista x64, Windows Server 2008, and Windows Server 2008 x64
P-2464-7824 uCosminexus TP1/Client for .NET Framework 07-03

R-15451-21 uCosminexus TP1/Connector for .NET Framework 07-03
For Windows Server 2003, Windows Server 2003 x64 Editions, Windows Server 2003 R2, Windows Server 2003 R2 x64 Editions,
Windows XP, Windows Vista, Windows Vista x64, Windows Server 2008, and Windows Server 2008 x64
P-2464-2274 uCosminexus TP1/Server Base 07-03*
P-2464-2374 uCosminexus TP1/FS/Direct Access 07-03*
P-2464-2474 uCosminexus TP1/FS/Table Access 07-03*
P-2464-2544 uCosminexus TP1/Extension 1 07-00
P-2464-3154 uCosminexus TP1/Message Control 07-03*
P-2464-3254 uCosminexus TP1/NET/Library 07-04*
P-2464-3354 uCosminexus TP1/Messaging 07-00
P-2464-C374 uCosminexus TP1/Message Queue 07-01
P-2464-C774 uCosminexus TP1/Message Queue - Access 07-00
P-F2464-3254C uCosminexus TP1/NET/TCP/IP 07-02*
R-15452-21 uCosminexus TP1/Extension for .NET Framework 07-00
R-1945B-24 uCosminexus TP1/LiNK 07-02
For Windows Server 2003, Windows Server 2003 x64 Editions, Windows Server 2003 R2, Windows Server 2003 R2 x64 Editions,
and Windows XP
P-F2464-32545 uCosminexus TP1/NET/XMAP3 07-01*
For Windows Server 2003, Windows Server 2003 x64 Editions, Windows Server 2003 R2, Windows Server 2003 R2 x64 Editions,
Windows Server 2008, and Windows Server 2008 x64
P-2464-2934 uCosminexus TP1/High Availability 07-00
P-F2464-3254D uCosminexus TP1/NET/High Availability 07-00
For Java VM
P-2464-7394 uCosminexus TP1/Client/J 07-02
P-2464-73A4 uCosminexus TP1/Client/J 07-02
This manual can be used for products other than the products shown above. For details, see the Release Notes.
These products were developed under a quality management system that has received ISO9001 and TickIT certification.

Trademarks
AIX is a trademark of International Business Machines Corporation in the United States, other countries, or both.
AIX 5L is a trademark of International Business Machines Corporation in the United States, other countries, or both.
AMD, AMD Opteron, and combinations thereof, are trademarks of Advanced Micro Devices, Inc.
HP-UX is a product name of Hewlett-Packard Company.
Itanium is a trademark of Intel Corporation in the United States and other countries.
Java is a registered trademark of Oracle and/or its affiliates.
Linux(R) is the registered trademark of Linus Torvalds in the U.S. and other countries.
Microsoft is either a registered trademark or a trademark of Microsoft Corporation in the United States and/or other countries.
MS-DOS is a registered trademark of Microsoft Corp. in the U.S. and other countries.
ORACLE is either a registered trademark or a trademark of Oracle and/or its affiliates.
Oracle is either a registered trademark or a trademark of Oracle Corporation and/or its affiliates.
Oracle and Oracle 10g are either registered trademarks or trademarks of Oracle and/or its affiliates.
Oracle and Oracle9i are either registered trademarks or trademarks of Oracle and/or its affiliates.
OSF is a trademark of the Open Software Foundation, Inc.
Red Hat is a trademark or a registered trademark of Red Hat Inc. in the United States and other countries.
Solaris is either a registered trademark or a trademark of Oracle and/or its affiliates.
UNIX is a registered trademark of The Open Group in the United States and other countries.

Windows is either a registered trademark or a trademark of Microsoft Corporation in the United States and/or other countries.
Windows Server is either a registered trademark or a trademark of Microsoft Corporation in the United States and/or other countries.
Windows Vista is either a registered trademark or a trademark of Microsoft Corporation in the United States and/or other countries.
X/Open is a registered trademark of The Open Group in the U.K. and other countries.
Portions of this document are extracted from X/Open CAE Specification System Interfaces and Headers, Issue 4, (C202 ISBN
1-872630-47-2) Copyright (C) July 1992, X/Open Company Limited with the permission of X/Open;
part of which is based on IEEE Std 1003.1-1990, (C) 1990 Institute of Electrical and Electronics Engineers, Inc., and IEEE Std
1003.2/D12, (C) 1992 Institute of Electrical and Electronics Engineers, Inc.
No further reproduction of this material is permitted without the prior permission of the copyright owners.
Portions of this document are extracted from X/Open Preliminary Specification Distributed Transaction Processing: The TxRPC
Specification (P305 ISBN 1-85912-000-8) Copyright (C) July 1993, X/Open Company Limited with the permission of X/Open.
No further reproduction of this material is permitted without the prior permission of the copyright owners.
Portions of this document are copyrighted by Open Software Foundation, Inc.
This document and the software described herein are furnished under a license, and may be used and copied only in accordance with
the terms of such license and with the inclusion of the above copyright notice. Title to and ownership of the document and software
remain with OSF or its licensors.
Other product and company names mentioned in this document may be the trademarks of their respective owners. Throughout this
document Hitachi has attempted to distinguish trademarks from descriptive terms by writing the name with the capitalization used
by the manufacturer, or by writing the name with initial capital letters. Hitachi cannot attest to the accuracy of this information. Use
of a trademark in this document should not be regarded as affecting the validity of the trademark.

Restrictions
Information in this document is subject to change without notice and does not represent a commitment on the part of Hitachi. The
software described in this manual is furnished according to a license agreement with Hitachi. The license agreement contains all of
the terms and conditions governing your use of the software and documentation, including all warranty rights, limitations of liability,
and disclaimers of warranty.
Material contained in this document may describe Hitachi products not available or features not available in your country.
No part of this material may be reproduced in any form or by any means without permission in writing from the publisher.
Printed in Japan.

Edition history
Edition 1 (3000-3-D54(E)): June 2006
Edition 3 (3000-3-D54-30(E)): October 2010

Copyright
All Rights Reserved. Copyright (C) 2006, 2010, Hitachi, Ltd.

Summary of amendments
The following table lists changes in this manual (3000-3-D54-30(E)) and product
changes related to this manual for uCosminexus TP1/Server Base 07-03, uCosminexus
TP1/Server Base(64) 07-03, uCosminexus TP1/Message Control 07-03, uCosminexus
TP1/Message Control(64) 07-03, uCosminexus TP1/NET/Library 07-04, and
uCosminexus TP1/NET/Library(64) 07-04.

The following table lists changes in this manual (3000-3-D54-30(E)) and product
changes related to this manual for uCosminexus TP1/Message Control 07-02 and
uCosminexus TP1/NET/Library 07-03

Changes Location

Explanations have been added about the maximum length of segments
that can be sent or received.

Message exchange processing
(dc_mcf_~) in Chapter 2

dc_mcf_execap,
dc_mcf_receive,
dc_mcf_recvsync, dc_mcf_reply,
dc_mcf_send, dc_mcf_sendrecv,
dc_mcf_sendsync

Explanations have been added about global domains. Remote procedure call (dc_rpc_~) in
Chapter 2

dc_rpc_call_to,
DCRPC_BINDTBL_SET,
DCRPC_DIRECT_SCHEDULE

Tables listing interface changes have been added to assist in migrating
from TP1/Message Control Version 6 and earlier.

Appendix B

Changes Location

A library function can now be used to delete application timer startup
requests.
To support this change, the following function has been added:
• dc_mcf_adltap

1.1.1, 1.1.1(2), 1.1.1(3), Message
exchange processing (dc_mcf_~) in
Chapter 2
dc_mcf_adltap

Library functions can now be used to display the status of connections and
to establish and release connections.
To support this change, the following functions have been added:
• dc_mcf_tactcn

• dc_mcf_tdctcn

• dc_mcf_tlscn

1.1.1, 1.1.1(2), 1.1.1(3), Message
exchange processing (dc_mcf_~) in
Chapter 2
dc_mcf_tactcn, dc_mcf_tdctcn,
dc_mcf_tlscn

A library function can now be used to display the status of MCF
communication services and application startup services.
To support this change, the following function has been added:
• dc_mcf_tlscom

1.1.1, 1.1.1(2), 1.1.1(3), Message
exchange processing (dc_mcf_~) in
Chapter 2
dc_mcf_tlscom

In addition to the above changes, minor editorial corrections have been made.

The following table lists changes in the manual (3000-3-D54-20(E)) and product
changes related to that manual for uCosminexus TP1/Server Base 07-02, uCosminexus
TP1/Message Control 07-01, and uCosminexus TP1/NET/Library 07-01.

The following table lists changes in the manual (3000-3-D54-20(E)) and product
changes related to that manual for uCosminexus TP1/Server Base 07-01.

Library functions can now be used to display the status of logical
terminals, to shut down logical terminals, to release logical terminals from
shutdown status, and to delete the output queue of logical terminals.
To support this change, the following functions have been added:
• dc_mcf_tactle

• dc_mcf_tdctle

• dc_mcf_tdlqle

• dc_mcf_tlsle

1.1.1, 1.1.1(2), 1.1.1(3), Message
exchange processing (dc_mcf_~) in
Chapter 2
dc_mcf_tactle, dc_mcf_tdctle,
dc_mcf_tdlqle, dc_mcf_tlsle

A library function can now be used to acquire the acceptance status of
connection establishment requests.
To support this change, the following function has been added:
• dc_mcf_tlsln

1.1.1, 1.1.1(2), 1.1.1(3)
Message exchange processing
(dc_mcf_~) in Chapter 2

dc_mcf_tlsln

Library functions can now be used to start and stop acceptance of
server-type connection establishment requests.
To support this change, the following functions have been added:
• dc_mcf_tofln

• dc_mcf_tonln

1.1.1, 1.1.1(2), 1.1.1(3), Message
exchange processing (dc_mcf_~) in
Chapter 2
dc_mcf_tofln, dc_mcf_tonln

MHPs can now use the facility for dynamic loading of service functions. 1.2.1(3), 1.2.5(2)(d)

Changes

An audit log output function was added.
To support this change, the dc_log_audit_print function was added.

A facility that allows service functions to be loaded dynamically was added.

A function that allows the system to operate without the use of system journal files (journal fileless mode) was
added.
To support this change, some function arguments, return values, and notes were changed.

The description of the remote API facility was changed.
To support this change, return values were changed or added.

Changes

The C language interface in the 32-bit architecture and the C language interface in the 64-bit architecture have
been unified.

Changes Location

Notes and return values have been added.

Changes

i

Preface

This manual explains the syntax of dedicated library functions which can be used with
the OpenTP1 application programs. The program products of OpenTP1 are as follows:

• Distributed transaction processing facility TP1/Server Base

• Distributed application server TP1/LiNK

In this manual, an application program which is created by the user is abbreviated to a
UAP (User Application Program).

Products described in this manual, other than those for which the manual is released,
may not work with OpenTP1 Version 7 products. You need to confirm that the products
you want to use work with OpenTP1 Version 7 products.

Intended readers
This manual is intended for programmers who create user application programs
(UAPs) used with TP1/Server Base or TP1/LiNK.

Readers of this manual are assumed to have knowledge about operating systems,
online systems, handling of the machine to be used, and the syntax of the C language
(ANSI C, C++, or Classic C) used for coding application programs.

This manual assumes that the reader has read the OpenTP1 Programming Guide.

Organization of this manual
This manual is organized as follows:

1. Creating Application Programs
Explains the procedure for creating application programs to be used with the
OpenTP1.

2. Syntax of OpenTP1 Library Functions
Explains the syntax of the OpenTP1 library functions.

3. Syntax of OpenTP1 Library Functions (Message Log Reporting)
Explains the syntax of the OpenTP1 library functions for receiving message logs
to obtain OpenTP1 statuses.

4. X/Open-compliant Application Programming Interface
Explains the syntax of the library functions complying with the X/Open.

ii

5. Syntax of OpenTP1 Library Functions (Association Status Notification)
An SPP for a communication event is required for the client/server
communication that uses the OSI TP communication protocol. This chapter
explains the library functions used by SPPs for communication event and the
formats of receive communication events.

6. X/Open-compliant Inter-application Communication (TxRPC)
Explains the syntax of Inter-Application communication (TxRPC) complying
with the X/Open.

7. Coding Samples
Gives coding samples for OpenTP1 application programs.

8. Reference for Application Activation
Explains the communication facilities in the message exchange configuration,
focusing on user exit routines relating to application program activate and MCF
event (ERREVT4) reference information.

Appendix A. Using OpenTP1 Remote Procedure Calls and XATMI-interfaced
Functions in Combination

Explains the procedures for creating UAPs that use OpenTP1 remote procedure
calls and XATMI interface functions in combination.

Appendix B. Changes to the Interfaces (for Migrating from Version 6 or Earlier)
Provides tables that list changes in the interfaces to assist in migrating to Version
7 from Version 6 or earlier.

Related publications
This manual is part of a related set of manuals. The manuals in the set, including this
manual, are listed below. The manual numbers follow the manual titles.
OpenTP1 products

• OpenTP1 Version 7 Description (3000-3-D50(E))

• OpenTP1 Version 7 Programming Guide (3000-3-D51(E))

• OpenTP1 Version 7 System Definition (3000-3-D52(E))

• OpenTP1 Version 7 Operation (3000-3-D53(E))

• OpenTP1 Version 7 Programming Reference C Language (3000-3-D54(E))

• OpenTP1 Version 7 Programming Reference COBOL Language
(3000-3-D55(E))

• OpenTP1 Version 7 Messages (3000-3-D56(E))

iii

• OpenTP1 Version 7 Tester and UAP Trace User's Guide (3000-3-D57(E))

• OpenTP1 Version 7 TP1/Client User's Guide TP1/Client/W, TP1/Client/P
(3000-3-D58(E))

• OpenTP1 Version 7 TP1/Client User's Guide TP1/Client/J (3000-3-D59(E))

• OpenTP1 Version 7 TP1/LiNK User's Guide (3000-3-D60(E))#1

• OpenTP1 Version 7 Protocol TP1/NET/TCP/IP (3000-3-D70(E))

• OpenTP1 Version 7 TP1/Message Queue User's Guide (3000-3-D90(E))#1

• OpenTP1 Version 7 TP1/Message Queue Messages (3000-3-D91(E))#1

• OpenTP1 Version 7 TP1/Message Queue Application Programming Guide
(3000-3-D92(E))#1

• OpenTP1 Version 7 TP1/Message Queue Application Programming Reference
(3000-3-D93(E))#1

Other OpenTP1 products

• TP1/Web User's Guide and Reference (3000-3-D62(E))#1

Other related products

• Indexed Sequential Access Method ISAM (3000-3-046(E))

• XP/W (3000-3-047(E))

• Extended Mapping Service 2/Workstation XMAP2/W DESCRIPTION/USER'S
GUIDE (3000-7-421(E))

• SEWB 3 General Information (3000-7-450(E))

• Job Management Partner 1/Base User's Guide (3020-3-K06(E))

• Job Management Partner 1/Base Messages (3020-3-K07(E))

• Job Management Partner 1/Base Software Developer's Guide (3020-3-K08(E))

For OpenTP1 protocol manuals, please check whether English versions are available.

#1

If you want to use this manual, confirm that it has been published. (Some of these
manuals might not have been published yet.)

Conventions: Abbreviations for product names
This manual uses the following abbreviations for product names:

iv

Abbreviation Full name or meaning

AIX AIX 5L V5.1

AIX 5L V5.2

AIX 5L V5.3

AIX V6.1

Client .NET TP1/Client for .NET
Framework

uCosminexus TP1/Client for .NET Framework

Connector .NET TP1/Connector for
.NET Framework

uCosminexus TP1/Connector for .NET Framework

DPM JP1/ServerConductor/Deployment Manager

HI-UX/WE2 HI-UX/workstation Extended Version 2

HP-UX HP-UX (IPF) HP-UX 11i V2 (IPF)

HP-UX 11i V3 (IPF)

HP-UX (PA-RISC) HP-UX 11i V1 (PA-RISC)

HP-UX 11i V2 (PA-RISC)

IPF Itanium(R) Processor Family

Java JavaTM

JP1 JP1/AJS2 JP1/AJS2 - Agent JP1/Automatic Job Management System 2 - Agent

JP1/AJS2 -
Manager

JP1/Automatic Job Management System 2 - Manager

JP1/AJS2 - View JP1/Automatic Job Management System 2 - View

JP1/AJS2 -
Scenario
Operation

JP1/AJS2 - Scenario
Operation Manager

JP1/Automatic Job Management System 2 - Scenario
Operation Manager

JP1/AJS2 - Scenario
Operation View

JP1/Automatic Job Management System 2 - Scenario
Operation View

JP1/NETM/Audit JP1/NETM/Audit - Manager

Linux Linux(R)

Linux (AMD64/Intel EM64T/x86) Red Hat Enterprise Linux AS 4 (AMD64 & Intel EM64T)

Red Hat Enterprise Linux AS 4 (x86)

Red Hat Enterprise Linux ES 4 (AMD64 & Intel EM64T)

v

Red Hat Enterprise Linux ES 4 (x86)

Red Hat Enterprise Linux 5 (AMD/Intel 64)

Red Hat Enterprise Linux 5 (x86)

Red Hat Enterprise Linux 5 Advanced Platform (AMD/Intel
64)

Red Hat Enterprise Linux 5 Advanced Platform (x86)

Linux (IPF) Red Hat Enterprise Linux AS 4 (IPF)

Red Hat Enterprise Linux 5 (Intel Itanium)

Red Hat Enterprise Linux 5 Advanced Platform (Intel
Itanium)

MS-DOS Microsoft(R) MS-DOS(R)

NETM/DM JP1/NETM/DM Client

JP1/NETM/DM Manager

JP1/NETM/DM SubManager

Oracle Oracle 10g

Oracle9i

Solaris Solaris 8

Solaris 9

Solaris 10

TP1/Client TP1/Client/J uCosminexus TP1/Client/J

TP1/Client/P uCosminexus TP1/Client/P

TP1/Client/W uCosminexus TP1/Client/W

uCosminexus TP1/Client/W(64)

TP1/EE uCosminexus TP1/Server Base Enterprise Option

uCosminexus TP1/Server Base Enterprise Option(64)

TP1/Extension 1 uCosminexus TP1/Extension 1

uCosminexus TP1/Extension 1(64)

Abbreviation Full name or meaning

vi

TP1/FS/Direct Access uCosminexus TP1/FS/Direct Access

uCosminexus TP1/FS/Direct Access(64)

TP1/FS/Table Access uCosminexus TP1/FS/Table Access

uCosminexus TP1/FS/Table Access(64)

TP1/High Availability uCosminexus TP1/High Availability

uCosminexus TP1/High Availability(64)

TP1/LiNK uCosminexus TP1/LiNK

TP1/Message Control uCosminexus TP1/Message Control

uCosminexus TP1/Message Control(64)

TP1/Message Control/Tester uCosminexus TP1/Message Control/Tester

TP1/Message Queue uCosminexus TP1/Message Queue

uCosminexus TP1/Message Queue(64)

TP1/Message Queue - Access uCosminexus TP1/Message Queue - Access

uCosminexus TP1/Message Queue - Access(64)

TP1/Messaging uCosminexus TP1/Messaging

TP1/Multi uCosminexus TP1/Multi

TP1/NET/HDLC uCosminexus TP1/NET/HDLC

TP1/NET/High Availability uCosminexus TP1/NET/High Availability

uCosminexus TP1/NET/High Availability(64)

TP1/NET/HSC uCosminexus TP1/NET/HSC

TP1/NET/Library uCosminexus TP1/NET/Library

uCosminexus TP1/NET/Library(64)

TP1/NET/NCSB uCosminexus TP1/NET/NCSB

TP1/NET/OSAS-NIF uCosminexus TP1/NET/OSAS-NIF

TP1/NET/OSI-TP uCosminexus TP1/NET/OSI-TP

TP1/NET/SLU -
TypeP2

TP1/NET/
Secondary Logical
Unit - TypeP2

uCosminexus TP1/NET/Secondary Logical Unit - TypeP2

Abbreviation Full name or meaning

vii

TP1/NET/TCP/IP uCosminexus TP1/NET/TCP/IP

uCosminexus TP1/NET/TCP/IP(64)

TP1/NET/UDP uCosminexus TP1/NET/User Datagram Protocol

TP1/NET/User Agent uCosminexus TP1/NET/User Agent

TP1/NET/X25 uCosminexus TP1/NET/X25

TP1/NET/X25-Extended uCosminexus TP1/NET/X25-Extended

TP1/NET/XMAP3 uCosminexus TP1/NET/XMAP3

TP1/Offline Tester uCosminexus TP1/Offline Tester

TP1/Online Tester uCosminexus TP1/Online Tester

TP1/Resource Manager Monitor uCosminexus TP1/Resource Manager Monitor

TP1/Server Base uCosminexus TP1/Server Base

uCosminexus TP1/Server Base(64)

TP1/Shared Table Access uCosminexus TP1/Shared Table Access

TP1/Web uCosminexus TP1/Web

Windows 2000 Microsoft(R) Windows(R) 2000 Advanced Server Operating
System

Microsoft(R) Windows(R) 2000 Datacenter Server Operating
System

Microsoft(R) Windows(R) 2000 Professional Operating
System

Microsoft(R) Windows(R) 2000 Server Operating System

Windows Server 2003 Microsoft(R) Windows Server(R) 2003, Datacenter Edition

Microsoft(R) Windows Server(R) 2003, Enterprise Edition

Microsoft(R) Windows Server(R) 2003, Standard Edition

Windows Server 2003 R2 Microsoft(R) Windows Server(R) 2003 R2, Enterprise Edition

Microsoft(R) Windows Server(R) 2003 R2, Standard Edition

Windows Server 2003 x64 Editions Microsoft(R) Windows Server(R) 2003, Datacenter x64 Edition

Abbreviation Full name or meaning

viii

• The term Windows is used to indicate Windows Server 2003, Windows XP and
Windows Vista if the difference in functions among them need not be considered.

• The term UNIX is used to indicate AIX, HP-UX, Linux, and Solaris.

Conventions: Acronyms
This manual also uses the following acronyms:

Microsoft(R) Windows Server(R) 2003, Enterprise x64 Edition

Microsoft(R) Windows Server(R) 2003, Standard x64 Edition

Windows Server 2003 R2 x64 Editions Microsoft(R) Windows Server(R) 2003 R2, Enterprise x64
Edition

Microsoft(R) Windows Server(R) 2003 R2, Standard x64
Edition

Windows Server 2008 Microsoft(R) Windows Server(R) 2008 Datacenter (x86)

Microsoft(R) Windows Server(R) 2008 Enterprise (x86)

Microsoft(R) Windows Server(R) 2008 Standard (x86)

Windows Server 2008 x64 Editions Microsoft(R) Windows Server(R) 2008 Datacenter (x64)

Microsoft(R) Windows Server(R) 2008 Enterprise (x64)

Microsoft(R) Windows Server(R) 2008 Standard (x64)

Windows Vista Microsoft(R) Windows Vista(R) Business (x86)

Microsoft(R) Windows Vista(R) Enterprise (x86)

Microsoft(R) Windows Vista(R) Ultimate (x86)

Windows Vista x64 Editions Microsoft(R) Windows Vista(R) Business (x64)

Microsoft(R) Windows Vista(R) Enterprise (x64)

Microsoft(R) Windows Vista(R) Ultimate (x64)

Windows XP Microsoft(R) Windows(R) XP Professional Operating System

Abbreviation Full name or meaning

ix

Acronym Full name or meaning

ACL Access Control List

ANSI American National Standards Institute

AP Application Program

API Application Programming Interface

C/S Client/Server

CRM Communication Resource Manager

CUP Client User Program

DAM Direct Access Method

DBMS Database Management System

DML Data Manipulation Language

DNS Domain Name System

FEP Front End Processor

GUI Graphical User Interface

HA High Availability

ISAM Indexed Sequential Access Method

IST Internode Shared Table

LAN Local Area Network

MCF Message Control Facility

MHP Message Handling Program

MQA Message Queue Access

MQI Message Queue Interface

OS Operating System

OSI Open Systems Interconnection

OSI TP Open Systems Interconnection Transaction Processing

PC Personal Computer

PRF Performance

RM Resource Manager

x

Conventions: Diagrams
This manual uses the following conventions in diagrams:

RPC Remote Procedure Call

SPP Service Providing Program

SUP Service Using Program

TAM Table Access Method

TCP/IP Transmission Control Protocol/Internet Protocol

UAP User Application Program

UOC User Own Coding

VM Virtual Machine

WAN Wide Area Network

WS Workstation

Acronym Full name or meaning

xi

Conventions: Differences between JIS and ASCII keyboards
The JIS code and ASCII code keyboards are different in the input characters
represented by the following codes. In this manual, the use of a JIS keyboard is
assumed for these characters.

Conventions: Fonts and symbols
The following table explains the fonts used in this manual:

The following table explains the symbols used in this manual:

Code JIS keyboard ASCII keyboard

(5c)16 (yen symbol) \ (backslash)

(7e)16 (overline)
 ~ (tilde)

Font Convention

Bold Bold type indicates text on a window, other than the window title. Such text includes
menus, menu options, buttons, radio box options, or explanatory labels. For example:
• From the File menu, choose Open.
• Click the Cancel button.
• In the Enter name entry box, type your name.

Italics Italics are used to indicate a placeholder for some actual text to be provided by the user
or system. For example:
• Write the command as follows:

copy source-file target-file
• The following message appears:

A file was not found. (file = file-name)
Italics are also used for emphasis. For example:
• Do not delete the configuration file.

Code font A code font indicates text that the user enters without change, or text (such as
messages) output by the system. For example:
• At the prompt, enter dir.
• Use the send command to send mail.
• The following message is displayed:

The password is incorrect.

Symbol Convention

| In syntax explanations, a vertical bar separates multiple items, and has the
meaning of OR. For example:
A|B|C means A, or B, or C.

xii

Conventions for permitted characters

In most cases, only the following characters are permitted as syntax elements (if other
characters are permitted, the manual will state this explicitly):

{ } In syntax explanations, curly brackets indicate that only one of the enclosed items
is to be selected. For example:
{A|B|C} means only one of A, or B, or C.

[] In syntax explanations, square brackets indicate that the enclosed item or items
are optional. For example:
[A] means that you can specify A or nothing.
[B|C] means that you can specify B, or C, or nothing.

... In coding, an ellipsis (...) indicates that one or more lines of coding are not shown
for purposes of brevity.
In syntax explanations, an ellipsis indicates that the immediately preceding item
can be repeated as many times as necessary. For example:
A, B, B, ... means that, after you specify A, B, you can specify B as many
times as necessary.

~ The item before this symbol must be specified according to the rule given in < >
after this symbol.

< > Information between these symbols is the syntax of the item.

Type Definition

Upper-case alphabetic characters A to Z

Lower-case alphabetic characters a to z

Alphabetic characters A to Z, a to z

Numeric characters 0 to 9

Alphanumeric characters A to Z, a to z, 0 to 9

Symbols !, #, $, %, &, ', (,), *, +, -, ., /, :, ;, <, =, >, ?, @, [, \,], ^, _, `, {, |, },
and ~

Path name String that is composed of alphanumeric characters, slashes (/), and
periods (.) and conforms to the rule under the OS used.

Service group name Must be an ASCII character string of up to 31 bytes. Note that null
characters, spaces, at marks (@), and periods cannot be used. When a
service group name is specified in a data area, it must end with a space.
This space will not be included in the length of the character string.

Symbol Convention

xiii

Conventions: KB, MB, GB, and TB
This manual uses the following conventions:

• 1 KB (kilobyte) is 1,024 bytes.

• 1 MB (megabyte) is 1,0242 bytes.

• 1 GB (gigabyte) is 1,0243 bytes.

• 1 TB (terabyte) is 1,0244 bytes.

Conventions: Platform-specific notational differences
For the Windows version of OpenTP1, there are some notational differences from the
description in the manual. The following table describes these differences.

Conventions: Version numbers
The version numbers of Hitachi program products are usually written as two sets of

Service name Must be an ASCII character string of up to 31 bytes. Note that null and
space characters cannot be used. When a service name is specified in a data
area, it must end with a space. This space will not be included in the length
of the character string.

Physical file name Must be a path name consisting of the special file name followed by a name
of 14 or less bytes. The entire path name must not exceed 63 characters.

Logical file name Must be an alphanumeric character string of 1 to 8 bytes that begins with
an alphabetic character.

Item Description in the manual Change to:

Environment variable $aaaaaa
Example: $DCDIR

%aaaaaa%
Example: %DCDIR%

Path name separator Colon (:) Semicolon (;)

Directory name separator Slash (/) Backslash (\)

Absolute path name A path from the root directory
Example: /tmp

A path name from a drive letter and the
root directory
Example: C:\tmp

Executable file name File name only (without an
extension)
Example: mcfmngrd

File name with an extension
Example: mcfmngrd.exe

make command make nmake

Type Definition

xiv

two digits each, separated by a hyphen. For example:

• Version 1.00 (or 1.0) is written as 01-00.

• Version 2.05 is written as 02-05.

• Version 2.50 (or 2.5) is written as 02-50.

• Version 12.25 is written as 12-25.

The version number might be shown on the spine of a manual as Ver. 2.00, but the same
version number would be written in the program as 02-00.

Acknowledgments
This manual contains information from the X/Open CAE Specification System
Interfaces and Headers, Issue 4, (C202 ISBN 1-872630-47-2) Copyright (C) July
1992, X/Open Company Limited pursuant to approval from this company.

Part of that information is based on IEEE Std 1003.1-1990, (C) 1990 Institute of
Electrical and Electronics Engineers, Inc. and IEEE Std 1003.2/D12, (C) 1992 Institute
of Electrical and Electronics Engineers, Inc.

Any part of this manual that is copyrighted by the companies above may not be copied
or reproduced in any form without prior approval gained from the copyright holders.

This manual contains information from the X/Open Preliminary Specification
Distributed Transaction Processing: The TxRPC Specification, (P305 ISBN
1-85912-000-8) Copyright (C) July 1993, X/Open Company Limited, pursuant to
approval from X/Open Company Limited.

Any part of this manual that is copyrighted by the above mentioned company may not
be copied or reproduced in any form without prior approval gained from the copyright
holder.

This manual contains information that is copyrighted by Open Software Foundation,
Inc.

This document and the software described herein are furnished under a license, and
may be used and copied only in accordance with the terms of such license and with the
inclusion of the above copyright notice. Title to and ownership of the document and
software remain with OSF or its licensors.
Quotations from X/Open CAE Specification Distributed Transaction Processing:
The XATMI Specification published by X/Open Company Limited

The following section comes from Chapter 5. C Reference Manual Pages of the above
document.

• Chapter 4. X/Open-Compliant Application Programming Interface
4.1 XATMI-Interfaced Application Programming Interface (tp~)

xv

Quotations from X/Open CAE Specification Distributed Transaction Processing:
The TX (Transaction Demarcation) Specification published by X/Open Company
Limited

The following section comes from Chapter 5. C Reference Manual Pages of the above
document.

• Chapter 4. X/Open-Compliant Application Programming Interface
4.2 TX-Interfaced Application Programming Interface (tx_~)
Quotations from X/Open Preliminary Specification Distributed Transaction
Processing: The TxRPC Specification published by X/Open Company Limited

The following chapter comes from parts of Chapter 1. Introduction, Chapter 2 Model
and Definitions, and Chapter 3. Interface Overview of the above document.

• Chapter 6. X/Open-Compliant Inter-Application Communication (TxRPC)

Important note on this manual
Please check the availability of the products and manuals for HAmonitor,
ServerConductor/DeploymentManager, Cosminexus, and Job Management Partner 1/
Automatic Job Management System 2.

xvii

Contents

Preface i

Intended readers ...i
Organization of this manual ...i
Related publications ..ii
Conventions: Abbreviations for product names.. iii
Conventions: Acronyms.. viii
Conventions: Diagrams ...x
Conventions: Differences between JIS and ASCII keyboards.................................xi
Conventions: Fonts and symbols..xi
Conventions: KB, MB, GB, and TB ... xiii
Conventions: Platform-specific notational differences ... xiii
Conventions: Version numbers.. xiii
Acknowledgments ..xiv
Important note on this manual...xv

1. Creating Application Programs 1

1.1 Coding application program ...2
1.1.1 Relationship between application programs and functions.............................2
1.1.2 Coding rules ..30

1.2 Creating application programs (TCP/IP)..33
1.2.1 Procedure for creating application programs ..33
1.2.2 Creating stubs..40
1.2.3 Creating stub source file..43
1.2.4 stbmake - Stub source file creation ...43
1.2.5 Compiling and linking application program ...44

1.3 Creating XATMI interface application programs (TCP/IP, OSI TP)........................47
1.3.1 Procedure for creating XATMI-interfaced application programs47
1.3.2 Creating stubs for XATMI interface..49
1.3.3 Creating stub source files for XATMI interface..57
1.3.4 stbmake - Stub source file creation for XATMI interface58
1.3.5 tpstbmk - Creation of an XATMI interface stub OSI TP communication60

1.4 Executing application programs ...63
1.4.1 Starting and terminating each application program63
1.4.2 Operating environment of application programs started by OpenTP164
1.4.3 Application's environment variables ...66

2. Syntax of OpenTP1 Library Functions 67

Format for explaining functions ...68

xviii

Creating main and service functions... 70
Create a main function (SUP, SPP, MHP) .. 71
Create a service function (SPP) .. 73
Create a service function (MHP) .. 77
System operation management (dc_adm_~)... 79
dc_adm_call_command - Execute an operation command .. 80
dc_adm_complete - Report the completion of user server start processing 84
dc_adm_status - Report the status of a user server ... 86
Multinode facility (dc_adm_get_~) .. 88
dc_adm_get_nd_status - Acquire the status of a specified OpenTP1 node.................... 89
dc_adm_get_nd_status_begin - Start acquiring the status of an OpenTP1 node............ 92
dc_adm_get_nd_status_done - Terminate acquiring the status of an OpenTP1 node 94
dc_adm_get_nd_status_next - Acquire the status of an OpenTP1 node 95
dc_adm_get_nodeconf_begin - Start acquiring a node identifier 98
dc_adm_get_nodeconf_done - Terminate acquiring a node identifier 100
dc_adm_get_nodeconf_next - Acquire a node identifier.. 101
dc_adm_get_node_id - Acquire the node identifier of the local node.......................... 103
dc_adm_get_sv_status - Acquire the status of a specified user server 104
dc_adm_get_sv_status_begin - Start acquiring the status of a user server 107
dc_adm_get_sv_status_done - Terminate acquiring the status of a user server110
dc_adm_get_sv_status_next - Acquire the status of a user server.................................111
DAM file service (dc_dam_~) ...113
dc_dam_bseek - Seek a physical file block ...114
dc_dam_close - Close a logical file ...116
dc_dam_create - Allocate a physical file ...118
dc_dam_dget - Input directly a physical file block... 121
dc_dam_dput - Output directly a physical file block.. 123
dc_dam_end - Terminate using an unrecoverable DAM file.. 125
dc_dam_get - Input a physical file block.. 126
dc_dam_hold - Shut down a logical file ... 128
dc_dam_iclose - Close a physical file... 130
dc_dam_iopen - Open a physical file ... 132
dc_dam_open - Open a logical file ... 134
dc_dam_put - Output a physical file block ... 139
dc_dam_read - Input a logical file block .. 141
dc_dam_release - Release a logical file from the shutdown state 147
dc_dam_rewrite - Update a logical file block... 150
dc_dam_start - Start using an unrecoverable DAM file ... 154
dc_dam_status - Reference the status of a logical file.. 155
dc_dam_write - Output a logical file block .. 159
IST service (dc_ist_~)... 163
dc_ist_close - Close an internode shared table ... 164
dc_ist_open - Open an internode shared table .. 165
dc_ist_read - Input an internode shared table record .. 167

xix

dc_ist_write - Output an internode shared table record...169
User journal acquisition (dc_jnl_~)...172
dc_jnl_ujput - Acquire a user journal ..173
Lock for resources (dc_lck_~)...175
dc_lck_get - Enable locking of a resource...176
dc_lck_release_all - Release all the resources from lock ..179
dc_lck_release_byname - Release resource from lock specified by name....................181
Audit log output (dc_log_audit_~) ..183
dc_log_audit_print - output audit log data ..184
Output message log (dc_log~)...189
dc_logprint - Output message log..190
Message exchange processing (dc_mcf_~) ...193
dc_mcf_adltap - Delete an application timer start request ..195
dc_mcf_ap_info - Report the application information ..198
dc_mcf_ap_info_uoc - Report the application information to user exit routines..........204
dc_mcf_close - Close the MCF environment ..210
dc_mcf_commit - Commit an MHP ..211
dc_mcf_contend - Terminate continuous-inquiry-response processing214
dc_mcf_execap - Activate an application program ...216
dc_mcf_mainloop - Start an MHP service ..224
dc_mcf_open - Open the MCF environment...225
dc_mcf_receive - Receive a message ..227
dc_mcf_recvsync - Receive a synchronous message ..232
dc_mcf_reply - Send a response message ...233
dc_mcf_resend - Resend a message ..234
dc_mcf_rollback - Enable MHP rollback..235
dc_mcf_send - Send a message ...237
dc_mcf_sendrecv - Exchange a synchronous message ...238
dc_mcf_sendsync - Send a synchronous message...239
dc_mcf_tactcn - Establish a connection ..240
dc_mcf_tactle - Release a logical terminal from shutdown status245
dc_mcf_tdctcn - Release a connection ..249
dc_mcf_tdctle - Shut down a logical terminal...254
dc_mcf_tdlqle - Delete a logical terminal's output queue ...258
dc_mcf_tempget - Accept temporary-stored data ...262
dc_mcf_tempput - Update temporary-stored data ...265
dc_mcf_timer_cancel - Cancel user timer monitoring ..268
dc_mcf_timer_set - Set user timer monitoring ..270
dc_mcf_tlscn - Acquire a connection status ..274
dc_mcf_tlscom - Acquire the status of MCF communication services.........................280
dc_mcf_tlsle - Acquire a logical terminal status ...284
dc_mcf_tlsln - Acquire the acceptance status for a server-type connection establishment
request..289
dc_mcf_tofln - Stop accepting server-type connection establishment requests293

xx

dc_mcf_tonln - Start accepting server-type connection establishment requests........... 295
Performance verification trace (dc_prf_~).. 297
dc_prf_get_trace_num - Report the sequential number for an acquired performance
verification trace ... 298
dc_prf_utrace_put - Acquire user-specific performance verification traces................. 299
Remote API facility (dc_rap_~).. 301
dc_rap_connect - Establish a connection with a RAP-processing listener 302
dc_rap_disconnect - Release a connection with a RAP-processing listener................. 305
Remote procedure call (dc_rpc_~).. 307
dc_rpc_call - Request a remote service .. 308
dc_rpc_call_to - Invoke a remote service with a communication destination
specified .. 328
DCRPC_BINDTBL_SET and DCRPC_DIRECT_SCHEDULE - Create the
DCRPC_BINDING_TBL structure .. 336
dc_rpc_close - Terminate an application program.. 341
dc_rpc_cltsend - Report data to CUP unidirectionally ... 342
dc_rpc_discard_further_replies - Reject the receiving of processing results 345
dc_rpc_discard_specific_reply - Reject acceptance of particular processing results ... 346
dc_rpc_get_callers_address - Acquire the node address of a client UAP 348
dc_rpc_get_error_descriptor - Acquire the descriptor of an asynchronous response-type
RPC request which has encountered an error ... 350
dc_rpc_get_gateway_address - Acquire the node address of a gateway 352
dc_rpc_get_service_prio - Reference the schedule priority of a service request.......... 354
dc_rpc_get_watch_time - Reference the service response waiting interval 355
dc_rpc_mainloop - Start an SPP service... 356
dc_rpc_open - Start an application program... 358
dc_rpc_poll_any_replies - Receive processing results in asynchronous mode 360
dc_rpc_service_retry - Retry a service function ... 368
dc_rpc_set_service_prio - Set a schedule priority of a service request 370
dc_rpc_set_watch_time - Update a service response waiting interval 372
Real-time statistical information service (dc_rts_~)... 373
dc_rts_utrace_put - Acquire real-time statistical information for arbitrary section 374
TAM file service (dc_tam_~).. 377
dc_tam_close - Close a TAM table ... 378
dc_tam_delete - Delete a TAM table record ... 380
dc_tam_get_inf - Acquire TAM table status... 385
dc_tam_open - Open a TAM table.. 387
dc_tam_read - Input a TAM table record.. 391
dc_tam_read_cancel - Cancel the input of a TAM table record 398
dc_tam_rewrite - Update a TAM table record on the assumption of input 401
dc_tam_status - Acquire TAM table information ... 405
dc_tam_write - Update/add a TAM table record .. 410
Transaction control (dc_trn_~) ... 415
dc_trn_begin - Start a transaction ... 416

xxi

dc_trn_chained_commit - Enable commitment in chained mode418
dc_trn_chained_rollback - Enable rollback in chained mode421
dc_trn_info - Report the information about the current transaction..............................424
dc_trn_unchained_commit - Enable commitment in unchained mode425
dc_trn_unchained_rollback - Enable rollback in unchained mode427
Online tester management (dc_uto_~) ..429
dc_uto_test_status - Report the test status of a user server ...430

3. Syntax of OpenTP1 Library Functions (Message Log Reporting) 433

Message log reporting (dc_log_~)...434
dc_log_notify_close - Terminate message log reception ..435
dc_log_notify_open - Start message log reception..436
dc_log_notify_receive - Receive message logs...438
dc_log_notify_send - Send user-kept message logs ..440

4. X/Open-compliant Application Programming Interface 443

X/Open-compliant function...444
XATMI-interfaced application programming interface (tp~)..448
tpacall - Send a service request..449
tpadvertise - Advertise a service name ..453
tpalloc - Allocate a typed buffer ..455
tpcall - Send a service request and synchronously await its reply.................................457
tpcancel - Cancel a call descriptor for an outstanding reply..463
tpconnect - Establish a conversational service connection..465
tpdiscon - Terminate a conversational service connection abortively469
tpfree - Free a typed buffer ..471
tpgetrply - Get a reply from a previous service request ..473
tprealloc - Change the size of a typed buffer...478
tprecv - Receive a message in a conversational connection..480
tpreturn - Return from a service routine ..485
tpsend - Send a message in a conversational connection ..490
tpservice - Template for service routines...494
tptypes - Determine information about a typed buffer ..497
tpunadvertise - Unadvertise a service name ..499
TX-interfaced application programming interface (tx_~) ...501
tx_begin - Begin a transaction ...502
tx_close - Close a set of resource managers ..505
tx_commit - Commit a global transaction ...507
tx_info - Return global transaction information ..510
tx_open - Open a set of resource managers...512
tx_rollback - Roll back a global transaction..514
tx_set_commit_return - Set commit_return characteristic ..517
tx_set_transaction_control - Set transaction_control characteristic520
tx_set_transaction_timeout - Set transaction_timeout characteristic522

xxii

5. Syntax of OpenTP1 Library Functions (Association Status Notification) 525

Association operation (dc_xat_~) ... 526
dc_xat_connect - Establish an association.. 527
Formats of receive communication events ... 529

6. X/Open-compliant Inter-application Communication (TxRPC) 533

6.1 Preparation procedures for TxRPC communication.. 534
6.1.1 Procedures for using IDL-only TxRPC.. 534

6.2 Notes on creating application programs .. 537
6.3 Creating interface definition language files (IDL files)... 538

6.3.1 Syntax rules .. 538
6.3.2 Interface definition format.. 539
6.3.3 Syntax of interface definition file ... 540

6.4 Syntax of interface definition header... 542
6.5 Interface definition body.. 544
6.6 Attributes ... 551
6.7 Data types .. 557
6.8 Type declarators ... 562
6.9 Attribute configuration language ... 564
6.10 IDL compiler (txidl command).. 565
6.11 TxRPC error codes... 571

7. Coding Samples 573

7.1 Coding samples for client/server configuration UAPs (SUP, SPP DAM access) . 574
7.2 Coding samples for client/server configuration UAPs (SPP TAM access) 580
7.3 Coding samples for message exchange configuration UAPs (MHP) 585
7.4 Coding samples for X/Open-compliant UAPs... 589

7.4.1 XATMI interface samples... 589
7.4.2 TX interface sample.. 605

7.5 TxRPC examples (templates created by the IDL compiler) 608
7.5.1 Outline of creation procedures ... 608
7.5.2 Examples of Files ... 609

8. Reference for Application Activation 619

Function format of the user exit routine that determines whether to inherit the timer-start
settings .. 620
Structure format of mcf event that reports discarding of a timer-start message
(ERREVT4) .. 624

Appendix 627

A. Using OpenTP1 Remote Procedure Calls and XATMI-interfaced Functions in
Combination .. 628

A.1 Modes of combined use .. 628

xxiii

A.2 Creating stubs of application programs that are used together629
A.3 Callable XATMI interface functions ...630

B. Changes to the Interfaces (for Migrating from Version 6 or Earlier)632
B.1 Message transmission interfaces ...633
B.2 User exit routines...646
B.3 MCF event interfaces...647
B.4 Coding example for the MHP service function ...648

Index 651

xxiv

List of figures

Figure 1-1: General procedure for creating SUPs.. 34
Figure 1-2: General procedure for creating an SPP (when using a stub)................................. 35
Figure 1-3: General procedure for creating an SPP (when using dynamic loading of service

functions) .. 36
Figure 1-4: General procedure for creating an MHP (when using a stub)............................... 38
Figure 1-5: General procedure for creating an MHP (when using dynamic loading of service

functions) .. 39
Figure 1-6: General procedure for creating a UAP that handles offline work......................... 40
Figure 1-7: Stub creation procedure... 41
Figure 1-8: Procedure for creating UAP (XATMI Interface TCP/IP, OSI TP) 48
Figure 1-9: Procedure for creating stub for XATMI interface ... 50
Figure 6-1: Procedures for creating a UAP that communicates with IDL-only TxRPC 535
Figure 7-1: Client/Server configuration UAP sample (DAM access) 574
Figure 7-2: Client/server configuration UAP sample (TAM access) 580
Figure 7-3: Message exchange configuration UAP sample (MHP)....................................... 585
Figure 7-4: Communication of request/response services receiving responses

synchronously... 589
Figure 7-5: Communication of conversational service .. 597
Figure A-1: Modes of combined use of inter-process communication and the stubs

required... 629

xxv

List of tables

Table 1-1: Functions in OpenTP1 library and their facilities ...2
Table 1-2: Facilities and functions available with SUPs ..7
Table 1-3: Facilities and functions available with SPPs ...12
Table 1-4: Facilities and functions available with MHPs ...20
Table 1-5: Facilities and functions available with UAPs that handles offline work.................30
Table 1-6: Data types that can be used as types..52
Table 1-7: UAP signals set by OpenTP1 ..65
Table 2-1: Correspondence between audit event types and reserved words...........................186
Table 2-2: Relationship between search types and index types..391
Table 4-1: Relationship between X/Open-compliant functions and facilities444
Table 4-2: Relationship between X/Open-compliant functions and OpenTP1 UAPs445
Table 6-1: TxRPC error codes ..571
Table A-1: XATMI interface functions that can be used by an SPP called by the function

dc_rpc_call()..630
Table B-1: List of changes to the interfaces..632

1

Chapter

1. Creating Application Programs

This chapter outlines how to create OpenTP1 application programs in the C language.

This chapter contains the following sections:

1.1 Coding application program
1.2 Creating application programs (TCP/IP)
1.3 Creating XATMI interface application programs (TCP/IP, OSI TP)
1.4 Executing application programs

1. Creating Application Programs

2

1.1 Coding application program

1.1.1 Relationship between application programs and functions
The table below shows the correspondences between the OpenTP1 library functions
and their facilities.

Table 1-1: Functions in OpenTP1 library and their facilities

Facility classification OpenTP1 function names and facilities

System operation management dc_adm_call_command Execute an operation command.

dc_adm_complete Report the completion of user server
start processing.

dc_adm_status Report the status of a user server.

Multinode facility dc_adm_get_nd_status Acquire the status of a specified
OpenTP1 node.

dc_adm_get_nd_status_begi
n

Start acquiring the status of an
OpenTP1 node.

dc_adm_get_nd_status_done Terminate acquiring the status of an
OpenTP1 node.

dc_adm_get_nd_status_next Acquire the status of an OpenTP1
node.

dc_adm_get_nodeconf_begin Start acquiring a node identifier.

dc_adm_get_nodeconf_done Terminate acquiring a node identifier.

dc_adm_get_nodeconf_next Acquire a node identifier.

dc_adm_get_node_id Acquire the node identifier of the
local node.

dc_adm_get_sv_status Acquire the status of a specified user
server.

dc_adm_get_sv_status_begi
n

Start acquiring the status of a user
server.

dc_adm_get_sv_status_done Terminate acquiring the status of a
user server.

dc_adm_get_sv_status_next Acquire the status of a user server.

DAM file service dc_dam_bseek Seek a physical file block.

1. Creating Application Programs

3

dc_dam_close Close a logical file.

dc_dam_create Allocate a physical file.

dc_dam_dget Input directly a physical file block.

dc_dam_dput Output directly a physical file block.

dc_dam_end Terminate using an unrecoverable
DAM file.

dc_dam_get Input a physical file block.

dc_dam_hold Shut down a logical file.

dc_dam_iclose Close a physical file.

dc_dam_iopen Open a physical file.

dc_dam_open Open a logical file.

dc_dam_put Output a physical file block.

dc_dam_read Input a logical file block.

dc_dam_release Release a logical file from the
shutdown state.

dc_dam_rewrite Update a logical file block.

dc_dam_start Start using an unrecoverable DAM
file.

dc_dam_status Reference the status of a logical file.

dc_dam_write Output a logical file block.

IST service dc_ist_close Close an internode shared table.

dc_ist_open Open an internode shared table.

dc_ist_read Input an internode shared table
record.

dc_ist_write Output an internode shared table
record.

User journal acquisition dc_jnl_ujput Acquire a user journal.

Lock for resources dc_lck_get Enable locking of a resource.

dc_lck_release_all Release all the resources from lock.

Facility classification OpenTP1 function names and facilities

1. Creating Application Programs

4

dc_lck_release_byname Release resource from lock specified
by name.

Audit log output dc_log_audit_print Output audit log data.

Message log output dc_logprint Output message log.

Message exchange processing dc_mcf_adltap Delete an application timer start
request.

dc_mcf_ap_info Report the application information.

dc_mcf_ap_info_uoc Report application information to a
user exit routine.

dc_mcf_close Close the MCF environment.

dc_mcf_commit Commit an MHP.

dc_mcf_contend Terminate continuous-inquiry
response processing.

dc_mcf_execap Activate an application program.

dc_mcf_mainloop Start an MHP service.

dc_mcf_open Open the MCF environment.

dc_mcf_receive Receive a message.

dc_mcf_recvsync Receive a synchronous message.

dc_mcf_reply Send a response message.

dc_mcf_resend Resend a message.

dc_mcf_rollback Enable MHP rollback.

dc_mcf_send Send a message.

dc_mcf_sendrecv Exchange a synchronous message.

dc_mcf_sendsync Send a synchronous message.

dc_mcf_tactcn Establish a connection.

dc_mcf_tactle Release a logical terminal from
shutdown status.

dc_mcf_tdctcn Release connection.

dc_mcf_tdctle Shut down a logical terminal.

Facility classification OpenTP1 function names and facilities

1. Creating Application Programs

5

dc_mcf_tdlqle Delete a logical terminal's output
queue.

dc_mcf_tempget Accept temporary-stored data.

dc_mcf_tempput Update temporary-stored data.

dc_mcf_timer_set Set user timer monitoring.

dc_mcf_timer_cancel Cancel user timer monitoring.

dc_mcf_tlscn Acquire a connection status.

dc_mcf_tlscom Acquire the status of MCF
communication services.

dc_mcf_tlsle Acquire a logical terminal status.

dc_mcf_tlsln Acquire the acceptance status for a
server-type connection establishment
request.

dc_mcf_tofln Stop accepting server-type connection
establishment requests.

dc_mcf_tonln Start accepting server-type
connection establishment requests.

Performance verification trace dc_prf_get_trace_num Report the sequential number for an
acquired performance verification
trace.

dc_prf_utrace_put Acquire user-specific performance
verification traces.

Remote API facility dc_rap_connect Establish a connection with a
RAP-processing listener.

dc_rap_disconnect Release a connection with a
RAP-processing listener.

Remote procedure call dc_rpc_call Request a remote service.

dc_rpc_call_to Invoke a remote service with a
communication destination specified.

dc_rpc_close Terminate an application program.

dc_rpc_cltsend Report data to CUP unidirectionally.

dc_rpc_discard_further_re
plies

Reject the receiving of processing
results.

Facility classification OpenTP1 function names and facilities

1. Creating Application Programs

6

dc_rpc_discard_specific_r
eply

Reject acceptance of particular
processing results.

dc_rpc_get_callers_addres
s

Acquire the node address of a client
UAP.

dc_rpc_get_error_descript
or

Acquire the descriptor of an
asynchronous response-type RPC
request which has encountered an
error.

dc_rpc_get_gateway_addres
s

Acquire the node address of a
gateway.

 dc_rpc_get_service_prio Reference the schedule priority of a
service request.

dc_rpc_get_watch_time Reference the service response
waiting interval.

dc_rpc_mainloop Start an SPP service.

dc_rpc_open Start an application program.

dc_rpc_poll_any_replies Receive processing results in
asynchronous mode.

dc_rpc_service_retry Retry a service function.

dc_rpc_set_service_prio Set a schedule priority of a service
request.

dc_rpc_set_watch_time Update a service response waiting
interval.

Real-time statistical information
service

dc_rts_utrace_put Acquire real-time statistical
information for arbitrary section.

TAM file service dc_tam_close Close a TAM table.

dc_tam_delete Delete a TAM table record.

dc_tam_get_inf Acquire TAM table status.

dc_tam_open Open a TAM table.

dc_tam_read Input a TAM table record.

dc_tam_read_cancel Cancel the input of a TAM table
record.

Facility classification OpenTP1 function names and facilities

1. Creating Application Programs

7

(1) Facilities and functions available with SUPs
The table below lists the facilities and functions which can be used with SUPs.

Table 1-2: Facilities and functions available with SUPs

dc_tam_rewrite Update a TAM table record on the
assumption of input.

dc_tam_status Acquire TAM table information.

dc_tam_write Update/add a TAM table record.

Transaction control dc_trn_begin Start a transaction.

dc_trn_chained_commit Enable commitment in chained mode.

dc_trn_chained_rollback Enable rollback in chained mode.

dc_trn_info Report the information about the
current transaction.

dc_trn_unchained_commit Enable commitment in unchained
mode.

dc_trn_unchained_rollback Enable rollback in unchained mode.

Online tester management dc_uto_test_status Report the test status of a user server.

Facility available with SUP OpenTP1 function SUP operating conditions

Outside the
transaction
processing

range

Inside the
transaction
processing

range

System
operation
management

Execute an operation
command.

dc_adm_call_comm
and

Y Y

Report the completion of
user server start
processing.

dc_adm_complete Y N

Report the status of a user
server.

dc_adm_status Y Y

Multinode
facility

Acquire the status of a
specified OpenTP1 node.

dc_adm_get_nd_st
atus

Y Y

Start acquiring the status
of an OpenTP1 node.

dc_adm_get_nd_st
atus_begin

Y Y

Facility classification OpenTP1 function names and facilities

1. Creating Application Programs

8

Terminate acquiring the
status of an OpenTP1
node.

dc_adm_get_nd_st
atus_done

Y Y

Acquire the status of an
OpenTP1 node.

dc_adm_get_nd_st
atus_next

Y Y

Start acquiring a node
identifier.

dc_adm_get_nodec
onf_begin

Y Y

Terminate acquiring a
node identifier.

dc_adm_get_nodec
onf_done

Y Y

Acquire a node identifier. dc_adm_get_nodec
onf_next

Y Y

Acquire the node
identifier of the local
node.

dc_adm_get_node_
id

Y Y

Acquire the status of a
specified user server.

dc_adm_get_sv_st
atus

Y Y

Start acquiring the status
of a user server.

dc_adm_get_sv_st
atus_begin

Y Y

Terminate acquiring the
status of a user server.

dc_adm_get_sv_st
atus_done

Y Y

Acquire the status of a
user server.

dc_adm_get_sv_st
atus_next

Y Y

DAM file
service

Close a logical file. dc_dam_close Y Y

Terminate using an
unrecoverable DAM file.

dc_dam_end Y Y

Shut down a logical file. dc_dam_hold N Y

Open a logical file. dc_dam_open Y Y

Input a logical file block. dc_dam_read Y Y

Release a logical file
from the shutdown state.

dc_dam_release N Y

Facility available with SUP OpenTP1 function SUP operating conditions

Outside the
transaction
processing

range

Inside the
transaction
processing

range

1. Creating Application Programs

9

Update a logical file
block.

dc_dam_rewrite (Y) Y

Start using an
unrecoverable DAM file.

dc_dam_start Y Y

Reference the status of a
logical file.

dc_dam_status Y Y

Output a logical file
block.

dc_dam_write (Y) Y

IST service Close an internode shared
table.

dc_ist_close Y Y

Open an internode shared
table.

dc_ist_open Y Y

Input an internode shared
table record.

dc_ist_read Y Y

Output an internode
shared table record.

dc_ist_write Y Y

User journal
acquisition

Acquire a user journal. dc_jnl_ujput Y Y

Lock for
resources

Enable locking of a
resource.

dc_lck_get N Y

Release all the resources
from lock.

dc_lck_release_a
ll

N Y

Release resource from
lock specified by name.

dc_lck_release_b
yname

N Y

Audit log
output

Output audit log data. dc_log_audit_pri
nt

Y Y

Message log
output

Output message log dc_logprint Y Y

Performance
verification
trace

Report the sequential
number for an acquired
performance verification
trace.

dc_prf_get_trace
_num

Y Y

Facility available with SUP OpenTP1 function SUP operating conditions

Outside the
transaction
processing

range

Inside the
transaction
processing

range

1. Creating Application Programs

10

Acquire user-specific
performance verification
traces.

dc_prf_utrace_pu
t

Y Y

Remote API
facility

Establish a connection
with a RAP-processing
listener.

dc_rap_connect Y N

Release a connection
with a RAP-processing
listener.

dc_rap_disconnec
t

Y N

Remote
procedure call

Request a remote service. dc_rpc_call Y Y

Invoke a remote service
with a communication
destination specified.

dc_rpc_call_to Y Y

Terminate an application
program.

dc_rpc_close Y N

Reject the receiving of
processing results.

dc_rpc_discard_f
urther_replies

Y Y

Reject acceptance of
particular processing
results.

dc_rpc_discard_s
pecific_reply

Y Y

Acquire the descriptor of
an asynchronous
response-type RPC
request which has
encountered an error.

dc_rpc_get_error
_descriptor

Y Y

Reference the schedule
priority of a service
request.

dc_rpc_get_servi
ce_prio

Y Y

Reference the service
response waiting interval.

dc_rpc_get_watch
_time

Y Y

Start an application
program.

dc_rpc_open Y N

Facility available with SUP OpenTP1 function SUP operating conditions

Outside the
transaction
processing

range

Inside the
transaction
processing

range

1. Creating Application Programs

11

Receive processing
results in asynchronous
mode.

dc_rpc_poll_any_
replies

Y Y

Set a schedule priority of
a service request.

dc_rpc_set_servi
ce_prio

Y Y

Change the response
waiting interval of a
service request.

dc_rpc_set_watch
_time

Y Y

Real-time
statistical
information
service

Acquire real-time
statistical information for
arbitrary section.

dc_rts_utrace_pu
t

Y Y

TAM file
service

Close a TAM table. dc_tam_close Y Y

Delete a TAM table
record.

dc_tam_delete N Y

Acquire TAM table
status.

dc_tam_get_inf Y Y

Open a TAM table. dc_tam_open Y Y

Input a TAM table record. dc_tam_read N Y

Cancel the input of a
TAM table record.

dc_tam_read_canc
el

N Y

Update a TAM table
record on the assumption
of input.

dc_tam_rewrite N Y

Acquire TAM table
information.

dc_tam_status Y Y

Update/add a TAM table
record.

dc_tam_write N Y

Transaction
control

Start a transaction. dc_trn_begin Y N

Enable commitment in
chained mode.

dc_trn_chained_c
ommit

N Y

Facility available with SUP OpenTP1 function SUP operating conditions

Outside the
transaction
processing

range

Inside the
transaction
processing

range

1. Creating Application Programs

12

Legend:

Y: Can be used with SUPs.

(Y): Can be used only in access to an unrecoverable DMA file.

N: Cannot be used with SUPs.

(2) Facilities and functions available with SPPs
The table below lists the facilities and functions which can be used with SPPs.

Table 1-3: Facilities and functions available with SPPs

Enable rollback in
chained mode.

dc_trn_chained_r
ollback

N Y

Report the information
about the current
transaction.

dc_trn_info Y Y

Enable commitment in
unchained mode.

dc_trn_unchained
_commit

N Y

Enable rollback in
unchained mode.

dc_trn_unchained
_rollback

N Y

Online tester
management

Report the test status of a
user server.

dc_uto_test_stat
us

Y Y

Facility available with SPP OpenTP1 function SPP operating conditions

Outside the
transaction
processing

range

Inside the
transaction
processing

range

Root Not
root

System
operation
management

Execute an operation
command.

dc_adm_call_command Y Y Y

Report the status of a user
server.

dc_adm_status Y Y Y

Facility available with SUP OpenTP1 function SUP operating conditions

Outside the
transaction
processing

range

Inside the
transaction
processing

range

1. Creating Application Programs

13

Multinode
facility

Acquire the status of a
specified OpenTP1 node.

dc_adm_get_nd_statu
s

Y Y Y

Start acquiring the status
of an OpenTP1 node.

dc_adm_get_nd_statu
s_begin

Y Y Y

Terminate acquiring the
status of an OpenTP1
node.

dc_adm_get_nd_statu
s_done

Y Y Y

Acquire the status of an
OpenTP1 node.

dc_adm_get_nd_statu
s_next

Y Y Y

Start acquiring a node
identifier.

dc_adm_get_nodeconf
_begin

Y Y Y

Terminate acquiring a
node identifier.

dc_adm_get_nodeconf
_done

Y Y Y

Acquire a node identifier. dc_adm_get_nodeconf
_next

Y Y Y

Acquire the node
identifier of the local
node.

dc_adm_get_node_id Y Y Y

Acquire the status of a
specified user server.

dc_adm_get_sv_statu
s

Y Y Y

Start acquiring the status
of a user server.

dc_adm_get_sv_statu
s_begin

Y Y Y

Terminate acquiring the
status of a user server.

dc_adm_get_sv_statu
s_done

Y Y Y

Acquire the status of a
user server.

dc_adm_get_sv_statu
s_next

Y Y Y

DAM file
service

Close a logical file. dc_dam_close Y Y Y

Terminate using an
unrecoverable DAM file.

dc_dam_end Y Y Y

Facility available with SPP OpenTP1 function SPP operating conditions

Outside the
transaction
processing

range

Inside the
transaction
processing

range

Root Not
root

1. Creating Application Programs

14

Shut down a logical file. dc_dam_hold N Y Y

Open a logical file. dc_dam_open Y Y Y

Input a logical file block. dc_dam_read N Y Y

Release a logical file
from the shutdown state.

dc_dam_release N Y Y

Update a logical
fileblock.

dc_dam_rewrite (Y) Y Y

Start using an
unrecoverable DAM file.

dc_dam_start Y Y Y

Reference the status of a
logical file.

dc_dam_status Y Y Y

Output a logical file
block.

dc_dam_write (Y) Y Y

IST service Close an internode shared
table.

dc_ist_close Y Y Y

Open an internode shared
table.

dc_ist_open Y Y Y

Input an internode shared
table record.

dc_ist_read Y Y Y

Output an internode
shared table record.

dc_ist_write Y Y Y

User journal
acquisition

Acquire a user journal. dc_jnl_ujput Y Y Y

Lock for
resources

Enable locking of a
resource.

dc_lck_get N Y Y

Release all the resources
from lock.

dc_lck_release_all N Y Y

Release resource from
lock specified by name.

dc_lck_release_byna
me

N Y Y

Facility available with SPP OpenTP1 function SPP operating conditions

Outside the
transaction
processing

range

Inside the
transaction
processing

range

Root Not
root

1. Creating Application Programs

15

Audit log
output

Output audit log data. dc_log_audit_print Y Y Y

Message log
output

Output message log. dc_logprint Y Y Y

Message
exchange
processing

Delete an application
timer start request.

dc_mcf_adltap Y Y Y

Close the MCF
environment.

dc_mcf_close O N N

Activate an application
program.

dc_mcf_execap N Y Y

Open the MCF
environment.

dc_mcf_open O N N

Receive a synchronous
message.

dc_mcf_recvsync Y Y Y

Resend a message. dc_mcf_resend N Y Y

Send a message. dc_mcf_send N Y Y

Exchange a synchronous
message.

dc_mcf_sendrecv Y Y Y

Send a synchronous
message.

dc_mcf_sendsync Y Y Y

Establish a connection. dc_mcf_tactcn Y Y Y

Release a logical terminal
from shutdown status.

dc_mcf_tactle Y Y Y

Release connection. dc_mcf_tdctcn Y Y Y

Shut down a logical
terminal.

dc_mcf_tdctle Y Y Y

Delete a logical terminal's
output queue.

dc_mcf_tdlqle Y Y Y

Facility available with SPP OpenTP1 function SPP operating conditions

Outside the
transaction
processing

range

Inside the
transaction
processing

range

Root Not
root

1. Creating Application Programs

16

Set user timer
monitoring.

dc_mcf_timer_set Y Y Y

Cancel user timer
monitoring.

dc_mcf_timer_cancel Y Y Y

Acquire a connection
status.

dc_mcf_tlscn Y Y Y

Acquire the status of
MCF communication
services.

dc_mcf_tlscom Y Y Y

Acquire a logical
terminal status.

dc_mcf_tlsle Y Y Y

Acquire the acceptance
status for a server-type
connection establishment
request.

dc_mcf_tlsln Y Y Y

Stop accepting
server-type connection
establishment requests.

dc_mcf_tofln Y Y Y

Start accepting
server-type connection
establishment requests.

dc_mcf_tonln Y Y Y

Performance
verification
trace

Report the sequential
number for an acquired
performance verification
trace.

dc_prf_get_trace_nu
m

Y Y Y

Acquire user-specific
performance verification
traces.

dc_prf_utrace_put Y Y Y

Remote API
facility

Establish a connection
with a RAP-processing
listener.

dc_rap_connect Y N N

Facility available with SPP OpenTP1 function SPP operating conditions

Outside the
transaction
processing

range

Inside the
transaction
processing

range

Root Not
root

1. Creating Application Programs

17

Release a connection
with a RAP-processing
listener.

dc_rap_disconnect Y N N

Remote
procedure call

Request a remote service. dc_rpc_call Y Y Y

Invoke a remote service
with a communication
destination specified.

dc_rpc_call_to Y Y Y

Terminate an application
program.

dc_rpc_close O N N

Report data to CUP
unidirectionally.

dc_rpc_cltsend Y Y Y

Reject the receiving of
processing results.

dc_rpc_discard_furt
her_replies

Y Y Y

Reject acceptance of
particular processing
results.

dc_rpc_discard_spec
ific_reply

Y Y Y

Acquire the node address
of a client UAP.

dc_rpc_get_callers_
address

Y Y Y

Acquire the descriptor of
an asynchronous
response-type RPC
request which has
encountered an error.

dc_rpc_get_error_de
scriptor

Y Y Y

Acquire the node address
of a gateway.

dc_rpc_get_gateway_
address

Y Y Y

Reference the schedule
priority of a service
request.

dc_rpc_get_service_
prio

Y Y Y

Reference the service
response waiting interval.

dc_rpc_get_watch_ti
me

Y Y Y

Start an SPP service. dc_rpc_mainloop O N N

Facility available with SPP OpenTP1 function SPP operating conditions

Outside the
transaction
processing

range

Inside the
transaction
processing

range

Root Not
root

1. Creating Application Programs

18

Start an application
program.

dc_rpc_open O N N

Receive processing
results in asynchronous
mode.

dc_rpc_poll_any_rep
lies

Y Y Y

Retry a service function. dc_rpc_service_retr
y

Y N N

Set a schedule priority of
a service request.

dc_rpc_set_service_
prio

Y Y Y

Update the response
waiting interval of a
service request.

dc_rpc_set_watch_ti
me

Y Y Y

Real-time
statistical
information
service

Acquire real-time
statistical information for
arbitrary section.

dc_rts_utrace_put Y Y Y

TAM file
service

Close a TAM table. dc_tam_close Y Y Y

Delete a TAM table
record.

dc_tam_delete N Y Y

Acquire TAM table
status.

dc_tam_get_inf Y Y Y

Open a TAM table. dc_tam_open Y Y Y

Input a TAM table record. dc_tam_read N Y Y

Cancel the input of a
TAM table record.

dc_tam_read_cancel N Y Y

Update a TAM table
record on the assumption
of input.

dc_tam_rewrite N Y Y

Acquire TAM table
information.

dc_tam_status Y Y Y

Facility available with SPP OpenTP1 function SPP operating conditions

Outside the
transaction
processing

range

Inside the
transaction
processing

range

Root Not
root

1. Creating Application Programs

19

Legend:

Y: Can be used with SPPs.

(Y): Can be used only in access to an unrecoverable DAM file.

N: Cannot be used with SPPs.

O: Can be used only from the main function.

Note
Root means the root transaction branch, and Not root means a transaction branch
other than the root transaction branch.

(3) Facilities and functions available with MHPs
The table below lists the facilities and functions which can be used with MHPs.

Update/add a TAM table
record.

dc_tam_write N Y Y

Transaction
control

Start a transaction. dc_trn_begin Y N N

Enable commitment in
chained mode.

dc_trn_chained_comm
it

N Y N

Enable rollback in
chained mode.

dc_trn_chained_roll
back

N Y N

Report the information
about the current
transaction.

dc_trn_info Y Y Y

Enable commitment in
unchained mode.

dc_trn_unchained_co
mmit

N Y N

Enable rollback in
unchained mode.

dc_trn_unchained_ro
llback

N Y Y

Online tester
management

Report the test status of a
user server.

dc_uto_test_status Y Y Y

Facility available with SPP OpenTP1 function SPP operating conditions

Outside the
transaction
processing

range

Inside the
transaction
processing

range

Root Not
root

1. Creating Application Programs

20

Table 1-4: Facilities and functions available with MHPs

Facility available with MHP OpenTP1 function MHP operating
conditions

Outside
the

transacti
on

processin
g range

Inside
the

transacti
on

processi
ng range

System operation management Execute an
operation
command.

dc_adm_call_comma
nd

Y Y

Report the status
of a user server.

dc_adm_status Y Y

Multinode facility Acquire the
status of a
specified
OpenTP1 node.

dc_adm_get_nd_sta
tus

Y Y

Start acquiring
the status of an
OpenTP1 node.

dc_adm_get_nd_sta
tus_begin

Y Y

Terminate
acquiring the
status of an
OpenTP1 node.

dc_adm_get_nd_sta
tus_done

Y Y

Acquire the
status of an
OpenTP1 node.

dc_adm_get_nd_sta
tus_next

Y Y

Start acquiring a
node identifier.

dc_adm_get_nodeco
nf_begin

Y Y

Terminate
acquiring a node
identifier.

dc_adm_get_nodeco
nf_done

Y Y

Acquire a node
identifier.

dc_adm_get_nodeco
nf_next

Y Y

Acquire the node
identifier of the
local node.

dc_adm_get_node_i
d

Y Y

1. Creating Application Programs

21

Acquire the
status of a
specified user
server.

dc_adm_get_sv_sta
tus

Y Y

Start acquiring
the status of a
user server.

dc_adm_get_sv_sta
tus_begin

Y Y

Terminate
acquiring the
status of a user
server.

dc_adm_get_sv_sta
tus_done

Y Y

Acquire the
status of a user
server.

dc_adm_get_sv_sta
tus_next

Y Y

DAM file service Close a logical
file.

dc_dam_close Y Y

Terminate using
an unrecoverable
DAM file.

dc_dam_end Y Y

Shut down a
logical file.

dc_dam_hold N Y

Open a logical
file.

dc_dam_open Y Y

Input a logical
file block.

dc_dam_read Y Y

Release a logical
file from the
shutdown state.

dc_dam_release N Y

Update a logical
file block.

dc_dam_rewrite (Y) Y

Facility available with MHP OpenTP1 function MHP operating
conditions

Outside
the

transacti
on

processin
g range

Inside
the

transacti
on

processi
ng range

1. Creating Application Programs

22

Start using an
unrecoverable
DAM file.

dc_dam_start Y Y

Reference the
status of a
logical file.

dc_dam_status Y Y

Output a logical
file block.

dc_dam_write (Y) Y

IST service Close an
internode shared
table.

dc_ist_close Y Y

Open an
internode shared
table.

dc_ist_open Y Y

Input an
internode shared
table record.

dc_ist_read Y Y

Output an
internode shared
table record.

dc_ist_write Y Y

User journal acquisition Acquire a user
journal.

dc_jnl_ujput Y Y

Lock for resources Enable locking
of a resource.

dc_lck_get N Y

Release all the
resources from
lock.

dc_lck_release_al
l

N Y

Release resource
from lock
specified by
name.

dc_lck_release_by
name

N Y

Facility available with MHP OpenTP1 function MHP operating
conditions

Outside
the

transacti
on

processin
g range

Inside
the

transacti
on

processi
ng range

1. Creating Application Programs

23

Audit log output Output audit log
data.

dc_log_audit_prin
t

Y Y

Message log output Output message
log.

dc_logprint Y Y

Message exchange processing Delete an
application timer
start request.

dc_mcf_adltap Y Y

Report the
application
information.

dc_mcf_ap_info NO Y

Close the MCF
environment.

dc_mcf_close O O

Commit an
MHP.

dc_mcf_commit N Y

Terminate
continuous-inqui
ry response
processing.

dc_mcf_contend NO Y

Activate an
application
program.

dc_mcf_execap NO Y

Start an MHP
service.

dc_mcf_mainloop O N

Open the MCF
environment.

dc_mcf_open O O

Receive a
message.

dc_mcf_receive NO Y

Receive a
synchronous
message.

dc_mcf_recvsync Y Y

Facility available with MHP OpenTP1 function MHP operating
conditions

Outside
the

transacti
on

processin
g range

Inside
the

transacti
on

processi
ng range

1. Creating Application Programs

24

Send a response
message.

dc_mcf_reply NO Y

Resend a
message

dc_mcf_resend N Y

Enable MHP
rollback.

dc_mcf_rollback N Y

Send a message. dc_mcf_send NO Y

Exchange a
synchronous
message.

dc_mcf_sendrecv Y Y

Send a
synchronous
message.

dc_mcf_sendsync Y Y

Establish a
connection.

dc_mcf_tactcn Y Y

Release a logical
terminal from
shutdown status.

dc_mcf_tactle Y Y

Release
connection

dc_mcf_tdctcn Y Y

Shut down a
logical terminal.

dc_mcf_tdctle Y Y

Delete the output
queue of a
logical terminal.

dc_mcf_tdlqle Y Y

Accept
temporary-store
d data.

dc_mcf_tempget NO Y

Update
temporary-store
d data.

dc_mcf_tempput NO Y

Facility available with MHP OpenTP1 function MHP operating
conditions

Outside
the

transacti
on

processin
g range

Inside
the

transacti
on

processi
ng range

1. Creating Application Programs

25

Set user timer
monitoring.

dc_mcf_timer_set Y Y

Cancel user
timer
monitoring.

dc_mcf_timer_canc
el

Y Y

Acquire the
connection
status.

dc_mcf_tlscn Y Y

Acquire the
MCF
communication
service status.

dc_mcf_tlscom Y Y

Acquire the
logical terminal
status.

dc_mcf_tlsle Y Y

Acquire the
acceptance
status for a
server-type
connection
establishment
request.

dc_mcf_tlsln Y Y

Stop accepting
server-type
connection
establishment
requests.

dc_mcf_tofln Y Y

Start accepting
server-type
connection
establishment
requests.

dc_mcf_tonln Y Y

Facility available with MHP OpenTP1 function MHP operating
conditions

Outside
the

transacti
on

processin
g range

Inside
the

transacti
on

processi
ng range

1. Creating Application Programs

26

Performance verification trace Report the
sequential
number for an
acquired
performance
verification
trace.

dc_prf_get_trace_
num

Y Y

Acquire
user-specific
performance
verification
traces.

dc_prf_utrace_put Y Y

Remote API facility Establish a
connection with
a
RAP-processing
listener.

dc_rap_connect Y N

Release a
connection with
a
RAP-processing
listener.

dc_rap_disconnect Y N

Remote procedure call Request a remote
service

dc_rpc_call Y Y

Invoke a remote
service with a
communication
destination
specified.

dc_rpc_call_to Y Y

Terminate an
application
program.

dc_rpc_close O N

Report data to
CUP
unidirectionally.

dc_rpc_cltsend Y Y

Facility available with MHP OpenTP1 function MHP operating
conditions

Outside
the

transacti
on

processin
g range

Inside
the

transacti
on

processi
ng range

1. Creating Application Programs

27

Reject the
receiving of
processing
results.

dc_rpc_discard_fu
rther_replies

Y Y

Reject
acceptance of
particular
processing
results.

dc_rpc_discard_sp
ecific_reply

Y Y

Acquire the
descriptor of an
asynchronous
response-type
RPC request
which has
encountered an
error.

dc_rpc_get_error_
descriptor

Y Y

Reference the
schedule priority
of a service
request.

dc_rpc_get_servic
e_prio

Y Y

Reference the
service response
waiting interval.

dc_rpc_get_watch_
time

Y Y

Start an
application
program.

dc_rpc_open O N

Receive
processing
results in
asynchronous
mode.

dc_rpc_poll_any_r
eplies

Y Y

Set a schedule
priority of a
service request.

dc_rpc_set_servic
e_prio

Y Y

Facility available with MHP OpenTP1 function MHP operating
conditions

Outside
the

transacti
on

processin
g range

Inside
the

transacti
on

processi
ng range

1. Creating Application Programs

28

Update the
response waiting
interval of a
service request.

dc_rpc_set_watch_
time

Y Y

Real-time statistical information
service

Acquire
real-time
statistical
information for
arbitrary section.

dc_rts_utrace_put Y Y

TAM file service Close a TAM
table.

dc_tam_close Y Y

Delete a TAM
table record.

dc_tam_delete N Y

Acquire TAM
table status.

dc_tam_get_inf Y Y

Open a TAM
table.

dc_tam_open Y Y

Input a TAM
table record.

dc_tam_read N Y

Cancel the input
of a TAM table
record.

dc_tam_read_cance
l

N Y

Update a TAM
table record on
the assumption
of input.

dc_tam_rewrite N Y

Acquire TAM
table
information.

dc_tam_status Y Y

Update/add a
TAM table
record.

dc_tam_write N Y

Facility available with MHP OpenTP1 function MHP operating
conditions

Outside
the

transacti
on

processin
g range

Inside
the

transacti
on

processi
ng range

1. Creating Application Programs

29

Legend:

Y: Can be used with MHPs.

(Y): Can be used only in access to an unrecoverable DAM file.

O: Can be used only from the main function.

NO: The function can be used only in the service-function range of nontransaction
attribute MHPs.

N: Cannot be used with MHPs.

Note
"Outside the transaction processing range" means the range of nontransaction
attribute MHPs or MHP main functions.

(4) Facilities and functions available with UAPs that handles offline work
The table below lists the facilities and functions which can be used with UAPs that
handles offline work.

Transaction control Start a
transaction.

dc_trn_begin O N

Report the
information
about the current
transaction.

dc_trn_info Y Y

Enable
commitment in
unchained mode.

dc_trn_unchained_
commit

N O

Enable rollback
in unchained
mode.

dc_trn_unchained_
rollback

N O

Online tester management Report the test
status of a user
server.

dc_uto_test_statu
s

Y Y

Facility available with MHP OpenTP1 function MHP operating
conditions

Outside
the

transacti
on

processin
g range

Inside
the

transacti
on

processi
ng range

1. Creating Application Programs

30

Table 1-5: Facilities and functions available with UAPs that handles offline
work

1.1.2 Coding rules
(1) Notes on coding

For OpenTP1, a UAP can be created in either C or C++ language. If you are using C
language, code the UAP according to the ANSI C format or the pre-ANSI K&R
format. If you are using C++ language, code the UAP in conformance with the C++
language specifications. Although the availability of some functions in the provided
standard library is limited, most functions in the library can be used together with the
functions in the OpenTP1 library.

In addition, any system calls and program libraries can also be used. However, it is
recommendable to use OS-provided standard functions and system calls when writing
UAPs in order to assure high portability of the UAPs.

When creating UAPs which use system calls and arbitrary program libraries, note the
following:

1. When using a signal from the UAP, do not register the type of a signal handler
(SIGILL or SIGBUS) which creates a core file during operation with the signal
default specified. If the signal handler is registered, a core file is not created even
when the program terminates abnormally. As a result, troubleshooting is
impossible.

2. When using a signal from the UAP, do not use a function in the OpenTP1 library

Facility available with UAP that handles offline work OpenTP1 function

DAM file service Seek a physical file block. dc_dam_bseek

Allocate a physical file. dc_dam_create

Input directly a physical file block. dc_dam_dget

Output directly a physical file block. dc_dam_dput

Input a physical file block. dc_dam_get

Close a physical file. dc_dam_iclose

Open a physical file. dc_dam_iopen

Output a physical file block. dc_dam_put

Performance verification trace Report the sequential number for an
acquired performance verification trace.

dc_prf_get_trace_num

Acquire user-specific performance
verification traces.

dc_prf_utrace_put

1. Creating Application Programs

31

from the signal handler.

3. Do not use the following system call:

• chdir (change of the current working directory)

4. Do not use the following system calls after the function dc_rpc_open():

• fork (new process creation)

• exec (file execution)

• system (shell command issuance)

5. Do not use jump functions (setjmp and longjmp) which extend over functions
in the C-language library.

6. When using another program library, do not use Xlib and OSF/Motif functions
which control event-driven dispatching.

If the OS is HP-UX, always specify immediate as the bind mode at linkage. If an
executable file created as a bind mode other than immediate is used as an OpenTP1
UAP, the system operation is undefined. Use the OS chatr command to check whether
the bind mode for the created UAP is immediate.

(2) Notes on naming
We recommend that you include a certain prefix character string in the names of any
variables or definitions coded by the user. If any names duplicate those used by the OS
or OpenTP1, system operation is unpredictable.

(a) Service function names
Service functions must be given names which are 20 or less alphanumeric characters
in length and begin with an alphabetic character. Do not give service functions the
following names:

• Names beginning with dc

• Names beginning with CBLDC

• Names beginning with tx or TX

• Names beginning with tp or TP

(b) External variable names
Do not give external variables the following names except when such names are used
according to the instructions in this manual:

• Names beginning with dc

• Names beginning with CBLDC

• Names beginning with tx or TX

1. Creating Application Programs

32

• Names beginning with tp or TP

(c) Constant names
Do not give the following names as constant names defined in #define statements
except when such names are used according to the instructions in this manual:

• Names beginning with DC

• Names beginning with CBLDC

• Names beginning with TX

• Names beginning with TP

(3) Termination method
If the COBOL85 program has been executed even only once in a process of a UAP
created in C language, use the cblend function to enable exit. If the UAP is
terminated without using the cblend function, some information will not be output
(such as the COBOL85 count information). See the corresponding COBOL language
manual for details on the cblend function.

(4) When using Windows
Conform to the specifications of the C compiler used by Windows for compiling and
linking UAPs when the OpenTP1 (TP1/LiNK) is used by Windows.

(5) When using TP1/Message Control
The source files of C user application programs and user exit routines used in Version
6 can also be used as is in Version 7 in the following cases: (1) when both Versions 6
and 7 are for the 32-bit architecture, and (2) when both Versions 6 and 7 are for the
64-bit architecture.

1. Creating Application Programs

33

1.2 Creating application programs (TCP/IP)

1.2.1 Procedure for creating application programs
(1) General procedure for creating an SUP

The figure below shows the procedure for creating an SUP.

1. Creating Application Programs

34

Figure 1-1: General procedure for creating SUPs

(2) General procedures for creating an SPP
The SPP creation procedure depends on whether the SPP uses a stub or uses dynamic
loading of service functions.

1. Creating Application Programs

35

(a) General procedure for creating an SPP (when using a stub)
The figure below shows the general procedure for creating an SPP by using a stub.

Figure 1-2: General procedure for creating an SPP (when using a stub)

1. Creating Application Programs

36

(b) General procedure for creating an SPP (when using dynamic loading of
service functions)
The following shows the general procedure for creating an SPP that dynamically loads
service functions.

Figure 1-3: General procedure for creating an SPP (when using dynamic
loading of service functions)

1. Creating Application Programs

37

(3) General procedures for creating an MHP
The MHP creation procedure depends on whether the MHP uses a stub or uses
dynamic loading of service functions.

(a) General procedure for creating an MHP (when using a stub)
The figure below shows the general procedure for creating an MHP that uses a stub.

1. Creating Application Programs

38

Figure 1-4: General procedure for creating an MHP (when using a stub)

1. Creating Application Programs

39

(b) General procedure for creating an MHP (when using dynamic loading of
service functions
The figure below shows the general procedure for creating an MHP that uses dynamic
loading of service functions.

Figure 1-5: General procedure for creating an MHP (when using dynamic
loading of service functions)

1. Creating Application Programs

40

(4) General procedure for creating UAP that handles offline work
The figure below shows the general procedure for creating a UAP that handles offline
work.

Figure 1-6: General procedure for creating a UAP that handles offline work

1.2.2 Creating stubs
UAPs used with the OpenTP1 require libraries for fulfilling inter-UAP service
requests. One of these libraries is called a stub.

The explanation below deals with stubs of UAPs (SUP and SPP) which use an
OpenTP1 remote procedure calls (dc_rpc_call()) and MHP stubs. See 1.3

1. Creating Application Programs

41

Creating XATMI interface application programs (TCP/IP, OSI TP) on how to create
stubs which will be used when the XATMI interface is used for communication.

(1) Application programs requiring stubs
Among the UAPs used with the OpenTP1, UAPs having service functions (SPP and
MHP) usually require a stub. However, a stub is not required if all service functions
are put in the UAP shared library from which they are loaded dynamically. The UAP
shared library is created by linking the UAP object files compiled from UAP source
files.

Note that UAPs that handle offline work and SUPs do not require a stub because they
do not have a service function.

(2) Stub creation procedure
Before creating a stub, create a file (RPC interface definition file) in which UAP
service functions are defined. Execute the stbmake command with this file as the
argument.

When the stbmake command is executed, a source file (C-language source file) for
the stub is created. Compile this file with the C-language compiler and link it to the
object file of the UAP.

When modifying the stub, create the UAP from scratch. Modify the RPC interface
definition file, recreate the stub, and link it to the object file of the recompiled UAP.

The figure below shows the stub creation procedure.

Figure 1-7: Stub creation procedure

1. Creating Application Programs

42

(3) Creation of RPC interface definition file
When creating a stub, create a file which defines entry points to the SPP and MHP
services. This is called the RPC interface definition. The file containing this definition
is called the RPC interface definition file.

Create an RPC interface definition file for each executable file of the SPP or MHP.

(a) Format of RPC interface definition
Write the RPC interface definition in the following format:

Format

Description

This statement specifies the names of the entry points to the SPP and MHP service
functions. Each entry point name must be a C-language function name.

Use 20 characters or fewer to specify each entry point.

The entry point names must correspond to the service names as specified in the
user service definition.

Comments can be added to the RPC interface definition. Begin each comment
with /* and terminate it with */. Comments cannot be nested. Comments cannot
be written within a keyword, identifier, or other character string.

More than one entry statement can be written in one file. An example of RPC
interface definition is given below.

Example

Specification of RPC interface definition for a UAP which has service functions
with their entry points identified by sv01 and sv02 (use either format below)

Format 1:

Format 2:

(4) RPC interface definition file name
The file name must end with the suffix .def indicating an RPC interface definition
file. The directory to contain the file must be in a path that the stbmake command can
search. No other restrictions are placed on it.

entry "entry-point-name"["entry-point-name"...];

entry "sv01";
entry "sv02";

entry "sv01" "sv02";

1. Creating Application Programs

43

The name of an RPC interface definition file can have up to 255 characters. However,
the name that can be specified may be shorter than 255 characters due to OS
restrictions.

After the stbmake command is executed, a stub source file is created under a name
different from that of the RPC interface definition file. Therefore, the RPC interface
definition file is not used during the OpenTP1 operation.

1.2.3 Creating stub source file
To create the source file of the stub, execute the stbmake command with the RPC
interface definition file name as the argument.

(1) File created by stbmake command
When the stbmake command is executed, the following file is created (xxxxx is the
RPC interface definition file name minus the suffix .def).

• Stub source file (file name: xxxxx_sstb.c)

The name of the source file can be changed using an option to the command.

The source file name can have up to 255 characters. However, the name that can
be specified may be shorter than 255 characters due to OS restrictions. Compile
the stub source file with the C-language compiler and link it with the UAP object
file.

1.2.4 stbmake - Stub source file creation
(1) Format

(2) Description
Creates a stub source file from the RPC interface definition file.

When creating a UAP that uses OpenTP1 remote procedure calls and XATMI interface
functions in combination, see the descriptions of the stbmake command in A. Using
OpenTP1 Remote Procedure Calls and XATMI-interfaced Functions in Combination.

(3) Options
-s stub-source-file-name ~ <pathname>

Specify the pathname of the stub source file to be created. If no pathname is
specified here, the source file name is the same as the RPC interface definition file
name except that the suffix .def is replaced with _sstb.c and the source file is
created in the current directory.

If a source file with the specified file name is already present, it is replaced with
the created source file and is lost.

stbmake [-s [stub-source-file-name]] definition-file-name

1. Creating Application Programs

44

(4) Command argument
definition-file-name~ <pathname>

Specify the pathname of the RPC interface definition file.

(5) Notes
The name in the stbmake command of a file that can be input and output can be up to
255 characters in length. However, the name that can be specified may be shorter than
255 characters due to OS restrictions.

(6) Example
An example of using the stbmake command is given below.

Creating a stub source file from an RPC interface definition file test.def in the
current directory.

Format 1:

A stub source file test_sstb.c is created from an RPC interface definition file
test.def in the current directory.

Format 2:

A directory stub is created under the current directory and a stub source file test.c
is created in the created directory.

1.2.5 Compiling and linking application program
For details on how to compile and link UAPs, see the reference documentation for the
OS being used.

Note on UAP creation

Be careful of the OpenTP1 version in creating a UAP. Some system services do
not accept functions called from UAPs in old versions. To use a UAP created in
an old version, the UAP should be recompiled in the OpenTP1 version.

(1) Compilation
To create the object file of a UAP written in C language, compile the source program
with the C compiler. Also, use the C compiler to compile the stub source program.

(2) Linkage
The following notes (#1 to #3) apply to files treated in (a) to (d) below.

stbmake test.def

stbmake -s stub/test.c test.def

1. Creating Application Programs

45

#1:

The object file for transaction control is required to execute transactions that
access the resource manager via the XA interface. Note that any resource manager
provided by OpenTP1 is accessed by the XA interface. An object file for
transaction control is created by using an OpenTP1 command (trnmkobj
command). For details on the trnmkobj command, see the manual OpenTP1
Operation.

#2:

The object file provided by resource manager is required to access the resource
manager. The following arguments can be specified in the linkage command to
link object files provided by OpenTP1:

Arguments for using the message exchange facility: -lmcf and -lmnet

Argument for using the DAM access facility: -ldam

Argument for using the TAM access facility: -ltam

Arguments for using the ISAM facility: -lismb, -lisam, and -lrsort

Argument for using the message queuing facility: -lmqa

For details on how to link object files for a non-Hitachi resource manager, see the
documentation for the resource manager.

#3:

The object file provided by the online tester is required to use the
dc_uto_test_status function, which reports the user server test status. The
following argument is specified to link the object file for the online tester:

Argument for reporting the user server test status: -luto

(a) Files to be linked to SPP and MHP
The executable file of an SPP or MHP is linked to the following files when it is created:

• UAP object file (main and service functions)

• Stub object file

• Object file for transaction control#1

• Object file provided by resource manager#2

• Object file provided by online tester#3

• OpenTP1 library

1. Creating Application Programs

46

(b) Files to be linked to SUP
The executable file of an SUP is linked to the following files when it is created:

• UAP object file (main function)

• Object file for transaction control#1

• Object file provided by resource manager#2

• Object file provided by online tester#3

• OpenTP1 library

(c) Files to be linked to UAP that handles offline work
The executable file of UAP that handles offline work is linked to the following files
when it is created:

• UAP object file (main function)

• OpenTP1 library

(d) Files to be linked to an SPP or MHP that dynamically loads service
functions
When the executable file of an SPP or MHP that dynamically loads service functions
is created, it is linked to the following files:

• UAP object file (main function)

• OpenTP1 library

• Object file for transaction control#1

• Object file provided by resource manager#2

• Object file provided by online tester#3

In addition to the above files, the following files are required when the SPP also uses
a service search that employs a stub:

• UAP object file (service function)

• Stub object file

(3) Notes
If the OS is HP-UX, always specify immediate as the bind mode at linkage. If an
executable file created as a bind mode other than immediate is used as an OpenTP1
UAP, the system operation is undefined. Use the OS chatr command to check whether
the bind mode for the created UAP is immediate.

1. Creating Application Programs

47

1.3 Creating XATMI interface application programs (TCP/IP, OSI TP)

This section explains how to create a UAP that uses an XATMI interface if TCP/IP or
OSI TP is used as the communication protocol.

This method differs from how to create a UAP that uses OpenTP1 RPC in terms of the
procedure of creating a stub (execution formats for the stbmake and tpstbmk
commands) and in the file to be linked with the UAP. The other procedures are the
same as for an OpenTP1 UAP. For details on how to create UAPs, see 1.1 Coding
application program and 1.4 Executing application programs.

1.3.1 Procedure for creating XATMI-interfaced application programs
The figure below shows the procedure for creating UAP.

1. Creating Application Programs

48

Figure 1-8: Procedure for creating UAP (XATMI Interface TCP/IP, OSI TP)

1. Creating Application Programs

49

1.3.2 Creating stubs for XATMI interface
This subsection explains how to create the stub for the XATMI interface. For UAP
communication through the XATMI interface, stubs are necessary on both the client
and server UAPs.

To create a stub, create a file (XATMI interface definition file) that defines an XATMI
interface, then execute a stub creating command. The following commands create a
stub:

• For a UAP that supports TCP/IP communication: stbmake command

• For a UAP that supports OSI TP communication: tpstbmk command

Compile the created stub source file with the C-language compiler and link it to the
UAP object file.

The figure below provides an overview of the procedure for creating a stub for the
XATMI interface.

1. Creating Application Programs

50

Figure 1-9: Procedure for creating stub for XATMI interface

(1) XATMI interface definition (for client UAP)
The XATMI interface definition for the client UAP (SUP or SPP) is in the format
explained below.

Format

called_servers={"server-definition-file-name"
 [,"server-definition-file-name"]...};

1. Creating Application Programs

51

Description

Specify all XATMI interface definition file names defined in the server UAP.
When a server UAP definition file is specified, the typed buffer defined in the
server definition file can be used by the client UAP process.

Parameters

• server-definition-file-name
Specify the file name of the XATMI interface definition file of the server
UAP. The definition file name must have a suffix .def.

Multiple definition files names can be specified in braces {} in one
called_servers statement. It is also possible to write multiple
called_servers statements in one XATMI interface definition file.

Example

Defining a client UAP which communicates with server UAP1 and server UAP2
through the XATMI interface (assuming that the server UAP1 definition file name
is serv1.def and the server UAP2 definition file name is serv2.def).

Format 1:

Format 2:

(2) XATMI interface definition (for server UAP)
For the XATMI interface definition of a server UAP, the following items must be
specified in any order:

• Definition of the typed buffer to be used

• Definition of service function name and argument information

• called_servers statement (if the server UAP is to call another server UAP)

(a) Definition of the typed buffer to be used
Format

called_servers = { "serv1.def","serv2.def" };

called_servers = { "serv1.def" };
called_servers = { "serv2.def" };

type-name subtype-name{
 data-type data-name;
 [data-type data-name;]
 :
 :
 };

1. Creating Application Programs

52

Description

Define the type, subtype, and structure of the typed buffer to be used with the
server UAP. If the server UAP is to call service from another server UAP process,
the typed buffer which can be used by the calling process can also be used by any
local process. Therefore, define here only the typed buffer to be used for I/O by
the service function within the local process. However, X_OCTET will always be
recognized. If X_OCTET is defined, the execution of a stub creation command
(stbmake or tpstbmk command) will encounter an error.

Parameters

• type-name
Specify the type name of the typed buffer to be used with the server UAP.

• subtype-name
Specify the subtype name of the typed buffer to be used with the server UAP.

• data-type
Specify the data type of the data contained in the structure of the typed buffer
to be used with the server UAP.

• data-name
Specify the data name of the data contained in the structure of the typed
buffer to be used with the server UAP.

List of the data types that can be used as types

Table 1-6 lists the data types that can be used as types. Identifier means a data type
to be written in the XATMI interface definition. Data type in C means data type
of a typed buffer actually defined in a stub. To convert a data type in order to
communicate with a system other than OpenTP1, specify the identifier to be
converted in the XATMI interface definition.

For OpenTP1, a value of type int has four bytes. Therefore, int4 is written in the
definition file so that the fact is explicitly indicated.

Table 1-6: Data types that can be used as types

Type Identifier Data type in C Communication
protocol

Remarks

TCP/IP OSI TP

X_OCTET O#1 O#1 Y Y None

X_COMMON short a short a Y Y None

short a[n] short a[n] Y Y None

1. Creating Application Programs

53

long a long a Y Y None

long a[n] long a[n] Y Y None

char a#2 char a Y Y Unconverted
array

octet a char a Y Y Unconverted
array

tchar a char a O Y Converted
array

char a[n]#2 char a[n] Y Y Unconverted
array

octet a[n] char a[n] Y Y Unconverted
array

tchar a[n] char a[n] O Y Converted
array

X_C_TYPE short a short a Y N None

short a[n] short a[n] Y N None

long a DCLONG a Y N None

long a[n] DCLONG a[n] Y N None

int4 a DCLONG a Y N None

int4 a[n] DCLONG a[n] Y N None

char a#2 char a Y N None

octet a char a Y N None

tchar a char a Y N None

char a[n]#2 char a[n] Y N None

octet a[n] char a[n] Y N None

tchar a[n] char a[n] Y N None

float a float a Y N None

float a[n] float a[n] Y N None

Type Identifier Data type in C Communication
protocol

Remarks

TCP/IP OSI TP

1. Creating Application Programs

54

Legend:

Y: Can be used for the applicable communication protocol.

N: Cannot be used for the applicable communication protocol.

O: Even an identifier to be converted is treated as it is without conversion.

#1

X_OCTET is automatically recognized if it is not defined. If X_OCTET is specified
in the XATMI interface definition, an error occurs when a command that creates a
stub is executed.

#2

This identifier can also be used. However, to create a new program, use one of the
following identifiers:

For X_COMMON: octet or tchar

For X_C_TYPE: str or tstr

Example

double a double a Y N None

double a[n] double a[n] Y N None

octet a[n][n] char a[n][n] Y N None

tchar a[n][n] char a[n][n] Y N None

str a[n] char a[n] Y N None

str a[n][n] char a[n][n] Y N None

tstr a[n] char a[n] Y N None

tstr a[n][n] char a[n][n] Y N None

 X_C_TYPE subtype1 {
 char name[8];
 int4 data[10];
 int4 flags;
 };

Type Identifier Data type in C Communication
protocol

Remarks

TCP/IP OSI TP

1. Creating Application Programs

55

(b) Definition of service function name and argument information
Format

Description

Specify the function name of the service function in the server UAP and the type
name and subtype name of the typed buffer to be passed as the arguments. The
argument is the data member of the svc_info structure which is the actual
argument to the service function.

For the X_OCTET type, specify only the type name because there is no subtype. If
intended processing does not involve reference to the data member of the
svc_info structure in the service function, assign nothing or void to the
argument.

The tpcall(), tpacall(), and tpconnect() functions can call a service
function without sending the typed buffer. If data indicated by a member of the
svcinfo structure with a service function is not to be referenced explicitly, assign
nothing or void to the argument.

To call a specified function, set NULL for the pointer to the typed buffer sent with
the tpcall(), tpacall(), or tpconnect() functions at the client side. For
the X_OCTET type, a specified function can be called even if NULL is not set for
the pointer or the length of the sent data is zero.

If specification is not to limit the typed buffer to be received as an argument,
assign ALL to the argument. The service function defined with argument ALL can
receive any type of typed buffers as long as they are recognizable in the local
process.

Parameters

• service-function-name
Specify the function name in the server UAP.

• type-name
Specify the type name given to the argument to the function.

• subtype-name
Specify the subtype name given to the argument to the function.

Examples

Example 1:

service service-function-name (type-name [subtype-name])|(ALL)|([void])};

service svc_func1(X_C_TYPE subtype1);

1. Creating Application Programs

56

Example 2 (argument type is X_OCTET):

Example 3 (service function without argument reception):

Example 4 (service function without argument limitation):

(c) If the server UAP is to call another server UAP:
Specify the XATMI interface definition (called_servers statement) of the client
UAP.

(3) Name of an XATMI interface definition file
The file name must end with the suffix .def indicating an XATMI interface definition
file. The directory to contain the file must be in a path that a stub creation command
(stbmake or tpstbmk command) can search. No other restrictions are placed on it.

The name of an XATMI interface definition file can have up to 255 characters.
However, the name that can be specified may be shorter than 255 characters due to OS
restrictions.

After a command that creates a stub (stbmake or tpstbmk command) is executed, a
stub source file is created under a name different from that of the XATMI interface
definition file. Therefore, the XATMI interface definition file is not used while
OpenTP1 running.

(4) Including the definition file
If the same typed buffer is to be used by different processes, the user can create a
definition file for the shared typed buffer and include it in the definition file for each
process.

The statement for including the definition file is in the same format as in the C
language as follows:

The include file will be read through the search path specified by the -i option to a stub
creation command (stbmake or tpstbmk command). If the appropriate file is not
found in the search path, the current directory will finally be searched.

The file to be included may be given any name (the suffix need not be .h). However,
if the file is directly specified in a stub creation command (stbmake or tpstbmk
command) as the XATMI interface definition file, observe the definition naming

service svc_func2(X_OCTET);

service svc_func3(void); or service svc_func3();

service svc_func4(ALL);

 #include <file-name> or #include "file-name"

1. Creating Application Programs

57

convention.

The contents of the file to be included are the same as those of the XATMI interface
definition file. However, the file should not contain the definition of a service function
within the local process in order to avoid name duplication

(5) Naming conventions
1. Service functions and subtypes must be named according to the OpenTP1 rules as

follows:

• Any name cannot begin with dc, DC, CBLDC, tx, TX, tp, or TP.

• Service function names must be 20 characters or less long.

• The maximum subtype name length is 32 characters. Of these characters, the
first 16 characters are valid. These 16 characters are checked for duplication.

• Up to 32 characters can be used for the data names of data used in the
structures of typed buffers.

2. Service function names must be unique within the same process.

3. Subtype names may be duplicate in the same process only if the types and
structures are identical. Otherwise, a stub creation command (stbmake or
tpstbmk command) returns with an error.

4. Identical service function names or subtype names may be used in different
processes. However, processes treated as different servers will be regarded as the
same process by the client if they are called from one client.

1.3.3 Creating stub source files for XATMI interface
Create a stub for the XATMI from the created XATMI interface definition file.

To create a stub, create a file (XATMI interface definition file) that defines an XATMI
interface, then execute a stub creation command. The following commands create a
stub:

• For a UAP that holds TCP/IP communication: stbmake command

• For a UAP that holds OSI TP communication: tpstbmk command

Create stubs for the client and server UAPs in the following way:

(1) Files created by the stbmake command or tpstbmk command
The following three files are created by executing the command (xxxxx is the XATMI
interface definition file name minus the suffix .def):

• XATMI stub source file (default file name: xxxxx_stbx.c)

• XATMI stub header file (default file name: xxxxx_stbx.h)

1. Creating Application Programs

58

• XATMI stub copy file (subtype name followed by .cbl)

The file name can have up to 255 characters. However, the name that can be specified
may be shorter than 255 characters due to OS restrictions.

The directory in which a file is created, and the file name can be changed by a
command option.

(a) XATMI stub source file
The XATMI stub source file will be compiled with the C-language compiler and linked
to the UAP object file.

(b) XATMI stub header file
The XATMI stub header file will be included in the UAP source file and XATMI stub
source file.

(c) XATMI stub copy file
The file is used not in a UAP written in C, but rather in a UAP written in COBOL.

1.3.4 stbmake - Stub source file creation for XATMI interface
(1) Format

(2) Description
When you intend to hold TCP/IP communication via an XATMI interface, create the
source file for the required XATMI stub. The stbmake command outputs the
following files based on the XATMI interface definition file:

• XATMI stub source file

• XATMI stub header file (used in a UAP written in C)

• XATMI stub copy file (used in a UAP written in COBOL)

When creating a UAP that uses OpenTP1 remote procedure calls and XATMI interface
functions in combination, see the descriptions of the stbmake command in A. Using
OpenTP1 Remote Procedure Calls and XATMI-interfaced Functions in Combination.

(3) Options
-x

Indicates that the stub created will serve the UAP which uses the XATMI
interface. The -x option can be omitted.

stbmake [-x] [-b] [-S stub-source-file-name]
 [-H stub-header-file-name]
 [-i include-file-pathname]
 [-m server-definition-file-pathname]
 [-p] definition-file-name

1. Creating Application Programs

59

-b

To create an XATMI stub to be used in a UAP in C, omit the -b option. To create
an XATMI stub copy file to be used in a UAP written in COBOL, specify the -b
option.

-S stub-source-file-name ~ <pathname>

Specify this option if the XATMI stub source file created is to be renamed. The
relative or absolute pathname may be used for this file name.

If this option is omitted, the file will be created with name xxxxx_stbx.c in the
current directory.

-H stub-header-file-name ~ <pathname>

Specify this option if the XATMI stub header file created is to be renamed. The
relative or absolute pathname may be used for this file name.

If this option is omitted, the file will be created with name xxxxx_stbx.h in the
current directory.

-i include-file-pathname ~ <pathname>

Specify the search path containing the include file specified by the #include
statement to be used. The stbmake command searches the directory identified by
the -i option for the include file.

If the -i option is omitted, the current directory is searched for the include file.

The -i option can be specified only once. If more than one search path is needed,
the pathnames must be followed by the desired paths separated by colons (:). The
search order is the order in which the paths are written as the argument to the -i
option. Use alphanumeric characters, underscore (_), slash (/), and period (.) when
specifying a search pathname.

-m server-definition-file-pathname ~ <pathname>

Specify the search path containing the server definition file to be used. The
stbmake command searches the directory identified by the -m option for the
server definition file specified by the called_servers statement.

If the -m option is omitted, the current directory is searched for the definition file.

The -m option can be specified only once. If more than one search path is needed,
the pathnames must be followed by the desired paths separated by colons (:). The
search order is the order in which the paths are written as the argument to the -m
option.

Use alphanumeric characters, underscore (_), slash (/), and period (.) when
specifying a search pathname.

-p

1. Creating Application Programs

60

Specify this option to output the allocation status of the typed buffer in memory
to the standard output. Use the -p option to learn about how XATMI structure
members are allocated in memory.

When the -p option is specified, the stbmake command creates no files. Thus,
output file names specified in the -S and -H option are ignored. Specify the -m
and -i options to search for files as needed.

(4) Command argument
definition-file-name
Specify the XATMI interface definition file name. Its suffix must be .def.

(5) Notes
• Each option to the stbmake command for XATMI stub creation can be specified

only once. If an option is specified more than once, the last specified value will
be valid

• The name in the stbmake command of a file that can be input and output can be
up to 255 characters in length. However, the name that can be specified may be
shorter than 255 characters due to OS restrictions.

1.3.5 tpstbmk - Creation of an XATMI interface stub OSI TP
communication
(1) Format

(2) Description
When you intend to hold OSI TP communication via an XATMI interface, create the
source file for the required XATMI stub. The tpstbmk command outputs the
following files based on the XATMI interface definition file:

• XATMI stub source file

• XATMI stub header file (used in a UAP written in C)

• XATMI stub copy file (used in a UAP written in COBOL)

When you intend to create a UAP that uses an XATMI interface and OpenTP1 remote
procedure calls, seethe explanation about the tpstbmk command in A. Using
OpenTP1 Remote Procedure Calls and XATMI-interfaced Functions in Combination.

tpstbmk [-b] [-S stub-source-file-name]
 [-H stub-header-file-name]
 [-i include-file-search-pathname]
 [-m server-definition-file-search-pathname]
 definition-file-name

1. Creating Application Programs

61

(3) Options
-b

To create an XATMI stub to be used in a UAP in C, omit the -b option. To create
an XATMI stub copy file to be used in a UAP written in COBOL, specify the -b
option.

-S stub-source-file-name ~ <pathname>

Specify the name of the XATMI stub source file to be created. Relative and
absolute pathnames can be used.

If the -S option is omitted, the XATMI stub source file is created in the current
directory under the name XXXXX_stbx.c.

-H stub-header-file-name ~ <pathname>

Specify the name of the XATMI stub header file to be created. Relative and
absolute pathnames can be used.

If the -H option is omitted, the XATMI stub header file is created in the current
directory under the name XXXXX_stbx.h.

-i include-file-search-pathname ~ <pathname>

Specify the include file name specified in the #include statement of the XATMI
interface definition file using a search path. The include file is searched for
starting at the directory specified in the -i option.

If the -i option is omitted, the search starts at the current directory in which the
command was executed.

The -i option can be specified only once. Separate search paths with a colon. The
search paths are searched in the order in which they are described in the
arguments for the -i option.

Specify a search path using alphanumeric characters, underscore (_), slash (/), and
period (.).

-m server-definition-file-search-pathname ~ <pathname>

Specify the server definition file name specified in the called_servers
statement of the XATMI interface definition file using a search path. The include
file is searched for starting at the directory specified in the -m option.

If the -m option is omitted, the search starts at the current directory in which the
command was executed.

Specify a search path using alphanumeric characters, underscore (_), slash (/), and
period (.).

The -m option can be specified only once. Separate search paths with a colon (:).

1. Creating Application Programs

62

The search paths are searched in the order in which they are described in the
arguments for the -m option.

(4) Command argument
definition-file-name ~ <pathname>

Specify the name of an XATMI interface definition file. The name must have the
suffix .def.

(5) Notes
• In the tpstbmk command, each option can be specified only once. If an option is

specified more than once, only the last value is valid.

• The name in the tpstbmk command of a file that can be input and output can be
up to 255 characters in length. However, the name that can be specified may be
shorter than 255 characters due to OS restrictions.

1. Creating Application Programs

63

1.4 Executing application programs

This section explains how to start and terminate UAPs and what environments are
needed for executing UAPs.

1.4.1 Starting and terminating each application program
(1) Starting and terminating SUP

(a) Starting
The SUP is started when:

• The OpenTP1 starts if the server name of the SUP is specified in the user service
structure definition, or

• The dcsvstart command is executed if the server name of the SUP is not
specified in the user service structure definition.

Before the SUP can request an SPP for service, the SPP must begin the service and
must have started before the SUP has.

(b) Terminating
Once the SUP has been started, it cannot be terminated normally by the OpenTP1.
Even when a command to exit the OpenTP1 normally is executed, the OpenTP1 will
not terminate until all the SUPs in the OpenTP1 terminate. When coding the SUP,
design it so that it will terminate by itself. To bring an SUP into abnormal termination
because of some problem, design the SUP so that it will terminate by itself by exit()
or abort().

The SUP cannot be terminated normally by the dcsvstop command. However, the
SUP can be brought into forced termination by the dcsvstop -f command.

Do not terminate any SUP process by the kill command.

(2) Starting and terminating SPP and MHP
(a) Starting

The SPPs and MHPs belonging to one user server (service group) start at once. They
start when:

• The OpenTP1 starts if the server name of the SPPs and MHPs is specified in the
user service structure definition, or

• The dcsvstart command is executed if the server name of the SPPs and MHPs
is not specified in the user service structure definition.

If the multiserver facility is in use, the same number of user server processes as the
specified number of resident processes are acquired. If the number of service requests

1. Creating Application Programs

64

increases, nonresident processes will start as well.

(b) Terminating
The SPP or MHP terminates when:

• Termination processing begins because one of the following OpenTP1 terminate
commands is executed:

dcstop (normal termination)

dcstop -n (forced normal termination)

dcstop -a (planned termination A)

dcstop -b (planned termination B)

dcstop -f (forced termination)

• The active online process enters termination steps because one of the following
server terminate commands is executed:

dcsvstop (normal termination)

dcsvstop -f (forced termination)

• The active online process is brought into termination by the OpenTP1 because the
maximum number of processes in the user service definition is exceeded;

• The SPP or MHP which is executing as a nonresident process finishes service
processing; or

• The number of requests addressed to the service group decreases if loads on SPPs
or MHPs are distributed using a multiserver configuration.

Do not terminate any SPP or MHP process by the kill command.

(3) Starting and terminating UAPs that handle offline work
Users can start UAPs that handle offline work by any method. The UAPs are
terminated by terminating the processes by the shell. Users are responsible for starting
and terminating UAPs that handle offline works.

1.4.2 Operating environment of application programs started by
OpenTP1

• The standard input (stdin), standard output (stdout), and standard error output
(stderr) of SUPs, SPPs, and MHPs are redirected by OpenTP1.

• When a UAP is activated, a directory $DCDIR/tmp/home/user-server-name.xx
(where xx is a sequence number) is created. The UAP runs with this directory as
the current working directory.

You can change this directory by setting the prc_current_work_path operand

1. Creating Application Programs

65

in the system common definition.

• The user ID (UID) and group ID (GID) have the values specified at environment
setup for the user server.

• The root directory remains a forward slash (/).

• The following file descriptors are open during UAP execution:

File descriptor 0: Standard input file descriptor

File descriptor 1: Standard output file descriptor

File descriptor 2: Standard error output file descriptor

• umask is 000.

• No control terminal is used.

• OpenTP1 automatically sets a UAP signal when a UAP process is created. The
table below lists UAP signals set by OpenTP1.

Table 1-7: UAP signals set by OpenTP1

Signal name Setting upon UAP process creation Operation

SIGHUP SIG_DFL(default) exit

SIGINT SIG_IGN(ignored) ignore

SIGQUIT SIG_DFL(default) core

SIGILL SIG_DFL(default) core

SIGTRAP SIG_IGN(ignored) ignore

SIGIOT# SIG_DFL(default) core

SIGABRT# SIG_DFL(default) core

SIGEMT SIG_DFL(default) core

SIGFEP SIG_DFL(default) core

SIGKILL - exit

SIGBUS SIG_DFL(default) core

SIGSEGV SIG_DFL(default) core

SIGSYS SIG_DFL(default) core

SIGPIPE# SIG_IGN(ignored) ignore

SIGALRM SIG_IGN(ignored) ignore

1. Creating Application Programs

66

Legend:

N: Not applicable

Note
When specifying signal operations using UAP, do not stop the process by
invoking exit() or abort() within the specified signal handler. When the
process is stopped in the signal handler, the OpenTP1 system will shut down even
if the signal interruption occurs during critical OpenTP1 processing. Furthermore,
do not rewrite the value of the external variable errno in the signal handler.

#

The signals marked with # cannot be respecified. Do not change the settings of
these signal operations in the program when creating a UAP.

1.4.3 Application's environment variables
UAP environment variables can be set for each user server at environment setup for
the user server. However, the following environment variables are set by OpenTP1.

The OpenTP1 sets the following environment variables:

• DCDIR: OpenTP1 home directory

• DCCONFPATH: Directory containing OpenTP1 system definition files

• DCSVNAME: User server name

• DCSVGNAME: Service group name (can be referenced only with SPPs or MHPs)

• DCUAPCONFPATH: Directory containing OpenTP1 user service definition files
(only when the files are to be stored in a different directory from DCCONFPATH)

In addition to the above, environment variables beginning with DC are used by the
OpenTP1. Since these environment variables are for reference only, do not change
them. If changed, the system operation is undefined.

SUPs, SPPs, and MHPs that run under OpenTP1 do not inherit the environment
variables set when the user logs in as an OpenTP1 system administrator using telnet or
other means. Set these environment variables again in the user service definition.

SIGTERM SIG_DFL(default) exit

SIGUSR1 SIG_IGN(ignored) ignore

SIGUSR2 SIG_IGN(ignored) ignore

SIGCLD SIG_DFL(default) ignore

Signal name Setting upon UAP process creation Operation

67

Chapter

2. Syntax of OpenTP1 Library
Functions

This chapter explains the syntax of OpenTP1 library functions.

This chapter contains the following sections:

Format for explaining functions
Creating main and service functions
System operation management (dc_adm_~)
Multinode facility (dc_adm_get_~)
DAM file service (dc_dam_~)
IST service (dc_ist_~)
User journal acquisition (dc_jnl_~)
Lock for resources (dc_lck_~)
Audit log output (dc_log_audit_~)
Output message log (dc_log~)
Message exchange processing (dc_mcf_~)
Performance verification trace (dc_prf_~)
Remote API facility (dc_rap_~)
Remote procedure call (dc_rpc_~)
Real-time statistical information service (dc_rts_~)
TAM file service (dc_tam_~)
Transaction control (dc_trn_~)
Online tester management (dc_uto_~)

Format for explaining functions

68

Format for explaining functions

This section explains functions provided by OpenTP1 in the following format:

Format
Indicates the formats of OpenTP1 library functions and the data types of arguments.

To code a UAP in C++ language or the ANSI C format, see the format provided under
ANSI C, C++ in the function's Format section. To code a UAP in the pre-ANSI K&R
format, see the format provided under K&R C in the function's Format section.

Use the data types given in this section when allocating values to arguments. A specific
name can be arbitrarily assigned to an argument if not specially noted.

Description
Explains the facilities of the corresponding function.

Argument(s) whose value(s) is set in the UAP
Indicates the argument(s) whose value(s) should be specified when the function is
executed. Specify a value for each argument according to the explanation. If a value is
not always specified for an argument, the explanation of the argument is enclosed in
brackets [] when the value is specified for the argument.

Argument(s) whose value(s) is returned from OpenTP1
Indicates the argument(s) whose value(s) is returned from OpenTP1 after the function
is executed. Reference the contents of the argument after the function is executed. If a
value is not always returned to an argument from OpenTP1, the explanation of the
argument is enclosed in brackets [] when the value is returned.

Argument(s) whose value(s) is passed from a client UAP
Indicates the argument(s) whose value(s) is passed from the client UAP when the
service function is used. Execute service function processing referencing the contents
of the argument.

Argument(s) whose value(s) is returned from a server UAP
Indicates the argument(s) whose a value(s) is returned from the service function when
a synchronous-response-type RPC or asynchronous-response-type RPC is used. The
UAP that called the function dc_rpc_call() or the function
dc_rpc_poll_any_replies() can reference the value of the argument shown
here.

Return values
Values returned when the function is executed are explained in a table. The return

Format for explaining functions

69

value indicates whether the function was executed normally. If an error occurs, the
return value indicates the error status.

To maintain interchangeability, use the return value with the constant name shown here
when creating a UAP. The constant name of the return value is defined in the header
file. Reference the header file definition when you need the information of the return
value.

Example
Provided only for functions with which examples are necessary

Note(s)
Explains a note(s) on using the function.

Creating main and service functions

70

Creating main and service functions

This section gives the syntax and other information of the following OpenTP1 UAP
main and service functions. The SPP and MHP create main and service functions,
whereas the SUP creates only main functions.

• Create a main function (SUP, SPP, MHP)

• Create a service function (SPP)

• Create a service function (MHP)

The method for creating SGW main and service functions must conform to the
specification of the open system being used.

TP1/LiNK can use only the SUP, SPP and MHP as the OpenTP1 UAP. However, TP1/
Messaging is required when you create MHPs under TP1/LiNK.

Create a main function (SUP, SPP, MHP)

71

Create a main function (SUP, SPP, MHP)

Format
The name of a main function must include main(). For the other rules of creating main
functions, comply with the specifications of the C language for coding. OpenTP1 does
not limit creation of main functions. Main functions can be created according to the
explanation of this section.

Description
After the UAP process starts, the OS first calls the main function.

SUP main function

The following OpenTP1 functions are always called in the SUP main function:

1. dc_rpc_open() (Start an application program)

2. dc_adm_complete() (Report the completion of user server start processing)

3. dc_rpc_close() (Terminate an application program after job terminate)

In addition to the above OpenTP1 functions, the function for initializing UAP
processes required for jobs, the termination processing function, and the function
dc_rpc_call() can also be called.

SPP main function

Service functions created as services which are provided by an SPP are grouped into
one executable file. An executable file comprising one main function and multiple
service functions corresponds to a service group.

The OpenTP1 functions listed below are always called in the SPP main function. To
use an MCF function with an SPP service, call the function dc_mcf_open() and the
function dc_mcf_close().

1. dc_rpc_open() (Start an application program)

2. dc_rpc_mainloop() (Start an SPP service)

3. dc_rpc_close() (Terminate an application program after job terminate)

After initialization processing, the main function stops when the function
dc_rpc_mainloop() is called. Meanwhile, the main function performs processing
requested by service functions. In addition to the above OpenTP1 functions, the
function for initializing SPP processes required for jobs, the termination processing
function, and the function dc_rpc_call() can also be used in the main function.

Create a main function (SUP, SPP, MHP)

72

MHP main function

Service functions created as applications for message processing are grouped into one
executable file. An executable file comprising one main function and multiple service
functions corresponds to a service group. The service group name must be unique in
the domain (in the entire network).

The following OpenTP1 functions are always called in the MHP main function:

1. dc_rpc_open() (Start an application program)

2. dc_mcf_open() (Open the MCF environment)

3. dc_mcf_mainloop() (Start an MHP service)

4. dc_mcf_close() (Close the MCF environment)

5. dc_rpc_close() (Terminate an application program after job terminate)

The MHP having the service function corresponding to the application name is started.
After initialization processing, the main function stops when the function
dc_mcf_mainloop() is called. Meanwhile, the main function performs processing
requested by service functions. In addition to the above OpenTP1 functions, the
function for initializing MHP processes required for jobs, the termination processing
function, and the function dc_rpc_call() can also be used in the main function.

Argument
No argument is passed to the main function.

Create a service function (SPP)

73

Create a service function (SPP)

Format
ANSI C, C++

K&R C

Description
The SPP service function executes a service and returns the execution results. The SPP
service function is called by the function dc_rpc_call() of the client UAP. Create
the service function in the above format as required.

The service function name corresponds to the entry point name of the service function.
Specify this correspondence at execution environment setup for a UAP. The method of
execution environment setup for a UAP is as follows:

• For TP1/Server Base, specify the correspondence in the user service definition.

• For TP1/LiNK, execute a command for setting up an environment for a UAP to
specify the correspondence interactively.

Argument specification
The values listed below are passed as arguments to the service function. These values
are specified in the function dc_rpc_call() of the client UAP.

• Input parameter (in)

• Input parameter length (in_len)

• Response length (out_len)

The values specified for the input parameter and input parameter length in the
client UAP are passed to the service function as they are. (The expression formats

void function-name (char *in, DCULONG *in_len, char *out,
 DCULONG *out_len)
 {
 Service processing
 }

void function-name (in, in_len, out, out_len)
char *in;
DCULONG *in_len;
char *out;
DCULONG *out_len;
{
Service processing
}

Create a service function (SPP)

74

of character codes and numbers are not converted.) The length specified in the
client UAP is passed as the response length.

For the service function, set the following values for arguments:

• Service function response (out)

• Length of the service function response (out_len)

Set a response for out, set the response length for out_len, then return the
service function.

A response is sent to the service client UAP regardless of whether the service function
was executed as a transaction or whether commitment or rollback processing was
executed. Create a response with which the service function informs the client UAP of
the occurrence of an error if necessary.

Arguments whose values are passed from the client UAP
in

The input parameter specified in the client UAP is passed.

in_len

The input parameter length specified in the client UAP is passed.

out_len

The response length specified in the client UAP is passed.

Arguments whose values are set in the UAP
out

Specify the response from the service function. Return the service function after
specifying the processing results for out.

out_len

Specify the length of the actual response from the service function. Set a numeric value
which is equal to or smaller than the out_len value passed from the client UAP.

Notes on service function processing
1. The service function called by the function dc_rpc_call() of an

nonresponse-type RPC (DCRPC_NOREPLY specified for flags) cannot reference
out and out_len.

2. If the service function is written in C language, the value upon the previous
service request remains in the static variable. Thus, initialize the value before
using it if necessary.

3. The following functions cannot be used from the service function:

Create a service function (SPP)

75

• The function dc_rpc_open(), the function dc_rpc_close(), and the
function dc_rpc_mainloop() cannot be called. Also, do not use exit()
in the service function. The UAP operation is not ensured if any of the
functions or exit() is used.

• After system calls such as fork(), exec(), and system() are called to
create a child process, all the OpenTP1 functions cannot be called from the
child process.

4. Before an SPP service function can call a message exchange function (dc_mcf_
~), the main function must call the functions dc_mcf_open() and
dc_mcf_close().

5. The function dc_mcf_receive() cannot be called from SPP service functions.

6. Do not execute an operation or reference that extends beyond the area of the input
parameter length passed to in_len, for the input parameter passed to in. If you
execute such an operation or reference, operation cannot be guaranteed. The
process may terminate abnormally.

Relationship between transactions and the service function
The service function is executed as a transaction branch upon the request of a service
in the following case:

• The transaction attribute has been specified in the user service definition of the
process that executes the service function, and the client UAP has been executed
as a transaction.

In the above case, do not use the function dc_trn_begin() in the service function.

Commitment or rollback processing is ensured for all global transaction services.
When the service function operating as a transaction branch issues return, the service
function is assumed to request normal termination of the transaction branch.

The service function is not executed as a transaction in the following case:

• The transaction attribute has been specified in the user service definition, but the
client UAP has not been executed as a transaction.

To execute the service function as a transaction, use the function dc_trn_begin()
and the function dc_trn_unchained_commit() from the service function at any
time in order to start the transaction and acquire a synchronization point.

When no transaction attribute is specified in the user service definition, the service
function cannot be executed as a transaction by using the function dc_trn_begin()
from the service function.

Return value
No return value. The value specified with return() is not returned to the client UAP.

Create a service function (SPP)

76

OpenTP1 does not also reference any return value. Specifying -1 as a return value
does not request rollback processing.

Create a service function (MHP)

77

Create a service function (MHP)

Format
ANSI C, C++

K&R C

Description
The MHP service function executes a service and returns the execution results. When
the MCF receives a message, the MHP having the service function that corresponds to
the application name is started.

Create the MHP service function in the above format as required. The service function
name corresponds to the entry point name of the service function. Specify this
correspondence in the user service definition of the process that executes the service
function.

The correspondence between the service name and the application name is specified
in the MCF application definition.

Argument
None

Notes on service function processing
1. The following functions cannot be called from the service function:

dc_rpc_open()

dc_rpc_close()

dc_mcf_open()

dc_mcf_close()

dc_rpc_mainloop()

dc_mcf_mainloop()

void function-name (void)
{
Service processing
}

void function-name ()
{
Service processing
}

Create a service function (MHP)

78

Also, do not use exit() in the service function. The UAP operation is not ensured if
any of the functions or exit() is used

1. After system calls such as fork(), exec(), and system() are called to create
a child process, all the OpenTP1 functions cannot be called from the child
process.

2. Another UAP cannot use a service request to the MHP service function by using
the function dc_rpc_call().

Return value
No return value. Specifying -1 as a return value does not request rollback processing.

System operation management (dc_adm_~)

79

System operation management (dc_adm_~)

This section gives the syntax and other information of the following functions which
are called by UAPs and use various OpenTP1 system facilities:

• dc_adm_call_command - Execute an operation command

• dc_adm_complete - Report the completion of user server start processing

• dc_adm_status - Report the status of a user server

The functions for system operation management (dc_adm_~) can be used in UAPs of
both TP1/Server Base and TP1/LiNK.

dc_adm_call_command - Execute an operation command

80

dc_adm_call_command - Execute an operation command

Format
ANSI C, C++

K&R C

Description
The function dc_adm_call_command() passes com from the UAP to sh(1) as in the
case of command entry in online mode. The process waits until the shell completes its
processing, and returns the exit status of the shell. After command processing is
completed, the standard output information and the standard error output information
are returned.

If the OpenTP1 uses UAPs which execute operation commands, add the directory
containing the commands to the search path. Use any of the following methods for
addition to the search path.

• Specify the path name of the command in the prcsvpath operand of the process
service definition.

• Add the search path with the prcpath command.

• Assign putenv PATH to environment variable in the user service definition.

Arguments whose values are set in the UAP
com

Specify the character string of the operation command to be executed.

#include <dcadm.h>
int dc_adm_call_command (char *com, int *stat,
 char *outmsg, DCULONG *outsiz,
 char *errmsg, DCULONG *errsiz,
 DCLONG flags)

#include <dcadm.h>
int dc_adm_call_command (com, stat, outmsg, outsiz,
 errmsg,errsiz, flags)
char *com;
int *stat;
char *outmsg;
DCULONG *outsiz;
char *errmsg;
DCULONG *errsiz;
DCLONG flags;

dc_adm_call_command - Execute an operation command

81

outsiz

The execution results of the operation command are output to the standard output file.
Specify the size of the contents (value returned to outmsg) in bytes. Pre-allocate the
area in size of the number of bytes that is to be specified for outsiz. The area must begin
from the address pointed to by outmsg. The number of bytes to be specified for this
argument must be decided according to the command executed by the UAP.

After processing terminates, the actual length that was output as the execution results
of the command to the standard output file is returned.

errsiz

The execution results of the command are output to the standard error output file.
Specify the size of the contents (value returned to errmsg) in bytes. Pre-allocate the
area in size of the number of bytes that is to be specified for errsiz. The area must begin
from the address pointed to by errmsg. The number of bytes to be specified for this
argument must be decided according to the command executed by the UAP.

After processing terminates, the actual length that was output as the execution results
of the command to the standard error output file is returned.

flags

Specify the operation of the function dc_adm_call_command() if the complete data
of a standard output message or standard error output message cannot be acquired.

DCADM_DELAY

Processing is stopped by canceling the processing for the executed command.

DCNOFLAGS

Only acquired data is returned to the argument, and the function returns with an
error.

Arguments whose values are returned from OpenTP1
stat

A shell termination code# is returned indicating whether the specified command
terminated normally or abnormally.

#: Denotes an sh(1) termination status in the format specified by waitpid(2).

outmsg

The character string that was output as the execution results of the command to the
standard output file is returned. The maximum number of bytes for the character string
is (outsiz-1). If the character string exceeds the maximum number of bytes
(outsiz-1), the excess characters are truncated. If the character string exceeds the
capacity of the pipe, the excess characters are also truncated. If the character string

dc_adm_call_command - Execute an operation command

82

does not reach the maximum number of bytes (outsiz-1), the entire character string
is returned. A null character is suffixed to the character string to be stored.

outsiz

The length of the character string that was output as the execution results of the
command to the standard output file is returned.

errmsg

The character string that was output as the execution results of the command to the
standard error output file is returned. The maximum number of bytes for the character
string is (errsiz-1). If the character string exceeds the maximum number of bytes
(errsiz-1), the excess characters are truncated. If the character string exceeds the
capacity of the pipe, the excess characters are also truncated. If the character string
does not reach the maximum number of bytes (errsiz-1), the entire character string
is returned. A null character is suffixed to the character string to be stored.

errsiz

The length of the character string that was output as the execution results of the
command to the standard error output file is returned.

Return values
Return value Return value

(numeric)
Explanation

DC_OK 0 The shell termination code is 0 (normal termination of
the command execution). The character string was
stored in the standard output area and the standard error
output area.

DCADMER_STATNOTZERO -1855 The shell termination code is not 0 (abnormal
termination of the command execution). Standard
output data and standard error output data were stored
in the areas.

DCADMER_PARAM -1852 The argument value is invalid.

DCADMER_MEMORY_OUT -1856 All the standard output data could not be stored in the
area.

DCADMER_MEMORY_ERR -1857 All the standard error output data could not be stored in
the area.

DCADMER_MEMORY_OUTERR -1858 Both the standard output data and the standard error
output data could not be stored in the areas.

DCADMER_SYSTEMCALL -1859 A system call (close, pipe, dup, or read) could not be
executed.

dc_adm_call_command - Execute an operation command

83

Note
Be careful not to duplicate the command name between directories that are specified
as search paths. The correct command will not execute if the command name is
duplicated. In addition, be careful not to duplicate the command name with that of the
command group provided by OpenTP1 (under $DCDIR/bin).

dc_adm_complete - Report the completion of user server start processing

84

dc_adm_complete - Report the completion of user server start
processing

Format
ANSI C, C++

K&R C

Description
This function dc_adm_complete() notifies the OpenTP1 that SUP activation has
been completed. SUP activation is completed when the function
dc_adm_complete() normally returns.

SPPs and MHPs assume the completion of start processing when the function
dc_rpc_mainloop() or the function dc_mcf_mainloop() terminates normally.
Thus, there is no need to call the function dc_adm_complete() for SPPs and MHPs.

The function dc_adm_complete() cannot be called from UAP that handles offline
work.

Argument whose value is set in the UAP
flags

Specify DCNOFLAGS.

Return values

#include <dcadm.h>
int dc_adm_complete (DCLONG flags)

#include <dcadm.h>
int dc_adm_complete (flags)
DCLONG flags;

Return value Return value
(numeric)

Explanation

DC_OK 0 Normal termination.

DCADMER_COMM -1851 An error occurred during communication between
processes.

DCADMER_PARAM -1852 The argument value is invalid.

DCADMER_STS_IO -1853 A status information input/output error occurred.

dc_adm_complete - Report the completion of user server start processing

85

DCADMER_PROTO -1854 The user server is not being started/restarted normally,
or the function dc_rpc_open() was not called.

Return value Return value
(numeric)

Explanation

dc_adm_status - Report the status of a user server

86

dc_adm_status - Report the status of a user server

Format
ANSI C, C++

K&R C

Description
The function dc_adm_status() reports the status of the user server that called the
function. The user server status is reported with the return value.

Argument whose value is set in the UAP
flags

Specify DCNOFLAGS.

Return values
When the return value is positive (indicating the user server status):

When the return value is negative (indicating an error):

#include <dcadm.h>
int dc_adm_status (DCLONG flags)

#include <dcadm.h>
int dc_adm_status (flags)
DCLONG flags;

Return value Return value
(numeric)

Explanation

DCADM_STAT_START_NORMAL 2 The user server is being started normally.

DCADM_STAT_START_RECOVER 3 The user server is being restarted normally.

DCADM_STAT_ONLINE 4 The user server is in online mode.

DCADM_STAT_STOP 5 The user server is being terminated.

Return value Return value
(numeric)

Explanation

DCADMER_COMM -1851 An error occurred during communication between
processes.

DCADMER_PARAM -1852 The argument value is invalid.

dc_adm_status - Report the status of a user server

87

DCADMER_STS_IO -1853 A status information input/output error occurred.

DCADMER_PROTO -1854 The function dc_adm_status() was called from a
UAP that handles offline work. The function
dc_adm_status() cannot be used with UAP that
handles offline work.

The function dc_rpc_open() was not called.

Return value Return value
(numeric)

Explanation

Multinode facility (dc_adm_get_~)

88

Multinode facility (dc_adm_get_~)

This section gives the syntax and other information of the following functions which
are used for multinode facilities:

• dc_adm_get_nd_status - Acquire the status of a specified OpenTP1 node

• dc_adm_get_nd_status_begin - Start acquiring the status of an OpenTP1
node

• dc_adm_get_nd_status_done - Terminate acquiring the status of an
OpenTP1 node

• dc_adm_get_nd_status_next - Acquire the status of an OpenTP1 node

• dc_adm_get_nodeconf_begin - Start acquiring a node identifier

• dc_adm_get_nodeconf_done - Terminate acquiring a node identifier

• dc_adm_get_nodeconf_next - Acquire a node identifier

• dc_adm_get_node_id - Acquire the node identifier of the local node

• dc_adm_get_sv_status - Acquire the status of a specified user server

• dc_adm_get_sv_status_begin - Start acquiring the status of a user server

• dc_adm_get_sv_status_done - Terminate acquiring the status of a user
server

• dc_adm_get_sv_status_next - Acquire the status of a user server

The functions for multinode facility (dc_adm_get_~) can be used only in UAPs of
TP1/Server Base. They cannot be used in UAPs of TP1/LiNK.

dc_adm_get_nd_status - Acquire the status of a specified OpenTP1 node

89

dc_adm_get_nd_status - Acquire the status of a specified OpenTP1
node

Format
ANSI C, C++

K&R C

Description
The function dc_adm_get_nd_status() acquires the status of a specified OpenTP1
node.

This function acquires the status of the execution system when the function
dc_adm_get_nd_status() is called with a specified OpenTP1 node for the system
switch configuration.

Arguments whose value is set in the UAP
node_id

Specify the pointer to the node identifier. Add a null character after the node identifier.

The length of the node identifier must be equal to the length defined by
DCADM_NODE_ID_LEN. If a node identifier with a different length is specified, the
function returns with an error.

flags

Specify DCNOFLAGS.

Return values
When the return value is positive (indicating the OpenTP1 node status):

#include <dcadm.h>
int dc_adm_get_nd_status (char *node_id, DCLONG flags)

#include <dcadm.h>
int dc_adm_get_nd_status (node_id, flags)
char *node_id;
DCLONG flags;

dc_adm_get_nd_status - Acquire the status of a specified OpenTP1 node

90

When the return value is negative (indicating an error):

Return value Return value
(numeric)

Explanation

DCADM_STAT_NOT_UP 9 Communication with the specified OpenTP1 node is
impossible for the following reason:
• The OpenTP1 at the OpenTP1 node must be

defined or redefined with the dcsetup command
• The value specified in the multinode physical

definition is incorrect (the OpenTP1 node is not
defined or the specified host name or port number
is incorrect).

• A communication error occurred (power is not
supplied to the OpenTP1 node machine or a
network error occurred).

DCADM_STAT_TERM 8 The OpenTP1 node is halted or is being terminated
abnormally.

DCADM_STAT_START_NORMAL 2 The OpenTP1 node is normally being started.

DCADM_STAT_START_RECOVER 3 The OpenTP1 node is normally being restarted.

DCADM_STAT_ONLINE 4 The OpenTP1 node is online.

DCADM_STAT_STOP 5 The OpenTP1 node is normally being terminated.

DCADM_STAT_STOPA 6 The OpenTP1 node is being terminated according to
plan A.

DCADM_STAT_STOPB 7 The OpenTP1 node is being terminated according to
plan B.

DCADM_STAT_SWAP 10 The system is being switched.

Return value Return value
(numeric)

Explanation

DCADMER_COMM -1851 An inter-process communication error occurred.

DCADMER_PARAM -1852 The value specified for the argument is invalid.

DCADMER_PROTO -1854 The function dc_rpc_open() was not called.

DCADMER_MEMORY -1861 The memory became insufficient.

DCADMER_DEF -1862 An incorrect value is specified in the multinode
configuration definition or in the multinode physical
definition.

dc_adm_get_nd_status - Acquire the status of a specified OpenTP1 node

91

DCADMER_MULTI_DEF -1864 N is specified for multi_node_option in the system
common definition.

The TP1/Multi is not installed in the system.

The correct version TP1/Multi is not installed in the
system.

DCADMER_REMOTE -1866 The specified OpenTP1 node cannot use the multinode
facility for the following reason:
• N is specified for multi_node_option in the

system common definition.
• The TP1/Multi is not installed in the system.
• The correct version TP1/Multi is not installed in the

system.
• The memory became insufficient.

DCADMER_NODE_NOT_EXIST -1867 The node identified by node_id is not included in the
OpenTP1 nodes.

Return value Return value
(numeric)

Explanation

dc_adm_get_nd_status_begin - Start acquiring the status of an OpenTP1 node

92

dc_adm_get_nd_status_begin - Start acquiring the status of an
OpenTP1 node

Format
ANSI C, C++

K&R C

Description
The function dc_adm_get_nd_status_begin() starts acquiring the status of an
OpenTP1 node. When this function terminates normally, it returns the number of
OpenTP1 nodes whose status will be acquired.

Arguments whose value is set in the UAP
sub_area

Specify the pointer to the multinode subarea identifier or character string (*). Add a
null character after the multinode subarea identifier. If the pointer to the character
string (*) is specified, the function will acquire the statuses of all OpenTP1 nodes
making up the multinode area.

The length of the multinode subarea identifier must be equal to or less than the
maximum length defined by DCADM_SUB_AREA_NAME_SIZE. If a longer identifier is
specified, the function returns with an error.

entry_count

Specify the pointer to the area to which the number of OpenTP1 nodes will be returned.
The area set here will contain the number of OpenTP1 nodes in the multinode subarea
identified by sub_area. If the pointer to the character string (*) is specified for
sub_area, the number of all OpenTP1 nodes in the multinode area will returned to
the area.

#include <dcadm.h>
int dc_adm_get_nd_status_begin (char *sub_area,
 DCLONG *entry_count,
 DCLONG flags)

#include <dcadm.h>
int dc_adm_get_nd_status_begin (sub_area, entry_count,
 flags)
char *sub_area;
DCLONG *entry_count;
DCLONG flags;

dc_adm_get_nd_status_begin - Start acquiring the status of an OpenTP1 node

93

flags

Specify DCNOFLAGS.

Return values
Return value Return value

(numeric)
Explanation

DC_OK 0 Normal termination. This value is returned even if the
specified multinode subarea contains an OpenTP1
involving a communication error.

DCADMER_PARAM -1852 The value specified for the argument is invalid.

DCADMER_SUBAREA_NOT_EXIST -1860 There is no multinode subarea with the name specified
for sub_area.

DCADMER_MEMORY -1861 The memory became insufficient.

DCADMER_DEF -1862 An incorrect value is specified in the multinode
configuration definition or in the multinode physical
definition.

DCADMER_PROTO -1854 The function dc_adm_get_nd_status_begin()
was already called.

The function dc_rpc_open() was not called.

DCADMER_MULTI_DEF -1864 N is specified for multi_node_option in the system
common definition.

The TP1/Multi is not installed in the system.

The correct version TP1/Multi is not installed in the
system.

dc_adm_get_nd_status_done - Terminate acquiring the status of an OpenTP1 node

94

dc_adm_get_nd_status_done - Terminate acquiring the status of an
OpenTP1 node

Format
ANSI C, C++

K&R C

Description
The function dc_adm_get_nd_status_done() terminates acquiring the status of
an OpenTP1 node. Call this function when the return value from the function
dc_adm_get_nd_status_begin() is DC_OK.

Arguments whose value is set in the UAP
flags

Specify DCNOFLAGS.

Return values

#include <dcadm.h>
int dc_adm_get_nd_status_done (DCLONG flags)

#include <dcadm.h>
int dc_adm_get_nd_status_done (flags)
DCLONG flags;

Return value Return value
(numeric)

Explanation

DC_OK 0 Normal termination.

DCADMER_PARAM -1852 The value specified for the argument is invalid.

DCADMER_PROTO -1854 The function dc_adm_get_nd_status_begin()
was not called.

The function dc_rpc_open() was not called.

DCADMER_MULTI_DEF -1864 N is specified for multi_node_option in the system
common definition.

The TP1/Multi is not installed in the system.

The correct version TP1/Multi is not installed in the
system.

dc_adm_get_nd_status_next - Acquire the status of an OpenTP1 node

95

dc_adm_get_nd_status_next - Acquire the status of an OpenTP1
node

Format
ANSI C, C++

K&R C

Description
The function dc_adm_get_nd_status_next() acquires the status of one OpenTP1
node in the multinode area containing the user server which has called this function or
of one OpenTP1 node in a specified multinode subarea.

This function acquires the status of the execution system when the function
dc_adm_get_nd_status_next() is called with a specified OpenTP1 node for the
system switch configuration.

The OpenTP1 node status as acquired by this function is the status which stood when
the function dc_adm_get_nd_status_begin() was called.

Arguments whose value is set in the UAP
node_id

Specify the pointer to the area which will receive the node identifier of the OpenTP1
node. A null character is added at the end of the node identifier. The length of the area
must be equal to the length defined by DCADM_NODE_ID_SIZE.

flags

Specify DCNOFLAGS.

Return values
When the return value is positive (indicating the OpenTP1 node status):

#include <dcadm.h>
int dc_adm_get_nd_status_next (char *node_id,
 DCLONG flags)

#include <dcadm.h>
int dc_adm_get_nd_status_next (node_id, flags)
char *node_id;
DCLONG flags;

dc_adm_get_nd_status_next - Acquire the status of an OpenTP1 node

96

When the return value is negative (indicating an error):

Return value Return value
(numeric)

Explanation

DCADMER_STAT_NOT_UP 9 Communication with the specified OpenTP1 node is
impossible for the following reason:
• The OpenTP1 at the OpenTP1 node must be

defined or redefined with the dcsetup command.
• The value specified in the multinode physical

definition is incorrect (the OpenTP1 node is not
defined or the specified host name or port number
is incorrect).

• A communication error occurred (power is not
supplied to the OpenTP1 node machine or a
network error occurred).

DCADM_STAT_TERM 8 The OpenTP1 node is halted or is being terminated
abnormally.

DCADM_STAT_START_NORMAL 2 The OpenTP1 node is normally being started.

DCADM_STAT_START_RECOVER 3 The OpenTP1 node is normally being restarted.

DCADM_STAT_ONLINE 4 The OpenTP1 node is online.

DCADM_STAT_STOP 5 The OpenTP1 node is normally being terminated.

DCADM_STAT_STOPA 6 The OpenTP1 node is being terminated according to
plan A.

DCADM_STAT_STOPB 7 The OpenTP1 node is being terminated according to
plan B.

DCADM_STAT_SWAP 10 The system is being switched.

Return value Return value
(numeric)

Explanation

DCADMER_NO_MORE_ENTRY -1865 There is no more OpenTP1 node. The statuses of all
OpenTP1 nodes have been acquired.

DCADMER_COMM -1851 An inter-process communication error occurred.

DCADMER_PARAM -1852 The value specified for the argument is invalid.

DCADMER_PROTO -1854 The function dc_adm_get_nd_status_begin()
was not called.

The function dc_rpc_open() was not called.

dc_adm_get_nd_status_next - Acquire the status of an OpenTP1 node

97

DCADMER_MULTI_DEF -1864 N is specified for multi_node_option in the system
common definition.

The TP1/Multi is not installed in the system.

The correct version TP1/Multi is not installed in the
system.

DCADMER_REMOTE -1866 The OpenTP1 node identified by the node identifier
returned to node_id cannot use the multinode facility
for the following reason:
• N is specified for multi_node_option in the

system common definition.
• The TP1/Multi is not installed in the system.
• The correct version TP1/Multi is not installed in the

system. The memory became insufficient.
• The memory became insufficient.

Return value Return value
(numeric)

Explanation

dc_adm_get_nodeconf_begin - Start acquiring a node identifier

98

dc_adm_get_nodeconf_begin - Start acquiring a node identifier

Format
ANSI C, C++

K&R C

Description
The function dc_adm_get_nodeconf_begin() starts acquiring all node identifiers
in a specified multinode subarea. When this function terminates normally, it returns the
number of OpenTP1 nodes.

Arguments whose value is set in the UAP
sub_area

Specify the pointer to the multinode subarea identifier or character string (*). Add a
null character after the multinode subarea identifier. If the pointer to the character
string (*) is specified, the function will acquire all node identifiers making up the
multinode area.

The length of the multinode subarea identifier must be equal to or less than the
maximum length defined by DCADM_SUB_AREA_NAME_SIZE. If a longer identifier is
specified, the function returns with an error.

entry_count

Specify the pointer to the area to which the number of OpenTP1 nodes will be returned.
The area set here will contain the number of OpenTP1 nodes in the multinode subarea
identified by sub_area. If the pointer to the character string (*) is specified for
sub_area, the number of all OpenTP1 nodes in the multinode area will returned to
the area.

flags

Specify DCNOFLAGS.

#include <dcadm.h>
int dc_adm_get_nodeconf_begin (char *sub_area,
 DCLONG *entry_count,
 DCLONG flags)

#include <dcadm.h>
int dc_adm_get_nodeconf_begin (sub_area, entry_count,
 flags)
char *sub_area;
DCLONG *entry_count;
DCLONG flags;

dc_adm_get_nodeconf_begin - Start acquiring a node identifier

99

Return values
Return value Return value

(numeric)
Explanation

DC_OK 0 Normal termination. The area indicated by
entry_count now contains the number of OpenTP1
nodes.

DCADMER_PARAM -1852 The value specified for the argument is invalid.

DCADMER_SUBAREA_NOT_EXIST -1860 There is no multinode subarea with the name specified
for sub_area.

DCADMER_MEMORY -1861 The memory became insufficient.

DCADMER_DEF -1862 An incorrect value is specified in the multinode
configuration definition or in the multinode physical
definition.

DCADMER_PROTO -1854 The function dc_adm_get_nodeconf_begin() was
already called.

The function dc_rpc_open() was not called.

DCADMER_MULTI_DEF -1864 N is specified for multi_node_option in the system
common definition.

The TP1/Multi is not installed in the system.

The correct version TP1/Multi is not installed in the
system.

dc_adm_get_nodeconf_done - Terminate acquiring a node identifier

100

dc_adm_get_nodeconf_done - Terminate acquiring a node identifier

Format
ANSI C, C++

K&R C

Description
The function dc_adm_get_nodeconf_done() terminates acquiring a node
identifier. Call this function when the return value from the function
dc_adm_get_nodeconf_begin() is DC_OK.

Arguments whose value is set in the UAP
flags

Specify DCNOFLAGS.

Return values

#include <dcadm.h>
int dc_adm_get_nodeconf_done (DCLONG flags)

#include <dcadm.h>
int dc_adm_get_nodeconf_done (flags)
DCLONG flags;

Return value Return value
(numeric)

Explanation

DC_OK 0 Normal termination.

DCADMER_PARAM -1852 The value specified for the argument is invalid.

DCADMER_PROTO -1854 The function dc_adm_get_nodeconf_begin() was
not called.

The function dc_rpc_open() was not called.

DCADMER_MULTI_DEF -1864 N is specified for multi_node_option in the system
common definition.

The TP1/Multi is not installed in the system.

The correct version TP1/Multi is not installed in the
system.

dc_adm_get_nodeconf_next - Acquire a node identifier

101

dc_adm_get_nodeconf_next - Acquire a node identifier

Format
ANSI C, C++

K&R C

Description
The function dc_adm_get_nodeconf_next() acquires the node identifier of one
node in the multinode area containing the user server which has called this function or
one node in a multinode subarea.

The data acquired by this function is data which was effective when the function
dc_adm_get_nodeconf_begin() was called.

Arguments whose value is set in the UAP
node_id

Specify the pointer to the area which will receive the node identifier. A null character
is added at the end of the node identifier. The length of the area must be equal to the
length defined by DCADM_NODE_ID_SIZE.

flags

Specify DCNOFLAGS.

Return values

#include <dcadm.h>
int dc_adm_get_nodeconf_next (char *node_id, DCLONG flags)

#include <dcadm.h>
int dc_adm_get_nodeconf_next (node_id, flags)
char *node_id;
DCLONG flags;

Return value Return value
(numeric)

Explanation

DC_OK 0 Normal termination.

DCADMER_NO_MORE_ENTRY -1865 There is no more OpenTP1 node. All node identifiers
have been acquired.

DCADMER_PARAM -1852 The value specified for the argument is invalid.

dc_adm_get_nodeconf_next - Acquire a node identifier

102

DCADMER_PROTO -1854 The function dc_adm_get_nodeconf_begin() was
not called.

The function dc_rpc_open() was not called.

DCADMER_MULTI_DEF -1864 N is specified for multi_node_option in the system
common definition.

The TP1/Multi is not installed in the system.

The correct version TP1/Multi is not installed in the
system.

Return value Return value
(numeric)

Explanation

dc_adm_get_node_id - Acquire the node identifier of the local node

103

dc_adm_get_node_id - Acquire the node identifier of the local node

Format
ANSI C, C++

K&R C

Description
The function dc_adm_get_node_id() returns the node identifier of the local
OpenTP1 node specified in the system common definition to the area identified by
node_id.

Arguments whose value is set in the UAP
node_id

Specify the pointer to the area which will receive the node identifier. A null character
is added at the end of the node identifier. The length of the area must be equal to the
length defined by DCADM_NODE_ID_SIZE.

flags

Specify DCNOFLAGS.

Return values

#include <dcadm.h>
int dc_adm_get_node_id (char *node_id, DCLONG flags)

#include <dcadm.h>
int dc_adm_get_node_id (node_id, flags)
char *node_id;
DCLONG flags;

Return value Return value
(numeric)

Explanation

DC_OK 0 Normal termination.

DCADMER_PARAM -1852 The value specified for the argument is invalid.

DCADMER_PROTO -1854 The function dc_rpc_open() was not called.

dc_adm_get_sv_status - Acquire the status of a specified user server

104

dc_adm_get_sv_status - Acquire the status of a specified user
server

Format
ANSI C, C++

K&R C

Description
The function dc_adm_get_sv_status() acquires the status of a user server in a
specified node identifier.

Arguments whose value is set in the UAP
node_id

Specify the pointer to the node identifier or the character string (*). Add a null
character after the node identifier. If the pointer to the character string (*) is specified,
the OpenTP1 node which called this function is assumed.

The length of the node identifier must be equal to the length defined by
DCADM_NODE_ID_LEN. If a node identifier with a different length is specified, the
function returns with an error.

sv_name

Specify the pointer to the area containing the user server name. The length of the user
server name must be equal to the length defined by SERVER_NAME_SIZE. If a user
server name with a longer length is specified, the function returns with an error.

flags

Specify DCNOFLAGS.

Return values
When the return value is positive (indicating the status of the user server):

#include <dcadm.h>
int dc_adm_get_sv_status (char *node_id, char *sv_name,
 DCLONG flags)

#include <dcadm.h>
int dc_adm_get_sv_status (node_id, sv_name, flags)
char *node_id;
char *sv_name;
DCLONG flags;

dc_adm_get_sv_status - Acquire the status of a specified user server

105

When the return value is negative (indicating an error):

Return value Return value
(numeric)

Explanation

DCADM_STAT_TERM 8 The user server is halted or is being terminated
abnormally.

DCADM_STAT_START_NORMAL 2 The user server is normally being started.

DCADM_STAT_START_RECOVER 3 The user server is being restarted.

DCADM_STAT_ONLINE 4 The user server is online.

DCADM_STAT_STOP 5 The user server is normally being terminated.

Return value Return value
(numeric)

Explanation

DCADMER_PARAM -1852 The value specified for the argument is invalid.

DCADMER_COMM -1851 Communication with the specified OpenTP1 node is
impossible for the following reason:
• The OpenTP1 at the OpenTP1 node must be

defined or redefined with the dcsetup command.
• The value specified in the multinode physical

definition is incorrect (the OpenTP1 node is not
defined or the specified host name or port number
is incorrect).

• A communication error occurred (power is not
supplied to the OpenTP1 node machine or a
network error occurred).

DCADMER_MEMORY -1861 The memory became insufficient.

DCADMER_PROTO -1854 The function dc_rpc_open() was not called.

DCADMER_MULTI_DEF -1864 N is specified for multi_node_option in the system
common definition or an incorrect value is specified in
the multinode physical definition.

The TP1/Multi is not installed in the system.

The correct version TP1/Multi is not installed in the
system.

DCADMER_DEF -1862 An incorrect value is specified in the multinode
configuration definition.

DCADMER_NODE_NOT_EXIST -1867 The node identified by node_id is not included in the
OpenTP1 nodes.

dc_adm_get_sv_status - Acquire the status of a specified user server

106

DCADMER_REMOTE -1866 The specified OpenTP1 node cannot use the multinode
facility for the following reason:
• N is specified for multi_node_option in the

system common definition.
• The TP1/Multi is not installed in the system.
• The correct version TP1/Multi is not installed in the

system.
• The memory became insufficient.

DCADMER_SWAP -1868 The status of the user server cannot be acquired because
the system is being switched.

Return value Return value
(numeric)

Explanation

dc_adm_get_sv_status_begin - Start acquiring the status of a user server

107

dc_adm_get_sv_status_begin - Start acquiring the status of a user
server

Format
ANSI C, C++

K&R C

Description
The function dc_adm_get_sv_status_begin() starts acquiring the statuses of
user servers at a specified node identifier. When this function terminates normally, it
returns the number of user servers whose status is to be acquired.

Arguments whose value is set in the UAP
node_id

Specify the pointer to the node identifier or the character string (*). Add a null
character after the node identifier. If the pointer to the character string (*) is specified,
the OpenTP1 node which called this function is assumed.

The length of the node identifier must be equal to the length defined by
DCADM_NODE_ID_LEN. If a node identifier with a different length is specified, the
function returns with an error.

entry_count

Specify the pointer to the area to which the number of user servers will be returned.
The area set here will contain the number of user servers at the OpenTP1 node
identified by node_id.

flags

Specify DCNOFLAGS.

#include <dcadm.h>
int dc_adm_get_sv_status_begin (char *node_id,
 DCLONG *entry_count,
 DCLONG flags)

#include <dcadm.h>
int dc_adm_get_sv_status_begin (node_id, entry_count,
 flags)
char *node_id;
DCLONG *entry_count;
DCLONG flags;

dc_adm_get_sv_status_begin - Start acquiring the status of a user server

108

Return values
Return value Return value

(numeric)
Explanation

DC_OK 0 Normal termination. The area indicated by
entry_count now contains the number of user
servers.

DCADMER_PARAM -1852 The value specified for the argument is invalid.

DCADMER_COMM -1851 Communication with the specified OpenTP1 node is
impossible for the following reason:
• The OpenTP1 at the OpenTP1 node must be

defined or redefined with the dcsetup command.
• The value specified in the multinode physical

definition is incorrect (the OpenTP1 node is not
defined or the specified host name or port number
is incorrect).

• A communication error occurred (power is not
supplied to the OpenTP1 node machine or a
network error occurred).

DCADMER_MEMORY -1861 The memory became insufficient.

DCADMER_PROTO -1854 The function dc_adm_get_sv_status_begin()
was already called.

The function dc_rpc_open() was not called.

DCADMER_MULTI_DEF -1864 N is specified for multi_node_option in the system
common definition.

The TP1/Multi is not installed in the system.

The correct version TP1/Multi is not installed in the
system.

DCADMER_DEF -1862 An incorrect value is specified in the multinode
configuration definition or in the multinode physical
definition.

DCADMER_NODE_NOT_EXIST -1867 The node identified by node_id is not included in the
OpenTP1 nodes.

DCADMER_REMOTE -1866 The specified OpenTP1 node cannot use the multinode
facility for the following reason:
• N is specified for multi_node_option in the

system common definition.
• The TP1/Multi is not installed in the system.
• The correct version TP1/Multi is not installed in the

system.
• The memory became insufficient.

dc_adm_get_sv_status_begin - Start acquiring the status of a user server

109

DCADMER_SWAP -1868 The status of the user server cannot be acquired because
the system is being switched.

Return value Return value
(numeric)

Explanation

dc_adm_get_sv_status_done - Terminate acquiring the status of a user server

110

dc_adm_get_sv_status_done - Terminate acquiring the status of a
user server

Format
ANSI C, C++

K&R C

Description
The function dc_adm_get_sv_status_done() terminates acquiring the status of a
user server. Call this function when the return value from the function
dc_adm_get_sv_status_begin() is DC_OK.

Arguments whose value is set in the UAP
flags

Specify DCNOFLAGS.

Return values

#include <dcadm.h>
int dc_adm_get_sv_status_done (DCLONG flags)

#include <dcadm.h>
int dc_adm_get_sv_status_done (flags)
DCLONG flags;

Return value Return value
(numeric)

Explanation

DC_OK 0 Normal termination.

DCADMER_PARAM -1852 The value specified for the argument is invalid.

DCADMER_PROTO -1854 The function dc_adm_get_sv_status_begin()
was not called.

The function dc_rpc_open() was not called.

DCADMER_MULTI_DEF -1864 N is specified for multi_node_option in the system
common definition.

The TP1/Multi is not installed in the system.

The correct version TP1/Multi is not installed in the
system.

dc_adm_get_sv_status_next - Acquire the status of a user server

111

dc_adm_get_sv_status_next - Acquire the status of a user server

Format
ANSI C, C++

K&R C

Description
The function dc_adm_get_sv_status_next() acquires the statuses of user servers
at a specified OpenTP1 node.

The data acquired by this function is data which was effective when the function
dc_adm_get_sv_status_begin() was called.

Arguments whose value is set in the UAP
sv_name

Specify the pointer to the area which will receive the user server name. The length of
the area must be equal to the length defined by SERVER_NAME_SIZE.

flags

Specify DCNOFLAGS.

Return values
When the return value is positive (indicating the status of the user server):

#include <dcadm.h>
int dc_adm_get_sv_status_next (char *sv_name,
 DCLONG flags)

#include <dcadm.h>
int dc_adm_get_sv_status_next (sv_name, flags)
char *sv_name;
DCLONG flags;

Return value Return value
(numeric)

Explanation

DCADM_STAT_TERM 8 The user server is halted or is being terminated
abnormally.

DCADM_STAT_START_NORMAL 2 The user server is normally being started.

DCADM_STAT_START_RECOVER 3 The user server is being restarted.

DCADM_STAT_ONLINE 4 The user server is online.

dc_adm_get_sv_status_next - Acquire the status of a user server

112

When the return value is negative (indicating an error):

DCADM_STAT_STOP 5 The user server is normally being terminated.

Return value Return value
(numeric)

Explanation

DCADMER_NO_MORE_ENTRY -1865 There is no more user server. The statuses of all user
servers have been acquired.

DCADMER_PARAM -1852 The value specified for the argument is invalid.

DCADMER_PROTO -1854 The function dc_adm_get_sv_status_begin()
was not called.

The function dc_rpc_open() was not called.

DCADMER_MULTI_DEF -1864 N is specified for multi_node_option in the system
common definition.

The TP1/Multi is not installed in the system.

The correct version TP1/Multi is not installed in the
system.

Return value Return value
(numeric)

Explanation

DAM file service (dc_dam_~)

113

DAM file service (dc_dam_~)

This section gives the syntax and other information of the following functions which
are used for DAM file service:

Functions that can only be used in an online environment

• dc_dam_close - Close a logical file

• dc_dam_end - Terminate using an unrecoverable DAM file

• dc_dam_hold - Shut down a logical file

• dc_dam_open - Open a logical file

• dc_dam_read - Input a logical file block

• dc_dam_release - Release a logical file from the shutdown state

• dc_dam_rewrite - Update a logical file block

• dc_dam_start - Start using an unrecoverable DAM file

• dc_dam_status - Reference the status of a logical file

• dc_dam_write - Output a logical file block

Functions that can only be used in an offline environment

• dc_dam_bseek - Seek a physical file block

• dc_dam_create - Allocate a physical file

• dc_dam_dget - Input directly a physical file block

• dc_dam_dput - Output directly a physical file block

• dc_dam_get - Input a physical file block

• dc_dam_iclose - Close a physical file

• dc_dam_iopen - Open a physical file

• dc_dam_put - Output a physical file block

The functions for DAM file service (dc_dam_~) can be used only in UAPs of TP1/
Server Base. They cannot be used in UAPs of TP1/LiNK.

dc_dam_bseek - Seek a physical file block

114

dc_dam_bseek - Seek a physical file block

Format
ANSI C, C++

K&R C

Description
The function dc_dam_bseek() specifies the relative block number of a physical file
to position the file at the corresponding block. Call this function after the function
dc_dam_iopen() that requests re-creation output.

When the corresponding relative block number is in the file, the relative block number
is returned without modification.

When seeking a physical file block, specify the file descriptor which is the return value
of the function dc_dam_iopen().

Arguments whose values are set in the UAP
fno

Specify the file descriptor of the file containing a block to be located.

blkno

Specify the relative block number to be located.

flags

Specify DCNOFLAGS.

Return values

#include <dcdami.h>
int dc_dam_bseek (int fno, int blkno, DCLONG flags)

#include <dcdami.h>
int dc_dam_bseek (fno, blkno, flags)
int fno;
int blkno;
DCLONG flags;

Return value Return value
(numeric)

Explanation

0 or positive integer The value 0 or a positive integer indicates a relative
block number.

dc_dam_bseek - Seek a physical file block

115

DCDAMER_BADF -1603 The file descriptor specified for fno is not the one
which was acquired by opening the file normally.

The DAM file is not open.

DCDAMER_SEQER -1605 The call sequence of functions which access the DAM
file is invalid.

DCDAMER_BNOER -1606 The relative block number is invalid.

DCDAMER_PARAM_FLAGS -1611 The value specified for flags is invalid.

DCDAMER_IOER -1620 An output error occurred.

Return value Return value
(numeric)

Explanation

dc_dam_close - Close a logical file

116

dc_dam_close - Close a logical file

Format
ANSI C, C++

K&R C

Description
The function dc_dam_close() closes logical files.

• For recoverable DAM files

If a logical file opened within the transaction is not closed before the transaction
terminates, the DAM service closes it at the synchronization point processing.
However, the DAM service does not close a logical file opened outside the
transaction (before the function dc_trn_begin() is called) or an unrecoverable
DAM file.

If a logical file is opened before the transaction is started, it must be closed before
the UAP processing is terminated.

• For unrecoverable DAM files

Since a logical file is not synchronized with the transaction, the function
dc_dam_close() can arbitrarily be called when a logical file is closed.
However, opened logical files must be closed with the function
dc_dam_close() before the function dc_dam_end() is called.

When closing a logical file, specify the file descriptor which is the return value of the
function dc_dam_open().

Arguments whose values are set in the UAP
damfd

Specify the file descriptor of the file to be closed.

flags

Specify DCNOFLAGS.

#include <dcdam.h>
int dc_dam_close (int damfd, DCLONG flags)

#include <dcdam.h>
int dc_dam_close (damfd, flags)
int damfd;
DCLONG flags;

dc_dam_close - Close a logical file

117

Return values
Return value Return value

(numeric)
Explanation

DC_OK 0 The logical file was closed normally.

DCDAMER_PROTO -1600 The function dc_rpc_open() is not called.

A DAM file opened outside the transaction is closed
within the transaction. (This value is returned only
when a recoverable DAM file is accessed.)

N is specified for atomic_update in the user service
definition. (This value is returned only when a
recoverable DAM file is accessed.)

The function dc_dam_start() is not called. (This
value is returned only when an unrecoverable DAM file
is accessed.)

The UAP is incorrectly linked as follows:
• The library (-1tdam) to be used for access to a

TAM file using a DAM service function is linked
incorrectly.

• The definition of the resource manager for
transaction control object files is incorrect.

DCDAMER_BADF -1603 The file descriptor specified for damfd is not the one
which was acquired by opening the file normally, or the
file of the file descriptor is not open.

DCDAMER_PARAM_FLAGS -1611 The value specified for flags is invalid.

dc_dam_create - Allocate a physical file

118

dc_dam_create - Allocate a physical file

Format
ANSI C, C++

K&R C

Description
The function dc_dam_create() allocates a physical file to the OpenTP1 file system.

The size of a physical file is (block length + 8) x (number of blocks + 1).

Calling the function dc_dam_iopen() is unnecessary after the function
dc_dam_create() is called.

The following functions cannot be called after the function dc_dam_create() is
called:

• dc_dam_get()

• dc_dam_bseek()

• dc_dam_dget()

• dc_dam_dput()

The size of an output buffer is (block length + 8) x (number of blocks collectively
processed).

Arguments whose values are set in the UAP
fname

Specify the name of a physical file to be created in the OpenTP1 file system, with a
path name. The path name must be within (special file name + 14) bytes.

#include <dcdami.h>
int dc_dam_create (char *fname, int blksize, int blknum,
 int pnum, DCLONG flags)

#include <dcdami.h>
int dc_dam_create (fname, blksize, blknum, pnum, flags)
char *fname;
int blksize;
int blknum;
int pnum;
DCLONG flags;

dc_dam_create - Allocate a physical file

119

blksize

Specify the length of a physical file block.

blknum

Specify the number of physical file blocks.

pnum

Specify the number of blocks collectively processed which is used as an input/output
unit.

flags

Specify the access permissions of the owner, the owner group, and another UAP. The
access permissions must be specified with the values shown below or the bit strings
shown in parentheses.

DCDAM_READ_OWNER (00400): The read permission of the owner is specified.

DCDAM_WRITE_OWNER (00200): The write permission of the owner is specified.

DCDAM_READ_GROUP (00040): The read permission of the group owner is specified.

DCDAM_WRITE_GROUP (00020): The write permission of the group owner is specified.

DCDAM_READ_OTHERS (00004): The read permission of another UAP is specified.

DCDAM_WRITE_OTHERS (00002): The write permission of another UAP is specified.

The following values are assumed when DCNOFLAGS is specified:

DCDAM_READ_OWNER (00400)

DCDAM_WRITE_OWNER (00200)

DCDAM_READ_GROUP (00040)

DCDAM_READ_OTHERS (00004)

Return values
Return value Return value

(numeric)
Explanation

0 or positive integer 0 or a positive integer indicates the file descriptor.

DCDAMER_NOMEM -1607 The memory became insufficient.

DCDAMER_OPENED -1608 The specified physical file is opened.

DCDAMER_PARAM_FLAGS -1611 The value specified for flags is invalid.

DCDAMER_FILEER -1614 The physical file name is invalid.

dc_dam_create - Allocate a physical file

120

DCDAMER_PNUMER -1615 The value specified for the number of blocks
collectively processed is invalid.

DCDAMER_EXIST -1617 A physical file having the same name has been already
allocated.

DCDAMER_VERSION -1618 The OpenTP1 file system versions used for creation
and allocation do not match each other.

DCDAMER_IOER -1620 An input/output error occurred.

DCDAMER_ACCESS -1628 The UAP that called the function dc_dam_create()
does not have the access permission for special files.

A DAM file to be allocated is protected with the
security facility. The UAP that called the function
dc_dam_create() has no access permission.

DCDAMER_LBLNER -1630 The value specified for the block length is not suitable.

DCDAMER_LBNOER -1631 The value specified for the number of blocks is not
suitable.

DCDAMER_LFNMER -1632 The physical file is not a character special file, or the
device corresponding to the special file does not exist.

DCDAMER_LNOINT -1633 The specified OpenTP1 file has not been initialized as
an OpenTP1 file system.

DCDAMER_LFFOVF -1634 When the OpenTP1 file was initialized as an OpenTP1
file system, an attempt was made to allocate more
OpenTP1 files (physical files) than specified.

DCDAMER_LFNOVF -1635 The specified value exceeds the maximum number of
files which can be opened in the process being
executed.

DCDAMER_USED -1636 The physical file specified for fname is being used in
online mode, or it is being used by another process.

DCDAMER_SPACE -1640 The OpenTP1 file system does not have a free area
large enough to allocate physical files.

DCDAMER_NO_ACL -1646 A DAM file to be allocated is protected with the
security facility. There is no ACL for the corresponding
file.

Return value Return value
(numeric)

Explanation

dc_dam_dget - Input directly a physical file block

121

dc_dam_dget - Input directly a physical file block

Format
ANSI C, C++

K&R C

Description
The function dc_dam_dget() inputs a block corresponding to a specified relative
block number. Call this function after the function dc_dam_iopen() that requests
re-creation output.

If the value specified for the block length is less than the value specified for the buffer
length, the length of the input block is returned. If the value specified for the block
length is greater than the value specified for the buffer length, an error is returned.

When directly inputting a physical file block, specify the file descriptor which is the
return value of the function dc_dam_iopen().

Arguments whose values are set in the UAP
fno

Specify the file descriptor of the file containing a block to be input directly.

datadr

Specify the address of the input buffer.

datalen

Specify the length of the input buffer.

blkno

Specify the relative block number of the input block.

#include <dcdami.h>
int dc_dam_dget (int fno, char *datadr, int datalen,
 int blkno, DCLONG flags)

#include <dcdami.h>
int dc_dam_dget (fno, datadr, datalen, blkno, flags)
int fno;
char *datadr;
int datalen;
int blkno;
DCLONG flags;

dc_dam_dget - Input directly a physical file block

122

flags

Specify DCNOFLAGS.

Return values
Return value Return value

(numeric)
Explanation

Positive integer A positive integer indicates the length of the input
block.

DCDAMER_BADF -1603 The file descriptor specified for fno is not the one
which was acquired by opening the file normally.

The DAM file is not open.

DCDAMER_BUFER -1604 The value specified for the input data length is less than
the value specified for the block length.

DCDAMER_SEQER -1605 The call sequence of functions which access the DAM
file is invalid.

DCDAMER_BNOER -1606 The relative block number is invalid.

DCDAMER_PARAM_FLAGS -1611 The value specified for flags is invalid.

DCDAMER_IOER -1620 An input error occurred.

DCDAMER_ACCESS -1628 A DAM file to be accessed is protected with the
security facility. The UAP that called the function
dc_dam_dget() has no access permission.

DCDAMER_NO_ACL -1646 A DAM file to be accessed is protected with the
security facility. There is no ACL for the corresponding
file.

dc_dam_dput - Output directly a physical file block

123

dc_dam_dput - Output directly a physical file block

Format
ANSI C, C++

K&R C

Description
The function dc_dam_dput() outputs a block corresponding to a specified relative
block number. Call this function after the function dc_dam_iopen() that requests
re-creation output.

If the value specified for the output data length is less than the value specified for the
block length, a block is output and the remaining area is padded with null characters.
If the value specified for the output data length is greater than the value specified for
the block length, an error is returned.

When directly outputting a physical file block, specify the file descriptor which is the
return value of the function dc_dam_iopen().

Arguments whose values are set in the UAP
fno

Specify the file descriptor of the file to which a block is output directly.

datadr

Specify the address of the output data.

datalen

Specify the length of the output data.

blkno

Specify the relative block number of the output destination block.

#include <dcdami.h>
int dc_dam_dput (int fno, char *datadr, int datalen,
 int blkno, DCLONG flags)

#include <dcdami.h>
int dc_dam_dput (fno, datadr, datalen, blkno, flags)
int fno;
char *datadr;
int datalen;
int blkno;
DCLONG flags;

dc_dam_dput - Output directly a physical file block

124

flags

Specify DCNOFLAGS.

Return values
Return value Return value

(numeric)
Explanation

Positive integer A positive integer indicates the length of the output
block.

DCDAMER_BADF -1603 The file descriptor specified for fno is not the one
which was acquired by opening the file normally.

The DAM file is not open.

DCDAMER_BUFER -1604 The value specified for the output data length is less
than the value specified for the block length.

DCDAMER_SEQER -1605 The call sequence of functions which access the DAM
file is invalid.

DCDAMER_BNOER -1606 The relative block number is invalid.

DCDAMER_PARAM_FLAGS -1611 The value specified for flags is invalid.

DCDAMER_IOER -1620 An output error occurred.

DCDAMER_ACCESS -1628 A DAM file to be accessed is protected with the
security facility. The UAP that called the function
dc_dam_dput() has no access permission.

DCDAMER_NO_ACL -1646 A DAM file to be accessed is protected with the
security facility. There is no ACL for the corresponding
file.

dc_dam_end - Terminate using an unrecoverable DAM file

125

dc_dam_end - Terminate using an unrecoverable DAM file

Format
ANSI C, C++

K&R C

Description
The function dc_dam_end() terminates using an unrecoverable DAM file.

When the function dc_dam_start() is called, call the function dc_dam_end()
before terminating the processing. If the function dc_dam_end() is not called, a
resource used to access an unrecoverable DAM file is not released until the UAP
terminates.

Argument whose value is set in the UAP
flags

Specify DCNOFLAGS.

Return values

#include <dcdam.h>
int dc_dam_end (DCLONG flags)

#include <dcdam.h>
int dc_dam_end (flags)
DCLONG flags;

Return value Return value
(numeric)

Explanation

DC_OK 0 Normal termination. Using an unrecoverable DAM file
is terminated.

DCDAMER_PROTO -1600 The function dc_rpc_open() is not called.

DCDAMER_SEQER -1605 The function dc_dam_start() is not called.

DCDAMER_PARAM_FLAGS -1611 The value specified for flags is invalid.

dc_dam_get - Input a physical file block

126

dc_dam_get - Input a physical file block

Format
ANSI C, C++

K&R C

Description
The function dc_dam_get() sequentially inputs data in blocks from a physical file of
the OpenTP1 file system. Call the function dc_dam_get() after the function
dc_dam_iopen().

If the value specified for the block length is smaller than the value specified for the
buffer length, the length of the input block is returned. If the value specified for the
block length is greater than the value specified for buffer length, an error is returned.

When inputting a physical file block, specify the file descriptor which is the return
value of the function dc_dam_iopen().

Arguments whose values are set in the UAP
fno

Specify the file descriptor of the file containing a block to be input.

datadr

Specify the address of the input buffer.

datalen

Specify the length of the input buffer. You can specify a value in the range from 504
to 2147483647.

flags

Specify DCNOFLAGS.

#include <dcdami.h>
int dc_dam_get (int fno, char *datadr, int datalen,
 DCLONG flags)

#include <dcdami.h>
int dc_dam_get (fno, datadr, datalen, flags)
int fno;
char *datadr;
int datalen;
DCLONG flags;

dc_dam_get - Input a physical file block

127

Return values
Return value Return value

(numeric)
Explanation

Positive integer A positive integer indicates the length of the input
block.

DCDAMER_BADF -1603 The file descriptor specified for fno is not the one
which was acquired by opening the file normally, or the
file is not open.

DCDAMER_BUFER -1604 The value specified for the block length is greater than
the value specified for the buffer length.

The value specified for the input buffer length is
outside the range of values that can be specified.

DCDAMER_SEQER -1605 The call sequence of functions which access the DAM
file is invalid.

DCDAMER_PARAM_FLAGS -1611 The value specified for flags is invalid.

DCDAMER_IOER -1620 An input error occurred.

DCDAMER_ACCESS -1628 A DAM file to be accessed is protected with the
security facility. The UAP that called the function
dc_dam_get() has no access permission.

DCDAMER_EOF -1637 The file end was reached.

DCDAMER_NO_ACL -1646 A DAM file to be accessed is protected with the
security facility. There is no ACL for the corresponding
file.

dc_dam_hold - Shut down a logical file

128

dc_dam_hold - Shut down a logical file

Format
ANSI C, C++

K&R C

Description
The function dc_dam_hold() shuts down a logical file. After the function
dc_dam_hold() is executed, a logical shutdown error is always returned if another
UAP calls an access request for the logical file.

• For recoverable DAM files

If the logical file specified here is under synchronization point processing in
another transaction processing when the function dc_dam_hold() is called, the
logical file is closed after the synchronization point processing terminates. Even
if the synchronization point processing is not completed, the function
dc_dam_hold() returns to the accessed UAP.

Arguments whose values are set in the UAP
lfname

Within 1 to 8 bytes, specify the name of a logical file to be shut down.

flags

Specify DCNOFLAGS.

Return values

#include <dcdam.h>
int dc_dam_hold (char *lfname, DCLONG flags)

#include <dcdam.h>
int dc_dam_hold (lfname, flags)
char *lfname;
DCLONG flags;

Return value Return value
(numeric)

Explanation

DC_OK 0 The logical file specified for lfname was shut down
normally.

DCDAMER_PROTO -1600 The function dc_rpc_open() is not called.

dc_dam_hold - Shut down a logical file

129

N is specified for atomic_update in the user service
definition. (This value is returned only when a
recoverable DAM file is accessed.)

The function dc_dam_start() is not called. (This
value is returned only when an unrecoverable DAM file
is accessed.)

The UAP is incorrectly linked as follows:
• The library (-1tdam) to be used for access to a

TAM file using a DAM service function is linked
incorrectly.

• The definition of the resource manager for
transaction control object files is incorrect.

DCDAMER_UNDEF -1601 The specified logical file name has not been defined.

DCDAMER_NOMEM -1607 The memory became insufficient.

DCDAMER_PARAM_LFNAME -1610 The logical file name specified for lfname is invalid.

DCDAMER_PARAM_FLAGS -1611 The value specified for flags is invalid.

DCDAMER_VERSION -1618 The version of the DAM library linked to the UAP does
not allow the UAP to operate with the current DAM
service.

DCDAMER_LHOLDED -1625 The logical file name specified for lfname is in logical
shutdown state.

DCDAMER_OHOLDED -1626 The logical file name specified for lfname is in
shutdown state due to an error.

DCDAMER_ACCESS -1628 A DAM file to be shut down is protected with the
security facility. The UAP that called the function
dc_dam_hold() has no access permission.

DCDAMER_NO_ACL -1646 A DAM file to be shut down is protected with the
security facility. There is no ACL for the corresponding
file.

Return value Return value
(numeric)

Explanation

dc_dam_iclose - Close a physical file

130

dc_dam_iclose - Close a physical file

Format
ANSI C, C++

K&R C

Description
The function dc_dam_iclose() closes a physical file created in the OpenTP1 file
system.

If a file is not filled with data, the remaining part up to the end of the file is padded with
blocks of null characters only in the following cases:

• The value specified for flags of the function dc_dam_iopen() indicates a
creation output request (DCDAM_INITIALIZE).

• The function dc_dam_create() has been called.

When closing a physical file, specify the file descriptor which is the return value of the
function dc_dam_create() or dc_dam_iopen().

Arguments whose values are set in the UAP
fno

Specify the file descriptor of the file to be closed.

flags

Specify DCNOFLAGS.

Return values

#include <dcdami.h>
int dc_dam_iclose (int fno, DCLONG flags)

#include <dcdami.h>
int dc_dam_iclose (fno, flags)
int fno;
DCLONG flags;

Return value Return value
(numeric)

Explanation

DC_OK 0 The physical file was closed normally.

DCDAMER_BADF -1603 The file descriptor specified for fno is not the one
which was acquired by opening the file normally.

dc_dam_iclose - Close a physical file

131

The specified file is not open.

DCDAMER_PARAM_FLAGS -1611 The value specified for flags is invalid.

DCDAMER_IOER -1620 An output error occurred.

Return value Return value
(numeric)

Explanation

dc_dam_iopen - Open a physical file

132

dc_dam_iopen - Open a physical file

Format
ANSI C, C++

K&R C

Description
The function dc_dam_iopen() opens a physical file created in the OpenTP1 file
system. However, this function cannot open a physical file being used in online mode.

Arguments whose values are set in the UAP
fname

Specify the name of a physical file to be opened with a path name within (special file
name + 14 bytes).

pnum

Specify the number of blocks collectively processed which is used as an input/output
unit.

flags

Specify the type of request (creation output request or re-creation (overwrite) output
request). The value specified here determines whether to pad the remaining area with
blocks of null characters when the file is closed. The value set here will come into
effect when the call of the function dc_dam_iclose() subsequent to the function
dc_dam_put() brings about normal termination. Even though the function
dc_dam_put() is called, the remaining area will not be padded with blocks of null
characters provided that UAP processing is terminated without the call of the function
dc_dam_iclose().

DCDAM_INITIALIZE

The creation output request type is specified. (The remaining area is padded with
blocks of null characters.)

#include <dcdami.h>
int dc_dam_iopen (char *fname, int pnum, DCLONG flags)

#include <dcdami.h>
int dc_dam_iopen (fname, pnum, flags)
char *fname;
int pnum;
DCLONG flags;

dc_dam_iopen - Open a physical file

133

DCDAM_OVERWRITE

The re-creation output request type is specified. (The remaining area is not
padded with blocks of null characters.)

When DCNOFLAGS is specified, DCDAM_OVERWRITE is assumed to be specified.

Return values
Return value Return value

(numeric)
Explanation

0 or positive integer 0 or a positive integer indicates the file descriptor.

DCDAMER_NOMEM -1607 The memory became insufficient.

DCDAMER_OPENED -1608 The physical file specified for fname is open.

DCDAMER_PARAM_FLAGS -1611 The value specified for flags is invalid.

DCDAMER_FILEER -1614 The physical file name specified for fname is invalid.

DCDAMER_PNUMER -1615 The value specified for the number of blocks
collectively processed is invalid.

DCDAMER_NODAM -1616 The physical file specified for fname is not a DAM file.

DCDAMER_VERSION -1618 The OpenTP1 file system versions used for creation
and allocation do not match each other.

DCDAMER_NOEXIST -1619 The physical file specified for fname does not exist.

DCDAMER_IOER -1620 An input/output error occurred.

DCDAMER_ACCESS -1628 The UAP that called the function dc_dam_iopen()
does not have the access permission for special files.

DCDAMER_LFNMER -1632 The physical file is not a character special file, or the
device corresponding to the special file does not exist.

DCDAMER_LNOINT -1633 The physical file specified for fname has not been
initialized as an OpenTP1 file system.

DCDAMER_LFNOVF -1635 The specified value exceeds the maximum number of
files which can be opened for the process.

DCDAMER_USED -1636 The physical file specified for fname is being used in
online mode, or it is being used by another process.

DCDAMER_ACCESSF -1638 The access permission for physical files has not been
granted.

DCDAMER_CRUSH -1639 Physical file damage was detected.

dc_dam_open - Open a logical file

134

dc_dam_open - Open a logical file

Format
ANSI C, C++

K&R C

Description
The function dc_dam_open() opens a logical file.

• For recoverable DAM files

Whether to apply file-based or block-based lock is specified for the logical file.
File-based lock can be applied when:

• The logical file is opened within the transaction range under the condition
that lock control for individual transaction branches is specified.

In the following conditions, file-based lock cannot be applied. Use block-based
lock:

• The logical file is opened outside the transaction range.

• Lock control for individual global transactions is specified.

If a logical file is closed by the function dc_dam_close() and is again opened
in the same transaction branch, the status before the function dc_dam_close()
is called is inherited.

• For unrecoverable DAM files

Since the transaction is not synchronized, no lock is needed.

Arguments whose values are set in the UAP
lfname

Within 1 to 8 bytes, specify the name of a logical file to be opened.

flags

Specify the following items in the format below:

#include <dcdam.h>
int dc_dam_open (char *lfname, DCLONG flags)

#include <dcdam.h>
int dc_dam_open (lfname, flags)
char *lfname;
DCLONG flags;

dc_dam_open - Open a logical file

135

• File-based lock or blocks

• Whether the function is to wait for the resource to be released from lock if a lock
error occurs.

• Flag 1

Specify files-based lock or blocks.

DCDAM_FILE_EXCLUSIVE: Files-based lock

DCDAM_BLOCK_EXCLUSIVE: Blocks-based lock

• Flag 2

Specify whether the function is to wait for the resource to be released from lock
if an lock error occurs in the function,

DCDAM_WAIT: The function waits for the resource to be released from lock.

DCDAM_NOWAIT: The function does not wait for the resource to be released from
lock, and returns with an error.

The default is DCDAM_NOWAIT.

Setting flags
The value specified for flags depends on whether the DAM file is recoverable.

• For recoverable DAM files

DCDAM_WAIT (flag 2) is specified if a lock error occurs in the function
dc_dam_read() or dc_dam_write(). It is not specified if a lock error occurs
in the function dc_dam_open(). If a lock error occurs in the function
dc_dam_open(), the function unconditionally returns with the error value
DCDAMER_EXCER.

The table below shows the correspondence between the value specified for flags
and the type of lock when a recoverable DAM file is accessed.

{DCDAM_FILE_EXCLUSIVE|DCDAM_BLOCK_EXCLUSIVE
 [|DCDAM_WAIT|DCDAM_NOWAIT|]}

Flag 1 Flag 2# Lock Specified for Flags

FILE_EXCLUSIVE -- Files-based lock

BLOCK_EXCLUSIVE WAIT Blocks-based lock, and waiting for release from lock if a lock
error occurs

NOWAIT Blocks-based lock, and error return if a lock error occurs

dc_dam_open - Open a logical file

136

Legend:

--: Cannot be specified.

#: The default is NOWAIT.

• For unrecoverable DAM files

DCDAM_WAIT (flag 2) is specified if a lock error occurs. If a lock error occurs in
the function dc_dam_open(), dc_dam_read(), or dc_dam_write, whether to
wait for lock to be released is determined according to the value specified for flag
2. When DCDAM_NOWAIT is specified for flag 2 or omitted and if a lock error
occurs, the function returns with the error value DCDAMER_EXCER.

The table below shows the correspondence between the value specified for flags
and the type of lock when an unrecoverable DAM file is accessed.

#: The default is NOWAIT.

When files-based lock is specified for flag 1, no lock error occurs in the function
dc_dam_read() or dc_dam_write() because all files are locked regardless of
recoverable or unrecoverable files. Therefore, whether to wait for release from lock
cannot be specified. The lock release wait type specified for the argument of the
function dc_dam_read() or dc_dam_write() is ignored.

Return values

Flag 1 Flag 2# Lock Specified for Flags

FILE_EXCLUSIVE WAIT Files-based lock, and waiting for release from lock if a lock
error occurs

NOWAIT Files-based lock, and error return if a lock error occurs

BLOCK_EXCLUSIVE WAIT Blocks-based lock, and waiting for release from lock if a lock
error occurs

NOWAIT Blocks-based lock, and error return if a lock error occurs

Return value Return value
(numeric)

Explanation

0 or positive integer 0 or a positive integer indicates the file descriptor.

DCDAMER_PROTO -1600 The function dc_rpc_open() is not called.

N is specified for atomic_update in the user service
definition. (This value is returned only when a
recoverable DAM file is accessed.)

dc_dam_open - Open a logical file

137

The dc_dam_start() function is not called when N is
specified for the atomic_update operand in the user
service definition. (This value is returned only when an
unrecoverable DAM file is accessed.)

The UAP is incorrectly linked as follows:
• The library (-1tdam) to be used for access to a

TAM file using a DAM service function is linked
incorrectly.

• The definition of the resource manager for
transaction control object files is incorrect.

DAM file lock is specified from outside the transaction
range. (This value is returned only when a recoverable
DAM file is accessed.)

File lock is specified for the DAM file in lock control
for each global transaction. (This value is returned only
when a recoverable DAM file is accessed.)

DCDAMER_UNDEF -1601 The logical file name specified for lfname has not
been defined.

DCDAMER_EXCER -1602 A lock error occurred.

DCDAMER_SEQER -1605 The dc_dam_start() function is not called when Y is
specified for the atomic_update operand in the user
service definition. (This value is returned only when an
unrecoverable DAM file is accessed.)

DCDAMER_NOMEM -1607 The memory became insufficient.

DCDAMER_OPENED -1608 The logical file specified for lfname is open.

DCDAMER_PARAM_LFNAME -1610 The value specified for the logical file name is invalid.

DCDAMER_PARAM_FLAGS -1611 The value specified for flags is invalid.

DCDAMER_LHOLD -1621 The file specified for lfname is in logical shutdown
state.

DCDAMER_OHOLD -1622 The file specified for lfname is in shutdown state due
to an error.

DCDAMER_OPENNUM -1627 The number of open character special files exceeds the
specified limit.

DCDAMER_ACCESS -1628 The access permission for character special files has
not been granted.

Return value Return value
(numeric)

Explanation

dc_dam_open - Open a logical file

138

DCDAMER_TMERR -1629 An error occurred in the transaction service. (This value
is returned only when a recoverable DAM file is
accessed.)

DCDAMER_DLOCK -1642 A deadlock occurred. (This value is returned only when
an unrecoverable DAM file is accessed.)

DCDAMER_TIMOUT -1643 The resource could not be acquired because a timeout
occurred (the wait time specified in the lock service
definition was exceeded). (This value is returned only
when an unrecoverable DAM file is accessed.)

DCDAMER_LCKOV -1645 The number of lock requests exceeds the specified
maximum number of concurrent lock requests.

DCDAMER_NO_ACL -1646 A DAM file to be opened is protected with the security
facility. There is no ACL for the corresponding file.

Return value Return value
(numeric)

Explanation

dc_dam_put - Output a physical file block

139

dc_dam_put - Output a physical file block

Format
ANSI C, C++

K&R C

Description
The function dc_dam_put() sequentially outputs data in blocks to a physical file
created in the OpenTP1 file system. If the value specified for the data length is smaller
than the value specified for the block length, the remaining part following the data is
padded with null characters. If the value specified for the data length is greater than the
value specified for the block length, an error is returned.

When outputting a physical file block, specify the file descriptor which is the return
value of the function dc_dam_create() or dc_dam_iopen().

Argument whose values are set in the UAP
fno

Specify the file descriptor of the file to which a block is output.

datadr

Specify the address of the data to be output.

datalen

Specify the length of the data to be output. You can specify a value in the range from
504 to 2147483647.

flags

Specify DCNOFLAGS.

#include <dcdami.h>
int dc_dam_put (int fno, char *datadr, int datalen,
 DCLONG flags)

#include <dcdami.h>
int dc_dam_put (fno, datadr, datalen, flags)
int fno;
char *datadr;
int datalen;
DCLONG flags;

dc_dam_put - Output a physical file block

140

Return values
Return value Return value

(numeric)
Explanation

Positive integer A positive integer indicates the length of the data to be
output (the value specified for datalen).

DCDAMER_BADF -1603 The file descriptor specified for fno is not the one
which was acquired by opening the file normally, or the
specified file is not open.

DCDAMER_BUFER -1604 The value specified for the data length is greater than
the value specified for the block length.

The value specified for the output data length is outside
the range of values that can be specified.

DCDAMER_SEQER -1605 The call sequence of functions which access the DAM
file is invalid.

DCDAMER_PARAM_FLAGS -1611 The value specified for flags is invalid.

DCDAMER_IOER -1620 An output error occurred.

DCDAMER_ACCESS -1628 A DAM file to be accessed is protected with the
security facility. The UAP that called the function
dc_dam_put() has no access permission.

DCDAMER_EOF -1637 The end of the file is reached.

DCDAMER_NO_ACL -1646 A DAM file to be accessed is protected with the
security facility. There is no ACL for the corresponding
file.

dc_dam_read - Input a logical file block

141

dc_dam_read - Input a logical file block

Format
ANSI C, C++

K&R C

Description
The function dc_dam_read() inputs a block (which is in the specified range) for
reference or update processing from the specified logical file

• For recoverable DAM files

Lock is enabled in units (files or blocks) as specified when the logical file was
opened. The function dc_dam_read() can be called from a process out of the
transaction range. In this case, however, the function can be used only for
reference and lock cannot be specified.

When multiple blocks are specified at a time, an error returned if even one of the
blocks causes an error. In this case, the blocks are not input to the input buffer. All
the blocks for which an input request was made are released lock at this time.

Lock which is enabled for a block input for reference processing is released in the
following case:

After the block is input for reference processing, an input request for update
processing is made for the same block. Then, an input error occurs during the
update processing.

Even if block update during a transaction is specified
(dam_update_block_over=flush in the DAM service definition), an error is
returned with DCDAMER_JNLOV in the following case:

#include <dcdam.h>
int dc_dam_read (int damfd, struct DC_DAMKEY *keyptr,
 int keyno, char *bufadr, int bufsize,
 DCLONG flags)

#include <dcdam.h>
int dc_dam_read (damfd, keyptr, keyno, bufadr, bufsize,
 flags)
int damfd;
struct DC_DAMKEY *keyptr;
int keyno;
char *bufadr;
int bufsize;
DCLONG flags;

dc_dam_read - Input a logical file block

142

• DAM file blocks are not updated in one transaction branch
(dc_dam_rewrite()). The function dc_dam_read() (block input for
update processing) is called. Eventually, the number of blocks exceeds the
maximum number of blocks collectively updated (the value specified for
dam_update_block of the DAM service definition).

When inputting a block of a recoverable DAM file, call the function
dc_dam_read() from the transaction range.

• For unrecoverable DAM files

There is no limit on the condition to call the function dc_dam_read() when a
block of an unrecoverable DAM file is input.

For an unrecoverable DAM file, if the function dc_dam_read() for update is
called more times than specified in dam_update_block in the DAM service
definition, the function returns with the error value DCDAMER_ACSOV.

When inputting a logical file block, specify the file descriptor which is the return value
of the function dc_dam_open().

Arguments whose values are set in the UAP
damfd

Specify the file descriptor of the file containing a block to be input.

keyptr

Specify the address of the structure (DAM key) that indicates the block reference/
update range. For the structure, specify the block range with the first relative block
number and the last relative block number. The structure format is as shown below.

• fstblkno

Specify the first relative block number of the block to be referenced or updated.

• endblkno

Specify the last relative block number of the block to be referenced or updated. If
0 is specified, only the block of the relative block number specified for fstblkno
is input.

keyno

Specify the number of structures (number of structure arrays) to be set for keyptr.

struct DC_DAMKEY {
 int fstblkno;
 int endblkno;
 };

dc_dam_read - Input a logical file block

143

bufadr

Specify the address of the input buffer.

bufsize

Specify the length of the input buffer. The length must be equal to or greater than (input
block length x number of blocks). You can specify a value in the range from 504 to
2147483647.

flags

Specify the type of request (reference request or update request) in the following
format:

• Flag 1

Specify the purpose (reference or update) of the input request given by the
function dc_dam_read():

DCDAM_REFERENCE: Input request for reference

DCDAM_MODIFY: Input request for update

• Flag 2

Specify whether to apply lock if the input request is for reference. If
DCDAM_EXCLUSIVE is specified, lock will remain until processing reaches the
synchronization point.

To access a recoverable DAM file for reference from outside the transaction, lock
cannot be specified.

If flag 2 is omitted, DCDAM_NOEXCLUSIVE is assumed.

If the function dc_dam_read() is called without lock application, the block
could be updated by another UAP during the processing of the function
dc_dam_read(). In this case, the details input to the block by the function
dc_dam_read() depend on the update processing status on the other UAP.
Therefore, to reference the latest block contents, be sure to specify
DCDAM_EXCLUSIVE.

If the input request is for update, flag 2 cannot be given no explicit value (always
DCDAM_EXCLUSIVE).

DCDAM_EXCLUSIVE: Lock is enabled.

DCDAM_NOEXCLUSIVE: Lock is not enabled.

{DCDAM_REFERENCE|DCDAM_MODIFY}
[|{DCDAM_EXCLUSIVE|DCDAM_NOEXCLUSIVE}]
[|{DCDAM_WAIT|DCDAM_NOWAIT}]

dc_dam_read - Input a logical file block

144

• Flag 3

Specify whether the function is to wait for the resource to be released from lock
if a lock error occurs. This item cannot be specified together with
DCDAM_NOEXCLUSIVE. If file-based lock is specified as the type of lock in the
function dc_dam_open() in which the file descriptor is specified for damfd, the
value specified for this option is meaningless.

DCDAM_WAIT: The function waits for the resource to be released from lock.

DCDAM_NOWAIT: The function does not wait for the resource to be released from
lock, and returns with an error.

If both items are omitted, the subsequent processing is as follows:

• If DCDAM_WAIT is specified in the function dc_dam_open(), the function waits
for the resource to be released from lock.

• If DCDAM_NOWAIT is specified in the function dc_dam_open() or it is omitted,
the function returns with an error.

The table below shows the correspondence between flag values specified for flags
and the specified type of lock.

Legend:

N/A: Cannot be specified.

#1: The default is NOEXCLUSIVE.

#2: The default is the type of lock specified in the function dc_dam_open().

#3: For a recoverable DAM file, the function dc_dam_read() can be called from a
process out of the transaction range only if flag 1 is given the value
DCDAM_REFERENCE and flag 2 is given the value DCDAM_NOEXCLUSIVE or is omitted.
If the function dc_dam_read() is called with other values specified for the flags from
outside the transaction range, it returns with a DCDAMER_PROTO error.

Flag 1 Flag 2#1 Flag 3#2 Lock Specified for Flags

REFERENCE EXCLUSIVE WAIT Input for reference, lock used, and waiting for release
from lock if a lock error occurs

NOWAIT Input for reference, lock used, and error return if a lock
error occurs

NOEXCLUSIVE N/A Input for reference, and lock not used#3

MODIFY N/A WAIT Input for update, and waiting for release from lock if a
lock error occurs

NOWAIT Input for update, and error return if a lock error occurs

dc_dam_read - Input a logical file block

145

Return values
Return value Return value

(numeric)
Explanation

DC_OK 0 All blocks were input normally.

DCDAMER_PROTO -1600 The function dc_rpc_open() is not called.

The purpose of input is updating or lock-specified
reference outside the transaction range. (This value is
returned only when a recoverable DAM file is
accessed.)

N is specified for atomic_update in the user service
definition. (This value is returned only when a
recoverable DAM file is accessed.)

The function dc_dam_start() is not called. (This
value is returned only when an unrecoverable DAM file
is accessed.)

The UAP is incorrectly linked as follows:
• The library (-1tdam) to be used for access to a

TAM file using a DAM service function is linked
incorrectly.

• The definition of the resource manager for
transaction control object files is incorrect.

DCDAMER_EXCER -1602 A lock error occurred.

DCDAMER_BADF -1603 The file descriptor specified for damfd is not the one
which was acquired by opening the file normally, or the
specified file is not open.

DCDAMER_BUFER -1604 The specified input buffer is too small to contain all
blocks.

The value specified for the input buffer length is
outside the range of values that can be specified.

DCDAMER_BNOER -1606 The relative block number is invalid.

DCDAMER_NOMEM -1607 The memory became insufficient.

DCDAMER_PARAM_KEYNO -1609 The value specified for keyno is smaller than 1.

DCDAMER_PARAM_FLAGS -1611 The value specified for flags is invalid.

DCDAMER_VERSION -1618 The version of the DAM library linked to the UAP does
not allow the UAP to operate with the current DAM
service.

dc_dam_read - Input a logical file block

146

DCDAMER_JNLOV -1613 The number of block updates exceeded the maximum
number of blocks that can be updated during one
transaction according to the DAM service definition.
(Returned only when a recoverable DAM file is
accessed.)

DCDAMER_IOER -1620 An input error occurred.

DCDAMER_LHOLD -1621 The file of the file descriptor specified for damfd is in
logical shutdown state.

DCDAMER_OHOLD -1622 The file with the file descriptor specified for damfd is
in shutdown state due to an error.

DCDAMER_ACCESS -1628 A DAM file to be accessed is protected with the
security facility. The UAP that called the function
dc_dam_read() has no access permission.

DCDAMER_TMERR -1629 An error occurred in the transaction service. (This value
is returned only when a recoverable DAM file is
accessed.)

DCDAMER_DLOCK -1642 A deadlock occurred.

DCDAMER_TIMOUT -1643 The resource could not be acquired because a timeout
occurred (the wait time specified in the lock service
definition was exceeded).

DCDAMER_LCKOV -1645 The number of lock requests exceeds the specified
maximum number of concurrent lock requests.

DCDAMER_ACSOV -1648 The maximum number of blocks for access to
unrecoverable DAM files is exceeded. (This value is
returned only when an unrecoverable DAM file is
accessed.)

Return value Return value
(numeric)

Explanation

dc_dam_release - Release a logical file from the shutdown state

147

dc_dam_release - Release a logical file from the shutdown state

Format
ANSI C, C++

K&R C

Description
The function dc_dam_release() releases a logical file which has been logically shut
down by the function dc_dam_hold(). The function dc_dam_release() also
releases a logical file which has been shut down due to an error.

Arguments whose values are set in the UAP
lfname

Within 1 to 8 bytes, specify the name of a logical file which is released from the
shutdown state.

flags

Specify the type of release from the shutdown state.

DCDAM_LOGICAL_RELEASE: A file logically shut down is released.

DCDAM_OBSTACLE_RELEASE: A file shut down due to an error is released.

Return values

#include <dcdam.h>
int dc_dam_release (char *lfname, DCLONG flags)

#include <dcdam.h>
int dc_dam_release (lfname, flags)
char *lfname;
DCLONG flags;

Return value Return value
(numeric)

Explanation

DC_OK 0 The logical file specified for lfname was released from
the shutdown state normally.

DCDAMER_PROTO -1600 The function dc_rpc_open() is not called.

N is specified for atomic_update in the user service
definition. (This value is returned only when a
recoverable DAM file is accessed.)

dc_dam_release - Release a logical file from the shutdown state

148

The function dc_dam_start() is not called. (This
value is returned only when an unrecoverable DAM file
is accessed.)

The UAP is incorrectly linked as follows:
• The library (-1tdam) to be used for access to a

TAM file using a DAM service function is linked
incorrectly.

• The definition of the resource manager for
transaction control object files is incorrect.

DCDAMER_UNDEF -1601 The logical file specified for lfname has not been
defined.

DCDAMER_NOMEM -1607 The memory became insufficient.

DCDAMER_PARAM_LFNAME -1610 The logical file name specified for lfname is invalid.

DCDAMER_PARAM_FLAGS -1611 The value specified for flags is invalid.

DCDAMER_VERSION -1618 The version of the DAM library linked to the UAP does
not allow the UAP to operate with the current DAM
service.

DCDAMER_NOEXIST -1619 The physical file corresponding to the logical file
specified for lfname does not exist.

DCDAMER_IOER -1620 An input error occurred.

DCDAMER_NOLHOLD -1623 The logical file specified for lfname is not in logical
shutdown state.

DCDAMER_NOOHOLD -1624 The logical file specified for lfname is not in shutdown
state due to an error.

DCDAMER_OPENNUM -1627 The number of open character special files exceeds the
specified maximum number.

DCDAMER_ACCESS -1628 The access permission for character special files has
not been granted.

A DAM file to be accessed is protected with the
security facility. The UAP that called the function
dc_dam_release() has no access permission.

DCDAMER_LFNMER -1632 The physical file is not a character special file, or the
device corresponding to the specified special file does
not exist.

Return value Return value
(numeric)

Explanation

dc_dam_release - Release a logical file from the shutdown state

149

DCDAMER_LNOINT -1633 The physical file corresponding to the logical file
specified for lfname has not been initialized as a
OpenTP1 file system.

DCDAMER_ACCESSF -1638 The access permission for the physical file that
corresponds to the logical file specified for lfname has
not been granted.

DCDAMER_NO_ACL -1646 A DAM file to be released from shutdown is protected
with the security facility. There is no ACL for the
corresponding file.

Return value Return value
(numeric)

Explanation

dc_dam_rewrite - Update a logical file block

150

dc_dam_rewrite - Update a logical file block

Format
ANSI C, C++

K&R C

Description
The function dc_dam_rewrite() outputs a block, input from the logical file for
update processing, a block input by the function dc_dam_read(). It also cancels an
update request. Block updating timing is shown below.

• For recoverable DAM files

The updated data is stored in the part of shared memory that is allocated for DAM
service, and the actual file is updated when the transaction is committed. A DAM
file with deferred update specified is updated asynchronously with the transaction
commitment.

• Unrecoverable DAM files

A DAM file is updated when the function dc_dam_rewrite() is returned.

When multiple blocks are specified at a time and if even one of the specified blocks
causes an error, processing is stopped and an error is returned. Update processing is
not done in this case.

When updating a logical file block, specify the file descriptor which is the return value
of the function dc_dam_open().

#include <dcdam.h>
int dc_dam_rewrite (int damfd, struct DC_DAMKEY *keyptr,
 int keyno, char *bufadr, int bufsize,
 DCLONG flags)

#include <dcdam.h>
int dc_dam_rewrite (damfd, keyptr, keyno, bufadr, bufsize,
 flags)
int damfd;
struct DC_DAMKEY *keyptr;
int keyno;
char *bufadr;
int bufsize;
DCLONG flags;

dc_dam_rewrite - Update a logical file block

151

Arguments whose values are set in the UAP
damfd

Specify the file name with the file descriptor.

keyptr

Specify the address of the structure (DAM key) that indicates the block update range.
For the structure, specify the block range with the first relative block number and the
last relative block number. The structure format is as shown below.

fstblkno

Specify the first relative block number of the block to be updated.

endblkno

Specify the last relative block number of the block to be updated. If 0 is specified,
only the block of the relative block number specified for fstblkno is updated.

keyno

Specify the number of structures (number of structure arrays) to be set for keyptr.

bufadr

Specify the address of the update data.

bufsize

Specify the length of the update data. The length must be (block length to be updated
x number of blocks to be updated). You can specify a value in the range from 504 to
2147483647.

flags

Specify one of the following values as the update request type:

DCDAM_UPDATE

Update request

DCDAM_CANCEL

Cancellation of update request

struct DC_DAMKEY {
 int fstblkno;
 int endblkno;
 };

dc_dam_rewrite - Update a logical file block

152

Return values
Return value Return value

(numeric)
Explanation

DC_OK 0 All blocks were updated normally.

DCDAMER_PROTO -1600 The function dc_rpc_open() is not called.

The function dc_dam_rewrite() is called outside the
transaction range. (This value is returned only when a
recoverable DAM file is accessed.)

N is specified for atomic_update in the user service
definition. (This value is returned only when a
recoverable DAM file is accessed.)

The function dc_dam_start() is not called. (This
value is returned only when an unrecoverable DAM file
is accessed.)

The UAP is incorrectly linked as follows:
• The library (-1tdam) to be used for access to a

TAM file using a DAM service function is linked
incorrectly.

• The definition of the resource manager for
transaction control object files is incorrect.

DCDAMER_BADF -1603 The file descriptor specified for damfd is not the one
which was acquired by opening the file normally, or the
specified file is not open.

DCDAMER_BUFER -1604 The update data length (block length to be updated x
number of blocks to be updated) is too short.

The value specified for the update data length is outside
the range of values that can be specified.

DCDAMER_SEQER -1605 The function dc_dam_read() for update processing
was not called.

DCDAMER_BNOER -1606 The relative block number is invalid.

DCDAMER_NOMEM -1607 The memory became insufficient.

DCDAMER_PARAM_KEYNO -1609 The value specified for keyno is smaller than 1.

DCDAMER_PARAM_FLAGS -1611 The value specified for flags is invalid.

DCDAMER_IOER -1620 An output error occurred. (This value is returned only
when an unrecoverable DAM file is accessed.)

dc_dam_rewrite - Update a logical file block

153

DCDAMER_JNLOV -1613 The number of block updates exceeded the maximum
number of blocks that can be updated during one
transaction according to the DAM service definition.

DCDAMER_LHOLD -1621 The file specified for damfd is in logical shutdown
state.

DCDAMER_OHOLD -1622 The file specified for damfd is in shutdown state due to
an error.

DCDAMER_TMERR -1629 An error occurred in the transaction service.

DCDAMER_BUFOV -1641 The update data length (block length to be updated x
number of blocks to be updated) is too long.

Return value Return value
(numeric)

Explanation

dc_dam_start - Start using an unrecoverable DAM file

154

dc_dam_start - Start using an unrecoverable DAM file

Format
ANSI C, C++

K&R C

Description
The function dc_dam_start() declares that an unrecoverable DAM file is used. Call
the function dc_dam_start() before the function dc_dam_open(). Call the
function dc_dam_start() for each UAP process.

When the function dc_dam_start() returns normally, the environment to access an
unrecoverable DAM file is established.

Arguments whose value is set in the UAP
flags

Specify DCNOFLAGS.

Return values

#include <dcdam.h>
int dc_dam_start (DCLONG flags)

#include <dcdam.h>
int dc_dam_start (flags)
DCLONG flags;

Return value Return value
(numeric)

Explanation

DC_OK 0 Normal termination. Unrecoverable DAM files now
can be used.

DCDAMER_PROTO -1600 The function dc_rpc_open() is not called.

DCDAMER_NOMEM -1607 The memory became insufficient.

DCDAMER_PARAM_FLAGS -1611 The value specified for flags is invalid.

DCDAMER_VERSION -1618 The UAP is linked with a DAM library which is
inoperable with the current DAM service.

DCDAMER_STARTED -1647 The function dc_dam_start() has already been
called.

dc_dam_status - Reference the status of a logical file

155

dc_dam_status - Reference the status of a logical file

Format
ANSI C, C++

K&R C

Description
The function dc_dam_status() returns the current logical file status to structure
DC_DAMSTAT. The following values are returned:

• Number of blocks in a logical file

• Logical file block length

• Physical file name corresponding to the logical file

• Current logical file status (whether it is shut down)

• Attribute of the logical file specified in the DAM service definition

• Security attribute of the logical file specified in the DAM service definition

The function dc_dam_status() can be called before and after a logical file is opened
with the function dc_dam_open().

When referencing the status of a logical file, specify the logical file name.

Arguments whose values are set in the UAP
lfname

Specify a logical file name within eight bytes.

stbuf

Specify the address of a structure DC_DAMSTAT that receives the logical file status. The
logical file status set in the function dc_dam_status() is returned in the structure.

#include <dcdam.h>
int dc_dam_status (char *lfname, struct DC_DAMSTAT *stbuf,
 int reserve, DCLONG flags)

#include <dcdam.h>
int dc_dam_status (lfname, stbuf, reserve, flags)
char *fname;
struct DC_DAMSTAT *stbuf;
int reserve;
DCLONG flags;

dc_dam_status - Reference the status of a logical file

156

phyfilno

Area used by the DAM service. Specify null character (0).

flags

Specify DCNOFLAGS.

Argument whose value is returned from OpenTP1
stbuf

The logical file status data is returned in the format of structure DC_DAMSTAT as
follows:

• st_block_len

The block length of a logical file is returned.

• st_block_num

The number of blocks in a logical file is returned.

• st_file_ph_name

The physical file name corresponding to the logical file is returned.

• st_file_stat

The current logical file status is returned as follows:

DCDAM_ST_NOT_HOLD: The logical file can be accessed.

DCDAM_ST_HOLD_LOG: The logical file is logically shut down.

DCDAM_ST_HOLD_OBS: The logical file is shut down with an error.

DCDAM_ST_HOLD_REQ: A shutdown request is being made for the logical file.

• st_file_def

The attribute of the logical file specified in the DAM service definition is returned
as follows:

DCDAM_ST_QUICK: DAM file ineligible for deferred update processing

struct DC_DAMSTAT {
 int st_block_len;
 int st_block_num;
 char st_file_ph_name[64];
 char st_file_stat;
 char st_file_def;
 char st_file_sec;
 char st_filler_1;
 char st_file_inf;
 };

dc_dam_status - Reference the status of a logical file

157

DCDAM_ST_DEFERRED: DAM file eligible for deferred update processing

DCDAM_ST_NORECOVER: Unrecoverable DAM file

DCDAM_ST_CACHELESS: Unrecoverable DAM file specified by a cache-less
access

• st_file_sec

The security attribute of the logical file specified in the DAM service definition
is returned as follows:

DCDAM_ST_NON: Security is not specified.

DCDAM_ST_SEC: Security is specified.

• st_filler_1

Reserved area 1 (A null character (0) is set.)

• st_file_inf

Reserved area 2 (The value -1 is set.)

Return values
Return value Return value

(numeric)
Explanation

DC_OK 0 The logical file status is set normally in the structure
DC_DAMSTAT.

DCDAMER_PROTO -1600 The function dc_rpc_open() is not called.

N is specified for atomic_update in the user service
definition. (This value is returned only when a
recoverable DAM file is accessed.)

The function dc_dam_start() is not called. (This
value is returned only when an unrecoverable DAM file
is accessed.)

DCDAMER_UNDEF -1601 The logical file name specified for lfname is
undefined.

DCDAMER_NOMEM -1607 The memory became insufficient.

DCDAMER_PARAM_LFNAME -1610 The logical file name specified for lfname is invalid.

DCDAMER_PARAM_FLAGS -1611 The value specified for flags is invalid.

DCDAMER_PARAM_ERROR -1612 The value specified for the argument is invalid.

The value specified for stbuf is invalid.

dc_dam_status - Reference the status of a logical file

158

Note
When the function dc_dam_status() is called, the DAM service does lock control
to get data. So if the function dc_dam_status() is used too often, the throughput
may be degraded because of the lock release wait time. Therefore, reference the DAM
file status as little as possible while online.

No null character is set for reserve.

DCDAMER_VERSION -1618 The UAP is linked with a DAM library which is
inoperable with the current DAM service.

DCDAMER_ACCESS -1628 A DAM file whose status is to be referenced is
protected with the security facility. The UAP that called
the function dc_dam_status() has no access
permission.

DCDAMER_NO_ACL -1646 A DAM file whose status is to be referenced is
protected with the security facility. There is no ACL for
the corresponding file.

Return value Return value
(numeric)

Explanation

dc_dam_write - Output a logical file block

159

dc_dam_write - Output a logical file block

Format
ANSI C, C++

K&R C

Description
The function dc_dam_write() outputs a specified block. The block output timing is
given below.

• For recoverable DAM files

The updated data is stored in the part of shared memory that is allocated for DAM
service, and the actual file is updated when the transaction is committed. A DAM
file with deferred output specified is output asynchronously with the transaction
commitment.

• Unrecoverable DAM files

A DAM file is output when the function dc_dam_write() returns.

When a request is made to output multiple blocks at a time and if even one of the
specified blocks causes an error, processing is stopped and an error is returned. The
blocks are not output in this case.

When outputting a logical file block, specify the file descriptor which is the return
value of the function dc_dam_open().

Arguments whose values are set in the UAP
damfd

Specify the file descriptor of the file to which a block is output.

#include <dcdam.h>
int dc_dam_write (int damfd, struct DC_DAMKEY *keyptr,
 int keyno, char *bufadr, int bufsize,
 DCLONG flags)

#include <dcdam.h>
int dc_dam_write (damfd, keyptr, keyno, bufadr, bufsize,
 flags)
int damfd;
struct DC_DAMKEY *keyptr;
int keyno;
char *bufadr;
int bufsize;
DCLONG flags;

dc_dam_write - Output a logical file block

160

keyptr

Specify the address of the structure (DAM key) that indicates the block output range.
For the structure, specify the block range with the first relative block number and the
last relative block number. The structure format is as shown below.

• fstblkno

Specify the first relative block number of the block to be output.

• endblkno

Specify the last relative block number of the block to be output. If 0 is specified,
only the block of the relative block number specified for fstblkno is updated.

keyno

Specify the number of structures (number of structure arrays) to be set for keyptr.

bufadr

Specify the address of the update data.

bufsize

Specify the length of the output data. The length must be (block length to be output x
number of blocks to be output). You can specify a value in the range from 504 to
2147483647.

flags

Specify whether the function is to wait for the resource to be released from lock if a
lock error occurs.

DCDAM_WAIT: The function waits for the resource to be released from lock.

DCDAM_NOWAIT: The function does not wait for the resource to be released from lock,
and returns with an error.

DCNOFLAGS: Processing is done according to the value specified for flags of the
function dc_dam_open().

If DCNOFLAGS is specified, the subsequent processing is as follows:

• If DCDAM_WAIT is specified in the function dc_dam_open(), the function waits
for the resource to be released from lock.

• If DCDAM_NOWAIT is specified in the function dc_dam_open() or it is omitted,
the function returns with an error.

struct DC_DAMKEY {
 int fstblkno;
 int endblkno;
 };

dc_dam_write - Output a logical file block

161

If the function dc_dam_open() in which the file descriptor is specified for damfd
specifies files-based lock as the type of lock, the value specified for this option is
meaningless.

Return values
Return value Return value

(numeric)
Explanation

DC_OK 0 All blocks were output normally.

DCDAMER_PROTO -1600 The function dc_rpc_open() is not called.

The function dc_dam_write() is called outside the
transaction range. (This value is returned only when a
recoverable DAM file is accessed.)

N is specified for atomic_update in the user service
definition. (This value is returned only when a
recoverable DAM file is accessed.)

The function dc_dam_start() is not called. (This
value is returned only when an unrecoverable DAM file
is accessed.)

The UAP is incorrectly linked as follows:
• The library (-1tdam) to be used for access to a

TAM file using a DAM service function is linked
incorrectly.

• The definition of the resource manager for
transaction control object files is incorrect.

DCDAMER_EXCER -1602 A lock specification error occurred.

DCDAMER_BADF -1603 The file descriptor specified for damfd is not the one
which was acquired by opening the file normally, or the
specified file has not been defined.

DCDAMER_BUFER -1604 The output data length (block length to be output x
number of blocks to be output) is too short.

The value specified for the output data length is outside
the range of values that can be specified.

DCDAMER_SEQER -1605 The call sequence of functions is invalid.

DCDAMER_BNOER -1606 The relative block number is invalid.

DCDAMER_NOMEM -1607 The memory became insufficient.

DCDAMER_PARAM_KEYNO -1609 The value specified for keyno is smaller than 1.

DCDAMER_PARAM_FLAGS -1611 The value specified for flags is invalid.

dc_dam_write - Output a logical file block

162

Note
Do the following if the values DCDAMER_JNLOV and DCDAMER_ACSOV are returned:

• Set the number of output blocks to the same or less than the maximum number of
blocks that can be updated.

• If there is a block that has not been updated with the function
dc_dam_rewrite(), update it before calling the function dc_dam_write().

DCDAMER_JNLOV -1613 The number of block updates exceeded the maximum
number of blocks that can be updated during one
transaction according to the DAM service definition.
(Returned only when a recoverable DAM file is
accessed).

DCDAMER_IOER -1620 An output error occurred. (This value is returned only
when an unrecoverable DAM file is accessed.)

DCDAMER_LHOLD -1621 The file specified for damfd is in logical shutdown
state.

DCDAMER_OHOLD -1622 The file specified for damfd is in shutdown state due to
an error.

DCDAMER_ACCESS -1628 A DAM file to be accessed is protected with the
security facility. The UAP that called the function
dc_dam_write() has no access permission.

DCDAMER_TMERR -1629 An error occurred in the transaction service. (This value
is returned only when a recoverable DAM file is
accessed.)

DCDAMER_BUFOV -1641 The output data length (block length to be output x
number of blocks to be output) is too long.

DCDAMER_DLOCK -1642 A deadlock occurred.

DCDAMER_TIMOUT -1643 The resource could not be acquired because a timeout
occurred (the wait time specified in the lock service
definition was exceeded).

DCDAMER_LCKOV -1645 The number of lock requests exceeds the specified
maximum number of concurrent lock requests.

DCDAMER_ACSOV -1648 The maximum number of blocks that can be accessed is
exceeded. (This value is returned only when an
unrecoverable DAM file is accessed.)

Return value Return value
(numeric)

Explanation

IST service (dc_ist_~)

163

IST service (dc_ist_~)

This section explains functions that access an internode shared table. The syntax of the
following functions are explained:

• dc_ist_close - Close an internode shared table

• dc_ist_open - Open an internode shared table

• dc_ist_read - Input an internode shared table record

• dc_ist_write - Output an internode shared table record

The functions for IST service (dc_ist_~) can be used only in UAPs of TP1/Server
Base. They cannot be used in UAPs of TP1/LiNK.

dc_ist_close - Close an internode shared table

164

dc_ist_close - Close an internode shared table

Format
ANSI C, C++

K&R C

Description
The function dc_ist_close() closes a specified internode shared table.

Arguments whose values are set in the UAP
istid

Specify the table descriptor of the internode shared table to be closed.

flags

Specify DCNOFLAGS.

Return values

#include <dcist.h>
int dc_ist_close (int istid, DCLONG flags)

#include <dcist.h>
int dc_ist_close (istid, flags)
int istid;
DCLONG flags;

Return value Return value
(numeric)

Explanation

DC_OK 0 The internode shared table was closed normally.

DCISTER_PROTO -3800 The call sequence of functions which access the
internode shared table is invalid.

DCISTER_BADID -3803 The table descriptor specified for istid is not the one
which was acquired by opening the table normally.

The internode shared table is not open.

DCISTER_PARAM_FLAGS -3811 The value specified for flags is invalid.

dc_ist_open - Open an internode shared table

165

dc_ist_open - Open an internode shared table

Format
ANSI C, C++

K&R C

Description
The function dc_ist_open() opens a specified internode shared table. When an
internode shared table is opened normally, a table descriptor is returned.

Arguments whose values are set in the UAP
istname

Specify the internode shared table name to be opened within eight bytes.

flags

Specify DCNOFLAGS.

Return values

#include <dcist.h>
int dc_ist_open (char *istname, DCLONG flags)

#include <dcist.h>
int dc_ist_open (istname, flags)
char *istname;
DCLONG flags;

Return value Return value
(numeric)

Explanation

0 or positive integer 0 or positive integer indicates a table descriptor.

DCISTER_PROTO -3800 The call sequence of functions which access the
internode shared table is invalid.

DCISTER_UNDEF -3801 The internode shared table name specified for istname
is undefined.

DCISTER_NOMEM -3807 The memory became insufficient.

DCISTER_OPENED -3808 The name of an already open internode shared table
was specified for istname.

DCISTER_PARAM_TBLNAME -3810 The length of the value specified for the internode
shared table name is invalid.

dc_ist_open - Open an internode shared table

166

DCISTER_PARAM_FLAGS -3811 The value specified for flags is invalid.

Return value Return value
(numeric)

Explanation

dc_ist_read - Input an internode shared table record

167

dc_ist_read - Input an internode shared table record

Format
ANSI C, C++

K&R C

Description
The function dc_ist_read() inputs a record in a specified range from a specified
internode shared table. If multiple records are collectively specified and an error
occurs with any of the specified records, the function dc_ist_read() returns with
an error without inputting the records to the input buffer.

When inputting an internode shared table record, specify the table descriptor which is
the return value of the function dc_ist_open().

Arguments whose values are set in the UAP
istid

Specify the table descriptor of the internode shared table to be accessed.

keyptr

Specify the address of the structure (IST key) indicating the range of the relative record
numbers of the record to be referenced. For the structure, specify the record range with
the first and last relative block numbers. The structure formats are as follows:

• fstrecno

#include <dcist.h>
int dc_ist_read (int istid, struct DC_ISTKEY *keyptr,
 int keyno, char *bufadr, int bufsize,
 DCLONG flags)

#include <dcist.h>
int dc_ist_read (istid, keyptr, keyno, bufadr, bufsize,
 flags)
int istid;
struct DC_ISTKEY *keyptr;
int keyno;
char *bufadr;
int bufsize;
DCLONG flags;

struct DC_ISTKEY {
 int fstrecno;
 int endrecno;
 };

dc_ist_read - Input an internode shared table record

168

Specify the first relative record number of the record to be accessed.

• endrecno

Specify the last relative record number of the record to be accessed. If 0 is
specified, only the record with the relative record number specified with
fstrecno is input.

keyno

Specify the number of structures (number of arrays in the structure) to be specified for
keyptr.

bufadr

Specify the input buffer address.

bufsize

Specify the input buffer length. The value must be (input record length x number of
input records) or greater.

flags

Specify DCNOFLAGS.

Return values
Return value Return value

(numeric)
Explanation

DC_OK 0 All specified records are normally input.

DCISTER_PROTO -3800 The call sequence of functions which access the
internode shared table is invalid.

DCISTER_BADID -3803 The table descriptor specified for istid is not the one
which was acquired by opening the table normally.

The internode shared table is not open.

DCISTER_BUFER -3804 The input buffer length specified for bufsize is
insufficient to input all records.

DCISTER_RNOER -3806 The relative record number is invalid.

DCISTER_NOMEM -3807 The memory became insufficient.

DCISTER_PARAM_KEYNO -3809 The value specified for keyno is less than 1.

DCISTER_PARAM_FLAGS -3811 The value specified for flags is invalid.

dc_ist_write - Output an internode shared table record

169

dc_ist_write - Output an internode shared table record

Format
ANSI C, C++

K&R C

Description
The function dc_ist_write() outputs a record in a specified range to an internode
shared table. If multiple records are collectively specified and an error occurs with any
of the specified records, the function dc_ist_write() returns with an error without
outputting the records to the output buffer.

When the function dc_ist_write() terminates normally, the contents of the record
at the local node are updated. The contents of internode shared tables at other nodes
are updated with a certain time interval after this function returns normally.

When outputting an internode shared table record, specify the table descriptor which
is the return value of the function dc_ist_open().

Arguments whose values are set in the UAP
istid

Specify the table descriptor of the internode shared table to be accessed.

keyptr

Specify the address of the structure (IST key) indicating the range of the relative record
numbers of the record to be output. For the structure, specify the record range with the
first and last relative block numbers. The structure formats are as follows:

#include <dcist.h>
int dc_ist_write (int istid, struct DC_ISTKEY *keyptr,
 int keyno, char *bufadr, int bufsize,
 DCLONG flags)

#include <dcist.h>
int dc_ist_write (istid, keyptr, keyno, bufadr, bufsize,
 flags)
int istid;
struct DC_ISTKEY *keyptr;
int keyno;
char *bufadr;
int bufsize;
DCLONG flags;

dc_ist_write - Output an internode shared table record

170

• fstrecno

Specify the first relative record number of the record to be accessed.

• endrecno

Specify the last relative record number of the record to be accessed. If 0 is
specified, only the record with the relative record number specified with
fstrecno is input.

keyno

Specify the number of structures (number of arrays in the structure) to be specified for
keyptr.

bufadr

Specify the address of the buffer containing update data to be output.

bufsize

Specify the output buffer length. The value must be (output record length x number of
output records).

flags

Specify DCNOFLAGS.

Return values

struct DC_ISTKEY {
 int fstrecno;
 int endrecno;
 };

Return value Return value
(numeric)

Explanation

DC_OK 0 All specified records are normally output.

DCISTER_PROTO -3800 The call sequence of functions which access the
internode shared table is invalid.

DCISTER_BADID -3803 The table descriptor specified for istid is not the one
which was acquired by opening the table normally.

The internode shared table is not open.

DCISTER_BUFER -3804 The output buffer length specified for bufsize is
insufficient to output all records.

DCISTER_RNOER -3806 The relative record number is invalid.

DCISTER_NOMEM -3807 The memory became insufficient.

dc_ist_write - Output an internode shared table record

171

DCISTER_PARAM_KEYNO -3809 The value specified for keyno is less than 1.

DCISTER_PARAM_FLAGS -3811 The value specified for flags is invalid.

DCISTER_BUFOV -3841 The output buffer length is greater than the total length
of records to be output.

Return value Return value
(numeric)

Explanation

User journal acquisition (dc_jnl_~)

172

User journal acquisition (dc_jnl_~)

This section gives the syntax and other information of the following function which is
used for acquiring user journals:

• dc_jnl_ujput - Acquire a user journal

The function for user journal acquisition (dc_jnl_~) can be used only in UAPs of
TP1/Server Base. They cannot be used in UAPs of TP1/LiNK.

dc_jnl_ujput - Acquire a user journal

173

dc_jnl_ujput - Acquire a user journal

Format
ANSI C, C++

K&R C

Description
The function dc_jnl_ujput() acquires a user journal (UJ), which is UAP historical
information, into the system journal file (system_jnl_file). The unit of UJ
acquired by calling the function dc_jnl_ujput() once is called an UJ record.

A user journal is not output to the system journal file immediately after the function
dc_jnl_ujput() is called. The UJ record is output to the system journal file when
the journal buffer becomes full or when the synchronization point at which the
transaction processing terminated normally is acquired.

The function dc_jnl_ujput() can be called after the function dc_rpc_open() has
been called and before the function dc_rpc_close() is called. Even if an error
occurs in the transaction processing that called the function dc_jnl_ujput(), the UJ
record that has already been output cannot be invalidated through rollback processing
(partial recovery). Even when rollback processing is executed for the transaction
processing that called the function dc_jnl_ujput(), the UJ record is output to the
system journal file.

Arguments whose values are set in the UAP
data

Specify the UAP historical information to be acquired. Data valid as UAP historical
information must be as long as specified for dsize.

dsize

Specify the length of the UAP historical information to be acquired. The specified
length must be in the range from 1 to (the value specified for the jnl_max_datasize

#include <dcjnl.h>
int dc_jnl_ujput (char *data, DCULONG dsize,
 DCLONG ujcode, DCLONG flags)

#include <dcjnl.h>
int dc_jnl_ujput (data, dsize, ujcode, flags)
char *data;
DCULONG dsize;
DCLONG ujcode;
DCLONG flags;

dc_jnl_ujput - Acquire a user journal

174

operand of the system journal file service definition at the acquisition destination - 8).

ujcode

Specify the UJ code as a value from 0 to 255.

flags

Using one of the following values, specify whether to output the UJ record to the
system journal file at acquisition of the UJ record.

DCJNL_FLUSH

Output the UJ record to the system journal file at acquisition of the UJ record. If
the UJ record is acquired inside the transaction, this setting is ignored.

DCNOFLAGS

Do not output the UJ record to the system journal file at acquisition of the UJ
record.

Return values

Note
A UJ record that is outside the transaction is output to the system journal file when the
journal buffer becomes full or when a transaction of another application terminates
normally (when the transaction processing is committed). To acquire the UJ record
using an application that does not generate transactions, call the function
dc_jnl_ujput() in which DCJNL_FLUSH is set for flags at the appropriate timing.

Return value Return value
(numeric)

Explanation

DC_OK 0 Normal termination.

DCJNLER_PARAM -1101 The parameter format is invalid.

DCJNLER_SHORT -1102 The value specified for the length of user journal
(dsize value) is 0 or less.

DCJNLER_LONG -1103 The value specified for the length of user journal
(dsize value) exceeds the limit.

DCJNLER_PROTO -1105 The dc_rpc_open() function has not been called. Or,
the dc_jnl_ujput() function cannot be used because
the execution environment of the applicable system is
in journal fileless mode.

Lock for resources (dc_lck_~)

175

Lock for resources (dc_lck_~)

This section gives the syntax and other information of the following functions which
are used for locking arbitrary user files:

• dc_lck_get - Enable locking of a resource

• dc_lck_release_all - Release all the resources from lock

• dc_lck_release_byname - Release resource from lock specified by name

The functions for lock for resources (dc_lck_~) can be used only in UAPs of TP1/
Server Base. They cannot be used in UAPs of TP1/LiNK.

dc_lck_get - Enable locking of a resource

176

dc_lck_get - Enable locking of a resource

Format
ANSI C, C++

K&R C

Description
The function dc_lck_get() specifies lock for resources to be used by UAPs. Lock
is managed in global transactions which are managed by the OpenTP1 transaction
manager.

The lock specified by the function dc_lck_get() is released by lock release function
(dc_lck_release_all() or dc_lck_release_byname()). The lock is also
released when the synchronization point of the global transaction that called the
function dc_lck_get() is acquired.

Arguments whose values are set in the UAP
name

Specify the name of the resource for which lock is to be specified. The name can be
specified with up to 16-byte alphanumeric characters. The OpenTP1 lock service
manages the lock on the basis of the specified resource name. If a value less than 16
bytes is specified and a null character appears, the value before the null character is
regarded as the resource name. If a value exceeding 16 bytes is specified, the value up
to 16 bytes is regarded as the resource name. The excess bytes are truncated.

The lock service does not check the contents of the character string. Specify a logically
correct name. If a value other than alphanumeric characters is used for a resource
name, the deadlock information, the timeout information, and the lckls command
might not be displayed normally.

lockmode

Specify a lock mode. The lock mode must be DCLCK_PR or DCLCK_EX. They cannot

#include <dclck.h>
int dc_lck_get (char *name, DCLONG lockmode,
 DCLONG ownerflag, DCLONG flags)

#include <dclck.h>
int dc_lck_get (name, lockmode, ownerflag, flags)
char *name;
DCLONG lockmode;
DCLONG ownerflag;
DCLONG flags;

dc_lck_get - Enable locking of a resource

177

be specified at the same time.

DCLCK_PR

The resource is referenced. Other UAPs are permitted to reference the resource
but are not permitted to update it.

DCLCK_EX

The resource is updated. Other UAPs are not permitted to reference or update the
resource.

ownerflag

Specify DCLCK_OWNER_MIGRATE.

flags

Specify a flag concerning lock for the resource. The following values can be specified:

DCLCK_WAIT

If a UAP competes for the resource with another UAP, the UAP waits until the
resource is released. If this flag is not set when UAPs compete for the resource,
an error is returned.

DCLCK_TEST

Specify this flag to check whether the resource can be used. Note the following
even if the function dc_lck_get() terminates normally when this flag is set:

Lock is not enabled for the resource specified for name.

DCNOFLAGS

No flag is set.

Return values
Return value Return value

(numeric)
Explanation

DC_OK 0 Normal termination.

DCLCKER_PARAM -401 The value specified for the argument is invalid.

DCLCKER_WAIT -450 Another UAP is using the resource specified for name.

DCLCKER_DLOCK -452 A deadlock occurred.

DCLCKER_TIMOUT -453 The resource could not be acquired because a timeout
occurred (the wait time specified in the OpenTP1 lock
service definition was exceeded).

DCLCKER_MEMORY -454 The table for lock is insufficient.

dc_lck_get - Enable locking of a resource

178

DCLCKER_OUTOFTRN -455 The specification was made by a UAP which was not
operating as a transaction.

DCLCKER_VERSION -457 The OpenTP1 library version does not match the lock
service version.

Return value Return value
(numeric)

Explanation

dc_lck_release_all - Release all the resources from lock

179

dc_lck_release_all - Release all the resources from lock

Format
ANSI C, C++

K&R C

Description
The function dc_lck_release_all() releases all the resources from lock which
was specified in the function dc_lck_get(). Call the function
dc_lck_release_all() when releasing the resources from lock before the
synchronization point is acquired.

When the global transaction with lock specified terminates, the OpenTP1 lock service
automatically releases the resources from lock. In this case, there is no need to specify
release from lock in the UAP.

Arguments whose values are set in the UAP
ownerflag

Specify DCLCK_OWNER_MIGRATE.

flags

Specify DCNOFLAGS.

Return values

#include <dclck.h>
int dc_lck_release_all (DCLONG ownerflag, DCLONG flags)

#include <dclck.h>
int dc_lck_release_all (ownerflag, flags)
DCLONG ownerflag;
DCLONG flags;

Return value Return value
(numeric)

Explanation

DC_OK 0 Normal termination.

DCLCKER_PARAM -401 The value specified for the argument is invalid.

DCLCKER_NOTHING -456 The resource was not acquired for the transaction that
called this function.

DCLCKER_OUTOFTRN -455 The function was called from a UAP which was not
operating as a transaction.

dc_lck_release_all - Release all the resources from lock

180

DCLCKER_VERSION -457 The OpenTP1 library version does not match the lock
service version.

Return value Return value
(numeric)

Explanation

dc_lck_release_byname - Release resource from lock specified by name

181

dc_lck_release_byname - Release resource from lock specified by
name

Format
ANSI C, C++

K&R C

Description
The function dc_lck_release_byname() specifies the name of a resource for
which the function dc_lck_get() specified lock, and releases the resource from the
lock. Call the function dc_lck_release_byname() when releasing the resource
from lock before the synchronization point is acquired.

When the global transaction with lock specified terminates, the OpenTP1 lock service
automatically releases the resource from lock. In this case, there is no need to specify
release from lock in the UAP.

Arguments whose values are set in the UAP
name

Specify the name of the resource to be released from lock. The resource name must be
identical to the name specified in the function dc_lck_get().

ownerflag

Specify DCLCK_OWNER_MIGRATE.

flags

Specify DCNOFLAGS.

#include <dclck.h>
int dc_lck_release_byname (char *name, DCLONG ownerflag,
 DCLONG flags)

#include <dclck.h>
int dc_lck_release_byname (name, ownerflag, flags)
char *name;
DCLONG ownerflag;
DCLONG flags;

dc_lck_release_byname - Release resource from lock specified by name

182

Return values
Return value Return value

(numeric)
Explanation

DC_OK 0 Normal termination.

DCLCKER_PARAM -401 The value specified for the argument is invalid.

DCLCKER_NOTHING -456 The resource that corresponds to the resource name
specified for release from lock does not exist.

DCLCKER_OUTOFTRN -455 The function was called from a UAP which was not
operating as a transaction.

DCLCKER_VERSION -457 The OpenTP1 library version does not match the lock
service version.

Audit log output (dc_log_audit_~)

183

Audit log output (dc_log_audit_~)

This section gives the syntax and other information of the following functions which
are used to output audit log data from a UAP:

• dc_log_audit_print - Output audit log data

dc_log_audit_print - output audit log data

184

dc_log_audit_print - output audit log data

Format
ANSI C, C++

K&R C

Description
The function dc_log_audit_print() outputs to the audit log file the following
information items, in addition to the information specified as arguments: header
information, serial number, date and time, relevant program name, relevant process ID,
location, subject identification information, object information, object location
information, request sender host, and location identification information. The relevant
program means the program that generated the audit log data, which is OpenTP1. If an
error occurs during output of audit log data, an error message is sent to the standard
error output and syslog.

In OpenTP1, numbers from 34000 to 34999 are assigned for message IDs used by the
function dc_log_audit_print(). If you create a UAP, make sure that the message
IDs output by the UAP are in the range from 34000 to 34999.

For details on the items output as audit log data, see the OpenTP1 Programming
Guide.

Arguments whose values are set in the UAP
msgid

Specify an identifier uniquely assigned to each audit log entry (message ID) in the
format KFCAnnnnn-x (11 characters) and follow the identifier with a null character.
For nnnnn, specify a five-digit serial number in the range from 34000 to 34999. For x,
specify E, W, or I as the message type according to the type of information provided by
the audit log entry to be output.

#include <dclog.h>
int dc_log_audit_print(char *msgid,char *compid,DCLONG ctgry,
 DCLONG result,DCLONG op,char *msg,DCLONG flags)

#include <dclog.h>
int dc_log_audit_print(msgid,compid,ctgry,result,op,msg,flags)
char *msgid;
char *compid;
DCLONG ctgry;
DCLONG result;
DCLONG op;
char *msg;
DCLONG flags;

dc_log_audit_print - output audit log data

185

compid

Specify any value that identifies the UAP that called the function
dc_log_audit_print() (calling program ID). The value you set must be two
numeric characters, alphabetic characters, or symbols followed by a null character. In
the audit log, the format is *AA, with an asterisk (*) prefixed (AA: character string
specified in compid).

ctgry

Specify one of the following values as the audit event type:

DCLOG_CTG_STARTSTOP: Audit event related to a start or stop operation

DCLOG_CTG_AUTH: Audit event related to identification or authentication

DCLOG_CTG_ACCESS: Audit event related to access control

DCLOG_CTG_CONFIG: Audit event related to the configuration definition

DCLOG_CTG_FAIL: Audit event related to failures

DCLOG_CTG_LINK: Audit event related to the linkage status

DCLOG_CTG_EXTERNAL: Audit event related to external services

DCLOG_CTG_CONTENT: Audit event related to access to important information

DCLOG_CTG_MAINTAIN: Audit event related to maintenance

DCLOG_CTG_ANORMALY: Audit event related to anomalies

DCLOG_CTG_MANAGE: Audit event related to management operation

For details on audit event types, see the manual OpenTP1 Operation.

result

Set one of the following values as the audit event result to be included in the audit log
data:

DCLOG_RES_SUCCESS: Successful event

DCLOG_RES_FAIL: Failed event

DCLOG_RES_OCCUR: Event that cannot be categorized as success or failure

op

Specify the value to be included as operation information in the audit log data. Make
sure that you specify one of the following reserved words according to the audit event
type specified by ctgry. If you specify NULL, this item will not be included in the
audit log data.

dc_log_audit_print - output audit log data

186

Table 2-1: Correspondence between audit event types and reserved words

Audit event type Reserved word Meaning

DCLOG_CTG_STARTSTOP

(start or stop operation)
DCLOG_OP_START Start or activation

DCLOG_OP_STOP Termination or stop

DCLOG_CTG_AUTH

(identification or authentication)
DCLOG_OP_LOGIN Login

DCLOG_OP_LOGOUT Logout

DCLOG_OP_LOGON Logon

DCLOG_OP_LOGOFF Logoff

DCLOG_OP_DISABLE Account disabled

DCLOG_CTG_ACCESS

(access control)
DCLOG_OP_ENFORCE Enforcement

DCLOG_CTG_CONFIG

(configuration definition)
DCLOG_OP_REFER Reference

DCLOG_OP_ADD Addition

DCLOG_OP_UPDATE Updating

DCLOG_OP_DELETE Deletion

DCLOG_CTG_FAIL (failures) DCLOG_OP_OCCUR Occurrence

DCLOG_CTG_LINK

(linkage status)
DCLOG_OP_UP Linkage active

DCLOG_OP_DOWN Linkage inactive

DCLOG_CTG_EXTERNAL

(external services)
DCLOG_OP_REQ Request

DCLOG_OP_RES Response

DCLOG_OP_SEND Sending

DCLOG_OP_RECV Receiving

DCLOG_CTG_CONTENT

(access to important information)
DCLOG_OP_REFER Reference

DCLOG_OP_ADD Addition

DCLOG_OP_UPDATE Updating

DCLOG_OP_DELETE Deletion

dc_log_audit_print - output audit log data

187

msg

Specify the address of the area that contains the freely specified description to be
included in the audit log data. If you specify NULL, this item will not be included in
the audit log data.

You can use numeric characters, alphabetic characters, symbols, spaces, double
quotation marks ("), and commas (,). The description can have a maximum of 1024
characters, and must be followed by a null character. The null terminator character is
not included in the number of characters in the description.

In the log, the specified description is enclosed in double quotation marks ("). If a
double quotation mark (") is included in the description, the double quotation mark is
prefixed by another double quotation mark.

flags

Specify DCNOFLAGS.

DCLOG_CTG_MAINTAIN

(maintenance)
DCLOG_OP_INSTALL Installation

DCLOG_OP_UNINSTALL Uninstallation

DCLOG_OP_UPDATE Updating

DCLOG_OP_BACKUP Backup

DCLOG_OP_MAINTAIN Maintenance work

DCLOG_CTG_ANORMALY

(anomalies)
DCLOG_OP_OCCUR Occurrence

DCLOG_CTG_MANAGE

(management operation)
DCLOG_OP_INVOKE Invocation (the administrator)

DCLOG_OP_NOTIFY Notification (the administrator)

Audit event type Reserved word Meaning

dc_log_audit_print - output audit log data

188

Return value
Return value Return value

(numeric)
Explanation

DCLOG_AUDIT_OFF 1 Output of audit log data has been disabled. Possible
causes are as follows:
• The log_audit_out operand in the log service

definition has been set to N or has not been
specified.

• The log_audit_suppress operand has been set
to Y in the log service definition.

The message ID specified in the msgid argument has
not been specified in the log_audit_message
operand in the log service definition.

An invalid message has been specified.

DC_OK 0 The function terminated normally.

DCLOGER_PARAM_ARGS -1900 The value specified as an argument is incorrect.

DCLOGER_DEFFILE -1904 Definition analysis failed.

DCLOGER_PROTO -1999 The dc_rpc_open function was not issued.

DCLOGER_FATAL -1997 An error other than the above occurred.

Output message log (dc_log~)

189

Output message log (dc_log~)

This section gives the syntax and other information of the following function which is
used for outputting message log from the UAP:

• dc_logprint - Output message log

The function for output message log (dc_log_~) can be used in UAPs of both TP1/
Server Base and TP1/LiNK.

dc_logprint - Output message log

190

dc_logprint - Output message log

Format
ANSI C, C++

K&R C

Description
The function dc_logprint() outputs a character string specified for an argument to
the message log file. Before the output, the function dc_logprint() adds the
following information to the character string through OpenTP1:

• Line header

• OpenTP1 ID

• Date and time

• Request source node name

• Request source program ID

• Message ID

OpenTP1 assigns a number from 05000 to 06999 to a message ID used in the function
dc_logprint(). Assign a number from 05000 to 06999 to a message ID output from
a UAP.

Even if an error occurs, DC_OK might be returned. Consequently, a message log might
be missing. The missing message log can be identified by checking the message log
serial numbers.

If the function dc_logprint() is called more than once from one process, the
sequence of output to the message log file is ensured. However, if the function
dc_logprint() is called from each of multiple processes, the message logs might

#include <dclog.h>
int dc_logprint (char *msgid, char *pgm_id, char *string,
 char *info, DCLONG color, DCLONG flags)

#include <dclog.h>
int dc_logprint (msgid, pgm_id, string, info, color,
 flags)
char *msgid;
char *pgm_id;
char *string;
char *info;
DCLONG color;
DCLONG flags;

dc_logprint - Output message log

191

not be output to the message log file in the issue sequence.

If a communication error (DCLOGER_COMM) or a log service inactive error
(DCLOGER_NOT_UP) occurs, the message issued from the UAP is edited in the UAP
process and is output to the standard error output file. Either of the following codes
which indicate the causes of errors is added to the end of the message:

• E1

Indicates that the message log could not be output to the message log file because
the log service was not activated.

• E2

Indicates that the message log could not be output to the message log file due to
a communication error.

Examples

If an error other than E1 or E2 is detected, OpenTP1 assigns the message ID number
specified in the function dc_logprint() to a message log indicating the error cause.
Then, it provides the log to the standard error.

Arguments whose values are set in the UAP
msgid

Specify the message ID to be assigned to each message log. The message ID must be
in the KFCAn1n2n3n4n5-x format (11 characters) and end with a null character.
Specify a value from 05000 to 06999 for the serial number (n1n2n3n4n5) output from
the UAP.

pgm_id

Specify a user-selected value (request source program ID) for identifying the UAP that
called the function dc_logprint(). The value must comprise two alphanumeric
characters and end with a null character.

string

Specify a character string to be output as a message log to the message log file. The
character string can be specified with up to 222 characters. The character string must
end with a null character.

info

Specify NULL.

KFCA05201-I SPP1: A service request was received. (E1)
KFCA05410-I SPP1: Updating starts. (E2)

dc_logprint - Output message log

192

color

Specify the display color of the message log specified in the function dc_logprint
() when the message log is output to the NETM operation support terminal. The
following colors are available:

1: Green

2: Red

3: White

4: Blue

5: Purple

6: Sky blue

7: Yellow

If a value other than the above or a null character is specified, green is assumed to be
specified.

flags

Specify DCNOFLAGS.

Return values

Note
When a large log is output, return of the function dc_logprint may be delayed. For
example, when the volume of output messages greatly increases due to the occurrence
of an error, the transaction processing time increases. Note that this may cause a
slowdown.

Return value Return value
(numeric)

Explanation

DC_OK 0 Normal termination.

DCLOGER_PARAM_ARGS -1900 The value specified for the argument is invalid.

DCLOGER_COMM -1901 A communication error occurred or the function
dc_rpc_open() was not issued.

DCLOGER_MEMORY -1902 The memory became insufficient.

DCLOGER_DEFFILE -1904 The system definition is invalid.

DCLOGER_NOT_UP -1905 The log service is not active.

DCLOGER_HEADER -1906 An error occurred when the log service acquired the
information to be added to the message log.

Message exchange processing (dc_mcf_~)

193

Message exchange processing (dc_mcf_~)

This section gives the syntax and other information of the following functions which
are used for communication in message exchange configuration:

• dc_mcf_adltap: Delete an application timer start request

• dc_mcf_ap_info: Report the application information

• dc_mcf_ap_info_uoc: Report the application information to user exit routines

• dc_mcf_close: Close the MCF environment

• dc_mcf_commit: Commit an MHP

• dc_mcf_contend: Terminate continuous-inquiry-response processing

• dc_mcf_execap: Activate an application program

• dc_mcf_mainloop: Start an MHP service

• dc_mcf_open: Open the MCF environment

• dc_mcf_receive: Receive a message

• dc_mcf_recvsync: Receive a synchronous message#

• dc_mcf_reply: Send a response message#

• dc_mcf_resend: Resend a message#

• dc_mcf_rollback: Enable MHP rollback

• dc_mcf_send: Send a message#

• dc_mcf_sendrecv: Exchange a synchronous message#

• dc_mcf_sendsync: Send a synchronous message#

• dc_mcf_tactcn: Establish a connection#

• dc_mcf_tactle: Release a logical terminal from shutdown status#

• dc_mcf_tdctcn: Release connection#

• dc_mcf_tdctle: Shut down a logical terminal#

• dc_mcf_tdlqle: Delete a logical terminal's output queue

• dc_mcf_tempget: Accept temporary-stored data

• dc_mcf_tempput: Update temporary-stored data

Message exchange processing (dc_mcf_~)

194

• dc_mcf_timer_cancel: Cancel user timer monitoring

• dc_mcf_timer_set: Set user timer monitoring

• dc_mcf_tlscn: Acquire a connection status#

• dc_mcf_tlscom: Acquire the status of MCF communication services

• dc_mcf_tlsle: Acquire a logical terminal status#

• dc_mcf_tlsln: Acquire the acceptance status for a server-type connection
establishment request#

• dc_mcf_tofln: Stop accepting server-type connection establishment requests#

• dc_mcf_tonln: Start accepting server-type connection establishment requests#

#: For details, see the applicable OpenTP1 Protocol manual.

The functions for message exchange processing (dc_mcf_~) can be used only in
UAPs of TP1/Server Base. They cannot be used in UAPs of TP1/LiNK.

dc_mcf_adltap - Delete an application timer start request

195

dc_mcf_adltap - Delete an application timer start request

Format
ANSI C, C++

K&R C

Description
The function dc_mcf_adltap() deletes a specified application timer start request
and cancels startup of the application. Note that this function cannot delete application
timer start requests of the ans and cont types.

Arguments whose values are set in the UAP
action

Specify DCMCFAP to indicate that an application name is to be specified.

apopt

Set in a dcmcf_adltapopt structure the connection information that is to be the
subject of this function's processing.

The following shows the format of the structure:

typedef struct {
 DCLONG mcfid; ...Application start
 process identifier
 char resv01[4]; ...Reserved
 char idnam[9]; ...Application name
 char resv02[7]; ...Reserved
 char resv03[112]; ...Reserved

#include <dcmcf.h>

int dc_mcf_adltap (DCLONG action, dcmcf_adltapopt *apopt,

 char *resv01, DCLONG *resv02,

 char *resv03, char *resv04)

#include <dcmcf.h>

int dc_mcf_adltap (action, apopt, resv01, resv02, resv03, resv04)

DCLONG action;

dcmcf_adltapopt *apopt;

char *resv01;

DCLONG *resv02;

char *resv03;

char *resv04;

dc_mcf_adltap - Delete an application timer start request

196

 char resv04[376]; ...Reserved
 } dcmcf_adltapopt;

• mcfid

Specify the application start process identifier of the application start service that
has the target application that is to be processed. The permitted value range is
from 1 to 239.

• resv01

Fill the area with null characters.

• idnam

Specify the name of the application whose start is to be canceled. The application
name must be specified as a maximum of 8 bytes of characters and must end with
the null character.

• resv02, resv03, resv04

Fill the areas with null characters.

resv01, resv02, resv03, resv04

Specify NULL.

Return values
Return value Return value

(numeric)
Explanation

DCMCFRTN_00000 0 Normal termination.

DCMCFRTN_71001 -12001 The dc_mcf_adltap() function cannot be accepted because the
MCF is under start processing.

DCMCFRTN_71002 -12002 The dc_mcf_adltap() function cannot be accepted because the
MCF is under termination processing.

DCMCFRTN_71004 -12004 A memory shortage occurred during dc_mcf_adltap() function
processing.

DCMCFRTN_71005 -12005 A communication error occurred. For the cause, see the message log
file.

DCMCFRTN_71006 -12006 An internal error occurred. For the cause, see the message log file.

DCMCFRTN_71007 -12007 The specified application name has not been registered.

No timer start request has been issued for the specified application
name.

dc_mcf_adltap - Delete an application timer start request

197

The specified application name belongs to an application whose type
is inquiry-response or continuous-inquiry-response.

DCMCFRTN_71009 -12009 The dc_mcf_adltap() function is not supported by the applicable
application start process.

DCMCFRTN_71010 -12010 Although the request to delete the specified application timer start
request was issued, the request was not accepted. For the cause, see
the message log file.

DCMCFRTN_72050 -13050 DCMCFAP is not specified in action.

An unsupported flag is set in action.

DCMCFRTN_72051 -13051 NULL is set in apopt.

DCMCFRTN_72052 -13052 NULL is not set in resv01.

DCMCFRTN_72053 -13053 NULL is not set in resv02.

DCMCFRTN_72054 -13054 NULL is not set in resv03.

DCMCFRTN_72055 -13055 NULL is not set in resv04.

DCMCFRTN_72061 -13061 A value of 0 or smaller or of 240 or greater is specified for mcfid in
dcmcf_adltapopt.

DCMCFRTN_72062 -13062 resv01 in dcmcf_adltapopt is not filled with null characters.

DCMCFRTN_72063 -13063 idnam in dcmcf_adltapopt begins with the null character.

DCMCFRTN_72064 -13064 resv02 in dcmcf_adltapopt is not filled with null characters.

DCMCFRTN_72065 -13065 resv03 in dcmcf_adltapopt is not filled with null characters.

DCMCFRTN_72067 -13067 resv04 in dcmcf_adltapopt is not filled with null characters.

DCMCFRTN_72073 -13073 The character string set in idnam in dcmcf_adltapopt is 9 bytes
or more in length.

DCMCFRTN_72074 -13074 The character string set in idnam in dcmcf_adltapopt contains an
invalid character.

Return value Return value
(numeric)

Explanation

dc_mcf_ap_info - Report the application information

198

dc_mcf_ap_info - Report the application information

Format
ANSI C, C++

K&R C

Description
The function dc_mcf_ap_info() acquires various types of application information
from an MHP.

This function can be used to report the application information on the MHP that called
the function dc_mcf_ap_info() or the other MHP. The application information
becomes effective only when the function dc_mcf_ap_info() is normally
terminated.

Argument whose values is set in the UAP
flags

Specify one of the following flags according to the type of the application to be
referenced:

DCMCFMYSELF

Specify this flag to acquire the application information on the MHP that called
function dc_mcf_ap_info().

DCMCFOTHER

Specify this flag to acquire the information on a specific application according to
the process identifier for MCF communication service in which the application
definition is included, and application name.

#include <dcmcf.h>
int dc_mcf_ap_info(DCLONG flags, char *mcfid, char *apname,
 struct DC_MCFAPINFO *apinfo,
 char *resv01, DCLONG resv02)

#include <dcmcf.h>
int dc_mcf_ap_info (flags, mcfid, apname, apinfo, resv01,
 resv02)
DCLONG flags;
char *mcfid;
char *apname;
struct DC_MCFAPINFO *apinfo;
char *resv01;
DCLONG resv02;

dc_mcf_ap_info - Report the application information

199

mcfid

• When specifying DCMCFMYSELF for flags

Specify NULL.

• When specifying DCMCFOTHER for flags

Specify a string indicating the MCF communication process identifier or the
application startup process identifier in which the definition of the application to
be referenced is included.

apname

• When specifying DCMCFMYSELF for flags

Specify NULL.

• When specifying DCMCFOTHER for flags

Specify the name of the application to be referenced.

When specifying an error event name (ERREVT1, ERREVT2, ERREVT3, or
ERREVT4), the default value of the application definition, the no-response type
DCMCF_NOANS is set in mcf_ap_type.

apinfo

Specify the address of the area DC_MCFAPINFO which receives the application
information.

resv01

Specify NULL.

resv02

Specify DCNOFLAGS.

Arguments whose values are returned from OpenTP1
apinfo

The application information is returned with the structure DC_MCFAPINFO.

The structure has the following format:

dc_mcf_ap_info - Report the application information

200

• mcf_apinfo

This area is used by the MCF.

• mcf_resv00

This area is used by the MCF.

• mcf_ap_name

The name of the application whose information is to be reported is returned.

• mcf_ap_mcfid

The process identifier for MCF communication service that includes the
definition of the application whose information is to be reported is returned.

• mcf_resv01

This area is used by the MCF.

• mcf_ap_stat

The shutdown or release shutdown status of the application is returned with one
of the following flags:

DCMCF_IN_DACT: Input shutdown status

DCMCF_SC_DACT: Schedule shutdown status

DCMCF_DACTSTAT: Input and schedule shutdown status

DCMCF_ACTSTAT: Release shutdown status

• mcf_ap_type

struct DC_MCFAPINFO {
 char mcf_apinfo[4];
 DCLONG mcf_resv00;
 char mcf_ap_name[9];
 char mcf_ap_mcfid[3];
 char mcf_resv01[4];
 DCLONG mcf_ap_stat;
 DCLONG mcf_ap_type;
 char mcf_sg_name[32];
 DCLONG mcf_sg_stat;
 DCLONG mcf_sg_hold;
 char mcf_sv_name[32];
 DCLONG mcf_sv_stat;
 DCLONG mcf_ap_ntmetim;
 DCLONG mcf_ap_tempsize;
 DCLONG mcf_ap_msgcnt;
 DCLONG mcf_ap_trnmode;
 DCLONG mcf_ap_quekind;
 char mcf_resv02[72];
 }

dc_mcf_ap_info - Report the application information

201

The type of the application is returned with one of the following flags:

(The type specified in the type operand of the -n option in the MCF application
definition mcfaalcap is set here.)

DCMCF_ANS: Response type

DCMCF_NOANS: Non-response type

DCMCF_CONT: Continuous-inquiry-response type

When specifying DCMCFOTHER for flags and specifying an error event name
(ERREVT1, ERREVT2, ERREVT3, or ERREVT4) for apname, the actual type is not
reported. In this case, the default value of the application definition, no-response
type (DCMCF_NOANS) is set here.

• mcf_sg_name

The name of the service group corresponding to the application is returned.

• mcf_sg_stat

The shutdown or release shutdown status of the service group is returned with one
of the following flags:

Input shutdown status: DCMCF_IN_DACT

Schedule shutdown status: DCMCF_SC_DACT

Input and schedule shutdown status: DCMCF_DACTSTAT

Release shutdown status: DCMCF_ACTSTAT

• mcf_sg_hold

The holding or release holding status of the service group is returned with one of
the following flags:

Input holding status: DCMCF_IN_HOLD

Schedule holding status: DCMCF_SC_HOLD

Input and schedule holding status: DCMCF_HOLDSTAT

Release holding status: DCMCF_RLSSTAT

• mcf_sv_name

The name of the service corresponding to the application is returned.

• mcf_sv_stat

The shutdown or release shutdown status of the service is returned with one of the
following flags:

Input shutdown status: DCMCF_IN_DACT

dc_mcf_ap_info - Report the application information

202

Schedule shutdown status: DCMCF_SC_DACT

Input and schedule shutdown status: DCMCF_DACTSTA

Release shutdown status: DCMCF_ACTSTAT

• mcf_ap_ntmetim

The limit elapsed time for the non-transaction attribute MHP is returned.

When mcf_ap_trnmode is DCMCF_TRN, 0 is set here.

(The value specified in the ntmetim operand of the -v option in the MCF
application definition mcfaalcap is set here. If the MCF application definition
is omitted, the value specified in the ntmetim operand of the -v option in the MCF
manager definition mcfmuap is used.)

• mcf_ap_tempsize

The size of the temporary-stored data storage area for the continuous-inquiry
response is returned.

When mcf_ap_type is not DCMCF_CONT, 0 is set here.

(The value specified in the tempsize operand of the -n option in the MCF
application definition mcfaalcap is set here.)

• mcf_ap_msgcnt

The maximum number of input messages that can be stored is returned.

(The value specified in the msgcnt operand of the -n option in the MCF
application definition mcfaalcap is set here.)

• mcf_ap_trnmode

The transaction attribute of the application is returned with the flag as follows.

(The value specified in the trnmode operand of the -n option in the MCF
application definition mcfaalcap is set here.)

Managed as a transaction: DCMCF_TRN

Not managed as a transaction: DCMCF_NONTRN

• mcf_ap_quekind

The queue to which the received message is assigned is returned with the flag as
follows.

(The value specified in the quekind operand of the -g option in the MCF
application definition mcfaalcap is set here.)

When the message is assigned to the disk queue: DCMCF_DISK

When the message is assigned to the memory queue: DCMCF_MEMORY

dc_mcf_ap_info - Report the application information

203

• mcf_resv02

This area is used by the MCF.

Return values

Note
When two or more MHPs for ERREVT1, ERREVT2, ERREVT3, or ERREVT4 are started
at the same time, the MHPs for the same error event name may have a different
application type. For the MHPs other than the MHP that called function
dc_mcf_ap_info(), the application type for the error event (ERREVT1, ERREVT2,
ERREVT3, or ERREVT4) is not reported. In this case, the default value of the MCF
application definition, no-response type is reported.

Return value Return value
(numeric)

Explanation

DCMCFRTN_00000 0 Normal termination.

DCMCFRTN_72000 -13000 The function dc_mcf_ap_info() was called from a
service other than the MHP service.

DCMCFRTN_72001 -13001 The specified application name is invalid.
Combination of the application name and process
identifier is invalid.

DCMCFRTN_72016 -13016 The value specified in a parameter is invalid.

Other than the above occurred. An unprecedented error (e.g., program damage)

dc_mcf_ap_info_uoc - Report the application information to user exit routines

204

dc_mcf_ap_info_uoc - Report the application information to user
exit routines

Format
ANSI, C++

K&R C

Description
The function dc_mcf_ap_info_uoc() returns information about the application
specified by the argument apname (application information) to the struct
DC_MCFAPINFO_UOC data area specified by the argument apinfo. This application
information includes application definitions (application attribute definitions) and
application status (status when the function dc_mcf_ap_info_uoc() is called). The
application information becomes effective only when the function
dc_mcf_ap_info_uoc() is normally terminated.

This function can only be used to report application information about user
applications that can be activated from the communication service on which the user
exit routine is running. Furthermore, it does not report the application information
about SPPs (application definition mcfaalcap -g type=SPP) or system events
(application definition mcfaalcap -n kind=mcf).

If a user application that cannot be activated from the communication service on which
the user exit routine is running, an SPP, or a system event is specified, it is interpreted
as invalid and the function returns with an error, and the return value
DCMCFRTN_72001 is reported.

This function can be used only from user exit routines that edit input messages (user
exit routines that determine application names). It cannot be used from user exit
routines other than the above. If you attempt to use it from any other user exit routines,
system operation is unpredictable.

#include<dcmcf.h>
int dc_mcf_ap_info_uoc(DCLONG flags, char *apname,
 struct DC_MCFAPINFO_UOC *apinfo)

#include<dcmcf.h>
int dc_mcf_ap_info_uoc(flags, apname, apinfo)
DCLONG flags;
char *apname;
struct DC_MCFAPINFO_UOC *apinfo;

dc_mcf_ap_info_uoc - Report the application information to user exit routines

205

Arguments whose values are set in the UAP
flags

Specify DCNOFLAGS.

apname

Specify the name of the application about which you want to acquire the application
information.

apinfo

Specify the address of the area DC_MCFAPINFO_UOC that receives the application
information.

Arguments whose values are returned from OpenTP1
apinfo

The application information is returned with the structure DC_MCFAPINFO.

The structure has the following format:

• mcf_apinfo

This area is used by the MCF.

• mcf_resv00

This area is used by the MCF.

• mcf_ap_name

 struct DC_MCFAPINFO_UOC {
 char mcf_apinfo[4];
 DCLONG mcf_resv00;
 char mcf_ap_name[9];
 char mcf_ap_mcfid[3];
 char mcf_resv01[4];
 DCLONG mcf_ap_stat;
 DCLONG mcf_ap_type;
 DCLONG mcf_ap_msgcnt;
 char mcf_sg_name[32];
 DCLONG mcf_sg_stat;
 DCLONG mcf_sg_hold;
 DCLONG mcf_sg_msgcnt;
 char mcf_sv_name[32];
 DCLONG mcf_sv_stat;
 DCLONG mcf_ap_ntmetim;
 DCLONG mcf_ap_tempsize;
 DCLONG mcf_ap_max_msgcnt;
 DCLONG mcf_ap_trnmode;
 DCLONG mcf_ap_quekind;
 char mcf_resv02[64];
 };

dc_mcf_ap_info_uoc - Report the application information to user exit routines

206

The name of the application whose information is to be reported is returned.

• mcf_ap_mcfid

The process identifier for MCF communication service that includes the
definition of the application whose information is to be reported is returned.

• mcf_resv01

This area is used by the MCF.

• mcf_ap_stat

The shutdown or release shutdown status of the application is returned with one
of the following flags:

Input shutdown status: DCMCF_IN_DACT

Schedule shutdown status: DCMCF_SC_DACT

Input and schedule shutdown status: DCMCF_DACTSTAT

Release shutdown status: DCMCF_ACTSTAT

• mcf_ap_type

The type of the application is returned with one of the following flags:

Response type: DCMCF_ANS

Non-response type: DCMCF_NOANS

Continuous-inquiry-response type: DCMCF_CONT

(The type specified in the type operand of the -n option in the MCF application
definition mcfaalcap is set here.)

When specifying DCMCFOTHER for flags and specifying an error event name
(ERREVT1, ERREVT2, ERREVT3, or ERREVT4) for apname, the actual type is not
reported. In this case, the default value of the application definition, no-response
type (DCMCF_NOANS) is set here.

• mcf_ap_msgcnt

The number of remaining input messages in this application is returned.

• mcf_sg_name

The name of the service group corresponding to the application is returned.

• mcf_sg_stat

The shutdown or release shutdown status of the service group is returned with one
of the following flags:

Input shutdown status: DCMCF_IN_DACT

dc_mcf_ap_info_uoc - Report the application information to user exit routines

207

Schedule shutdown status: DCMCF_SC_DACT

Input and schedule shutdown status: DCMCF_DACTSTAT

Release shutdown status: DCMCF_ACTSTAT

• mcf_sg_hold

The holding or release holding status of the service group is returned with one of
the following flags:

Input holding status: DCMCF_IN_HOLD

Schedule holding status: DCMCF_SC_HOLD

Input and schedule holding status: DCMCF_HOLDSTAT

Release holding status: DCMCF_RLSSTAT

• mcf_sg_msgcnt

The number of remaining input messages in this service group is returned.

• mcf_sv_name

The name of the service corresponding to the application is returned.

• mcf_sv_stat

The shutdown or release shutdown status of the service is returned with one of the
following flags:

Input shutdown status: DCMCF_IN_DACT

Schedule shutdown status: DCMCF_SC_DACT

Input and schedule shutdown status: DCMCF_DACTSTAT

Release shutdown status: DCMCF_ACTSTAT

• mcf_ap_ntmetim

The limit of time that can be elapsed for the non-transaction attribute MHP is
returned. When mcf_ap_trnmode is DCMCF_TRN, 0 is set here.

(The value specified in the ntmetim operand of the -v option in the MCF
application definition mcfaalcap is set here. If the MCF application definition
is omitted, the value specified in the ntmetim operand of the -v option in the
MCF manager definition mcfmuap is used.)

• mcf_ap_tempsize

The size of the temporary-stored data storage area for the continuous-inquiry
response is returned.

When mcf_ap_type is not DCMCF_CONT, 0 is set here.

dc_mcf_ap_info_uoc - Report the application information to user exit routines

208

(The value specified in the tempsize operand of the -n option in the MCF
application definition mcfaalcap is set here.)

• mcf_ap_max_msgcnt

The maximum number of input messages that can be stored is returned. (The
value specified in the msgcnt operand of the -n option in the MCF application
definition mcfaalcap is set here.)

• mcf_ap_trnmode

The transaction attribute of the application is returned with one of the following
flags:

Managed as a transaction: DCMCF_TRN

Not managed as a transaction: DCMCF_NONTRN

(The value specified in the trnmode operand of the -n option in the MCF
application definition mcfaalcap is set here.)

• mcf_ap_quekind

The queue to which the received message is assigned is returned with one of the
following flags:

When the message is assigned to the disk queue: DCMCF_DISK

When the message is assigned to the memory queue: DCMCF_MEMORY

(The value specified in the quekind operand of the -g option in the MCF
application definition mcfaalcap is set here.)

• mcf_resv02

This area is used by the MCF.

Return values
Return value Return value

(numeric)
Explanation

DCMCFRTN_00000 0 Normal termination.

DCMCFRTN_72000 -13000 The function dc_mcf_ap_info_uoc() was called
from a service other than the MHP service.

DCMCFRTN_72001 -13001 The specified application name is invalid.
No information about the specified application could be
acquired.

DCMCFRTN_72016 -13016 The value specified in a parameter is invalid.

Other than the above An unprecedented error (e.g., program damage)
occurred.

dc_mcf_ap_info_uoc - Report the application information to user exit routines

209

Note
1. The function dc_mcf_ap_info_uoc() can only be used from user exit routines

that edit input messages (user exit routines that determine application names),
even though no check is performed if this function is called from user exit routines
other than the above. If you attempt to use it from any other user exit routines,
system operation is unpredictable. For details about user exit routines, see the
applicable OpenTP1 Protocol manual.

2. This function can only be used to acquire application information about user
applications that can be activated from the communication service on which the
user exit routine is running. Furthermore, it does not report application
information about SPPs (MCF application definition mcfaalcap -g type=SPP)
or system events (MCF application definition mcfaalcap -n kind=mcf).

3. No UAP trace can be acquired.

dc_mcf_close - Close the MCF environment

210

dc_mcf_close - Close the MCF environment

Format
ANSI C, C++

K&R C

Description
The function dc_mcf_close() closes the environment in which MCF facilities are
used. Call the function dc_mcf_close() only once in the process before the UAP
that called the function dc_mcf_open() calls the function dc_rpc_close() in the
main function.

Argument whose value is set in the UAP
flags

Specify DCNOFLAGS.

Return value
There is no return value of the function dc_mcf_close().

#include <dcmcf.h>
void dc_mcf_close(DCLONG flags)

#include <dcmcf.h>
void dc_mcf_close (flags)
DCLONG flags;

dc_mcf_commit - Commit an MHP

211

dc_mcf_commit - Commit an MHP

Format
ANSI C, C++

K&R C

Description
The function dc_mcf_commit() notifies the UAP at the transaction branch as a root
transaction branch making up the transaction, the transaction service, and the resource
manager that the global transaction initiated by the MHP has terminated processing
normally (the global transaction has been committed).

When the function dc_mcf_commit() terminates normally, a new global transaction
is generated.

If a global transaction consists of multiple transaction branches [it involves programs
other than the MHP which called the function dc_mcf_commit()], the entire global
transaction will not be committed until each transaction branch is committed. If the
global transaction is composed of multiple resource managers, it will not be committed
until the results of each resource manager's processing are committed. If the global
transaction is not committed, all the transaction branches are rolled back and the
function returns with an error, giving the return value DCMCFRTN_ROLLBACK.

The function dc_mcf_commit() can be called only by an MHP specified as
nonresponse-type (type=noans) in the MCF application definition. If it is called by
an MHP of another type, it returns with an error, giving the return value
DCMCFRTN_72000. If it is called by a UAP other than an MHP, it also returns with an
error, giving the return value DCMCFRTN_72000.

Arguments whose value is set in the UAP
action

Specify DCNOFLAGS.

#include <dcmcf.h>
int dc_mcf_commit(DCLONG action)

#include <dcmcf.h>
int dc_mcf_commit (action)
DCLONG action;

dc_mcf_commit - Commit an MHP

212

Return values
Return value Return value

(numeric)
Explanation

DCMCFRTN_00000 0 Normal termination. If this return value returns, the
process which called the function dc_mcf_commit()
has started a new transaction.

DCMCFRTN_ROLLBACK -11906 The transaction was not committed, but was rolled
back. If this return value returns, the process which
called the function dc_mcf_commit() has started a
new transaction.

DCMCFRTN_HEURISTIC -11907 The global transaction which called the function
dc_mcf_commit() was subjected to a heuristic
decision which brought about the following: Some
transaction branches were committed, whereas other
transaction branches were rolled back. If this return
value returns, the process which called the function
dc_mcf_commit() has started a new transaction.

DCMCFRTN_HAZARD -11908 The transaction branch of the global transaction was
completed heuristically. However, the synchronization
point of the heuristically completed transaction branch
cannot be identified. If this return value returns, the
process which called the function dc_mcf_commit()
has started a new transaction.
This function returns DCMCFRTN_HAZARD even when
you specify 00000001 for the
trn_extend_function operand in the transaction
service definition and the return value from the
resource manager at one-phase commit is XAER_NOTA.

DCMCFRTN_72000 -13000 If the function returns at MHP execution:
The function dc_mcf_commit() was called at a
wrong position. The MHP called the function
dc_mcf_commit() before the function
dc_mcf_receive() for receiving the first
segment.
The function dc_mcf_commit() was called by an
MHP which is not specified as nonresponse-type
(type=noans) in the MCF application definition.
The function dc_mcf_commit() was called by an
MHP with the nontransaction attribute.

If the function returns at SPP execution:
The function dc_mcf_commit() cannot be called
by SPPs.

DCMCFRTN_72016 -13016 The value specified for action is invalid.

dc_mcf_commit - Commit an MHP

213

Notes
Even when the function dc_mcf_commit() terminates normally, the input message
is not deleted from the input queue. This means that when message processing is
restarted after the MHP is rescheduled, the already committed range (up to what point
the results of processing have been committed) is unknown. The MHP is rescheduled
when:

1. An MCF event is reported to schedule an MHP for MCF event processing.

2. Since the system is terminated abnormally, the OpenTP1 reschedules the MHP for
the process.

If message processing is to be continued by the rescheduled MHP, the user is
responsible for learning the committed range of processing results.

Other than the above An unprecedented error (e.g., program damage)
occurred.

Return value Return value
(numeric)

Explanation

dc_mcf_contend - Terminate continuous-inquiry-response processing

214

dc_mcf_contend - Terminate continuous-inquiry-response
processing

Format
ANSI C, C++

K&R C

Description
The function dc_mcf_contend() terminates continuous-inquiry-response
processing. Before terminating continuous-inquiry-response processing, verify that
nextap of the function dc_mcf_reply() called from the MHP is a null character
and that the function dc_mcf_execap() for activating a cont-type MHP has not been
called. If the MHP to be activated next is specified for nextap of the function
dc_mcf_reply() or if the function dc_mcf_execap() for activating a cont-type
MHP has been called, the function dc_mcf_contend() returns with an error.

After the function dc_mcf_contend() is called, the dc_mcf_tempget() function
and the function dc_mcf_tempput() for accessing temporary-stored data cannot be
called.

Arguments whose values are set in the UAP
action

Specify DCNOFLAGS.

resv01

Specify a null character.

Return values

#include <dcmcf.h>
int dc_mcf_contend(DCLONG action,char *resv01)

#include <dcmcf.h>
int dc_mcf_contend (action, resv01)
DCLONG action;
char *resv01;

Return value Return value
(numeric)

Explanation

DCMCFRTM_00000 0 Normal termination.

dc_mcf_contend - Terminate continuous-inquiry-response processing

215

DCMCFRTN_72000 -13000 Return at MHP execution
The function dc_mcf_contend() was called out
of sequence. The function dc_mcf_contend()
was called before the function
dc_mcf_receive() (for receiving the first
segment) was called from the MHP.

Return at SPP execution
The function dc_mcf_contend() cannot be
called from an SPP.

DCMCFRTN_72016 -13016 The value specified for action is invalid.
The value of the area pointed to by resv01 is not a
null character.

DCMCFRTN_72101 -13101 The function dc_mcf_contend() was called from an
MHP for which continuous-inquiry-response type
(type=cont) was not specified in the MCF application
definition.

DCMCFRTN_72107 -13107 The function dc_mcf_contend() was called.

DCMCFRTN_72111 -13111 The continuous-inquiry-response type application to be
activated next was specified, a response message was
sent (value specified for nextap of the function
dc_mcf_reply()), then the function
dc_mcf_contend() was called.

The function dc_mcf_execap() that specified the
continuous-inquiry-response type application to be
activated next was called, then the function
dc_mcf_contend() was called.

Other than the above An unprecedented error (e.g., program damage)
occurred.

Return value Return value
(numeric)

Explanation

dc_mcf_execap - Activate an application program

216

dc_mcf_execap - Activate an application program

Format
ANSI C, C++

K&R C

Description
The function dc_mcf_execap() starts the MHP or SPP of the application name
specified for apnam from a UAP (SPP or MHP). After the UAP terminates, it can be
started immediately or after a specified interval has passed. After the transaction or
service function has terminated, the MHP or SPP with the application name specified
for apnam can be started immediately or after a preset length of time.

To call the function dc_mcf_execap() from an SPP, process the SPP as a transaction
and call the function dc_mcf_open() in the SPP main function.

If an MHP is activated by issuing the function dc_mcf_execap() from another MHP,
the name in the first-received message is used as the logical terminal name of the input
source that receives messages through the activated MHP. If the function
dc_mcf_execap() is called from the MHP, the name in the first-received message is
also used as the logical terminal name of the input source that receives messages.

If an MHP is activated by issuing the function dc_mcf_execap() from an SPP, an
asterisk (*) is used as the logical terminal name of the input source that receives
messages through the activated MHP. If the function dc_mcf_execap() is called
from the MHP, an asterisk (*) is also used as the logical terminal name of the input
source that receives messages.

The maximum length of a single message segment that can be sent is 32 kilobytes.
Note that the actual value might be smaller depending on the protocol. For details, see

#include <dcmcf.h>
int dc_mcf_execap(DCLONG action,DCLONG commform,char *resv01,
 DCLONG active,char *apnam,char *comdata,
 DCLONG cdataleng)

#include <dcmcf.h>
int dc_mcf_execap (action, commform, resv01, active,
 apnam, comdata, cdataleng)
DCLONG action;
DCLONG commform;
char *resv01;
DCLONG active;
char *apnam;
char *comdata;
DCLONG cdataleng;

dc_mcf_execap - Activate an application program

217

the applicable OpenTP1 Protocol manual.

The figure below shows the segment format of the message to be passed to the MHP
to be activated. With buffer format 1, L is 8 bytes; with buffer format 2, L is 4 bytes.

Arguments whose values are set in the UAP
action

Specify the following items in the format shown below:

• Whether the segment to be passed to the MHP or SPP to be activated is the last
segment of a logical message

• When to activate the MHP or SPP

• Buffer format to be used

DCMCFESI

Specify DCMCFESI to pass the first segment or an intermediate segment. If the
function dc_mcf_execap() with DCMCFESI specified is called, the function
dc_mcf_execap() with DCMCFEMI specified for action must be called.

DCMCFEMI

Specify DCMCFEMI to pass the last segment. If the logical message comprises only
a single segment, also specify DCMCFEMI. Also specify DCMCFEMI if the sending
of the first or an intermediate segment is to be followed by the notice of the
completion of message sending.

DCMCFJUST

Specify DCMCFJUST to enable immediate start. The value specified for active is
ignored in this case.

DCMCFINTV

Specify DCMCFINTV for an interval timer. The MHP or SPP will be activated the
time specified for active after the function dc_mcf_execap() is called.

DCMCFTIME

{DCMCFESI|DCMCFBUF1}[|{DCMCFJUST|DCMCFINTV|DCMCFTIME}]
 [|{DCMCFEMI|DCMCFBUF2}]

dc_mcf_execap - Activate an application program

218

Specify DCMCFTIME for a time-point timer. The MHP or SPP will be activated at
the time specified for active.

DCMCFBUF1

Specify DCMCFBUF1 when using buffer format 1.

DCMCFBUF2

Specify DCMCFBUF2 when using buffer format 2.

commform

Specify DCNOFLAGS.

resv01

Specify a null character.

active

• Interval timer drive (specification of DCMCFINTV for action)

Specify the number of seconds which will elapse from the call of the function
dc_mcf_execap() to the activation of the MHP or SPP. The value must be 1 to
360000 (1 second to 100 hours).

• Time-point timer drive (specification of DCMCFTIME for action)

Specify when to activate the MHP or SPP specified for apnam. The time is in
seconds relative to 00:00:00 in local time.

Time setting example

To activate the MHP or SPP at 2:30:30 p.m. in local time:

Assign 52230 to active.

The range of specifiable values is 0 (activation at 00:00:00) to 86399 (activation at
23:59:59).

The value specified for active is valid only for timer-driven activation. If immediate
activation is specified, the value specified for active is ignored.

Since OpenTP1 checks whether the activation time has been reached at regular
intervals, there is a difference between the time specified for active and the actual
activation time. The accuracy of time monitoring depends on the value for the time
monitoring interval specified for the btim operand in the -t option of the MCF
communication configuration definition mcfttim.

14*3600+30*60+30=52230

dc_mcf_execap - Activate an application program

219

apnam

Specify the application name of the MHP or SPP to be started. The application name
can be specified with up to 8 bytes. The application name must end with a null
character.

comdata

Specify the contents of the message segment to be passed to the MHP or SPP which is
to start. Specify also segment if the sending of the first or an intermediate segment is
to be followed by the notice of the completion of message sending.

cdataleng

Specify the length of the segment to be passed to the MHP or SPP to be started. Specify
0 for cdataleng if the sending of the first or an intermediate segment is to be followed
by the notice of the completion of message sending.

Return values
Return value Return value

(numeric)
Explanation

DCMCFRTN_00000 0 Normal termination.

DCMCFRTN_71002 -12002 An error occurred during input/output processing for
the message queue.

The message queue is in shutdown state.

No message queue was allocated.

The value specified for the segment length exceeds
32,000 bytes.

The MHP or SPP specified for apnam cannot be
activated because the MCF is being terminated.

DCMCFRTN_71003 -12003 The message queue is full.

DCMCFRTN_71004 -12004 The buffer for storing messages could not be acquired
in the memory.

DCMCFRTN_71108 -12108 An attempt was made to start the MHP or SPP of the
application name specified for apnam, but the MHP's or
SPP's management table could not be acquired.

The local memory of the process is insufficient.

DCMCFRTN_72000 -13000 Return at MHP execution
The function dc_mcf_execap() was called before
the function dc_mcf_receive() with
DCMCFFRST specified for action.

dc_mcf_execap - Activate an application program

220

Return at SPP execution
The function dc_mcf_execap() is called from a
nontransaction SPP process.

DCMCFRTN_72001 -13001 The specified application name is not defined in the
MCF.

The application name is incorrect.

The application startup process name is not specified in
the communication service definition (mcfmcname
definition command) for the MCF manager.

The application startup process identifier is not
specified in the MCF application environment
definition (the -p option of the mcfaenv definition
command) corresponding to an application startup
process.

The application startup process identifier specified in
the application environment definition (the -p option
of the mcfaenv definition command) does not match
the identifier specified in the communication
configuration definition (the mcftenv definition
command) for the process.

For starting of non-response MHPs and SPPs:
• No value is specified for the logical terminal (the

lname operand in the -n option of the mcfaalcap
definition command) in the attribute definition of
the application to be started.

• The logical terminal specified in the attribute
definition of the application to be started is not
defined in the communication configuration
definition (mcftalcle definition command) of the
application startup process.

• The logical terminal specified in the application
attribute definition of the application to be started is
not for send-only communication (mcftalcle
-t=send).

• The logical terminal specified in the attribute
definition of the application to be started cannot
start the application.

Return value Return value
(numeric)

Explanation

dc_mcf_execap - Activate an application program

221

For starting of response and continuous inquiry
response MHPs:
• The internal communication path (the cname

operand in the -n option of the mcfaalcap
definition command) is not specified in the
attribute definition of the application to be started.

• The internal communication path specified in the
attribute definition of the application to be started is
not defined in the communication configuration
definition (the -c option of the mcftpsvr
definition command) of the application startup
process.

• The inquiry logical terminal (mcftalcle
-t=request) is not specified in the
communication configuration definition
(mcftalcle definition command) of the
application start process.

When starting an application from an SPP:
• The application startup process identifier is not

specified in the mcf_psv_id operand for the user
service or user service default definition of the
starting UAP.

• The following two values do not match:
Application startup process identifier specified in
the mcf_psv_id operand for the user service or
user service default definition of the staring UAP.
Application startup process identifier specified in
the communication configuration definition (the -s
option of the mcftenv definition command) and
application environment definition (the -p option
of the mcfaenv definition command) of the
application startup process.

• The MCF manager identifier specified in the
mcf_mgrid operand of the user service or user
service default definition of the starting UAP does
not match the identifier of the MCF manager to
which the application startup process belongs.

DCMCFRTN_72005 -13005 A value less than 1 byte was specified as the message
segment length in the function dc_mcf_execap() in
which DCMCFESI was specified for action.

DCMCFRTN_72007 -13007 From a response type (type=ans) MHP which already
called the function dc_mcf_reply(), another
response type MHP was started by the function
dc_mcf_execap().

Return value Return value
(numeric)

Explanation

dc_mcf_execap - Activate an application program

222

From a continuous-inquiry-response type
(type=cont) MHP which already called the function
dc_mcf_reply(), another
continuous-inquiry-response type MHP was started by
the function dc_mcf_execap().

DCMCFRTN_72009 -13009 From a response type (type=ans) MHP, a response
type MHP was started by the function
dc_mcf_execap() more than once.

From a continuous-inquiry-response type
(type=cont) MHP, a continuous-inquiry-response
type MHP was started by the function
dc_mcf_execap() more than once.

DCMCFRTN_72011 -13011 From an MHP which is not response type (type=ans),
a response type MHP was started by the function
dc_mcf_execap().

From an MHP which is not
continuous-inquiry-response type (type=cont), a
continuous-inquiry-response type MHP was started by
the function dc_mcf_execap().

DCMCFRTN_72016 -13016 The value specified for action is invalid.

The value specified for resv01 is not a null character.

The application start method specified for action is
invalid.

The specified argument is invalid.

DCMCFRTN_72024 -13024 DCNOFLAGS was not specified for commform.

DCMCFRTN_72026 -13026 The value specified as the segment type for action is
invalid. DCMCFEMI must be specified for the last
segment. DCMCFESI must be specified for a segment
other than the last segment.

DCMCFRTN_72041 -13041 The function dc_mcf_execap() with a segment other
than the last segment (DCMCFESI) specified was not
called for the application name, but the function
dc_mcf_execap() with the last segment (DCMCFEMI
send segment length = 0) specified was called for the
application name.

Return value Return value
(numeric)

Explanation

dc_mcf_execap - Activate an application program

223

Note
1. The activation order of application programs varies depending on the mcfmuap

-c order specification in the UAP common definition of the MCF manager
definition.

2. If you use a single service function to update a TAM or DAM file and call the
function dc_mcf_execap() to start an application that will reference the
updated file, make sure that the application will lock the file. If the application
references the file without locking the file, the data existing before the file was
updated might be referenced.

DCMCFRTN_72044 -13044 From a continuous-inquiry-response type
(type=cont) MHP which already called the function
dc_mcf_contend(), another
continuous-inquiry-response type MHP was started by
the function dc_mcf_execap().

DCMCFRTN_72108 -13108 The value specified for active exceeds the limit.

DCMCFRTN_72109 -13109 An attempt was made to activate an MHP, for which
type=cont (continuous-inquiry-response type) was
specified in the MCF application definition, by the
function dc_mcf_execap() with timer start specified.

DCMCFRTN_77001 -18001 The logical terminal (LE) corresponding to the
application to be activated is being started and cannot
be used, or no logical terminals are available.

Other than the above An unprecedented error (e.g., program damage)
occurred

Return value Return value
(numeric)

Explanation

dc_mcf_mainloop - Start an MHP service

224

dc_mcf_mainloop - Start an MHP service

Format
ANSI C, C++

K&R C

Description
The function dc_mcf_mainloop() starts accepting service requests to service
functions which are included in the service group being executed in the process that
called this function. The function dc_mcf_mainloop() does not return until it
receives a termination request from OpenTP1.

Argument whose value is set in the UAP
flags

Specify DCNOFLAGS.

Return values

#include <dcmcf.h>
int dc_mcf_mainloop(DCLONG flags)

#include <dcmcf.h>
int dc_mcf_mainloop (flags)
DCLONG flags;

Return value Return value
(numeric)

Explanation

DC_OK 0 The function dc_mcf_mainloop() received a
termination request from OpenTP1. The UAP that
called the function dc_mcf_mainloop() must
immediately execute termination processing for its
process. Then, the UAP must call the function
dc_mcf_close() and the function dc_rpc_close()
to enable exit().

DCMCFER_INVALID_ARGS -11900 The specified argument is invalid.

DCMCFER_PROTO -11901 The function dc_rpc_open() was not called before
the function dc_mcf_mainloop().

DCMCFER_FATAL -11902 The service could not be started.

DCMCFER_NOMEM -11903 The memory became insufficient.

dc_mcf_open - Open the MCF environment

225

dc_mcf_open - Open the MCF environment

Format
ANSI C, C++

K&R C

Description
The function dc_mcf_open() constructs the environment in which MCF facilities
are used. Call the function dc_mcf_open() for UAPs which use MCF facilities.

After the dc_rpc_open() is called, the function dc_mcf_open() must be called in
the main function. Issue the function dc_mcf_open() only once in the process before
the function dc_mcf_mainloop() (function dc_rpc_mainloop() for an SPP).
The following shows when to call the function dc_mcf_open():

Argument whose value is set in the UAP
flags

Specify DCNOFLAGS.

Return values

#include <dcmcf.h>
int dc_mcf_open(DCLONG flags)

#include <dcmcf.h>
int dc_mcf_open (flags)
DCLONG flags;

dc_rpc_open()
dc_mcf_open()
dc_mcf_mainloop() (dc_rpc_mainloop() for an SPP)
 :
 :
dc_mcf_close()
dc_rpc_close()

Return value Return value
(numeric)

Explanation

DC_OK 0 Normal termination.

DCMCFER_INVALID_ARGS -11900 The value specified for flags is invalid.

DCMCFER_PROTO -11901 The function dc_rpc_open() was not called.

dc_mcf_open - Open the MCF environment

226

The function dc_mcf_open() was called.

DCMCFER_FATAL -11902 Initialization processing was unsuccessful.

DCMCFER_NOMEM -11903 The memory became insufficient.

Return value Return value
(numeric)

Explanation

dc_mcf_receive - Receive a message

227

dc_mcf_receive - Receive a message

Format
ANSI C, C++

K&R C

Description
The function dc_mcf_receive() receives a segment of a message. When a whole
logical message is received, call this function as many times as there are segments.

The function dc_mcf_receive() can receive the following messages:

• Messages which are sent from the remote system via communication protocol

• MCF events which are reported from the local system

• Messages which are sent by the function dc_mcf_execap() (Activate an
application program) from a UAP of the local system

• Messages which are sent by executing the mcfuevt command on the local system

When receiving a message which is sent from the remote system via communication
protocol, the syntax of the function dc_mcf_receive() varies according to
communication protocol in use. For the syntax of the function dc_mcf_receive()
which receives a message from the remote system, see the explanation in the
applicable OpenTP1 Protocol manual.

The maximum length of a single segment that can be received is 1 megabyte. Note that
the actual value might be smaller depending on the protocol. For details, see the
applicable OpenTP1 Protocol manual.

#include <dcmcf.h>
int dc_mcf_receive(DCLONG action,DCLONG commform,char *termnam,
 char *resv01,char *recvdata,DCLONG *rdataleng,
 DCLONG inbufleng,DCLONG *time)

#include <dcmcf.h>
int dc_mcf_receive (action, commform, termnam, resv01,
 recvdata, rdataleng, inbufleng, time)
DCLONG action;
DCLONG commform;
char *termnam;
char *resv01;
char *recvdata;
DCLONG *rdataleng;
DCLONG inbufleng;
DCLONG *time;

dc_mcf_receive - Receive a message

228

The figure below shows the format of the receive segment area. With buffer format 1,
L is 8 bytes; with buffer format 2, L is 4 bytes.

Arguments whose values are set in the UAP
action

Specify whether the first segment of the message is received and the buffer format to
be used in the format shown below:

DCMCFFRST

Specify DCMCFFRST to receive the first segment. If the message comprises only
a single segment, also specify DCMCFFRST.

DCMCFSEG

Specify DCMCFSEG to receive an intermediate segment or the last segment.

DCMCFBUF1

Specify DCMCFBUF1 when using buffer format 1. In general, buffer format 1 is
used.

DCMCFBUF2

Specify DCMCFBUF2 when using buffer format 2.

commform

Specify DCNOFLAGS.

termnam [when an intermediate segment or the last segment is received]

Specify the input logical terminal name. Specify the logical terminal name returned
when the first segment is received.

resv01

Specify a null character.

{DCMCFFRST|DCMCFSEG}[|{DCMCFBUF1|DCMCFBUF2}]

dc_mcf_receive - Receive a message

229

recvdata

Specify the receive segment area. When the message is sent from the local system, the
maximum length of receive segment is 32,000 bytes.

When the message is sent from the remote system, the maximum length of receive
segment depends on the product adopting the communication protocol.

When the function dc_mcf_receive() terminates, a segment of the message is
returned.

inbufleng

Specify the length of the receive segment area.

Arguments whose values are returned from OpenTP1
termnam [when the first segment is received]

The input logical terminal name is returned.

Specify the returned logical terminal name when an intermediate segment or the last
segment is received.

recvdata

The contents of the receive segment are returned.

rdataleng

The length of the receive segment is returned.

time

The time when the message is received is returned in total seconds since 00:00:00 on
January 1, 1970.

Return values
Return values Return value

(numeric)
Explanation

DCMCFRTN_00000 0 Normal termination.

DCMCFRTN_71000 -12000 The function dc_mcf_receive() for receiving the
first segment was called more than once. To receive an
intermediate segment or the last segment, call the
function dc_mcf_receive() with DCMCFSEG
specified for action.

dc_mcf_receive - Receive a message

230

DCMCFRTN_71001 -12001 The function dc_mcf_receive() for receiving the
next segment was called after the last segment of the
message is received. The function
dc_mcf_receive() called immediately before
receives a message completely. If the function
dc_mcf_receive() is called again after this value is
returned, the return value DCMCFRTN_72000 is
returned.

DCMCFRTN_71002 -12002 An error occurred during input processing for the
message queue.

The message queue is in shutdown state.

DCMCFRTN_72000 -13000 Return at MHP execution
The function dc_mcf_receive() for receiving an
intermediate segment or the last segment was
called before the function dc_mcf_receive() for
receiving the first segment was called. To receive
the first segment, call the function
dc_mcf_receive() with DCMCFFRST specified
for action.
The function dc_mcf_receive() was called
again after the return value DCMCFRTN_71001 was
returned.

Return at SPP execution
The function dc_mcf_receive() cannot be
called from an SPP.

DCMCFRTN_72001 -13001 The logical terminal name specified for termnam is
invalid.

DCMCFRTN_72013 -13013 A segment exceeding the length of the receive area was
received. The excess portion was truncated.

DCMCFRTN_72016 -13016 The value specified for action is invalid.

The value specified for resv01 is invalid.

The value specified for the argument is invalid.

DCMCFRTN_72024 -13024 The value specified for commform is invalid.

DCMCFRTN_72025 -13025 The value of the segment type specified for action is
invalid. The value must be DCMCFFRST or DCMCFSEG.

DCMCFRTN_72036 -13036 The segment receive area is insufficient. Allocate an
area of 9 bytes or more for buffer format 1; 5 bytes or
more for buffer format 2.

Return values Return value
(numeric)

Explanation

dc_mcf_receive - Receive a message

231

Other than the above An unprecedented error (e.g., program damage)
occurred.

Return values Return value
(numeric)

Explanation

dc_mcf_recvsync - Receive a synchronous message

232

dc_mcf_recvsync - Receive a synchronous message

Format
For details of the format, see the explanation in the applicable OpenTP1 Protocol
manual.

Description
The function dc_mcf_recvsync() receives a logical message from other system
during the processing of an active UAP. When the function dc_mcf_recvsync() is
called by a UAP, it searches the input queue for a message sent from the logical
terminal name specified in it and receives the message. If there is not such a message,
the function waits until an appropriate message arrives. In this way, the reception of a
logical message is synchronized with the call of the function dc_mcf_recvsync()
from the UAP.

The function receives a segment of a logical message. If the logical message consists
of one segment, the function dc_mcf_recvsync() must be issued only once. If the
logical message consists of multiple segments, the function dc_mcf_recvsync()
must be called as many times as the segments to receive the logical message.

The maximum length of a single segment that can be received is 1 megabyte. Note that
the actual value might be smaller depending on the protocol. For details, see the
applicable OpenTP1 Protocol manual.

The MCF area which holds the segment received by the function
dc_mcf_recvsync() consists of the area used by the MCF and the area actually
holding the received message segment.

The values to be specified for the arguments and the return values vary with the
communication protocol in use. For details, see the applicable OpenTP1 Protocol
manual.

dc_mcf_reply - Send a response message

233

dc_mcf_reply - Send a response message

Format
For details on the format, see the explanation in the applicable OpenTP1 Protocol
manual.

Description
The function dc_mcf_reply() sends a logical message in response to other system.
It sends a response to the logical terminal from which a message was received by the
function dc_mcf_receive().

The function dc_mcf_reply() can be called only by MHPs whose application type
is ans or cont.

The function sends a segment of a logical message as a response. If the received logical
message consists of one segment, the function dc_mcf_reply() must be called only
once to send a response. If the received logical message consists of multiple segments,
the function dc_mcf_reply() must be called as many times as the segments to send
one logical message in response.

The application which is under MCF control (MHP service function) allows the MCF
to send a message after the function dc_mcf_reply() is issued to send the logical
message to its end and the MHP terminates normally. In this way, message sending by
the function dc_mcf_reply() is asynchronous with MHP processing.

The maximum length of a single message segment that can be sent is 32 kilobytes.
Note that the actual value might be smaller depending on the protocol. For details, see
the applicable OpenTP1 Protocol manual.

The MCF area which holds the segment to be sent by the function dc_mcf_reply()
consists of the area used by the MCF and the area actually holding the message
segment to be transmitted in response.

The values to be specified for the arguments and the return values vary with the
communication protocol in use. For details, see the applicable OpenTP1 Protocol
manual.

dc_mcf_resend - Resend a message

234

dc_mcf_resend - Resend a message

Format
For details on the format, see the explanation in the applicable OpenTP1 Protocol
manual.

Description
The function dc_mcf_resend() resends an already sent logical message to other
system. The resent message is treated as a new message separate from the already sent
message. The message to be resent can be selected using information about already
sent messages as follows:

• Output-destination logical terminal name

• Message sequence number

• Message type (general branch or priority branch)

Before a node can use the function dc_mcf_resend(), it must use a queue (disk
queue) for holding already sent messages.

If the message to be resent was not sent, the function dc_mcf_resend() returns with
an error. It also returns with an error if the message to be resent is not found in the
output queue.

The values to be specified for the arguments and the return values vary with the
communication protocol in use. For details, see the explanation in the applicable
OpenTP1 Protocol manual.

Note
The message resend order varies depending on the mcfmuap -c order specification
in the UAP common definition of the MCF manager definition.

dc_mcf_rollback - Enable MHP rollback

235

dc_mcf_rollback - Enable MHP rollback

Format
ANSI C, C++

K&R C

Description
The function dc_mcf_rollback() cancels processing between when the MHP
service program that defines the transaction attribute is started and when the function
dc_mcf_rollback() is called. If DCMCFRTRY is specified for action, processing
between when the MHP is started and when the function dc_mcf_rollback() is
called is canceled, and the canceled MHP processing is rescheduled.

Arguments whose values are set in the UAP
action

Specify DCMCFRTRY, DCMCFRRTN, or DCMCFNRTN for the type of rollback.

DCMCFRTRY

Processing between the MHP is started and when the function
dc_mcf_rollback() is called is canceled, and the canceled MHP processing is
rescheduled (any received messages are stored at the end of the relevant input
queue and the MHP is rescheduled). Control does not return from the function
dc_mcf_rollback(), and the process is terminated.

DCMCFRRTN

Processing between the MHP is started and when the function
dc_mcf_rollback() is called is canceled, and control returns. Processing after
the normal termination of the function dc_mcf_rollback() with DCMCFRRTN
specified is treated as another transaction.

DCMCFNRTN

Processing between the MHP is started and when the function
dc_mcf_rollback() is called is canceled. Control does not return from the
function dc_mcf_rollback(), and the process is terminated.

#include <dcmcf.h>
int dc_mcf_rollback(DCLONG action)

#include <dcmcf.h>
int dc_mcf_rollback (action)
DCLONG action;

dc_mcf_rollback - Enable MHP rollback

236

Return values
Return value Return value

(numeric)
Explanation

DCMCFRTN_00000 0 Normal termination.

DCMCFRTN_72000 -13000 Return at MHP execution
The function dc_mcf_rollback() was called out
of sequence. The function dc_mcf_rollback()
with DCMCFRRTN specified for action was called
before the function dc_mcf_receive() (for
receiving the first segment) was called from the
MHP.The function dc_mcf_rollback() was
called by an MHP with the nontransaction attribute.

Return at SPP execution
The function dc_mcf_rollback() cannot be
called from an SPP.

DCMCFRTN_72027 -13027 The value specified for action is invalid.

Other than the above An unprecedented error (e.g., program damage)
occurred.

dc_mcf_send - Send a message

237

dc_mcf_send - Send a message

Format
For details on the format, see the explanation in the applicable OpenTP1 Protocol
manual.

Description
The function dc_mcf_send() sends a logical message to other system.

The function sends a segment of a logical message. If the sent logical message consists
of one segment, the function dc_mcf_send() must be called only once. If the sent
logical message consists of multiple segments, the function dc_mcf_send() must be
called as many times as the segments to send one logical message.

The application which is under MCF control (MHP service function) or SPP allows the
function dc_mcf_send() to send messages asynchronously to UAP processing.

The maximum length of a single message segment that can be sent is 32 kilobytes.
Note that the actual value might be smaller depending on the protocol. For details, see
the applicable OpenTP1 Protocol manual.

The MCF area which holds the segment to be sent by the function dc_mcf_send()
consists of the area used by the MCF and the area actually holding the message
segment to be sent.

The values to be specified for the arguments and the return values vary with the
communication protocol in use. For details, see the applicable OpenTP1 Protocol
manual.

Note
The message send order varies depending on the mcfmuap -c order specification in
the UAP common definition of the MCF manager definition.

dc_mcf_sendrecv - Exchange a synchronous message

238

dc_mcf_sendrecv - Exchange a synchronous message

Format
For details on the format, see the explanation in the applicable OpenTP1 Protocol
manual.

Description
The function dc_mcf_sendrecv() sends a logical message to other system, during
the processing of an active UAP and receives a response from the logical terminal.
Once the function dc_mcf_sendrecv() is called by a UAP, it waits until message
sending to the logical terminal designated in the function and response arrival are
completed. In this way, the sending and reception of a logical message is synchronized
with the call of the function dc_mcf_sendrecv() from the UAP.

The function dc_mcf_sendrecv() enters the state of wait for a response when the
MCF sends a message by making the function dc_mcf_sendrecv() send the last
segment of the message.

The function dc_mcf_sendrecv() sends a segment of a logical message. If the
logical message consists of one segment, the function dc_mcf_sendrecv() must be
called only once. If the logical message consists of multiple segments, the function
dc_mcf_sendrecv() must be called as many times as the segments to send the
logical message.

When the MCF receives all segments of the response message from the logical
terminal, the function dc_mcf_sendrecv() that sent the last segment receives only
the first segment of the response message. The intermediate and subsequent segments
are received by the function dc_mcf_recvsync().

The maximum length of a single segment that can be received is 1 megabyte. Note that
the actual value might be smaller depending on the protocol. The maximum length of
a single message segment that can be sent is 32 kilobytes. Note that the actual value
might be smaller depending on the protocol. For details, see the applicable OpenTP1
Protocol manual.

The MCF area which holds the segment to be sent by the function
dc_mcf_sendrecv() consists of the area used by the MCF and the area actually
holding the message segment to be sent.

The values to be specified for the arguments and the return values vary with the
communication protocol in use. For details, see the applicable OpenTP1 Protocol
manual.

dc_mcf_sendsync - Send a synchronous message

239

dc_mcf_sendsync - Send a synchronous message

Format
For details on the format, see the explanation in the applicable OpenTP1 Protocol
manual.

Description
The function dc_mcf_sendsync() sends a logical message to other system, during
the processing of an active UAP. Once the function dc_mcf_sendsync() is called by
a UAP, it waits until the message is written in the output queue and is completely sent
to the logical terminal designated in the function. In this way, the sending of a logical
message is synchronized with the call of the function dc_mcf_sendsync() from the
UAP.

The function sends a segment of a logical message. If the logical message consists of
one segment, the function dc_mcf_sendsync() must be called only once. If the
logical message consists of multiple segments, the function dc_mcf_sendsync()
must be called as many times as the segments to send the logical message.

The maximum length of a single message segment that can be sent is 32 kilobytes.
Note that the actual value might be smaller depending on the protocol. For details, see
the applicable OpenTP1 Protocol manual.

The MCF area which holds the segment to be sent by the function
dc_mcf_sendsync() consists of the area used by the MCF and the area actually
holding the message segment to be sent.

The values to be specified for the arguments and the return values vary with the
communication protocol in use. For details, see the applicable OpenTP1 Protocol
manual.

dc_mcf_tactcn - Establish a connection

240

dc_mcf_tactcn - Establish a connection

Format
ANSI C, C++

K&R C

Description
The dc_mcf_tactcn() function establishes a connection.

Normal termination of the dc_mcf_tactcn() function indicates that the connection
establishment request was accepted successfully by the protocol product. However,
this does not necessarily mean that connection with the remote system has been
established.

If you intend to perform any connection-related operation after calling the
dc_mcf_tactcn() function, first use the dc_mcf_tlscn() function to check the
connection status.

Arguments whose values are set in the UAP
action

Depending on the communication protocol, specify in one of the following formats the
method used to specify for this function the connection that is established:

{DCMCFLE|DCMCFCN}[|DCMCFPRO]

DCMCFLE

Specifies that a logical terminal name is specified for the connection that is

#include <dcmcf.h>

int dc_mcf_tactcn (DCLONG action, dcmcf_tactcnopt *cnopt,

 char *proinf, DCLONG *resv02, char *resv03,

 char *resv04)

#include <dcmcf.h>

int dc_mcf_tactcn (action, cnopt, proinf, resv02, resv03, resv04)

DCLONG action;

dcmcf_tactcnopt *cnopt;

char *proinf;

DCLONG *resv02;

char *resv03;

char *resv04;

dc_mcf_tactcn - Establish a connection

241

established.

This argument is not supported by TP1/NET/NCSB or TP1/NET/X25-Extended.

DCMCFCN

Specifies that a connection ID is specified for the connection that is established.

DCMCFPRO

Specifies that the function depends on the communication protocol being used.

cnopt

Set in a dcmcf_tactcnopt structure the connection information that is to be subject
to this function's processing.

The following shows the format of the structure:

typedef struct {
 DCLONG mcfid; ...MCF communication
 process identifier
 char resv01[4]; ...Reserved
 char idnam[9]; ...Logical terminal name
 or connection ID
 char resv02[7]; ...Reserved
 char resv03[112]; ...Reserved
 char scnnam[9]; ...Area used by MCF
 char resv04[7]; ...Reserved
 char yournam[9]; ...Area used by MCF
 char resv05[7]; ...Reserved
 char hostnam[143]; ...Area used by MCF
 char resv06[17]; ...Reserved
 char resv07[184]; ...Reserved
 } dcmcf_tactcnopt;

• mcfid

Specify the MCF communication process identifier of the MCF communication
service for the connection to be processed. The permitted value range is from 0 to
239.

This argument is ignored when a logical terminal name is used to request
connection establishment.

If you specify 0, the system searches for the MCF communication service to
which the specified connection ID belongs. In a configuration where many MCF
communication services are running or when you issue this function many times
from a UAP, we recommend that you specify the MCF communication process
identifier.

dc_mcf_tactcn - Establish a connection

242

• resv01

Fill the area with null characters.

• idnam

Specify the logical terminal name or connection ID of the connection to be
established. The logical terminal name or connection ID must be specified as a
maximum of 8 bytes of characters and must end with the null character.

• resv02,resv03, scnnam, resv04, yournam, resv05, hostnam, resv06,
resv07

Fill the areas with null characters.

proinf

Specify a protocol-specific area.

If you do not use a function that depends on the communication protocol, specify
NULL.

The following shows the format of a protocol-specific area:

The maximum size of a protocol-specific area is 1024 bytes.

The permitted value depends on the communication protocol being used. For details,
see the applicable OpenTP1 Protocol manual.

resv02,resv03, resv04

Specify NULL.

Return values
Return value Return value

(numeric)
Explanation

DCMCFRTN_00000 0 Normal termination.

DCMCFRTN_71001 -12001 The dc_mcf_tactcn() function cannot be accepted because the
MCF is under start processing.

dc_mcf_tactcn - Establish a connection

243

DCMCFRTN_71002 -12002 The dc_mcf_tactcn() function cannot be accepted because the
MCF is under termination processing.

DCMCFRTN_71004 -12004 A memory shortage occurred during dc_mcf_tactcn() function
processing.

DCMCFRTN_71005 -12005 A communication error occurred. For the cause, see the message log
file.

DCMCFRTN_71006 -12006 An internal error occurred. For the cause, see the message log file.

DCMCFRTN_71007 -12007 The specified connection name has not been registered.

DCMCFRTN_71008 -12008 The specified logical terminal name has not been registered.

DCMCFRTN_71009 -12009 The dc_mcf_tactcn() function is not supported by the applicable
MCF communication process.

DCMCFRTN_71010 -12010 Although the request to establish a connection was issued to the
MCF communication process, the request was not accepted. For the
cause, see the message log file.

DCMCFRTN_71011 -12011 The dc_mcf_tactcn() function cannot be accepted because the
connection has been deleted.

DCMCFRTN_71014 -12014 The specified logical terminal name belongs to TP1/NET/NCSB or
TP1/NET/X25-Extended; or, the specified connection group name
belongs to TP1/NET/OSI-TP or TP1/NET/TCP/IP.

DCMCFRTN_72050 -13050 An unsupported flag is set in action.

DCMCFRTN_72051 -13051 NULL is set in cnopt.

DCMCFRTN_72052 -13052 When DCMCFPRO is not set in action:
NULL is not set in proinf.

When DCMCFPRO is set in action:
A value smaller than 0 or a value 1025 or greater is specified for the
size of protocol-specific area L pointed to by proinf.

DCMCFRTN_72053 -13053 NULL is not set in resv02.

DCMCFRTN_72054 -13054 NULL is not set in resv03.

DCMCFRTN_72055 -13055 NULL is not set in resv04.

DCMCFRTN_72060 -13060 DCMCFLE and DCMCFCN cannot be specified together in action.

DCMCFRTN_72061 -13061 A value smaller than 0 or a value 240 or greater is specified for
mcfid in dcmcf_tactcnopt.

Return value Return value
(numeric)

Explanation

dc_mcf_tactcn - Establish a connection

244

DCMCFRTN_72062 -13062 resv01 in dcmcf_tactcnopt is not filled with null characters.

DCMCFRTN_72063 -13063 idnam in dcmcf_tactcnopt begins with the null character.

DCMCFRTN_72064 -13064 resv02 in dcmcf_tactcnopt is not filled with null characters.

DCMCFRTN_72065 -13065 resv03 in dcmcf_tactcnopt is not filled with null characters.

DCMCFRTN_72066 -13066 scnnam in dcmcf_tactcnopt is not filled with null characters.

DCMCFRTN_72067 -13067 resv04 in dcmcf_tactcnopt is not filled with null characters.

DCMCFRTN_72068 -13068 yournam in dcmcf_tactcnopt is not filled with null characters.

DCMCFRTN_72069 -13069 resv05 in dcmcf_tactcnopt is not filled with null characters.

DCMCFRTN_72070 -13070 hostnam in dcmcf_tactcnopt is not filled with null characters.

DCMCFRTN_72071 -13071 resv06 in dcmcf_tactcnopt is not filled with null characters.

DCMCFRTN_72072 -13072 resv07 in dcmcf_tactcnopt is not filled with null characters.

DCMCFRTN_72073 -13073 The character string set in idnam in dcmcf_tactcnopt is 9 or more
bytes in length.

DCMCFRTN_72074 -13074 The character string set in idnam in dcmcf_tactcnopt contains an
invalid character.

Return value Return value
(numeric)

Explanation

dc_mcf_tactle - Release a logical terminal from shutdown status

245

dc_mcf_tactle - Release a logical terminal from shutdown status

Format
ANSI C, C++

K&R C

Description
The dc_mcf_tactle() function releases a logical terminal from shutdown status.

Normal termination of the dc_mcf_tactle() function indicates that the logical
terminal shutdown release request was accepted successfully by the protocol product.
However, this does not necessarily mean that the logical terminal has been released
from shutdown status.

If you intend to perform any operation related to the logical terminal after calling the
dc_mcf_tactle() function, first use the dc_mcf_tlsle() function to check the
logical terminal's status.

Arguments whose values are set in the UAP
action

Depending on the communication protocol, specify in one of the following formats the
method used to specify for this function the logical terminal that is released from
shutdown status:

DCMCFLE[|DCMCFPRO]

DCMCFLE

#include <dcmcf.h>

int dc_mcf_tactle (DCLONG action, dcmcf_tactleopt *leopt,

 char *proinf, DCLONG *resv02,

 char *resv03, char *resv04)

#include <dcmcf.h>

int dc_mcf_tactle (action, leopt, proinf, resv02, resv03, resv04)

DCLONG action;

dcmcf_tactleopt *leopt;

char *proinf;

DCLONG *resv02;

char *resv03;

char *resv04;

dc_mcf_tactle - Release a logical terminal from shutdown status

246

Specifies that the logical terminal name is used.

DCMCFPRO

Specifies that the function depends on the communication protocol being used.

leopt

Set in a dcmcf_tactleopt structure the information about the logical terminal that
is to be the subject of this function's processing.

The following shows the format of the structure:

typedef struct {
 DCLONG mcfid; ...MCF communication
 process identifier
 char resv01[4]; ...Reserved
 char idnam[9]; ...Logical terminal name
 char resv02[7]; ...Reserved
 char resv03[112]; ...Reserved
 char resv04[376]; ...Reserved
 } dcmcf_tactleopt;

• mcfid

Specify the MCF communication process identifier of the MCF communication
service for the logical terminal to be processed. The permitted value range is from
0 to 239.

If you specify 0, the system searches for the MCF communication service to
which the specified logical terminal name belongs. In a configuration where many
MCF communication services are running or when you issue this function many
times from a UAP, we recommend that you specify the MCF communication
process identifier.

• resv01

Fill the area with null characters.

• idnam

Specify the name of the logical terminal that is released from shutdown status.
The logical terminal name must be specified as a maximum of 8 bytes of
characters and must end with the null character.

• resv02, resv03, resv04

Fill the areas with null characters.

proinf

Specify a protocol-specific area.

dc_mcf_tactle - Release a logical terminal from shutdown status

247

If you do not use a function that depends on the communication protocol, specify
NULL.

The following shows the format of a protocol-specific area.

The maximum size of a protocol-specific area is 1024 bytes.

The permitted value depends on the communication protocol being used. For details,
see the applicable OpenTP1 Protocol manual.

resv02, resv03, resv04

Specify NULL.

Return values
Return value Return value

(numeric)
Explanation

DCMCFRTN_00000 0 Normal termination.

DCMCFRTN_71001 -12001 The dc_mcf_tactle() function cannot be accepted because the
MCF is under start processing.

DCMCFRTN_71002 -12002 The dc_mcf_tactle() function cannot be accepted because the
MCF is under termination processing.

DCMCFRTN_71004 -12004 A memory shortage occurred during dc_mcf_tactle() function
processing.

DCMCFRTN_71005 -12005 A communication error occurred. For the cause, see the message log
file.

DCMCFRTN_71006 -12006 An internal error occurred. For the cause, see the message log file.

DCMCFRTN_71008 -12008 The specified logical terminal name has not been registered.

DCMCFRTN_71009 -12009 The dc_mcf_tactle() function is not supported by the applicable
MCF communication process.

DCMCFRTN_71010 -12010 Although the request to release the logical terminal from shutdown
status was issued to the MCF communication process, the request
was not accepted. For the cause, see the message log file.

dc_mcf_tactle - Release a logical terminal from shutdown status

248

DCMCFRTN_71011 -12011 The dc_mcf_tactle() function cannot be accepted because the
logical terminal has been deleted.

DCMCFRTN_72050 -13050 DCMCFLE is not set in action.

An unsupported flag is set in action.

DCMCFRTN_72051 -13051 NULL is set in leopt.

DCMCFRTN_72052 -13052 When DCMCFPRO is not set in action:
NULL is not set in proinf.

When DCMCFPRO is set in action:
A value smaller than 0 or a value 1025 or greater is specified for the
size of protocol-specific area L pointed to by proinf.

DCMCFRTN_72053 -13053 NULL is not set in resv02.

DCMCFRTN_72054 -13054 NULL is not set in resv03.

DCMCFRTN_72055 -13055 NULL is not set in resv04.

DCMCFRTN_72061 -13061 A value smaller than 0 or a value 240 or greater is specified for
mcfid in dcmcf_tactleopt.

DCMCFRTN_72062 -13062 resv01 in dcmcf_tactleopt is not filled with null characters.

DCMCFRTN_72063 -13063 idnam in dcmcf_tactleopt begins with the null character.

DCMCFRTN_72064 -13064 resv02 in dcmcf_tactleopt is not filled with null characters.

DCMCFRTN_72065 -13065 resv03 in dcmcf_tactleopt is not filled with null characters.

DCMCFRTN_72067 -13067 resv04 in dcmcf_tactleopt is not filled with null characters.

DCMCFRTN_72073 -13073 The character string set in idnam in dcmcf_tactleopt is 9 or more
bytes in length.

DCMCFRTN_72074 -13074 The character string set in idnam in dcmcf_tactleopt contains an
invalid character.

Return value Return value
(numeric)

Explanation

dc_mcf_tdctcn - Release a connection

249

dc_mcf_tdctcn - Release a connection

Format
ANSI C, C++

K&R C

Description
The dc_mcf_tdctcn() function releases a connection.

Normal termination of the dc_mcf_tdctcn() function indicates that the connection
release request was accepted successfully by the protocol product. However, this does
not necessarily mean that the connection with the remote system has been released.

If you intend to perform any connection-related operation after calling the
dc_mcf_tdctcn() function, first use the dc_mcf_tlscn() function to check the
status of the connection.

Arguments whose values are set in the UAP
action

Depending on the communication protocol, specify in one of the following formats the
method used to specify for this function the connection that is released:

{DCMCFLE|DCMCFCN}[|DCMCFFRC][|DCMCFPRO]

DCMCFLE

Specifies that a logical terminal name is specified for the connection that is
released.

#include <dcmcf.h>

int dc_mcf_tdctcn (DCLONG action, dcmcf_tdctcnopt *cnopt,

 char *proinf, DCLONG *resv02, char *resv03,

 char *resv04)

#include <dcmcf.h>

int dc_mcf_tdctcn (action, cnopt, proinf, resv02, resv03, resv04)

DCLONG action;

dcmcf_tdctcnopt *cnopt;

char *proinf;

DCLONG *resv02;

char *resv03;

char *resv04;

dc_mcf_tdctcn - Release a connection

250

This argument is not supported by TP1/NET/NCSB or TP1/NET/X25-Extended.

DCMCFCN

Specifies that a connection ID is specified for the connection that is released.

DCMCFFRC

Specifies that a connection is released forcibly.

DCMCFPRO

Specifies that the function depends on the communication protocol being used.

cnopt

Set in the dcmcf_tdctcnopt structure the connection information to be the subject
of this function's processing.

The following shows the format of the structure:

typedef struct {
 DCLONG mcfid; ...MCF communication
 process identifier
 char resv01[4]; ...Reserved
 char idnam[9]; ...Logical terminal name
 or connection ID
 char resv02[7]; ...Reserved
 char resv03[112]; ...Reserved
 char scnnam[9]; ...Area used by MCF
 char resv04[7]; ...Reserved
 char resv05[360]; ...Reserved
 } dcmcf_tdctcnopt;

• mcfid

Specify the MCF communication process identifier of the MCF communication
service for the connection to be processed. The permitted value range is from 0 to
239.

This argument is ignored when a logical terminal name is used to request a
connection release.

If you specify 0, the system searches for the MCF communication service to
which the specified connection ID belongs. In a configuration where many MCF
communication services are running or when you issue this function many times
from a UAP, we recommend that you specify the MCF communication process
identifier.

• resv01

dc_mcf_tdctcn - Release a connection

251

Fill the area with null characters.

• idnam

Specify the logical terminal name or connection ID of the connection to be
released. The logical terminal name or connection ID must be specified as a
maximum of 8 bytes of characters and must end with the null character.

• resv02, resv03, scnnam, resv04, resv05

Fill the areas with null characters.

proinf

Specify a protocol-specific area.

If you do not use a function that depends on the communication protocol, specify
NULL.

The following shows the format of a protocol-specific area:

The maximum size of a protocol-specific area is 1024 bytes.

The permitted value depends on the communication protocol being used. For details,
see the applicable OpenTP1 Protocol manual.

resv02, resv03, resv04

Specify NULL.

Return values
Return value Return value

(numeric)
Explanation

DCMCFRTN_00000 0 Normal termination.

DCMCFRTN_71001 -12001 The dc_mcf_tdctcn() function cannot be accepted because the
MCF is under start processing.

DCMCFRTN_71002 -12002 The dc_mcf_tdctcn() function cannot be accepted because the
MCF is under termination processing.

dc_mcf_tdctcn - Release a connection

252

DCMCFRTN_71004 -12004 A memory shortage occurred during dc_mcf_tdctcn() function
processing.

DCMCFRTN_71005 -12005 A communication error occurred. For the cause, see the message log
file.

DCMCFRTN_71006 -12006 An internal error occurred. For the cause, see the message log file.

DCMCFRTN_71007 -12007 The specified connection name has not been registered.

DCMCFRTN_71008 -12008 The specified logical terminal name has not been registered.

DCMCFRTN_71009 -12009 The dc_mcf_tdctcn() function is not supported by the applicable
MCF communication process.

DCMCFRTN_71010 -12010 Although the request to release the connection was issued to the
MCF communication process, the request was not accepted. For the
cause, see the message log file.

DCMCFRTN_71011 -12011 The dc_mcf_tdctcn() function cannot be accepted because the
connection has been deleted.

DCMCFRTN_71014 -12014 The specified logical terminal name belongs to TP1/NET/NCSB or
TP1/NET/X25-Extended; or, the specified connection group name
belongs to TP1/NET/OSI-TP or TP1/NET/TCP/IP.

DCMCFRTN_72050 -13050 An unsupported flag is set in action.

DCMCFRTN_72051 -13051 NULL is set in cnopt.

DCMCFRTN_72052 -13052 When DCMCFPRO is not set in action:
NULL is not set in proinf.

When DCMCFPRO is set in action:
A value smaller than 0 or a value 1025 or greater is specified for the
size of protocol-specific area L pointed to by proinf.

DCMCFRTN_72053 -13053 NULL is not set in resv02.

DCMCFRTN_72054 -13054 NULL is not set in resv03.

DCMCFRTN_72055 -13055 NULL is not set in resv04.

DCMCFRTN_72060 -13060 DCMCFLE and DCMCFCN cannot be specified together in action.

DCMCFRTN_72061 -13061 A value smaller than 0 or a value 240 or greater is specified for
mcfid in dcmcf_tdctcnopt.

DCMCFRTN_72062 -13062 resv01 in dcmcf_tdctcnopt is not filled with null characters.

DCMCFRTN_72063 -13063 idnam in dcmcf_tdctcnopt begins with the null character.

Return value Return value
(numeric)

Explanation

dc_mcf_tdctcn - Release a connection

253

DCMCFRTN_72064 -13064 resv02 in dcmcf_tdctcnopt is not filled with null characters.

DCMCFRTN_72065 -13065 resv03 in dcmcf_tdctcnopt is not filled with null characters.

DCMCFRTN_72066 -13066 scnnam in dcmcf_tdctcnopt is not filled with null characters.

DCMCFRTN_72067 -13067 resv04 in dcmcf_tdctcnopt is not filled with null characters.

DCMCFRTN_72069 -13069 resv05 in dcmcf_tdctcnopt is not filled with null characters.

DCMCFRTN_72073 -13073 The character string set in idnam in dcmcf_tdctcnopt is 9 or more
bytes in length.

DCMCFRTN_72074 -13074 The character string set in idnam in dcmcf_tdctcnopt contains an
invalid character.

Return value Return value
(numeric)

Explanation

dc_mcf_tdctle - Shut down a logical terminal

254

dc_mcf_tdctle - Shut down a logical terminal

Format
ANSI C, C++

K&R C

Description
The dc_mcf_tdctle() function shuts down a logical terminal.

Normal termination of the dc_mcf_tdctle() function indicates that the logical
terminal shutdown request was accepted successfully by the protocol product.
However, this does not necessarily mean that the logical terminal has been shut down.

If you intend to perform any operation related to the logical terminal after calling the
dc_mcf_tdctle() function, first use the dc_mcf_tlsle() function to check the
logical terminal's status.

Arguments whose values are set in the UAP
action

Depending on the communication protocol, specify in one of the following formats the
method used to specify for this function the logical terminal that is shut down:

DCMCFLE[|DCMCFPRO]

DCMCFLE

Specifies that the logical terminal name is used.

#include <dcmcf.h>

int dc_mcf_tdctle (DCLONG action, dcmcf_tdctleopt *leopt,

 char *proinf, DCLONG *resv02,

 char *resv03, char *resv04)

#include <dcmcf.h>

int dc_mcf_tdctle (action, leopt, proinf, resv02, resv03, resv04)

DCLONG action;

dcmcf_tdctleopt *leopt;

char *proinf;

DCLONG *resv02;

char *resv03;

char *resv04;

dc_mcf_tdctle - Shut down a logical terminal

255

DCMCFPRO

Specifies that the function depends on the communication protocol being used.

leopt

Set in a dcmcf_tdctleopt structure the information about the logical terminal that
is to be the subject of this function's processing.

The following shows the format of the structure:

typedef struct {
 DCLONG mcfid; ...MCF communication
 process identifier
 char resv01[4]; ...Reserved
 char idnam[9]; ...Logical terminal name
 char resv02[7]; ...Reserved
 char resv03[112]; ...Reserved
 char resv04[376]; ...Reserved
 } dcmcf_tdctleopt;

• mcfid

Specify the MCF communication process identifier of the MCF communication
service for the logical terminal that is to be processed. The permitted value range
is from 0 to 239.

If you specify 0, the system searches for the MCF communication service to
which the specified logical terminal name belongs. In a configuration where many
MCF communication services are running or when you issue this function many
times from a UAP, we recommend that you specify the MCF communication
process identifier.

• resv01

Fill the area with null characters.

• idnam

Specify the name of the logical terminal to be shut down. The logical terminal
name must be specified as a maximum of 8 bytes of characters and must end with
the null character.

• resv02, resv03, resv04

Fill the areas with null characters.

proinf

Specify a protocol-specific area.

If you do not use a function that depends on the communication protocol, specify

dc_mcf_tdctle - Shut down a logical terminal

256

NULL.

The following shows the format of a protocol-specific area:

The maximum size of a protocol-specific area is 1024 bytes.

The permitted value depends on the communication protocol being used. For details,
see the applicable OpenTP1 Protocol manual.

resv02, resv03, resv04

Specify NULL.

Return values
Return value Return value

(numeric)
Explanation

DCMCFRTN_00000 0 Normal termination.

DCMCFRTN_71001 -12001 The dc_mcf_tdctle() function cannot be accepted because the
MCF is under start processing.

DCMCFRTN_71002 -12002 The dc_mcf_tdctle() function cannot be accepted because the
MCF is under termination processing.

DCMCFRTN_71004 -12004 A memory shortage occurred during dc_mcf_tdctle() function
processing.

DCMCFRTN_71005 -12005 A communication error occurred. For the cause, see the message log
file.

DCMCFRTN_71006 -12006 An internal error occurred. For the cause, see the message log file.

DCMCFRTN_71008 -12008 The specified logical terminal name has not been registered.

DCMCFRTN_71009 -12009 The dc_mcf_tdctle() function is not supported by the applicable
MCF communication process.

DCMCFRTN_71010 -12010 Although the request to shut down the logical terminal was issued to
the MCF communication process, the request was not accepted. For
the cause, see the message log file.

dc_mcf_tdctle - Shut down a logical terminal

257

DCMCFRTN_71011 -12011 The dc_mcf_tdctle() function cannot be accepted because the
logical terminal has been deleted.

DCMCFRTN_72050 -13050 DCMCFLE is not set in action.

An unsupported flag is set in action.

DCMCFRTN_72051 -13051 NULL is set in leopt.

DCMCFRTN_72052 -13052 When DCMCFPRO is not set in action:
NULL is not set in proinf.

When DCMCFPRO is set in action:
A value smaller than 0 or a value 1025 or greater is specified for the
size of protocol-specific area L pointed to by proinf.

DCMCFRTN_72053 -13053 NULL is not set in resv02.

DCMCFRTN_72054 -13054 NULL is not set in resv03.

DCMCFRTN_72055 -13055 NULL is not set in resv04.

DCMCFRTN_72061 -13061 A value smaller than 0 or a value 240 or greater is specified for
mcfid in dcmcf_tdctleopt.

DCMCFRTN_72062 -13062 resv01 in dcmcf_tdctleopt is not filled with null characters.

DCMCFRTN_72063 -13063 idnam in dcmcf_tdctleopt begins with the null character.

DCMCFRTN_72064 -13064 resv02 in dcmcf_tdctleopt is not filled with null characters.

DCMCFRTN_72065 -13065 resv03 in dcmcf_tdctleopt is not filled with null characters.

DCMCFRTN_72067 -13067 resv04 in dcmcf_tdctleopt is not filled with null characters.

DCMCFRTN_72073 -13073 The character string set in idnam in dcmcf_tdctleopt is 9 or more
bytes in length.

DCMCFRTN_72074 -13074 The character string set in idnam in dcmcf_tdctleopt contains an
invalid character.

Return value Return value
(numeric)

Explanation

dc_mcf_tdlqle - Delete a logical terminal's output queue

258

dc_mcf_tdlqle - Delete a logical terminal's output queue

Format
ANSI C, C++

K&R C

Description
The dc_mcf_tdlqle() function deletes a logical terminal's output queue.

When the function deletes the output queue successfully, it sends an event that reports
that unprocessed send messages have been discarded (ERREVTA).

Arguments whose values are set in the UAP
action

Specify DCMCFLE to indicate that a logical terminal name is being specified.

leopt

Set in a dcmcf_tdlqleopt structure the connection information about the logical
terminal that is to be the subject of this function's processing.

The following shows the format of the structure:

typedef struct {
 DCLONG mcfid; ...MCF communication
 process identifier
 char resv01[4]; ...Reserved
 char idnam[9]; ...Logical terminal name
 char resv02[7]; ...Reserved
 char resv03[112]; ...Reserved

#include <dcmcf.h>

int dc_mcf_tdlqle (DCLONG action, dcmcf_tdlqleopt *leopt,

 char *resv01, DCLONG *resv02,

 char *resv03, char *resv04)

#include <dcmcf.h>

int dc_mcf_tdlqle (action, leopt, resv01, resv02, resv03, resv04)

DCLONG action;

dcmcf_tdlqleopt *leopt;

char *resv01;

DCLONG *resv02;

char *resv03;

char *resv04;

dc_mcf_tdlqle - Delete a logical terminal's output queue

259

 char resv04[376]; ...Reserved
 } dcmcf_tdlqleopt;

• mcfid

Specify the MCF communication process identifier of the MCF communication
service for the logical terminal to be processed. The permitted value range is from
0 to 239.

If you specify 0, the system searches for the MCF communication service to
which the specified logical terminal name belongs. In a configuration where many
MCF communication services are running or when you issue this function many
times from a UAP, we recommend that you specify the MCF communication
process identifier.

• resv01

Fill the area with null characters.

• idnam

Specify the name of the logical terminal whose output queue is deleted. The
logical terminal name must be specified as a maximum of 8 bytes of characters
and must end with the null character.

• resv02, resv03, resv04

Fill the areas with null characters.

resv01, resv02, resv03, resv04

Specify NULL.

Return values
Return value Return value

(numeric)
Explanation

DCMCFRTN_00000 0 Normal termination.

DCMCFRTN_71001 -12001 The dc_mcf_tdlqle() function cannot be accepted because the
MCF is under start processing.

DCMCFRTN_71002 -12002 The dc_mcf_tdlqle() function cannot be accepted because the
MCF is under termination processing.

DCMCFRTN_71004 -12004 A memory shortage occurred during dc_mcf_tdlqle() function
processing.

DCMCFRTN_71005 -12005 A communication error occurred. For the cause, see the message log
file.

dc_mcf_tdlqle - Delete a logical terminal's output queue

260

DCMCFRTN_71006 -12006 An internal error occurred. For the cause, see the message log file.

DCMCFRTN_71008 -12008 The specified logical terminal name has not been registered.

DCMCFRTN_71009 -12009 The dc_mcf_tdlqle() function is not supported by the applicable
MCF communication process.

DCMCFRTN_71010 -12010 Although the request to delete the logical terminal's output queue
was issued to the MCF communication process, the request was not
accepted. For the cause, see the message log file.

DCMCFRTN_71011 -12011 The dc_mcf_tdlqle() function cannot be accepted because the
logical terminal has been deleted.

DCMCFRTN_71017 -12017 The dc_mcf_tdlqle() function cannot be accepted because the
logical terminal has not been shut down.

DCMCFRTN_71018 -12018 The dc_mcf_tdlqle() function cannot be accepted because the
session has not been closed.

DCMCFRTN_71019 -12019 The dc_mcf_tdlqle() function cannot be accepted because an
alternate send operation is underway.

DCMCFRTN_72050 -13050 DCMCFLE is not set in action.

An unsupported flag is set in action.

DCMCFRTN_72051 -13051 NULL is set in leopt.

DCMCFRTN_72052 -13052 NULL is not set in resv01.

DCMCFRTN_72053 -13053 NULL is not set in resv02.

DCMCFRTN_72054 -13054 NULL is not set in resv03.

DCMCFRTN_72055 -13055 NULL is not set in resv04.

DCMCFRTN_72061 -13061 A value smaller than 0 or a value 240 or greater is specified for
mcfid in dcmcf_tdlqleopt.

DCMCFRTN_72062 -13062 resv01 in dcmcf_tdlqleopt is not filled with null characters.

DCMCFRTN_72063 -13063 idnam in dcmcf_tdlqleopt begins with the null character.

DCMCFRTN_72064 -13064 resv2 in dcmcf_tdlqleopt is not filled with null characters.

DCMCFRTN_72065 -13065 resv03 in dcmcf_tdlqleopt is not filled with null characters.

DCMCFRTN_72067 -13067 resv04 in dcmcf_tdlqleopt is not filled with null characters.

Return value Return value
(numeric)

Explanation

dc_mcf_tdlqle - Delete a logical terminal's output queue

261

DCMCFRTN_72073 -13073 The character string set in idnam in dcmcf_tdlqleopt is 9 or more
bytes in length.

DCMCFRTN_72074 -13074 The character string set in idnam in dcmcf_tdlqleopt contains an
invalid character.

Return value Return value
(numeric)

Explanation

dc_mcf_tempget - Accept temporary-stored data

262

dc_mcf_tempget - Accept temporary-stored data

Format
ANSI C, C++

K&R C

Description
The function dc_mcf_tempget() receives data stored in the temporary-stored area
which is used for continuous-inquiry-response processing.

For gtempleng, specify a value from 1 to 32,000 bytes. If the temporary-stored data
exceeds the length specified for gtempleng, the excess portion is truncated. If the
temporary-stored data is shorter than gtempleng -8 (with buffer format 1) or
gtempleng -6 (with buffer format 2), no processing is done for the remaining receive
area.

If there is no temporary-stored data, the function dc_mcf_tempget() is executed on
the assumption that (00)16 equivalent to the length specified for tempsize in the MCF
application definition is specified.

The figure below shows the format of the receive segment area. With buffer format 1,
L is 8 bytes; with buffer format 2, L is 6 bytes.

#include <dcmcf.h>}
int dc_mcf_tempget(DCLONG action,char *getdata,DCLONG gtempleng,
 DCLONG *gdataleng,char *resv01)

#include <dcmcf.h>
int dc_mcf_tempget (action,getdata,gtempleng,gdataleng,resv01)
DCLONG action;
char *getdata;
DCLONG gtempleng;
DCLONG *gdataleng;
char *resv01;

dc_mcf_tempget - Accept temporary-stored data

263

Arguments whose values are set in the UAP
action

Specify the type of buffer format to be used.

DCMCFBUF1

Specify DCMCFBUF1 when using buffer format 1.

DCMCFBUF2

Specify DCMCFBUF2 when using buffer format 2.

getdata

Specify the area for receiving temporary-stored data. After the function
dc_mcf_tempget() is called, the temporary-stored data is returned to the area
indicated by getdata.

gtempleng

Specify the length of the area for receiving temporary-stored data. The number of bytes
to be specified varies depending on the buffer format.

resv01

Specify a null character.

Arguments whose values are returned from OpenTP1
getdata

The temporary-stored data is returned.

gdataleng

The length of previously updated data is returned.

Return values

{DCMCFBUF1|DCMCFBUF2}

Return value Return value
(numeric)

Explanation

DCMCFRTN_00000 0 Normal termination.

DCMCFRTN_72000 -13000 The function dc_mcf_tempget() cannot be called
from an SPP.

DCMCFRTN_72013 -13013 Temporary-stored data exceeding the length of the
receive area was received. The excess portion was
truncated.

dc_mcf_tempget - Accept temporary-stored data

264

DCMCFRTN_72016 -13016 The value specified for action is invalid.

The value of the area pointed to by resv01 is not a null
character.

DCMCFRTN_72036 -13036 The receive area length is less than 9 bytes (with buffer
format 1) or less than 7 bytes (with buffer format 2).

DCMCFRTN_72101 -13101 The function dc_mcf_tempget() was called from an
MHP for which type=cont
(continuous-inquiry-response type) was not specified
in the MCF application definition.

DCMCFRTN_72106 -13106 The function dc_mcf_tempget() was called before
the function dc_mcf_receive() for receiving the
first segment.

DCMCFRTN_72107 -13107 The function dc_mcf_tempget() was called after the
function dc_mcf_contend().

Other than the above An unprecedented error (e.g., program damage)
occurred.

Return value Return value
(numeric)

Explanation

dc_mcf_tempput - Update temporary-stored data

265

dc_mcf_tempput - Update temporary-stored data

Format
ANSI C, C++

K&R C

Description
The function dc_mcf_tempput() updates data stored in the temporary-stored area
which is used for continuous-inquiry-response processing.

Call the function dc_mcf_tempget() before the function dc_mcf_tempput().

The figure below shows the format of the send segment area. With buffer format 1, L
is 8 bytes; with buffer format 2, L is 6 bytes.

Arguments whose values are set in the UAP
action

Specify the type of buffer format to be used.

DCMCFBUF1

Specify that buffer format 1 is used.

DCMCFBUF2

#include <dcmcf.h>
int dc_mcf_tempput(DCLONG action,char *putdata,DCLONG pdataleng,
 char *resv01)

#include <dcmcf.h>
int dc_mcf_tempput (action, putdata, pdataleng, resv01)
DCLONG action;
char *putdata;
DCLONG pdataleng;
char *resv01;

{DCMCFBUF1|DCMCFBUF2}

dc_mcf_tempput - Update temporary-stored data

266

Specify that buffer format 2 is used.

putdata

Specify the area storing the temporary-stored data to be updated.

ptempleng

Specify the length of the temporary-stored data to be updated.

resv01

Specify a null character.

Return values
Return value Return value

(numeric)
Explanation

DCMCFRTN_00000 0 Normal termination.

DCMCFRTN_71103 -12103 The area for updating the temporary-stored data could
not be acquired.

DCMCFRTN_72000 -13000 The function dc_mcf_tempput() cannot be called
from an SPP.

DCMCFRTN_72016 -13016 The value specified for action is invalid.

The value of the area pointed to by resv01 is not a null
character.

DCMCFRTN_72035 -13035 The value specified for the data update length exceeds
the value specified for the temporary data storage area
length in the MCF application definition.

The value specified for the data update length is less
than 1 byte.

DCMCFRTN_72101 -13101 The function dc_mcf_tempput() was called from an
MHP for which type=cont
(continuous-inquiry-response type) was not specified
in the MCF application definition.

DCMCFRTN_72105 -13105 The function dc_mcf_tempput() was called before
the function dc_mcf_tempget().

DCMCFRTN_72106 -13106 The function dc_mcf_tempput() was called before
the function dc_mcf_receive() for receiving the
first segment.

DCMCFRTN_72107 -13107 The function dc_mcf_tempput() was called after the
function dc_mcf_contend().

dc_mcf_tempput - Update temporary-stored data

267

Other than the above An unprecedented error (e.g., program damage)
occurred.

Return value Return value
(numeric)

Explanation

dc_mcf_timer_cancel - Cancel user timer monitoring

268

dc_mcf_timer_cancel - Cancel user timer monitoring

Format
ANSI C, C++

K&R C

Description
The function dc_mcf_timer_cancel() cancels user timer monitoring that was set
by the function dc_mcf_timer_set().

This function cancels user timer monitoring as soon as the function
dc_mcf_timer_cancel() returns normally.

If user timer monitoring has reached timeout and an MHP has already been started at
the time this function is called, the function dc_mcf_timer_cancel() returns with
the error DCMCFER_PARAM_TIM_ID.

Only a user server can call the function dc_mcf_timer_cancel().

Arguments whose values are set in the UAP
flags

Specify DCNOFLAGS.

timer_id

Specify the same timer request identifier as that specified when user timer monitoring
was set.

lename

Specify the same logical terminal name as that specified when user timer monitoring
was set.

#include <dcmcf.h>
int dc_mcf_timer_cancel(DCLONG flags,DCLONG timer_id,char *lename)

#include <dcmcf.h>
int dc_mcf_timer_cancel(flags,timer_id,lename)
DCLONG flags;
DCLONG timer_id;
char *lename;

dc_mcf_timer_cancel - Cancel user timer monitoring

269

Return values
Return value Return value

(numeric)
Explanation

DC_OK 0 Normal termination.

DCMCFER_PARAM_FLAGS -11911 The value specified for flags is invalid.

DCMCFER_PARAM_TIM_ID -11910 The timer request identifier specified for timer_id is
not registered.

Timeout already occurred and the MHP has started, or
user timer monitoring was already canceled.

DCMCFER_PARAM_LENAME -11912 The value specified for lename is invalid.

DCMCFER_NO_DEFINE -11916 The requested facility is not defined in the MCF.

dc_mcf_timer_set - Set user timer monitoring

270

dc_mcf_timer_set - Set user timer monitoring

Format
ANSI C, C++

K&R C

Description
Use the function dc_mcf_timer_set() from a UAP to set user timer monitoring for
monitoring the desired interval. To call this function, you must specify
usertime=yes in the -p option of the MCF communication configuration definition
mcfttim.

Only a user server can call the function dc_mcf_timer_set().

When the time (in seconds) specified for timer elapses (when timeout occurs), the
logical terminal specified for lename generates an event and starts the MHP having
the application name specified for apname. You can omit lename only when the UAP
is an MHP. In this case, the input source logical terminal is assumed.

The MHP to be started when timeout occurs must be a non-response-type (noans
type) MHP. The figure below shows the format of the message segment when a
message is passed to the MHP. With buffer format 1, L is 8 bytes; with buffer format
2, L is 4 bytes.

#include <dcmcf.h>
int dc_mcf_timer_set(DCLONG flags,DCLONG timer,DCLONG timer_id,
 char *lename,char *apname,char *data,DCLONG data_leng,
 DCLONG resv01,DCLONG resv02)

#include <dcmcf.h>
int dc_mcf_timer_set (flags, timer, timer_id, lename,
 apname, data, data_leng, resv01,
 resv02)
DCLONG flags;
DCLONG timer;
DCLONG timer_id;
char *lename;
char *apname;
char *data;
DCLONG data_leng;
DCLONG resv01;
DCLONG resv02;

dc_mcf_timer_set - Set user timer monitoring

271

To cancel the user timer monitor set by the function dc_mcf_timer_set(), call the
function dc_mcf_timer_cancel() with the same values specified for timer_id
and lename as specified in the function dc_mcf_timer_set().

The time monitor starts as soon as the function dc_mcf_timer_set() is called.

The maximum number of time monitors you can run concurrently is indicated by the
maximum number of time monitoring requests specified for the timereqno operand in
the -p option of the MCF communication configuration definition mcfttim.

Arguments whose values are set in the UAP
flags

Specify DCNOFLAGS.

timer

Specify the number of seconds that are to elapse before the MHP is started after the
function dc_mcf_timer_set() is called. The specifiable range is 1 to 360000 (from
1 second to 100 hours).

Since OpenTP1 monitors timeout at fixed intervals, an error arises between the time
specified for timer and the time that elapses before actual detection of timeout. The
accuracy of time monitoring depends on the value of the interval of time monitoring
specified for the btim operand in the -t option of the MCF communication
configuration definition mcfttim.

timer_id

Specify the timer request identifier.

timer_id provides information for identifying this timer. Be sure to specify a value
for timer_id that is unique in the logical terminal specified for lename.

lename

Specify in 8 or fewer bytes the name of the logical terminal that is to generate an event
when timeout occurs. Append a null character to the end of the logical terminal name.
When omitting this value, specify a null character. The default is the input source
logical terminal.

apname

Specify the application name of the MHP to be started. The attribute of this application

dc_mcf_timer_set - Set user timer monitoring

272

must be defined in the application attribute definition (mcfaalcap) field within the
MCF application definition that is specified by the -a option to the MCF
communication configuration definition mcftenv. This MCF communication
configuration definition (mcftenv) is for the MCF communication server that serves
the logical terminal specified by lename. server having the logical terminal name
specified for lename. Specify the application name in up to 8 bytes. Append a null
character to the end of the application name. The MHP must be a non-response-type
(noans type) MHP. The specified application name must be a user event.

data

Specify the contents of the message segment to be passed to the MHP to be started.
You cannot specify multiple segments. If no segment is to be passed to the MHP to be
started, specify a null character.

data_leng

Specify the length of the segment to be passed to the MHP to be started. If no segment
is to be passed to the MHP to be started, specify 0.

The specifiable range is 0 to 256. The maximum specifiable value depends on the
maximum message length specified for the msgsize operand in the

-p option of the MCF communication configuration definition mcfttim.

resv01

Specify DCNOFLAGS.

resv02

Specify DCNOFLAGS.

Return values
Return value Return value

(numeric)
Explanation

DC_OK 0 Normal termination.

DCMCFER_PARAM_FLAGS -11911 The value specified for flags is invalid.

DCMCFER_PARAM_LENAME -11912 The value specified for lename is invalid.

DCMCFER_PARAM_TIMER -11909 The value specified for timer is invalid.

DCMCFER_PARAM_APNAME -11913 The value specified for apname is invalid.

DCMCFER_PARAM_DATA -11915 The value specified for data is invalid.

DCMCFER_PARAM_LENG -11914 The value specified for data_leng is invalid.

dc_mcf_timer_set - Set user timer monitoring

273

DCMCFER_PARAM_TIM_ID -11910 The timer request identifier specified for timer_id is
already registered.

DCMCFER_INVALID_ARGS -11900 The value specified for an argument is invalid.

DCMCFER_NO_DEFINE -11916 The requested facility is not defined in the MCF.

DCMCFER_NO_TIMER_ENT -11917 User timer monitoring cannot be set because there is no
free space in the timer registration area. To reserve the
timer registration area, revise the value of the
timereqno operand in the -p option of the MCF
communication configuration definition mcfttim. If
required, check the values of the -p option of the MCF
manager definition mcfmcomn and the
static_shmpool_size operand in the system
environment definition.

Return value Return value
(numeric)

Explanation

dc_mcf_tlscn - Acquire a connection status

274

dc_mcf_tlscn - Acquire a connection status

Format
ANSI C, C++

K&R C

Description
The dc_mcf_tlscn() function acquires the status of a connection.

Arguments whose values are set in the UAP
action

Specify in one of the following formats the method used to specify the connection
whose status is to be acquired:

{DCMCFLE|DCMCFCN}

DCMCFLE

Specifies that a logical terminal name is specified for the connection whose status
is to be acquired.

This argument is not supported by TP1/NET/NCSB or TP1/NET/X25-Extended.

DCMCFCN

#include <dcmcf.h>

int dc_mcf_tlscn (DCLONG action, dcmcf_tlscnopt *cnopt,

 char *resv01, DCLONG *resv02,

 char *resv03, DCLONG *infcnt,

 dcmcf_cninf *inf, char *resv04)

#include <dcmcf.h>

int dc_mcf_tlscn (action, cnopt, resv01, resv02, resv03, infcnt,

 inf, resv04)

DCLONG action;

dcmcf_tlscnopt *cnopt;

char *resv01;

DCLONG *resv02;

char *resv03;

DCLONG *infcnt;

dcmcf_cninf *inf;

char *resv04;

dc_mcf_tlscn - Acquire a connection status

275

Specifies that a connection ID is specified for the connection whose status is to be
acquired.

cnopt

Set in a dcmcf_tlscnopt structure the information about the connection that is to be
the subject to this function's processing.

The following shows the format of the structure:

typedef struct {
 DCLONG mcfid; ...MCF communication
 process identifier
 char resv01[4]; ...Reserved
 char idnam[9]; ...Logical terminal name
 or connection ID
 char resv02[7]; ...Reserved
 char resv03[112]; ...Reserved
 char resv04[376]; ...Reserved
 } dcmcf_tlscnopt;

• mcfid

Specify the MCF communication process identifier of the MCF communication
service for the connection to be processed. The permitted value range is from 0 to
239.

This argument is ignored when a logical terminal name is used to request
connection status acquisition.

If you specify 0, the system searches for the MCF communication service to
which the specified connection ID belongs. In a configuration where many MCF
communication services are running or when you issue this function many times
from a UAP, we recommend that you specify the MCF communication process
identifier.

• resv01

Fill the area with null characters.

• idnam

Specify the logical terminal name or connection ID of the connection whose
status is to be acquired. The logical terminal name or connection ID must be
specified as a maximum of 8 bytes of characters and must end with the null
character.

• resv02, resv03, resv04

Fill the areas with the null characters.

dc_mcf_tlscn - Acquire a connection status

276

resv01, resv02, resv03

Specify NULL.

infcnt

Specify 1 as the number of dcmcf_cninf areas to be used to store connection status.

When the processing is completed, the number of corresponding connections is
returned.

inf

Specify the dcmcf_cninf area for storing the connection status.

The size of this area must be at least the size of the dcmcf_cninf structure x infcnt.

resv04

Specify NULL.

Arguments whose values are returned from OpenTP1
infcnt

Returns the number of connections that were processed by this function.

inf

Returns the dcmcf_cninf structure containing the information about the connection
that was processed by this function.

The following shows the format of the structure:

typedef struct {
 char idnam[9]; ...Connection ID
 char resv01[7]; ...Reserved
 char pnam[4]; ...Protocol type
 DCLONG status; ...Connection status
 char resv02[40]; ...Reserved
 } dcmcf_cninf;

• idnam

Sets the connection ID of the requested connection.

• resv01

Fills the area with null characters.

• pnam

Sets one of the following values as the protocol type of the requested connection:

dc_mcf_tlscn - Acquire a connection status

277

'UA '

TP1/NET/User Agent (OSAS/UA protocol)

'hds'

TP1/NET/HDLC (HDLC protocol)

'X25'

TP1/NET/X25 (X.25 protocol)

'TP '

TP1/NET/OSI-TP (OSI TP protocol)

'XP '

TP1/NET/XMAP3

'HS1'

TP1/NET/HSC (HSC1 protocol)

'HS2'

TP1/NET/HSC (HSC2 protocol)

'CSB'

TP1/NET/NCSB (NCSB protocol)

'NIF'

TP1/NET/OSAS-NIF (NIF protocol)

'SL2'

TP1/NET/Secondary Logical Unit - TypeP2 (SLUTYPE-P protocol
(secondary station))

'TCP'

TP1/NET/TCP/IP (TCP/IP protocol)

'X2E'

TP1/NET/X25-Extended (X.25 protocol)

• status

Sets one of the following values as the status of the requested connection:

DCMCF_CNST_ACT

A connection has been established.

DCMCF_CNST_ACT_B

dc_mcf_tlscn - Acquire a connection status

278

Connection establishment processing is underway.

DCMCF_CNST_DCT

A connection has been released.

DCMCF_CNST_DCT_B

Connection release processing is underway.

• resv02

Fills the area with null characters.

Return values
Return value Return value

(numeric)
Explanation

DCMCFRTN_00000 0 Normal termination.

DCMCFRTN_71001 -12001 The dc_mcf_tlscn() function cannot be accepted because the
MCF is under start processing.

DCMCFRTN_71004 -12004 A memory shortage occurred during dc_mcf_tlscn() function
processing.

DCMCFRTN_71005 -12005 A communication error occurred. For the cause, see the message log
file.

DCMCFRTN_71006 -12006 An internal error occurred. For the cause, see the message log file.

DCMCFRTN_71007 -12007 The specified connection name has not been registered.

DCMCFRTN_71008 -12008 The specified logical terminal name has not been registered.

DCMCFRTN_71009 -12009 The dc_mcf_tlscn() function is not supported by the applicable
MCF communication process.

DCMCFRTN_71010 -12010 Although the request to acquire the connection status was issued to
the MCF communication process, the request was not accepted. For
the cause, see the message log file.

DCMCFRTN_71011 -12011 The dc_mcf_tlscn() function cannot be accepted because the
connection has been deleted.

DCMCFRTN_71014 -12014 The specified logical terminal name belongs to TP1/NET/NCSB or
TP1/NET/X25-Extended; or, the specified connection group name
belongs to TP1/NET/OSI-TP or TP1/NET/TCP/IP.

DCMCFRTN_72050 -13050 An unsupported flag is set in action.

DCMCFRTN_72051 -13051 NULL is set in cnopt.

DCMCFRTN_72052 -13052 NULL is not set in resv01.

dc_mcf_tlscn - Acquire a connection status

279

DCMCFRTN_72053 -13053 NULL is not set in resv02.

DCMCFRTN_72054 -13054 NULL is not set in resv03.

DCMCFRTN_72055 -13055 NULL is not set in resv04.

DCMCFRTN_72056 -13056 NULL is set in infcnt.

DCMCFRTN_72057 -13057 NULL is set in inf.

DCMCFRTN_72060 -13060 DCMCFLE and DCMCFCN cannot be specified together in action.

DCMCFRTN_72061 -13061 A value smaller than 0 or a value 240 or greater is specified for
mcfid in dcmcf_tlscnopt.

DCMCFRTN_72062 -13062 resv01 in dcmcf_tlscnopt is not filled with null characters.

DCMCFRTN_72063 -13063 idnam in dcmcf_tlscnopt begins with the null character.

DCMCFRTN_72064 -13064 resv02 in dcmcf_tlscnopt is not filled with null characters.

DCMCFRTN_72065 -13065 resv03 in dcmcf_tlscnopt is not filled with null characters.

DCMCFRTN_72067 -13067 resv04 in dcmcf_tlscnopt is not filled with null characters.

DCMCFRTN_72073 -13073 The character string set in idnam in dcmcf_tlscnopt is 9 or more
bytes in length.

DCMCFRTN_72074 -13074 The character string set in idnam in dcmcf_tlscnopt contains an
invalid character.

DCMCFRTN_72076 -13076 The value 1 is not set in infcnt.

Return value Return value
(numeric)

Explanation

dc_mcf_tlscom - Acquire the status of MCF communication services

280

dc_mcf_tlscom - Acquire the status of MCF communication services

Format
ANSI C, C++

K&R C

Description
The dc_mcf_tlscom() function acquires the statuses of the MCF communication
services or application start services.

Arguments whose values are set in the UAP
action

Specify DCNOFLAGS.

resv01

Specify NULL.

infcnt

Specify the number of dcmcf_svinf areas used to store the statuses of the MCF
communication services or application start services.

When the processing is completed, the number of corresponding MCF communication
services is returned.

inf

Specify the dcmcf_svinf area used to store the statuses of the MCF communication
services or application start services.

The size of this area must be at least the size of the dcmcf_svinf structure x infcnt.

#include <dcmcf.h>

int dc_mcf_tlscom (DCLONG action, char *resv01, DCLONG *infcnt,

 dcmcf_svinf *inf, char *resv02)

#include <dcmcf.h>

int dc_mcf_tlscom (action, resv01, infcnt, inf, resv02)

DCLONG action;

char *resv01;

DCLONG *infcnt;

dcmcf_svinf *inf;

char *resv02;

dc_mcf_tlscom - Acquire the status of MCF communication services

281

resv02

Specify NULL.

Arguments whose values are returned from OpenTP1
infcnt

Returns the number of application start services or MCF communication services that
have been registered in the MCF service.

inf

Returns the dcmcf_svinf structure that contains information about the application
start services or MCF communication services registered in the MCF service.

The following shows the format of the structure:

typedef struct {
 DCLONG mcfid; ...MCF communication
 process identifier or
 Application start
 process identifier
 char svname[9]; ...MCF communication
 service name
 char resv01[7]; ...Reserved
 char pnam[20]; ...Protocol type
 DCLONG status; ...Status of MCF
 communication service
 char resv02[20]; ...Reserved
 } dcmcf_svinf;

• mcfid

Sets an application start process identifier or MCF communication process
identifier.

• svname

Sets the MCF communication service name.

• resv01

Fills the area with null characters.

• pnam

Sets the protocol type.

'MCF '

Application start service for TP1/Message Control

dc_mcf_tlscom - Acquire the status of MCF communication services

282

'User Agent '

TP1/NET/User Agent (OSAS/UA protocol)

'HDLC '

TP1/NET/HDLC (HDLC protocol)

'X25 '

TP1/NET/X25 (X.25 protocol)

'TP '

TP1/NET/OSI-TP (OSI TP protocol)

'XMAP3 '

TP1/NET/XMAP3

'HSC '

TP1/NET/HSC (HSC protocol)

'NCSB '

TP1/NET/NCSB (NCSB protocol)

'OSAS-NIF '

TP1/NET/OSAS-NIF (NIF/OSI protocol)

'NET/SLUP2 '

TP1/NET/Secondary Logical Unit - TypeP2 (SLUTYPE-P protocol
(secondary station))

'TCP/IP '

TP1/NET/TCP/IP (TCP/IP protocol)

'X25-EX '

TP1/NET/X25-Extended (X.25 protocol)

'UDP/IP '

TP1/NET/User Datagram Protocol (UDP protocol)

• status

Sets one of the following values as the status of the MCF communication service
or application start service:

DCMCF_SVST_OFLN

Service is stopped.

dc_mcf_tlscom - Acquire the status of MCF communication services

283

DCMCF_SVST_START

Service is under preparation processing.

DCMCF_SVST_ONLN

Service has started or is under preparation processing for termination.

DCMCF_SVST_PREEND

Service is under preparation processing for terminating partial stop.

DCMCF_SVST_END

Service is under stop processing.

• resv02

Fills the area with null characters.

Return values
Return value Return value

(numeric)
Explanation

DCMCFRTN_00000 0 Normal termination.

DCMCFRTN_71001 -12001 The dc_mcf_tlscom() function cannot be accepted because the
MCF is under start processing.

DCMCFRTN_71004 -12004 A memory shortage occurred during dc_mcf_tlscom() function
processing.

DCMCFRTN_71005 -12005 A communication error occurred. For the cause, see the message log
file.

DCMCFRTN_71006 -12006 An internal error occurred. For the cause, see the message log file.

DCMCFRTN_72013 -13013 The number of MCF communication services or application start
services exceeded the value specified in infcnt. Information about
the excess services was discarded.

DCMCFRTN_72050 -13050 DCNOFLAGS is not set in action.

DCMCFRTN_72052 -13052 NULL is not set in resv01.

DCMCFRTN_72053 -13053 NULL is not set in resv02.

DCMCFRTN_72056 -13056 NULL is set in infcnt.

DCMCFRTN_72057 -13057 NULL is set in inf.

DCMCFRTN_72076 -13076 A value of 0 or smaller is set in infcnt.

dc_mcf_tlsle - Acquire a logical terminal status

284

dc_mcf_tlsle - Acquire a logical terminal status

Format
ANSI C, C++

K&R C

Description
The dc_mcf_tlsle() function acquires the status of a logical terminal.

Arguments whose values are set in the UAP
action

Specify DCMCFLE to indicate that a logical terminal name is to be specified.

leopt

Set in a dcmcf_tlsleopt structure the connection information about the logical
terminal that is to be the subject to this function's processing.

The following shows the format of the structure:

typedef struct {
 DCLONG mcfid; ...MCF communication
 process identifier
 char resv01[4]; ...Reserved
 char idnam[9]; ...Logical terminal name

#include <dcmcf.h>

int dc_mcf_tlsle (DCLONG action, dcmcf_tlsleopt *leopt,

 char *resv01, DCLONG *resv02,

 char *resv03, DCLONG *infcnt,

 dcmcf_leinf2 *inf, char *resv04)

#include <dcmcf.h>

int dc_mcf_tlsle (action, leopt, resv01, resv02, resv03, infcnt,

 inf, resv04)

DCLONG action;

dcmcf_tlsleopt *leopt;

char *resv01;

DCLONG *resv02;

char *resv03;

DCLONG *infcnt;

dcmcf_leinf2 *inf;

char *resv04;

dc_mcf_tlsle - Acquire a logical terminal status

285

 char resv02[7]; ...Reserved
 char resv03[112]; ...Reserved
 char resv04[376]; ...Reserved
 } dcmcf_tlsleopt;

• mcfid

Specify the MCF communication process identifier of the MCF communication
service for the logical terminal that is to be processed. The permitted value range
is from 0 to 239.

If you specify 0, the system searches for the MCF communication service to
which the specified logical terminal name belongs. In a configuration where many
MCF communication services are running or when you issue this function many
times from a UAP, we recommend that you specify the MCF communication
process identifier.

• resv01

Fill the area with null characters.

• idnam

Specify the name of the logical terminal whose status is to be acquired. The
logical terminal name must be specified as a maximum of 8 bytes of characters
and must end with the null character.

• resv02, resv03, resv04

Fill the areas with null characters.

resv01, resv02, resv03

Specify NULL.

infcnt

Specify 1 as the number of dcmcf_leinf2 areas for storing the logical terminal
status.

When the processing is completed, the number of corresponding logical terminals is
returned.

inf

Specify a dcmcf_leinf2 area for storing the logical terminal status information.

The size of this area must be at least the size of the dcmcf_leinf2 structure x
infcnt.

resv04

Specify NULL.

dc_mcf_tlsle - Acquire a logical terminal status

286

Arguments whose values are returned from OpenTP1
infcnt

Returns the number of logical terminals that were processed by this function.

inf

Returns the dcmcf_leinf2 structure containing the information about the logical
terminal that was processed by this function.

The following shows the format of the structure:

typedef struct {
 char idnam[9]; ...Logical terminal name
 char resv01[7]; ...Reserved
 char resv02[4]; ...Reserved
 DCLONG status; ...Logical terminal status
 char resv03[40]; ...Reserved
 } dcmcf_leinf2;

• idnam

Sets the name of the requested logical terminal.

• resv01, resv02

Fills the areas with null characters.

• status

Sets one of the following values as the status of the requested logical terminal:

DCMCF_LEST_ACT

Logical terminal has been released from shutdown status.

DCMCF_LEST_DCT

Logical terminal has been shut down.

• resv03

Fills the area with null characters.

Return values
Return value Return value

(numeric)
Explanation

DCMCFRTN_00000 0 Normal termination.

DCMCFRTN_71001 -12001 The dc_mcf_tlsle() function cannot be accepted because the
MCF is under start processing.

dc_mcf_tlsle - Acquire a logical terminal status

287

DCMCFRTN_71004 -12004 A memory shortage occurred during dc_mcf_tlsle() function
processing.

DCMCFRTN_71005 -12005 A communication error occurred. For the cause, see the message log
file.

DCMCFRTN_71006 -12006 An internal error occurred. For the cause, see the message log file.

DCMCFRTN_71008 -12008 The specified logical terminal name has not been registered.

DCMCFRTN_71009 -12009 The dc_mcf_tlsle() function is not supported by the applicable
MCF communication process.

DCMCFRTN_71010 -12010 Although the request to acquire the logical terminal status was issued
to the MCF communication process, the request was not accepted.
For the cause, see the message log file.

DCMCFRTN_71011 -12011 The dc_mcf_tlsle() function cannot be accepted because the
logical terminal has been deleted.

DCMCFRTN_72050 -13050 DCMCFLE is not set in action.

An unsupported flag is set in action.

DCMCFRTN_72051 -13051 NULL is set in leopt.

DCMCFRTN_72052 -13052 NULL is not set in resv01.

DCMCFRTN_72053 -13053 NULL is not set in resv02.

DCMCFRTN_72054 -13054 NULL is not set in resv03.

DCMCFRTN_72055 -13055 NULL is not set in resv04.

DCMCFRTN_72056 -13056 NULL is set in infcnt.

DCMCFRTN_72057 -13057 NULL is set in inf.

DCMCFRTN_72061 -13061 A value smaller than 0 or a value 240 or greater is specified for
mcfid in dcmcf_tlsleopt.

DCMCFRTN_72062 -13062 resv01 in dcmcf_tlsleopt is not filled with null characters.

DCMCFRTN_72063 -13063 idnam in dcmcf_tlsleopt begins with the null character.

DCMCFRTN_72064 -13064 resv02 in dcmcf_tlsleopt is not filled with null characters.

DCMCFRTN_72065 -13065 resv03 in dcmcf_tlsleopt is not filled with null characters.

DCMCFRTN_72067 -13067 resv04 in dcmcf_tlsleopt is not filled with null characters.

Return value Return value
(numeric)

Explanation

dc_mcf_tlsle - Acquire a logical terminal status

288

DCMCFRTN_72073 -13073 The character string set in idnam in dcmcf_tlsleopt is 9 bytes or
more in length.

DCMCFRTN_72074 -13074 The character string set in idnam in dcmcf_tlsleopt contains an
invalid character.

DCMCFRTN_72076 -13076 The value 1 is not set in infcnt.

Return value Return value
(numeric)

Explanation

dc_mcf_tlsln - Acquire the acceptance status for a server-type connection establishment request

289

dc_mcf_tlsln - Acquire the acceptance status for a server-type
connection establishment request

Format
ANSI C, C++

K&R C

Description
The dc_mcf_tlsln() function acquires the acceptance status for a server-type
connection establishment request.

Arguments whose values are set in the UAP
action

Set DCNOFLAGS.

mcfid

Specify the MCF communication process identifier of the MCF communication
service that is to be processed. The permitted value range is from 1 to 239.

resv01

Specify NULL.

infcnt

Specify 1 as the number of dcmcf_lninf areas to be used to store the acceptance
status of the server-type connection establishment request.

When the processing is completed, the number of corresponding MCF communication
services is returned.

#include <dcmcf.h>

int dc_mcf_tlsln (DCLONG action, DCLONG mcfid, char *resv01,

 DCLONG *infcnt, dcmcf_lninf *inf, char *resv02)

#include <dcmcf.h>

int dc_mcf_tlsln (action, mcfid, resv01, infcnt, inf, resv02)

DCLONG action;

DCLONG mcfid;

char *resv01;

DCLONG *infcnt;

dcmcf_lninf *inf;

char *resv02;

dc_mcf_tlsln - Acquire the acceptance status for a server-type connection establishment request

290

inf

Specify a dcmcf_lninf area to be used to store the acceptance status of the
server-type connection establishment request.

The size of this area must be at least the size of the dcmcf_lninf structure x infcnt.

resv02

Specify NULL.

Arguments whose values are returned from OpenTP1
infcnt

Returns the number of MCF communication services that were processed by this
function.

inf

Returns the dcmcf_lninf structure containing the acceptance status of the
server-type connection establishment request for the MCF communication service that
was processed by this function.

The following shows the format of the structure:

typedef struct {
 DCLONG status; ...Acceptance status
 char resv01[60]; ...Reserved
 } dcmcf_lninf;

• status

Sets one of the following values as the acceptance status of the server-type
connection establishment request:

DCMCF_LNST_LISTEN

The acceptance process for the server-type connection establishment request
has started.

DCMCF_LNST_RETRY

The acceptance process for the server-type connection establishment request
is under start processing.

DCMCF_LNST_ONLN_W

The acceptance process for the server-type connection establishment request
is in start request wait status.

DCMCF_LNST_INIT

dc_mcf_tlsln - Acquire the acceptance status for a server-type connection establishment request

291

The acceptance process for the server-type connection establishment request
has ended.

The table below shows the relationship between the status and function
availability.

Legend:

Y: Can be used

N: Cannot be used

• resv01

Fills the area with null characters.

Return values

Value of status Library function availability

dc_mcf_tonln() dc_mcf_tofln()

DCMCF_LNST_LISTEN N Y

DCMCF_LNST_RETRY N Y

DCMCF_LNST_ONLN_W Y Y

DCMCF_LNST_INIT Y N

Return value Return value
(numeric)

Explanation

DCMCFRTN_00000 0 Normal termination.

DCMCFRTN_71001 -12001 The dc_mcf_tlsln() function cannot be accepted because the
MCF is under start processing.

DCMCFRTN_71002 -12002 The dc_mcf_tlsln() function cannot be accepted because the
MCF is under termination processing.

DCMCFRTN_71004 -12004 A memory shortage occurred during dc_mcf_tlsln() function
processing.

DCMCFRTN_71005 -12005 A communication error occurred. For the cause, see the message log
file.

DCMCFRTN_71006 -12006 An internal error occurred. For the cause, see the message log file.

DCMCFRTN_71009 -12009 The dc_mcf_tlsln() function is not supported by the applicable
MCF communication process.

dc_mcf_tlsln - Acquire the acceptance status for a server-type connection establishment request

292

DCMCFRTN_71010 -12010 Although the request to acquire the acceptance status of the
server-type connection establishment request was issued to the MCF
communication process, the request was not accepted. For the cause,
see the message log file.

DCMCFRTN_72050 -13050 DCNOFLAGS is not set in action.

DCMCFRTN_72052 -13052 NULL is not set in resv01.

DCMCFRTN_72053 -13053 NULL is not set in resv02.

DCMCFRTN_72056 -13056 NULL is set in infcnt.

DCMCFRTN_72057 -13057 NULL is set in inf.

DCMCFRTN_72061 -13061 A value of 0 or smaller or of 240 or greater is specified for mcfid.

DCMCFRTN_72076 -13076 The value 1 is not set in infcnt.

Return value Return value
(numeric)

Explanation

dc_mcf_tofln - Stop accepting server-type connection establishment requests

293

dc_mcf_tofln - Stop accepting server-type connection establishment
requests

Format
ANSI C, C++

K&R C

Description
The dc_mcf_tofln() function stops accepting server-type connection establishment
requests.

Arguments whose values are set in the UAP
action

Set DCNOFLAGS.

mcfid

Specify the MCF communication process identifier of the MCF communication
service that is to be processed. The permitted value range is from 1 to 239.

resv01, resv02

Specify NULL.

Return values

#include <dcmcf.h>

int dc_mcf_tofln (DCLONG action, DCLONG mcfid, char *resv01,

 char *resv02)

#include <dcmcf.h>

int dc_mcf_tofln (action, mcfid, resv01, resv02)

DCLONG action;

DCLONG mcfid;

char *resv01;

char *resv02;

Return value Return value
(numeric)

Explanation

DCMCFRTN_00000 0 Normal termination.

DCMCFRTN_71001 -12001 The dc_mcf_tofln() function cannot be accepted because the
MCF is under start processing.

dc_mcf_tofln - Stop accepting server-type connection establishment requests

294

DCMCFRTN_71002 -12002 The dc_mcf_tofln() function cannot be accepted because the
MCF is under termination processing.

DCMCFRTN_71004 -12004 A memory shortage occurred during dc_mcf_tofln() function
processing.

DCMCFRTN_71005 -12005 A communication error occurred. For the cause, see the message log
file.

DCMCFRTN_71006 -12006 An internal error occurred. For the cause, see the message log file.

DCMCFRTN_71009 -12009 The dc_mcf_tofln() function is not supported by the applicable
MCF communication process.

DCMCFRTN_71010 -12010 Although the request to stop accepting server-type connection
establishment requests was issued to the MCF communication
process, the request was not accepted. For the cause, see the message
log file.

DCMCFRTN_72050 -13050 DCNOFLAGS is not set in action.

DCMCFRTN_72052 -13052 NULL is not set in resv01.

DCMCFRTN_72053 -13053 NULL is not set in resv02.

DCMCFRTN_72061 -13061 A value of 0 or smaller or of 240 or greater is specified for mcfid.

Return value Return value
(numeric)

Explanation

dc_mcf_tonln - Start accepting server-type connection establishment requests

295

dc_mcf_tonln - Start accepting server-type connection
establishment requests

Format
ANSI C, C++

K&R C

Description
The dc_mcf_tonln() function starts accepting server-type connection establishment
requests.

Arguments whose values are set in the UAP
action

Set DCNOFLAGS.

mcfid

Specify the MCF communication process identifier of the MCF communication
service that is to be processed. The permitted value range is from 1 to 239.

resv01, resv02

Specify NULL.

Return values

#include <dcmcf.h>

int dc_mcf_tonln (DCLONG action, DCLONG mcfid, char *resv01,

 char *resv02)

#include <dcmcf.h>

int dc_mcf_tonln (action, mcfid, resv01, resv02)

DCLONG action;

DCLONG mcfid;

char *resv01;

char *resv02;

Return value Return value
(numeric)

Explanation

DCMCFRTN_00000 0 Normal termination.

DCMCFRTN_71001 -12001 The dc_mcf_tonln() function cannot be accepted because the
MCF is under start processing.

dc_mcf_tonln - Start accepting server-type connection establishment requests

296

DCMCFRTN_71002 -12002 The dc_mcf_tonln() function cannot be accepted because the
MCF is under termination processing.

DCMCFRTN_71004 -12004 A memory shortage occurred during dc_mcf_tonln() function
processing.

DCMCFRTN_71005 -12005 A communication error occurred. For the cause, see the message log
file.

DCMCFRTN_71006 -12006 An internal error occurred. For the cause, see the message log file.

DCMCFRTN_71009 -12009 The dc_mcf_tonln() function is not supported by the applicable
MCF communication process.

DCMCFRTN_71010 -12010 Although the request to start accepting server-type connection
establishment requests was issued to the MCF communication
process, the request was not accepted. For the cause, see the message
log file.

DCMCFRTN_72050 -13050 DCNOFLAGS is not set in action.

DCMCFRTN_72052 -13052 NULL is not set in resv01.

DCMCFRTN_72053 -13053 NULL is not set in resv02.

DCMCFRTN_72061 -13061 A value of 0 or smaller or of 240 or greater is specified for mcfid.

Return value Return value
(numeric)

Explanation

Performance verification trace (dc_prf_~)

297

Performance verification trace (dc_prf_~)

This section describes the functions available for the performance verification trace.
The functions for the performance verification trace are as follows:

• dc_prf_get_trace_num - Report the sequential number for an acquired
performance verification trace

• dc_prf_utrace_put - Acquire user-specific performance verification traces

The functions (dc_prf_~) for the performance verification trace are available on
UAPs that run TP1/Server Base or TP1/LiNK. However, you must have installed TP1/
Extension 1 before you can use this facility. Note that operation will be unpredictable
if you run the facility while TP1/Extension 1 is not installed.

dc_prf_get_trace_num - Report the sequential number for an acquired performance verification trace

298

dc_prf_get_trace_num - Report the sequential number for an
acquired performance verification trace

Format
ANSI C, C++

K&R C

Description
The function dc_prf_get_trace_num() reports the acquired sequential trace
number within the process of the latest performance verification trace (prf trace)
acquired before the function was called. It reports this information to the function call
source.

If no performance verification trace has been acquired in the process that called the
function dc_prf_get_trace_num(), the acquired sequential trace number is 0.

Arguments whose values are set in the UAP
trace_num

Specify the leading pointer of the area in which you want to set the sequential number
for an acquired performance verification trace.

flags

Specify DCNOFLAGS.

Return values

#include <dcprf.h>
int dc_prf_get_trace_num(unsigned short *trace_num,
 DCLONG flags)

#include <dcprf.h>
int dc_prf_get_trace_num(trace_num, flags)
unsigned short *trace_num;
DCLONG flags;

Return value Return value
(numeric)

Explanation

DC_OK 0 Normal termination.

DCPRFER_PARAM -4601 The value specified for an argument is invalid.

dc_prf_utrace_put - Acquire user-specific performance verification traces

299

dc_prf_utrace_put - Acquire user-specific performance verification
traces

Format
ANSI C, C++

K&R C

Description
The function dc_prf_utrace_put() acquires a user-specific performance
verification trace (prf trace).

Arguments whose values are set in the UAP
event_id

Specify the event ID of the event to be acquired. The range of available event IDs is
0x0001 to 0x0040.

datalen

Specify the data length of the trace data to be acquired. The specifiable data length is
4 bytes to 256 bytes. The data length must be a multiple of 4 bytes.

buffaddr

Specify the leading pointer of the buffer holding the trace data to be acquired.

flags

Specify DCNOFLAGS.

#include <dcprf.h>
int dc_prf_utrace_put(unsigned short event_id, unsigned
 short datalen, char *buffaddr,
 DCLONG flags)

#include <dcprf.h>
int dc_prf_utrace_put(event_id, datalen, buffaddr, flags)
unsigned short event_id;
unsigned short datalen;
char *buffaddr;
DCLONG flags;

dc_prf_utrace_put - Acquire user-specific performance verification traces

300

Return values

Notes
Even if the function dc_prf_utrace_put() returns the value DC_OK, the trace has
not necessarily been properly acquired. This is because data may be lost during trace
acquisition processing if multiple processes issue acquisition requests simultaneously
because no lock is used.

Return value Return value
(numeric)

Explanation

DC_OK 0 Normal termination.

DCPRFER_PARAM -4601 The value specified for an argument is invalid.

Remote API facility (dc_rap_~)

301

Remote API facility (dc_rap_~)

This section explains the functions to be used when the user uses remote API facility
to manage establishment and release of connections. The functions provided by the
remote API facility are as follows:

• dc_rap_connect - Establish a connection with a RAP-processing listener

• dc_rap_disconnect - Release a connection with a RAP-processing listener

The functions (dc_rap_~) provided by the remote API facility can be used in UAPs
of TP1/Server Base or TP1/LiNK.

dc_rap_connect - Establish a connection with a RAP-processing listener

302

dc_rap_connect - Establish a connection with a RAP-processing
listener

Format
ANSI C, C++

K&R C

Description
The function dc_rap_connect establishes a connection between a RAP-processing
listener and a RAP-processing client.

The RAP-processing listener with which a connection is to be established is the
RAP-processing listener that was activated at target_port on target_host.

Arguments whose values are set in the UAP
target_host ((1 to 255 alphanumeric characters, periods, or hyphens))

Specify the host name of the OpenTP1 node on which the RAP-processing listener was
activated.

target_port <unsigned integer> ((1 to 65535))

Specify the port number of the well-known port being used by the RAP-processing
listener.

rflags

Specify DCNOFLAGS.

Arguments whose values are returned from OpenTP1
sv_id

A service ID is returned when the function dc_rap_connect terminates normally or
DCRAPER_ALREADY_CONNECT is returned.

#include <dcrap.h>
int dc_rap_connect(char *target_host, DCLONG target_port,
 DCRAP_SV_ID *sv_id, DCLONG rflags)

#include <dcrap.h>
int dc_rap_connect(target_host, target_port, sv_id, rflags)
char *target_host;
DCLONG target_port;
DCRAP_SV_ID *sv_id;
DCLONG rflags;

dc_rap_connect - Establish a connection with a RAP-processing listener

303

Return values
Return value Return value

(numeric)
Explanation

DC_OK 0 Normal termination. A connection was established
with the RAP-processing listener.

DCRAPER_PARAM -5501 The value specified for the argument is invalid.

DCRAPER_PROTO -5502 The protocol is invalid. A possible cause is as follows:
• The function dc_rpc_open was not called.
• Although the rpc_rap_auto_connect operand

in the user service definition had been set to Y, the
function dc_rap_connect was called.

• The -w option was not specified in the dcsvgdef
definition command in the user service network
definition.

DCRAPER_NOMEMORY -5503 The memory became insufficient.

DCRAPER_MAX_CONNECTION -5517 The specified value exceeds the maximum number of
dc_rap_connect functions which can be called from
a single process.

DCRAPER_NETDOWN -5505 A network error occurred during communication with
the RAP-processing listener.

DCRAPER_TIMEDOUT -5506 A timeout occurred during communication with the
RAP-processing listener.

DCRAPER_NOSOCKET -5507 The number of sockets became insufficient.

DCRAPER_NOHOSTNAME -5508 The host name cannot be resolved.

DCRAPER_SHUTDOWN -5521 The RAP-processing listener is being terminated.

DCRAPER_NOCONTINUE -5522 An error which prevents continuation of processing
occurred. Possible causes of the error are as follows:
• An unexpected message was received.
• A message was received unexpectedly from a

remote system.

DCRAPER_SYSCALL -5523 An unexpected error occurred during system call.

DCRAPER_UNKNOWN_NODE -5531 An attempt was made to establish a connection with a
RAP-processing listener which is on an unconnected
network.

DCRAPER_NOMEMORY_SV -5520 The memory became insufficient on the
RAP-processing listener or RAP-processing server.

dc_rap_connect - Establish a connection with a RAP-processing listener

304

Note
If the function dc_rap_connect returns with an error (returns with a value other than
DCRAPER_ALREADY_CONNECT), connection was not established with the
RAP-processing listener.

The error code acquired by the UAP trace is as follows:

0: No error

1: The function dc_rpc_open() was not called.

3: The value specified for the host name contains an error.

4: The value specified for the port number contains an error.

5: An area for storing the service ID was not specified.

6: The dc_rap_connect() function was called while the value Y was specified in the
rpc_rap_auto_connect operand in the user service definition. Alternatively, the
user service network definition has not been defined.

DCRAPER_TIMEOUT_SV -5532 A connection could not be established within the
message exchange monitoring time specified in the
rap_watch_time operand of the RAP-processing
listener service definition.

DCRAPER_PANIC_SV -5533 A system error occurred in the RAP-processing
listener.

DCRAPER_MAX_CONNECTION_SV -5534 The specified value exceeds the maximum number of
requests which can be accepted for connection with a
RAP-processing client that is managed by a
RAP-processing listener.

DCRAPER_NOSERVICE -5528 The RAP-processing listener is being started or
terminated.

DCRAPER_ALREADY_CONNECT -5529 A connection has already been established with the
RAP-processing listener.

Return value Return value
(numeric)

Explanation

dc_rap_disconnect - Release a connection with a RAP-processing listener

305

dc_rap_disconnect - Release a connection with a RAP-processing
listener

Format
ANSI C, C++

K&R C

Description
The function dc_rap_disconnect releases a connection established between a
RAP-processing listener and a RAP-processing client.

Arguments whose values are set in the UAP
sv_id

Specify the service ID that was received for the function dc_rap_connect.

rflags

Specify DCNOFLAGS.

Return values

#include <dcrap.h>
int dc_rap_disconnect(DCRAP_SV_ID sv_id, DCLONG rflags)

#include <dcrap.h>
int dc_rap_connect(sv_id, rflags)
DCRAP_SV_ID sv_id;
DCLONG rflags;

Return value Return value
(numeric)

Explanation

DC_OK 0 Normal termination. The connection with the
RAP-processing listener was released.

DCRAPER_PARAM -5501 The argument is invalid. Possible causes are as follows:
• The service ID differs from the service ID received

by the function dc_rap_connect.

dc_rap_disconnect - Release a connection with a RAP-processing listener

306

Note
If the function dc_rap_disconnect returns with an error (returns with a value other
than DCRAPER_PARAM or DCRAPER_PROTO), the connection with the RAP-processing
listener was released. The error code acquired by the UAP trace is as follows:

0: No error

1: The function dc_rpc_open() was not called.

3: The dc_rap_disconnect() function was called while the value Y was specified
in the rpc_rap_auto_connect operand in the user service definition.

DCRAPER_PROTO -5502 The protocol is invalid. Possible causes of the error are
as follows:
• The function dc_rpc_open was not called.
• Although the rpc_rap_auto_connect operand

in the user service definition had been set to Y, the
function dc_rap_disconnect was called.

• The -w option was not specified in the dcsvgdef
definition command in the user service network
definition.

DCRAPER_NOMEMORY -5503 The memory became insufficient.

DCRAPER_NETDOWN -5505 A network error occurred during communication with
the RAP-processing listener.

DCRAPER_TIMEDOUT -5506 A timeout occurred during communication with the
RAP-processing listener.

DCRAPER_SHUTDOWN -5521 The RAP-processing listener is being terminated.

DCRAPER_NOCONTINUE -5522 An error which prevents continuation of processing
occurred. Possible causes of the error are as follows:
• An unexpected message was received.
• A message was received unexpectedly from a

remote system.

DCRAPER_SYSCALL -5523 An unexpected error occurred during system call.

Return value Return value
(numeric)

Explanation

Remote procedure call (dc_rpc_~)

307

Remote procedure call (dc_rpc_~)

This section gives the syntax and other information of the following OpenTP1 remote
procedure call functions which are used for client-server communication.

• dc_rpc_call - Request a remote service

• dc_rpc_call_to - Invoke a remote service with a communication destination
specified

• DCRPC_BINDTBL_SET, DCRPC_DIRECT_SCHEDULE - Create the
DCRPC_BINDING_TBL structure

• dc_rpc_close - Terminate an application program

• dc_rpc_cltsend - Report data to CUP unidirectionally

• dc_rpc_discard_further_replies - Reject the receiving of processing
results

• dc_rpc_discard_specific_reply - Reject acceptance of particular
processing results

• dc_rpc_get_callers_address - Acquire the node address of a client UAP

• dc_rpc_get_error_descriptor - Acquire the descriptor of an asynchronous
response-type RPC request which has encountered an error

• dc_rpc_get_gateway_address - Acquire the node address of a gateway

• dc_rpc_get_service_prio - Reference the schedule priority of a service
request

• dc_rpc_get_watch_time - Reference the service response waiting inter - val

• dc_rpc_mainloop - Start an SPP service

• dc_rpc_open - Start an application program

• dc_rpc_poll_any_replies - Receive processing results in asynchronous
mode

• dc_rpc_service_retry - Retry a service function

• dc_rpc_set_service_prio - Set a schedule priority of a service request

• dc_rpc_set_watch_time - Update a service response waiting interval

The functions for remote procedure call (dc_rpc_~) can be used in UAPs of both
TP1/Server Base and TP1/LiNK.

dc_rpc_call - Request a remote service

308

dc_rpc_call - Request a remote service

Format
ANSI C, C++

K&R C

Description
The function dc_rpc_call() requests an SPP service. This function can be called
without consideration of the node containing the requesting service.

Specify a service group name and service name as arguments of the function
dc_rpc_call() to request a service. A service request is addressed to the service
function corresponding to the specified names.

A UAP which calls the function dc_rpc_call() can be used regardless of whether
it has been executed as a transaction. When a service is requested by the function
dc_rpc_call() from the process which has been executed as a transaction, the
requested service process runs as a transaction branch.

Before this function can be used, the OpenTP1 at the node containing the server UAP
to which the service request is addressed must be active.

Receiving a signal while waiting for a response after execution of the function
dc_rpc_call() does not cause the function to be returned.

The following items are described after the list of return values. See each description
For details on the function dc_rpc_call().

(1) Arguments of the function dc_rpc_call()

(2) Error cases of the function dc_rpc_call()

#include <dcrpc.h>
int dc_rpc_call (char *group, char *service, char *in,
 DCULONG *in_len, char *out,
 DCULONG *out_len, DCLONG flags)

#include <dcrpc.h>
int dc_rpc_call (group, service, in, in_len, out, out_len,
 flags)
char *group;
char *service;
char *in;
DCULONG *in_len;
char *out;
DCULONG *out_len;
DCLONG flags;

dc_rpc_call - Request a remote service

309

(3) Timing when the function dc_rpc_call() results in error

(4) Specification for reexecuting the service request if the function dc_rpc_call()
results in error

(5) When a priority is given to a service request

(6) Difference between return values DCRPCER_NO_SUCH_SERVICE_GROUP and
DCRPCER_NET_DOWN

(7) Specification for returning the value DCRPCER_SERVICE_TERMINATED

(8) Relationship between return values and synchronization point processing

(9) Notes on requesting a service

(10) When a service is requested with domain qualification

Arguments whose values are set in the UAP
group

Specify the SPP service group name with an ASCII character string of up to 31 bytes.
End the character string with a null character. The null character is not counted in the
length of the character string.

When requesting a service with domain qualification, specify the service group name
suffixed by an at mark (@) and the DNS domain name, and end the character string
with a null character.

service

Specify the SPP service name with an ASCII character string of up to 31 bytes. End
the character string with a null character. The null character is not counted in the length
of the character string.

in

Specify the input parameter of the service.

in_len

Specify the input parameter length of the service within the range from 1 to
DCRPC_MAX_MESSAGE_SIZE#. DCRPC_MAX_MESSAGE_SIZE is defined in dcrpc.h.

#: If you used the rpc_max_message_size operand, the value of this data area is the
value specified in the rpc_max_message_size operand and not the value of
DCRPC_MAX_MESSAGE_SIZE (1 megabyte).

out

Specify the area for the response from the service function. This area will receive the
response from the service function.

dc_rpc_call - Request a remote service

310

out_len

Specify the length of the response from the service function within the range from 1 to
DCRPC_MAX_MESSAGE_SIZE#. DCRPC_MAX_MESSAGE_SIZE is defined in dcrpc.h.

#: If you used the rpc_max_message_size operand, the value of this data area is the
value specified in the rpc_max_message_size operand and not the value of
DCRPC_MAX_MESSAGE_SIZE (1 megabyte).

Even if the RPC is the non response-type, you must specify the address of the area for
which the length of the response from the service is specified. If it is, the length of the
response from the service must be 0.

flags

Specify the RPC mode and option in the following format:

DCNOFLAGS

Synchronous response-type RPC

DCRPC_NOWAIT

Asynchronous response-type RPC

DCRPC_NOREPLY

Nonresponse-type RPC

DCRPC_CHAINED

Chained RPC

DCRPC_TPNOTRAN

Specify this option not to handle the requested processing as a transaction. When
DCRPC_TPNOTRAN is specified, the processing of the service function is not
handled as a transaction even if the service is requested from the transaction.

DCRPC_DOMAIN

Specify this option when the service group name is specified with domain
qualification. An RPC with domain qualification cannot be a transaction branch.
Therefore, specify this option together with DCRPC_TPNOTRAN whenever the
function dc_rpc_call() is used from the transaction.

Specify DCRPC_TPNOTRAN and/or DCRPC_DOMAIN together with the RPC mode.

Example 1:

When a nontransaction service is requested by using a synchronous response-type

{DCNOFLAGS|DCRPC_NOWAIT|DCRPC_NOREPLY|DCRPC_CHAINED}
[|DCRPC_TPNOTRAN][|DCRPC_DOMAIN]

dc_rpc_call - Request a remote service

311

RPC, specify for flags as follows:

Example 2:

When a service is requested by using a synchronous response-type RPC with
domain qualification from the transaction, specify for flags as follows:

Arguments whose values are returned from server UAP
out

The response set by the service function is returned.

out_len

The length of the response set by the service function is returned.

Return values
The following return values are returned from the OpenTP1, not from the service
function.

DCNOFLAGS|DCRPC_TPNOTRAN

DCNOFLAGS|DCRPC_TPNOTRAN|DCRPC_DOMAIN

Return value Return value
(numeric)

Explanation

0 or positive integer Normal termination. In the case of asynchronous
response-type RPC, the positive integer is the
descriptor.

DCRPCER_INVALID_ARGS -301 The value specified for the argument is invalid.

DCRPCER_PROTO -302 The function dc_rpc_open() was not called.

DCRPCER_NO_BUFS -304 A memory shortage occurred. Or, a service request was
not accepted because a space shortage occurred in the
message storage buffer pool
(message_store_buflen operand) of the SPP to
which the service was requested.
If necessary, revise the message_store_buflen
operand in the user service default definition or in the
user service definition of the SPP to which the service
was requested.

DCRPCER_NET_DOWN -306 A communication failure occurred.
Check if a network failure has occurred.

dc_rpc_call - Request a remote service

312

DCRPCER_TIMED_OUT -307 The response wait time in the dc_rpc_call()
function has elapsed.
If necessary, revise the response wait time specified in
the dc_rpc_call() function (watch_time operand
and arguments in the dc_rpc_set_watch_time()
function).

The SPP to which the service was requested terminated
abnormally during execution of a service function.
Check the cause of abnormal termination of the SPP to
which the service was requested.

DCRPCER_MESSAGE_TOO_BIG -308 The input parameter length specified in in_len
exceeded the maximum.
If necessary, revise the in_len setting.

DCRPCER_REPLY_TOO_BIG -309 The length of the response (out_len) set in the service
function of the SPP to which the service was requested
exceeded the response length (out_len) in the
dc_rpc_call() function.
If necessary, revise the response length (out_len) set
in the service function of the SPP to which the service
was requested.

DCRPCER_NO_SUCH_SERVICE_GR
OUP

-310 The service group name set in group is invalid, or the
SPP to which the service was requested with the service
group set in group was not running.
If necessary, revise the group setting, or start the SPP
to which the service was requested with the service
group set in group.

DCRPCER_NO_SUCH_SERVICE -311 The service name set in service is invalid, or the
service name set in service by the SPP to which the
service was requested has not been specified in the
service operand in the user service definition file.
If necessary, revise the service setting, or specify the
service name set in service also in the service
operand for the SPP to which the service was requested.

DCRPCER_SERVICE_CLOSED -312 The SPP to which the service was requested with the
service group set in group is under server shutdown or
service shutdown status.
Check the cause of the shutdown, and then release the
SPP from shutdown status.

DCRPCER_SERVICE_TERMINATIN
G

-313 The SPP to which the service was requested is under
termination processing.

Return value Return value
(numeric)

Explanation

dc_rpc_call - Request a remote service

313

DCRPCER_SERVICE_NOT_UP -314 The SPP to which the service was requested with the
service group set in group is not running, or a
communication failure might have occurred during the
service request send processing.
Start the SPP to which the service was requested with
the service group set in group. If the SPP is already
running, check to see if a network failure has occurred.

While 0 was specified for the service request response
time (watch_time operand and an argument in the
dc_rpc_set_watch_time() function), the SPP to
which the service was requested terminated abnormally
during execution of a service function.
Check the cause of abnormal termination of the SPP to
which the service was requested.

DCRPCER_OLTF_NOT_UP -315 OpenTP1 for the SPP to which the service was
requested is not running. OpenTP1 might be under
termination processing or a communication failure
might have occurred during the service request send
processing.
Start OpenTP1 for the SPP to which the service was
requested, or check for a network failure.

DCRPCER_SYSERR_AT_SERVER -316 A system error (internal conflict) occurred in the SPP to
which the service was requested.

DCRPCER_NO_BUFS_AT_SERVER -317 A memory shortage occurred in the SPP to which the
service was requested.

DCRPCER_SYSERR -318 A system error (internal conflict) occurred in the UAP
that requested the service.

DCRPCER_INVALID_REPLY -319 The response length (out_len) set by a service
function of the SPP to which the service was requested
is outside the range from 1 to the value defined in
DCRPC_MAX_MESSAGE_SIZE.#
If necessary, revise the response length (out_len) in
the service function of the SPP to which the service was
requested.

DCRPCER_OLTF_INITIALIZING -320 OpenTP1 for the SPP to which the service was
requested is under start processing.

Return value Return value
(numeric)

Explanation

dc_rpc_call - Request a remote service

314

DCRPCER_NO_BUFS_RB -323 A memory shortage occurred in the UAP that is
requesting the service or the SPP to which the service
was requested. When this value is returned, the
transaction branch rolls back.
Check whether unneeded memory was allocated by the
UAP that is requesting the service, or by the SPP to
which the service was requested.

DCRPCER_SYSERR_RB -324 A system error (internal conflict) occurred in the UAP
that requested the service. When this value is returned,
the transaction branch rolls back.

DCRPCER_SYSERR_AT_SERVER_R
B

-325 A system error (internal conflict) occurred in the SPP to
which the service was requested. When this value is
returned, the transaction branch rolls back.

DCRPCER_REPLY_TOO_BIG_RB -326 The response length (out_len) set in the service
function of the SPP to which the service was requested
exceeded the response length (out_len) in the
dc_rpc_call() function. When this value is returned,
the transaction branch rolls back.
If necessary, revise the response length (out_len) set
in the service function of the SPP to which the service
was requested.

DCRPCER_TRNCHK -327 When the inter-node load-balancing facility and the
extended internode load-balancing facility are used, the
transaction attributes (atomic_update operand) do
not match among the SPPs with the same service group
name to which the service was requested. Another
possibility is that the inter-node load-balancing facility
and the extended internode load-balancing facility
cannot be used because the version of OpenTP1 at the
node to which loads are to be distributed is earlier than
that of the OpenTP1 for the UAP that is requesting the
service.
This value is returned only when the service request is
issued to an SPP that uses the inter-node load-balancing
facility and the extended internode load-balancing
facility.
If necessary, revise the transaction attribute
(atomic_update operand) of the SPP that uses the
inter-node load-balancing facility and the extended
internode load-balancing facility, or revise if necessary
the version of OpenTP1.

Return value Return value
(numeric)

Explanation

dc_rpc_call - Request a remote service

315

The dcsvgdef definition command was used to issue a
service request to a user server with the non-transaction
attribute (the atomic_update operand is N in the user
service definition or the jnl_fileless_option
operand is Y in the system common definition), but a
disjunction with DCRPC_TPNOTRAN was not specified
in the flags argument of the dc_rpc_call()
function.
If necessary, revise the dcsvgdef definition command
or the flags argument of the dc_rpc_call()
function.

DCRPCER_NO_SUCH_DOMAIN -328 The domain name of the service group name with the
domain qualification in group is invalid.
If necessary, revise the domain name.

DCRPCER_NO_PORT -329 A service was requested with a domain qualification in
group, but the port number of the domain
representative schedule service was not found.
If necessary, revise the domain_masters_port
operand setting in the system common definition and
the port number setting for the domain representative
schedule service in /etc/services.

DCRPCER_SERVER_BUSY -356 The SPP to which the service was requested (on a
server that receives requests through a socket) cannot
receive the service request.
If necessary, revise the max_socket_msg and
max_socket_msglen operands in the user service
definition or the user service default definition for the
SPP to which the service was requested.

DCRPCER_TESTMODE -366 When the online tester was being used, a service
request was issued from a UAP in the test mode to an
SPP in the nontest mode or from a UAP in the nontest
mode to an SPP in the test mode.
If necessary, revise the UAP's test mode setting.

DCRPCER_NOT_TRN_EXTEND -367 The dc_rpc_call() function with DCRPC_TPNOTRAN
set in flags was called to request a service after a
chained RPC with the transaction attribute was
executed.

Return value Return value
(numeric)

Explanation

dc_rpc_call - Request a remote service

316

DCRPCER_SECCHK -370 The SPP to which the service was requested is
protected by the security facility.
The UAP that requested the service by executing the
dc_rpc_call() function does not have permission to
access the SPP to which the service was requested. If
necessary, revise the access permissions for the SPP to
which the service was requested.

DCRPCER_TRNCHK_EXTEND -372 The transaction branch cannot be started because it
exceeds the maximum number of transaction branches
that can be activated concurrently in the OpenTP1 for
the SPP to which the service was requested.
If necessary, revise the setting in the
trn_tran_process_count operand in the
transaction service definition.

The transaction branch cannot be started because it
exceeds the maximum number of child transaction
branches that can be activated from one transaction
branch by the UAP that is requesting the service.
If necessary, revise the setting in the
trn_max_subordinate_count operand in the
transaction service definition.

DCRPC_TPNOTRAN is not specified for flags when a
service with domain qualification specified in a
transaction is requested.

Transaction branching cannot start because the SPP to
which the service was requested encountered a resource
manager (RM) error.
Eliminate the cause of the resource manager (RM)
error, and then re-execute the function.

In the System Environment window of TP1/LiNK, the
Transaction Facility item is not set to Yes.
If necessary, revise the Transaction Facility setting in
the System Environment window of TP1/LiNK.

Return value Return value
(numeric)

Explanation

dc_rpc_call - Request a remote service

317

#: If you used the rpc_max_message_size operand, the value of this data area is the
value specified in the rpc_max_message_size operand and not the value of
DCRPC_MAX_MESSAGE_SIZE (1 megabyte).

(1) Arguments of the function dc_rpc_call()
Arguments of the function dc_rpc_call() are explained below.

Values passed to server UAP

Allocate an area (out) for the response from the service function before requesting a
service. The client UAP sets the following values in the function dc_rpc_call().

• Input parameter (in)

• Input parameter length (in_len)

• Response length (out_len)

The input parameter, input parameter length, and response length values which
are set in the function dc_rpc_call() of the client UAP are passed to the
service function as is. Change the notation of character codes or digits in the
processing of the client UAP or requested service function if required. If a service
request is addressed to the service function which does not return any response,
the specified response length is ignored.

The maximum values of input parameter length and response length are declared
as DCRPC_MAX_MESSAGE_SIZE# in the header file dcrpc.h. See the contents of
dcrpc.h to confirm the maximum values.

#: If you used the rpc_max_message_size operand, the value of this data area
is the value specified in the rpc_max_message_size operand and not the value
of DCRPC_MAX_MESSAGE_SIZE (1 megabyte).

DCRPCER_SERVICE_TERMINATED -378 The SPP to which the service was requested terminated
abnormally during service function execution.
If necessary, revise the service function processing of
the SPP to which the service was requested. This value
is returned only for a UAP that was requesting a service
for which 00000001 was specified in the
rpc_extend_function operand in the user service
definition. If 0000000 is specified in the
rpc_extend_function operand or if the operand is
omitted, DCRPCER_TIMED_OUT or
DCRPCER_SERVICE_NOT_UP is returned rather than
this value.

Return value Return value
(numeric)

Explanation

dc_rpc_call - Request a remote service

318

Values returned from server UAP

When the service function terminates and response is returned, the following values
can be referenced:

• Response from service function (out)

• Length of response from service function (out_len)

The value of out_len is the length of the response which is actually returned from the
service function. The values of out and out_len can be referenced in the following
cases depending on the RPC mode:

• In the case of synchronous response-type RPC and chained RPC

The values of out and out_len can be referenced when the function
dc_rpc_call() returns.

• In the case of asynchronous response-type RPC

The value of out can be referenced when the function
dc_rpc_poll_any_replies() which receives the response returns. The value
of out_len cannot be referenced.

• In the case of nonresponse-type RPC

The values of out and out_len cannot be referenced.

If the function dc_rpc_call() or dc_rpc_poll_any_replies() returns with an
error, the values of out and out_len cannot be referenced.

If the returned response is larger than the response area acquired by the client UAP, the
function returns with an error, giving the return value DCRPCER_REPLY_TOO_BIG.

Value specified for flags

The value specified for flags and the execution result of the function
dc_rpc_call() are explained below.

• Synchronous response-type RPC (when DCNOFLAGS is specified for flags)

The function dc_rpc_call() will not return until a response returns or a
communication error occurs.

• Asynchronous response-type RPC (when DCRPC_NOWAIT is specified for
flags)

The function dc_rpc_call() will return immediately. The response can be
referenced after the response is received asynchronously in the function
dc_rpc_poll_any_replies(). Do not free the response storage area (out)
until the asynchronous response-type RPC is terminated due to one of the
following causes:

• A response is received by the function dc_rpc_poll_any_replies()

dc_rpc_call - Request a remote service

319

• The receiving of responses is rejected by the function
dc_rpc_discard_further_replies()

• Commitment or rollback is performed when a service is requested from a
transaction.

When an asynchronous response-type RPC is used in a transaction, receive
responses by using the function dc_rpc_poll_any_replies() before
performing the synchronization point processing (commitment or rollback). No
response can be received by the function dc_rpc_poll_any_replies() after
the synchronization point processing. To designate a specific response received
by the function dc_rpc_poll_any_replies(), specify the positive integer
(descriptor), which is returned by the function dc_rpc_call(), as the argument
of the function dc_rpc_poll_any_replies(). Thus, hold the return value of
the function dc_rpc_call() to designate a specific response received.

To receive responses after the synchronization point processing while in
non-transaction processing, specify the corresponding option in the
rpc_extend_function operand of the system service definition.

For details about rpc_extend_function, see the manual OpenTP1 System
Definition.

• Nonresponse-type RPC (when DCRPC_NOREPLY is specified for flags)

The function dc_rpc_call() will return immediately without waiting for
completion of the service function processing. The service function is treated as
a function which does not return any response. Therefore, the UAP requesting a
service cannot determine whether the service function has been performed. With
this specification, the response (out) and its length (out_len) cannot be
referenced.

• Chained RPC (when DCRPC_CHAINED is specified for flags)

The function dc_rpc_call() will not return until a response is returned or a
communication error occurs. If two or more services belonging to the same
service group in chained RPCs are requested, the subsequent services can be
handled in the same process as for the service requested first.

There are the following restrictions on the use of chained RPCs:

1. The shutdown state of the user server or service cannot be detected by the second
and subsequent calls of the function dc_rpc_call().

2. The entire user server enters in shutdown state if an error occurs during the service
function processing of the second and subsequent calls of the function
dc_rpc_call(). Services do not enter in shutdown state individually.

(2) Error cases of the function dc_rpc_call()
Reasons why the function dc_rpc_call() returns with an error are explained below.

dc_rpc_call - Request a remote service

320

If the OpenTP1 at the node containing the server UAP is not active

If the OpenTP1 to which the service request is addressed is not active, the function
dc_rpc_call() returns with an error, giving one of the following return values:

• DCRPCER_NET_DOWN

• DCRPCER_SERVICE_NOT_UP

• DCRPCER_OLTF_NOT_UP

• DCRPCER_OLTF_INITIALIZING

If the server UAP is not active

When the server UAP is a multiserver, the service request is dealt with a new process
which is activated by the OpenTP1 even if the server UAP is being terminated
abnormally or being partially recovered. However, the function dc_rpc_call()
returns with an error in the following cases:

1. No service request can be addressed to the SPP in shutdown state. If the service
group is shut down, the function dc_rpc_call() returns with an error, giving
the return value DCRPCER_SERVICE_CLOSED.

2. If the SPP is being terminated or has been terminated by the stop command for
the user server (dcsvstop command) or for OpenTP1 (dcstop command), the
dc_rpc_call() function returns with an error and sets one of the following
status code values:

• DCRPCER_SERVICE_TERMINATING

• DCRPCER_SERVICE_CLOSED

• DCRPCER_NO_SUCH_SERVICE_GROUP

The value that is returned depends on the timing of calling the dc_rpc_call()
function.

3. If the OpenTP1 is being started, the function dc_rpc_call() returns with an
error, giving the return value DCRPCER_OLTF_INITIALIZING. In this case, a
service may be requested normally after activation of the server UAP or OpenTP1
is completed. Since activation of the OpenTP1 is completed when a message log
with the message ID KFCA01809-I is output, request a service again after this
message appears.

When a service is requested in the environment for the internode load-balancing
facility and the extended internode load-balancing facility

In the environment for the internode load-balancing facility and the extended internode
load-balancing facility, if the schedule of the applicable service is closed, OpenTP1
automatically transfers a service request to another node. However, the function
dc_rpc_call returns DCRPCER_TRNCHK, and control is returned due to an error

dc_rpc_call - Request a remote service

321

under either of the following conditions:

1. For transaction processing, the transaction attribute of the service on the transfer
destination node does not match the closed service.

2. The version of the OpenTP1 on the transfer destination node is earlier than that of
the node for the OpenTP1 that requested the service.

When control is returned as a result of the foregoing error, take the following actions:

1. Force the transaction attributes of the SPPs making up the internode
load-balancing facility and the extended internode load-balancing facility to
match.

2. Force the OpenTP1 versions making up the internode load-balancing facility and
the extended internode load-balancing facility to match.

When a service request is addressed to the server that receives requests from socket

The server that receives requests from socket controls message congestion according
to the specified values for max_socket_msg and max_socket_msglen in the user
service definition. It is probable that service requests cannot be accepted if a message
exceeds the defined value. In this case, the function dc_rpc_call() returns with an
error, giving the return value DCRPCER_SERVER_BUSY. If this value is returned, the
client UAP can sometimes reissue the service request successfully after waiting for a
while.

When a chained RPC is used

If the function dc_rpc_call() which is not a transaction is called from the UAP
using a chained RPC which is processed as a transaction to the same server UAP, the
function dc_rpc_call() returns with an error, giving the return value
DCRPCER_NOT_TRN_EXTEND.

When the online tester is used

If the online tester is in use and the function dc_rpc_call() is called from a UAP in
test mode to a UAP in nontest mode or vice versa, the function dc_rpc_call()
returns with an error, giving the return value DCRPCER_TESTMODE.

When the security facility is used

If the desired service is protected with the security facility when the function
dc_rpc_call() is called and the client UAP which called the function does not have
the access permission for the SPP, the function dc_rpc_call() returns with an error,
giving the return value DCRPCER_SECCHK.

(3) Timing when the function dc_rpc_call() results in error
The following explains the timing when an error is returned to the client UAP if the
SPP to which the service request is addressed terminates abnormally.

dc_rpc_call - Request a remote service

322

• Synchronous response-type RPC or chained RPC (when DCNOFLAGS or
DCRPC_CHAINED is specified for flags)

If an SPP which executes a service terminates abnormally before completion of
the processing, the function dc_rpc_call() returns with an error, giving the
return value DCRPCER_TIMED_OUT. If an infinite period of time is specified in
the watch_time operand in the user service definition of the client UAP, the
function returns with an error, giving the return value
DCRPCER_SERVICE_NOT_UP.

• Asynchronous response-type RPC (when DCRPC_NOWAIT is specified for
flags)

If an SPP which executes a service terminates abnormally before completion of
the processing, the function dc_rpc_poll_any_replies() returns with an
error, giving the return value DCRPCER_TIMED_OUT. If an infinite period of time
is specified in the watch_time operand in the user service definition of the client
UAP, the function returns with an error, giving the return value
DCRPCER_SERVICE_NOT_UP.

• Nonresponse-type RPC (when DCRPC_NOREPLY is specified for flags)

The client UAP cannot detect abnormal termination of server UAP.

When the function dc_rpc_call() results in error due to time monitoring of the client
UAP

In the following cases, the function dc_rpc_call() returns with an error, giving the
return value DCRPCER_TIMED_OUT, after the time specified in the watch_time
operand in the user service definition of the client UAP has elapsed:

• The entire OpenTP1 at the node containing the SPP terminates abnormally.

• An error occurs before the server UAP receives service request data or before the
client UAP receives the result after the server UAP processing is completed.

(4) Specification for reexecuting the service request if the function
dc_rpc_call() results in error

Even if the OpenTP1 to which the service request is issued is not active because it is
being started or is engaged in system switching, you can have the OpenTP1 re-execute
the requested search and service request transmission without treating the
dc_rpc_call() function processing as an error.

To re-execute the requested search and service request transmission, specify Y in the
rpc_retry operand in the system common definition. You use the
rpc_retry_count and rpc_retry_interval operands to specify the
re-execution count and re-execution interval, respectively, for a requested search and
service request transmission. If this count value exceeds the re-execution count value
specified in the system common definition, the dc_rpc_call() function returns with

dc_rpc_call - Request a remote service

323

an error and sets one of the following status code values:

• DCRPCER_INVALID_ARGS

• DCRPCER_NET_DOWN

• DCRPCER_SERVICE_NOT_UP

• DCRPCER_NO_SUCH_SERVICE_GROUP

• DCRPCER_OLTF_NOT_UP

• DCRPCER_OLTF_INITIALIZING

(5) When a priority is given to a service request
To specify a schedule priority for a service request, call the function
dc_rpc_set_service_prio() immediately before the function dc_rpc_call().
If no schedule priority is specified, the priority of the service request is determined
according to the default interpretation of the schedule service.

(6) Difference between return values
DCRPCER_NO_SUCH_SERVICE_GROUP and DCRPCER_NET_DOWN

These return values are returned if the user server corresponding to the service group
name is not found.

• DCRPCER_NO_SUCH_SERVICE_GROUP

Indicates the user server is not found after searching all nodes specified for
all_node in the system common definition.

• DCRPCER_NET_DOWN

Indicates a communication error occurred on one or more nodes specified for
all_node during the search. This return value may indicate the corresponding
OpenTP1 system is not found.

(7) Specification for returning the value
DCRPCER_SERVICE_TERMINATED

You may want to determine whether the SPP that requested a service terminated
abnormally before completion of processing based on a returned value other than
DCRPCER_TIMED_OUT or DCRPCER_SERVICE_NOT_UP. If so, specify 00000001 in
the rpc_extend_function operand of the user service definition. This specification
returns DCRPCER_SERVICE_TERMINATED if the above error occurs. If 00000000 is
specified in the rpc_extend_function operand, or the operand is omitted,
DCRPCER_TIMED_OUT or DCRPCER_SERVICE _NOT_UP is returned rather than
DCRPCER_SERVICE_TERMINATED.

dc_rpc_call - Request a remote service

324

(8) Relationship between error return values and synchronization point
processing

The relationship between return values of the function dc_rpc_call() and
synchronization point processing (commitment and rollback) is explained below. The
description applies to the service request which is a transaction, rather than the service
request which is not a transaction (including the case when DCRPC_TPNOTRAN is
specified for flags).

When commitment is performed even though the function dc_rpc_call() returns with
an error

The return value DCRPCER_TIMED_OUT may be returned due to abnormal termination
of the service function which the service request is addressed, a node error, or network
error. However, when the client UAP is not a transaction, the service function to which
the service request is addressed may terminate normally and database may be updated.

Error return values which require rollback processing

If the function dc_rpc_call() called from a transaction returns with an error, some
return values always require rollback processing for the transaction (the server UAP
enters rollback_only state). In this case, rollback processing is always performed
even if either of the commitment function or rollback function is used. The following
return values of the function dc_rpc_call() always require rollback processing for
the transaction:

• DCRPCER_INVALID_REPLY

• DCRPCER_NO_BUFS_AT_SERVER

• DCRPCER_NO_SUCH_SERVICE

• DCRPCER_REPLY_TOO_BIG_RB

(9) Notes on requesting a service
1. Define the service group name and service name at server UAP environment

setup. These names are set in the function dc_rpc_call(). If a service is
requested while invalid service group name or service name is set in the function
dc_rpc_call(), the function returns with an error, giving the return value
DCRPCER_NO_SUCH_SERVICE_GROUP or DCRPCER_NO_SUCH_SERVICE. If the
service function does not return response, the function dc_rpc_call() does not
return with an error, giving the return value DCRPCER_NO_SUCH_SERVICE.

2. The process of the server UAP is different from that of the client UAP. Therefore,
the following matters are different from ordinary function calls and procedure
calls:

• Attributes (such as environment variables, schedule priority (nice value))
which are given to the process of the client UAP by the OS are not passed on

dc_rpc_call - Request a remote service

325

to the server UAP.

• Environment settings (such as existence of specification of transaction
attribute, time limit of transaction branch, schedule priority) of the OpenTP1
specified at the node of the client UAP are not passed on to the OpenTP1 of
the server UAP.

3. Do not specify the same buffer area for the input parameter (in) and the response
from the service function (out).

4. If DCRPC_NOREPLY is specified for flags, the following return values will not
return:

• Errors which never occur

DCRPCER_REPLY_TOO_BIG

DCRPCER_INVALID_REPLY

• Errors which cannot be detected even though they could occur

DCRPCER_NO_SUCH_SERVICE

DCRPCER_SERVICE_CLOSED

DCRPCER_SERVICE_TERMINATING

DCRPCER_SYSERR_AT_SERVER

DCRPCER_NO_BUFS_AT_SERVER

DCRPCER_OLTF_INITIALIZING

DCRPCER_SECCHK

In addition, OpenTP1 does not output a message when an error occurs. If errors
must be detected, consider specifying DCNOFLAGS for flags
(synchronous-response-type RPC).

5. When a service group is requested by the function dc_rpc_call() from a
transaction, an SPP is occupied until the transaction terminates. When the same
service is requested more than once by the function dc_rpc_call() from one
transaction, do the following:

• Re-estimate the values specified for the balance_count operand and
parallel_count operand in the user service definition according to the
number of usages.

• Request a service by using chained RPCs so that the number of processes
will not increase.

If the values specified for the balance_count operand and parallel_count
operand are incorrect, the transaction will shut down abnormally and a deadlock
may occur.

dc_rpc_call - Request a remote service

326

6. When an asynchronous response-type RPC is used, the server UAP may be
occupied until the function dc_rpc_poll_any_replies() receives all
asynchronous responses or the function
dc_rpc_discard_further_replies() rejects the receiving of
asynchronous responses. This may occur regardless of whether it is a transaction
or not. Increase the number of resident processes according to how many times an
asynchronous response-type RPC is used.

An asynchronous response-type RPC requires many resources in addition to
occupying the server UAP. To prevent responses from degrading performance of
UAP processing and activation of unnecessary SPPs, ensure that responses are
received or the receiving of responses is rejected after the function
dc_rpc_call() of an asynchronous response-type RPC is used.

7. When a response is received after an asynchronous response-type RPC is used
twice or more consecutively, specify a separate response storage area (out) for
each. If the same area is specified, a correct response cannot be received since the
second and succeeding responses override the area.

8. The server UAP (SPP) that requested a service using an asynchronous
response-type RPC sends a response soon after the service function is executed,
regardless of whether the process that executed the asynchronous response-type
RPC issued the function dc_rpc_poll_any_replies. If the same
asynchronous response-type RPC is executed numerous times simultaneously
without the function dc_rpc_poll_any_replies being issued, the response
sent by the SPP may stay in the TCP/IP buffer and the SPP may fail to send a
response. If the SPP fails to send a response, no response can be received from the
SPP even if the source of the asynchronous response-type RPC issues the function
dc_rpc_poll_any_replies.

9. If a large number of asynchronous response-type RPCs or non-response type
RPCs having the transaction attribute are executed, messages about transactions
sent by the SPP can no longer be received. In this case, the transactions may roll
back.

(10) When a service is requested with domain qualification
Specifying a service group name with domain qualification enables requesting an
OpenTP1 service in the DNS domain. Specify the service group name suffixed by an
at mark (@) and the DNS domain name for domain qualification.

Notes on requesting a service with domain qualification

1. To request a service with domain qualification, specify DCRPC_DOMAIN for
flags of the function dc_rpc_call(). If the service group name with domain
qualification is specified without DCRPC_DOMAIN, the function dc_rpc_call()
returns with an error, giving the return value
DCRPCER_NO_SUCH_SERVICE_GROUP.

dc_rpc_call - Request a remote service

327

2. If an RPC with domain qualification is used, a transaction cannot be extended
even if the process which called the function dc_rpc_call() is a transaction.
Therefore, to request a service with domain qualification from a transaction,
specify DCRPC_NOTRAN for flags not to extend the transaction. When the local
domain is specified for the domain name, the transaction also cannot be extended.

3. When an RPC with domain qualification is used, a service request can be
addressed only to a server that receives requests from queue, rather than a server
that receives requests from socket.

4. A service request with domain qualification is sent to the domain-alternate
schedule service which is activated on the host registered with the
namdomainsetup command. Obtain the port number of the domain-alternate
schedule service from /etc/services. If an error occurs while transferring the
service request and multiple host names are registered with the
namdomainsetup command, transfer of the service request is attempted to other
hosts sequentially. Even if the RPC with domain qualification terminates
normally, an error may occur during transfer to the domain-alternate schedule
service.

Preparation for requesting a service with domain qualification

Perform the following environment setup for an RPC with domain qualification:

1. Register the name of the host on which the domain alternate schedule service is
activated in the DNS domain data file by using the namdomainsetup command.

2. Define the port number of the domain alternate schedule service in /etc/
services of the host on which the OpenTP1 which requests a service with
domain qualification is activated as follows:

3. Specify the well-known port of the domain alternate schedule service for the
scd_port operand in the schedule service definition for the OpenTP1 which
activates the domain-alternate schedule service.

Note
Assume that you want to perform a transactional RPC on an OpenTP1 system other
than the domain specified in the all_node clause of the system common definition.
In this case, you must ensure that the node identifiers (node_id clause of the system
common definition) of all OpenTP1 systems in the local domain and remote domain
are unique. In addition, all the OpenTP1 systems must be version 03-02 or later. If
these conditions are not met, the transaction may not recover properly.

OpenTP1scd port-number/tcp

dc_rpc_call_to - Invoke a remote service with a communication destination specified

328

dc_rpc_call_to - Invoke a remote service with a communication
destination specified

Format
ANSI C, C++

K&R C

Description
The function dc_rpc_call_to() requests an SPP service. Like the function
dc_rpc_call(), this function sets a service group name and service name as
arguments. In addition, it sets the DCRPC_BINDING_TBL structure in which a host
name or node identifier is specified as an argument. The host name or node identifier
specified in the DCRPC_BINDING_TBL structure is used as a search key that designates
the requested service. This function requests a service from the service function that
matches the setting.

However, you cannot add a domain qualification when requesting a service. In all other
respects, this function is the same as the function dc_rpc_call().

TP1/Extension 1 must be installed before you can use this facility. Note that operation
will be unpredictable if you run the facility while TP1/Extension 1 is not installed.

Arguments whose values are set in the UAP
direction

Specify the address of the DCRPC_BINDING_TBL structure that is to store the search
key that designates the requested service. The search key is either a host name or node
identifier.

#include <dcrpc.h>
int dc_rpc_call_to(struct DCRPC_BINDING_TBL *direction,
 char *group, char *service,char *in,
 DCULONG *in_len, char *out,
 DCULONG *out_len, DCLONG flags)

#include <dcrpc.h>
int dc_rpc_call_to(*direction, *group, *service, *in,
 *in_len, *out, *out_len, flags)
struct DCRPC_BINDING_TBL *direction;
char *group;
char *service;
char *in;
DCULONG *in_len;
char *out;
DCULONG *out_len;
DCLONG flags;

dc_rpc_call_to - Invoke a remote service with a communication destination specified

329

The following shows the format of the DCRPC_BINDING_TBL structure.

• nid

Specify the address of the area that stores the node identifier of the requested
service node when you want to set a node identifier as the search key. End the
character string with a null character. The null character is not counted in the
length of the character string.

The node identifier must be the name specified for node_id in the system
common definition. The host name of the requested service node must exist in the
global domain# (a collection of node names specified for the all_node operand
of the system common definition).

When you do not intend to set a node identifier as the search key, specify address
0 for nid.

• hostnm

Specify the address of the area that stores the host name of the requested service
node when you want to set a host name as the search key. You can specify a
character string containing between 1 and 255 characters as the host name. This
character string can consist of alphanumeric characters and special symbols, the
period, and the hyphen (except in the IP address format). End the character string
with a null character. The null character is not counted in the length of the
character string. The name of the specified host is one that can be mapped to an
IP address with the /etc/hosts file or DNS.

It is optional whether the host name of the requested service node is specified in
the global domain# (a collection of node names specified for the all_node
operand of the system common definition).

When you do not intend to set a host name as the search key, specify address 0 for
hostnm.

• portno

Specify the port number (the value specified for name_port in the system
common definition) of the name service of the requested service node when you
want to set a host name as the search key. The value specified for portno is valid
only when DCRPC_NAMPORT is specified for flags in the DCRPC_BINDING_TBL

struct DCRPC_BINDING_TBL {
 char *nid; /*Storage address for node identifier*/
 char *hostnm; /*Storage address for host name*/
 short portno; /*Port number*/
 short filler1; /*Spare status*/
 DCLONG flags; /*Attribute*/
 DCLONG filler2[4]; /*Spare status*/
};

dc_rpc_call_to - Invoke a remote service with a communication destination specified

330

structure. If you specify 0 for portno or specify DCNOFLAGS for flags in the
DCRPC_BINDING_TBL structure, the port number of the name service at the
request source and the port number of the name service at the requested service
must match.

When you set a node identifier as the search key, the value specified for portno is
ignored.

• flags

Specify DCNOFLAGS.

If you specified a value for portno, specify DCRPC_NAMPORT.

The areas filler1 and filler2 were created to allow expandability, so you
need not set values for these areas. (Do not use the member names filler1 and
filler2.)

#

This global domain means a group of the following node names.

When N is specified in the name_domain_file_use operand in the system
common definition:

The global domain is a group of node names specified in the all_node and
all_node_ex operands in the system common definition.

When Y is specified in the name_domain_file_use operand in the system
common definition:

The global domain is a group of node names specified in the domain
definition files. The domain definition files are stored under the following
directories:

• Domain definition file for all_node

$DCCONFPATH/dcnamnd-directory
• Domain definition file for all_node_ex

$DCCONFPATH/dcnamndex-directory
You can create the DCRPC_BINDING_TBL structure to be specified for direction in the
function dc_rpc_call_to() by using the DCRPC_BINDTBL_SET function or
DCRPC_DIRECT_SCHEDULE function. For details, see DCRPC_BINDTBL_SET and
DCRPC_DIRECT_SCHEDULE.

group

Specify the SPP service group name with an ASCII character string of upto 31 bytes.
End the character string with a null character. The null character is not counted in the
length of the character string.

dc_rpc_call_to - Invoke a remote service with a communication destination specified

331

service

Specify the SPP service name with an ASCII character string of up to 31 bytes. End
the character string with a null character. The null character is not counted in the length
of the character string.

in

Specify the input parameter of the service.

in_len

Specify the input parameter length of the service within the range from 1 to
DCRPC_MAX_MESSAGE_SIZE#. DCRPC_MAX_MESSAGE_SIZE is defined in dcrpc.h.

#: If you used the rpc_max_message_size operand, the value of this data area is the
value specified in the rpc_max_message_size operand and not the value of
DCRPC_MAX_MESSAGE_SIZE (1 megabyte).

out

Specify the area for the response from the service function. This area will receive the
response from the service function.

out_len

Specify the length of the response from the service within the range from 1 to
DCRPC_MAX_MESSAGE_SIZE#. DCRPC_MAX_MESSAGE_SIZE is defined in dcrpc.h.

#: If you used the rpc_max_message_size operand, the value of this data area is the
value specified in the rpc_max_message_size operand and not the value of
DCRPC_MAX_MESSAGE_SIZE (1 megabyte).

Even if the RPC is the non-response-type, you must specify the address of the area for
which the length of the response from the service is specified. Note that the length of
the response from the service must be 0.

flags

Specify the RPC mode and option in the following format:

DCNOFLAGS

Synchronous response-type RPC

DCRPC_NOWAIT

Asynchronous response-type RPC

DCRPC_NOREPLY

{DCNOFLAGS|DCRPC_NOWAIT|DCRPC_NOREPLY|DCRPC_CHAINED}
[|DCRPC_TPNOTRAN]

dc_rpc_call_to - Invoke a remote service with a communication destination specified

332

Non-response-type RPC

DCRPC_CHAINED

Chained RPC

DCRPC_TPNOTRAN

Specify this option to prevent processing requested from a transaction by a service
request from being handled as a transaction. Alternatively, specify this option
when you want to use the DCRPC_DIRECT_SCHEDULE function to create the
DCRPC_BINDING_TBL structure, and to request a service from a user server with
the non-transaction attribute. Here, a user server has the non-transaction attribute
when N is specified for atomic_update in the user service definition or Y is set
for jnl_fileless_option in the system common definition.

This value must be ORed with the type of RPC.

Example:

When a nontransaction service is requested by using a synchronous response-type
RPC, specify flags as follows:

Arguments whose values are returned from server UAP
out

The response set by the service function is returned.

out_len

The length of the response set by the service function is returned.

Return values
See the return values for the function dc_rpc_call().

The return values for the function dc_rpc_call_to() include the following causes
in addition to those given in the return values for the function dc_rpc_call().

DCNOFLAGS|DCRPC_TPNOTRAN

Return value Return value
(numeric)

Explanation

DCRPCER_INVALID_ARGS -301 The value specified for an argument is invalid.

The host name specified in hostnm of the
DCRPC_BINDING_TBL structure cannot be mapped to
an IP address with the /etc/hosts file or DNS.

dc_rpc_call_to - Invoke a remote service with a communication destination specified

333

#

This global domain means a group of the following node names.

The DCRPC_BINDING_TBL structure specified for the
first argument of the function dc_rpc_call_to()
was created using the DCRPC_DIRECT_SCHEDULE
function and 0 was specified for hostnm in the
DCRPC_DIRECT_SCHEDULE function.

DCRPCER_NO_SUCH_SERVICE_GR
OUP

-310 The service group specified in group is not defined. Or,
the dc_rpc_call_to() function was executed using
a facility that is not supported by the service group
specified in group.

The node identifier specified for nid in the
DCRPC_BINDING_TBL structure does not exist in the
global domain# (a collection of node names specified
for the all_node operand of the system common
definition).

DCRPCER_TRNCHK_EXTEND -372 The transaction branch cannot be started since it
exceeds the maximum number of transaction branches
that can be activated concurrently.

The transaction branch cannot be started since it
exceeds the maximum number of child transaction
branches that can be activated from one transaction
branch.

DCRPC_TPNOTRAN is not specified for flags when a
service with domain qualification specified in a
transaction is requested.

Transaction branching cannot start because the
resource manager (RM) has encountered an error.

The function DCRPC_DIRECT_SCHEDULE was used to
create the DCRPC_BINDING_TBL structure, and a
service was requested from a user server with the
non-transaction attribute (atomic_update is N in the
user service definition or jnl_fileless_option is Y
in the system common definition). However, a
disjunction with DCRPC_TPNOTRAN was not specified
for the flags argument of the function
dc_rpc_call_to.

In the System Environment window of TP1/LiNK, the
Transaction Facility item is not set to Yes.

Return value Return value
(numeric)

Explanation

dc_rpc_call_to - Invoke a remote service with a communication destination specified

334

When N is specified in the name_domain_file_use operand in the system
common definition:

The global domain is a group of node names specified in the all_node and
all_node_ex operands in the system common definition.

When Y is specified in the name_domain_file_use operand in the system
common definition:

The global domain is a group of node names specified in the domain
definition files. The domain definition files are stored under the following
directories:

• Domain definition file for all_node

$DCCONFPATH/dcnamnd-directory
• Domain definition file for all_node_ex

$DCCONFPATH/dcnamndex-directory

Other related items
See the items for the function dc_rpc_call().

Notes
1. Take care when specifying a value for hostnm in the DCRPC_BINDING_TBL

structure, hostnm in the DCRPC_BINDING_SET function, or hostnm in the
DCRPC_DIRECT_SCHEDULE function under a multi-homed host mode in which
multiple LAN adaptors are connected within a single machine. In such a case, do
not specify any host name on the local machine other than the host name specified
for my_host in the system common definition. If you specify any other host
name, _operation will be unpredictable.

2. If you specify both a host name and node identifier in the DCRPC_BINDING_TBL
structure, the host name is valid and the node identifier is ignored.

3. If you specify 0 for both the host name and node identifier in the
DCRPC_BINDING_TBL structure, operation is exactly the same as for the function
dc_rpc_call().

4. To request a service directly from a user server managed by the schedule service,
be sure to create the DCRPC_BINDING_TBL structure using the
DCRPC_DIRECT_SCHEDULE function.

5. If you create the DCRPC_BINDING_TBL structure using the
DCRPC_DIRECT_SCHEDULE function and request a service from a user server
that receives requests from socket (socket is specified for receive_from in the
user service definition), the function dc_rpc_call_to() returns with the error
DCRPCER_SERVICE_NOT_UP.

dc_rpc_call_to - Invoke a remote service with a communication destination specified

335

6. This note applies when you call the function dc_rpc_call_to() with the
DCRPC_BINDING_TBL structure created by the function
DCRPC_DIRECT_SCHEDULE specified in order to request a service from a user
server with the non-transaction attribute. Here, a user server has the
non-transaction attribute when N is specified for the atomic_update operand in
the user service definition or Y is specified for the jnl_fileless_option
operand in the system common definition. In this case, you must specify a
disjunction with DCRPC_TPNOTRAN in the flags argument of the function
dc_rpc_call_to(). Failure to specify disjunction causes the function
dc_rpc_call_to() to return the error DCRPCER_TRNCHK_EXTEND.

7. If you call the function dc_rpc_call_to() in which you specified a
DCRPC_BINDING_TBL structure created using the DCRPC_DIRECT_SCHEDULE
function, OpenTP1 running the requested service must be Version 03-02 or later.
Operation is not guaranteed if the version is earlier than 03-02.

8. You cannot issue an RPC that has a domain qualification. Specifying
DCRPC_DOMAIN for flags in the function dc_rpc_call_to() causes the
function to return the error DCRPCER_INVALID_ARGS.

9. In the following case, the function dc_rpc_call_to() may return the error
DCRPCER_TIMED_OUT: You used a host name as the search key when calling the
function dc_rpc_call_to() from a service group on a node that is not
specified in the all_node operand of the system common definition, and
subsequently you stopped or restarted OpenTP1 running on the called node and
again called the function dc_rpc_call_to() from the same service group
using a host name as the search key.

10. When the function dc_rpc_call_to() is requested by specifying the
DCRPC_BINDING_TBL structure that was created with the
DCRPC_DIRECT_SCHEDULE function for direction of the function
dc_rpc_call_to(), the rpc_retry operand becomes invalid.

11. The performance verification trace can be obtained when the function
dc_rpc_call_to() is requested by specifying the DCRPC_BINDING_TBL
structure that was created with the DCRPC_DIRECT_SCHEDULE function for
direction of the function dc_rpc_call_to(), but it cannot be linked to the
information about the UAP performance verification trace in the request
destination. The serial number of the performance verification trace obtained with
the client UAP is not inherited in the server UAP.

DCRPC_BINDTBL_SET and DCRPC_DIRECT_SCHEDULE - Create the DCRPC_BINDING_TBL structure

336

DCRPC_BINDTBL_SET and DCRPC_DIRECT_SCHEDULE - Create
the DCRPC_BINDING_TBL structure

Format
ANSI C, C++

K&R C

Description
Create the DCRPC_BINDING_TBL structure to be specified for the first argument of the
function dc_rpc_call_to() by using one of the following functions:

DCRPC_BINDTBL_SET function

Specify the node identifier (nid) or host name (hostnm) of the requested service
node in the DCRPC_BINDING_TBL structure to create the first argument for the
function dc_rpc_call_to().

DCRPC_DIRECT_SCHEDULE function

Specify the host name (hostnm) of the requested service node and the port
number (scdport) of the specified schedule service in the
DCRPC_BINDING_TBL structure to create the first argument for the function
dc_rpc_call_to().

When you call the function dc_rpc_call_to() in which you specified a

#include <dcrpc.h>
void DCRPC_BINDTBL_SET(struct DCRPC_BINDING_TBL *direction,
 char *nid, char *hostnm,
 short portno, DCLONG flags)
void DCRPC_DIRECT_SCHEDULE(struct DCRPC_BINDING_TBL
 *direction, char *hostnm,
 short scdport, DCLONG flags)

#include <dcrpc.h>}
void DCRPC_BINDTBL_SET(*direction, *nid, *hostnm,
 portno, flags)
struct DCRPC_BINDING_TBL *direction;
char *nid;
char *hostnm;
short portno;
DCLONG flags;
void DCRPC_DIRECT_SCHEDULE(*direction, *hostnm, scdport,
 flags)
struct DCRPC_BINDING_TBL *direction;
char *hostnm;
short scdport;
DCLONG flags;

DCRPC_BINDTBL_SET and DCRPC_DIRECT_SCHEDULE - Create the DCRPC_BINDING_TBL structure

337

DCRPC_BINDING_TBL structure created using the DCRPC_DIRECT_SCHEDULE
function, OpenTP1 sends a service request directly to the user server managed by the
specified schedule service. However, you can use a DCRPC_BINDING_TBL structure
creating using the DCRPC_DIRECT_SCHEDULE function only when requesting a
service from a queue-receiving (queue is specified for receive_from in the user service
definition) user server.

You must observe numerous rules when calling the function dc_rpc_call_to() in
which you specified a DCRPC_BINDING_TBL structure created using the
DCRPC_DIRECT_SCHEDULE function. For example, you must be aware of the version
of OpenTP1 running the requested service and the transaction attribute of the user
server. For details, see the notes for the function dc_rpc_call_to().

Arguments whose values are set in the UAP
direction

Specify the address of the DCRPC_BINDING_TBL structure used for the first argument
of the function dc_rpc_call_to().

nid

In the DCRPC_BINDTBL_SET function, specify the address of the area that stores the
node identifier when you want to set a node identifier as the search key that designates
the requested service. End the character string with a null character. The null character
is not counted in the length of the character string.

The node identifier must be the name specified for node_id in the system common
definition and the host name of the requested service node must exist in the global
domain# (a collection of node names specified for the all_node operand of the
system common definition).

When you do not intend to set a node identifier as the search key, specify address 0 for
nid.

#

This global domain means a group of the following node names.

When N is specified in the name_domain_file_use operand in the system
common definition:

The global domain is a group of node names specified in the all_node and
all_node_ex operands in the system common definition.

When Y is specified in the name_domain_file_use operand in the system
common definition:

The global domain is a group of node names specified in the domain
definition files. The domain definition files are stored under the following
directories:

DCRPC_BINDTBL_SET and DCRPC_DIRECT_SCHEDULE - Create the DCRPC_BINDING_TBL structure

338

• Domain definition file for all_node

$DCCONFPATH/dcnamnd-directory
• Domain definition file for all_node_ex

$DCCONFPATH/dcnamndex-directory
hostnm

Specify the address of the area that stores the host name of the requested service node.
You can specify a character string containing between 1 and 255 characters as the host
name. End the character string with a null character. The null character is not counted
in the length of the character string. The name of the specified host is one that can be
mapped to an IP address with the /etc/hosts file or DNS.

It is optional whether the host name of the requested service node is specified in the
global domain# (a collection of node names specified for the all_node operand of the
system common definition).

When you do not intend to set a host name as the search key that designates the
requested service in the DCRPC_BINDTBL_SET function, specify address 0 for
hostnm.

Be sure to specify hostnm in the DCRPC_DIRECT_SCHEDULE function. If you specify
address 0 for hostnm in the DCRPC_DIRECT_SCHEDULE function, calling the function
dc_rpc_call_to() with the DCRPC_BINDING_TBL structure specified causes the
function to return the error DCRPCER_INVALID_ARGS.

#

This global domain means a group of the following node names.

When N is specified in the name_domain_file_use operand in the system
common definition:

The global domain is a group of node names specified in the all_node and
all_node_ex operands in the system common definition.

When Y is specified in the name_domain_file_use operand in the system
common definition:

The global domain is a group of node names specified in the domain
definition files. The domain definition files are stored under the following
directories:

• Domain definition file for all_node

$DCCONFPATH/dcnamnd-directory
• Domain definition file for all_node_ex

$DCCONFPATH/dcnamndex-directory

DCRPC_BINDTBL_SET and DCRPC_DIRECT_SCHEDULE - Create the DCRPC_BINDING_TBL structure

339

portno

• When you set a host name as the search key in the DCRPC_BINDTBL_SET
function

Specify the port number (the value specified for name_port operand in the
system common definition) of the name service of the OpenTP1 system running
the requested service. If the port number of the name service at the requested
service matches the port number of the name service at the request source, specify
0.

• When you set a node identifier as the search key in the DCRPC_BINDTBL_SET
function

Specify 0 for portno. If you omit the port number (the value specified for the
all_node operand in the system common definition) at the requested service, the
port number (the value specified for the name_port operand in the system
common definition) of the name service at the requested service and the port
number of the name service at the request source must match.

scdport

For scdport in the DCRPC_DIRECT_SCHEDULE function, specify the port number of
the schedule service provided by the OpenTP1 system that offers the requested service
(the value assigned to scd_port in the schedule service definition for the requested
service). If you specify 0, the transmission destination port number is assumed by
default to be the value assigned to scd_port specified in the schedule service
definition on the service request issuer. Therefore, before you can specify 0 for
scdport in the DCRPC_DIRECT_SCHEDULE function, the OpenTP1 system of the
service request issuer must be active and scd_port must be specified in the schedule
service definition for the OpenTP1 system.

flags

Specify DCNOFLAGS.

Other related items
See the items for the function dc_rpc_call_to().

Notes
1. The DCRPC_BINDTBL_SET function and DCRPC_DIRECT_SCHEDULE function

are provided for setting the DCRPC_BINDING_TBL structure to be specified for
the first argument of the function dc_rpc_call_to().

2. Details of how to check the values specified for the arguments of the
DCRPC_BINDTBL_SET function and DCRPC_DIRECT_SCHEDULE function and
how to specify the values are given in the description of calling the function
dc_rpc_call_to() with the DCRPC_BINDING_TBL structure specified. For

DCRPC_BINDTBL_SET and DCRPC_DIRECT_SCHEDULE - Create the DCRPC_BINDING_TBL structure

340

details about the dc_rpc_call_to() function, see dc_rpc_call_to in 2. Remote
procedure call (dc_rpc_~).

3. The DCRPC_BINDTBL_SET function and DCRPC_DIRECT_SCHEDULE function
do not acquire any UAP trace.

dc_rpc_close - Terminate an application program

341

dc_rpc_close - Terminate an application program

Format
ANSI C, C++

K&R C

Description
The function dc_rpc_close() closes the environment for using various types of
OpenTP1 functions. OpenTP1 functions cannot be used after the function
dc_rpc_close().

The function dc_rpc_close() must be called in the main function. Call the function
dc_rpc_close() only once in the process.

The function dc_rpc_close() also informs OpenTP1 of normal termination. If a
UAP terminates without the function dc_rpc_close() called, OpenTP1 assumes
that the UAP terminated abnormally. Consequently, the service group might be shut
down or the process might be restarted. To make matters worse, various OpenTP1
resources might not be released, which affects the subsequent processing.

If the function dc_rpc_open() is called from any UAP used with OpenTP1, the
function dc_rpc_close() must be called before the UAP terminates with exit().

Call the function dc_rpc_close() even if the function dc_rpc_open() returns
with an error.

After the function dc_rpc_close() is called, the function dc_rpc_open() cannot
be called from the same UAP.

Argument whose value is set in the UAP
flags

Specify DCNOFLAGS.

Return value
There is no return value of the function dc_rpc_close().

#include <dcrpc.h>
void dc_rpc_close (DCLONG flags)

#include <dcrpc.h>
void dc_rpc_close (flags)
DCLONG flags;

dc_rpc_cltsend - Report data to CUP unidirectionally

342

dc_rpc_cltsend - Report data to CUP unidirectionally

Format
ANSI C, C++

K&R C

Description
The function dc_rpc_cltsend() sends data to the CUP unidirectionally. This
function sends data specified for msg of the length specified for len to the process
(CUP) corresponding to the port number of the host specified for hostname and port.
The possible sending data length is in the range of bytes from 0 to
DCRPC_MAX_MESSAGE_SIZE#.

#: If you used the rpc_max_message_size operand, the value of this data area is the
value specified in the rpc_max_message_size operand and not the value of
DCRPC_MAX_MESSAGE_SIZE (1 megabyte).

Data sent by the function dc_rpc_cltsend() is received by the TP1/Client library
function dc_clt_chained_accept_notification() or
dc_clt_accept_notification(). For the function
dc_clt_chained_accept_notification() or
dc_clt_accept_notification(), see the manual OpenTP1 TP1/Client/W, TP1/
Client/P.

Arguments whose values are set in the UAP
hostname

Specify the name of the host to which data is sent. You can specify a character string
containing between 1 and 255 characters as the host name. End the character string
with a null character.

#include <dcrpc.h>
int dc_rpc_cltsend (char *hostname, unsigned short port,
 char *msg, DCLONG len, DCLONG flags)

#include <dcrpc.h>
int dc_rpc_cltsend (hostname, port, msg, len, flags)
char *hostname;
unsigned short port;
char *msg;
DCLONG len;
DCLONG flags;

dc_rpc_cltsend - Report data to CUP unidirectionally

343

port

Specify the number of the port to which data is sent.

msg

Specify data to be sent.

len

Specify the length of data to be sent.

flags

Specify DCNOFLAGS.

Return values

#: If you used the rpc_max_message_size operand, the value of this data area is the
value specified in the rpc_max_message_size operand and not the value of
DCRPC_MAX_MESSAGE_SIZE (1 megabyte).

Notes
1. Use the function dc_rpc_cltsend() only when the process of the destination

calls the TP1/Client function dc_clt_chained_accept_notification() or
dc_clt_accept_notification() obviously. If the process of the destination
is not active, the function dc_rpc_cltsend() returns with an error, giving the
return value DCRPCER_SERVICE_NOT_UP.

2. Normal return of the function dc_rpc_cltsend() indicates that sending at RPC
communication protocol (TCP/IP) level is completed. Therefore, normal
termination of the function dc_rpc_cltsend() does not guarantee that the data

Return value Return value
(numeric)

Explanation

DC_OK 0 Normal termination.

DCRPCER_INVALID_ARGS -301 The value specified for the argument is invalid.

DCRPCER_NET_DOWN -306 A network error occurred.

DCRPCER_PROTO -302 The function dc_rpc_open() was not called.

DCRPCER_NO_BUFS -304 The memory became insufficient.

DCRPCER_MESSAGE_TOO_BIG -308 The length of data to be sent exceeds
DCRPC_MAX_MESSAGE_SIZE#.

DCRPCER_SERVICE_NOT_UP -314 There is no process at the destination.

A network error occurred.

dc_rpc_cltsend - Report data to CUP unidirectionally

344

is received normally by the CUP using the function
dc_clt_chained_accept_notification() or
dc_clt_accept_notification().

3. The function dc_rpc_cltsend() can report data only to the function
dc_clt_chained_accept_notification() or
dc_clt_accept_notification() used by the CUP. Data cannot be sent to
SPP processes and local processes.

dc_rpc_discard_further_replies - Reject the receiving of processing results

345

dc_rpc_discard_further_replies - Reject the receiving of processing
results

Format
ANSI C, C++

K&R C

Description
The function dc_rpc_discard_further_replies() specifies that no more
responses (which have not been returned) will be received through an
asynchronous-response-type RPC (DCRPC_NOWAIT specified for flags of the
function dc_rpc_call()). After the function
dc_rpc_discard_further_replies() is called, returned responses are discarded
instead of being received.

To stop receiving further processing results of an asynchronous-response-type RPC,
call the function dc_rpc_discard_further_replies(). Otherwise, the function
dc_rpc_poll_any_replies() might receive unnecessary responses.

Use the function dc_rpc_discard_further_replies() in the following cases:

• After a response wait timeout occurs, the buffer for shutting down the processing
results is released.

• An asynchronous-response-type RPC has been called more than once, but only
the first response is necessary.

Argument whose value is set in the UAP
flags

Specify DCNOFLAGS.

Return value
There is no return value of the function dc_rpc_discard_further_replies().

#include <dcrpc.h>
void dc_rpc_discard_further_replies (DCLONG flags)

#include <dcrpc.h>
void dc_rpc_discard_further_replies (flags)
DCLONG flags;

dc_rpc_discard_specific_reply - Reject acceptance of particular processing results

346

dc_rpc_discard_specific_reply - Reject acceptance of particular
processing results

Format
ANSI C, C++

K&R C

Description
The function dc_rpc_discard_specific_reply indicates that the UAP will no
longer receive a specific response which can be returned by an asynchronous-response
type RPC (when DCRPC_NOWAIT was specified in flags in the function
dc_rpc_call) but has not yet been returned. To specify the asynchronous response
whose reception is to be rejected, specify the descriptor returned when an
asynchronous-response type RPC returned in des. Of the responses that return after
this function is called, responses having the same descriptor as the specified descriptor
are discarded without being received.

Arguments whose values are set in the UAP
des

Specify the descriptor returned when the function dc_rpc_call (with
DCRPC_NOWAIT specified in flags) of an asynchronous-response type RPC
terminated normally.

flags

Specify DCNOFLAGS.

Return values

#include <dcrpc.h>
int dc_rpc_discard_specific_reply (int des, DCLONG flags)

#include <dcrpc.h>
int dc_rpc_discard_specific_reply (des, flags)
int des;
DCLONG flags;

Return value Return value
(numeric)

Explanation

DC_OK 0 Normal termination.

DCRPCER_INVALID_ARGS -301 The value specified for the argument is invalid.

dc_rpc_discard_specific_reply - Reject acceptance of particular processing results

347

DCRPCER_PROTO -302 The function dc_rpc_open was not called.

DCRPCER_INVALID_DES -322 The descriptor specified for des does not exist. An
asynchronous-response type RPC corresponding to the
specified descriptor was not sent, or a response has
already been received through an
asynchronous-response type RPC, or reception of a
response was rejected.

Return value Return value
(numeric)

Explanation

dc_rpc_get_callers_address - Acquire the node address of a client UAP

348

dc_rpc_get_callers_address - Acquire the node address of a client
UAP

Format
ANSI C, C++

K&R C

Description
The function dc_rpc_get_callers_address() allows the server UAP to acquire
the address of the node at which the client UAP process is working. Security checking
for the client UAP can be performed using the address obtained by the function
dc_rpc_get_callers_address().

The address obtained by the function dc_rpc_get_callers_address() cannot be
used for sending a service response or error response.

The function dc_rpc_get_callers_address() must be called from a service
function. Otherwise, processing is unpredictable.

Arguments whose value is set in the UAP
flags

Specify DCNOFLAGS.

Arguments whose value is returned from OpenTP1
node

The node address of the client UAP is returned.

Return values
There is no return value of the function dc_rpc_get_callers_address().

Note
When both the following conditions are true, the node address of the client UAP
returned by the dc_rpc_get_callers_address() function might differ from the

#include <dcrpc.h>
void dc_rpc_get_callers_address (DCULONG *node,
 DCLONG flags)

#include <dcrpc.h>
void dc_rpc_get_callers_address (node, flags)
DCULONG *node;
DCLONG flags;

dc_rpc_get_callers_address - Acquire the node address of a client UAP

349

node address actually used by the client UAP during communication:

• A service request was accepted using the remote API facility.

• The host containing the client UAP is a multi-homed host mode.

dc_rpc_get_error_descriptor - Acquire the descriptor of an asynchronous response-type RPC request which has en-
countered an error

350

dc_rpc_get_error_descriptor - Acquire the descriptor of an
asynchronous response-type RPC request which has encountered
an error

Format
ANSI C, C++

K&R C

Description
The function dc_rpc_get_error_descriptor() acquires the descriptor of an
asynchronous response-type RPC request which has encountered an error when it is
called just after the function dc_rpc_poll_any_replies() without a particular
asynchronous response specified returns with an error.

It can acquire the descriptor only when the error has occurred on the SPP.

If an error has occurred on the dc_rpc_poll_any_replies() caller, the function
dc_rpc_get_error_descriptor() cannot acquire the descriptor.

Arguments whose value is set in the UAP
flags

Specify DCNOFLAGS.

Return values

#include <dcrpc.h>
int dc_rpc_get_error_descriptor(DCLONG flags)

#include <dcrpc.h>
int dc_rpc_get_error_descriptor (flags)
DCLONG flags

Return value Return value
(numeric)

Explanation

Positive integer The function acquired the descriptor of the
asynchronous response-type RPC request which
encountered the error returned by the function
dc_rpc_poll_any_replies().

0 The function failed to acquire the descriptor of the
asynchronous response-type RPC request which
encountered the error returned by the function
dc_rpc_poll_any_replies().

dc_rpc_get_error_descriptor - Acquire the descriptor of an asynchronous response-type RPC request which has en-
countered an error

351

DCRPCER_INVALID_ARGS -301 The value specified for the argument is invalid.

Return value Return value
(numeric)

Explanation

dc_rpc_get_gateway_address - Acquire the node address of a gateway

352

dc_rpc_get_gateway_address - Acquire the node address of a
gateway

Format
ANSI C, C++

K&R C

Description
The function dc_rpc_get_gateway_address acquires the node address of a
gateway from the server UAP when a service request was received from a client UAP
via a gateway, such as the application gateway FireWall.

The server UAP can acquire the node address of the gateway when a service was
requested using the remote API facility.

A service response or error response cannot be sent using the address that is returned
for the function dc_rpc_get_gateway_address.

Call the function dc_rpc_get_gateway_address from the service function.
Processing is not guaranteed if the function is called from a function other than the
service function.

Arguments whose values are set in the UAP
node

Specify the address of the area to which the node address of the gateway is to be
returned.

flags

Specify DCNOFLAGS.

Arguments whose values are returned from OpenTP1
node

The node address of the gateway is returned. The value 0 is set when the remote API
facility was not used.

#include <dcrpc.h>
int dc_rpc_get_gateway_address(DCULONG *node,DCLONG flags)

#include <dcrpc.h>
int dc_rpc_get_gateway_address(node, flags)
DCULONG *node;
DCLONG flags;

dc_rpc_get_gateway_address - Acquire the node address of a gateway

353

Return values
Return value Return value

(numeric)
Explanation

DC_OK 0 Normal termination

DCRPCER_INVLAID_ARGS -301 The value specified for the argument is invalid.

DCRPCER_PROTO -302 The function dc_rpc_get_gateway_address was
not called from the service function.

dc_rpc_get_service_prio - Reference the schedule priority of a service request

354

dc_rpc_get_service_prio - Reference the schedule priority of a
service request

Format
ANSI C, C++

K&R C

Description
The function dc_rpc_get_service_prio() references that schedule priority of a
service request which was set by the function dc_rpc_set_service_prio(). The
value obtained by this function remains unchanged until the UAP calls the function
dc_rpc_set_service_prio() again.

The function dc_rpc_get_service_prio() returns the default value (4) in the
following cases:

• The UAP has not called the function dc_rpc_set_service_prio().

• The function dc_rpc_set_service_prio() has been called with 0 specified
for the argument prio.

Return values

#include <dcrpc.h>
int dc_rpc_get_service_prio (void)

#include <dcrpc.h>
int dc_rpc_get_service_prio()

Return value Explanation

Positive integer Schedule priority set by the function dc_rpc_set_service_prio(), in the range
from 1 to 8.

Other than the above An unprecedented error (e.g., program damage) occurred.

dc_rpc_get_watch_time - Reference the service response waiting interval

355

dc_rpc_get_watch_time - Reference the service response waiting
interval

Format
ANSI C, C++

K&R C

Description
The function dc_rpc_get_watch_time() references the current response waiting
interval of a service request. This function is used for saving the current value of the
service response waiting interval before temporarily changing it using the function
dc_rpc_set_watch_time().

The function returns the service response waiting interval changed by the function
dc_rpc_set_watch_time(). When the interval has not been changed, the
following value is returned:

• For TP1/Server Base: Value of the watch_time operand in the system common
definition

• For TP1/LiNK: 180 seconds

The value obtained by this function can be used by the OpenTP1 function
dc_rpc_call().

Return values

#include <dcrpc.h>
int dc_rpc_get_watch_time (void)

#include <dcrpc.h>
int dc_rpc_get_watch_time()

Return value Return value
(numeric)

Explanation

DC_OK 0 The service response waiting interval means indefinite
wait.

Positive integer Current the service response waiting interval.

Other than the above An unprecedented error (e.g., program damage)
occurred.

dc_rpc_mainloop - Start an SPP service

356

dc_rpc_mainloop - Start an SPP service

Format
ANSI C, C++

K&R C

Description
The function dc_rpc_mainloop() starts the receiving of service requests to a
service function of the SPP which is being executed in the process. The function
dc_rpc_mainloop() must be called in the main function. Call the function
dc_rpc_mainloop() only once in the process.

The function dc_rpc_mainloop() does not return until it receives a termination
request from OpenTP1. The function dc_rpc_mainloop() receives a termination
request from OpenTP1 in the following cases:

• Termination processing starts because one of the following OpenTP1 stop
commands has been accepted:

dcstop command (normal termination)

dcstop -n command (forced normal termination)

dcstop -a command (planned termination A)

dcstop -b command (planned termination B)

• The following server stop command is entered to start termination processing for
the processes of the SPP that called the function dc_rpc_mainloop():

dcsvstop command (normal termination)

• OpenTP1 terminates the processes of the SPP that called the function
dc_rpc_mainloop() because the number of processes exceeds the maximum
number specified in the user service definition.

• Service processing terminates if the SPP is executing under a nonresident process.

• If loads on SPPs are distributed in a multiserver configuration, service requests
addressed to the present service group are reduced.

#include <dcrpc.h>
int dc_rpc_mainloop (DCLONG flags)

#include <dcrpc.h>
int dc_rpc_mainloop(flags)
DCLONG flags;

dc_rpc_mainloop - Start an SPP service

357

Argument whose value is set in the UAP
flags

Specify DCNOFLAGS.

Return values

Notes
The function dc_rpc_mainloop() returns when it receives a termination request
from OpenTP1. However, the function dc_rpc_mainloop() does not return but the
process terminates in the following cases:

1. The SPP enters a termination process because the OpenTP1 forced termination
command (dcstop -f command) or server forced termination command
(dcsvstop -f command) is executed.

2. A process terminates abnormally because the UAP or OpenTP1 malfunctions.

3. The service function issues abort() or exit().

4. Hardware, the operating system, or OpenTP1 causes an error.

Even if the SPP is created in such a way that termination processing will be executed
after the function dc_rpc_mainloop() terminates normally, the processing is not
executed in the above cases.

Return value Return value
(numeric)

Explanation

DC_OK 0 A termination request was received from OpenTP1.
Execute termination processing for the SPP
immediately, then call the function dc_rpc_close()
and exit().

DCRPCER_INVALID_ARGS -301 The value specified for the argument is invalid.

DCRPCER_PROTO -302 The function dc_rpc_open() was not called.

The function dc_rpc_mainloop() or the function
dc_mcf_mainloop() was called.

DCRPCER_FATAL -303 The SPP service could not be started.

dc_rpc_open - Start an application program

358

dc_rpc_open - Start an application program

Format
ANSI C, C++

K&R C

Description
The function dc_rpc_open() prepares to use the various types of OpenTP1
functions. The function dc_rpc_open() must be called in the main function. Call the
function dc_rpc_open() only once in the process.

To initialize in the main function:

1. Open the entry point for communication between processes.

2. Acquire shared memory used with OpenTP1.

3. Post the UAP start to OpenTP1 to request OpenTP1 to supervise processes.

4. Initialize the OpenTP1 facilities to be used according to the UAP environment
settings.

If the transaction attribute is specified in the user service definition, the OpenTP1
transaction service and the process service must be in progress at the node. The
function dc_rpc_open() can be called only after OpenTP1 starts normally when the
OS starts or after OpenTP1 is started normally by entering the dcstart command. If
the function dc_rpc_open() is called before the normal start of OpenTP1, the
function returns with the error value DCRPCER_OLTF_NOT_UP. In this case, the
function dc_rpc_call() cannot be used.

UAP trace is acquired for all OpenTP1 functions called after the function
dc_rpc_open() terminates normally. If the function dc_rpc_open() returns with
an error, the UAP trace is not always acquired.

Argument whose value is set in the UAP
flags

Specify DCNOFLAGS.

#include <dcrpc.h>
int dc_rpc_open (DCLONG flags)

#include <dcrpc.h>
int dc_rpc_open (flags)
DCLONGflags;

dc_rpc_open - Start an application program

359

Return values

Example

Return value Return value
(numeric)

Explanation

DC_OK 0 Normal termination.

DCRPCER_INVALID_ARGS -301 The value specified for the argument is invalid.

DCRPCER_PROTO -302 The function dc_rpc_open() was called.

DCRPCER_FATAL -303 Initialization was unsuccessful. OpenTP1 functions can
no longer be used.

DCRPCER_OLTF_NOT_UP -315 OpenTP1 of the node at which the UAP exists was not
executed.

DCRPCER_SEC_INIT -371 An error occurred in initialization of the security
environment of the OpenTP1 that used the security
facility.

DCRPCER_STANDBY_END -369 The end of standby status was requested for a server in
the standby system.

#include <dcrpc.h>
main(){
if(dc_rpc_open(DCNOFLAGS) <0){
 fputs("cannot begin usrserv1",stderr);
goto RPC_CLOSE;
}
if(dc_rpc_mainloop(DCNOFLAGS)<0)
 fputs("cannot begin usrserv1",stderr);
/*The service function is called and executed.*/
/*In the mean time, control does not return to the main function.*/
RPC_CLOSE:
dc_rpc_close(DCNOFLAGS);
}

dc_rpc_poll_any_replies - Receive processing results in asynchronous mode

360

dc_rpc_poll_any_replies - Receive processing results in
asynchronous mode

Format
ANSI C, C++

K&R C

Description
The function dc_rpc_poll_any_replies() receives the processing results of a
service requested through an asynchronous-response-type RPC (DCRPC_NOWAIT
specified for flags of the function dc_rpc_call()).

To designate a specific asynchronous response received, specify
DCRPC_SPECIFIC_MSG for flags. If this flag is set, the function
dc_rpc_poll_any_replies() receives the response of the asynchronous
response-type RPC which returned the descriptor specified for des.

Not to designate a specific asynchronous response received, specify DCNOFLAGS for
flags. In this case, the value specified for des is ignored. When the function
dc_rpc_poll_any_replies() with DCNOFLAGS specified for flags terminates
normally, it returns the same value as the descriptor of the received asynchronous
response.

The function dc_rpc_poll_any_replies() returns in the following cases:

• A response is received from an asynchronous-response RPC.

• A response wait timeout occurs (the response wait time specified in timeout has
elapsed).

When the function dc_rpc_poll_any_replies() terminates normally, the
received response is stored in the response area specified in the function
dc_rpc_call() using the asynchronous response-type RPC.

The following items are described after the list of return values. See each description
For details on the function dc_rpc_poll_any_replies().

#include <dcrpc.h>
int dc_rpc_poll_any_replies (int des, DCLONG timeout,
 DCLONG flags)

#include <dcrpc.h>
int dc_rpc_poll_any_replies (des, timeout, flags)
int des;
DCLONG timeout;
DCLONG flags;

dc_rpc_poll_any_replies - Receive processing results in asynchronous mode

361

(1) timeout, an argument of the function dc_rpc_poll_any_replies()

(2) Timing when the function dc_rpc_poll_any_replies() results in error

(3) Specification for returning the value DCRPCER_SERVICE_TERMINATED

(4) Relationship between error return values and synchronization point processing

(5) When a response cannot be received by the function
dc_rpc_poll_any_replies()

(6) Notes on using the function dc_rpc_poll_any_replies()

Arguments whose values are set in the UAP
des

Specify the descriptor which was normally returned by the function dc_rpc_call()
(DCRPC_NOWAIT specified for flags) of asynchronous response-type RPC. If
DCNOFLAGS is specified for flags, the value set here will be ignored.

timeout

Specify wait time (in seconds or milliseconds) until the results of the function
dc_rpc_call() of an asynchronous-response-type RPC are returned. The specified
wait time must be in the range from -1 to the maximum value which can be indicated
by DCLONG type.

When the function dc_rpc_poll_any_replies() receives an asynchronous
response, the response waiting interval specified in the UAP is not referenced.

If 0 is specified here, DCNOFLAGS or DCRPC_SPECIFIC_MSG is specified for flags,
and no response is returned, then the function dc_rpc_poll_replies() will
immediately return with the return value DCRPCER_TIMED_OUT. If
DCRPC_WAIT_MILLISEC is specified for flags, the wait time will be 50
milliseconds.

When -1 is specified, the function dc_rpc_poll_any_replies() continues to
wait until a response is returned.

flags

Use the following format:

DCNOFLAGS

Asynchronous responses received by the function
dc_rpc_poll_any_replies() will not be identified.

DCRPC_SPECIFIC_MSG

{DCNOFLAGS|DCRPC_SPECIFIC_MSG}[|DCRPC_WAIT_MILLISEC]

dc_rpc_poll_any_replies - Receive processing results in asynchronous mode

362

The response to the asynchronous-response-type RPC which returned the
descriptor specified for des will be received.

DCRPC_WAIT_MILLISEC

The wait time specified by timeout is assumed to be in milliseconds.

Return values
Return value Return value

(numeric)
Explanation

DC_OK 0 Normal termination. This value is returned when the
function dc_rpc_poll_any_replies() with
DCRPC_SPECIFIC_MSG specified for flags
terminates normally.

Positive integer Indicates the descriptor of the received asynchronous
response. This value is returned when the function
dc_rpc_poll_any_replies() with DCNOFLAGS
specified for flags terminates normally.

DCRPCER_ALL_RECEIVED -321 The results of processing for the service requested with
asynchronous response-type RPCs are received
completely.

DCRPCER_INVALID_DES -322 The descriptor specified for des does not exist. This
value is returned when DCRPC_SPECIFIC_MSG is
specified for flags.

DCRPCER_INVALID_ARGS -301 The value specified for the argument is invalid.

DCRPCER_PROTO -302 The function dc_rpc_open() was not called.

DCRPCER_NO_BUFS -304 The memory became insufficient.

DCRPCER_NET_DOWN -306 A network error occurred.

DCRPCER_TIMED_OUT -307 The function dc_rpc_call() or dc_gwf_call()
encountered timeout.

An SPP to which the service request was addressed
terminated abnormally before completion of the
requested service.

DCRPCER_MESSAGE_TOO_BIG -308 The input parameter length specified for in_len of the
function dc_rpc_call() or dc_gwf_call()
exceeded the maximum.

DCRPCER_REPLY_TOO_BIG -309 The returned response is longer than the area prepared
by the client UAP.

dc_rpc_poll_any_replies - Receive processing results in asynchronous mode

363

DCRPCER_NO_SUCH_SERVICE_
GROUP

-310 The service group specified in group of the
dc_rpc_call() or dc_gwf_call() function is not
defined. Or, the dc_rpc_call() or dc_gwf_call()
function was executed using a facility that is not
supported by the service group specified in group.

DCRPCER_NO_SUCH_SERVICE -311 The service name specified in service is not defined
in the SPP that requested the service.

DCRPCER_SERVICE_CLOSED -312 The service group containing the service of which
name is specified for service of the function
dc_rpc_call() or dc_gwf_call() is in shutdown
state.

DCRPCER_SERVICE_TERMINATIN
G

-313 The service specified for service of the function
dc_rpc_call() or dc_gwf_call() is being
terminated.

DCRPCER_SERVICE_NOT_UP -314 The UAP process of the service specified for service
of the function dc_rpc_call() or dc_gwf_call() is
not active.

An SPP to which the service request was addressed
terminated abnormally before completion of the
requested service when -1 is specified for timeout.

DCRPCER_OLTF_NOT_UP -315 The OpenTP1 at the node containing the service
specified for service of the function
dc_rpc_call() or dc_gwf_call() is not active.
The cause may be one of the following: abnormal
termination, being-suspended, being-terminated, or
communication error.

DCRPCER_SYSERR_AT_SERVER -316 A system error occurred in the specified service for the
function dc_rpc_call() or dc_gwf_call().

DCRPCER_SYSERR -318 A system error occurred.

DCRPCER_NO_BUFS_AT_SERVER -317 The memory became insufficient in the specified
service for the function dc_rpc_call() or
dc_gwf_call().

DCRPCER_INVALID_REPLY -319 The length of the response returned from the service
function to the OpenTP1 is not in the range from 1 to
DCRPC_MAX_MESSAGE_SIZE#.

DCRPCER_OLTF_INITIALIZING -320 The OpenTP1 at the node to which the service request
is addressed is being started.

Return value Return value
(numeric)

Explanation

dc_rpc_poll_any_replies - Receive processing results in asynchronous mode

364

DCRPCER_NO_BUFS_RB -323 The memory became insufficient. If this value is
returned, the transaction branch cannot be committed.

DCRPCER_SYSERR_RB -324 A system error occurred. If this value is returned, the
transaction branch cannot be committed.

DCRPCER_SYSERR_AT_SERVER_R
B

-325 A system error occurred when the specified service was
executed. If this value is returned, the transaction
branch cannot be committed.

DCRPCER_REPLY_TOO_BIG_RB -326 The returned response is too large to be stored in the
area prepared by the client UAP. If this value is
returned, the transaction branch cannot be committed.

DCRPCER_TRNCHK -327 The transaction attributes of multiple SPPs do not
match in an environment where the internode
load-balancing facility and the extended internode
load-balancing facility are in use. This return value is
only returned when the service request is addressed to
an SPP that uses the internode load-balancing facility
and the extended internode load-balancing facility.

DCRPCER_NO_SUCH_DOMAIN -328 The domain name of the service group name with
domain qualification is invalid.

DCRPCER_NO_PORT -329 When a service is requested with domain qualification,
the port number of the domain-alternate schedule
service is not found.

DCRPCER_SERVER_BUSY -356 The server that receives requests from socket to which
the service request is addressed cannot receive the
service request.

DCRPCER_TESTMODE -366 When the online tester was in use, a service request was
issued from a UAP in test mode to an SPP in nontest
mode or from a UAP in nontest mode to an SPP in test
mode.

DCRPCER_SECCHK -370 An SPP to which the service request is addressed is
protected with the security facility. The UAP that
requests the service by using the function
dc_rpc_call() or dc_gwf_call() has no access
permission for the SPP.

DCRPCER_TRNCHK_EXTEND -372 The transaction branch cannot be started since it
exceeds the maximum number of transaction branches
which can be activated concurrently.

Return value Return value
(numeric)

Explanation

dc_rpc_poll_any_replies - Receive processing results in asynchronous mode

365

#: If you used the rpc_max_message_size operand, the value of this data area is the
value specified in the rpc_max_message_size operand and not the value of
DCRPC_MAX_MESSAGE_SIZE (1 megabyte).

(1) timeout, an argument of the function dc_rpc_poll_any_replies()
The monitoring time for receiving an asynchronous response is reset each time a
response is returned. Therefore, when a specific asynchronous response received is
designated (DCRPC_SPECIFIC_MSG is specified for flags), a response may be
received even if the time specified for timeout has elapsed. Alternatively, the
function dc_rpc_poll_any_replies() may not return with an error, giving the
return value DCRPCER_TIMED_OUT even if the time specified for timeout has
elapsed.

(2) Timing when the function dc_rpc_poll_any_replies() results in error
The following explains the timing when an error is returned from the client UAP if the
SPP to which the service request is addressed terminates abnormally.

If an SPP to execute a service terminates abnormally before completion of the
processing, the function dc_rpc_poll_any_replies() returns with an error,
giving the return value DCRPCER_TIMED_OUT. If -1 is specified for timeout, an
argument of the function dc_rpc_poll_any_replies(), the function returns with
an error, giving the return value DCRPCER_SERVICE_NOT_UP.

The transaction branch cannot be started since it
exceeds the maximum number of child transaction
branches which can be activated from one transaction
branch.

Transaction branching cannot start because the
resource manager (RM) has encountered an error.

DCRPCER_SERVICE_TERMINATED -378 The SPP from which a service was requested
terminated abnormally before processing was
completed. This value is returned only for the client
UAP having the rpc_extend_function operand
specified as 00000001. The operand is in the user
service definition. If 00000000 is specified in the
rpc_extend_function operand, or the operand is
omitted, DCRPCER_TIMED_OUT or
DCRPCER_SERVICE_NOT_UP is returned rather than
this value.

Return value Return value
(numeric)

Explanation

dc_rpc_poll_any_replies - Receive processing results in asynchronous mode

366

When the function dc_rpc_poll_any_replies() results in error due to time monitoring
for the function

In the following cases, the function returns with an error, giving the return value
DCRPCER_TIMED_OUT, after the time specified for timeout, an argument of the
function dc_rpc_poll_any_replies(), has elapsed:

• The entire OpenTP1 at the node containing the SPP terminates abnormally.

• An error occurs before the server UAP receives service request data or before the
client UAP receives the result after the server UAP processing is completed.

(3) Specification for returning the value
DCRPCER_SERVICE_TERMINATED

You may want to determine whether the SPP that requested a service terminated
abnormally before completion of processing based on a returned value other than
DCRPCER_TIMED_OUT or DCRPCER_SERVICE_NOT_UP. If so, specify 00000001 in
the rpc_extend_function operand of the user service definition. This specification
returns DCRPCER_SERVICE_TERMINATED if the above error occurs. If 00000000 is
specified in the rpc_extend_function operand, or the operand is omitted,
DCRPCER_TIMED_OUT or DCRPCER_SERVICE_NOT_UP is returned rather than
DCRPCER_SERVICE_TERMINATED.

(4) Relationship between error return values and synchronization point
processing

The relationship between return values of the function
dc_rpc_poll_any_replies() and synchronization point processing (commitment
and rollback) is explained below. The description applies to the service request which
is a transaction, rather than the service request which is not a transaction (including the
case when DCRPC_TPNOTRAN is specified for flags of the function
dc_rpc_call()).

If commitment is performed even though the function dc_rpc_poll_any_replies()
returns with an error

The return value DCRPCER_TIMED_OUT may be returned due to abnormal termination
of the service function which the service request is addressed, a node error, or network
error. However, when the client UAP is not a transaction, the service function which
the service request is addressed may terminate normally and database may be updated.

Error return values which require rollback processing

If the function dc_rpc_poll_any_replies() called from a transaction returns
with an error, some return values always require rollback processing for the transaction
(the server UAP enters in rollback_only state). In this case, rollback processing
is always performed even if either of the commitment function or rollback function is
used. The following return values of the function dc_rpc_poll_any_replies()

dc_rpc_poll_any_replies - Receive processing results in asynchronous mode

367

always require rollback processing for the transaction:

• DCRPCER_INVALID_REPLY

• DCRPCER_NO_BUFS_AT_SERVER

• DCRPCER_NO_SUCH_SERVICE

• DCRPCER_REPLY_TOO_BIG_RB

(5) When a response cannot be received by the function
dc_rpc_poll_any_replies()

The function dc_rpc_poll_any_replies() cannot receive a response if either of
the following functions is called by the UAP requesting a service with an
asynchronous response-type RPC.

1. The receiving of asynchronous responses is rejected by the function
dc_rpc_discard_further_replies()

2. Commitment or rollback processing is performed in the synchronization point
processing function when a service is requested from a transaction.

The response returned after the above function is called is discarded. Receive all
required asynchronous responses by using the function
dc_rpc_poll_any_replies() before calling the above function when an
asynchronous response-type RPC is used.

(6) Notes on using the function dc_rpc_poll_any_replies()
1. If the function dc_rpc_poll_any_replies() is called with the wait time as 0

(0 specified for the argument timeout), it may be probable that responses which
have arrived cannot be received, because of a scheduling problem in a multithread
environment. Note that a program which calls the function
dc_rpc_poll_any_replies() with the wait time as 0 could be trapped in an
endless loop until all responses are received.

2. If the function dc_rpc_poll_any_replies() with no descriptor specified
returns with an error, the descriptor of the error response is undefined. To know
the corresponding descriptor when the function
dc_rpc_poll_any_replies() returns with an error, specify
DCRPC_SPECIFIC_MSG for flags.

dc_rpc_service_retry - Retry a service function

368

dc_rpc_service_retry - Retry a service function

Format
ANSI C, C++

K&R C

Description
The function dc_rpc_service_retry() retries processing of the service function
being executed. For a retry, call the function dc_rpc_service_retry() in the
service function, then return the service function to be retried. After the return, the
service function restarts in the same process.

If the service function called by a response RPC is retried, the values (the area to
contain a response and the length of the response) set by the service function before
the retry are invalidated.

If the function dc_rpc_service_retry is called after the number of retries set in
the rpc_service_retry_count operand of the user service definition has been
reached (including when 0 has been specified in the rpc_service_retry_count
operand), the function returns error code DCRPCER_RETRY_COUNT_OVER, and control
is returned due to the error. At this time, the service function is not retried. The service
function called by a response RPC returns the contents of the area containing a
response to the client UAP.

 Return values

#include <dcrpc.h>
int dc_rpc_service_retry (void)

#include <dcrpc.h>
int dc_rpc_service_retry ()

Return value Return value
(numeric)

Explanation

DC_OK 0 Normal termination.

DCRPCER_RETRY_COUNT_OVER -377 The function dc_rpc_service_retry() is called
more than the maximum number of service retries
specified in the rpc_service_retry_count
operand of the user service definition. The service
function cannot be retried any more.

dc_rpc_service_retry - Retry a service function

369

Notes
1. Call the function dc_rpc_service_retry() under the following conditions. If

these conditions are not satisfied, the function returns a value indicating an error,
and control is returned.

• The function dc_rpc_service_retry() is called in the service function.

• The service function being executed is not within the global transaction.

2. The service function calling the function dc_rpc_service_retry() can
reference the data passed by the client UAP, but cannot change it. If the contents
of the input data area are changed, the system operation is undefined.

3. The function dc_rpc_service_retry() can be called only by the service
function from which a service was requested by the OpenTP1 specific remote
procedure call (function dc_rpc_call()). Processing of the other service
functions cannot be retried by the function dc_rpc_service_retry().

DCRPCER_PROTO -302 The function dc_rpc_service_retry() is called
under either of the following incorrect conditions:
• The function is not called in the service function.
• It is called within the global transaction.

Return value Return value
(numeric)

Explanation

dc_rpc_set_service_prio - Set a schedule priority of a service request

370

dc_rpc_set_service_prio - Set a schedule priority of a service
request

Format
ANSI C, C++

K&R C

Description
The function dc_rpc_set_service_prio() sets a priority of a service request. It
is called when controlling schedule priorities for individual service requests. The
priority set by this function remains unchanged until it is updated by the same function.
Therefore, if service requests are to be called at once with the same priority, call this
function only once.

The priority set by this function will be reported to the server via the schedule queue
by the function dc_rpc_call() which is called immediately after this function.

If this function is not called at all, the value 4, which is the default interpretation of the
schedule service, is set as the priority of service requests.

Arguments whose value is set in the UAP
prio

Specify the schedule priority of the service request in the range from 0 to 8. This
argument must always be set.

The highest priority is represented by 1 and the lowest priority is represented by 8. If
0 is specified, the default interpretation of the schedule service will be in effect.

If a value other than the above is specified, the function
dc_rpc_set_service_prio() is ignored.

Return values
There is no return value of the function dc_rpc_set_service_prio().

Notes
1. The priority specified for the service request is valid on a queue-receiving server

#include <dcrpc.h>
void dc_rpc_set_service_prio (DCLONG prio)

#include <dcrpc.h>
void dc_rpc_set_service_prio (prio)
DCLONG prio;

dc_rpc_set_service_prio - Set a schedule priority of a service request

371

only when service_priority_control=Y (priority control in effect) is
specified in the user service definition for the server UAP. If the server UAP to
which the service request is addressed does not control priorities, this function is
invalid even if called.

2. The function dc_rpc_set_service_prio() is invalid if it is called for a
service request represented by the function dc_rpc_call() of the second or
subsequent chained RPC or by the function dc_rpc_call() (DCNOFLAGS
specified for flags) of synchronous-response-type RPC called to terminate the
RPC chain.

3. The function dc_rpc_call() does not reset the service request priority to the
default value. To reset the service request priority, recall the function
dc_rpc_set_service_prio() with 0 specified for the argument prio.

Example
int rc;
DCULONG in_len, len;
char *buf;
/* First service request:
 * No priority is set (default interpretation of schedule service in effect)
 */
rc = dc_rpc_call("SPPG", "ECHO", "exl", &in_len, buf, &len, DCNOFLAGS);
/* Second service request: Priority = 8
 */
dc_rpc_set_service_prio(8);
rc = dc_rpc_call("SPPG", "ECHO", "ex2", &in_len, buf, &len, DCNOFLAGS);
/* Third service request (chained RPC): Priority = 1
 */
dc_rpc_set_service_prio(1);
rc = dc_rpc_call("SPPG", "ECHO", "ex3", &in_len, buf, &len, DCRPC_CHINED);
 :
 (Chained RPC dc_rpc_call(DCRPC_CHAINED) repeated n times)
 :
rc = dc_rpc_call("SPPG", "ECHO", "ex3", &in_len, buf, &len,
 DCNOFLAGS);
/* (4 + n + 1)-th or subsequent service request:
 * Priority is reset (to default interpretation of schedule service)
 */
dc_rpc_set_service_prio(0);
rc = dc_rpc_call("SPPG", "ECHO", "ex4", &in_len, buf, &len, DCRPC_NOREPLY);

dc_rpc_set_watch_time - Update a service response waiting interval

372

dc_rpc_set_watch_time - Update a service response waiting interval

Format
ANSI C, C++

K&R C

Description
The function dc_rpc_set_watch_time() change the response waiting interval of
a service request. The value set by this function remains valid until the function
dc_rpc_close() is called.

To reset the response waiting interval of a service request to the value which was in
effect before this function was called, supply this function with the original value
returned by the function dc_rpc_get_watch_time().

This function does not change the value specified for the operand watch_time in the
system common definition. The value set by this function influences only the function
dc_rpc_call() which will be called later.

Arguments whose value is set in the UAP
var

Specify a new service response waiting interval in the range from 1 to 65535. For
indefinite wait, specify 0.

Return values

#include <dcrpc.h>
int dc_rpc_set_watch_time (int var)

#include <dcrpc.h>
int dc_rpc_set_watch_time (var)
int var;

Return value Return value
(numeric)

Explanation

DC_OK 0 Normal termination.

DCRPCER_INVALID_ARGS -301 The value specified for var is invalid.

Other than the above. An unprecedented error (e.g., program damage)
occurred.

Real-time statistical information service (dc_rts_~)

373

Real-time statistical information service (dc_rts_~)

This section gives the syntax and other information of the following real-time
statistical information service functions:

• dc_rts_utrace_put - Acquire real-time statistical information for arbitrary
section

dc_rts_utrace_put - Acquire real-time statistical information for arbitrary section

374

dc_rts_utrace_put - Acquire real-time statistical information for
arbitrary section

Format
K&R C

Description
The function dc_rts_utrace_put() acquires, as real-time statistical information,
the execution time and execution count of the event set in event_id for arbitrary
section within the UAP.

Arguments whose values are set in the UAP
event_id

Specify the event ID of the real-time statistical information to be acquired.

The range of available event IDs is 1000000 to 2147483647.

flags

Set the processing to be executed by the function dc_rts_utrace_put().

DCRTS_START

This flag starts measurement of the execution time of the event ID set in
event_id.

Real-time statistical information is not acquired when the function
dc_rts_utrace_put() is called with this flag set.

DCRTS_END

This flag acquires the execution time of the event ID set in event_id and
terminates measurement.

DCNOFLAGS

This flag acquires only the execution frequency of the event ID set in event_id.
The execution time is 0 seconds.

#include <dcrts.h>
int dc_rts_utrace_put (event_id, flags);
DCLONG event_id;
DCLONG flags;

dc_rts_utrace_put - Acquire real-time statistical information for arbitrary section

375

Return values
Return value Return value

(numeric)
Explanation

DC_OK 0 Normal termination.

DCRTSER_PARAM -7802 The value specified for an argument is incorrect.

DCRTSER_PROTO -7803 The function dc_rpc_open() was not called.

The function dc_rts_utrace_put() was called with
an event ID for which measurement of the execution
time has already started set in event_id and
DCRTS_START set in flags.

The function dc_rts_utrace_put() was called with
an event ID for which measurement of the execution
time has not yet started set in event_id and
DCRTS_END set in flags.

DCRTSER_ITEM_OVER -7804 The information cannot be acquired because the
number of acquired items exceeds the value specified
for the rts_item_max operand in the real-time
statistical information service definition.

DCRTSER_ITEM_OVER_SRV -7805 The information cannot be acquired because the
number of acquired items per server exceeds the value
specified for the rts_item_max operand in the
real-time statistical information service definition. This
return value indicates that statistical information for
each service or for non-service processes has been
acquired.

DCRTSER_ITEM_OVER_SVC -7806 The information cannot be acquired because the
number of acquired items per service or non-service
process exceeds the value specified for the
rts_item_max operand in the real-time statistical
information service definition. This return value
indicates that statistical information for each server has
been acquired.

DCRTSER_NOMEM -7807 Processing cannot be executed because process
memory is insufficient.

DCRTSER_RTS_NOT_START -7808 The real-time statistical information service has not
started.

DCRTSER_NOENTRY -7809 The caller of the function dc_rts_utrace_put has
not been registered as a recipient for the acquisition of
real-time statistical information on a server or service
basis.

dc_rts_utrace_put - Acquire real-time statistical information for arbitrary section

376

Notes
1. The function dc_rts_utrace_put() cannot acquire real-time statistical

information for the entire system.

2. On a UAP that uses a multi-server, if multiple processes simultaneously call the
function dc_rts_utrace_put() with the same call source service and same
event_id set, depending on the process, the function may not acquire statistical
information. This is because lock is not performed during statistical information
acquisition processing, and so write processes are performed simultaneously.

3. On a UAP that uses the XATMI interface, real-time statistical information cannot
be acquired for individual services. Information is acquired as statistical
information for all non-service processes.

4. The function dc_rts_utrace_put() cannot acquire a UAP trace.

5. This note applies after the function dc_rts_utrace_put called by specifying
DCRTS_START in the flags argument returns DCRTSER_RTS_NOT_START or
DCRTSER_NOENTRY. If the real-time statistical information service is started to
add the calling UAP as a target of acquisition processing before the function
dc_rts_utrace_put is called by specifying DCRTS_END in flags with the
same event ID, the function returns DCRTSER_PROTO.

DCRTSER_VERSION -7810 The UAP is linked with a library whose version is not
supported by the currently operating real-time
statistical information service.

Return value Return value
(numeric)

Explanation

TAM file service (dc_tam_~)

377

TAM file service (dc_tam_~)

This section gives the syntax and other information of the following TAM file service
functions:

• dc_tam_close - Close a TAM table

• dc_tam_delete - Delete a TAM table record

• dc_tam_get_inf - Acquire TAM table status

• dc_tam_open - Open a TAM table

• dc_tam_read - Input a TAM table record

• dc_tam_read_cancel - Cancel the input of a TAM table record

• dc_tam_rewrite - Update a TAM table record on the assumption of input

• dc_tam_status - Acquire TAM table information

• dc_tam_write - Update/add a TAM table record

The functions for TAM file service (dc_tam_~) can be used only in UAPs of TP1/
Server Base. They cannot be used in UAPs of TP1/LiNK.

dc_tam_close - Close a TAM table

378

dc_tam_close - Close a TAM table

Format
ANSI C, C++

K&R C

Description
The function dc_tam_close() closes a TAM table. After the function
dc_tam_close() is called, the table descriptor specified for tblid cannot be used.

If the function dc_tam_close() returns with an error, all the resources acquired
within this function are released, and the status before this function was called is
regained.

If the function dc_tam_open() has been called outside the transaction, the function
dc_tam_close() must also be called outside the transaction.

Similarly, if the function dc_tam_open() has been called inside the transaction, the
function dc_tam_close() must also be called inside the transaction. If the function
dc_tam_close() is not called before the transaction terminates, the TAM table is
closed at the synchronization point.

If the function dc_tam_close() is called for the function dc_tam_open(), which
was called outside the transaction, in the service function, terminate all the transactions
in the same process which has accessed the TAM table to be closed. No error check is
made on this termination. Operation is not ensured if the dc_tam_close() is called
without the transactions terminated.

Arguments whose values are set in the UAP
tblid

Specify the table descriptor of the TAM table to be closed. This descriptor is the return
value of the function dc_tam_open().

flags

Specify DCNOFLAGS.

#include <dctam.h>
int dc_tam_close (DCLONG tblid, DCLONG flags)

#include <dctam.h>
int dc_tam_close (tblid, flags)
DCLONG tblid;
DCLONG flags;

dc_tam_close - Close a TAM table

379

Return values
Return value Return value

(numeric)
Explanation

DC_OK 0 The TAM table was closed normally.

DCTAMER_PARAM_TID -1700 The table descriptor specified for tblid is invalid.

DCTAMER_PARAM_FLG -1708 The value specified for flags is invalid.

DCTAMER_TAMEND -1720 The TAM service is being terminated.

DCTAMER_PROTO -1721 The sequence of accessing the TAM table is invalid.

The resource manager registration of the object file for
transaction control having a linkage with the UAP is
invalid.
Alternatively, there is no linkage between the object file
for transaction control and the UAP.

atomic_update=N (nontransaction attribute) is
specified in the user service definition of the UAP
which called the function.

DCTAMER_TRNOPN -1722 The function dc_tam_open() was called outside the
transaction.

DCTAMER_NOOPEN -1726 The TAM table is not open.

DCTAMER_MEMORY -1769 The memory became insufficient.

DCTAMER_IO -1770 An input/output error occurred.

dc_tam_delete - Delete a TAM table record

380

dc_tam_delete - Delete a TAM table record

Format
ANSI C, C++

K&R C

Description
The function dc_tam_delete() deletes a record indicated as a key value from a
TAM table. The record to be deleted can be saved in the buffer. However, if the
function dc_tam_delete() returns with an error, the buffer contents cannot be
ensured.

If a TAM table is open under lock in records, lock in tables can be enabled with lock
for update processing.

If the function dc_tam_delete() returns with an error, all the resources specified in
this function are released, and the status before this function was called is regained.
However, if an attempt is made to delete a TAM table which was acquired under lock
for reference processing before this function was called, lock for update processing is
enabled. (Lock for reference processing is not regained.)

Note the following when multiple records are specified for deletion:

• Even if one of the records causes an error, the processing of all the records
specified in the function dc_tam_delete() results in an error, and the status
before this function was called is regained.

Arguments whose values are set in the UAP
tblid

Specify the table descriptor of the TAM table from which a record is deleted. This

#include <dctam.h>
int dc_tam_delete (DCLONG tblid, struct DC_TAMKEY *keyadr,
 int keyno, char *bufadr, int bufsize,
 DCLONG flags)

#include <dctam.h>
int dc_tam_delete (tblid, keyadr, keyno, bufadr, bufsize,
 flags)
DCLONG tblid;
struct DC_TAMKEY *keyadr;
int keyno;
char *bufadr;
int bufsize;
DCLONG flags;

dc_tam_delete - Delete a TAM table record

381

descriptor is the return value of the function dc_tam_open().

keyadr

Specify the address of the structure having the key value address of the record to be
deleted. The structure format is as follows:

• keyname

Specify the address of the key value. The key value must be specified with the
length of the key area of the record to be deleted.

keyno

Specify the number of request records (number of structures specified for keyadr).

bufadr

If the record to be deleted is saved in the buffer, specify the buffer address. If
DCTAM_NOOUTREC (the record to be deleted is not saved) is specified for flags, the
specification for this argument is invalidated.

bufsize

If the record to be deleted is saved in the buffer, specify the length of the buffer. The
return buffer length must be equal to or greater than (record length x number of request
records). If DCTAM_NOOUTREC (the record to be deleted is not saved) is specified for
flags, the specification for this argument is invalidated.

flags

Specify the following items in the format shown below:

• Record access type

• Lock release wait type

• Flag 1

Do not omit the specification of record access type. More than one access type
cannot be specified at a time.

DCTAM_NOOUTREC

The record to be deleted is not saved.

DCTAM_OUTREC

struct DC_TAMKEY {
 char *keyname;
 };

{DCTAM_NOOUTREC|DCTAM_OUTREC}[|{DCTAM_WAIT|DCTAM_NOWAIT}]

dc_tam_delete - Delete a TAM table record

382

The record to be deleted is saved.

• Flag 2

If no lock release wait type is specified, the function does not wait for the resource
to be released from lock and returns with an error. More than one lock release wait
type cannot be specified at a time.

DCTAM_WAIT

The function waits for the resource to be released from lock.

DCTAM_NOWAIT

The function does not wait for the resource to be released from lock and
returns with an error.

Return values
Return value Return value

(numeric)
Explanation

DC_OK 0 The record was deleted from the TAM table normally.

DCTAMER_PARAM_TID -1700 The table identifier specified for tblid is invalid.

DCTAMER_PARAM_KEY -1702 The key value specified for keyadr is invalid.

DCTAMER_PARAM_KNO -1703 The value specified for keyno is invalid.

DCTAMER_PARAM_BFA -1704 The value specified for bufadr is invalid.

DCTAMER_PARAM_BFS -1705 The buffer length specified for bufsize is too short.

DCTAMER_PARAM_FLG -1708 The value specified for flags is invalid.

DCTAMER_NOTTAM -1709 The table specified for tblid is not a TAM table.

DCTAMER_TAMEND -1720 The TAM service is being terminated.

DCTAMER_PROTO -1721 The sequence of accessing the TAM table is invalid.

The resource manager registration of the object file for
transaction control having a linkage with the UAP is
invalid.
Alternatively, there is no linkage between the object file
for transaction control and the UAP.

atomic_update=N (nontransaction attribute) is
specified in the user service definition of the UAP
which called the function.

DCTAMER_RMTBL -1723 The TAM table was deleted.

DCTAMER_NOLOAD -1724 The TAM table was not loaded.

dc_tam_delete - Delete a TAM table record

383

DCTAMER_NOOPEN -1726 The TAM table is not open.

DCTAMER_LOGHLD -1727 The TAM table is in logical shutdown state.

DCTAMER_OBSHLD -1728 The TAM table is in shutdown state due to an error.

DCTAMER_ACSATL -1730 Execution is impossible in the access mode of the TAM
table specified in the TAM service definition.

DCTAMER_NOREC -1731 The specified record does not exist.

DCTAMER_LOCK -1736 A lock error occurred. If DCTAM_WAIT is specified for
flags, the resource could not be acquired because a
timeout occurred (the wait time specified in the lock
service definition was exceeded).

DCTAMER_DLOCK -1737 A deadlock occurred.

DCTAMER_TBLVR -1760 The version of the TAM library linked to the UAP does
not allow the UAP to operate with the current TAM
table.

DCTAMER_FLSVR -1761 The version of the TAM library linked to the UAP does
not allow the UAP to operate with the current OpenTP1
file service.

DCTAMER_RECOBS -1764 The record has been damaged.

DCTAMER_TRNNUM -1765 The number of transactions exceeds the maximum
number of transactions which can be managed by the
TAM service.

DCTAMER_OPENNUM -1766 The number of open character special files exceeds the
specified limit.

DCTAMER_ACCESSS -1767 The access permission for special files has not been
granted.

DCTAMER_ACCESSF -1768 The access permission for TAM files has not been
granted.

DCTAMER_MEMORY -1769 The memory became insufficient.

DCTAMER_IO -1770 An input/output error occurred.

DCTAMER_TMERR -1771 A transaction service error occurred.

DCTAMER_ACCESS -1773 The TAM file to be accessed is protected with the
security facility. The UAP that called the function
dc_tam_delete() has no access permission.

Return value Return value
(numeric)

Explanation

dc_tam_delete - Delete a TAM table record

384

Notes
To delete all records stored in the hash format TAM table:

1. Save the key value of the record found by first retrieval as variable-1.

2. Using the key value of variable-1, execute a NEXT retrieval.

3. Save the key value of the record found in step 2 as variable-2.

4. Delete the key value record that was saved as variable-1.

5. Save the key value of variable-2 as variable-1.

6. Repeat steps 2 to 5 until step 2 encounters an error (NEXT retrieval).

7. After step 2 has encountered an error, delete the key value record that was last
saved as variable-1.

Note that when you delete all records, performing the following steps may exert a high
load on the CPU.

1. Execute a first retrieval of records.

2. Delete the record found in step 1.

3. Repeat step 1 and step 2 (that is, continue executing a first retrieval of records and
deleting the record found).

dc_tam_get_inf - Acquire TAM table status

385

dc_tam_get_inf - Acquire TAM table status

Format
ANSI C, C++

K&R C

Description
The function dc_tam_get_inf() acquires the status of a TAM table. The TAM table
status to be acquired includes the following:

• Open state

• Closed state

• Logical shutdown state

• Shutdown state due to an error

The function dc_tam_get_inf() can be called both outside and inside the
transaction.

The function dc_tam_get_inf() returns assuming that the specified TAM table is
open in the following case:

• The function dc_tam_open() is not called from the process that called the
function dc_tam_get_inf(), but another process has called the function
dc_tam_open() for the specified TAM table.

Arguments whose values are set in the UAP
tblname

Specify the address of the name of the TAM table whose status is to be acquired. The
TAM table can be specified with up to 32 characters. The character string must end
with a null character.

flags

Specify DCNOFLAGS.

#include <dctam.h>
int dc_tam_get_inf (char *tblname, DCLONG flags)

#include <dctam.h>
int dc_tam_get_inf (tblname, flags)
char *tblname;
DCLONG flags;

dc_tam_get_inf - Acquire TAM table status

386

Return values
With a positive return value (indicating the TAM table status)

With a negative return value (indicating that an error occurred)

Return value Return value
(numeric)

Explanation

DCTAM_STS_OPN 1 The TAM table is open.

DCTAM_STS_CLS 2 The TAM table is closed.

DCTAM_STS_LHLD 3 The TAM table is in logical shutdown state.

DCTAM_STS_OHLD 4 The TAM table is in shutdown state due to an error.

Return value Return value
(numeric)

Explanation

DCTAMER_PARAM_TBL -1701 The value specified for tblname is invalid.

DCTAMER_PARAM_FLG -1708 The value specified for flags is invalid.

DCTAMER_UNDEF -1710 The TAM table has not been defined.

DCTAMER_TAMEND -1720 The TAM service is being terminated.

DCTAMER_PROTO -1721 The sequence of accessing the TAM table is invalid.

The resource manager registration of the object file for
transaction control having a linkage with the UAP is
invalid.
Alternatively, there is no linkage between the object file
for transaction control and the UAP.

atomic_update=N (nontransaction attribute) is
specified in the user service definition of the UAP
which called the function.

DCTAMER_TAMVR -1762 The version of the TAM library linked to the UAP does
not allow the UAP to operate with the current TAM
service.

DCTAMER_ACCESS -1773 A TAM file to be accessed is protected with the security
facility. The UAP that called the function
dc_tam_get_inf() has no access permission.

DCTAMER_NO_ACL -1772 A TAM file to be accessed is protected with the security
facility. There is no ACL for the corresponding file.

dc_tam_open - Open a TAM table

387

dc_tam_open - Open a TAM table

Format
ANSI C, C++

K&R C

Description
The function dc_tam_open() opens a TAM table. The function dc_tam_open()
can be called both outside and inside the transaction.

If the function dc_tam_open() is called inside the transaction and lock in tables is
specified as a lock type, lock in tables is enabled with lock for update processing.

If the function dc_tam_open() returns with an error, all the resources acquired
within this function are released, and the status before this function was called is
regained.

Arguments whose values are set in the UAP
tblname

Specify the name of the TAM table to be opened. The TAM table name can be
specified with up to 32 characters. The character string must end with a null character.

flags

Specify whether to enable lock in tables or in records in the format shown below.

• Flag 1

Lock in tables is enabled with lock for update processing. Lock in records is
enabled within the record access function.

More than one lock release wait type cannot be specified at a time. If the function
dc_tam_open() is called outside the transaction, lock in tables cannot be
specified.

#include <dctam.h>
DCLONG dc_tam_open (char *tblname, DCLONG flags)

#include <dctam.h>
DCLONG dc_tam_open (tblname, flags)
char *tblname;
DCLONG flags;

[{DCTAM_TBL_EXCLUSIVE[|{DCTAM_WAIT|DCTAM_NOWAIT}]|
DCTAM_REC_EXCLUSIVE}]

dc_tam_open - Open a TAM table

388

The default is DCTAM_REC_EXCLUSIVE.

DCTAM_TBL_EXCLUSIVE

Lock in tables

DCTAM_REC_EXCLUSIVE

Lock in records

• Flag 2

When lock in tables is specified, specify a lock release wait type if competition
for a resource occurs. More than one lock release type cannot be specified at a
time.

The default is DCTAM_NOWAIT.

DCTAM_WAIT

The function waits for the resource to be released from lock.

DCTAM_NOWAIT

The function does not wait for the resource to be released from lock, and returns
with an error

The table below shows the correspondence between flag values specified for flags and
the specified type of lock.

Legend:

N/A: Cannot be specified.

#1: The default is REC_EXCLUSIVE.

#2: The default is NOWAIT.

Return values

Flag 1#1 Flag 2#2 Lock specified for flags

TBL_EXCLUSIVE WAIT Lock in tables, and waiting for release from lock if a lock error
occurs

NOWAIT Lock in tables, and error return if a lock error occurs

REC_EXCLUSIVE N/A Lock in records

Return value Return value
(numeric)

Explanation

Positive integer The positive integer indicates the table descriptor.

DCTAMER_PARAM_TBL -1701 The value specified for tblname is invalid.

dc_tam_open - Open a TAM table

389

DCTAMER_PARAM_FLG -1708 The value specified for flags is invalid.

DCTAMER_NOTTAM -1709 The table specified for tblname is not a TAM table.

DCTAMER_UNDEF -1710 The TAM table has not been defined.

DCTAMER_TAMEND -1720 The TAM service is being terminated.

DCTAMER_PROTO -1721 The sequence of accessing the TAM table is invalid.

The resource manager registration of the object file for
transaction control having a linkage with the UAP is
invalid.
Alternatively, there is no linkage between the object file
for transaction control and the UAP.

atomic_update=N (nontransaction attribute) is
specified in the user service definition of the UAP
which called the function.

DCTAMER_NOLOAD -1724 The TAM table was not loaded.

DCTAMER_OPENED -1725 The TAM table is open.

DCTAMER_LOGHLD -1727 The TAM table is in logical shutdown state.

DCTAMER_OBSHLD -1728 The TAM table is in shutdown state due to an error.

DCTAMER_LOCK -1736 A lock error occurred. If DCTAM_WAIT is specified for
flags, the resource could not be acquired because a
timeout occurred (the wait time specified in the lock
service definition was exceeded).

DCTAMER_DLOCK -1737 A deadlock occurred.

DCTAMER_TBLVR -1760 The version of the TAM library linked to the UAP does
not allow the UAP to operate with the current TAM
table.

DCTAMER_FLSVR -1761 The version of the TAM library linked to the UAP does
not allow the UAP to operate with the current OpenTP1
file service.

DCTAMER_TAMVR -1762 The version of the TAM library linked to the UAP does
not allow the UAP to operate with the current TAM
service.

DCTAMER_RECOBS -1764 The record has been damaged.

Return value Return value
(numeric)

Explanation

dc_tam_open - Open a TAM table

390

DCTAMER_TRNNUM -1765 The number of transactions exceeds the maximum
number of transactions which can be managed by the
TAM service.

DCTAMER_OPENNUM -1766 The number of open character special files exceeds the
specified limit.

DCTAMER_ACCESSS -1767 The access permission for special files has not been
granted.

DCTAMER_ACCESSF -1768 The access permission for TAM files has not been
granted.

DCTAMER_MEMORY -1769 The memory became insufficient.

DCTAMER_IO -1770 An input/output error occurred.

DCTAMER_TMERR -1771 A transaction service error occurred.

DCTAMER_NO_ACL -1772 A TAM file to be opened is protected with the security
facility. There is no ACL for the corresponding file.

Return value Return value
(numeric)

Explanation

dc_tam_read - Input a TAM table record

391

dc_tam_read - Input a TAM table record

Format
ANSI C, C++

K&R C

Description
According to the search type specified for flags, the function dc_tam_read()
inputs a TAM table record for reference or update processing. The table below shows
the relationship between search types and index types.

Table 2-2: Relationship between search types and index types

#include <dctam.h>
int dc_tam_read (DCLONG tblid, struct DC_TAMKEY *keyadr,
 int keyno, char *bufadr, int bufsize,
 DCLONG flags)

#include <dctam.h>
int dc_tam_read (tblid, keyadr, keyno, bufadr, bufsize,
 flags)
DCLONG tblid;
struct DC_TAMKEY *keyadr;
int keyno;
char *bufadr;
int bufsize;
DCLONG flags;

Search type Outline of search processing

Index type: hash format Index type: tree format

'key-value='sear
ch

The record having the specified key value
is searched for.
If the record having the specified key
value is not found, an error is returned.

The record having the specified key value
is searched for.
If the record having the specified key
value is not found, an error is returned.

'key-value<='sea
rch

An error is returned. The record having a key value equal to or
greater than the specified key value is
searched for.

'key-value<'sear
ch

An error is returned. The record having a key value greater than
the specified key value is searched for.

'key-value>='sea
rch

An error is returned. The record having a key value equal to or
smaller than the specified key value or less
is searched for.

dc_tam_read - Input a TAM table record

392

#: All the records in the TAM table can be searched for by using the first record search
and NEXT search in the following conditions:

• The hash format is specified as the index type.

• When a TAM table file is created, a key value is assigned to the data part (the -s
option not specified in the tamcre command).

If lock is specified with input for reference processing, lock in tables and lock in
records are enabled with lock for reference processing. If a TAM table open under lock
in records is input for update processing, lock in tables is enabled with lock for
reference processing, and lock in records is enabled with lock for update processing.

If the function dc_tam_read() returns with an error, all the resources specified in
this function are released, and the status before this function was called is regained.
However, if a record which was acquired under lock for reference processing before
this function was called is input for update processing, lock for update processing is
enabled. (Lock for reference processing is not regained.) If an error is returned, the
buffer contents cannot be ensured.

Note the following when multiple records are specified for input:

• Even if one of the records causes an error, the processing of all the records
specified in the function dc_tam_read() results in an error.

Arguments whose values are set in the UAP
tblid

Specify the table descriptor of the TAM table to which a record is to be input. The table
descriptor is the value returned with the function dc_tam_open().

keyadr

Specify the address of the structure having the key value address for searching for the
record. The structure format is as follows:

'key-value>'sear
ch

An error is returned. The record having a key value smaller than
the specified key value is searched for.

First record

search#
The first record that was hashed in
correspondence with the key value is
searched for. The key value specified for
keyadr is ignored.

An error is returned.

NEXT search# The next record that was hashed in
correspondence with the key value is
searched for.

An error is returned.

Search type Outline of search processing

Index type: hash format Index type: tree format

dc_tam_read - Input a TAM table record

393

• keyname

Specify the address of the key value. The key value must be specified with the
length of the key area of the record to be input.

keyno

Specify the number of request records (number of structures specified for keyadr).

bufadr

Specify the address of the buffer to which the record is to be input.

bufsize

Specify the length of the buffer to which the record is to be input. The return buffer
length must be equal to or greater than (record length x number of request records).

flags

Specify the following items in the format shown below:

• Record search type

• Record access type

• Whether to enable lock for reference processing when the lock is specified (lock
enabled/disabled type)

• Lock release wait type if competition for a resource occurs

• Flag 1

The specification of record search type cannot be omitted. More than one record
search type cannot be specified at a time.

DCTAM_EQLSRC: 'key-value=' is searched for. (Hash and tree formats)

DCTAM_GRTEQLSRC: 'key-value<=' is searched for. (Tree format)

DCTAM_GRTSRC: 'key-value<' is searched for. (Tree format)

DCTAM_LSSEQLSRC: 'key-value>=' is searched for. (Tree format)

DCTAM_LSSSRC: 'key-value>' is searched for. (Tree format)

DCTAM_FIRSTSRC: Search processing starts from the first record. (Hash format)

struct DC_TAMKEY {
 char *keyname;
 };

{Flag 1}
|{DCTAM_REFERENCE[|{DCTAM_EXCLUSIVE|DCTAM_NOEXCLUSIVE}]
|DCTAM_MODIFY}[|{DCTAM_WAIT|DCTAM_NOWAIT}]

dc_tam_read - Input a TAM table record

394

DCTAM_NEXTSRC: Search processing starts from the record following the
specified key value. (Hash format)

• Flag 2

The specification of record access type cannot also be omitted. More than one
access type cannot also be specified at a time.

DCTAM_REFERENCE: Lock for reference processing

DCTAM_MODIFY: Lock for update processing

• Flag 3

If lock for reference processing is specified, also specify whether to enable the
lock. More than one lock enabled/disabled type cannot be specified at a time. The
default is DCTAM_NOEXCLUSIVE.

DCTAM_EXCLUSIVE: Lock is enabled.

DCTAM_NOEXCLUSIVE: Lock is disabled.

• Flag 4

More than one lock release wait type cannot also be specified. The default is
DCTAM_NOWAIT.

DCTAM_WAIT: The function waits for the resource to be released from lock.

DCTAM_NOWAIT: The function does not wait for the resource to be released from
lock, and returns with an error.

The table below shows the correspondence between flag values specified for flags and
the specified type of lock.

dc_tam_read - Input a TAM table record

395

Legend:

N/A: Cannot be specified.

--: Specify always EXCLUSIVE. NOEXCLUSIVE cannot be specified.

#1: The default is NOEXCLUSIVE.

#2: The default is NOWAIT.

Return values

Flag 1 Flag 2 Flag 3#1 Flag 4#2 Lock specified for
flags

EQLSRC
GRTEQLSRC
GRTSRC
LSSEQLSRC
LSSSRC
FIRSTSRCN
EXTSRC

REFERENC
E

EXCLUSIVE WAIT Input for reference, lock
used, and waiting for
release from lock if a lock
error occurs

NOWAIT Input for reference, lock
used, and error return if a
lock error occurs

NOEXCLUSIV
E

N/A Input for reference, and
lock not used

MODIFY -- WAIT Input for update, and
waiting for release from
lock if a lock error occurs

NOWAIT Input for update, and error
return if a lock error occurs

Return value Return value
(numeric)

Explanation

DC_OK 0 The TAM table record was input normally.

DCTAMER_PARAM_TID -1700 The table descriptor specified for tblid is invalid.

DCTAMER_PARAM_KEY -1702 The key value specified for keyadr is invalid.

DCTAMER_PARAM_KNO -1703 The value specified for keyno is invalid.

DCTAMER_PARAM_BFA -1704 The value specified for bufadr is invalid.

DCTAMER_PARAM_BFS -1705 The buffer length specified for bufsize is too short.

DCTAMER_PARAM_FLG -1708 The value specified for flags is invalid.

DCTAMER_NOTTAM -1709 The table specified for tblid is not a TAM table.

DCTAMER_TAMEND -1720 The TAM service is being terminated.

dc_tam_read - Input a TAM table record

396

DCTAMER_PROTO -1721 The sequence of accessing the TAM table is invalid.

The resource manager registration of the object file for
transaction control having a linkage with the UAP is
invalid.
Alternatively, there is no linkage between the object file
for transaction control and the UAP.

atomic_update=N (nontransaction attribute) is
specified in the user service definition of the UAP
which called the function.

DCTAMER_RMTBL -1723 The TAM table was deleted.

DCTAMER_NOLOAD -1724 The TAM table was not loaded.

DCTAMER_NOOPEN -1726 The TAM table is not open.

DCTAMER_LOGHLD -1727 The TAM table is in logical shutdown state.

DCTAMER_OBSHLD -1728 The TAM table is in shutdown state due to an error.

DCTAMER_IDXTYP -1729 Execution is impossible with the index type of the TAM
table specified for creation of a TAM table file.

DCTAMER_ACSATL -1730 Execution is impossible in the access mode of the TAM
table specified in the TAM service definition.

DCTAMER_NOREC -1731 A record satisfying the search conditions specified for
flags is not found.

DCTAMER_LOCK -1736 A lock error occurred. If DCTAM_WAIT is specified for
flags, the resource could not be acquired because a
timeout occurred (the wait time specified in the lock
service definition was exceeded).

DCTAMER_DLOCK -1737 A deadlock occurred.

DCTAMER_TBLVR -1760 The version of the TAM library linked to the UAP does
not allow the UAP to operate with the current TAM
table.

DCTAMER_FLSVR -1761 The version of the TAM library linked to the UAP does
not allow the UAP to operate with the current OpenTP1
file service.

DCTAMER_RECOBS -1764 The record has been damaged.

DCTAMER_TRNNUM -1765 The number of transactions exceeds the maximum
number of transactions which can be managed by the
TAM service.

Return value Return value
(numeric)

Explanation

dc_tam_read - Input a TAM table record

397

DCTAMER_OPENNUM -1766 The number of open character special files exceeds the
specified limit.

DCTAMER_ACCESSS -1767 The access permission for special files has not been
granted.

DCTAMER_ACCESSF -1768 The access permission for TAM files has not been
granted.

DCTAMER_MEMORY -1769 The memory became insufficient.

DCTAMER_IO -1770 An input/output error occurred.

DCTAMER_TMERR -1771 A transaction service error occurred.

DCTAMER_ACCESS -1773 A TAM file to be accessed is protected with the security
facility. The UAP that called the function
dc_tam_read() has no access permission.

Return value Return value
(numeric)

Explanation

dc_tam_read_cancel - Cancel the input of a TAM table record

398

dc_tam_read_cancel - Cancel the input of a TAM table record

Format
ANSI C, C++

K&R C

Description
The function dc_tam_read_cancel() cancels the input for reference or update
processing with lock specified in the function dc_tam_read(), and resets lock in
records.

For an updated or added record, the input for reference processing with lock specified
cannot be canceled. For a record updated by the function dc_tam_rewrite(), the
input for update processing cannot also be canceled.

If the input for update processing is canceled for updated/added records or for the
records of a TAM table open under lock in tables, lock is not reset.

After the function dc_tam_read_cancel() cancels input, other transactions are not
allowed to add/delete a record to/from the input TAM table until the transaction
terminates.

If the function dc_tam_read_cancel() returns with an error, all the resources
acquired within this function are released, and the status before this function was called
is regained. When a request is made to access multiple specified records, even if one
of the records causes an error, processing is stopped and an error is returned.

Arguments whose values are set in the UAP
tblid

Specify the table descriptor of the TAM table whose record input is to be canceled. The
table descriptor is the value returned with the function dc_tam_open().

#include <dctam.h>
int dc_tam_read_cancel (DCLONG tblid, struct DC_TAMKEY
 *keyadr, int keyno, DCLONG flags)

#include <dctam.h>
int dc_tam_read_cancel (tblid, keyadr, keyno, flags)
DCLONG tblid;
struct DC_TAMKEY *keyadr;
int keyno;
DCLONG flags;

dc_tam_read_cancel - Cancel the input of a TAM table record

399

keyadr

Specify the address of the structure having the address of the key value of the record
whose input is to be canceled. The structure format is as follows:

• keyname

Specify the address of the key value. The key value must be specified with the
length of the key area of the record whose input is to be canceled.

keyno

Specify the number of request records (number of structures specified for keyadr).

flags

Specify DCNOFLAGS.

Return values

struct DC_TAMKEY {
 char *keyname;
 };

Return value Return value
(numeric)

Explanation

DC_OK 0 Search for the TAM table record was canceled, and lock
in records was reset normally.

DCTAMER_PARAM_TID -1700 The table descriptor specified for tblid is invalid.

DCTAMER_PARAM_KEY -1702 The key value specified for keyadr is invalid.

DCTAMER_PARAM_KNO -1703 The value specified for keyno is invalid.

DCTAMER_PARAM_FLG -1708 The value specified for flags is invalid.

DCTAMER_NOTTAM -1709 The table specified for tblid is not a TAM table.

DCTAMER_TAMEND -1720 The TAM service is being terminated.

DCTAMER_PROTO -1721 The sequence of accessing the TAM table is invalid.

The resource manager registration of the object file for
transaction control having a linkage with the UAP is
invalid.
Alternatively, there is no linkage between the object file
for transaction control and the UAP.

atomic_update=N (nontransaction attribute) is
specified in the user service definition of the UAP
which called the function.

dc_tam_read_cancel - Cancel the input of a TAM table record

400

DCTAMER_RMTBL -1723 The TAM table was deleted.

DCTAMER_NOLOAD -1724 The TAM table was not loaded.

DCTAMER_NOOPEN -1726 The TAM table is not open.

DCTAMER_LOGHLD -1727 The TAM table is in logical shutdown state.

DCTAMER_OBSHLD -1728 The TAM table is in shutdown state due to an error.

DCTAMER_NOREC -1731 The specified record does not exist.

DCTAMER_SEQENCE -1732 The function dc_tam_read() was not called.

DCTAMER_EXWRITE -1733 The table identifier specified for tblid indicates the
record updated or added by the function
dc_tam_write().

DCTAMER_EXREWRT -1734 The table descriptor specified for tblid was updated
by the function dc_tam_rewrite().

DCTAMER_TBLVR -1760 The version of the TAM library linked to the UAP does
not allow the UAP to operate with the current TAM
table.

DCTAMER_FLSVR -1761 The version of the TAM library linked to the UAP does
not allow the UAP to operate with the current OpenTP1
file service.

DCTAMER_TRNNUM -1765 The number of transactions exceeds the maximum
number of transactions which can be managed by the
TAM service.

DCTAMER_OPENNUM -1766 The number of open character special files exceeds the
specified limit.

DCTAMER_ACCESSS -1767 The access permission for special files has not been
granted.

DCTAMER_ACCESSF -1768 The access permission for TAM table files has not been
granted.

DCTAMER_MEMORY -1769 The memory became insufficient.

DCTAMER_IO -1770 An input/output error occurred.

DCTAMER_TMERR -1771 A transaction service error occurred.

Return value Return value
(numeric)

Explanation

dc_tam_rewrite - Update a TAM table record on the assumption of input

401

dc_tam_rewrite - Update a TAM table record on the assumption of
input

Format
ANSI C, C

K&R C

Description
The function dc_tam_rewrite() updates and outputs a record input by the function
dc_tam_read.

Once the function dc_tam_read() is called to input a record for update processing,
the function dc_tam_rewrite() can be called any number of times before the
synchronization point of the transaction is acquired. However, the function
dc_tam_rewrite() cannot be called after the function dc_tam_delete() or
dc_tam_read_cancel().

If the function dc_tam_rewrite() returns with an error, all the resources specified
within this function are released, and the status before this function was called is
regained.

When a request is made to update multiple specified records, even if one of the records
causes an error, the processing of all the records specified in this function results in an
error.

The key value storage location in the update data and the key area length are as
specified in the tamcre command used for creation of a TAM table file.

The data part has a key value if the key value is assigned to the data part (the -s option
not specified in the tamcre command) when a TAM table file is created. Therefore,
an error is returned if the key value specified in the function dc_tam_rewrite() is

#include <dctam.h>
int dc_tam_rewrite (DCLONG tblid, struct DC_TAMKEY
 *keyadr, int keyno, char *datadr,
 int datsize, DCLONG flags)

#include <dctam.h>
int dc_tam_rewrite (tblid, keyadr, keyno, datadr, datsize,
 flags)
DCLONG tblid;
struct DC_TAMKEY *keyadr;
int keyno;
char *datadr;
int datsize;
DCLONG flags;

dc_tam_rewrite - Update a TAM table record on the assumption of input

402

not found in the update data. The data part has no key value if no key value is assigned
to the data part (the -s option specified in the tamcre command). In this case, no
check is made on the contents of the update data.

Arguments whose values are set in the UAP
tblid

Specify the table descriptor of the TAM table whose record is to be updated. The table
descriptor is the value returned with the function dc_tam_open().

keyadr

Specify the address of the structure having the address of the key value of the record
to be updated. The structure format is as follows:

• keyname

Specify the address of the key value. The key value must be specified with the
length of the key area of the record to be updated.

keyno

Specify the number of request records (number of structures specified for keyadr).

datadr

Specify the address of the update data.

datsize

Specify the length of the update data. The update data length must be equal to or
greater than (record length x number of request records).

flags

Specify DCNOFLAGS.

Return values

struct DC_TAMKEY {
 char *keyname;
 };

Return value Return value
(numeric)

Explanation

DC_OK 0 The TAM table record was updated normally.

DCTAMER_PARAM_TID -1700 The table descriptor specified for tblid is invalid.

DCTAMER_PARAM_KEY -1702 The key value specified for keyadr is invalid.

DCTAMER_PARAM_KNO -1703 The value specified for keyno is invalid.

dc_tam_rewrite - Update a TAM table record on the assumption of input

403

DCTAMER_PARAM_DTA -1706 The value specified for datadr is invalid.

DCTAMER_PARAM_DTS -1707 The data length specified for datsize is too short.

DCTAMER_PARAM_FLG -1708 The value specified for flags is invalid.

DCTAMER_NOTTAM -1709 The table specified for tblid is not a TAM table.

DCTAMER_TAMEND -1720 The TAM service is being terminated.

DCTAMER_PROTO -1721 The sequence of accessing the TAM table is invalid.

The resource manager registration of the object file for
transaction control having a linkage with the UAP is
invalid.
Alternatively, there is no linkage between the object file
for transaction control and the UAP.

atomic_update=N (nontransaction attribute) is
specified in the user service definition of the UAP
which called the function.

DCTAMER_RMTBL -1723 The TAM table was deleted.

DCTAMER_NOLOAD -1724 The TAM table was not loaded.

DCTAMER_NOOPEN -1726 The TAM table is not open.

DCTAMER_LOGHLD -1727 The TAM table is in logical shutdown state.

DCTAMER_OBSHLD -1728 The TAM table is in shutdown state due to an error.

DCTAMER_NOREC -1731 The specified record does not exist.

DCTAMER_SEQENCE -1732 The function dc_tam_read() was not called.

DCTAMER_TBLVR -1760 The version of the TAM library linked to the UAP does
not allow the UAP to operate with the current TAM
table.

DCTAMER_FLSVR -1761 The version of the TAM library linked to the UAP does
not allow the UAP to operate with the current OpenTP1
file service.

DCTAMER_RECOBS -1764 The record has been damaged.

DCTAMER_TRNNUM -1765 The number of transactions exceeds the maximum
number of transactions which can be managed by the
TAM service.

Return value Return value
(numeric)

Explanation

dc_tam_rewrite - Update a TAM table record on the assumption of input

404

DCTAMER_OPENNUM -1766 The number of open character special files exceeds the
specified limit.

DCTAMER_ACCESSS -1767 The access permission for special files has not been
granted.

DCTAMER_ACCESSF -1768 The access permission for TAM files has not been
granted.

DCTAMER_MEMORY -1769 The memory became insufficient.

DCTAMER_IO -1770 An input/output error occurred.

DCTAMER_TMERR -1771 A transaction service error occurred.

Return value Return value
(numeric)

Explanation

dc_tam_status - Acquire TAM table information

405

dc_tam_status - Acquire TAM table information

Format
ANSI C, C++

K&R C

Description
The function dc_tam_status() returns TAM table information in a structure
DC_TAMSTAT. The following values are returned by the function:

• TAM file name

• TAM table status

• Number of records in use

• Maximum number of records

• Index type

• Access type

• Loading opportunity

• TAM record length

• Key length

• Key start position

• Security attribute

Arguments whose value is set in the UAP
tblname

Specify the name of the TAM table from which information is acquired up to 32
characters. End the character string with a null character.

#include <dctam.h>
int dc_tam_status (char *tblname, struct DC_TAMSTAT
 *stbuf, DCLONG flags)

#include <dctam.h>
int dc_tam_status (tblname, stbuf, flags)
char *tblname;
struct DC_TAMSTAT *stbuf;
DCLONG flags;

dc_tam_status - Acquire TAM table information

406

stbuf

Specify the address of a structure DC_TAMSTAT that receives TAM table information.
The TAM table status set in the function dc_tam_status() is returned in the
structure.

flags

Specify DCNOFLAGS.

Argument whose value is returned from OpenTP1
stbuf

TAM table information is returned in the format of structure DC_TAMSTAT as follows:

• st_file_name

The TAM file name is returned.

• st_tbl_stat

The TAM table status is returned as follows:

DCTAM_STS_OPN: The TAM table is opened.

DCTAM_STS_CLS: The TAM table is closed.

DCTAM_STS_LHLD: The TAM table is in logical shutdown state.

DCTAM_STS_OHLD: The TAM table is in shutdown state due to an error.

• st_rec_usenum

The number of records currently used in the TAM table is returned. However, this
value is not assured if a record is added or deleted after the function
dc_tam_status() is called.

• st_tbl_maxnum

struct DC_TAMSTAT {
 char st_file_name[64];
 DCLONG st_tbl_stat;
 DCLONG st_rec_usenum;
 DCLONG st_tbl_maxnum;
 char st_idx_type;
 char st_acs_type;
 char st_lod_type;
 char reserve1;
 DCLONG st_rec_len;
 DCLONG st_key_len;
 DCLONG st_key_pos;
 DCLONG st_tbl_sec;
 DCLONG reserve2[8];
 };

dc_tam_status - Acquire TAM table information

407

The maximum number of records for the TAM table is returned.

• st_idx_type

The index type of the TAM table is returned as follows:

DCTAM_STS_HASH: The TAM table adopts hash format.

DCTAM_STS_TREE: The TAM table adopts tree format.

• st_acs_type

The access type of the TAM table is returned as follows:

DCTAM_STS_READ: The TAM table is reference-only type.

DCTAM_STS_REWRITE: The TAM table is overwrite type (any record cannot be
added or deleted).

DCTAM_STS_WRITE: The TAM table is update type (records can be added or
deleted).

DCTAM_STS_RECLCK: The TAM table is update type (records can be added and
deleted without locking the table).

• st_lod_type

The loading opportunity of the TAM table is returned as follows:

DCTAM_STS_START: The TAM table is loaded when the TAM service is started.

DCTAM_STS_LIB: The TAM table is loaded when the TAM table is opened by the
function dc_tam_open().

DCTAM_STS_CMD: The TAM table is loaded when the tamload command is
executed.

• reserve1

Reserved area

• st_rec_len

The record length of the TAM table is returned.

• st_key_len

The key length of the TAM table is returned.

• st_key_pos

The key start position in the TAM table data is returned.

• st_tbl_sec

The security attribute of the TAM table specified in the TAM service definition is
returned as follows:

dc_tam_status - Acquire TAM table information

408

DCTAM_STS_NOSEC: Security is not specified.

DCTAM_STS_SEC: Security is specified.

• reserve2

Reserved area

Return values
Return value Return value

(numeric)
Explanation

DC_OK 0 Information was acquired from the TAM table
normally.

DCTAMER_PARAM_TBL -1701 The value specified for tblname is invalid.

DCTAMER_PARAM_FLG -1708 The value specified for flags is invalid.

DCTAMER_NOTTAM -1709 The name specified for tblname is not a TAM file
name.

DCTAMER_UNDEF -1710 The TAM table has not been defined.

DCTAMER_TAMEND -1720 The TAM service is being terminated.

DCTAMER_PROTO -1721 The sequence of accessing the TAM table is invalid.

The resource manager registration of the object file for
transactions control having a linkage with the UAP is
invalid.
Alternatively, there is no linkage between the object file
for control of transactions and the UAP.

atomic_update=N (nontransaction attribute) is
specified in the user service definition of the UAP
which called the function.

DCTAMER_TBLVR -1760 The version of the TAM library linked to the UAP does
not allow the UAP to operate with the current TAM
table.

DCTAMER_TAMVR -1762 The version of the TAM library linked to the UAP does
not allow the UAP to operate with the current TAM
service.

DCTAMER_OPENNUM -1766 The number of open character special files exceeds the
specified limit.

DCTAMER_ACCESSS -1767 The access permission for special files has not been
granted.

DCTAMER_MEMORY -1769 The memory became insufficient.

dc_tam_status - Acquire TAM table information

409

DCTAMER_IO -1770 An input/output error occurred.

DCTAMER_NO_ACL -1772 The TAM table from which information is acquired is
protected with the security facility. There is no ACL for
the corresponding TAM table.

DCTAMER_ACCESS -1773 The TAM table from which information is acquired is
protected with the security facility. The UAP that called
the function dc_tam_status() has no access
permission.

Return value Return value
(numeric)

Explanation

dc_tam_write - Update/add a TAM table record

410

dc_tam_write - Update/add a TAM table record

Format
ANSI C, C++

K&R C

Description
The function dc_tam_write() updates/adds a record indicated with a key value in/
to a TAM table.

If a TAM table is open under lock in records, the following lock is enabled:

• When the access type is "update" (DCTAM_WRITE specified for flags):

Lock in tables is enabled with lock for reference processing, and lock in records
is enabled with lock for update processing.

However, table lock is not enabled for tables whose access type is "reference" or
"update without permission of addition or deletion" if "table nonlock mode" is
specified as the "table lock mode for access" in the TAM service definition.

• When the access type is "update or addition" or "addition" (DCTAM_WRTADD or
DCTAM_ADD specified for flags):

Lock in tables is enabled with lock for update processing.

If the function dc_tam_write() returns with an error, all the resources specified
within this function are released, and the status before this function was called is
regained. However, if a TAM table which was acquired under lock for reference
processing before this function was called is updated/added, lock for update
processing is enabled. (Lock for reference processing is not regained.)

When a request is made to update/add multiple specified records, even if one of the

#include <dctam.h>
int dc_tam_write (DCLONG tblid, struct DC_TAMKEY *keyadr,
 int keyno, char *datadr, int datsize,
 DCLONG flags)

#include <dctam.h>
int dc_tam_write (tblid, keyadr, keyno, datadr, datsize,
 flags)
DCLONG tblid;
struct DC_TAMKEY *keyadr;
int keyno;
char *datadr;
int datsize;
DCLONG flags;

dc_tam_write - Update/add a TAM table record

411

records causes an error, the processing of all the records specified in this function
results in an error.

The key value storage location in the data to be updated/added and the key area length
are as specified in the tamcre command used for creation of a TAM table file.

The data part has a key value if the key value is assigned to the data part (the -s option
not specified in the tamcre command) when a TAM table file is created. Therefore,
an error is returned if the key value specified in the function dc_tam_write() is not
found in the data to be updated/added. The data part has no key value if no key value
is assigned to the data part (the -s option specified in the tamcre command). In this
case, no check is made on the contents of the data to be updated/added.

Arguments whose values are set in the UAP
tblid

Specify the table descriptor of the TAM table whose record is to be updated/added. The
table descriptor is the value returned with the function dc_tam_open().

keyadr

Specify the address of the structure having the address of the key value of the record
to be updated/added. The structure format is as follows:

• keyname

Specify the address of the key value. The key value must be specified with the
length of the key area of the record to be updated/added.

keyno

Specify the number of request records (number of structures specified for keyadr).

datadr

Specify the address of the data to be updated/added.

datsize

Specify the length of the data to be updated/added. The length of the data to be
updated/added must be equal to or greater than (record length x number of request
records).

flags

Specify in the format shown below the record access type and the lock release wait
type when competition for a resource occurs:

struct DC_TAMKEY {
 char *keyname;
 };

dc_tam_write - Update/add a TAM table record

412

• Flag 1

The specification of record access type cannot be omitted. More than one record
access type cannot be specified at a time.

DCTAM_WRITE: Update

DCTAM_WRTADD: Update or addition

DCTAM_ADD: Addition

• Flag 2

More than one lock release wait type cannot be specified at a time. The default is
DCTAM_NOWAIT.

DCTAM_WAIT: The function waits for the resource to be released from lock.

DCTAM_NOWAIT: The function does not wait for the resource to be released from
lock, and returns with an error.

Return values

{DCTAM_WRITE|DCTAM_WRTADD|DCTAM_ADD}[|{DCTAM_WAIT|DCTAM_NOWAIT}]

Return value Return value
(numeric)

Explanation

DC_OK 0 The TAM table record was updated/added normally.

DCTAMER_PARAM_TID -1700 The table descriptor specified for tblid is invalid.

DCTAMER_PARAM_KEY -1702 The key value specified for keyadr is invalid.

DCTAMER_PARAM_KNO -1703 The value specified for keyno is invalid.

DCTAMER_PARAM_DTA -1706 The value specified for datadr is invalid.

DCAMER_PARAM_DTS -1707 The data length specified for datsize is too short.

DCTAMER_PARAM_FLG -1708 The value specified for flags is invalid.

DCTAMER_NOTTAM -1709 The table specified for tblid is not a TAM table.

DCTAMER_TAMEND -1720 The TAM service is being terminated.

DCTAMER_PROTO -1721 The sequence of accessing the TAM table is invalid.

The resource manager registration of the object file for
transaction control having a linkage with the UAP is
invalid.
Alternatively, there is no linkage between the object file
for transaction control and the UAP.

dc_tam_write - Update/add a TAM table record

413

atomic_update=N (nontransaction attribute) is
specified in the user service definition of the UAP
which called the function.

DCTAMER_RMTBL -1723 The TAM table was deleted.

DCTAMER_NOLOAD -1724 The TAM table was not loaded.

DCTAMER_NOOPEN -1726 The TAM table is not open.

DCTAMER_LOGHLD -1727 The TAM table is in logical shutdown state.

DCTAMER_OBSHLD -1728 The TAM table is in shutdown state due to an error.

DCTAMER_ACSATL -1730 Execution is impossible in the access mode of the TAM
table specified in the TAM service definition.

DCTAMER_NOREC -1731 The specified record does not exist.

DCTAMER_EXKEY -1735 The record cannot be added because the key value
specified for keyadr exists in the TAM table.

DCTAMER_LOCK -1736 A lock error occurred. If DCTAM_WAIT is specified for
flags, the resource could not be acquired because a
timeout occurred (the wait time specified in the lock
service definition was exceeded).

DCTAMER_DLOCK -1737 A deadlock occurred.

DCTAMER_TBLVR -1760 The version of the TAM library linked to the UAP does
not allow the UAP to operate with the current TAM
table.

DCTAMER_FLSVR -1761 The version of the TAM library linked to the UAP does
not allow the UAP to operate with the current OpenTP1
file service.

DCTAMER_NOAREA -1763 The TAM table has no free record.

DCTAMER_RECOBS -1764 The record has been damaged.

DCTAMER_TRNNUM -1765 The number of transactions exceeds the maximum
number of transactions which can be managed by the
TAM service.

DCTAMER_OPENNUM -1766 The number of open character special files exceeds the
specified limit.

DCTAMER_ACCESSS -1767 The access permission for special files has not been
granted.

Return value Return value
(numeric)

Explanation

dc_tam_write - Update/add a TAM table record

414

DCTAMER_ACCESSF -1768 The access permission for TAM table files has not been
granted.

DCTAMER_MEMORY -1769 The memory became insufficient.

DCTAMER_IO -1770 An input/output error occurred.

DCTAMER_TMERR -1771 A transaction service error occurred.

DCTAMER_ACCESS -1773 A TAM file to be accessed is protected with the security
facility. The UAP that called the function
dc_tam_write() has no access permission.

Return value Return value
(numeric)

Explanation

Transaction control (dc_trn_~)

415

Transaction control (dc_trn_~)

This section gives the syntax and other information of the following functions which
are used for OpenTP1-specific transaction control:

• dc_trn_begin - Start a transaction

• dc_trn_chained_commit - Enable commitment in chained mode

• dc_trn_chained_rollback - Enable rollback in chained mode

• dc_trn_info - Report the information about the current transaction

• dc_trn_unchained_commit - Enable commitment in unchained mode

• dc_trn_unchained_rollback - Enable rollback in unchained mode

The functions for transaction control (dc_trn_~) can be used in UAPs of both TP1/
Server Base and TP1/LiNK.

dc_trn_begin - Start a transaction

416

dc_trn_begin - Start a transaction

Format
ANSI C, C++

K&R C

Description
The function dc_trn_begin() starts a global transaction from the process that calls
this function. The process that called the function dc_trn_begin() becomes the root
transaction branch of the global transaction.

For the UAP which calls the function dc_trn_begin(), specify the transaction
attribute at execution environment setup.

Once the function dc_trn_begin() is called in a global transaction, the function
dc_trn_begin() cannot be recalled from any transaction branch of the global
transaction. If the function dc_trn_begin() is called more than once in a global
transaction, an error is returned.

Return values

#include <dctrn.h>
int dc_trn_begin (void)

#include <dctrn.h>
int dc_trn_begin()

Return value Return value
(numeric)

Explanation

DC_OK 0 Normal termination. A global transaction was
generated, and the process that called the function
dc_trn_begin() is in the range of the global
transaction.

DCTRNER_PROTO -905 The function dc_trn_begin() was called from an
invalid context (e.g., already in the transaction).
Alternatively, the transaction could not be started
because the execution environment was in non-journal
operation mode.

DCTRNER_RM -906 A resource manager (RM) error occurred. A transaction
could not be started.

dc_trn_begin - Start a transaction

417

Example

DCTRNER_TM -907 A transaction could not be started because a transaction
service error occurred. The value specified for the
trn_tran_process_count operand in the
transaction service definition may be insufficient.
If this value is returned, reexecute processing. The
reexecution is very likely to be successful.

if(!dc_trn_info(NULL) &&dc_trn_begin() <0)
 fputs("cannot begin transaction\n", stderr);

Return value Return value
(numeric)

Explanation

dc_trn_chained_commit - Enable commitment in chained mode

418

dc_trn_chained_commit - Enable commitment in chained mode

Format
ANSI C, C++

K&R C

Description
The function dc_trn_chained_commit() acquires the synchronization point of a
transaction. The normal termination of processing (commitment) is reported as the
root transaction branch of the global transaction to the UAPs, transaction services, and
resource managers of transaction branches which form the transaction.

When the function dc_trn_chained_commit() terminates normally, a new global
transaction is started. The process that calls the function is in the range of this
transaction. However, this does not mean the specification of a transaction mode for a
UAP other than the UAP that called this function.

When a global transaction consists of multiple transaction branches (not only with the
UAP that called the function), commitment processing is executed only when the
processing results of each transaction branch are committed.

The function dc_trn_chained_commit() can be called only from the root
transaction branch (the UAP that called the function dc_trn_begin()) of a global
transaction. If the function dc_trn_chained_commit() is called from another
UAP, DCTRNER_PROTO is returned.

Only the process that started the UAP executable file correctly linked according to the
specification in this manual is permitted to call the function
dc_trn_chained_commit().

The function dc_trn_chained_commit() can terminate either normally or
abnormally when synchronization point processing is completed. To have the function
dc_trn_chained_commit() terminated normally, specify the transaction attribute
at UAP execution environment setup.

#include <dctrn.h>
int dc_trn_chained_commit (void)

#include <dctrn.h>
int dc_trn_chained_commit()

dc_trn_chained_commit - Enable commitment in chained mode

419

Return values
Return value Return value

(numeric)
Explanation

DC_OK 0 Normal termination. Even after the function
dc_trn_chained_commit() terminates, this process
is under the transaction and it is in the range of the
global transaction.

DCTRNER_ROLLBACK -902 The current transaction was rolled back because it
could not be committed.
Even after this return value was returned, the process is
still under the transaction and it is within the range of
the global transaction.

DCTRNER_HEURISTIC -903 The global transaction that called the function
dc_trn_chained_commit() was determined
heuristically. Consequently, a transaction branch was
committed, and another transaction branch was rolled
back.
This value is returned if the results of heuristic decision
do not match the results of the synchronization point of
the global transaction.
Refer to the message log file for the results of the
synchronization point of the UAP, resource manager, or
global transaction that caused this value to be returned.
Even after this value is returned, this process is under
the transaction and it is in the range of the global
transaction.

DCTRNER_HAZARD -904 A transaction branch of the global transaction was
completed heuristically. However, the results of the
synchronization point of the heuristically completed
transaction branch are not known due to an error.
Refer to the message log file for the results of the
synchronization point of the UAP, resource manager, or
global transaction that caused this value to be returned.
Even after this value is returned, this process is under
the transaction and it is in the range of the global
transaction.
This function returns DCTRNER_HAZARD even when
you specify 00000001 for the
trn_extend_function operand in the transaction
service definition and the return value from the
resource manager at one-phase commit is XAER_NOTA.

DCTRNER_PROTO -905 The function dc_trn_chained_commit() was called
from an invalid context (e.g., already not in the
transaction). The transaction mode is not affected.

dc_trn_chained_commit - Enable commitment in chained mode

420

Example

DCTRNER_NO_BEGIN -924 Although the commitment processing terminated
normally, the new transaction could not be started.
After this value is returned, this process is not under the
transaction.

DCTRNER_ROLLBACK_NO_BEGIN -925 The transaction was rolled back because it could not be
committed. The new transaction could not be started.
After this value is returned, this process is not under the
transaction.

DCTRNER_HEURISTIC_NO_BEGIN -926 The global transaction that called the function
dc_trn_chained_commit() was determined
heuristically.
Consequently, a transaction branch was committed, and
another transaction branch was rolled back. This value
is returned if the results of heuristic decision do not
match the results of the synchronization point of the
global transaction.
See to the message log file for the results of the
synchronization point of the UAP, resource manager, or
global transaction that caused this value to be returned.
The new transaction could not be started. After this
value is returned, this process is not under the
transaction.

DCTRNER_HAZARD_NO_BEGIN -927 A transaction branch of the global transaction was
completed heuristically. However, the results of the
synchronization point of the heuristically completed
transaction branch are not known due to an error. See to
the message log file for the results of the
synchronization point of the UAP, resource manager, or
global transaction that caused this value to be returned.
The new transaction could not be started. After this
value is returned, this process is not under the
transaction.
This function returns DCTRNER_HAZARD_NO_BEGIN
even when you specify 00000001 for the
trn_extend_function operand in the transaction
service definition and the return value from the
resource manager at one-phase commit is XAER_NOTA.

if(dc_trn_info(NULL)&&dc_trn_chained_commit() <0)
 fputs("cannot commit transaction\n", stderr);

Return value Return value
(numeric)

Explanation

dc_trn_chained_rollback - Enable rollback in chained mode

421

dc_trn_chained_rollback - Enable rollback in chained mode

Format
ANSI C, C++

K&R C

Description
The function dc_trn_chained_rollback() rolls back a transaction. A transaction
is started immediately after the function dc_trn_chained_rollback() is called.

To call the function dc_trn_chained_rollback(), rollback processing is reported
from the root transaction branch of the global transaction to the UAPs, transaction
services, and resource managers of transaction branches which form the transaction.

When the function dc_trn_chained_rollback() terminates normally, the process
that called the function returns after rollback processing. Then, a new global
transaction is started. The process that calls the function is in the range of this
transaction. However, this does not mean the specification of a transaction mode for a
UAP other than the UAP that called this function.

The function dc_trn_chained_rollback() can be called only from the root
transaction branch (the UAP that called the function dc_trn_begin()) of a global
transaction. If the function dc_trn_chained_rollback() is called from another
UAP, DCTRNER_PROTO is returned.

Only the process that started the UAP which is created correctly according to the
specification in this manual is permitted to call the function
dc_trn_chained_rollback().

The function dc_trn_chained_rollback() can terminate either normally or
abnormally when synchronization point processing is completed. To have the service
which calls the function dc_trn_chained_rollback() terminated normally,
specify the transaction attribute at UAP execution environment setup.

#include <dctrn.h>
int dc_trn_chained_rollback (void)

#include <dctrn.h>
int dc_trn_chained_rollback()

dc_trn_chained_rollback - Enable rollback in chained mode

422

Return values
Return value Return value

(numeric)
Explanation

DC_OK 0 Normal termination. Even after the function
dc_trn_chained_rollback() terminates, this
process is under the transaction and it is in the range of
the global transaction.

DCTRNER_HEURISTIC -903 The global transaction that called the function
dc_trn_chained_rollback() was determined
heuristically. Consequently, a transaction branch was
committed, and another transaction branch was rolled
back.
This value is returned if the results of heuristic decision
do not match the results of the synchronization point of
the global transaction.
Refer to the message log file for the results of the
synchronization point of the UAP, resource manager, or
global transaction that caused this value to be returned.
Even after this value is returned, this process is under
the transaction and it is in the range of the global
transaction.

DCTRNER_HAZARD -904 A transaction branch of the global transaction was
completed heuristically. However, the results of the
synchronization point of the heuristically completed
transaction branch are not known due to an error.
Refer to the message log file for the results of the
synchronization point of the UAP, resource manager, or
global transaction that caused this value to be returned.
Even after this value is returned, this process is under
the transaction and it is in the range of the global
transaction.

DCTRNER_PROTO -905 The function dc_trn_chained_rollback() was
called from an invalid context (e.g., already not in the
transaction). The transaction mode is not affected.

DCTRNER_NO_BEGIN -924 Although the rollback processing terminated normally,
the new transaction could not be started. After this
value is returned, this process is not under the
transaction.

dc_trn_chained_rollback - Enable rollback in chained mode

423

Example

Note
This API does not obtain a UAP trace.

DCTRNER_HEURISTIC_NO_BEGIN -926 The global transaction that called the function
dc_trn_chained_rollback() was determined
heuristically.
Consequently, a transaction branch was committed, and
another transaction branch was rolled back. This value
is returned if the results of heuristic decision do not
match the results of the synchronization point of the
global transaction.
See to the message log file for the results of the
synchronization point of the UAP, resource manager, or
global transaction that caused this value to be returned.
The new transaction could not be started. After this
value is returned, this process is not under the
transaction.

DCTRNER_HAZARD_NO_BEGIN -927 A transaction branch of the global transaction was
completed heuristically. However, the results of the
synchronization point of the heuristically completed
transaction branch are not known due to an error.
See to the message log file for the results of the
synchronization point of the UAP, resource manager, or
global transaction that caused this value to be returned.
The new transaction could not be started. After this
value is returned, this process is not under the
transaction.

if (dc_trn_info (NULL) && dc_trn_chained_rollback () <0)
 fputs("cannot rollback transaction\n", stderr);

Return value Return value
(numeric)

Explanation

dc_trn_info - Report the information about the current transaction

424

dc_trn_info - Report the information about the current transaction

Format
ANSI C, C++

K&R C

Description
The function dc_trn_info() returns information which indicates whether the UAP
that called the function dc_trn_info() is operating as the current transaction.

Only the process that started the UAP which is created correctly according to the
specification in this manual is permitted to call the function dc_trn_info(). To have
the service which calls the function dc_trn_info() terminated normally, specify the
transaction attribute at UAP execution environment setup.

Argument whose value is set in the UAP
flags

Specify a NULL.

Return values

Example

Note
This API does not obtain a UAP trace.

#include <dctrn.h>
int dc_trn_into (char *flags)

#include <dctrn.h>
int dc_trn_info (flags)
char *flags;

Return value Explanation

1 The process that called the function dc_trn_info() is operating as a transaction.

0 The process that called the function dc_trn_info() is not operating as a transaction.

if(!dc_trn_info(NULL)&&dc_trn_begin() <0)
 fputs("cannot begin transaction\n", stderr);

dc_trn_unchained_commit - Enable commitment in unchained mode

425

dc_trn_unchained_commit - Enable commitment in unchained mode

Format
ANSI C, C++

K&R C

Description
The function dc_trn_unchained_commit() posts the normal termination of a
global transaction (commitment) to the UAPs, transaction services, and resource
managers of transaction branches which form the transaction. After the function
dc_trn_unchained_commit() terminates normally, a new global transaction is not
started.

When a global transaction consists of multiple transaction branches (not only with the
UAP that called the function), commitment processing is executed only when the
processing results of each transaction branch is committed.

The function dc_trn_unchained_commit() can be called only from the root
transaction branch (the UAP that started the transaction). If the function is called from
any other transaction, it returns with an error, giving the return value
DCTRNER_PROTO.

Only the process that started the UAP which is created correctly according to the
specification in this manual is permitted to call the function
dc_trn_unchained_commit().

The function dc_trn_unchained_commit() can terminate either normally or
abnormally when synchronization point processing is completed. To have the service
which calls the function dc_trn_unchained_commit() terminated normally,
specify the transaction attribute at UAP execution environment setup.

Return values

#include <dctrn.h>
int dc_trn_unchained_commit (void)

#include <dctrn.h>
int dc_trn_unchained_commit()

Return value Return value
(numeric)

Explanation

DC_OK 0 Normal termination. This process is not under the
transaction and it is not in the range of the global
transaction.

dc_trn_unchained_commit - Enable commitment in unchained mode

426

Example

DCTRNER_ROLLBACK -902 The current transaction was rolled back because it
could not be committed. This process is not in the range
of the global transaction.

DCTRNER_HEURISTIC -903 The global transaction that called the function
dc_trn_unchained_commit() was determined
heuristically. Consequently, a transaction branch was
committed, and another transaction branch was rolled
back.
This value is returned if the results of heuristic decision
do not match the results of the synchronization point of
the global transaction.
Refer to the message log file for the results of the
synchronization point of the UAP, resource manager, or
global transaction that caused this value to be returned.
After this value is returned, this process is not under the
transaction and it is not in the range of the global
transaction.

DCTRNER_HAZARD -904 A transaction branch of the global transaction was
completed heuristically. However, the results of the
synchronization point of the heuristically completed
transaction branch are not known due to an error.
Refer to the message log file for the results of the
synchronization point of the UAP, resource manager, or
global transaction that caused this value to be returned.
After this value is returned, this process is not under the
transaction and it is not in the range of the global
transaction.
This function returns DCTRNER_HAZARD even when
you specify 00000001 for the
trn_extend_function operand in the transaction
service definition and the return value from the
resource manager at one-phase commit is XAER_NOTA.

DCTRNER_PROTO -905 The function dc_trn_unchained_commit() was
called from an invalid context (e.g., already not in the
transaction). The transaction mode is not affected.

if(dc_trn_info(NULL) &&dc_trn_unchained_commit() <0)
 fputs("cannot commit transaction\n", stderr);

Return value Return value
(numeric)

Explanation

dc_trn_unchained_rollback - Enable rollback in unchained mode

427

dc_trn_unchained_rollback - Enable rollback in unchained mode

Format
ANSI C, C++

K&R C

Description
The function dc_trn_unchained_rollback() rolls back a transaction. If a
transaction is rolled back in unchained mode, the transaction does not start
contiguously.

Calling the function dc_trn_unchained_rollback() notifies a transaction
branch, transaction service, and resource manager of a rollback.

The function dc_trn_unchained_rollback() can be called from any transaction
branch of a global transaction. If the function dc_trn_unchained_rollback() is
called from the root transaction branch, a new transaction does not start after the
function dc_trn_unchained_rollback() returns normally.

If the function dc_trn_unchained_rollback() is called from a transaction
branch other than the root transaction branch, the function
dc_trn_unchained_rollback() puts the transaction branch into
rollback_only state. In this case, the transaction branch that called the function
dc_trn_unchained_rollback() is in the range of the transaction until
synchronization point processing of the root transaction branch is completed.

Only the process that started the UAP which is created correctly according to the
specification in this manual is permitted to call the function
dc_trn_unchained_rollback(). To have the service which calls the function
dc_trn_unchained_rollback() terminated normally, specify the transaction
attribute at UAP execution environment setup.

#include <dctrn.h>
int dc_trn_unchained_rollback (void)

#include <dctrn.h>
int dc_trn_unchained_rollback()

dc_trn_unchained_rollback - Enable rollback in unchained mode

428

Return values

Example

Return value Return value
(numeric)

Explanation

DC_OK 0 Normal termination. If the function
dc_trn_unchained_rollback() is called from the
root transaction branch, this process is not under the
transaction and it is not in the range of the global
transaction. If the function
dc_trn_unchained_rollback() is called from a
transaction branch other than the root transaction
branch, this process is put into rollback_only state.

DCTRNER_HEURISTIC -903 The global transaction that called the function
dc_trn_unchained_rollback() was determined
heuristically. Consequently, a transaction branch was
committed, and another transaction branch was rolled
back. This value is returned if the results of heuristic
decision do not match the results of the synchronization
point of the global transaction.
Refer to the message log file for the results of the
synchronization point of the UAP, resource manager, or
global transaction that caused this value to be returned.
After this value is returned, this process is not under the
transaction and it is not in the range of the global
transaction.

DCTRNER_HAZARD -904 A transaction branch of the global transaction was
completed heuristically. However, the results of the
synchronization point of the heuristically completed
transaction branch are not known due to an error.
Refer to the message log file for the results of the
synchronization point of the UAP, resource manager, or
global transaction that caused this value to be returned.
After this value is returned, this process is not under the
transaction and it is not in the range of the global
transaction.

DCTRNER_PROTO -905 The function dc_trn_unchained_rollback() was
called from an invalid context (e.g., already not in the
transaction). The transaction mode is not affected.

if (dc_trn_info (NULL) && dc_trn_unchained_rollback () <0)
 fputs ("cannot rollback transaction\n", stderr);

Online tester management (dc_uto_~)

429

Online tester management (dc_uto_~)

This section gives the functions used to maintain the status of the online tester from a
user server while the online tester (TP1/Online Tester) is used under the OpenTP1. The
syntax of the following function is explained:

• dc_uto_test_status() - Report the test status of a user server

The function for online tester management (dc_uto_~) can be used only in UAPs
of TP1/Server Base. They cannot be used in UAPs of TP1/LiNK.

dc_uto_test_status - Report the test status of a user server

430

dc_uto_test_status - Report the test status of a user server

Format
ANSI C, C++

K&R C

Description
The function dc_uto_test_status() returns the status of testing a user server that
called this function. The test status is stored in an argument after this function returns
normally. If this function returns with an error, information on the test status stored in
the argument is undefined.

Arguments whose values are set in the UAP
test_stat

Specify the address of the structure indicating the status of testing a user server.

flags

Specify DCNOFLAGS.

Arguments whose values are returned from the OpenTP1
test_stat

Information on the status of testing a user server is returned with a structure. The
structure formats are as follows:

#include <dcuto.h>
int dc_uto_test_status (struct DC_UTOSTAT *test_stat,
 DCLONG flags)

#include <dcuto.h>
int dc_uto_test_status (test_stat, flags)
struct DC_UTOSTAT *test_stat;
DCLONG flags;

struct DC_UTOSTAT {
 char testID[5];
 char mode;
 char gbl_tran;
 char type;
 char svr_tran;
 char comd;
 char _res[22];
};

dc_uto_test_status - Report the test status of a user server

431

• testID

The test user ID (the value set for the environment variable DCUTOKEY) is
returned.

• mode

Whether the user server is operating in the test mode is returned.

DCUTO_TEST: Operating in the test mode.

DCUTO_NOTEST: Not operating in the test mode.

• gbl_tran

The processing status of the global transaction is returned.

DCUTO_TRN_COMMIT: Commits in the synchronization point processing.

DCUTO_TRN_ROLLBACK: Rolls back in the synchronization point processing.

DCUTO_TRN_NOTRN: Non-transaction status

NULL (null character): Non-test mode. MHP linked with an MCF library.

• type

The test type specified in the test_mode operand of the user service definition is
returned.

DCUTO_TEST_MODE_TARGET: UAP dedicated to the test (target)

DCUTO_TEST_MODE_USABLE: Usable UAP (usable)

DCUTO_TEST_MODE_SIMMHP: Simulate MHP (simmhp)

DCUTO_TEST_MODE_NO: UAP ineligible for the test (no)

• svr_tran

Method of handling the transaction at the synchronization point specified in the
test_transaction_commit operand of the user service definition is returned.

DCUTO_TRN_COMMIT: Commits (Y) at the synchronization point.

DCUTO_TRN_ROLLBACK: Rolls back (N) at the synchronization point.

NULL (null character): Non-test mode. MHP linked with an MCF library.

• comd

Method of handling the command execution result specified in the
test_adm_call_commit operand of the user service definition is returned.

DCUTO_COMMAND_DO: Executes the command (do).

DCUTO_COMMAND_SKIP: Sets an assumption value as an execution result (skip).

dc_uto_test_status - Report the test status of a user server

432

DCUTO_COMMAND_FILE: Uses data in the operation command result data file
(file).

NULL (null character): Non-test mode. MHP linked with an MCF library.

Return values

Note
When the function dc_uto_test_status() is called from an MHP, the following
values are returned to the structure DC_UTOSTAT:

• testID: Test user ID

• mode: Current service mode

• gbl_tran: Null character

• type: DCUTO_TEST_MODE_NO

• svr_tran: Null character

• comd: Null character

Return value Return value
(numeric)

Explanation

DC_OK 0 Normal termination. The test status is returned in the
area indicated by the structure DC_UTOSTAT.

DCUTOER_PROTO -2701 The function dc_rpc_open() is not called.

DCUTOER_TRAN -2734 The UAP is linked with an OpenTP1 library which is
inoperable with the current transaction service.

DCUTOER_PARAM_FLAGS -2757 The value specified for flags is invalid.

DCUTOER_PARAM_ADDS -2758 The value specified for test_stat is invalid.

433

Chapter

3. Syntax of OpenTP1 Library
Functions (Message Log Reporting)

A message log can be reported so that the status of OpenTP1 is reported to products
other than OpenTP1. This chapter explains the syntax of the OpenTP1 library
functions for receiving message logs to obtain the status of OpenTP1.

This chapter contains the following section:

Message log reporting (dc_log_~)

Message log reporting (dc_log_~)

434

Message log reporting (dc_log_~)

This section explains the syntax of the OpenTP1 library functions for receiving
message logs to obtain the status of OpenTP1. The functions for reporting message
logs are as follows:

• dc_log_notify_close - Terminate message log reception

• dc_log_notify_open - Start message log reception

• dc_log_notify_receive - Receive message logs

• dc_log_notify_send - Send user-kept message logs

The function (dc_log_~) for reporting message logs can be used only for TP1/Server
Base. For TP1/LiNK, the function cannot be used.

Only the application programs created for reception can receive message logs.
OpenTP1 UAPs (SUP, SPP, and MHP) cannot receive message logs.

Notes on receiving message logs
Note the following when receiving message logs:

1. The functions dc_log_notify_open(), dc_log_notify_receive(), and
dc_log_notify_close() cannot be executed in the interrupt routine.

2. Some message logs cannot be received, depending on when the function
dc_log_notify_receive() is called. The following message logs cannot be
received:

• Message logs output by OpenTP1 while the application program is stopped,
before the program calls the function dc_log_notify_open(), or after it
calls the function dc_log_notify_close().

• Message logs reported by OpenTP1 after the save area becomes full if the
function dc_log_notify_receive() is not called.

dc_log_notify_close - Terminate message log reception

435

dc_log_notify_close - Terminate message log reception

Format
ANSI C, C++

K&R C

Description
The function dc_log_notify_close() terminates reception of the message logs
reported by OpenTP1. Calling the function dc_log_notify_open() again restarts
message log reception.

Argument whose value is set in the UAP
flags

Specify DCNOFLAGS.

Return values

#include <dclog.h>
DCLONG dc_log_notify_close (DCLONG flags)

#include <dclog.h>
DCLONG dc_log_notify_close (flags)
DCLONG flags;

Return value Return value
(numeric)

Meaning

DC_OK 0 Normal termination.

DCLOGER_PARAM_ARGS -1900 An incorrect value is specified as the argument.

DCLOGER_PROTO -1999 The function dc_log_notify_open() is not called.

dc_log_notify_open - Start message log reception

436

dc_log_notify_open - Start message log reception

Format
ANSI C, C++

K&R C

Description
The function dc_log_notify_open() starts reception of the message logs reported
by OpenTP1.

Arguments whose values are set in the UAP
id

Specify 0.

flags

DCNOFLAGS

Specify this value if you do not want to determine whether the use of the message
log report facility operand is specified in the log service definition.

DCLOG_CHKRTN

Specify this value if you want to determine whether the use of the message log
report facility operand is specified in the log service definition. If the use of the
operand is not specified, DCLOGER_PROTO will return.

Return values

#include <dclog.h>
DCLONG dc_log_notify_open (DCLONG id, DCLONG flags)

#include <dclog.h>
DCLONG dc_log_notify_open (id, flags)
DCLONG id;
DCLONG flags;

Return value Return value
(numeric)

Meaning

DC_OK 0 Normal termination.

DCLOGER_PARAM_ARGS -1900 An incorrect value is specified as the argument.

dc_log_notify_open - Start message log reception

437

DCLOGER_PROTO -1999 The function dc_log_notify_open() has already
been called.
If DCLOG_CHKRTN is assigned to flags, the log service
definition is specified so that the message log report
facility will not be used.

DCLOGER_DEFFILE -1904 The system definition is invalid.

DCLOGER_MEMORY -1902 The memory became insufficient.

DCLOGER_COMM -1901 Initialization of the communication path failed.

Return value Return value
(numeric)

Meaning

dc_log_notify_receive - Receive message logs

438

dc_log_notify_receive - Receive message logs

Format
ANSI C, C++

K&R C

Description
The function dc_log_notify_receive() receives the message logs reported by
OpenTP1. Calling the function dc_log_notify_receive() once retrieves one
message log.

Arguments whose values are set in the UAP
msg

Specify the area to contain a receive message log. Here, specify length greater than or
equal to that specified in DCLOG_NOTIFY_MSG_LEN.

msglen

Specify the length of the area specified in msg.

timeout

Specify the time (in seconds) during which the function
dc_log_notify_receive() waits if no message log arrives. The number of
seconds must be from -1 to 65,535. If 0 is specified, the function returns without
waiting for message logs. If -1 is specified, the function waits until a message log
arrives.

flags

Specify DCNOFLAGS.

#include <dclog.h>
DCLONG dc_log_notify_receive (char *msg, DCLONG msglen,
 DCLONG timeout, DCLONG flags)

#include <dclog.h>
DCLONG dc_log_notify_receive (msg, msglen, timeout, flags)
char *msg;
DCLONG msglen;
DCLONG timeout;
DCLONG flags;

dc_log_notify_receive - Receive message logs

439

Return values
Return value Return value

(numeric)
Meaning

Integer of 0 or larger A message log was stored normally in the area
specified in msg. An integer of 0 or larger indicates the
length of the received message log.

DCLOGER_PARAM_ARGS -1900 An incorrect value is specified as the argument.

DCLOGER_PROTO -1999 The function dc_log_notify_open() is not called.

DCLOGER_TIMEOUT -1907 Though the number of seconds specified in timeout is
exceeded, no message log is reported.

DCLOGER_COMM -1901 Initialization of the communication path failed.

dc_log_notify_send - Send user-kept message logs

440

dc_log_notify_send - Send user-kept message logs

Format
ANSI C, C++

K&R C

Description
The function dc_log_notify_send() sends a message log kept optionally by the
user to the application programs waiting for message logs from OpenTP1. The
function is used for requesting termination of the application programs waiting for
message logs.

Arguments whose values are set in the UAP
msg

Specify the area containing a send message log.

msglen

Specify the length of the area specified in msg. Here, specify length shorter than or
equal to that specified in DCLOG_NOTIFY_MSG_LEN.

flags

Specify DCNOFLAGS.

Return values

#include <dclog.h>
DCLONG dc_log_notify_send (char *msg, DCLONG msglen,
 DCLONG flags)

#include <dclog.h>
DCLONG dc_log_notify_send (msg, msglen, flags)
char *msg;
DCLONG msglen;
DCLONG flags;

Return value Return value
(numeric)

Meaning

DC_OK 0 Normal termination.

DCLOGER_PROTO -1999 The function dc_log_notify_open() has already
been called. Therefore, the applicable application
program cannot call the function
dc_log_notify_send().

dc_log_notify_send - Send user-kept message logs

441

DCLOGER_PARAM_ARGS -1900 An incorrect value is specified as the argument.

DCLOGER_COMM -1901 Initialization of the communication path failed.

Return value Return value
(numeric)

Meaning

443

Chapter

4. X/Open-compliant Application
Programming Interface

This chapter explains library functions conforming to the application programming
interface based on X/Open.

This chapter contains the following sections:

X/Open-compliant function
XATMI-interfaced application programming interface (tp~)
TX-interfaced application programming interface (tx_~)

X/Open-compliant function

444

X/Open-compliant function

Table 4-1 shows the correspondence between the X/Open-compliant functions
(XATMI-interfaced or TX-interfaced) and their facilities, and Table 4-2 shows the
relationship between these functions and OpenTP1 UAPs.

Table 4-1: Relationship between X/Open-compliant functions and facilities

Category X/Open-compliant function - name and facility

XATMI interface tpacall() Send a service request.

tpadvertise() Advertise a service name.

tpalloc() Allocate a typed buffer.

tpcall() Send a service request and synchronously
awaits its reply.

tpcancel() Cancel a call descriptor for an outstanding
reply.

tpconnect() Establish a conversational service
connection.

tpdiscon() Terminate a conversational service
connection abortively.

tpfree() Free a typed buffer.

tpgetrply() Get a reply from a previous service request.

tprealloc() Change the size of a typed buffer.

tprecv() Receive a message in a conversational
connection.

tpreturn() Return from a service routine.

tpsend() Send a message in a conversational
connection.

tpservice() Template for service routines.

tptypes() Determine information about a typed buffer.

tpunadvertise() Unadvertise a service name.

TX interface tx_begin() Begin a global transaction.

tx_close() Close a set of resource managers.

X/Open-compliant function

445

Table 4-2: Relationship between X/Open-compliant functions and OpenTP1
UAPs

tx_commit() Commit a global transaction.

tx_info() Return global transaction information.

tx_open() Open a set of resource managers.

tx_rollback() Roll back a global transaction.

tx_set_commit_return() Set commit_return characteristic.

tx_set_transaction_contro
l()

Set transaction_control characteristic.

tx_set_transaction_timeou
t()

Set transaction_timeout characteristic.

X/Open-compliant function SUP SPP MHP Off-
line

Out In Out Transaction
range

Out In

Rt N-Rt

tpacall Y Y Y Y Y N N N

tpadvertise N N Y#1 Y#1 Y#1 N N N

tpalloc Y Y Y Y Y N N N

tpcall Y Y Y Y Y N N N

tpcancel Y Y Y Y Y N N N

tpconnect Y Y Y Y Y N N N

tpdiscon Y Y Y Y Y N N N

tpgetrply Y Y Y Y Y N N N

tpfree Y Y Y Y Y N N N

tprecv Y Y Y Y Y N N N

tprealloc Y Y Y Y Y N N N

tpreturn N N Y#2 Y#2 Y#2 N N N

tpsend Y Y Y Y Y N N N

Category X/Open-compliant function - name and facility

X/Open-compliant function

446

Legend:

Out: Outside transaction range

In: Inside transaction range (root)

Rt: Root

N-Rt: Non-root

Off-line: UAP that handles offline work

Y:The function can be used with UAPs.

tpservice#3 N#3 N#3 N#3 N#3 N#3 N N N

tptypes Y Y Y Y Y N N N

tpunadvertise N N Y#1 Y#1 Y#1 N N N

tx_begin#4 Y N Y N N Y N N

tx_close Y N Y N N N N N

tx_commit with TX_CHAINED
specified#4

N Y Y N N N N N

tx_commit with
TX_UNCHAINED specified4

N Y Y N N N N N

tx_info Y Y Y Y Y N N N

tx_open Y N Y N N N N N

tx_rollback with
TX_CHAINED specified#4

N Y N Y N N N N

tx_rollback with
TX_UNCHAINED specified#4

N Y N Y N N N N

tx_set_commit_return#4 Y Y Y Y Y N N N

tx_set_transaction_control
#4

Y Y Y Y Y N N N

tx_set_transaction_timeout
#4

Y Y Y Y Y N N N

X/Open-compliant function SUP SPP MHP Off-
line

Out In Out Transaction
range

Out In

Rt N-Rt

X/Open-compliant function

447

N:The function cannot be used with UAPs.

The Outside transaction range for MHP means the range of MHPs with the
nontransaction attribute or the main function of MHPs.

#1: Functions marked #1 can be called only within service functions.

#2: Functions marked #2 are used only to make XATMI-interfaced service functions
return.

#3: tpservice is the entity of the service function.

#4: For the UAP which issues a function marked #4, specify atomic_update=Y in the
user service definition.

XATMI-interfaced application programming interface (tp~)

448

XATMI-interfaced application programming interface (tp~)

This section explains the syntax of the API functions which implement the XATMI
interface. The text in this section is quoted from 5. C Reference Manual Pages which
is the syntax reference section of the X/Open CAE Specification Distributed TP: The
XATMI Specification published by X/Open Company Limited.

Additional notes on using these functions from UAPs used with the OpenTP1 are
enclosed in symbols << >>.

The syntax of the following functions is explained below:

• tpacall - Send a service request

• tpadvertise - Advertise a service name

• tpalloc - Allocate a typed buffer

• tpcall - Send a service request and synchronously await its reply

• tpcancel - Cancel a call descriptor for an outstanding reply

• tpconnect - Establish a conversational service connection

• tpdiscon - Terminate a conversational service connection abortively

• tpfree - Free a typed buffer

• tpgetrply - Get a reply from a previous service request

• tprealloc - Change the size of a typed buffer

• tprecv - Receive a message in a conversational connection

• tpreturn - Return from a service routine

• tpsend - Send a message in a conversational connection

• tpservice - Template for service routines

• tptypes - Determine information about a typed buffer

• tpunadvertise - Unadvertise a service name

XATMI interface functions (tp~) can be used only for TP1/Server Base. For TP1/
LiNK, XATMI interface functions cannot be used.

tpacall - Send a service request

449

tpacall - Send a service request

Format
ANSI C, C++

K&R C

Description
The function tpacall() sends a request message to the service named by svc. If
data is non-NULL, it must point to a buffer previously allocated by tpalloc() and
len should specify the amount of data in the buffer that should be sent. Note that if data
points to a buffer of a type that does not require a length to be specified, len is ignored
(and may be 0). If data is NULL, len is ignored and a request is sent with no data
portion. The type and sub-type of data must match one of the types and sub-types
recognized by svc. Note that for each request sent while in transaction mode, a
corresponding reply must ultimately be received.

<<Arguments>>
<<svc

Specify the name of the service to be requested.>>

<<data

Specify the pointer to the send data storage area.>>

<<len

Specify the length of the send data. >>

<<flags

The valid flags are as follows:>>

TPNOTRAN

If the caller is in transaction mode and this flag is set, when svc is invoked, it is

#include <xatmi.h>
int tpacall (char *svc, char *data, long len,
 long flags)

#include <xatmi.h>
int tpacall (svc, data, len, flags)
char *svc;
char *data;
long len;
long flags;

tpacall - Send a service request

450

not performed on behalf of the caller's transaction. If svc does not support
transactions, this flag must be set when the caller is in transaction mode. A caller
in transaction mode that sets this flag is still subject to the transaction timeout (and
no other). If a service fails that was invoked with this flag, the caller's transaction
is not affected.

TPNOREPLY

This setting informs tpacall() that a reply is not expected. When TPNOREPLY
is set, the function returns 0 on success, where 0 is an invalid descriptor. When
the caller is in transaction mode, this setting cannot be used unless TPNOTRAN is
also set.

TPNOBLOCK

The request is not sent if a blocking condition exists (for example, the internal
buffers into which the message is transferred are full). When TPNOBLOCK is not
specified and a blocking condition exists, the caller blocks until the condition
subsides or a timeout occurs (either transaction or blocking timeout).

TPNOTIME

This flag signifies the caller is willing to block indefinitely and wants to be
immune to blocking timeouts. Transaction timeouts may still occur.

TPSIGRSTRT

If a signal interrupts any underlying system calls, the interrupted system call is
reissued.

Return value
Upon successful completion, tpacall() returns a descriptor that can be used to
receive the reply of the request sent. Otherwise it returns -1 and sets tperrno to
indicate the error condition.

Errors

Under the following conditions, tpacall() fails and sets tperrno to one of the
values below. Unless otherwise noted, failure does not affect the caller's transaction, if
one exists.

Return value Return value
(numeric)

Explanation

TPEINVAL 4 Invalid arguments were given (for example, svc is NULL,
data does not point to a space allocated with tpalloc(),
or the value of flags is invalid).

TPENOENT 6 Cannot establish a connection because the service
specified in svc does not exist.

tpacall - Send a service request

451

See also
tpalloc(), tpcall(), tpcancel(), tpgetrply().

<<Notes on use with OpenTP1>>
1. <<The TPNOBLOCK flag is invalid under the relevant version of the OpenTP1.

Therefore, the error code TPEBLOCK will not be returned to tperrno. The
OpenTP1 is designed so that if communication is impossible because of blocking,
TPESYSTEM is returned as when communication is impossible because of
network failure.>>

2. <<The TPNOTIME flag is invalid under the relevant version of the OpenTP1.>>

3. <<The TPSIGRSTRT flag is invalid. Regardless of this flag, when a signal is
received, the interrupted system call is reinvoked. TPEGOTSIG will never
return.>>

TPEITYPE 17 type and subtype for data are not in a format that can be
used for svc.

TPELIMIT 5 The caller's request was not sent because the maximum
number of outstanding asynchronous requests has been
reached.

TPETRAN 14 TPNOTRAN was not set, even though transaction processing
could not be performed for svc.

TPETIME 13 A timeout occurred. If the caller is in transaction mode, a
transaction time-out occurred and the transaction is
marked rollback_only; otherwise, a blocking time-out
occurred and neither TPNOBLOCK nor TPNOTIME were
specified. If a transaction time-out occurred, any attempts
to send new requests or receive outstanding replies fail
with TPETIME until the transaction has been rolled back.

TPEBLOCK 3 When tpacall() for which TPNOBLOCK was specified
was called, the blocking status existed.

TPEGOTSIG 15 A signal was received, but TPSIGRSTRT was not set.

TPEPROTO 9 tpacall() was called in an improper context.

TPESYSTEM 12 A communication resource manager system error has
occurred. The exact nature of the error is determined in a
product-specific manner.

TPEOS 7 An operating system error has occurred. The exact nature
of the error is determined in a product-specific manner.

Return value Return value
(numeric)

Explanation

tpacall - Send a service request

452

4. <<Under the relevant version of the OpenTP1, TPEITYPE will not return. If data
of a type unavailable with svc is passed, the function tpacall() normally
returns, but TPESYSTEM will return when the function tpgetrply() is called.
Therefore, the error condition is identified. If the calling program is in transaction
mode, the rollback_only state comes into effect.>>

5. <<Under the OpenTP1, when a process encounters transaction timeout, it
terminates abnormally. Therefore, TPETIME returns only when blocking timeout
occurs.>>

6. <<Under the relevant version of the OpenTP1, data which requires rollback
causes the return of TPESYSTEM unless otherwise specified by the X/Open.
However, the rollback_only state may not come into effect even when
TPESYSTEM returns.>>

7. <<Under the relevant version of the OpenTP1, TPELIMIT will not return.>>

8. <<For OSI TP communication using TP1/NET/OSI-TP-Extended, send data
must not exceed the length specified in the length operand of the NET buffer
group definition nettbuf (NET/Library common definition).>>

9. <<During OSI TP communication, the following conditions cause a TPESVCERR
error when an attempt is made to issue the function tpcall() or tpgetrply();
during TCP/IP communication, they cause a TPENOENT or TPESYSTEM error
when the same attempt is made:

• The specified service does not exist at the request destination.

• The typed buffer is not recognized by the server.

• Service activation encounters an error.>>

10. <<If the number of system associations is insufficient during OSI TP
communication, the function outputs a log message and returns with
TPESYSTEM.>>

11. <<While OSI TP communication is in use, blocking time-out occurs even if
TPNOTIME is specified. While TCP/IP communication is in use, blocking
time-out occurs during non-transaction periods.>>

12. <<For OSI TP communication, the value assigned to the user service definition
message_store_buflen must be equal to or greater than the size specified by
nettbuf -g. For TCP/IP communication, the same rules as for the function
dc_rpc_call() apply.>>

13. <<The behavior caused by XATMI errors encountered during OSI TP
communication may be different from the behavior caused by errors encountered
conventional TCP/IP communication.>>

tpadvertise - Advertise a service name

453

tpadvertise - Advertise a service name

Format
ANSI C, C++

K&R C

Description
The function tpadvertise() allows a server to advertise the services that it offers.
By default, a server's services are advertised when it is booted and unadvertised when
it is shut down.

The function tpadvertise() advertises svcname for the server. The argument
svcname should be 15 characters or fewer, but cannot be NULL or the NULL string
(""). Longer names are accepted and truncated to 15 characters. Users should make
sure that truncated names do not match other service names. The argument func is the
address of a service function. This function is invoked whenever a request for
svcname is received by the server. The argument func cannot be NULL.

If svcname is already advertised for the server and func matches its current function,
tpadvertise() returns success (this includes truncated names that match already
advertised names). However, if svcname is already advertised for the server but func
does not match its current function, an error is returned (this can happen if truncated
names match already advertised names).

<<Arguments>>
<<svcname

Specify the name of the service to be requested. >>

<<(*func)()

The address of the service function.>>

Return value
The function tpadvertise() returns -1 on error and sets tperrno to indicate the

#include <xatmi.h>
int tpadvertise (char *svcname,
 void (*func)(TPSVCINFO *))

#include <xatmi.h>
int tpadvertise (svcname, func)
char *svcname;
void (*func)();

tpadvertise - Advertise a service name

454

error condition.

Errors

Under the following conditions, tpadvertise() fails and sets tperrno to one of the
following values:

See also
tpservice(), tpunadvertise().

<<Notes on use with OpenTP1>>
1. <<The function tpadvertise() can be called only by SPPs. When the server

starts, all services specified in the user service definition are automatically
advertised. Combinations of service names and functions can be advertised only
when they are specified in the user service definition of this function.>>

2. <<Under the OpenTP1, if the service group of UAPs which call the function
tpadvertise() is the same as the service group of UAPs which have advertised
the services, this function returns normally. If the two groups do not match, the
function returns with an error.>>

3. <<The behavior caused by XATMI errors encountered during OSI TP
communication may be different from the behavior caused by errors encountered
conventional TCP/IP communication.>>

Return value Return value
(numeric)

Explanation

TPEINVAL 4 The argument svcname is NULL or the NULL string (""),
or func is NULL.

TPELIMIT 5 The argument svcname cannot be advertised because of
space limitations.

TPEMATCH 23 The argument svcname is already advertised for the
server, but not with a function indicated by func.
Although the function fails, svcname remains advertised
with its current function (that is, func does not replace the
current function).

TPEPROTO 9 tpadvertise() was called in an improper context.

TPESYSTEM 12 A communication resource manager system error has
occurred.
The exact nature of the error is determined in a
product-specific manner.

TPEOS 7 An operating system error has occurred. The exact nature
of the error is determined in a product-specific manner.

tpalloc - Allocate a typed buffer

455

tpalloc - Allocate a typed buffer

Format
ANSI C, C++

K&R C

Description
The function tpalloc() returns a pointer to a buffer of type type. Depending on the
type of buffer, both subtype and size are optional.

If multiple subtypes are available for a particular buffer type, subtype must be
specified when tpalloc() is called. If the type specified does not have a subtype,
*subtype is ignored (and may be null). The allocated buffer is at least as large as
size.

Note that only the first eight bytes of type and the first 16 bytes of subtype are
significant.

Because some buffer types require initialization before they can be used, tpalloc()
initializes a buffer (in a communication-resource-manager-specific manner) after it is
allocated and before it is returned. Thus, the buffer returned to the caller is ready for
use. Note that unless the initialization processing cleared the buffer, the buffer is not
initialized to zeros by tpalloc().

<<Arguments>>
<<type

Specify the type name.>>

<<subtype

Specify the subtype name.>>

<<size

Specify the size of the buffer to be allocated.>>

#include <xatmi.h>
char *tpalloc (char *type, char *subtype, long size)

#include <xatmi.h>
char *tpalloc (type, subtype, size)
char *type;
char *subtype;
long size

tpalloc - Allocate a typed buffer

456

Return value
Upon successful completion, tpalloc() returns a pointer to a buffer of the
appropriate type aligned on a long word. Otherwise it returns NULL and sets tperrno
to indicate the error condition.

Errors

Under the following conditions, tpalloc() fails and sets tperrno to one of the
following values:

Application usage
If buffer initialization processing fails, the allocated buffer is freed and tpalloc()
fails returning NULL.

This function should not be used in concert with malloc(), realloc() or free()
in the C library (for example, a buffer allocated with tpalloc() should not be freed
with free()).

See also
tpfree(), tprealloc(), tptypes().

<<Notes on use with OpenTP1>>
1. <<Under the OpenTP1, the buffer returned by the function tpalloc() is

initialized to 0.>>

2. <<The behavior caused by XATMI errors encountered during OSI TP
communication may be different from the behavior caused by errors encountered
conventional TCP/IP communication.>>

Return value Return value
(numeric)

Explanation

TPEINVAL 4 Invalid arguments were given (for example, type is
NULL).

TPENOENT 6 The value for type or subtype does not exist.

TPEPROTO 9 tpalloc() was called in an improper context.

TPESYSTEM 12 A communication resource manager system error has
occurred. The exact nature of the error is determined in a
product-specific manner.

TPEOS 7 An operating system error has occurred. The exact nature
of the error is determined in a product-specific manner.

tpcall - Send a service request and synchronously await its reply

457

tpcall - Send a service request and synchronously await its reply

Format
ANSI C, C++

K&R C

Description
The function tpcall() sends a request and synchronously awaits its reply. A call to
this function is the same as calling tpacall() immediately followed by
tpgetrply(). The function tpcall() sends a request to the service named by svc.
The data portion of a request is pointed to by idata, a buffer previously allocated by
tpalloc(). The argument ilen specifies how much of idata to send. Note that if
idata points to a buffer of a type that does not require a length to be specified, ilen
is ignored (and may be 0). If data points to a buffer that does require a length, len
must not be zero. Also, idata may be NULL in which case ilen is ignored. The type
and sub-type of idata must match one of the types and sub-types recognized by svc.

odata is the address of a pointer to the buffer where a reply is read into, and the length
of that reply is returned in *olen. *odata must point to a buffer originally allocated
by tpalloc(). If the same buffer is to be used for both sending and receiving, odata
should be set to the address of idata. To determine whether a reply buffer changed in
size, compare its (total) size before tpcall() was issued with *olen. If *olen is
larger, then the buffer has grown; otherwise, the buffer has not changed size. Also, if
idata and *odata were equal when tpcall() was invoked, and *odata is
changed, idata no longer points to a valid address. Note that *odata may change for
reasons other than the buffer's size increased. If *olen is 0 upon return, then the reply
has no data portion and neither *odata nor the buffer it points to were modified. It is
an error for *odata or olen to be NULL.

#include <xatmi.h>
int tpcall (char *svc, char *idata, long ilen,
 char **odata, long *olen, long flags)

#include <xatmi.h>
int tpcall (svc, idata, ilen, odata, olen, flags)
char *svc;
char *idata;
long ilen;
char **odata;
long *olen;
long flags;

tpcall - Send a service request and synchronously await its reply

458

<<Arguments>>
<<svc

Specify the name of the service to be requested.>>

<<idata

Specify the pointer to the send buffer.>>

<<ilen

Specify the length of the send buffer.>>

<<odata

Specify the address of the pointer to the buffer which will contain reply data.>>

<<olen

Indicates the pointer to the long-type data giving the length of the reply buffer.>>

<<flags>>

The valid flags are as follows:

TPNOTRAN

If the caller is in transaction mode and this flag is set, when svc is invoked, it is
not performed on behalf of the caller's transaction. If svc does not support
transactions, this flag must be set when the caller is in transaction mode. A caller
in transaction mode that sets this flag is still subject to the transaction timeout (and
no other). If a service fails that was invoked with this flag, the caller's transaction
is not affected.

TPNOCHANGE

By default, if a buffer is received that differs in type from the buffer pointed to by
*odata, *odata's buffer type changes to the received buffer's type so long as the
receiver recognizes the incoming buffer type. When this flag is set, the type of the
buffer pointed to by *odata is not allowed to change. That is, the type and
sub-type of the received buffer must match the type and sub-type of the buffer
pointed to by *odata.

TPNOBLOCK

The request is not sent if a blocking condition exists (for example, the internal
buffers into which the message is transferred are full). Note that this flag applies
only to the send portion of tpcall(); the function may block waiting for the
reply. When TPNOBLOCK is not specified and a blocking condition exists, the
caller blocks until the condition subsides or a timeout occurs (either transaction
or blocking timeout).

TPNOTIME

tpcall - Send a service request and synchronously await its reply

459

This flag signifies that the caller is willing to block indefinitely and wants to be
immune to blocking timeouts. Transaction timeouts may still occur.

TPSIGRSTRT

If a signal interrupts any underlying system calls, the interrupted system call is
reissued.

Return value
Upon successful return from tpcall() or upon return where tperrno is set to
TPESVCFAIL, the tpurcode global contains an application-defined value that was
sent as part of tpreturn(). Otherwise, it returns -1 and sets tperrno to indicate the
error condition.

Errors

Under the following conditions, tpcall() fails and sets tperrno to one of the values
below. Unless otherwise noted, failure does not affect the caller's transaction, if one
exists.

Return value Return value
(numeric)

Explanation

TPEINVAL 4 Invalid arguments were given (for example, svc is NULL
or the value of flags is invalid).

TPENOENT 6 Cannot establish a connection because the service
specified in svc does not exist.

TPEITYPE 17 type and subtype for idata are not in a format that can
be used for svc.

TPEOTYPE 18 Either type and subtype of the reply are not known to the
caller, or TPNOCHANGE was set in flags, but the buffer type
and subtype specified for *odata do not match type and
subtype of the reply sent by the service. If this error
occurs, neither *odata nor *olen is changed.
If the service request was made as the caller's current
transaction, the transaction is marked rollback_only
since the reply is discarded.

TPETRAN 14 TPNOTRAN was not set, even though transaction processing
could not be performed for svc.

TPETIME 13 A timeout occurred. If the caller is in transaction mode, a
transaction time-out occurred and the transaction is
marked rollback_only; otherwise, a blocking time-out
occurred and neither TPNOBLOCK nor TPNOTIME were
specified. In either case, neither *odata nor *olen is
changed. If a transaction time-out occurred, any attempts
to send new requests or receive outstanding replies fail
with TPETIME until the transaction has been rolled back.

tpcall - Send a service request and synchronously await its reply

460

TPESVCFAIL 11 The service function sending the caller's reply called
tpreturn() with TPFAIL. This is an application-level
failure. The contents of the reply sent by the service are
available in the buffer pointed to by *odata. If the service
request was made as the caller's current transaction, the
transaction is marked rollback_only.
Note

So long as the transaction has not timed out, further
communication may be performed up until before
rollback. In this case, any work performed as the
caller's transaction is rolled back upon transaction
completion. Be sure to set TPNOTRAN for
communication with continuous processing enabled.
Depending on the transaction function, some
processing is performed to rollback the caller's
transaction.

TPESVCERR 10 This error was encountered either in invoking a service
function or during its completion in tpreturn() (for
example, bad arguments were passed). No reply data is
returned when this error occurs (that is, neither *odata,
nor *olen are changed). If the reply processing for the
service request was made as the caller's transaction, the
transaction is marked the rollback_only status.
Note

So long as the transaction has not timed out, further
communication may be attempted before rolling back
the transaction. Such attempts may be processed
normally or may fail (producing an error return or
event). Be sure to set TPNOTRAN for communication
with continuous processing enabled. Depending on the
transaction function, some processing is performed to
rollback the caller's transaction.

TPEBLOCK 3 When tpcall() for which TPNOBLOCK was specified was
called, the blocking status existed.

TPEGOTSIG 15 A signal was received, but TPSIGRSTRT was not set.

TPEPROTO 9 tpcall() was called in an improper context.

TPESYSTEM 12 A communication resource manager system error has
occurred. The exact nature of the error is determined in a
product-specific manner.

TPEOS 7 An operating system error has occurred. The exact nature
of the error is determined in a product-specific manner.

Return value Return value
(numeric)

Explanation

tpcall - Send a service request and synchronously await its reply

461

See also
tpalloc(), tpacall(), tpgetrply(), tpreturn().

<<Notes on use with OpenTP1>>
1. <<The TPNOBLOCK flag is invalid under the relevant version of the OpenTP1.

Therefore, the error code TPEBLOCK will not be returned to tperrno. The
OpenTP1 is designed so that if communication is impossible because of blocking,
TPESYSTEM is returned as when communication is impossible because of
network failure.>>

2. <<Under the relevant version of the OpenTP1, the TPNOTIME flag is valid only
when a reply is received. It is invalid when blocking occurs at the time of request
sending.>>

3. <<The TPSIGRSTRT flag is invalid. Regardless of this flag, when a signal is
received, the interrupted system call is reinvoked. TPEGOTSIG will never
return.>>

4. <<Under the relevant version of the OpenTP1, TPEITYPE will not return. If data
of a type unavailable with svc is passed, TPESYSTEM will return. If the calling
program is in transaction mode, the rollback_only state comes into effect.>>

5. <<Under the OpenTP1, when a process encounters transaction timeout, it
terminates abnormally. Therefore, TPETIME returns only when blocking timeout
occurs.>>

6. <<Under the relevant version of the OpenTP1, data which requires rollback
causes the return of TPESYSTEM unless otherwise specified by the X/Open.
However, the rollback_only state may not come into effect even when
TPESYSTEM returns.>>

7. <<If an SPP to which the service request is addressed terminates abnormally, the
function may return with a TPETIME error before the time specified for
watch_time in the definition has elapsed. If 0 (wait until response reception) is
specified for watch_time, the function may return with a TPEPROTO error.>>

8. <<The function returns with a TPEPROTO error if the OpenTP1 security facility is
used but the service request is not authenticated. Whether the cause of the error
return is because the service request is not authenticated can be checked with the
UAP trace detail error code.>>

9. <<For OSI TP communication using TP1/NET/OSI-TP-Extended, a line failure
forces control to return, and outputs TPESVCERR.>>

10. <<For OSI TP communication using TP1/NET/OSI-TP-Extended, transmission
data must not exceed the length specified in the length operand of the NET buffer
group definition nettbuf (NET/Library common definition).>>

tpcall - Send a service request and synchronously await its reply

462

11. <<During OSI TP communication, the following conditions cause a TPESVCERR
error when an attempt is made to issue the function tpcall() or tpgetrply();
during TCP/IP communication, they cause a TPENOENT or TPESYSTEM error
when the same attempt is made:

• The specified service does not exist at the request destination.

• The typed buffer is not recognized by the server.

• Service activation encounters an error.>>

12. <<If the number of system associations is insufficient during OSI TP
communication, the function outputs a log message and returns with
TPESYSTEM.>>

13. <<While OSI TP communication is in use, blocking time-out occurs even if
TPNOTIME is specified. While TCP/IP communication is in use, blocking
time-out occurs during non-transaction periods.>>

14. <<For OSI TP communication, the value assigned to the user service definition
message_store_buflen must be equal to or greater than the size specified by
nettbuf -g. For TCP/IP communication, the same rules as for the function
dc_rpc_call() apply.>>

15. <<Suppose that inter-TP1 OSI TP communication is in use. When a service with
N specified for the atomic_update clause is called as a transaction, TPESVCERR
is returned to the service requester.>>

16. <<Suppose that a service called via TCP/IP communication calls a service via
OSI TP communication and that the service function ends without receiving a
response. The UAP which called the service via TCP/IP communication receives
a normal response message. The functions tpcall() and tpgetrply() return
normally.>>

17. <<The behavior caused by XATMI errors encountered during OSI TP
communication may be different from the behavior caused by errors encountered
conventional TCP/IP communication.>>

tpcancel - Cancel a call descriptor for an outstanding reply

463

tpcancel - Cancel a call descriptor for an outstanding reply

Format
ANSI C, C++

K&R C

Description
The function tpcancel() cancels a call descriptor, cd, returned by tpacall(). It is
an error to attempt to cancel a call descriptor associated with a global transaction.

Upon successful return, cd is no longer valid and any reply received (by the
communication resource manager) on behalf of cd is silently discarded.

<<Argument>>
<<cd

Specify a descriptor.>>

Return value
tpcancel() returns -1 on error and sets tperrno to indicate the error condition.

Errors

Under the following conditions, tpcancel() fails and sets tperrno to one of the
following values:

#include <xatmi.h>
int tpcancel (int cd)

#include <xatmi.h>
int tpcancel (cd)
int cd;

Return value Return value
(numeric)

Explanation

TPEBADDESC 2 The argument cd is an invalid descriptor.

TPETRAN 14 The argument cd is associated with the caller's global
transaction. Even after an error, the descriptor cd remains
valid and the caller's current transaction is not affected.

TPEPROTO 9 The function tpcancel() was called in an improper
context.

tpcancel - Cancel a call descriptor for an outstanding reply

464

See also
tpacall().

<<Notes on use with OpenTP1>>
1. <<The behavior caused by XATMI errors encountered during OSI TP

communication may be different from the behavior caused by errors encountered
conventional TCP/IP communication.>>

TPESYSTEM 12 A communication resource manager system error has
occurred. The exact nature of the error is determined in a
product-specific manner.

TPEOS 7 An operating system error has occurred. The exact nature
of the error is determined in a product-specific manner.

Return value Return value
(numeric)

Explanation

tpconnect - Establish a conversational service connection

465

tpconnect - Establish a conversational service connection

Format
ANSI C, C++

K&R C

Description
The function tpconnect() allows a program to set up a half-duplex connection to a
conversational service, svc.

As part of setting up a connection, the caller can pass application-defined data to the
receiving service routine. If the caller chooses to pass data, data must point to a buffer
previously allocated by tpalloc(). len specifies how much of the buffer to send.
Note that if data points to a buffer of a type that does not require a length to be
specified, len is ignored (and may be 0). If data points to a buffer that does require
a length, len must not be zero. Also, data can be NULL in which case len is ignored
(no application data is passed to the conversational service). The type and sub-type of
data must match one of the types and sub-types recognized by svc. Because the
conversational service receives data and len via the TPSVCINFO structure upon
invocation, the service does not call tprecv() to get the data sent by tpconnect().

<<Arguments>>
<<svc

Specify the name of the service to be requested.>>

<<data

Specify the pointer to the send data storage area.>>

<<len

Specify the length of the send data.>>

#include <xatmi.h>
int tpconnect (char *svc, char *data, long len,
 long flags)

#include <xatmi.h>
int tpconnect (svc, data, len, flags)
char *svc;
char *data;
long len;
long flags;

tpconnect - Establish a conversational service connection

466

<<flags>>

The valid flags are as follows:

TPNOTRAN

If the caller is in transaction mode and this flag is set, when svc is invoked, it is
not performed on behalf of the caller's transaction. If svc does not support
transactions, this flag must be set when the caller is in transaction mode. A caller
in transaction mode that sets this flag is still subject to the transaction timeout (and
no other). If a service fails that was invoked with this flag, the caller's transaction
is not affected.

TPSENDONLY

The caller wants the connection to be set up initially such that it can send data and
the called service can only receive data (that is, the caller initially has control of
the connection). Either TPSENDONLY or TPRECVONLY must be specified.

TPRECVONLY

The caller wants the connection to be set up initially such that it can only receive
data and the called service can send data (that is, the service being called initially
has control of the connection). Either TPSENDONLY or TPRECVONLY must be
specified.

TPNOBLOCK

The connection is not established and the data is not sent if a blocking condition
exists (for example, the internal buffers into which the message is transferred are
full). When TPNOBLOCK is not specified and a blocking condition exists, the caller
blocks until the condition subsides or a timeout occurs (either transaction or
blocking timeout).

TPNOTIME

This flag signifies that the caller is willing to block indefinitely and wants to be
immune to blocking timeouts. Transaction timeouts may still occur.

TPSIGRSTRT

If a signal interrupts any underlying system calls, the interrupted system call is
reissued.

Return value
Upon successful completion, tpconnect() returns a descriptor that is used to refer
to the connection in subsequent calls. Otherwise it returns -1 and sets tperrno to
indicate the error condition.

Errors

Under the following conditions, tpconnect() fails and sets tperrno to one of the

tpconnect - Establish a conversational service connection

467

values below. Unless otherwise noted, failure does not affect the caller's transaction, if
one exists.

See also
tpalloc(), tpdiscon(), tprecv(), tpsend(), tpservice().

<<Notes on use with OpenTP1>>
1. <<The TPNOBLOCK flag is invalid under the relevant version of the OpenTP1.

Return value Return value
(numeric)

Explanation

TPEINVAL 4 Invalid arguments were given (for example, svc is NULL,
data is non-NULL and does not point to a buffer allocated
by tpalloc(), TPSENDONLY or TPRECVONLY was not
specified in flags, or the value of flags is invalid).

TPENOENT 6 Cannot establish a connection because the service
specified in svc does not exist.

TPEITYPE 17 The type and subtype for data are not in a format that
can be used for svc.

TPELIMIT 5 The caller's request was not sent because the maximum
number of outstanding connections has been reached.

TPETRAN 14 TPNOTRAN was not set, even though transaction processing
could not be performed for svc.

TPETIME 13 A timeout occurred. If the caller is in transaction mode, a
transaction time-out occurred and the transaction is
marked rollback_only; otherwise, a blocking time-out
occurred and neither TPNOBLOCK nor TPNOTIME were
specified. If a transaction time-out occurred, any attempts
to send or receive messages on any connections or to start
a new connection fail with TPETIME until the transaction
has been rolled back.

TPEBLOCK 3 When tpconnect() for which TPNOBLOCK was specified
was called, the blocking status existed.

TPEGOTSIG 15 A signal was received, but TPSIGRSTRT was not set.

TPEPROTO 9 tpconnect() was called in an improper context.

TPESYSTEM 12 A communication resource manager system error has
occurred. The exact nature of the error is determined in a
product-specific manner.

TPEOS 7 An operating system error has occurred. The exact nature
of the error is determined in a product-specific manner.

tpconnect - Establish a conversational service connection

468

Therefore, the error code TPEBLOCK will not be returned to tperrno. The
OpenTP1 is designed so that if communication is impossible because of blocking,
TPESYSTEM is returned as when communication is impossible because of
network failure.>>

2. <<The TPNOTIME flag is invalid under the relevant version of the OpenTP1.>>

3. <<The TPSIGRSTRT flag is invalid. Regardless of this flag, when a signal is
received, the interrupted system call is reinvoked. TPEGOTSIG will never
return.>>

4. <<Under the relevant version of the OpenTP1, TPEITYPE will not return. If data
of a type unavailable with svc is passed, TPESYSTEM will return. If the calling
program is in transaction mode, the rollback_only state comes into effect.>>

5. <<Under the OpenTP1, when a process encounters transaction timeout, it
terminates abnormally. Therefore, TPETIME returns only when blocking timeout
occurs.>>

6. <<Under the relevant version of the OpenTP1, data which requires rollback
causes the return of TPESYSTEM unless otherwise specified by the X/Open.
However, the rollback_only state may not come into effect even when
TPESYSTEM returns.>>

7. <<The function returns with a TPEPROTO error if the OpenTP1 security facility is
used but the service request is not authenticated. Whether the cause of the error
return is because the service request is not authenticated can be checked with the
UAP trace detail error code.>>

8. <<For OSI TP communication using TP1/NET/OSI-TP-Extended,
conversational service communication cannot be held. If this is done, the system
operation is undefined.>>

9. <<If the server AP is in shutdown status, the system operates as follows
depending on whether the request destination SPP that is shutdown is on a local
node or on a remote node:

When the request destination SPP on a local node is shutdown:

tpconnect() returns -1 and sets the value TPEPROTO in tperrno.

When the request destination SPP on a remote node is shutdown:

In the transaction mode, the server AP terminates abnormally due to
transaction time-out.

In the non-transaction mode, tpconnect() returns -1 and sets the value
TPETIME in tperrno.>>

tpdiscon - Terminate a conversational service connection abortively

469

tpdiscon - Terminate a conversational service connection abortively

Format
ANSI C, C++

K&R C

Description
The function tpdiscon() immediately terminates the connection specified by cd and
generates a TPEV_DISCONIMM event on the other end of the connection.

The function tpdiscon() can be called only by the originator of the conversation.
tpdiscon() cannot be called within a conversational service on the descriptor with
which it was invoked. Rather, a conversational service must use tpreturn() to
signify that it has completed its part of the conversation. Similarly, even though a
program communicating with a conversational service can issue tpdiscon(), the
preferred way is to let the service terminate the connection in tpreturn(); doing so
ensures correct results.

The function tpdiscon() causes the connection to be terminated immediately (that
is, abortively rather than orderly). Any data that has not yet reached its destination may
be lost. tpdiscon() can be issued even when the program on the other end of the
connection is participating in the caller's transaction. In this case, the transaction must
be rolled back. Also, the caller does not need to have control of the connection when
tpdiscon() is called.

<<Argument>>
<<cd

Specify a descriptor.>>

Return value
The function tpdiscon() returns -1 on error and sets tperrno to indicate the error
condition.

Errors

Under the following conditions, tpdiscon() fails and sets tperrno to one of the

#include <xatmi.h>
int tpdiscon (int cd)

#include <xatmi.h>
int tpdiscon (cd)
int cd;

tpdiscon - Terminate a conversational service connection abortively

470

following values:

See also
tpconnect(), tprecv(), tpreturn(), tpsend().

<<Notes on use with OpenTP1>>
1. <<The error code TPETIME will not be returned to tperrno under the relevant

version of the OpenTP1.>>

2. <<For OSI TP communication using TP1/NET/OSI-TP-Extended,
conversational service communication cannot be held. If this is done, the system
operation is undefined.>>

Return value Return value
(numeric)

Explanation

TPEBADDESC 2 The argument cd is invalid, or is the descriptor with which
a conversational service was invoked.

TPETIME 13 A timeout occurred. The descriptor is no longer valid.

TPEPROTO 9 The function tpdiscon() was called in an improper
context.

TPESYSTEM 12 A communication resource manager system error has
occurred. The exact nature of the error is determined in a
product-specific manner.

TPEOS 7 An operating system error has occurred. The exact nature
of the error is determined in a product-specific manner.

tpfree - Free a typed buffer

471

tpfree - Free a typed buffer

Format
ANSI C, C++

K&R C

Description
The argument to tpfree() is a pointer to a buffer previously obtained by either
tpalloc() or tprealloc(). If ptr is NULL, no action occurs. Undefined results
occur if ptr does not point to a typed buffer (or if it points to space previously freed
with tpfree()). Inside service routines, tpfree() returns and does not free the
buffer if ptr points to the buffer passed into a service routine.

Some buffer types require state information or associated data to be removed as part
of freeing a buffer. tpfree() removes any of these associations (in a
communication-resource-manager-specific manner) before a buffer is freed.

Once tpfree() returns, ptr should not be passed as an argument to any XATMI
routine or used in any other manner.

<<Argument>>
<<ptr

Specify the pointer to the buffer allocated by the function tpalloc() or
tprealloc().>>

Return value
The function tpfree() does not return any value to its caller. Therefore, it is declared
as a void.

Application usage
This function should not be used in concert with malloc(), realloc() or free()
in the C library (for example, a buffer allocated with tpalloc() should not be freed
with free()).

#include <xatmi.h>
void tpfree (char *ptr)

#include <xatmi.h>
void tpfree (ptr)
char *ptr;

tpfree - Free a typed buffer

472

See also
tpalloc(), tprealloc().

<<Notes on use with OpenTP1>>
1. <<The behavior caused by XATMI errors encountered during OSI TP

communication may be different from the behavior caused by errors encountered
conventional TCP/IP communication.>>

tpgetrply - Get a reply from a previous service request

473

tpgetrply - Get a reply from a previous service request

Format
ANSI C, C++

K&R C

Description
The function tpgetrply() returns a reply from a previously-sent service request.
This function's first argument, cd, points to a call descriptor returned by tpacall().
By default, the function waits until the reply matching *cd arrives or a timeout occurs.

data must be the address of a pointer to a buffer previously allocated by tpalloc()
and len should point to a long that tpgetrply() sets to the amount of data
successfully received. tpgetrply() ensures that the request fits into the specified
buffer by growing the buffer if necessary. Upon successful return, *data points to a
buffer containing the reply and *len contains the size of the data. Note that *data
may have changed upon return for reasons other than an increase in the size of the
buffer. If *len is greater than the total size of the buffer before the call, the buffer's
new size is *len. If *len is 0, then the reply dequeued has no data portion and neither
*data nor the buffer it points to were modified. It is an error for *data or len to be
NULL.

<<Arguments>>
<<cd

Specify a descriptor.>>

<<data

Specify the address of the pointer to the buffer which will contain received data.>>

<<len

Specify the address of the area which will contain the length of received data.>>

#include <xatmi.h>
int tpgetrply (int *cd, char **data, long *len, long
 flags)

#include <xatmi.h>
int tpgetrply (cd, data, len, flags)
int *cd;
char **data;
long *len;
long flags;

tpgetrply - Get a reply from a previous service request

474

<<flags>>

The valid flags are as follows:

TPGETANY

This flag signifies that tpgetrply() should ignore the descriptor pointed to by
cd, return any reply available and set cd to point to the call descriptor for the reply
returned. If no replies exist, by default tpgetrply() waits for one to arrive.

TPNOCHANGE

By default, if a buffer is received that differs in type from the buffer pointed to by
*data, then *data's buffer type changes to the received buffer's type so long as
the receiver recognizes the incoming buffer type. When this flag is set, the type
of the buffer pointed to by *data is not allowed to change. That is, the type and
sub-type of the received buffer must match the type and sub-type of the buffer
pointed to by *data.

TPNOBLOCK

tpgetrply() does not wait for the reply to arrive. If the reply is available,
tpgetrply() gets the reply and returns. When this flag is not specified and a
reply is not available, the caller blocks until the reply arrives or a timeout occurs
(either transaction or blocking timeout).

TPNOTIME

This flag signifies that the caller is willing to block indefinitely for its reply and
wants to be immune to blocking timeouts. Transaction timeouts may still occur.

TPSIGRSTRT

If a signal interrupts any underlying system calls, the interrupted system call is
reissued.

Except as noted below, *cd is no longer valid after its reply is received.

Return value
Upon successful return from tpgetrply() or upon return where tperrno is set to
TPESVCFAIL, the tpurcode global contains an application-defined value that was
sent as part of tpreturn(). Otherwise, it returns -1 and sets tperrno to indicate the
error condition.

Errors

Under the following conditions, tpgetrply() fails and sets tperrno as indicated
below. Note that if TPGETANY is not set, *cd is invalidated unless otherwise stated. If
TPGETANY is set, cd points to the descriptor for the reply on which the failure
occurred; if an error occurred before a reply could be retrieved, cd points to 0. Also,
the failure does not affect the caller's transaction, if one exists, unless otherwise stated.

tpgetrply - Get a reply from a previous service request

475

Return value Return value
(numeric)

Explanation

TPEINVAL 4 Invalid arguments were given (for example, cd, data,
*data or len is NULL or the value of flags is invalid).
If cd is non-NULL, it is still valid after this error and the
reply remains unresolved.

TPEBADDESC 2 The argument cd points to an invalid descriptor.

TPEOTYPE 18 Either type and subtype of the reply are not known to the
caller, or TPNOCHANGE was set in flags, but the buffer type
and subtype specified for *data do not match type and
subtype of the reply sent by the service. If this error
occurs, neither *data nor *len is changed. If the reply
was to be received as the caller's current transaction, the
transaction is marked rollback_only since the reply is
discarded.

TPETIME 13 A timeout occurred. If the caller is in transaction mode, a
transaction time-out occurred and the transaction is
marked rollback_only; otherwise, a blocking time-out
occurred and neither TPNOBLOCK nor TPNOTIME were
specified. In either case, neither *data nor *len is
changed (unless the caller is in transaction mode). The
argument *cd remains valid (and TPGETANY was not set).
If a transaction time-out occurred, any attempts to send
new requests or receive outstanding replies fail with
TPETIME until the transaction has been rolled back.

TPESVCFAIL 11 The service function sending the caller's reply called
tpreturn() with TPFAIL. This is an application-level
failure. The contents of the reply sent by the service are
available in the buffer pointed to by *data. If the service
request was made as the caller's current transaction, the
transaction is marked rollback_only.
Note

So long as the transaction has not timed out, further
communication may be performed up until before
rollback. In this case, any work performed as the
caller's transaction is rolled back upon transaction
completion. Be sure to set TPNOTRAN for
communication with continuous processing enabled.
Depending on the transaction function, some
processing is performed to rollback the caller's
transaction.

tpgetrply - Get a reply from a previous service request

476

See also
tpacall(), tpalloc(), tpreturn().

<<Notes on use with OpenTP1>>
1. <<The TPSIGRSTRT flag is invalid. Regardless of this flag, when a signal is

received, the interrupted system call is reinvoked. TPEGOTSIG will never
return.>>

2. <<Under the OpenTP1, when a process encounters transaction timeout, it
terminates abnormally. Therefore, TPETIME returns only when blocking timeout
occurs.>>

3. <<Under the relevant version of the OpenTP1, data which requires rollback
causes the return of TPESYSTEM unless otherwise specified by the X/Open.
However, the rollback_only state may not come into effect even when
TPESYSTEM returns.>>

TPESVCERR 10 An error was encountered either in invoking a service
function or during its completion in tpreturn() (for
example, bad arguments were passed). No reply data is
returned when this error occurs (that is, neither *data, nor
*len is changed). If the reply was received as the caller's
transaction, the transaction is marked rollback_only.
Note

So long as the transaction has not timed out, further
communication may be attempted before completely
rolling back the transaction. Such attempts may be
processed normally or may fail (producing an error
return or event). Be sure to set TPNOTRAN for
communication with continuous processing enabled.
Depending on the transaction function, some
processing is performed to rollback the caller's
transaction.

TPEBLOCK 3 When TPNOBLOCK was specified, the blocking status
existed. The argument *cd remains valid.

TPEGOTSIG 15 A signal was received, but TPSIGRSTRT was not set.

TPEPROTO 9 tpgetrply() was called in an improper context.

TPESYSTEM 12 A communication resource manager system error has
occurred. The exact nature of the error is determined in a
product-specific manner.

TPEOS 7 An operating system error has occurred. The exact nature
of the error is determined in a product-specific manner.

Return value Return value
(numeric)

Explanation

tpgetrply - Get a reply from a previous service request

477

4. <<If the function tpacall() passes data of a type that cannot be used by the
called service, it returns normally, but the function tpgetrply() will encounter
an error. If the function tpgetrply() encounters a TPESYSTEM error, check the
results of the function tpacall() as well.>>

5. <<If an SPP to which a service was requested terminates abnormally, the function
might return with a TPETIME error before the time specified in the watch_time
operand in the definition has elapsed. If 0 (wait until a response is received) is
specified in the watch_time operand, the function might return with a
TPEPROTO error.>>

6. <<The function returns with a TPEPROTO error if the OpenTP1 security facility is
used but the service request is not authenticated. Whether the cause of the error
return is because the service request is not authenticated can be checked with the
UAP trace detail error code.>>

7. <<For OSI TP communication using TP1/NET/OSI-TP-Extended, receive data
must not exceed the length specified in the length operand of the NET buffer
group definition nettbuf (NET/Library common definition).>>

8. <<Suppose that inter-TP1 OSI TP communication is in use. When a service with
N specified for the atomic_update clause is called as a transaction,
TPESVCERR is returned to the service requester.>>

9. <<Suppose that a service called via TCP/IP communication calls a service via
OSI TP communication and that the service function ends without receiving a
response. The UAP which called the service via TCP/IP communication receives
a normal response message. The functions tpcall() and tpgetrply() return
normally.>>

10. <<The behavior caused by XATMI errors encountered during OSI TP
communication may be different from the behavior caused by errors encountered
conventional TCP/IP communication.>>

tprealloc - Change the size of a typed buffer

478

tprealloc - Change the size of a typed buffer

Format
ANSI C, C++

K&R C

Description
The function tprealloc() changes the size of the buffer pointed to by ptr to size
bytes and returns a pointer to the new (possibly moved) buffer. As with tpalloc(),
the size of the buffer is at least as large as size. A buffer's type remains the same after
it is reallocated. After this function returns successfully, the returned pointer should be
used to reference the buffer; ptr should no longer be used. The buffer's contents do
not change up to the lesser of the new and old sizes.

Some buffer types require initialization before they can be used. tprealloc()
reinitializes a buffer (in a communication-resource-manager-specific manner) after it
is reallocated and before it is returned. Thus, the buffer returned to the caller is ready
for use.

<<Arguments>>
<<ptr

Specify the pointer to the buffer.>>

<<size

Specify the size which will be in effect after the buffer is reallocated.>>

Return value
Upon successful completion, tprealloc() returns a pointer to a buffer of the
appropriate type aligned on a long word. Otherwise it returns NULL and sets tperrno
to indicate the error condition.

Errors

Under the following conditions, tprealloc() fails and sets tperrno to one of the
following values:

#include <xatmi.h>
char *tprealloc (char *ptr, long size)

#include <xatmi.h>
char *tprealloc (ptr, size)
char *ptr;
long size;

tprealloc - Change the size of a typed buffer

479

Application usage
If buffer reinitialization fails, tprealloc() fails returning NULL and the contents of
the buffer pointed to by ptr may not be valid.

This function should not be used in concert with malloc(), realloc() or free()
in the C library (for example, a buffer allocated with tprealloc() should not be
freed with free()).

See also
tpalloc(), tpfree(), tptypes().

<<Notes on use with OpenTP1>>
1. <<Under the OpenTP1, the buffer returned by the function tprealloc() is

reinitialized to 0.>>

2. <<The behavior caused by XATMI errors encountered during OSI TP
communication may be different from the behavior caused by errors encountered
conventional TCP/IP communication.>>

Return value Return value
(numeric)

Explanation

TPEINVAL 4 Invalid arguments were given (for example, ptr is not a
point to a buffer allocated for tpalloc()).

TPEPROTO 9 tprealloc() was called in an improper context.

TPESYSTEM 12 A communication resource manager system error has
occurred. The exact nature of the error is determined in a
product-specific manner.

TPEOS 7 An operating system error has occurred. The exact nature
of the error is determined in a product-specific manner.

tprecv - Receive a message in a conversational connection

480

tprecv - Receive a message in a conversational connection

Format
ANSI C, C++

K&R C

Description
The function tprecv() is used to receive data sent across an open connection from
another program. This function's first argument, cd, specifies on which open
connection to receive data. cd is a descriptor returned from either tpconnect() or
the TPSVCINFO parameter to the service. The second argument, data, is the address
of a pointer to a buffer previously allocated by tpalloc().

Upon successful return, and for several event types, *data points to the data received
and *len contains the size of the buffer. Note that if *len is greater than the total size
of the buffer before the call, then the buffer's new size is *len. If *len is 0, no data
was received and neither *data nor the buffer it points to were modified. It is an error
for data, *data or len to be NULL.

tprecv() can be issued only by the program that does not have control of the
connection.

<<Arguments>>
<<cd

Specify a descriptor.>>

<<data

Specify the address of the pointer to the buffer which will contain received data.>>

<<len

Specify the address of the area which will contain the length of received data.>>

#include <xatmi.h>
int tprecv (int cd, char **data, long *len, long flags,
 long *revent)

#include <xatmi.h>
int tprecv (cd, data, len, flags, revent)
int cd;
char **data;
long *len;
long flags;
long *revent;

tprecv - Receive a message in a conversational connection

481

<<flags

Indicates flags.>>

<<revent

Indicates the pointer to the long-type data about the event.>>

The valid flags are as follows:

TPNOCHANGE

By default, if a buffer is received that differs in type from the buffer pointed to by
*data, then *data's buffer type changes to the received buffer's type so long as
the receiver recognizes the incoming buffer type. When this flag is set, the type
of the buffer pointed to by *data is not allowed to change. That is, the type and
sub-type of the received buffer must match the type and sub-type of the buffer
pointed to by *data.

TPNOBLOCK

The function tprecv() does not wait for data to arrive. If data is already
available to receive, tprecv() gets the data and returns. When this flag is not
specified and data is not available to receive, the caller blocks until data arrives.

TPNOTIME

This flag signifies that the caller is willing to block indefinitely and wants to be
immune to blocking timeouts. Transaction timeouts may still occur.

TPSIGRSTRT

If a signal interrupts any underlying system calls, then the interrupted system call
is reissued.

If an event exists for the descriptor, cd, and tprecv() encounters no errors, the event
type is returned in revent. data can be received along with the TPEV_SVCSUCC,
TPEV_SVCFAIL, and TPEV_SENDONLY events. Valid events for tprecv() are as
follows:

TPEV_DISCONIMM

Received by the subordinate of a conversation, this event indicates that the
originator of the conversation has either issued an immediate disconnect on the
connection by means of tpdiscon(), or it issued tpreturn(), tx_commit()
or tx_rollback() with the connection still open. This event is also returned to
the originator or subordinate when a connection is broken due to a communication
error (for example, a server, machine, or network failure). Because this is an
immediate disconnection notification (that is, abortive rather than orderly), data
in transit may be lost. If the two programs were participating in the same
transaction, the transaction is marked rollback_only. The descriptor used for
the connection is no longer valid.

tprecv - Receive a message in a conversational connection

482

TPEV_SENDONLY

The program at the other end of the connection has relinquished control of the
connection. The recipient of this event is allowed to send data but cannot receive
any data until it relinquishes control.

TPEV_SVCERR

Received by the originator of a conversation, this event indicates that the
subordinate of the conversation has issued tpreturn(). tpreturn()
encountered an error that precluded the service from returning successfully. For
example, bad arguments may have been passed to tpreturn() or it may have
been called while the service had open connections to other subordinates. Due to
the nature of this event, any application-defined data or return code are not
available. The connection has been terminated and cd is no longer a valid
descriptor. If this event occurred as part of the recipient's transaction, the
transaction is marked rollback-only.

TPEV_SVCFAIL

Received by the originator of a conversation, this event indicates that the
subordinate service on the other end of the conversation has finished
unsuccessfully as defined by the application (that is, it called tpreturn() with
TPFAIL). If the subordinate service was in control of this connection when
tpreturn() was called, it can pass a typed buffer back to the originator of the
connection. As part of ending the service routine, the server has terminated the
connection. Thus, cd is no longer a valid descriptor. If this event occurred as part
of the recipient's transaction, the transaction is marked rollback-only.

TPEV_SVCSUCC

Received by the originator of a conversation, this event indicates that the
subordinate service on the other end of the conversation has finished successfully
as defined by the application (that is, it called tpreturn() with TPSUCCESS).
As part of ending the service routine, the server has terminated the connection.
Thus, cd is no longer a valid descriptor. If the recipient is in transaction mode, it
can either commit (if it is also the initiator) or roll back the transaction causing the
work done by the server (if also in transaction mode) to either commit or roll back.

Return value
Upon return from tprecv() where revent is set to either TPEV_SVCSUCC or
TPEV_SVCFAIL, the tpurcode global contains an application-defined value that was
sent as part of tpreturn(). The function tprecv() returns -1 on error and sets
tperrno to indicate the error condition. Also, if an event exists and no errors were
encountered, tprecv() returns -1 and tperrno is set to TPEEVENT.

Errors

Under the following conditions, tprecv() fails and sets tperrno to one of the

tprecv - Receive a message in a conversational connection

483

following values:

See also
tpalloc(), tpconnect(), tpdiscon(), tpsend().

Return value Return value
(numeric)

Explanation

TPEINVAL 4 Invalid arguments were given (for example, data is not a
pointer to a buffer allocated for tpalloc() or the value of
flags is invalid).

TPEBADDESC 2 The argument cd points to an invalid descriptor.

TPEOTYPE 18 Either type and subtype of the incoming buffer are not
known to the caller, or TPNOCHANGE was set in flags, but
the type and subtype of *data do not match type and
subtype of the incoming buffer. In either case, neither
*data nor *len is changed. If an interactive service is
executed as the caller's transaction, the transaction has the
rollback_only status until the incoming buffer is
discarded. When this error occurs, any event for cd is
dropped and the conversation is in an undetermined status.
The caller should terminate the conversation.

TPETIME 13 A timeout occurred. If the caller is in transaction mode, a
transaction time-out occurred and the transaction is
marked rollback_only; otherwise, a blocking time-out
occurred and neither TPNOBLOCK nor TPNOTIME was
specified. In either case, *data and its contents are not
changed. If a transaction time-out occurred, any attempts
to send or receive messages on any connections or to start
a new connection fail with TPETIME until the transaction
has been rolled back.

TPEEVENT 22 An event occurred and its type is returned in revent.

TPEBLOCK 3 When tprecv() for which TPNOBLOCK was specified was
called, the blocking status existed.

TPEGOTSIG 15 A signal was received, but TPSIGRSTRT was not set.

TPEPROTO 9 tprecv() was called in an improper context.

TPESYSTEM 12 A communication resource manager system error has
occurred. The exact nature of the error is determined in a
product-specific manner.

TPEOS 7 An operating system error has occurred. The exact nature
of the error is determined in a product-specific manner.

tprecv - Receive a message in a conversational connection

484

<<Notes on use with OpenTP1>>
1. <<The TPSIGRSTRT flag is invalid. Regardless of this flag, when a signal is

received, the interrupted system call is reinvoked. TPEGOTSIG will never
return.>>

2. <<Under the OpenTP1, when a process encounters transaction timeout, it
terminates abnormally. Therefore, TPETIME returns only when blocking timeout
occurs.>>

3. <<Under the relevant version of the OpenTP1, data which requires rollback
causes the return of TPESYSTEM unless otherwise specified by the X/Open.
However, the rollback_only state may not come into effect even when
TPESYSTEM returns. >>

4. <<For OSI TP communication using TP1/NET/OSI-TP-Extended,
conversational service communication cannot be held. If this is done, the system
operation is undefined.>>

tpreturn - Return from a service routine

485

tpreturn - Return from a service routine

Format
ANSI C, C++

K&R C

Description
The function tpreturn() indicates that a service routine has completed.
tpreturn() acts like a return statement in the C-language (that is, when
tpreturn() is called, the service routine returns to the communication resource
manager). It is recommended that tpreturn() be called from within the service
routine dispatched by the communication resource manager to ensure correct return of
control to the communication resource manager.

The function tpreturn() is used to send a service's reply message. If the program
receiving the reply is waiting in either tpcall(), tpgetrply(), or tprecv(), then
after a successful call to tpreturn(), the reply is available in the receiver's buffer.

For conversational services, tpreturn() also terminates the connection. That is, the
service routine cannot call tpdiscon() directly. To ensure correct results, the
program that connected to the conversational service should not call tpdiscon();
rather, it should wait for notification that the conversational service has completed
(that is, it should wait for one of the events, like TPEV_SVCSUCC or TPEV_SVCFAIL,
sent by tpreturn()).

If the service routine was in transaction mode, tpreturn() places the service's
portion of the transaction in a state where it may be either committed or rolled back
when the transaction is completed. A service may be invoked multiple times as part of
the same transaction so it is not necessarily fully committed nor rolled back until either
tx_commit() or tx_rollback() is called by the originator of the transaction.

The function tpreturn() should be called after receiving all replies expected from
service requests initiated by the service routine. Otherwise, depending on the nature of

#include <xatmi.h>
void tpreturn (int rval, long rcode, char *data,
 long len, long flags)

#include <xatmi.h>
void tpreturn (rval, rcode, data, len, flags)
int rval;
long rcode;
char *data;
long len;
long flags;

tpreturn - Return from a service routine

486

the service, either a TPESVCERR error or a TPEV_SVCERR event is returned to the
program that initiated communication with the service routine. Any outstanding
replies that are not received are automatically dropped by the communication resource
manager. In addition, the descriptors for those replies become invalid.

The function tpreturn() should be called after closing all connections initiated by
the service. Otherwise, depending on the nature of the service, either a TPESVCERR or
a TPEV_SVCERR event is returned to the program that initiated communication with
the service routine. Also, an immediate disconnect event (that is, TPEV_DISCONIMM)
is sent over all open connections to subordinates.

Concerning control of the connection, if the service routine does not have control over
the connection with which it was invoked when it issues tpreturn(), two outcomes
are possible. Firstly, if the service routine calls tpreturn() with rval set to TPFAIL
and data is NULL, then a TPEV_SVCFAIL event is sent to the originator of this
conversation. Secondly, if any other invocation of tpreturn() is used, a
TPEV_SVCERR event is sent to the originator.

Since a conversational service has only one open connection that it did not initiate, the
communication resource manager knows over which descriptor data (and any event)
should be sent. For this reason, a descriptor is not passed to tpreturn().

The argument rval can be set to one of the following:

TPSUCCESS

The service has terminated successfully. If data is present, it is sent (barring any
failures processing the return). If the caller is in transaction mode, tpreturn()
places the caller's portion of the transaction in a state such that it can be committed
when the transaction ultimately commits. Note that a call to tpreturn() does
not necessarily finalize an entire transaction. Also, even though the caller
indicates success, if there are any outstanding replies or open connections, or if
any work done within the service caused its transaction to be marked
rollback-only, then a failed message is sent (that is, the recipient of the reply
receives a TPESVCERR indication or a TPEV_SVCERR event). Note that if a
transaction becomes rollback-only while in the service routine for any reason, rval
should be set to TPFAIL. If TPSUCCESS is specified for a conversational service,
a TPEV_SVCSUCC event is generated.

TPFAIL

The service has terminated unsuccessfully from an application standpoint. An
error is reported to the program receiving the reply. That is, the call to get the reply
fails and the recipient receives a TPSVCFAIL indication or a TPEV_SVCFAIL
event. If the caller is in transaction mode, tpreturn() marks the transaction as
rollback-only (note that the transaction may already be marked rollback-only).
Barring any failures in processing the return, the caller's data is sent, if present.
One reason for not sending the caller's data is when a transaction timeout has

tpreturn - Return from a service routine

487

occurred. In this case, the program waiting for the reply receives an error of
TPETIME.

If rval does not contain one of these two values, TPFAIL is assumed.

An application-defined return code, rcode, may be sent to the program receiving the
service reply. This code is sent regardless of the setting of rval as long as a reply can
be successfully sent (that is, as long as the receiving call returns success or
TPESVCFAIL, or receives one of the events TPEV_SVCSUCC or TPEV_SVCFAIL). In
addition, for conversational services, this code can be sent only if the service routine
has control of the connection when it issues tpreturn(). The value of rcode is
available to the receiver in the variable tpurcode.

data points to the data portion of a reply to be sent. If data is non-NULL, it must point
to a buffer previously obtained by a call to tpalloc(). If this is the same buffer
passed to the service routine upon its invocation, its disposition is up to the
communication resource manager; the service routine writer does not have to worry
about whether it is freed or not. In fact, any attempt by the user to free this buffer fails.
However, if the buffer passed to tpreturn() is not the same one with which the
service is invoked, tpreturn() frees that buffer. len specifies the amount of the data
buffer to be sent. If data points to a buffer that does not require a length to be
specified, then len is ignored (and may be 0). If data points to a buffer that does
require a length, len must not be zero.

If data is NULL, len is ignored. In this case, if a reply is expected by the program that
invoked the service, a reply is sent with no data portion. If no reply is expected,
tpreturn() frees data as necessary and returns sending no reply.

Currently, flags are reserved for future use and must be set to 0.

If the service is conversational, there are two cases where the caller's return code and
the data portion are not transmitted:

• If the connection has already been terminated when the call is made (that is, the
caller has received TPEV_DISCONIMM on the connection), this call simply ends
the service routine and rolls back the current transaction, if one exists. In this case,
the caller's data cannot be transmitted.

• If the caller does not have control of the connection, either TPEV_SVCFAIL or
TPEV_SVCERR is sent to the originator of the connection as described above.
Regardless of which event the originator receives, no data is transmitted;
however, if the originator receives the TPEV_SVCFAIL event, the return code is
available in the originator's tpurcode variable.

<<Arguments>>
<<rval

Specify either TPSUCCESS or TPFAIL.>>

tpreturn - Return from a service routine

488

<<rcode

Specify a return code defined in the application.>>

<<data

Specify the pointer to the buffer containing the reply data to be sent.>>

<<len

Specify the length of the buffer for data which will come.>>

<<flags

Set 0 (reserved for the future).>>

Return value
A service routine does not return any value to its caller, the communication resource
manager dispatcher; thus, it is declared as a void. Service routines, however, are
expected to terminate using tpreturn(). If a service routine returns without using
tpreturn() (that is, it uses the C-language return statement or falls out of the
function), the server returns a service error to the service requester. In addition, all
open connections to subordinates are disconnected immediately, and any outstanding
asynchronous replies are dropped. If the server was in transaction mode at the time of
failure, the transaction is marked rollback-only. Note also that if tpreturn() is used
outside a service routine (for example, by routines that are not services), it returns
having no effect.

Errors

Since tpreturn() ends the service routine, any errors encountered either in handling
arguments or in processing cannot be indicated to the function's caller. Such errors
cause tperrno to be set to TPESVCERR for a program receiving the service's outcome
via either tpcall() or tpgetrply(), and cause the event, TPEV_SVCERR, to be sent
over the conversation to a program using tpsend() or tprecv().

See also
tpalloc(), tpcall(), tpconnect(), tpdiscon(), tpgetrply(), tprecv(),
tpsend(), tpservice().

<<Notes on use with OpenTP1>>
1. <<Under the relevant version of the OpenTP1, the function tpreturn() will not

terminate the service function. After calling the function tpreturn(), use
return() to terminate the service function. If some processing is performed
after the function tpreturn() is called, subsequent operation is
unpredictable.>>

2. <<The behavior caused by XATMI errors encountered during OSI TP
communication may be different from the behavior caused by errors encountered

tpreturn - Return from a service routine

489

conventional TCP/IP communication.>>

tpsend - Send a message in a conversational connection

490

tpsend - Send a message in a conversational connection

Format
ANSI C, C++

K&R C

Description
The function tpsend() is used to send data across an open connection to another
program. The caller must have control of the connection. This function's first
argument, cd, specifies the open connection over which data is sent. cd is a descriptor
returned from either tpconnect() or the TPSVCINFO parameter passed to a
conversational service.

The second argument, data, must point to a buffer previously allocated by
tpalloc(). len specifies how much of the buffer to send. Note that if data points to
a buffer of a type that does not require a length to be specified, len is ignored (and
may be 0). If data points to a buffer that does require a length, len must not be zero.
Also, data can be NULL in which case len is ignored (no application data is sent -
this might be done, for instance, to grant control of the connection without transmitting
any data). The type and sub-type of data must match one of the types and sub-types
recognized by the other end of the connection.

<<Arguments>>
<<cd

Specify a descriptor.>>

<<data

Specify the pointer to the buffer containing the data to be sent.>>

<<len

Specify the length of the buffer.>>

#include <xatmi.h>
int tpsend (int cd, char *data, long len, long flags,
 long *revent)

#include <xatmi.h>
int tpsend (cd, data, len, flags, revent)
int cd;
char *data;
long len;
long flags;
long *revent;

tpsend - Send a message in a conversational connection

491

<<flags

Indicates flags.>>

<<revent

Indicates the pointer to the long-type data about the event.>>

The valid flags are as follows:

TPRECVONLY

This flag signifies that, after the caller's data is sent, the caller gives up control of
the connection (that is, the caller cannot issue any more tpsend() calls). When
the receiver at the other end of the connection receives the data sent by
tpsend(), it also receives an event (TPEV_SENDONLY) indicating that it has
control of the connection (and cannot issue more any tprecv() calls).

TPNOBLOCK

The data and any events are not sent if a blocking condition exists (for example,
the internal buffers into which the message is transferred are full). When
TPNOBLOCK is not specified and a blocking condition exists, the caller blocks
until the condition subsides or a timeout occurs (either transaction or blocking
timeout).

TPNOTIME

This flag signifies that the caller is willing to block indefinitely and wants to be
immune to blocking timeouts. Transaction timeouts may still occur.

TPSIGRSTRT

If a signal interrupts any underlying system calls, the interrupted system call is
reissued.

If an event exists for the descriptor, cd, tpsend() fails without sending the caller's
data. The event type is returned in revent. Valid events for tpsend() are as follows:

TPEV_DISCONIMM

Received by the subordinate of a conversation, this event indicates that the
originator of the conversation has either issued an immediate disconnect on the
connection via tpdiscon(), or it issued tpreturn(), tx_commit() or
tx_rollback() with the connection still open. This event is also returned to the
originator or subordinate when a connection is broken due to a communication
error (for example, a server, machine, or network failure).

TPEV_SVCERR

Received by the originator of a conversation, this event indicates that the
subordinate of the conversation has issued tpreturn() without having control
of the conversation. In addition, tpreturn() was issued in a manner different

tpsend - Send a message in a conversational connection

492

from that described for TPEV_SVCFAIL below.

TPEV_SVCFAIL

Received by the originator of a conversation, this event indicates that the
subordinate of the conversation has issued tpreturn() without having control
of the conversation. In addition, tpreturn() was issued with the TPFAIL and
no data (that is, rval was set to TPFAIL and data was NULL).

Because each of these events indicates an immediate disconnection notification (that
is, abortive rather than orderly), data in transit may be lost. The descriptor used for the
connection is no longer valid. If the two programs were participating in the same
transaction, the transaction has been marked rollback-only.

Return value
The function tpsend() returns -1 on error and sets tperrno to indicate the error
condition. Upon return from tpsend() where revent is set to TPEV_SVCFAIL, the
tpurcode global contains an application-defined value that was set as part of
tpreturn().

Errors

Under the following conditions, tpsend() fails and sets tperrno to one of the
following values:

Return value Return value
(numeric)

Explanation

TPEINVAL 4 Invalid arguments were given (for example, data is not a
pointer to a buffer allocated for tpalloc() or the value of
flags is invalid).

TPEBADDESC 2 The argument cd points to an invalid descriptor.

TPETIME 13 A timeout occurred. If the caller is in transaction mode, a
transaction time-out occurred and the transaction is
marked rollback_only; otherwise, a blocking time-out
occurred and neither TPNOBLOCK nor TPNOTIME were
specified. In either case, *data and its contents are not
changed. If a transaction time-out occurred, any attempts
to send or receive messages on any connections or to start
a new connection fail with TPETIME until the transaction
has been rolled back.

TPEEVENT 22 An event occurred. data is not sent when this error occurs.
The event type is returned in revent.

TPEBLOCK 3 When tpsend() for which TPNOBLOCK was specified was
called, the blocking status existed.

TPEGOTSIG 15 A signal was received, but TPSIGRSTRT was not set.

tpsend - Send a message in a conversational connection

493

See also
tpalloc(), tpconnect(), tpdiscon(), tprecv(), tpreturn().

<<Notes on use with OpenTP1>>
1. <<The TPNOBLOCK flag is invalid under the relevant version of the OpenTP1.

Therefore, the error code TPEBLOCK will not be returned to tperrno. The
OpenTP1 is designed so that if communication is impossible because of blocking,
TPESYSTEM is returned as when communication is impossible because of
network failure.>>

2. <<The TPNOTIME flag is invalid under the relevant version of the OpenTP1.>>

3. <<The TPSIGRSTRT flag is invalid. Regardless of this flag, when a signal is
received, the interrupted system call is reinvoked. TPEGOTSIG will never
return.>>

4. <<Under the OpenTP1, when a process encounters transaction timeout, it
terminates abnormally. Therefore, TPETIME returns only when blocking timeout
occurs.>>

5. <<Under the relevant version of the OpenTP1, data which requires rollback
causes the return of TPESYSTEM unless otherwise specified by the X/Open.
However, the rollback_only state may not come into effect even when
TPESYSTEM returns.>>

6. <<Under the OpenTP1, even if the mate of conversation has called the function
tpdiscon() or tpreturn(), the function tpsend() cannot generate an event
provided that the process which calls the function tpsend() has not received an
event.>>

7. <<For OSI TP communication using TP1/NET/OSI-TP-Extended,
conversational service communication cannot be held. If this is done, the system
operation is undefined.>>

TPEPROTO 9 tpsend() was called in an improper context.

TPESYSTEM 12 A communication resource manager system error has
occurred. The exact nature of the error is determined in a
product-specific manner.

TPEOS 7 An operating system error has occurred. The exact nature
of the error is determined in a product-specific manner.

Return value Return value
(numeric)

Explanation

tpservice - Template for service routines

494

tpservice - Template for service routines

Format
ANSI C, C++

K&R C

Description
The function tpservice() is the template for writing service routines. This template
is used for services that receive requests via tpcall() or tpacall() routines as well
as by services that communicate via tpconnect(), tpsend() and tprecv()
routines.

Service routines processing requests made via either tpcall() or tpacall()
receive, at most, one incoming message (in the data element of svcinfo) and send,
at most, one reply (upon exiting the service routine with tpreturn()).

Conversational services, on the other hand, are invoked by connection requests with,
at most, one incoming message along with a means of referring to the open connection.
When a conversational service routine is invoked, either the connecting program or the
conversational service may send and receive data as defined by the application. The
connection is half-duplex in nature meaning that one side controls the conversation
(that is, it sends data) until it explicitly gives up control to the other side of the
connection.

Concerning transactions, service routines can participate in, at most, one transaction if
invoked in transaction mode. As far as the service routine writer is concerned, the
transaction ends upon returning from the service routine. If the service routine is not
invoked in transaction mode, the service routine may originate as many transactions as
it wants using tx_begin(), tx_commit() and tx_rollback(). Note that
tpreturn() is not used to complete a transaction. Thus, it is an error to call
tpreturn() with an outstanding transaction that originated within the service
routine.

<<Argument>>
Service routines are invoked with one argument: svcinfo, a pointer to a service
information structure. This structure includes the following members:

#include <xatmi.h>
void tpservice (TPSVCINFO *svcinfo)

#include <xatmi.h>
void tpservice (svcinfo)
TPSVCINFO *svcinfo;

tpservice - Template for service routines

495

The element name is populated with the service name that the requester used to invoke
the service.

The setting of flags upon entry to a service routine indicates attributes that the service
routine may want to note. The possible values for flags are as follows:

TPCONV

A connection request for a conversation has been accepted and the descriptor for
the conversation is available in cd. If not set, this is a request/response service and
cd is not valid.

TPTRAN

The service routine is in transaction mode.

TPNOREPLY

The caller is not expecting a reply. This option is not set if TPCONV is set.

TPSENDONLY

The service is invoked such that it can send data across the connection and the
program on the other end of the connection can only receive data. This flag is
mutually exclusive with TPRECVONLY and may be set only when TPCONV is also
set.

TPRECVONLY

The service is invoked such that it can only receive data from the connection and
the program on the other end of the connection can send data. This flag is
mutually exclusive with TPSENDONLY and may be set only when TPCONV is also
set.

The element data points to the data portion of a request message and len is the length
of the data. The buffer pointed to by data was allocated by tpalloc() in the
communication resource manager. This buffer may be grown by the user with
tprealloc(); however, it cannot be freed by the user. It is recommended that this
buffer be the one passed to tpreturn() when the service ends. If a different buffer is
passed to those routines, that buffer is freed by them. Note that the buffer pointed to by
data is overwritten by the next service request even if this buffer is not passed to
tpreturn(). The element data may be NULL if no data accompanied the request.
In this case, len is 0.

When TPCONV is set in flags, cd is the connection descriptor that can be used with

char name[XATMI_SERVICE_NAME_LENGTH];
char *data;
long len;
long flags;
int cd;

tpservice - Template for service routines

496

tpsend() and tprecv() to communicate with the program that initiated the
conversation.

Return value
A service routine does not return any value to its caller, the communication resource
manager dispatcher; thus, it is declared as a void. Service routines, however, are
expected to terminate using tpreturn(). If a service routine returns without using
tpreturn() (that is, it uses the C-language return statement or falls out of the
function), the server returns a service error to the service requester. In addition, all
open connections to subordinates are disconnected immediately, and any outstanding
asynchronous replies are dropped. If the server was in transaction mode at the time of
failure, the transaction is marked rollback-only. Note also that if tpreturn() is used
outside a service routine (for example, by routines that are not services), then it returns
having no effect.

Errors

Since tpreturn() ends the service routine, any errors encountered either in handling
arguments or in processing cannot be indicated to the function's caller. Such errors
cause tperrno to be set to TPESVCERR for a program receiving the service's outcome
via either tpcall() or tpgetrply(), and cause the event, TPEV_SVCERR, to be sent
over the conversation to a program using tpsend() or tprecv().

See also
tpalloc(), tpcall(), tpconnect(), tpgetrply(), tprecv(), tpreturn(),
tpsend().

<<Notes on using the function in OpenTP1>>
1. <<For an OpenTP1 UAP (service function), always write return immediately

after tpreturn(). This is because OpenTP1 execution processes are restricted.
After calling tpreturn(), immediately execute return. No processing must be
performed between tpreturn() and return. Updating resources between a
call to tpreturn() and execution of return within transaction processing
includes the updating in the transaction.>>

2. <<The behavior caused by XATMI errors encountered during OSI TP
communication may be different from the behavior caused by errors encountered
conventional TCP/IP communication.>>

tptypes - Determine information about a typed buffer

497

tptypes - Determine information about a typed buffer

Format
ANSI C, C++

K&R C

Description
The function tptypes() takes as its first argument a pointer to a data buffer and
returns the type and subtype of that buffer in its second and third arguments,
respectively. ptr must point to a buffer obtained from tpalloc(). If type and
subtype are non-NULL, the function populates the character arrays to which they
point with the names of the buffer's type and subtype, respectively. If the names are of
their maximum length (8 for type, 16 for subtype), the character array is not
null-terminated. If no subtype exists, then the array pointed to by subtype contains a
NULL string ("").

Note that only the first eight bytes of type and the first 16 bytes of subtype are
populated.

<<Arguments>>
<<ptr

Specify the pointer to the buffer.>>

<<type

Specify the pointer to the buffer type.>>

<<subtype

Specify the pointer to the buffer subtype.>>

Return value
Upon success, tptypes() returns the size of the buffer. Otherwise, it returns -1 upon
failure and sets tperrno to indicate the error condition.

#include <xatmi.h>
long tptypes (char *ptr, char *type, char *subtype)

#include <xatmi.h>
long tptypes (ptr, type, subtype)
char *ptr;
char *type;
char *subtype;

tptypes - Determine information about a typed buffer

498

Errors

Under the following conditions, tptypes() fails and sets tperrno to one of the
following values:

See also
tpalloc(), tpfree(), tprealloc().

<<Notes on use with OpenTP1>>
1. <<The behavior caused by XATMI errors encountered during OSI TP

communication may be different from the behavior caused by errors encountered
conventional TCP/IP communication.>>

Return value Return value
(numeric)

Explanation

TPEINVAL 4 Invalid arguments were given (for example, ptr is not a
pointer to a typed buffer).

TPEPROTO 9 tptypes() was called in an improper context.

TPESYSTEM 12 A communication resource manager system error has
occurred. The exact nature of the error is determined in a
product-specific manner.

TPEOS 7 An operating system error has occurred. The exact nature
of the error is determined in a product-specific manner.

tpunadvertise - Unadvertise a service name

499

tpunadvertise - Unadvertise a service name

Format
ANSI C, C++

K&R C

Description
The function tpunadvertise() allows a server to unadvertise a service that it offers.
By default, a server's services are advertised when it is booted and they are
unadvertised when it is shutdown.

The function tpunadvertise() removes svcname as an advertised service for the
server. The argument svcname cannot be NULL or the NULL string (""). Also,
svcname should be 15 characters or fewer. Longer names are accepted and truncated
to 15 characters. Care should be taken such that truncated names do not match other
service names.

<<Argument>>
<<svcname

Specify the name of the service.>>

Return value
tpunadvertise() returns -1 on error and sets tperrno to indicate the error
condition.

Errors

Under the following conditions, tpunadvertise() fails and sets tperrno to one of
the following values:

#include <xatmi.h>
int tpunadvertise (char *svcname)

#include <xatmi.h>
int tpunadvertise (svcname)
char *svcname;

Return value Return value
(numeric)

Explanation

TPEINVAL 4 The argument svcname is NULL or the NULL string ("").

TPENOENT 6 The argument svcname is not currently advertised by the
server.

tpunadvertise - Unadvertise a service name

500

See also
tpadvertise().

<<Notes on use with OpenTP1>>
1. <<Suppose that load balancing is used on one node (multiserver configuration).

When the function tpunadvertise() is called from one of the processes, the
service becomes unavailable to all processes which undergo load balancing.
When the tpadvertise() is later called to advertise the service, service
requests from the processes can be accepted.>>

2. <<Suppose that load balancing (internode load balancing facility and extended
internode load-balancing facility) is used on multiple nodes. When the function
tpunadvertise() is called from a process on a node, the service becomes
unavailable on that node. However, the servers at other nodes can accept service
requests. When the function tpadvertise() is later called to advertise the
service, service requests are acceptable.>>

3. <<The behavior caused by XATMI errors encountered during OSI TP
communication may be different from the behavior caused by errors encountered
conventional TCP/IP communication.>>

TPEPROTO 9 tpunadvertise() was called in an improper context.

TPESYSTEM 12 A communication resource manager system error has
occurred. The exact nature of the error is determined in a
product-specific manner.

TPEOS 7 An operating system error has occurred. The exact nature
of the error is determined in a product-specific manner.

Return value Return value
(numeric)

Explanation

TX-interfaced application programming interface (tx_~)

501

TX-interfaced application programming interface (tx_~)

This section explains the syntax of the API functions which implement the TX
interface. The text in this section is quoted from 5. C Reference Manual Pages which
is the syntax reference section of the X/Open CAE Specification Distributed TP: The
TX (Transaction Demarcation) Specification published by X/Open Company Limited.

Additional notes on using these functions from UAPs used with the OpenTP1 are
enclosed in symbols <<>>.

The syntax of the following functions is explained below:

• tx_begin - Begin a global transaction

• tx_close - Close a set of resource managers

• tx_commit - Commit a global transaction

• tx_info - Return global transaction information

• tx_open - Open a set of resource managers

• tx_rollback - Roll back a global transaction

• tx_set_commit_return - Set commit_return characteristic

• tx_set_transaction_control - Set transaction_control
characteristic

• tx_set_transaction_timeout - Set transaction_timeout
characteristic

TX interface functions (tx_~) can be used in the UAPs for both TP1/Server Base and
TP1/LiNK.

tx_begin - Begin a transaction

502

tx_begin - Begin a transaction

Format
ANSI C, C++

K&R C

Description
The function tx_begin() is used to place the calling thread of control in transaction
mode. The calling thread must first ensure that its linked resource managers have been
opened (by means of tx_open()) before it can start transactions. The function
tx_begin() fails (returning TX_PROTOCOL_ERROR) if the caller is already in
transaction mode or tx_open() has not been called.

Once in transaction mode, the calling thread must call tx_commit() or
tx_rollback() to complete its current transaction. There are certain cases related to
transaction chaining where tx_begin() does not need to be called explicitly to start
a transaction. See tx_commit() and tx_rollback() for details.

<<tx_begin() cannot be called by MHP.>>

<<The value set by the following function affects the processing of tx_begin(). >>

Optional set-up

• tx_set_transaction_timeout()

Return value
<<When return value is 0>> upon successful completion, tx_begin() returns
TX_OK, a non-negative return value.

Errors

Under the following conditions, tx_begin() fails and returns one of these negative
values.

#include <tx.h>
int tx_begin (void)

#include <tx.h>
int tx_begin()

tx_begin - Begin a transaction

503

Application usage
XA-compliant resource managers must be successfully opened to be included in the
global transaction. (See tx_open(), for details.)

See also
tx_commit(), tx_open(), tx_rollback(),
tx_set_transaction_timeout().

<<Example>>

<<Note on use with OpenTP1>>
1. <<tx_begin() must be called when transaction processing is started with SPP.

For SPP, transaction processing is started if tx_begin() is called by the
caller.>>

Return value Return value
(numeric)

Explanation

TX_OUTSIDE -1 The transaction manager is unable to start a global
transaction because the calling thread of control is
currently participating in work outside any global
transaction with one or more resource managers. All such
work must be completed before a global transaction can be
started.
The caller's status with respect to the local transaction is
unchanged.

TX_PROTOCOL_ERROR -5 The function was called in an improper context (for
example, the caller is already in transaction mode).
The caller's status with respect to transaction mode is
unchanged.

TX_ERROR -6 Either the transaction manager or one or more of the
resource managers encountered a transient error trying to
start a new transaction. When this error is returned, the
caller is not in transaction mode.

TX_FAIL -7 Either the transaction manager or one or more of the
resource managers encountered a fatal error. The nature of
the error is such that the transaction manager and/or one or
more of the resource managers can no longer perform work
on behalf of the application.
When this error is returned, the caller is not in transaction
mode.

<<if (tx_info (NULL) == 0 && tx_begin() < 0)
 fputs ("cannot begin transaction\n", stderr);>>

tx_begin - Begin a transaction

504

2. <<For the process that generates a transaction with tx_begin(), the executable
file of UAP which is correctly linked according to the description of this manual
must be started.>>

3. <<tx_begin() cannot be used along with the functions dc_trn_~().>>

tx_close - Close a set of resource managers

505

tx_close - Close a set of resource managers

Format
ANSI C, C++

K&R C

Description
The function tx_close() closes a set of resource managers in a portable manner. It
invokes a transaction manager to read information specific to the resource manager in
a manner specific to the transaction manager and pass this information to the resource
managers linked to the caller.

The function tx_close() closes all resource managers to which the caller is linked.
This function is used in place of close calls specific to the resource manager and allows
an application program to be free of calls, which may hinder portability. Since resource
managers differ in their termination semantics, the specific information needed to
close a particular resource manager must be published by each resource manager.

The function tx_close() should be called when an application thread of control no
longer wishes to participate in global transactions. The function tx_close() fails
(returning TX_PROTOCOL_ERROR) if the caller is in transaction mode. That is, no
resource managers are closed even though some may not be participating in the current
transaction.

When tx_close() returns success (TX_OK), all resource managers linked to the
calling thread are closed.

Return value
<<When return value is 0>>

Upon successful completion, tx_close() returns TX_OK, a non-negative return
value. <<The set of resource managers linked to the caller was closed.>>

Errors

Under the following conditions, tx_close() fails and returns one of these negative
values.

#include <tx.h>
int tx_close (void)

#include <tx.h>
int tx_close()

tx_close - Close a set of resource managers

506

See also
tx_open().

<<Example>>

<<Note on use with OpenTP1>>
1. <<Only the resource managers conforming to the XA interface of X/Open can be

closed with tx_close().>>

Return value Return value
(numeric)

Explanation

TX_PROTOCOL_ERROR -5 The function was called in an improper context (for
example, the caller is in transaction mode). No resource
managers are closed.

TX_ERROR -6 Either the transaction manager or one or more of the
resource managers encountered a transient error. All
resource managers that could be closed are closed.

TX_FAIL -7 Either the transaction manager or one or more of the
resource managers encountered a fatal error. The nature of
the error is such that the transaction manager and/or one or
more of the resource managers can no longer perform work
on behalf of the application.

<<if (tx_info (NULL) == 0 && tx_close() < 0)
 fputs ("cannot close resource manager\n", stderr);>>

tx_commit - Commit a global transaction

507

tx_commit - Commit a global transaction

Format
ANSI C, C++

K&R C

Description
The function tx_commit() is used to commit the work of the transaction active in the
caller's thread of control.

If the transaction_control characteristic (see
tx_set_transaction_control()) is TX_UNCHAINED, when tx_commit()
returns, the caller is no longer in transaction mode. However, if the
transaction_control characteristic is TX_CHAINED, when tx_commit()
returns, the caller remains in transaction mode on behalf of a new transaction (see the
Return value and Errors sections below).

<<The values set by the following functions affect the processing of tx_commit()>>

Optional set-up

• tx_set_commit_return()

• tx_set_transaction_control()

• tx_set_transaction_timeout()

Return value
<<When return value is 0>>

Upon successful completion, tx_commit() returns TX_OK, a non-negative
return value. <<If the transaction_control characteristic is TX_CHAINED, a
new global transaction begins.>>

Errors

Under the following conditions, tx_commit() fails and returns one of these negative
values.

#include <tx.h>
int tx_commit (void)

#include <tx.h>
int tx_commit()

tx_commit - Commit a global transaction

508

Return value Return value
(numeric)

Explanation

TX_NO_BEGIN -100 The transaction committed successfully; however, a
new transaction could not be started and the caller is no
longer in transaction mode. This return value occurs
only when the transaction characteristic is
TX_CHAINED.

TX_ROLLBACK -2 The transaction could not commit and has been rolled
back.
In addition, if the transaction_control
characteristic is TX_CHAINED, a new transaction is
started.

TX_ROLLBACK_NO_BEGIN -102 The transaction could not commit and has been rolled
back. In addition, a new transaction could not be started
and the caller is no longer in transaction mode.
This return value can occur only when the transaction
characteristic is TX_CHAINED.

TX_MIXED -3 The transaction was partially committed and partially
rolled back. In addition, if the
transaction_control characteristic is
TX_CHAINED, a new transaction is started.

TX_MIXED_NO_BEGIN -103 The transaction was partially committed and partially
rolled back. In addition, a new transaction could not be
started and the caller is no longer in transaction mode.
This return value can occur only when the transaction
characteristic is TX_CHAINED.

TX_HAZARD -4 Due to a failure, the transaction may have been partially
committed and partially rolled back. In addition, if the
transaction_control characteristic is
TX_CHAINED, a new transaction is started.
This function returns TX_HAZARD even when you
specify 00000001 for the trn_extend_function
operand in the transaction service definition and the
return value from the resource manager at one-phase
commit is XAER_NOTA.

tx_commit - Commit a global transaction

509

See also
tx_begin(), tx_set_commit_return(), tx_set_transaction_control(),
tx_set_transaction_timeout().

<<Example>>

<<Note on use with OpenTP1>>
1. <<tx_commit() can be issued only by a process of the UAP which started the

global transaction (UAP which called tx_begin()).>>

2. <<For the process that issues tx_commit(), the executable file of UAP which is
correctly linked according to the description of this manual must be started.>>

3. <<tx_commit() cannot be used along with the functions dc_trn_~().>>

TX_HAZARD_NO_BEGIN -104 Due to a failure, the transaction may have been partially
committed and partially rolled back. In addition, a new
transaction could not be started and the caller is no
longer in transaction mode. This return value can occur
only when the transaction characteristic is
TX_CHAINED.
This function returns TX_HAZARD_NO_BEGIN even
when you specify 00000001 for the
trn_extend_function operand in the transaction
service definition and the return value from the
resource manager at one-phase commit is XAER_NOTA.

TX_PROTOCOL_ERROR -5 The function was called in an improper context (for
example, the caller is not in transaction mode). The
caller's state with respect to transaction is not changed.

TX_FAIL -7 Either the transaction manager or one or more of the
resource managers encountered a fatal error. The nature
of the error is such that the transaction manager and/or
one or more of the resource managers can no longer
perform work on behalf of the application. The caller's
state with respect to the transaction is unknown.

<<if (tx_info (NULL) == 1 && tx_commit() <0)
 fputs ("cannot commit transaction\n", stderr);>>

Return value Return value
(numeric)

Explanation

tx_info - Return global transaction information

510

tx_info - Return global transaction information

Format
ANSI C, C++

K&R C

Description
The function tx_info() returns global transaction information in the structure
pointed to by info. In addition, this function returns a value indicating whether the
caller is currently in transaction mode or not.

<<Argument>>
<<info>>

If info is non-null, tx_info() populates a TXINFO structure pointed to by info
with global transaction information. The TXINFO structure contains the following
elements:

If tx_info() is called in transaction mode, xid is populated with a current
transaction branch identifier and transaction_state contains the state of the
current transaction. If the caller is not in transaction mode, xid is populated with the
null XID (see <tx.h> for details). In addition, regardless of whether the caller is in
transaction mode, when_return, transaction_control, and
transaction_timeout contain the current settings of the commit_return and
transaction_control characteristics, and the transaction timeout value in
seconds.

The transaction timeout value returned reflects the setting that is used when the next
transaction is started. Thus, it may not reflect the timeout value for the caller's current
global transaction since calls made to tx_set_transaction_timeout() after the
current transaction was begun may have changed its value.

#include <tx.h>
int tx_info (TXINFO *info)

#include <tx.h>
int tx_info (info)
TXINFO *info

XID xid;
COMMIT_RETURN when_return;
TRANSACTION_CONTROL transaction_control;
TRANSACTION_TIMEOUT transaction_timeout;
TRANSACTION_STATE transaction_state;

tx_info - Return global transaction information

511

If info is null, no TX_INFO structure is returned.

Return value
If the caller is in transaction mode, 1 is returned. If the caller is not in transaction mode,
0 is returned.

Errors

Under the following conditions, tx_info() fails and returns one of these negative
values.

Application usage
Within the same global transaction, subsequent calls to tx_info() are guaranteed to
provide an XID with the same gtrid component, but not necessarily the same bqual
component.

See also
tx_open(), tx_set_commit_return(), tx_set_transaction_control(),
tx_set_transaction_timeout().

<<Example>>

Return value Return value
(numeric)

Explanation

TX_PROTOCOL_ERROR -5 The function was called in an improper context (for
example, the caller has not yet called tx_open()).

TX_FAIL -7 The transaction manager encountered a fatal error. The
nature of the error is such that the transaction manager can
no longer perform work on behalf of the application.

<<if (tx_info (NULL) !=1)
 fputs ("not transaction mode\n", stderr);>>

tx_open - Open a set of resource managers

512

tx_open - Open a set of resource managers

Format
ANSI C, C++

K&R C

Description
The function tx_open() opens a set of resource managers in a portable manner. It
invokes a transaction manager to read information specific to the resource manager in
a manner specific to the transaction manager and pass this information to the resource
managers linked to the caller.

The function tx_open() attempts to open all resource managers that have been linked
with the application. This function is used in place of open calls specific to the resource
manager and allows an application program to be free of calls, which may hinder
portability. Since resource managers differ in their initialization semantics, the specific
information needed to open a particular resource manager must be published by each
resource manager.

If tx_open() returns TX_ERROR, no resource managers are open. If tx_open()
returns TX_OK, some or all of the resource managers have been opened. Resource
managers that are not open return errors specific to the resource manager when
accessed by the application. The function tx_open() must successfully return before
a thread of control participates in global transactions.

Once tx_open() returns success, subsequent calls to tx_open() (before an
intervening call to tx_close()) are allowed. However, such subsequent calls return
success, and the TM does not attempt to reopen any RMs.

Return value
<<When return value is 0>>

Upon successful completion, tx_open() returns TX_OK, a non-negative return
value. <<The set of one or more resource managers linked to the caller was
opened.>>

#include <tx.h>
int tx_open (void)

#include <tx.h>
int tx_open()

tx_open - Open a set of resource managers

513

Errors

Under the following conditions, tx_open() fails and returns one of these negative
values.

See also
tx_close().

<<Example>>

<<Note on use with OpenTP1>>
1. <<Only the resource managers conforming to the XA interface of X/Open can be

opened with tx_open().>>

2. <<tx_open() cannot used along with the function dc_trn_~().>>

Return value Return value
(numeric)

Explanation

TX_ERROR -6 Either the transaction manager or one or more of the
resource managers encountered a transient error. No
resource managers are open.

TX_FAIL -7 Either the transaction manager or one or more of the
resource managers encountered a fatal error. The nature of
the error is such that the transaction manager and/or one or
more of the resource managers can no longer perform work
on behalf of the application.
Alternatively, an error occurred in the transaction manager
because the execution environment was in non-journal
operation mode.

<<if (tx_open() <0)
 fputs ("cannot open resource manager\n", stderr);>>

tx_rollback - Roll back a global transaction

514

tx_rollback - Roll back a global transaction

Format
ANSI C, C++

K&R C

Description
The function tx_rollback() is used to roll back the work of the transaction active
in the caller's thread of control.

If the transaction_control characteristic (see
tx_set_transaction_control()) is TX_UNCHAINED, when tx_rollback()
returns, the caller is no longer in transaction mode. However, if the
transaction_control characteristic is TX_CHAINED, when tx_rollback()
returns, the caller remains in transaction mode on behalf of a new transaction (see the
Return value and Errors sections below).

<<The values set by the following functions affect the processing of
tx_rollback().>>

Optional set-up

• tx_set_transaction_control()

• tx_set_transaction_timeout()

<<tx_rollback() cannot be called by MHP.>>

Return value
<<When return value is 0>>

Upon successful completion, tx_rollback() returns TX_OK, a non-negative return
value.

<<If the transaction_control characteristic is TX_CHAINED, a new global
transaction begins.>> <<If the SPP which issued tx_rollback() is not root
transaction branch, actual rollback processing is not performed, and it is only recorded
that the transaction branch is in rollback_only state. The transaction mode is kept
until rollback is directed in the synchronization point processing of the root transaction

#include <tx.h>
int tx_rollback (void)

#include <tx.h>
int tx_rollback()

tx_rollback - Roll back a global transaction

515

branch.>>

Errors

Under the following conditions, tx_rollback() fails and returns one of these
negative values.

Return value Return value
(numeric)

Explanation

TX_NO_BEGIN -100 The transaction rolled back; however, a new transaction
could not be started and the caller is no longer in
transaction mode. This return value occurs only when the
transaction_control characteristic is TX_CHAINED.

TX_MIXED -3 The transaction was partially committed and partially
rolled back. In addition, if the transaction_control
characteristic is TX_CHAINED, a new transaction is started.

TX_MIXED_NO_BEGIN -103 The transaction was partially committed and partially
rolled back. In addition, a new transaction could not be
started and the caller is no longer in transaction mode. This
return value can occur only when the
transaction_control characteristic is TX_CHAINED.

TX_HAZARD -4 Due to a failure, the transaction may have been partially
committed and partially rolled back. In addition, if the
transaction_control characteristic is TX_CHAINED, a
new transaction is started.

TX_HAZARD_NO_BEGIN -104 Due to a failure, the transaction may have been partially
committed and partially rolled back. In addition, a new
transaction could not be started and the caller is no longer
in transaction mode.
This return value can occur only when the
transaction_control characteristic is TX_CHAINED.

TX_COMMITTED -9 The transaction was heuristically committed.
In addition, if the transaction_control characteristic
is TX_CHAINED, a new transaction is started.

TX_COMMITTED_NO_BEGIN -109 The transaction was heuristically committed. In addition, a
new transaction could not be started and the caller is no
longer in transaction mode. This return value can occur
only when the transaction_control characteristic is
TX_CHAINED.

TX_PROTOCOL_ERROR -5 The function was called in an improper context (for
example, the caller is not in transaction mode).

tx_rollback - Roll back a global transaction

516

See also
tx_begin(), tx_set_transaction_control(),
tx_set_transaction_timeout()

<<Example>>

<<Note on use with OpenTP1>>
1. <<When the transaction characteristic is TX_CHAINED, tx_rollback() can be

called only by the root transaction branch (UAP which called tx_begin()).>>

2. <<When the transaction characteristic is TX_UNCHAINED, tx_rollback() can
be called by other than the root transaction branch. In this case, processing differs
depending on the transaction branch which called tx_rollback(). When the
caller of tx_rollback() is the root branch, rollback request is called to
non-root branches via RPC function. When tx_rollback() is called by a
non-root branch, the caller only records rollback_only and does not call
rollback request to the root branch via RPC function. This non-root branch
performs rollback processing after waiting for the direction by the root branch.>>

3. <<tx_rollback() cannot be used along with the functions dc_trn_~().>>

TX_FAIL -7 Either the transaction manager or one or more of the
resource managers encountered a fatal error. The nature of
the error is such that the transaction manager and/or one or
more of the resource managers can no longer perform work
on behalf of the application. The caller's state with respect
to the transaction is unknown.

<<if (tx_info (NULL) == 1 && tx_rollback() < 0)
 fputs ("cannot rollback transaction\n", stderr);>>

Return value Return value
(numeric)

Explanation

tx_set_commit_return - Set commit_return characteristic

517

tx_set_commit_return - Set commit_return characteristic

Format
ANSI C, C++

K&R C

Description
The function tx_set_commit_return() sets the commit_return characteristic to
the value specified in when_return. This characteristic affects the way
tx_commit() behaves with respect to returning control to its caller.

tx_set_commit_return() may be called regardless of whether its caller is in
transaction mode. This setting remains in effect until changed by a subsequent call to
tx_set_commit_return().

The initial setting for this characteristic is implementation dependent <<in the case of
OpenTP1, TX_COMMIT_COMPLETED.>>

<<Argument>>
<<when_return>>

The valid settings for when_return are as follows:

{TX_COMMIT_DECISION_LOGGED|TX_COMMIT_COMPLETED}

• TX_COMMIT_DECISION_LOGGED

<<This argument is not supported by the corresponding version of OpenTP1. If
TX_COMMIT_DECISION_LOGGED is set for when_return, error is returned with
return value TX_NOT_SUPPORTED.>>

This flag indicates that tx_commit() should return after the commit decision
has been logged by the first phase of the two-phase commit protocol but before
the second phase has completed. This setting allows for faster response to the
caller of tx_commit(). However, there is a risk that a transaction has a heuristic
outcome, in which case the caller does not find out about this situation by means

#include <tx.h>
int tx_set_commit_return (COMMIT_RETURN when_return)

#include <tx.h>
int tx_set_commit_return (when_return)
COMMIT_RETURN when_return

tx_set_commit_return - Set commit_return characteristic

518

of status codes from tx_commit(). Under normal conditions, participants that
promise to commit during the first phase do so during the second phase. In certain
unusual circumstances however (for example, long-lasting network or node
failures) phase 2 completion may not be possible and heuristic results may occur.
A transaction manager may optionally choose not to support this feature and may
return TX_NOT_SUPPORTED to indicate that this value is not supported.

• TX_COMMIT_COMPLETED

This flag indicates that tx_commit() should return after the two-phase commit
protocol has finished completely. This setting allows the caller of tx_commit()
to see return codes that indicate that a transaction had or may have had heuristic
results. A transaction manager may optionally choose not to support this feature
and may return TX_NOT_SUPPORTED to indicate that this value is not supported.

Return value
<<When return value is 0>>

Upon successful completion, tx_set_commit_return() returns TX_OK, a
non-negative return value.

<<When return value is positive>>

If the transaction manager does not support the setting of when_return to
TX_COMMIT_DECISION_LOGGED, it returns TX_NOT_SUPPORTED, a non-negative
return value, and the commit_return characteristic remains set to its existing value.
The transaction manager must support the setting of when_return to at least one of
TX_COMMIT_COMPLETED or TX_COMMIT_DECISION_LOGGED. <<For OpenTP1, the
return value is TX_COMMIT_RETURN.>>

Errors

Under the following conditions, tx_set_commit_return() does not change the
setting of the commit_return characteristic and returns one of these negative values.

Return value Return value
(numeric)

Explanation

TX_EINVAL -8 The value set for when_return is neither
TX_COMMIT_DECISION_LOGGED nor
TX_COMMIT_COMPLETED.

TX_PROTOCOL_ERROR -5 The function was called in an improper context (for
example, the caller has not yet called tx_open()).

TX_FAIL -7 The transaction manager encountered a fatal error. The
nature of the error is such that the transaction manager can
no longer perform work on behalf of the application.

tx_set_commit_return - Set commit_return characteristic

519

See also
tx_commit(), tx_open(), tx_info().

<<Example>>

<<Note on use with OpenTP1>>
1. <<tx_set_commit_return() cannot be used along with the functions

dc_trn_~().>>

<<if (tx_set_commit_return (TX_COMMIT_COMPLETED) == 0 &&
 tx_commit() < 0)
 fputs ("cannot commit transaction\n", stderr);>>

tx_set_transaction_control - Set transaction_control characteristic

520

tx_set_transaction_control - Set transaction_control characteristic

Format
ANSI C, C++

K&R C

Description
The function tx_set_transaction_control() sets the
transaction_control characteristic to the value specified in control. This
characteristic determines whether tx_commit() and tx_rollback() start a new
transaction before returning to their caller.

The function tx_set_transaction_control() may be called regardless of
whether the application program is in transaction mode. This setting remains in effect
until changed by a subsequent call to tx_set_transaction_control().

The initial setting for this characteristic is TX_UNCHAINED.

<<Argument>>
<<control>>

The valid settings for control are as follows:

{TX_UNCHAINED|TX_CHAINED}

• TX_UNCHAINED

This flag indicates that tx_commit() and tx_rollback() should not start a
new transaction before returning to their caller. The caller must issue
tx_begin() to start a new transaction.

• TX_CHAINED

This flag indicates that tx_commit() and tx_rollback() should start a new
transaction before returning to their caller.

#include <tx.h>
int tx_set_transaction_control (TRANSACTION_CONTROL control)

#include <tx.h>
int tx_set_transaction_control (control)
TRANSACTION_CONTROL control

tx_set_transaction_control - Set transaction_control characteristic

521

Return value
<<When return value is 0>>

Upon successful completion, tx_set_transaction_control() returns
TX_OK, a non-negative return value. <<The transaction_control
characteristic was set to the value of control.>>

Errors

Under the following conditions, tx_set_transaction_control() does not
change the setting of the transaction_control characteristic and returns one of
these negative values.

See also
tx_begin(), tx_commit(), tx_open(), tx_rollback(), tx_info().

<<Example>>

<<Note on use with OpenTP1>>
1. <<tx_set_transaction_control() cannot be used along with the functions

dc_trn_~().>>

Return value Return value
(numeric)

Explanation

TX_EINVAL -8 The value set for control is neither TX_UNCHAINED nor
TX_UNCHAINED.

TX_PROTOCOL_ERROR -5 The function was called in an improper context (for
example, the caller has not yet called tx_open()).

TX_FAIL -7 The transaction manager encountered a fatal error. The
nature of the error is such that the transaction manager can
no longer perform work on behalf of the application.

<<if (tx_set_transaction_return (TX_UNCHAINED) == 0 &&
 tx_commit() < 0)
 fputs ("cannot commit transaction\n", stderr);>>

tx_set_transaction_timeout - Set transaction_timeout characteristic

522

tx_set_transaction_timeout - Set transaction_timeout characteristic

Format
ANSI C, C++

K&R C

Description
The function tx_set_transaction_timeout() sets the
transaction_timeout characteristic to the value specified in timeout. This value
specifies the time period in which the transaction must complete before becoming
susceptible to transaction timeout; that is, the interval between the AP calling
tx_begin() and tx_commit() or tx_rollback().

The function tx_set_transaction_timeout() may be called regardless of
whether its caller is in transaction mode or not. If
tx_set_transaction_timeout() is called in transaction mode, the new timeout
value does not take effect until the next transaction.

The initial transaction_timeout value is 0 (no timeout).

<<Argument>>
<<timeout

The argument timeout specifies the number of seconds allowed before the
transaction becomes susceptible to transaction timeout. It may be set to any value up
to the maximum value for a type long as defined by the system. A timeout value of
zero disables the timeout feature.>>

Return value
<<When return value is 0>>

Upon successful completion, tx_set_transaction_timeout() returns TX_OK, a
non-negative return value. <<The transaction_timeout characteristic is the value
set for timeout.>>

#include <tx.h>
int tx_set_transaction_timeout (TRANSACTION_TIMEOUT
 timeout)

#include <tx.h>
int tx_set_transaction_timeout (timeout)
TRANSACTION_TIMEOUT timeout

tx_set_transaction_timeout - Set transaction_timeout characteristic

523

Errors

Under the following conditions, tx_set_transaction_timeout() does not
change the setting of the transaction_timeout characteristic and returns one of
these negative values.

See also
tx_begin(), tx_commit(), tx_open(), tx_rollback(), tx_info().

<<Example>>

<<Note on use with OpenTP1>>
1. <<tx_set_transaction_timeout() cannot be used along with the functions

dc_trn_~().>>

Return value Return value
(numeric)

Explanation

TX_EINVAL -8 The timeout value specified is invalid.

TX_PROTOCOL_ERROR -5 The function was called in an improper context (for
example, the caller has not yet called tx_open()).

TX_FAIL -7 The transaction manager encountered an error. The nature
of the error is such that the transaction manager can no
longer perform work on behalf of the application.

<<if (tx_set_transaction_timeout (TRANSACTION_TIMEOUT)
 == 0 && tx_commit() < 0)
 fputs ("cannot commit transaction\n", stderr);>>

525

Chapter

5. Syntax of OpenTP1 Library
Functions (Association Status
Notification)

Client/server communication using OSI TP as the communication protocol requires
SPPs for a communication event. This chapter explains the library functions used by
SPPs for a communication event and the formats of receive communication events.

This chapter contains the following sections:

Association operation (dc_xat_~)
Formats of receive communication events

Association operation (dc_xat_~)

526

Association operation (dc_xat_~)

This section explains the association operation functions used by SPPs for a
communication event. An association operation function is as follows:

• dc_xat_connect - Establish an association

Association operation functions (dc_xat_~) can be used only for TP1/Server Base.
For TP1/LiNK, no association operation function can be used.

Only the SPPs for a communication event can call association operation functions. The
other OpenTP1 UAPs (SUP, SPP, and MHP) cannot use association operation
functions.

Always specify betran in the server_type operand of the user service definition of
SPPs for a communication event.

dc_xat_connect - Establish an association

527

dc_xat_connect - Establish an association

Format
ANSI C, C++

K&R C

Description
The function dc_xat_connect() requests the XATMI communication service
specified in svcname to establish the association specified in aso_name.

The function dc_xat_connect() sends a request to establish an association to the
remote system. Then, control is returned. The function cannot receive a report of
association establishment.

The function dc_xat_connect() can be used only for OSI TP communication using
TP1/NET/OSI-TP-Extended.

The function dc_xat_connect() can be called from within or outside transaction
processing.

Arguments whose values are set in the UAP
svcname

Specify the name of the XATMI communication service to be requested to establish an
association. As an XATMI communication service name, specify the XATMI
communication service definition file name to be specified in the
xat_invoke_server operand of the XATMI communication service definition.

aso_name

Specify the name of the association to be established. As an association name, specify
the connection name specified in the -c option of the nettalccn operand of the
protocol specific definition (TP1/NET/OSI-TP-Extended definition).

#include <dcxat.h>
int dc_xat_connect (char *svcname, char *aso_name,
 DCLONG flags)

#include <dcxat.h>
int dc_xat_connect (svcname, aso_name, flags)
char *svcname;
char *aso_name:
DCLONG flags;

dc_xat_connect - Establish an association

528

flags

Specify DCNOFLAGS.

Return values
Return value Return value

(numeric)
Meaning

DC_OK 0 Normal termination.

DCXATER_INVAL -4570 An incorrect value is specified as the argument.

DCXATER_MEMORY -4571 The memory became insufficient.

DCXATER_PROTO -4572 The function dc_rpc_open() is not called.

DCXATER_NOT_FOUND -4575 The XATMI communication service address
information cannot be obtained.

DCXATER_TERMINATING -4576 The XATMI communication service is terminating.

DCXATER_COMM_SEND -4577 The service request failed while it was being sent to the
XATMI communication service.

DCXATER_COMM_RECV -4578 The service request failed while it was being received
from the XATMI communication service. The XATMI
communication service may be making a request to
establish a connection.

DCXATER_ASO_NAME -4580 The specified association name is not defined.

DCXATER_ASO_CONNECT_ALREAD
Y

-4581 The association has already been established.

DCXATER_ASO_CONNECTING -4582 The association is being established.

DCXATER_ASO_DISCONNECTING -4583 The association is being released.

DCXATER_ASO_INITIATE -4584 The association cannot be established due to the
recipient mode.

Formats of receive communication events

529

Formats of receive communication events

This section explains the formats of the communication events indicating association
statuses. Before receiving a communication event, specify the service group name and
service name of an SPP for a communication event in the XATMI communication
service definition. At this time, a receivable communication event depends on in which
operands the service group name and the service name are specified.

xat_aso_con_event_svcname operand:

Communication event for a report of association establishment

xat_aso_discon_event_svcname operand:

Communication event for normal association releasing

xat_aso_failure_event_svcname operand:

Communication event for abnormal association releasing

If the same service group name and service name are specified in more than one
operand, one SPP for a communication event can receive more than one
communication event.

A communication event is reported as a structure. The structure of a communication
event is defined in the header file <dcxat.h>. For a communication event processing
SPP, include <dcxat.h> using #include.

Contents of arguments
event_code

event_code contains the code identifying a communication event. The number in
parentheses indicates the decimal number for an applicable code.

DCXAT_ASO_CONNECT (00000001):

Association establishment

DCXAT_ASO_DISCONNECT (00000002):

Normal association releasing

struct dc_xat_event_type {
 int event_code; ... Communication event identification code
 char aso_name[9]; ... Association name
 char reserve1[3]; ... Reserved area 1
 int aso_initiative; ... Type of association initiating and recipient
 DCULONG reason_code; ... Reason code
 char xatc_svcname[9]; ... XATMI communication service name
 char reserve2[63]; ... Reserved area 2
};

Formats of receive communication events

530

DCXAT_ASO_FAILURE (00000003):

Abnormal association releasing

aso_name

aso_name contains the name of the association whose status is reported by a
communication event.

reserve1

Reserved area.

aso_initiative

aso_initiative contains the value indicating whether the local system is initiating
or recipient through the established association. The number in parentheses indicates
the decimal number for an applicable code.

DCXAT_ASO_INIT (00000001):

The local system is initiating side.

DCXAT_ASO_RESP (00000002):

The local system is recipient side.

reason_code

reason_code contains a reason code if an association is released. The number in
parentheses indicates the decimal number for an applicable code.

For the normal releasing of an association, reason_code contains one of the
following values:

DCXAT_RSN_COMMAND (00000001):

Releasing of an association by executing a command.

DCXAT_RSN_XATMI (00000005):

Releasing of an association by the XATMI

DCXAT_RSN_REMOTE (00000007):

Normal releasing of an association from the remote system

DCXAT_RSN_TP_NORMAL (00000008):

Normal releasing of an association by the TP layer.

For the abnormal releasing of an association, reason_code contains one of the
following values:

DCXAT_RSN_COMMAND (00000001):

Forced releasing of an association by executing a command

Formats of receive communication events

531

DCXAT_RSN_LOWER (00000003):

Failure in a lower layer (such as a line failure and communication management
failure)

DCXAT_RSN_XATMI (00000005):

Forced releasing of an association by an XATMI communication service

DCXAT_RSN_FAILURE (00000006):

Failure in association establishment

DCXAT_RSN_REMOTE (00000007):

Forced releasing of an association from the remote system

xatc_svcname

xatc_svcname contains an XATMI communication service name.

reserve2

Reserved area.

533

Chapter

6. X/Open-compliant
Inter-application Communication
(TxRPC)

This chapter explains the syntax of an interface definition language file (IDL file) and
IDL compiler (txidl command) used in Inter-Application communication (TxRPC)
defined with the X/Open.

This chapter contains the following sections:

6.1 Preparation procedures for TxRPC communication
6.2 Notes on creating application programs
6.3 Creating interface definition language files (IDL files)
6.4 Syntax of interface definition header
6.5 Interface definition body
6.6 Attributes
6.7 Data types
6.8 Type declarators
6.9 Attribute configuration language
6.10 IDL compiler (txidl command)
6.11 TxRPC error codes

6. X/Open-compliant Inter-application Communication (TxRPC)

534

6.1 Preparation procedures for TxRPC communication

This section explains the preparation procedures for TxRPC communication.

6.1.1 Procedures for using IDL-only TxRPC
To create a UAP for IDL-only TxRPC communication:

1. Create an interface definition language file (IDL file).

2. Compile the IDL file with an IDL compiler (txidl command).

3. Code the program based on the template of a server UAP created by the txidl
command. Also code the client UAP.

4. Compile and link the created stub and coded program by using the txidl
command with the C compiler.

The figure below shows the procedures for creating a UAP that communicates with
IDL-only TxRPC.

6. X/Open-compliant Inter-application Communication (TxRPC)

535

Figure 6-1: Procedures for creating a UAP that communicates with IDL-only
TxRPC

(1) Files created by the user
The user creates the following files:

• Client program

Client UAP program

6. X/Open-compliant Inter-application Communication (TxRPC)

536

• Manager program

A manager program includes operation functions corresponding to OpenTP1
service functions. This program processes requested services.

• User header file

A user header file creates header files used in client and manager programs.

• Interface definition language file (IDL file)

A user definition language file defines communication interfaces.

(2) Files created by the IDL compiler
The IDL compiler (txidl command) creates the following files:

• Client stub

A client stub links with the client program.

• Server stub

A server stub links with the server program.

• Header file

A header file defines declarations for TxRPC.

• Template of a server program

Template of a server program that executes user work.

• Template of a user service definition

Template of a user service definition set for the program created by the user.

• Template of a client environment definition

Template of a TP1/Client client environment definition set for the program
created by the user. This template is created when the option to create a gateway
program in the txidl command is specified.

Among the files noted above, the user can modify the templates of a server program,
user service definition, and client environment definition before using them. For
details on templates, see 7.5 TxRPC examples (templates created by the IDL compiler).

6. X/Open-compliant Inter-application Communication (TxRPC)

537

6.2 Notes on creating application programs

This section explains the notes on coding a UAP that communicates with TxRPC.

(1) Notes about naming the programs used in TxRPC communication
A name beginning with an alphabetic character can be arbitrarily set for an operation
function (service function) except the following:

• A name beginning with dc

• A name beginning with CBLDC

• A name beginning with tx or TX

• A name beginning with tp or TP

Restrictions on other names (external variable and constant names) are the same as a
UAP using the OpenTP1 library. For details on name restrictions, see 1.1.2 Coding
rules.

The above names cannot be used for coding programs and header file identifiers.

(2) Program names that cannot be used in other than TxRPC communication
With TxRPC, the interface name is used in OpenTP1. The interface name cannot be
used as the service group name in another program processing.

Example:

Do not use timope as the service group name if the interface name is timope.

(3) TxRPC restrictions
The following restrictions apply to TxRPC communication:

1. With IDL-only TxRPC, the dc_rpc_open() and dc_adm_complete()
functions must be called with a UAP.

2. Context handles cannot be used.

3. The macro variable cannot be declared with #ifdef in the IDL file.

4. A compiling error occurs with a created stub, depending on the C compiler
specifications.

5. The txidl command does not check whether the file contents are compliant with
the ANSI specifications. If an IDL file containing a description effective only
with the ANSI specifications is compiled, the created stub can use only the C
compiler compliant with the ANSI specifications.

6. Compile the UAP and stub with the same C compiler.

6. X/Open-compliant Inter-application Communication (TxRPC)

538

6.3 Creating interface definition language files (IDL files)

This section explains how to create an interface definition language file (IDL file).

6.3.1 Syntax rules
An IDL file must conform to the rules given below.

(1) File name
Suffix the file name with .idl. The same IDL file must be incorporated in the client
and server UAPs.

(2) Phrase elements
(a) Identifier

Use the following characters for an identifier:

• Alphabetic characters (uppercase and lowercase)

• Numbers 0 to 9

• Underscore (_)

The first character must be an alphabetic character. Up to 31 characters can be used
unless otherwise specified.

(b) Unusable term (keyword)
Some identifiers are reserved as keywords in IDL file coding. These keywords cannot
be changed.

(c) Punctuation character
The following graphic characters can be used:

", ', (,), *, ,, . /, :, ;, |, =, [, \,], {, }

(d) Whitespace
The following characters are treated as whitespace:

• Spaces

• Line feeds

• Horizontal tabs

• Form feeds at the beginning of lines

• Comment lines

• Succession of one or more of the above whitespace characters

6. X/Open-compliant Inter-application Communication (TxRPC)

539

A whitespace is required at the following locations:

• Before a keyword, identifier, or number which is not prefixed with a punctuation
character

• After a keyword, identifier, or number which is not suffixed with a punctuation
character

• Before or/and after a punctuation character unless otherwise specified

A whitespace enclosed in double quotation marks (") or single quotation marks (') is
treated as a character. Otherwise, whitespace is ignored because it is assumed as a
delimiter of other punctuation elements.

(e) Comment
/* indicates the beginning and */ indicates the ending of a comment. Comments
cannot be nested.

(3) Syntax format
The following character styles are used in this manual for explaining the syntax of
coding an IDL file:

abc: Non-italic characters indicate that coding is to be done as noted in the expression
of the syntax explanations.

abc: Italic characters indicate that coding is to be done with special values assigned.

For assignment character strings, see the syntax explanations.

The following brackets are used in this manual for explaining the syntax of coding an
IDL file:

[]: Non-italic brackets indicate that the item must be selected. When coding an item,
[] is needed.

[]: Italic brackets indicate that the item can be omitted. When coding an item, do not
include [].

6.3.2 Interface definition format
This subsection explains the format of an interface definition language (IDL) used in
an IDL file. An interface definition consists of the following:

• Interface definition header

An interface definition header defines entire interface specifications.

• Interface definition body

An interface definition body defines individual type and operation specifications.
The interface definition body consists of the following four declarations:

6. X/Open-compliant Inter-application Communication (TxRPC)

540

Import declaration

Constant declaration

Type declaration

Operation declaration

A parameter declaration is included in the operation declaration.

The declaration in the interface definition body is validated if specifications in the
interface definition header and interface definition body are inconsistent.

Interface definition header

Interface definition body

6.3.3 Syntax of interface definition file
This subsection explains the syntax of an interface definition file in the following
format:

Format

Indicates the format of each declaration in OpenTP1 IDL-only TxRPC interface
definition header and body.

Meaning

Indicates the meaning of each declaration in the OpenTP1 IDL-only TxRPC
interface definition header and body.

Specification item

Indicates an attribute, data type, and declarator to be specified in items given in
the format. For details on attributes, see 6.6 Attributes. For details on data types,
see 6.7 Data types. For type declarators, see 6.8 Type declarators.

Explanation

Explains about the declarators.

OpenTP1 IDL-only TxRPC restriction

[[interface_attribute,...]] interface interface_name

 {
 import-declaration
 constant-declaration
 type-declaration
 operation-declaration
 parameter-declaration
}

6. X/Open-compliant Inter-application Communication (TxRPC)

541

Indicates the difference between the specifications of OpenTP1 IDL-only TxRPC
and IDL-only TxRPC defined with X/Open.

6. X/Open-compliant Inter-application Communication (TxRPC)

542

6.4 Syntax of interface definition header

The definition format of an interface definition header is explained.

Interface definition header

Format

Meaning
The interface definition header defines the interface name and its attributes.

Specification item
interface_attribute
Defines interface attributes. The following attribute values can be specified:

• version:

Specifies the interface version.

• pointer_default:

Specifies the pointer semantics of the default value.

• transaction_mandatory:

Specifies that the transaction must be expanded.

• transaction_optional:

Specifies that the transaction is expanded for transaction processing.

The transaction_mandatory and transaction_optional attributes cannot be
specified at the same time. Specify only one of them.

OpenTP1 IDL-only TxRPC restrictions
• Only one interface can be defined for one server.

• Specifying the uuid attribute is unnecessary. No error occurs even if the uuid
attribute is specified. An error occurs, however, if the uuid attribute format is not
conformed.

• The local attribute cannot be used. If used, an error occurs.

• The endpoint attribute cannot be used. If used, an error occurs.

[[interface_attribute,...]] interface interface_name

6. X/Open-compliant Inter-application Communication (TxRPC)

543

• The transaction_mandatory and transaction_optional attributes are
valid only if communicating processes are both ndce processes.

6. X/Open-compliant Inter-application Communication (TxRPC)

544

6.5 Interface definition body

The interface definition body defines one or some of the following declarations:

• Import declaration

• Constant declaration

• Type declaration

• Operation declaration (parameter declaration included)

Suffix a semicolon (;) at the end of each declaration. Enclose the interface definition
body in braces { }.

Define the import declaration before other declarations. The sequence of other
declarations is undefined as long as the type and constant are defined.

Import declaration

Format

Meaning
The import declaration imports (fetches) an interface definition file in which the type
and constant to be used have been declared.

Specification item
file
Specify a file name. Enclose the name of the IDL file to be imported in double
quotation marks (").

The import file name can be defined by referencing the parent directory with the -I
option of the txidl compiler.

Explanation
1. The operation declaration is not imported.

2. The result is the same regardless how many times the interface is imported.

3. The file to be imported must be compiled with the txidl command in advance
(only creating the header file will do).

Example

import file,...;

6. X/Open-compliant Inter-application Communication (TxRPC)

545

OpenTP1 IDL-only TxRPC restriction
• Up to 100 files can be imported.

Constant declaration

Format

Meaning
The constant declaration declares a constant.

Specification item
The following integer constant data types can be declared:

• integer_type_spec: Integer constant (hyper excluded)

• boolean: Boolean constant

• char: Character constant

• char*: Character-type constant

• void*: Null constant

identifier

Specify a constant name.

integer, character, string, and value

Specify values to be allocated to the constant. So long as it is predefined, any value can
be specified for the value.

Explanation
1. Do not specify hyper.

2. Since the constant declaration is defined with #define in the stub, it is expanded
if the constant is used in a UAP.

Example

import "garlic.idl", "oil.idl";

const integer_type_spec identifier=integer|value;
const boolean identifier=TRUE|FALSE|value;
const char identifier=character|value;
const char* identifier=string|value;
const void* identifier=NULL|value;

6. X/Open-compliant Inter-application Communication (TxRPC)

546

OpenTP1 IDL-only TxRPC restriction
• A numeric expression cannot be specified as an integer constant.

• Overflow is not checked. If a value with an inappropriate size is specified, the
operation is undefined.

Type declaration

Format

Meaning
The type declaration defines a type used by an interface.

Specification item
type_attribute
Specify the attributes of the type to be declared. The following attributes can be
specified:

• string

Character string

• ptr

Complete pointer

• ref

Reference pointer

type_specifier
Specify a data type. The basic type, configuration type (structure only), or any
predefined type can be specified.

type_declarator
Specify the declarator of the type to be defined. The following can be specified:

• Simple declarator

const short TEN = 10;
const boolean FAUX = FALSE;
const char CHAR = 'A';
const char* DSCH = "abcde";

typedef [[type_attribute, ...]] type_specifier type_declarator, ...;

6. X/Open-compliant Inter-application Communication (TxRPC)

547

• Fixed-length one-dimensional array

• Pointer

Explanation
1. The string attribute can be specified in char and byte arrays only.

2. The ptr and ref attributes can be specified only for pointers to the basic type
and structure type.

OpenTP1 IDL-only TxRPC restriction
• union and enum cannot be used as the configuration type.

• A pointer to a function or array cannot be specified as a declarator.

• Adjustable and variable-length arrays cannot be used.

• Multi-dimensional arrays cannot be used.

• The following type attributes cannot be used:

transmit_as, handle, context_handle, vl_struct, vl_array,
vl_string, and vl_enum

• Only one pointer can be specified.

• No pointer can be specified for a structure member.

• The structure cannot be specified as a structure member.

• If the string attribute is specified, it is simply ignored without causing an error.

Operation declaration

Format

Meaning
The operation declaration defines a function for actual processing.

Specification item
operation_attribute
Specify an operation attribute. The following attribute can be specified:

• transaction_mandatory

[[operation_attribute, ...]] type_specifier
 operation_identifier (parameter_declaration, ...);
[[operation_attribute, ...]] type_specifier
 operation_identifier ([void]);

6. X/Open-compliant Inter-application Communication (TxRPC)

548

Indicates that the transaction must be expanded.

• transaction_optional

Indicates that the transaction is expanded for transaction processing.

type_specifier
Specify a data type. If a data type is returned from the operation, specify that data type.
Specify a scalar type or predefined type. If no result is returned, specify void. The
permitted type is integer.

operation_identifier
Specify an operation name. Up to 30 characters can be specified.

parameter_declaration
Specify a parameter declaration. It declares an operation parameter.

Explanation
1. The transaction_mandatory and transaction_operation attributes

cannot be specified at the same time.

2. Use a complete pointer for a value returned from the operation.

OpenTP1 IDL-only TxRPC restriction
• The context_handle attribute cannot be used.

• The ptr attribute cannot be used.

• The string attribute cannot be used.

• The transaction_mandatory and transaction_optional attributes are
valid only if the communicating processes are both ndce processes.

• Only error_status_t can be used for type_specifier with the
corresponding version. If a system or stub error occurs, its error code is returned.
The return value of the operation function is returned only when the operation
terminates normally. Do not specify the pointer or array for error_status_t.

Parameter declaration

Format

Meaning
The parameter declaration defines operation parameters.

[parameter_attribute, ...] type_specifier parameter_declarator;

6. X/Open-compliant Inter-application Communication (TxRPC)

549

Specification item
parameter_attribute
Specify a parameter attribute. The following attributes can be specified:

• in

Specifies an input parameter.

• out

Specifies an output parameter.

• ptr

Specifies a complete parameter.

• ref

Specifies a reference parameter.

• string

Specifies a character string.

type_specifier
Specify a parameter data type. The following types can be specified:

• Basic type and structure

parameter_declarator
Specify a parameter declarator. The following values can be specified:

• Simple declarator

• Pointer

• Fixed-length one-dimensional array

Explanation
1. Either in or out must be specified.

2. The parameter of the out attribute must be an array or an explicitly declared
pointer. An explicitly declared pointer is a pointer declared with *.

OpenTP1 IDL-only TxRPC restriction
• union and enum cannot be used as the configuration type.

• A pointer to a function or array cannot be specified as a declarator.

• Adjustable and variable-length arrays cannot be used.

• Multi-dimensional arrays cannot be used.

6. X/Open-compliant Inter-application Communication (TxRPC)

550

• The following type attributes cannot be used:

Array attribute, context_handle, vl_struct, vl_array, vl_string, and
vl_enum

• If the string attribute is specified, it is simply ignored without causing an error.

6. X/Open-compliant Inter-application Communication (TxRPC)

551

6.6 Attributes

This subsection explains attributes used for IDL file declaration. The following
attributes can be used with OpenTP1 TxRPC:

• version attribute

• pointer_default attribute

• transaction_mandatory attribute

• transaction_optional attribute

• in attribute

• out attribute

• Pointer attribute

OpenTP1 IDL-only TxRPC restriction

• The uuid attribute is ignored with IDL-only TxRPC.

• The following attributes cause an error with IDL-only TxRPC:

endpoint, local, context_handle, transmit_as, vl_array,
vl_enum, vl_string, vl_struct, array attribute

• The transaction_mandatory and transaction_optional attributes
are valid only if the communicating processes are both ndce processes.

The explanation formats are as follows:

Format

Indicates the format of the attribute.

Attribute meaning

Indicates the meanings of attributes.

Specification item

Indicates the items to be specified as attributes.

Explanation

Explains about attributes.

Specification example

Gives examples of attribute specification.

6. X/Open-compliant Inter-application Communication (TxRPC)

552

version attribute

Format

Attribute meaning
The version attribute specifies a specific version of a remote interface.

Specification item
major
Specify this item with an integer between 0 and 65535.

minor
Specify this item with an integer between 0 and 65535.

Explanation
• Specify a version number with a set of integers indicating main version and

sub-version numbers or an integer indicating the main version number only.
Delimit the main version and sub-version numbers with a period (.) without
inserting a space. If no sub-version is specified, 0 is assumed.

• If the version attribute is not specified, 0.0 is set as default.

• The client and server can communicate under the following conditions:

• The version number of the interface called by the client is the same as the
interface advertised by the server.

• The sub-version number of the interface called by the client is the same as or
lower than the interface advertised by the server.

Specification example

pointer_default attribute

Format

version (major [.minor])

version(1.1)
version(3)

pointer_default (pointer_attribute)

6. X/Open-compliant Inter-application Communication (TxRPC)

553

Attribute meaning
The pointer_default attribute specifies which of the two pointer semantics usable
in the IDL is set as the default.

Specification item
pointer_attribute

Specify either of the following pointer attributes:

ref

Reference pointer

ptr

Complete pointer

Explanation
• The default pointer semantics is used for the following pointers:

• Pointer used for structure member declaration

• Pointer used for other than the top level operation parameter declared by
multiple pointer operators

• The pointer returned from the operation is always a complete pointer. Therefore,
the pointer_default attribute is not used.

• The pointer attribute has the priority over the pointer_default attribute.

• A compiler error occurs if declaration for which a default pointer semantics is
required is defined without the pointer_default attribute specified in the
interface definition.

transaction_mandatory attribute

Format

Attribute meaning
The transaction_mandatory attribute specifies that a service is to be executed as
part of a global transaction.

Explanation
• The interface or operation with this attribute specified must be called inside a

global transaction. If it is called outside the transaction, an error occurs and the

transaction_mandatory

6. X/Open-compliant Inter-application Communication (TxRPC)

554

service is not executed.

• This attribute cannot be specified at the same time as the
transaction_optional attribute.

transaction_optional attribute

Format

Attribute meaning
The transaction_optional attribute specifies whether to execute a service as part
of a global transaction, depending on whether the called environment is located inside
or outside the transaction.

Explanation
• If the interface or operation with this attribute specified is called inside a global

transaction, the service is executed as part of the transaction. If it is called outside
the transaction, the service is executed as a non-transaction RPC.

• This attribute cannot be specified at the same time as the
transaction_mandatory attribute.

in attribute

Format

Attribute meaning
The in attribute specifies that the parameter is input.

Explanation
• Either the in or out attribute must be specified for the parameter.

out attribute

Format

transaction_optional

in

out

6. X/Open-compliant Inter-application Communication (TxRPC)

555

Attribute meaning
The out attribute specifies that the parameter is output.

Explanation
• Either the in or out attribute must be specified for the parameter.

Pointer attribute

Format

Attribute meaning
The pointer attribute specifies a pointer class: reference pointer (ref) or complete
pointer (ptr).

Explanation
• The pointer attribute is used for the parameter, structure member, and type

definition. The txidl command may determine the appropriate pointer class
based on how the pointer is used. In most cases, however, the pointer class needs
to be specified in either of the following methods:

1. Use the ref or ptr attribute in the pointer declaration.

2. Use the pointer_default attribute for the IDL interface header. The
default pointer class is determined based on the pointer_default
attribute.

• The pointer attribute is valid only for the top level pointer in the declaration. If
multiple pointers are declared in one declaration, the established
pointer_default is validated for all pointers other than the top level pointer.

• The ref and ptr attributes cannot be specified at the same time.

Explanations of the reference pointer
A reference pointer is a simple-format pointer. The general use of the pointer is to
deliver integers with reference.

The reference pointer has higher efficiency than the complete pointer; however, it has
the following restrictions:

1. Linkage cannot be terminated since the reference pointer does not support NULL
values.

2. A list with linkage cannot be created with the reference pointer.

ref
ptr

6. X/Open-compliant Inter-application Communication (TxRPC)

556

The reference pointer has the following characteristics:

• The reference pointer always points to valid storage. It does not support NULL
values. If a NULL value is used for the reference pointer, the operation is
undefined.

• A reference pointer value is not changed during a function call. When control
returns from a call, the pointer always points to the same area as at the start of the
calling.

• No alias can be used. The area used by the same operation parameter and that
pointed by another pointer cannot be pointed to.

Explanations of the complete pointer
A complete pointer is a complex-format pointer. The complete pointer can use all
pointer-related facilities. For example, complex data structures such as a list with
linkage, tree, queue, or arbitrary graph can be created.

The complete pointer has the following characteristics:

• A complete pointer value can be changed during a function call.

• No alias can be used with IDL-only TxRPC.

• The storage area for another complete pointer used by the same operation
parameter can be pointed to. In this case, however, the pointer needs to point
to the start of the structure. For example, the pointer to the basic structure or
duplicated storage area cannot be used if the next code is incorporated in the
interface definition code.

6. X/Open-compliant Inter-application Communication (TxRPC)

557

6.7 Data types

This subsection explains data types used for IDL file declaration. TxRPC data types
that can be used with the OpenTP1 are as follows:

• Integer type (basic data type)

• Floating-point type (basic data type)

• Character type (basic data type)

• Boolean type (basic data type)

• Byte type (basic data type)

• void type (basic data type)

• Error status type (basic data type)

• Multi-language type (basic data type)

• Structure (configuration data type)

OpenTP1 IDL-only TxRPC restriction

• If the string attribute is specified, it is simply ignored without causing an error.

• The pointer cannot be specified as a structure member.

• The structure cannot be specified as a structure member.

• Adjustable and variable-length arrays cannot be specified.

• Multi-dimensional arrays cannot be used.

• union and enum cannot be used.

• The handle type cannot be used.

The explanation format is as follows:

Format

Indicates the data type format.

Data type explanation

Explains the data type.

6. X/Open-compliant Inter-application Communication (TxRPC)

558

Integer type (basic data type)

Format

Data type explanation
The following values can be set for the int_size:

• hyper (64 bits)

• long (32 bits)

• short (16 bits)

• small (8 bits)

The keyword int is optional and has no meaning. The keyword unsigned indicates
an unsigned integer type; it can be set before or after a size keyword.

Floating-point type (basic data type)

Format

Data type explanation
Two floating-point data lengths are available: float, which is 32 bits, and double,
which is 64 bits.

Character type (basic data type)

Format

Data type explanation
The keyword unsigned is optional and has no meaning. A signed character type
cannot be used. To write a signed eight-bit integer, use the small data type.

int_size [int]
unsigned int_size [int]
int_size unsigned [int]

float
double

[unsigned] char

6. X/Open-compliant Inter-application Communication (TxRPC)

559

Boolean type (basic data type)

Format

Data type explanation
The Boolean data type is expressed with eight bits. Zeros designate False, and
non-zero values designate True.

Byte type (basic data type)

Format

Data type explanation
• The byte type is expressed with eight bits. The data format of byte data is

guaranteed; it is not changed when data is transmitted with RPC.

• The format of an integer type, character type, floating-point type, or the
configuration type in which these types are combined may be converted if data is
transmitted between hosts that use different data formats. If the data format
should not be converted, transmit data as a byte type array.

• The efficiency of the byte type is higher than other data types since it is without
format conversion.

void type (basic data type)

Format

Data type explanation
The following explains how to use the void type:

• Specify an operation type that returns no value, or indicate a parameter-free
operation.

boolean

byte

void

6. X/Open-compliant Inter-application Communication (TxRPC)

560

Error status type (basic data type)

Format

Data type specification
The error status type is predefined to maintain RPC communication status information.

Multi-language type (basic data type)

Format

Data type explanation
With the multi-language type, the expressions of characters and character strings used
in system files are predefined in conformance with the current and forthcoming
international standards.

• The char type data may be converted to ASCII-EBCDIC if transmitted through
RPC mechanism. The data format of a predefined multi-language type is not
converted, because it consists of only byte type data (basic data type). Each data
type is predefined as shown below.

• With IDL-only TxRPC, the char type data is not converted to ASCII-EBCDIC.
The definition of this type, therefore, has no meaning.

error_status_t

ISO_LATIN_1
ISO_MULTI_LINGUAL
ISO_UCS

typedef byte ISO_LATIN_1
typedef struct {
 byte row,column;
} ISO_MULTI_LINGUAL
typedef struct {
 byte group,plane,row,column;
} ISO_UCS

6. X/Open-compliant Inter-application Communication (TxRPC)

561

Structure (configuration data type)

Format 1

Format 2

Data type explanation
If tag is specified as a specifier in format 1, the sequence of member declaration
procedures is expressed in an abbreviated format. This tag can be used as a specifier
in subsequent format 2.

struct_member_attribute

There is no attribute that can be specified with the corresponding version.

struct [tag]
{
 [[struct_member_attribute, ...]] type_specifier declarator, ...;
}

struct tag

6. X/Open-compliant Inter-application Communication (TxRPC)

562

6.8 Type declarators

This subsection explains type declarators used for IDL file declaration. The following
type declarators can be used with OpenTP1 TxRPC:

• Array

• Character string

• Pointer

OpenTP1 IDL-only TxRPC restriction

Only one asterisk (*) can be used for the pointer.

The explanation format is as follows:

Format

Indicates the data type format.

Explanations of the type declarators

Explains about type declarators.

Array

Format
An IDL array is declared through the syntax of the array_declarator structure
given below.

Explanations of the type declarators
The following array type can be used:

• Fixed

The array size is defined in the IDL. All array data items are transferred during a
function call.

array_bounds_declarator

Specify each array dimension. The array_bounds_declarator for
one-dimensional array must be in either of the following formats:

[lower..upper]: Specify a lower limit for lower and an upper limit for upper.

[size]: Specify 0 for a lower limit and size-1 for an upper limit.

array_identifier array_bounds_declarator...

6. X/Open-compliant Inter-application Communication (TxRPC)

563

In the IDL, the normal value for lower is 0 only.

• An integer must be specified for the array limit. The array attribute can reference
structure members and integer item parameters only.

Character string

Format

Explanations of the type declarators
In the IDL, a character string is assumed as a one-dimensional array with the string
attribute assigned. The array element type must be the following values:

• Member of the byte type

• Structure having all members predefined to be the byte type

• Type predefined to be the char or byte type

Pointer

Format
The following syntax is used for IDL pointer declaration.

Explanations of the type declarators
Multiple asterisks set in the pointer operator indicate that there is a multiple-level
indirect reference.

char
byte

* [*...] pointer_identifier

6. X/Open-compliant Inter-application Communication (TxRPC)

564

6.9 Attribute configuration language

The attribute configuration language cannot be used with IDL-only TxRPC.

6. X/Open-compliant Inter-application Communication (TxRPC)

565

6.10 IDL compiler (txidl command)

This section explains the syntax of the IDL compiler (txidl command) in the
following format:

Format

Indicates the IDL compiler specification format.

Description

Indicates the IDL compiler facilities.

Arguments to be specified for argument

Indicates the arguments to be specified for argument.

Explanation

Explains about the IDL compiler.

Messages

Indicates messages output from the IDL compiler.

Related files

Indicates files related to the IDL compiler.

Note

Indicates the notes on the IDL compiler.

txidl (IDL compiler)

Format

Description
The txidl command activates the TxRPC interface definition language compiler.

Arguments to be specified for argument
-cptype process_type

Specify a client process type. Specify either of the following values for the
process_type:

• ndce

txidl filename [argument] ...

6. X/Open-compliant Inter-application Communication (TxRPC)

566

This process uses the TP1/Server Base library.

• nbet

This process uses the DCE library only.

If no value is specified, ndce is assumed. The program does not run if compiled with
an incorrect process type specified. (For example, the program does not run if the TP1/
Server Base library is incorporated in a stub compiled with nbet specified.)

-sptype process_type

Specify a server process type. The process_type is the same as the -cptype.

If no value is specified, ndce is assumed. The program does not run if it is compiled
with an incorrect process type specified. (For example, the program does not run if the
TP1/Server Base library is incorporated in a stub compiled with nbet specified.)

-client file_type

Specify which client file is to be created. If this argument or file_type is not
specified, the compiler creates all client files. Specify one of the following values for
the file_type:

• none

No file is created.

• stub

Only stub files are created.

• all

Stub and client-created files are created.

-server file_type

Specify which server file is to be created. If this argument or file_type is not
specified, the compiler creates all client files. The file_type is the same as the
-client.

-cstub filename

Specify the pathname of the client stub.

Do not specify an extension for the file name. The txidl compiler suffixes .c to a
source file in C language. It suffixes _cstub.c to the file if the -cstub option is not
used.

When the client process type is gateway and the server process type is dce, two types
of stub files are created. In this case, B is prefixed to the filename of the OpenTP1
stub file name.

6. X/Open-compliant Inter-application Communication (TxRPC)

567

-sstub filename

Specify the pathname of the server stub. Do not specify an extension for the file name.
The txidl compiler suffixes .c to a source file in C language. It suffixes _sstub.c
to the file if the -sstub option is not used.

-header header_file

Specify the pathname of the header file to be created.

Do not specify an extension for the file name. For default, the txidl compiler suffixes
.h to the base name of the IDL file.

-cconf conffile

Specify the pathname of the user service definition file or environment establishment
file of the client program. If the -cconf option is not used, a file having the name with
C prefixed to the base name of the IDL file is created. This option is valid only when
the process type combination is IDL-only TxRPC. If this option is specified with any
other process type combination, this option is simply ignored without causing an error.

-sconf conffile

Specify the pathname of the user service definition file of the server program. If the
-sconf option is not used, a file having the name with S prefixed to the base name of
the IDL file is created. This option is valid only when the process type combination is
IDL-only TxRPC. If this option is specified with any other process type combination,
this option is simply ignored without causing an error.

-out directory

Creates an output file under a specified directory. For default, the compiler creates an
output file under the current directory.

A path name specified in another option has priority regardless of the specification
sequence.

-Idirectory

Specify the name of a directory containing the interface definition file to be imported.
Multiple directories can be specified by specifying the additional -Idirectory
argument on the command line. The compiler searches the directories in the sequence
set in this argument.

If one file is under multiple directories, the compiler imports the file that first appears.

If this argument is omitted, the directories are searched in the following sequence:

1. Current directory

2. All specified directories

3. System IDL directory ($DCDIR/include)

6. X/Open-compliant Inter-application Communication (TxRPC)

568

-no_def_idir

Specify this argument when the compiler is to search only the current directory for the
import file. If this option is specified together with -Idirectory, the compiler
searches only the directory specified by the user, but not the current and system
directories.

-noconf

Specify this argument when the templates of OpenTP1 user service definition and
environment establishment files are not to be created. This argument is valid only
when the process type combination is only IDL-only TxRPC.

-noserver

Specify this argument when the template of the server program is not to be created.
This argument is valid only when the process type combination is only IDL-only
TxRPC.

-syntax_only

Specify this argument when only the syntax of the IDL file is to be checked but the file
is not to be output.

Explanation
• The txidl command analyzes the interface definition written in the IDL and

creates requisite files (including a header file, server stub file, client stub file,
auxiliary file, and OpenTP1 definition file template).

• The IDL compiler searches each directory for the related ACF. For example,
when a file named source.idl is compiled, the compiler automatically searches
for a file named source.acf. It also searches for the imported IDL file (and
related ACFs).

The compiler searches for these files in the following sequence:

1. Current directory

The compiler always searches this directory unless the -no_def_idir and
-Idirectory arguments are specified at the same time.

2. Imported directory

The compiler searches each directory specified for the -Idirectory
argument.

3. System IDL directory

The compiler automatically imports dctrpb.idl in the system IDL
directory. The compiler always searches this directory unless the
-no_def_idir argument is specified.

6. X/Open-compliant Inter-application Communication (TxRPC)

569

4. Directory specified for the source file name

If a directory is explicitly specified for the source IDL pathname, the
corresponding ACF is searched under that directory.

• The txidl command automatically creates the OpenTP1 definition file with
IDL-only TxRPC. It can be designed not to create the file by specifying an option
in the txidl command.

• If the operation name is changed, the OpenTP1 definition file also needs to be
re-created.

Messages
The txidl compiler outputs the three types of messages listed below. For details on
the messages, see the indicated manuals.

1. Messages output by the txidl compiler

See the manual OpenTP1 Messages.

2. Messages output by DCE idl activated by the txidl compiler

See the corresponding DCE manuals.

3. Messages output by cpp or cc activated by DCE idl.

See the manual corresponding to each command.

Related files
Files related to IDL-only TxRPC are as follows:

$DCDIR/bin/txidl: IDL compiler

$DCDIR/include/dctrpb.idl: System IDL file

$DCDIR/include/dctrp.h: Header file

Notes
• The IDL compiler creates ANSI C code. No warning message is returned while a

stub is being compiled by the C compiler. However, the following messages may
be posted if the C compiler does not completely conform to the ANSI C
specification:

• Place a space between the option and parameter.

Example:

warning: & before array or function: ignored
warning: enumeration type clash, operator=

-out xxx (Do not write as -outxxx.)

6. X/Open-compliant Inter-application Communication (TxRPC)

570

• The file names listed below are reserved by the IDL compiler. If the IDL file is
named using any of these file names, the operation is undefined.

iovector.idl, lbase.idl, nbase.idl, ncastat.idl, rpc.idl,
rpcbase.idl, rpcpvt.idl, rpcsts.idl, rpctypes.idl, twr.idl,
uuid.idl, or dctrpb.idl

• This version does not support RPC TxRPC. Therefore, even if you specify nbet
as the process type in the -cptype option and -sptype option of the txidl
command, the generated stub file cannot be used.

6. X/Open-compliant Inter-application Communication (TxRPC)

571

6.11 TxRPC error codes

This section explains errors returned from the OpenTP1 TxRPC system service.

The table below lists TxRPC error codes. The table also describes the equivalent return
values returned from the function dc_rpc_call(). When you create error handling
processing for IDL-only TxRPC, see the description of these equivalent return values
for reference.

Table 6-1: TxRPC error codes

Error code Meaning

txrpc_x_not_in_transaction The operation with transaction_mandatory specified was called
from outside a global transaction.

txrpc_x_no_tx_open_done When the manager was called with an OpenTP1 TxRPC system
service, the operation was executed although the function tx_open()
was not called.

DCTRPER_PROTO A protocol error occurred.

rpc_s_comm_failure A communication-related error occurred. Equivalent to the following
return values of the function dc_rpc_call():
• DCRPCER_SYSERR

• DCRPCER_SYSERR_RB

• DCRPCER_SYSERR_AT_SERVER

• DCRPCER_SYSERR_AT_SERVER_RB

• DCRPCER_SERVICE_TERMINATING

• DCRPCER_SERVICE_NOT_UP

• DCRPCER_SERVICE_CLOSED

• DCRPCER_OLTF_NOT_UP

• DCRPCER_OLTF_INITIALIZING

rpc_s_no_memory Memory became insufficient. Equivalent to the following return value
of the function dc_rpc_call():
• DCRPCER_NO_BUFS

rpc_s_fault_remote_no_memory Server memory became insufficient. Equivalent to the following
return values of the function dc_rpc_call():
• DCRPCER_NO_BUFS_RB

• DCRPCER_NO_BUFS_AT_SERVER

rpc_s_call_timeout A timeout occurred. Equivalent to the following return value of the
function dc_rpc_call():
• DCRPCER_TIMED_OUT

rpc_s_in_args_too_big A value specified for an argument is too big. Equivalent to the
following return value of the function dc_rpc_call():
• DCRPCER_MESSAGE_TOO_BIG

6. X/Open-compliant Inter-application Communication (TxRPC)

572

rpc_s_entry_not_found No service entry found. Equivalent to the following return values of
the function dc_rpc_call():
• DCRPCER_NO_SUCH_SERVICE_GROUP

• DCRPCER_NO_SUCH_SERVICE

rpc_s_mgmt_op_disallowed The server is a socket reception server, and it cannot receive the
service request. Or the server is protected with the OpenTP1 security
facility, and the client has no access to the server. Equivalent to the
following return value of the function dc_rpc_call():
• DCRPCER_SERVER_BUSY

rpc_s_binding_has_no_auth The server is using the OpenTP1 security facility. An access error
occurred with the security facility. Equivalent to the following return
value of the function dc_rpc_call():
• DCRPCER_SECCHK

rpc_s_fault_unspec In an OpenTP1 system, an error equivalent to one of the following
return values of the function dc_rpc_call() occurred.
• DCRPCER_TESTMODE

• DCRPCER_INVALID_REPLY

• DCRPCER_REPLY_TOO_BIG

• DCRPCER_REPLY_TOO_BIG_RB

Alternatively, marshaling/unmarshaling failed, or communications
data was destroyed.

rpc_s_unknown_stub_rtl_if_vers Version in the OpenTP1 library is different.

rpc_s_unknown_if Version in the interface definition is different.

Error code Meaning

573

Chapter

7. Coding Samples

This chapter gives coding samples for application programs (UAPs).

This chapter presents coding samples for application programs (7.1 to 7.4) in K&R
(Classic C) C language.

This chapter contains the following sections:

7.1 Coding samples for client/server configuration UAPs (SUP, SPP DAM
access)

7.2 Coding samples for client/server configuration UAPs (SPP TAM access)
7.3 Coding samples for message exchange configuration UAPs (MHP)
7.4 Coding samples for X/Open-compliant UAPs
7.5 TxRPC examples (templates created by the IDL compiler)

7. Coding Samples

574

7.1 Coding samples for client/server configuration UAPs (SUP, SPP
DAM access)

The figure below shows an example of a client/server configuration UAP.

Figure 7-1: Client/Server configuration UAP sample (DAM access)

Explanation

DAM file damfile0 contains a control section in its first block and data records
in the second and subsequent blocks. During service processing, the first block is
read (the function dc_dam_read()) and is updated (the function
dc_dam_rewrite()), then the second and subsequent blocks are directly
updated using the function dc_dam_write().

This section presents a coding example based on the configuration sample shown in
the figure.

(1) SUP sample
The following shows a coding example for an SUP.
 10 /*
 20 * SUP01
 30 */
 40 #include <stdio.h>
 50 #include <string.h>
 60 #include <dcrpc.h>
 70 #include <dctrn.h>
 80
 90 main()
 100 {
 110 /*
 120 * Define variables

7. Coding Samples

575

 130 */
 140 static char in_buf[1024];
 150 static DCLONG in_buf_len;
 160 static char out_buf[1024];
 170 static DCLONG out_buf_len;
 180 int rc;
 190 /*
 200 * RPC-OPEN (start the UAP)
 210 */
 220 rc = dc_rpc_open(DCNOFLAGS);
 230 /* Prepare to use various OpenTP1 functions */
 235 /* (initialize each function) */
 240 if(rc != DC_OK) {
 250 printf("SUP01:dc_rpc_open failed. CODE = %d \n",rc);
 260 goto PROG_END;
 270 }
 280 /*
 290 * ADM-COMPLETE (report completion
 295 * of user server start processing)
 300 */
 310 rc = dc_adm_complete(DCNOFLAGS);
 320 if(rc != DC_OK){
 330 printf("SUP01:dc_adm_complete failed."
 335 "CODE = %d \n",rc);
 340 goto PROG_END;
 350 }
 360 /*
 370 * TRN_BEGIN (start the transaction)
 380 */
 390 rc = dc_trn_begin();
 400 if(rc != DC_OK) {
 410 printf("SUP01:dc_trn_begin failed. CODE = %d \n",rc);
 420 goto TRAN_END;
 430 }
 440 /*
 450 * RPC-CALL (request a remote service)
 460 */
 470 strcpy(in_buf,"SUP01:DATA OpenTP1!!");
 480 in_buf_len = strlen(in_buf) + 1;
 490 out_buf_len = 1024;
 500 rc = dc_rpc_call("spp01grp","svr01",
 505 in_buf,&in_buf_len,
 510 out_buf,&out_buf_len,DCNOFLAGS);
 520 if(rc != DC_OK) {
 530 printf("SUP01:Service request failed. "
 535 "CODE = %d \n",rc);
 540 goto TRAN_END;
 550 }

7. Coding Samples

576

 560 printf("SUP01:SERVICE FUNCTION RETURN = %s\n",
 565 out_buf);
 570 /*
 580 * TRN-UNCHAINED-COMMIT (commit in unchained mode)
 590 */
 600 TRAN_END:
 610 rc = dc_trn_unchained_commit();
 620 if(rc != DC_OK) {
 630 printf("SUP01:dc_trn_unchained_commit failed. "
 635 "CODE = %d \n",rc);
 640 }
 650 /*
 660 * RPC-CLOSE (terminate the UAP)
 670 */
 680 PROG_END:
 690 dc_rpc_close(DCNOFLAGS);
 700 printf("SUP01:Processing is finished.\n");
 710 exit(0);
 720 }

(2) SPP sample (main function)
The following shows a coding example for the SPP main function.
 10 /*
 20 * SPP01 main function
 30 */
 40 #include <stdio.h>
 50 #include <dcrpc.h>
 60 #include <dcdam.h>
 70 #define DAMFILE "damfile0"
 80
 90 int damfd; /* damfile file-id */
 100
 110 main()
 120 {
 130 /*
 140 * Define area for storing return value
 150 */
 160 int rc;
 170 /*
 180 * RPC-OPEN (start the UAP)
 190 */
 200 rc = dc_rpc_open(DCNOFLAGS);
 210 if(rc != DC_OK) {
 220 printf("SPP01:dc_rpc_open failed. CODE = %d \n",rc);
 230 goto PROG_END;
 240 }
 250 /*
 260 * DAM-OPEN (open a logical file)

7. Coding Samples

577

 270 */
 280 rc = dc_dam_open(DAMFILE,DCDAM_BLOCK_EXCLUSIVE);
 290 if(rc < DC_OK) {
 300 printf("SVR01:dc_dam_open failed. CODE = %d \n",rc);
 310 goto DAM_END;
 320 }
 330 damfd = rc;
 340 /*
 350 * RPC-MAINLOOP (start the SPP service)
 360 */
 370 printf("SPP01:mainloop begins.\n");
 380 rc = dc_rpc_mainloop(DCNOFLAGS);
 390 if(rc != DC_OK) {
 400 printf("SPP01:dc_rpc_mainloop \
 410 failed. CODE = %d \n",rc);
 420 }
 430 /*
 440 * DAM-CLOSE (close the logical file)
 450 */
 460 DAM_END:
 470 rc = dc_dam_close(damfd,DCNOFLAGS);
 480 if(rc != DC_OK) {
 490 printf("SVR01:dc_dam_close failed. CODE = %d\n",rc);
 500 }
 510 /*
 520 * RPC-CLOSE (terminate the UAP)
 530 */
 540 PROG_END:
 550 dc_rpc_close(DCNOFLAGS);
 560 printf("SPP01:The SPP service processing is "
 565 "terminated. \n");
 570 exit(0);
 580 }

(3) SPP sample (service function)
The following shows a coding example for the SPP service function.
 10 /*
 20 * SVR01 service function
 30 */
 40 #include <stdio.h>
 50 #include <string.h>
 60 #include <dcrpc.h>
 70 #include <dcdam.h>
 80 #define DAMFILE "damfile0"
 90 #define DAM_BLK_SIZE 504
 100 #define REWRITE_LEN 19
 110 extern int damfd;
 120

7. Coding Samples

578

 130 void svr01(in_data,in_leng,out_data,out_leng)
 140 char *in_data;
 150 DCLONG *in_leng;
 160 char *out_data;
 170 DCLONG *out_leng;
 180 {
 190 /*
 200 * Define variables
 210 */
 220 static struct DC_DAMKEY keyptr;
 230 static char *damc_buf;
 240 static char dam_cntl_buf[DAM_BLK_SIZE];
 250 static char write_buf[DAM_BLK_SIZE];
 260 struct dam_cntl_p {
 270 int w_point;
 280 char rewrite_data[REWRITE_LEN];
 290 } *dam_cntl_p;
 300 int rc;
 310 int write_size;
 320 int rewrite_size;
 330 int damc_buf_size;
 340
 350 keyptr.fstblkno = 0;
 360 keyptr.endblkno = 0;
 370 damc_buf_size = DAM_BLK_SIZE;
 380 printf("SVR01:Start of processing\n");
 390 /*
 400 * DAM_READ(read logical file blocks)
 410 */
 420 rc = dc_dam_read(damfd,&keyptr,1,dam_cntl_buf,
 430 damc_buf_size,DCDAM_MODIFY);
 440 if(rc != DC_OK) {
 450 printf("SVR01:dc_dam_read failed. CODE = %d \n",rc);
 460 strcpy(out_data,"SVR01:DAM READ FAILED");
 470 *out_leng = strlen(out_data);
 480 goto PROG_END;
 490 }
 500 /*
 510 * DAM_WRITE (write to logical file blocks)
 520 * DAM_REWRITE (update logical file blocks)
 530 */
 540 DAM_WRITE:
 550 dam_cntl_p = (struct dam_cntl_p *)dam_cntl_buf;
 560 write_size = DAM_BLK_SIZE;
 570 memcpy(write_buf,in_data,*in_leng);
 580 dam_cntl_p->w_point = dam_cntl_p->w_point + 1;
 590 keyptr.fstblkno = dam_cntl_p->w_point;
 600 keyptr.endblkno = 0;

7. Coding Samples

579

 610 rc = dc_dam_write(damfd,&keyptr,1,write_buf,
 620 write_size,DCNOFLAGS);
 630 if(rc != DC_OK) {
 640 if(rc == DCDAMER_BNOER) {
 650 dam_cntl_p->w_point = 0;
 660 goto DAM_WRITE;
 670 }
 680 printf("SVR01:dc_dam_write failed. "
 685 "CODE = %d \n",rc);
 690 strcpy(out_data,"SVR01;DAM WRITE FAILED");
 700 *out_leng = strlen(out_data);
 710 goto PROG_END;
 720 }
 730 keyptr.fstblkno = 0;
 740 keyptr.endblkno = 0;
 750 damc_buf_size = DAM_BLK_SIZE;
 760 sprintf(dam_cntl_p->rewrite_data,
 765 "REWRITE COMPLETE\n");
 770 rc = dc_dam_rewrite(damfd,&keyptr,1,dam_cntl_buf,
 780 damc_buf_size,DCDAM_UPDATE);
 790 if(rc != DC_OK) {
 800 printf("SVR01:dc_dam_rewrite failed. "
 805 "CODE = %d\n",rc);
 810 strcpy(out_data,"SVR01:DAM REWRITE FAILED");
 820 *out_leng = strlen(out_data);
 830 }
 840 strcpy(out_data,"SVR01:PROCESS COMPLETE");
 850 *out_leng = strlen(out_data);
 860 PROG_END:
 870 printf("SVR01:Processing is terminated.\n");
 880 return;
 890 }

7. Coding Samples

580

7.2 Coding samples for client/server configuration UAPs (SPP TAM
access)

The figure below shows an example of a client/server configuration UAP. This section
presents only an SPP coding sample. This example assumes that the same SUP as in
7.1 Coding samples for client/server configuration UAPs (SUP, SPP DAM access)
requests this SPP for service.

Figure 7-2: Client/server configuration UAP sample (TAM access)

This section presents a coding example based on the configuration sample shown in
the figure.

(1) SPP sample (main function)
The following shows a coding example for the SPP main function.
 10 /*
 20 * spp01 main function
 30 */
 40 #include <stdio.h>
 50 #include <dcrpc.h>
 60 #include <dctam.h>
 70 #define TAMTABLE "tamtable30"
 80
 90 long tamfd ; /* tamfile file-id */
 100
 110 main()
 120 {
 130
 140 /*

7. Coding Samples

581

 150 * Define a return code storage variable
 160 */
 170 int rcd ;
 180 /*
 190 * RPC-OPEN (start the UAP)
 200 */
 210 rcd = dc_rpc_open(DCNOFLAGS) ;
 220 if(rcd != DC_OK) {
 230 printf("SPP01:dc_rpc_open failed. "
 235 "code = %d \n", rcd) ;
 240 goto PROG_END ;
 250 }
 260 /*
 270 * TAM-OPEN (open a TAM table)
 280 */
 290 rcd = dc_tam_open(TAMTABLE, DCTAM_REC_EXCLUSIVE) ;
 300 if(rcd <= 0) {
 310 printf("SVR01:dc_tam_open failed. "
 315 "code = %d \n", rcd) ;
 320 goto TAM_END ;
 330 }
 340 tamfd = (long)rcd ;
 350 /*
 360 * RPC-MAINLOOP (start the SPP service)
 370 */
 380 rcd = dc_rpc_mainloop(DCNOFLAGS) ;
 390 if(rcd != DC_OK) {
 400 printf("SPP01:dc_rpc_mainloop failed. "
 405 "code = %d \n", rcd) ;
 410 }
 420 /*
 430 * TAM-CLOSE (close the TAM table)
 440 */
 450 rcd = dc_tam_close(tamfd, DCNOFLAGS) ;
 460 if(rcd != DC_OK) {
 470 printf("SVR01:dc_tam_close failed. "
 475 "code = %d \n", rcd) ;
 480 }
 490 TAM_END :
 500 /*
 510 * RPC-CLOSE (terminate the UAP)
 520 */
 530 dc_rpc_close(DCNOFLAGS) ;
 540 PROG_END :
 550 printf("SPP01:The SPP service processing is "
 555 "terminated. \n") ;
 560 exit(0) ;
 570 }

7. Coding Samples

582

(2) SPP sample (service function)
The following shows a coding example for the SPP service function.
 10 /*
 20 * srv01 service function
 30 */
 40 #include <stdio.h>
 50 #include <string.h>
 60 #include <dctam.h>
 70 #define TAM_REC_SIZE 128
 80
 90 extern long tamfd ; /* tamfile file-id */
 100
 110 void svr01(in_data, in_leng, out_data, out_leng)
 120 char *in_data ;
 130 long *in_leng ;
 140 char *out_data ;
 150 long *out_leng ;
 160 {
 170
 180 /*
 190 * Define variables
 200 */
 210 static struct DC_TAMKEY keyptr ;
 220 static char *tamc_buf ;
 230 static char tam_cntl_buf[TAM_REC_SIZE] ;
 240 static char write_buf[TAM_REC_SIZE] ;
 250 struct tam_cntl_p {
 260 char keyname[10] ;
 270 char filler[118] ;
 280 } *tam_cntl_p ;
 290 int rcd ;
 300 int write_size ;
 310 int tamc_buf_size ;
 320 static char keypar[4][10] = {
 330 { 0x00, 0x00, 0x00, 0x00, 0x00,
 340 0x00, 0x00, 0x00, 0x00, 0x01} ,
 350 { 0x00, 0x00, 0x00, 0x00, 0x00,
 360 0x00, 0x00, 0x00, 0x00, 0x02} ,
 370 { 0x00, 0x00, 0x00, 0x00, 0x00,
 380 0x00, 0x00, 0x00, 0x00, 0x03} ,
 390 { 0x00, 0x00, 0x00, 0x00, 0x00,
 400 0x00, 0x00, 0x00, 0x00, 0x04} ,
 410 } ;
 420 printf("SVR01:Start of processing \n") ;
 430 /*
 440 * TAM_READ (read the first record from the TAM table)
 450 */

7. Coding Samples

583

 460 keyptr.keyname = keypar[0] ;
 470 tamc_buf_size = TAM_REC_SIZE ;
 480 rcd = dc_tam_read(tamfd, &keyptr, 1, tam_cntl_buf,
 490 tamc_buf_size,
 495 DCTAM_EQLSRC | DCTAM_MODIFY) ;
 500 if(rcd != DC_OK) {
 510 printf("SVR01:dc_tam_read failed. "
 515 "code = %d \n", rcd) ;
 520 strcpy(out_data, "SVR01:TAM READ FAILED") ;
 530 *out_leng = strlen(out_data) ;
 540 goto PROG_END ;
 550 }
 560 /*
 570 * TAM_REWRITE (update the first record of TAM table
 575 * on the assumption of search)
 580 */
 590 tam_cntl_p = (struct tam_cntl_p *)tam_cntl_buf ;
 600 memcpy(tam_cntl_p->filler, in_data, *in_leng) ;
 610 rcd = dc_tam_rewrite(tamfd, &keyptr, 1, tam_cntl_buf,
 620 tamc_buf_size, DCNOFLAGS) ;
 630 if(rcd != DC_OK) {
 640 printf("SVR01:dc_tam_rewrite failed. "
 645 "code = %d \n", rcd) ;
 650 strcpy(out_data, "SVR01:TAM REWRITE FAILED") ;
 660 *out_leng = strlen(out_data) ;
 670 goto PROG_END ;
 680 }
 690 /*
 700 * TAM_WRITE (update the second record of TAM table)
 710 */
 720 keyptr.keyname = keypar[1] ;
 730 tam_cntl_p = (struct tam_cntl_p *)write_buf ;
 740 memcpy(tam_cntl_p->keyname, keypar[1], 10) ;
 750 memcpy(tam_cntl_p->filler, in_data, *in_leng) ;
 760 write_size = TAM_REC_SIZE ;
 770 rcd = dc_tam_write(tamfd, &keyptr, 1, tam_cntl_p,
 780 write_size, DCTAM_WRITE) ;
 790 if(rcd != DC_OK) {
 800 printf("SVR01:dc_tam_write failed. "
 805 "code = %d \n", rcd) ;
 810 strcpy(out_data, "SVR01:TAM WRITE FAILED") ;
 820 *out_leng = strlen(out_data) ;
 830 goto PROG_END ;
 840 }
 850 /*
 860 * TAM_READ (read the third record from the TAM table)
 870 */
 880 keyptr.keyname = keypar[2] ;

7. Coding Samples

584

 890 tamc_buf_size = TAM_REC_SIZE ;
 900 rcd = dc_tam_read(tamfd, &keyptr, 1, tam_cntl_buf,
 910 tamc_buf_size,
 905 DCTAM_EQLSRC | DCTAM_MODIFY) ;
 920 if(rcd != DC_OK) {
 930 printf("SVR01:dc_tam_read failed. "
 935 "code = %d \n", rcd) ;
 940 strcpy(out_data, "SVR01:TAM READ FAILED") ;
 950 *out_leng = strlen(out_data) ;
 960 goto PROG_END ;
 970 }
 980 /*
 990 * TAM_READ_CANCEL (cancel the search for the third
 995 * record of the TAM table)
1000 */
1010 rcd = dc_tam_read_cancel(tamfd, &keyptr,
1015 1, DCNOFLAGS) ;
1020 if(rcd != DC_OK) {
1030 printf("SVR01:dc_tam_read_cancel failed. "
1040 "code = %d \n",rcd) ;
1050 strcpy(out_data, "SVR01:TAM READ CANCEL FAILED") ;
1060 *out_leng = strlen(out_data) ;
1070 goto PROG_END ;
1080 }
1090 /*
1100 * TAM_delete (delete the fourth record of the
1105 * TAM table)
1110 */
1120 keyptr.keyname = keypar[3] ;
1130 rcd = dc_tam_delete(tamfd, &keyptr, 1,
1140 NULL, 0, DCTAM_NOOUTREC) ;
1150 if(rcd != DC_OK) {
1160 printf("SVR01:dc_tam_delete failed. "
1165 "code = %d \n", rcd) ;
1170 strcpy(out_data, "SVR01:TAM DELETE FAILED") ;
1180 *out_leng = strlen(out_data) ;
1190 goto PROG_END ;
1200 }
1210 strcpy(out_data, "SVR01:PROCESS COMPLETE") ;
1220 *out_leng = strlen(out_data) ;
1230 PROG_END :
1240 printf("SVR01:Processing is terminated.\n") ;
1250 return ;
1260 }

7. Coding Samples

585

7.3 Coding samples for message exchange configuration UAPs
(MHP)

The figure below shows an example of a message exchange UAP.

Figure 7-3: Message exchange configuration UAP sample (MHP)

This section presents a coding example based on the configuration sample shown in
the figure.

(1) MHP sample (main function)
The following shows a coding example for the MHP main function.
 10 /*
 20 * MHP main function
 30 */
 40 #include <stdio.h>
 50 #include <dcrpc.h>
 60 #include <dcmcf.h>
 70

7. Coding Samples

586

 80 main()
 90 {
 100 int rtn_cod ;
 110
 120 printf("****** RPC OPEN *****\n") ;
 130 /*
 140 * RPC-OPEN (start the UAP)
 150 */
 160 rtn_cod = dc_rpc_open(DCNOFLAGS) ;
 170 if(rtn_cod != DC_OK) {
 180 printf("dc_rpc_open failed !! CODE = %d \n",
 185 rtn_cod) ;
 190 goto PROG_END ;
 200 }
 210
 220 printf("****** MCF OPEN *****\n") ;
 230 /*
 240 * MCF-OPEN (open the MCF environment)
 250 */
 260 rtn_cod = dc_mcf_open(DCNOFLAGS) ;
 270 if(rtn_cod != DC_OK) {
 280 printf("dc_mcf_open failed !! CODE = %d \n",
 285 rtn_cod) ;
 290 goto PROG_END ;
 300 }
 310
 320 printf("****** MCF MAINLOOP *****\n") ;
 330 /*
 340 * MCF-MAINLOOP (start the MHP service)
 350 */
 360 rtn_cod = dc_mcf_mainloop(DCNOFLAGS) ;
 370 if(rtn_cod != DC_OK) {
 380 printf("dc_mcf_mainloop failed !! CODE = %d \n",
 385 rtn_cod) ;
 390 }
 400
 410 printf("****** MCF CLOSE *****\n") ;
 420 /*
 430 * MCF-CLOSE (close the MCF environment)
 440 */
 450 dc_mcf_close(DCNOFLAGS) ;
 460
 470 PROG_END :
 480 printf("****** RPC CLOSE *****\n") ;
 490 /*
 500 * RPC-CLOSE (terminate the UAP)
 510 */
 520 dc_rpc_close(DCNOFLAGS) ;

7. Coding Samples

587

 530 exit(0) ;
 540 }

(2) MHP sample (service function)
The following shows a coding example for the MHP service function.
 10 /*
 20 * MHP service function
 30 */
 40 #include <stdio.h>
 50 #include <sys/types.h>
 60 #include <dcmcf.h>
 70 #include <dcrpc.h>
 80
 90 void svrA()
 100 {
 110 DCLONG action ;
 120 DCLONG commform ;
 130 DCLONG opcd ;
 140 DCLONG active ;
 150 char recvdata[1024] ;
 160 DCLONG rdataleng ;
 170 DCLONG time ;
 180 DCLONG inbufleng ;
 190 int rtn_cod ;
 200 DCLONG cdataleng ;
 210 char termnam[10] ;
 220 static char execdata[32] = " SVRA EXECAP DATA" ;
 230 static char senddata[32] = " SVRA REPLY DATA1" ;
 240 static char resv01[9] = "\0" ;
 250 static char resv02[9] = "\0" ;
 260 static char resv03[9] = "\0" ;
 270 static char apnam[9] = "aprepB" ;
 280
 290 printf("***** UAP START *****\n") ;
 300
 310 printf("***** MCF RECEIVE *****\n") ;
 320 /*
 330 * MCF-RECEIVE (receive messages)
 340 */
 350 action = DCMCFFRST ;
 360 commform = DCNOFLAGS ;
 370 inbufleng = sizeof(recvdata) ;
 380 rtn_cod = dc_mcf_receive(action, commform,
 385 termnam, resv01, recvdata,
 390 &rdataleng, inbufleng, &time) ;
 400 if(rtn_cod != DCMCFRTN_00000) {
 410 /*
 420 * MCF-ROLLBACK (error processing)

7. Coding Samples

588

 430 */
 440 printf("dc_mcf_receive failed !! CODE = %d \n",
 445 rtn_cod) ;
 450 rtn_cod = dc_mcf_rollback(DCMCFNRTN) ;
 460 }
 470
 480 printf("***** MCF EXECAP *****\n") ;
 490 /*
 500 * MCF-EXECAP (start the application program)
 510 */
 520 action = DCMCFEMI|DCMCFJUST ;
 530 commform = DCNOFLAGS ;
 540 active = 0 ;
 550 cdataleng = 16 ;
 560 rtn_cod = dc_mcf_execap(action, commform, resv01,
 570 active, apnam, execdata, cdataleng) ;
 580 if(rtn_cod != DCMCFRTN_00000) {
 590 /*
 600 * MCF-ROLLBACK (error processing)
 610 */
 620 printf("dc_mcf_execap failed !! CODE = %d \n",
 625 rtn_cod) ;
 630 rtn_cod = dc_mcf_rollback(DCMCFNRTN) ;
 640 }
 650
 660 printf("***** MCF REPLY *****\n") ;
 670 /*
 680 * MCF-REPLY (send a response message)
 690 */
 700 action = DCMCFEMI ;
 710 commform = DCNOFLAGS ;
 720 opcd = DCNOFLAGS ;
 730 cdataleng = 16 ;
 740 rtn_cod = dc_mcf_reply(action, commform,
 745 resv01, resv02, senddata,
 750 cdataleng, resv03, opcd) ;
 760 if(rtn_cod != DCMCFRTN_00000) {
 770 /*
 780 * MCF-ROLLBACK (error processing)
 790 */
 800 printf("dc_mcf_reply failed !! CODE = %d \n",
 805 rtn_cod) ;
 810 rtn_cod = dc_mcf_rollback(DCMCFNRTN) ;
 820 }
 830 }

7. Coding Samples

589

7.4 Coding samples for X/Open-compliant UAPs

7.4.1 XATMI interface samples
(1) Request/response service paradigm sample

(a) Outline of processing
The processing of the sample here is outlined below.

A service for checking hotel room availability and a service for checking airplane seat
availability are called from the SUP. The first service receives responses
asynchronously, whereas the second service receives responses synchronously.

(b) UAP configuration
The figure below shows the configuration of the sample UAP.

Figure 7-4: Communication of request/response services receiving responses
synchronously

(c) Typed buffers used
The following shows the structure of typed buffers used for communication.

7. Coding Samples

590

struct hotel { struct plane {
 long date; long date;
 char plane[128]; char dest;
 char hname[128]; long departure;
 long status; long status;
 } }

(d) SUP sample
• XATMI interface definition sample

The following shows the XATMI interface definition of the SUP for the sample
request/response service.

 10 /* Example of XATMI interface definition of SUP */
 15 /* (rrsup.def file) */
 20 called_servers = { "rrspp.def" };

• SUP coding sample

The following shows a coding example for the SUP used in the example of
request/response service.

 10 /* Example of SUP (rrsup.c file) */
 20 #include <stdio.h>
 30 #include <dcrpc.h>
 40 #include <xatmi.h>
 50 #include <dcadm.h>
 60 /*
 70 * XATMI stub header file
 80 */
 90 #include "rrsup_stbx.h"
 100 main()
 110 {
 120 /*
 130 * Define variables
 140 */
 150 struct hotel *hptr;
 160 struct plane *pptr;
 170 struct errmsg *werrmsg ;
 180 int hlen, plen ;
 190 int cd ;
 200 int rc;
 210 /*
 220 * RPC-OPEN (start the UAP)
 230 */
 240 rc = dc_rpc_open(DCNOFLAGS);
 250 if(rc != DC_OK){
 260 printf("dc_rpc_open failed.\
 270 ERROR CODE = %d \n", rc);
 280 goto PROG_END;

7. Coding Samples

591

 290 }
 300 /*
 310 * ADM-COMPLETE (report completion of user
 315 * server start processing)
 320 */
 330 rc = dc_adm_complete(DCNOFLAGS);
 340 if(rc != DC_OK){
 350 printf("dc_adm_complete failed.\
 360 ERROR CODE = %d \n", rc);
 370 goto PROG_END;
 380 }
 390 /*
 400 * TPALLOC (allocate typed buffer)
 410 */
 420 /* For hotel room availability search service */
 430 hptr = (struct hotel *)tpalloc("X_COMMON",
 435 "hotel", 0);
 440 if(hptr == NULL){
 450 printf("tpalloc failed.\
 460 ERROR CODE = %d \n", tperrno);
 470 goto PROG_END;
 480 }
 490 /* For airplane seat availability */
 500 pptr = (struct plane *)tpalloc("X_COMMON",
 505 "plane", 0);
 510 if(pptr == NULL){
 520 printf("tpalloc failed.\
 530 ERROR CODE = %d \n", tperrno);
 540 goto PROG_END;
 550 }
 560 /*
 570 * Set data
 580 */
 590 hptr->date = 940415 ;
 600 strcpy(hptr->place, "SAPPORO") ;
 610 strcpy(hptr->hname, "PRINCE") ;
 620 hptr->status = 0 ;
 630 pptr->date = 940415 ;
 640 strcpy(pptr->dest, "CHITOSE") ;
 650 pptr->departure = 1540 ;
 660 pptr->status = 0 ;
 670 /*
 680 * TPACALL (send a service request)
 690 */
 700 cd = tpacall("SVHOTEL", (char *) hptr, 0, 0);
 710 if(cd == -1){
 720 printf("The hotel room availability search "
 725 "service call failed.\

7. Coding Samples

592

 730 ERROR CODE = %d \n", tperrno);
 740 goto PROG_END;
 750 }
 760 printf("The hotel room availability search "
 765 "service call was successful.\n");
 770 /*
 780 * TPCALL (send a service request and then wait for
 785 * a response)
 790 */
 800 rc = tpcall("SVPLANE", (char *) pptr, 0,
 805 (char **) &pptr, &plen, 0);
 810 if(rc != 0){
 820 if(tperrno == TPESVCFAIL){
 830 werrmsg = (struct errmsg *) pptr ;
 840 printf("%s ERROR CODE = %d USER CODE = %d\n",
 850 werrmsg->errmessage, tperrno, tpurcode);
 860 goto PROG_END ;
 870 }else{
 880 printf("The airplane seat availability "
 885 "search service call failed. "
 890 "ERROR CODE = %d", tperrno);
 900 goto PROG_END;
 910 }
 920 }
 930 printf("A response to the airplane seat "
 935 "availability search service call was "
 937 "received successfully.\n");
 940 if(pptr->status == 1){
 950 printf("Airplane seat availability: Full \n");
 960 } else {
 970 printf("Airplane seat availability: "
 975 "Available \n");
 980 }
 990 /*
1000 * TPGETRPLY (receive a response)
1010 */
1020 rc = tpgetrply(&cd, (char **) &hptr, &hlen, 0);
1030 if(rc != 0){
1040 if(tperrno == TPESVCFAIL){
1050 werrmsg = (struct errmsg *) hptr ;
1060 printf("%s ERROR CODE = %d USER CODE = %d\n",
1070 werrmsg->errmessage, tperrno, tpurcode);
1080 goto PROG_END ;
1090 }else{
1100 printf("The hotel room availability search "
1105 "service failed. ERROR CODE = %d",
1110 tperrno);
1120 goto PROG_END;

7. Coding Samples

593

1130 }
1140 }
1150 printf("A response to the hotel room availability "
155 "search service was received successfully. \n");
1160 if(hptr->status == 1){
1170 printf("Hotel room availability: Full \n");
1180 } else {
1190 printf("Hotel room availability: Available \n");
1200 }
1210 /*
1220 * Release the typed buffer
1230 */
1240 tpfree((char *) hptr);
1250 tpfree((char *) pptr);
1260 /*
1270 * RPC-CLOSE (terminate the UAP)
1280 */
1290 PROG_END:
1300 dc_rpc_close(DCNOFLAGS);
1310 printf("Thank you for using our service.\n");
1320 exit(0);
1330 }

• User service definition sample

The following shows a user service definition example for the SUP that was
presented in the example of the request/response service.

 10 # Example of the user service definition (rrsup file)
 20 set module = "rrsup"
 30 set receive_from = none
 40 set trn_expiration_time = 180
 50 set trn_expiration_time_suspend = Y

(e) SPP sample
• XATMI interface definition sample

The following shows an XATMI interface definition example for the SPP that was
presented in the example of the request/response service.

 10 /* Example of XATMI interface definition */
 15 /* (rrspp.def file) */
 20 X_COMMON hotel {
 30 long date;
 40 char place[128];
 50 char hname[128];
 60 long status;
 70 };
 80 X_COMMON plane {
 90 long date;

7. Coding Samples

594

 100 char dest[128];
 110 long departure;
 120 long status;
 130 };
 140 X_COMMON errmsg {
 150 char errmessage[128];
 160 };
 170 service shotel(X_COMMON hotel) ;
 180 service splane(X_COMMON plane) ;

• SPP coding sample (main function)

The following shows a coding example (main function) of the SPP that was
presented in the example of the request/response service.

 10 /* Example of SPP main function (rrspp.c file) */
 20 #include <stdio.h>
 30 #include <dcrpc.h>
 40 #include <xatmi.h>
 50 #include <dcadm.h>
 60 /*
 70 * XATMI stub header file
 80 */
 90 #include "rrspp_stbx.h"
 100 main()
 110 {
 120 /*
 130 * Define variables
 140 */
 150 int rc;
 160 /*
 170 * RPC-OPEN (start the UAP)
 180 */
 190 rc = dc_rpc_open(DCNOFLAGS);
 200 if(rc != DC_OK){
 210 printf("dc_rpc_open failed.\
 220 ERROR CODE = %d \n", rc);
 230 goto PROG_END;
 240 }
 250 /*
 260 * RPC-MAINLOOP (start the SPP service)
 270 */
 280 rc = dc_rpc_mainloop(DCNOFLAGS);
 290 if(rc != DC_OK){
 300 printf("dc_rpc_mainloop failed.\
 310 ERROR CODE = %d \n", rc);
 320 }
 330 /*
 340 * RPC-CLOSE (terminate the UAP)

7. Coding Samples

595

 350 */
 360 PROG_END:
 370 dc_rpc_close(DCNOFLAGS);
 380 exit(0);
 390 }

• SPP coding sample (service function)

The following shows a coding example (service function) of the SPP that was
presented in the example of the request/response service.

 10 /* Example of service function of SPP (rrsvc.c file) */
 20 #include <stdio.h>
 30 #include <dcrpc.h>
 40 #include <xatmi.h>
 50 #include <dcadm.h>
 60 /*
 70 * XATMI stub header file
 80 */
 90 #include "rrspp_stbx.h"
 100 void shotel(svcinfo)
 110 TPSVCINFO *svcinfo;
 120 {
 130 /*
 140 * Define variables
 150 */
 160 struct hotel *hptr;
 170
 180 hptr = (struct hotel *) svcinfo->data;
 190 /* This service searches availability and returns
 195 * status = 1 if no room is available,
 200 * status = 0 if rooms are available,
 205 * and a message if an error occurs.
 210 * This example assumes that no room
 215 * is available. */
 220 hptr->status = 1 ;
 230 tpreturn(TPSUCCESS, 0, hptr, 0, 0);
 240 return ; /* In OpenTP1, return must be issued */
 245 /* after tpreturn. */
 250 }
 260 void splane(svcinfo)
 270 TPSVCINFO *svcinfo;
 280 {
 290 struct plane *pptr;
 300 pptr = (struct plane *) svcinfo->data;
 310 /* This service searches availability and returns
 315 * status = 1 if no seat is available, status = 0
 320 * if seats are available, and a message if an
 325 * error occurs. This example assumes that no seat

7. Coding Samples

596

 330 * is available.
 335 */
 340 pptr->status = 1 ;
 350 tpreturn(TPSUCCESS, 0, pptr, 0, 0);
 360 return ;
 370 }

• User service definition sample

The following shows an example of user service definition of the SPP that was
presented in the example of the request/response service.

 10 # Example of user service definition (rrspp file)
 20 set service_group = "rrspp_svg"
 30 set module = "rrspp"
 40 set service = "SVHOTEL=shotel",
 45 "SVPLANE=splane"
 50 set trn_expiration_time = 180
 60 set trn_expiration_time_suspend = Y
 70 set server_type = "xatmi"

(2) Conversational service paradigm sample
(a) Outline of processing

The processing of the sample here is outlined below.

The service function is activated through a typed buffer having a build of structure
acctreq. The members of acctreq indicate the upper and lower limits of the account
numbers. The service function sets account data in this range in the typed buffer having
a build of structure acctdat and sends the data to the originator of the conversation.

(b) UAP configuration
The figure below shows the configuration of the sample UAP.

7. Coding Samples

597

Figure 7-5: Communication of conversational service

(c) Typed buffers used
The structures of typed buffers used are shown below.

Data for activating the service function

Data for communication with the conversational service

struct acctreq{
 long upper_no;
 long lower_no;
}

7. Coding Samples

598

(d) SUP sample
• XATMI interface definition sample

The following shows the XATMI interface definition of the SUP for the sample
conversational service.

 10 /* Example of XATMI interface definition of SUP */
 15 /* (convsup.def file) */
 20 called_servers = { "convspp.def" };

• SUP coding sample

The following shows a coding example for the SUP used in the example of the
conversational service.

 10 /* Coding example of SUP (convsup.c file) */
 20 #include <stdio.h>
 30 #include <dcrpc.h>
 40 #include <xatmi.h>
 50 #include <tx.h>
 60 #include <dcadm.h>
 70 /*
 80 * XATMI stub header file
 90 */
 100 #include "convsup_stbx.h"
 110 main()
 120 {
 130 /*
 140 * Define variables
 150 */
 160 struct acctreq *rptr;
 170 struct acctdata *dptr;
 180 long wlen;
 190 int cd;
 200 int rc;
 210 long revent;
 220 long size = 0 ;
 230 /*
 240 * RPC-OPEN (start the UAP)
 250 */
 260 rc = dc_rpc_open(DCNOFLAGS);
 270 if(rc != DC_OK){
 280 printf("dc_rpc_open failed. ERROR CODE = %d \n",
 285 rc);

struct acctdat{
 long acct_no;
 short amount;
 char name[128];
}

7. Coding Samples

599

 290 goto PROG_END;
 300 }
 310 /*
 320 * ADM-COMPLETE (report completion of user
 * server start processing)
 330 */
 340 rc = dc_adm_complete(DCNOFLAGS);
 350 if(rc != DC_OK){
 360 printf("dc_adm_complete failed. ERROR "
 365 "CODE = %d \n", rc);
 370 goto PROG_END;
 380 }
 390 /*
 400 * TPALLOC (allocate typed buffer)
 410 */
 420 /* For setting minimum and maximum account numbers */
 425 /* to be searched */
 430 rptr = (struct acctreq *)tpalloc(X_COMMON,
 435 "acctreq", 0);
 440
 450 if(rptr == NULL){
 460 printf("tpalloc failed. ERROR CODE = %d \n",
 465 tperrno);
 470 goto PROG_END;
 480 }
 490 /* For account data in the search result */
 500 dptr = (struct acctdata *)tpalloc(X_COMMON,
 505 "acctdata", 0) ;
 510 if(dptr == NULL){
 520 printf("tpalloc failed. ERROR CODE = %d \n",
 525 tperrno);
 530 goto PROG_END;
 540 }
 550 /*
 560 * Set data
 570 * Specify the search range
 580 */
 590 rptr->lower_no = 10000000L;
 600 rptr->upper_no = 20000000L;
 610 /* Start the transaction */
 620 tx_begin() ;
 630 /*
 640 * TPCONNECT (call the conversational service)
 650 * Call INQUIRY
 660 */
 670 cd = tpconnect("INQUIRY", (char *) rptr, 0,
 675 TPRECVONLY);
 680 if(cd == -1){

7. Coding Samples

600

 690 printf("tpconnect failed. ERROR CODE = %d \n",
 695 tperrno);
 700 goto PROG_END;
 710 }
 720 /*
 730 * TPRECV (receive messages)
 740 * Until an error occurs (include events),
 750 */
 760 while(rc != -1){
 770 rc = tprecv(cd, (char **) &dptr, &wlen, 0,
 775 &revent);
 780 /*
 790 * If no error has occurred,
 800 * output the received account information.
 810 */
 820 if(rc != -1) {
 830 printf("The account information was "
 835 "received from the service.\n");
 840 printf("Account number = %d \n",
 845 dptr->acct_no);
 850 printf("Name = %s \n", dptr->name);
 860 printf("Amount = %d \n", dptr->amount);
 870 }
 880 }
 890 /*
 900 * Output the result of the service
 910 */
 920 if(tperrno == TPEEVENT){
 930 if(revent == TPEV_SVCSUCC){
 940 /* The service was successful. */
 950 printf("The service was successful.\n");
 960 /* Transaction commit */
 970 tx_commit() ;
 980 }else{
 990 printf("Some event has occurred. "
 995 "revent = %d\n",
1000 revent);
1010 /* Transaction rollback */
1020 tx_rollback() ;
1030 }
1040 }
1050 /*
1060 * Release the typed buffer
1070 */
1080 tpfree((char *) rptr);
1090 tpfree((char *) dptr);
1100 /*
1110 * RPC-CLOSE (terminate the UAP)

7. Coding Samples

601

1120 */
1130 PROG_END:
1140 dc_rpc_close(DCNOFLAGS);
1150 exit(0);
1160 }

• User service definition sample

The following shows an example of a user service definition of the SUP that was
presented in the example of the conversational service.

 10 # Example of user service definition
 15 # (convsup file)
 20 set module = "convsup"
 25 # Name of executable file
 30 set watch_time = 180
 35 # Maximum time to wait for a response
 40 set receive_from = none
 45 # Receiving method
 50 set trn_expiration_time = 180
 60 # Expiry time in transaction branch
 70 set trn_expiration_time_suspend = Y
 75 # Always specify Y

(e) SPP sample
• XATMI interface definition sample

The following shows an example of XATMI interface definition of the SPP that
was presented in the example of the conversational service.

 10 /* Example of XATMI interface definition of SPP */
 15 /* (convspp.def file) */
 20 X_COMMON acctreq {
 30 long upper_no;
 40 long lower_no;
 50 };
 60 X_COMMON acctdata {
 70 long acct_no;
 80 char name[128];
 90 short amount;
 100 };
 110 service inquiry(X_COMMON acctreq) ;

• SPP coding sample (main function)

The following shows a coding example (main function) of the SPP that was
presented in the example of the conversational service.

 10 /* Example of SPP main function (convspp.c file) */
 20 #include <stdio.h>
 30 #include <dcrpc.h>

7. Coding Samples

602

 40 #include <xatmi.h>
 50 #include <dcadm.h>
 60 /*
 70 * XATMI stub header file
 80 */
 90 #include "convspp_stbx.h"
 100 main()
 110 {
 120 /*
 130 * Define variables
 140 */
 150 int rc;
 160 /*
 170 * RPC-OPEN (start the UAP)
 180 */
 190 rc = dc_rpc_open(DCNOFLAGS);
 200 if(rc != DC_OK){
 210 printf("dc_rpc_open failed. ERROR "
 215 "CODE = %d \n", rc);
 220 goto PROG_END;
 230 }
 240
 250 /*
 260 * RPC-MAINLOOP (start the SPP service)
 270 */
 280 rc = dc_rpc_mainloop(DCNOFLAGS);
 290 if(rc != DC_OK){
 300 printf("dc_rpc_mainloop failed. "
 315 "ERROR CODE = %d \n",rc);
 310 }
 320 /*
 330 * RPC-CLOSE (terminate the UAP)
 340 */
 350 PROG_END:
 360 dc_rpc_close(DCNOFLAGS);
 370 exit(0);
 380 }

• SPP coding sample (service function)

The following shows a coding example (service function) of the SPP that was
presented in the example of the conversational service.

 10 /* Example of service function of SPP */
 15 /* (convsvc.c file) */
 20 #include <stdio.h>
 30 #include <dcrpc.h>
 40 #include <xatmi.h>
 50 #include <dcadm.h>

7. Coding Samples

603

 60 /*
 70 * XATMI stub header file
 80 */
 90 #include "convspp_stbx.h"
 100 /*
 110 * DEPOSITSVC service function
 120 * Use tpconnect() to receive the minimum and maximum
 125 * account numbers, and send information about
 130 * accounts that are within that range
 140 */
 150 void inquiry(svcinfo)
 160 TPSVCINFO *svcinfo;
 170 {
 180 /*
 190 * Define variables
 200 */
 210 struct acctreq *rptr;
 220 struct acctdata *dptr;
 230 char type[9];
 240 char subtype[17];
 250 long revent, rval;
 260 int size;
 270 /*
 280 * Service request was accepted
 290 */
 300 rptr = (struct acctreq *) svcinfo->data;
 310 /*
 320 * Allocate the typed buffer for data that is to
 325 * be returned to the originator
 330 */
 340 dptr = (struct acctdata *)tpalloc("X_COMMON",
 345 "acctdata", 0);
 350 if(rptr == NULL){
 360 printf("An error occurred in tpalloc. "
 365 "tperrno = %d \n",
 370 tperrno);
 380 abort();
 390 }
 400 /*
 410 * User processing
 420 * Search the data file and return the account
 425 * information for account numbers within the specific
 430 * range. This example assumes that two accounts have
 435 * been found and then sends the data.
 440 */
 450
 460 dptr->acct_no = 10000001L;
 470 strcpy(dptr->name, "Hitachi Hanako");

7. Coding Samples

604

 480 dptr->amount = 20000;
 490 /*
 500 * TPSEND (send a message)
 510 */
 520 tpsend(svcinfo->cd, (char *) dptr, 0, 0, &revent);
 530 if(tperrno != -1){
 540 rval = TPSUCCESS;
 550 }else{
 560 rval = TPFAIL;
 570 goto SVC_END;
 580 }
 590 dptr->acct_no = 10000002L;
 600 dptr->amount = 10000;
 610 strcpy(dptr->name, "Hitachi Tarou");
 620 /*
 630 * TPSEND (send a message)
 640 */
 650 tpsend(svcinfo->cd, (char *) dptr, 0, 0, &revent);
 660 if(tperrno != -1){
 670 rval = TPSUCCESS;
 680 }else{
 690 rval = TPFAIL;
 700 goto SVC_END;
 710 }
 720 SVC_END:
 730 tpreturn(rval, 0, NULL, 0, 0);
 740 return; /* In OpenTP1, return is required after */
 745 /* tpreturn. */
 750 }

• User service definition sample

The following shows an example of a user service definition of the SPP that was
presented in the example of the conversational service.

 10 # Example of user service definition (convspp file)
 20 set service_group = "convspp_svg"
 25 # Service group name
 30 set module = "convspp"
 35 # Name of executable file
 40 set service = "INQUIRY=inquiry"
 50 # Service name = entry point name
 60 set watch_time = 180
 65 # Maximum time to wait for a response
 70 set trn_expiration_time = 240
 80 # Expiry time in transaction branch
 90 set trn_expiration_time_suspend = Y
 95 # Always specify Y
 100 set server_type = "xatmi" # Server type

7. Coding Samples

605

 110 set receive_from = "socket" # Receiving method

7.4.2 TX interface sample
This subsection shows a coding example for an SUP that uses the X/Open TX
interface. This SUP uses TX-interfaced transaction control for processing that was
described in 7.1 Coding samples for client/server configuration UAPs (SUP, SPP
DAM access). See 7.1 Coding samples for client/server configuration UAPs (SUP,
SPP DAM access) for the process configuration and details of the SPP to which the
service request is addressed.
 10
 20 /*
 30 * SUP01
 40 */
 50 #include <stdio.h>
 60 #include <string.h>
 70 #include <dcrpc.h>
 80 #include <tx.h>
 90
 100 main()
 110 {
 120 /*
 130 * Define variables
 140 */
 150 static char in_buf [1024];
 160 static long in_buf_len;
 170 static char out_buf [1024];
 180 static long out_buf_len;
 190 int rc;
 200 TRANSACTION_TIMEOUT trn_timeout = 180;
 205 /* Monitoring interval 180 seconds */
 210 TXINFO info;
 220 /*
 230 * RPC-OPEN (start the UAP)
 240 */
 250 rc = dc_rpc_open(DCNOFLAGS);
 260 if(rc != DC_OK){
 270 printf("SUP01:dc_rpc_open failed. "
 275 "CODE = %d \n",rc);
 280 goto PROG_END;
 290 }
 300 /*
 310 * TX-OPEN (open the resource manager)
 320 */
 330 rc = tx_open();
 340 if(rc != TX_OK){
 350 printf("SUP01:tx_open failed. CODE = %d \n",rc);
 360 goto PROG_END;

7. Coding Samples

606

 370 }
 380 /*
 390 * TX-SET-TRANSACTION-TIMEOUT (set the transaction
 395 * monitoring interval)
 400 */
 410 rc = tx_set_transaction_timeout(trn_timeout);
 420 if(rc != TX_OK){
 430 printf("SUP01:tx_set_transaction_timeout "
 435 "failed. CODE = %d \n",rc);
 440 goto PROG_END;
 450 }
 460 /*
 470 * ADM-COMPLETE (report completion of user server
 475 * start processing)
 480 */
 490 rc = dc_adm_complete(DCNOFLAGS);
 500 if(rc != DC_OK){
 510 printf(dc_adm_complete failed. CODE = %d \n",
 515 rc);
 520 goto PROG_END;
 530 }
 540 /*
 550 * TX-BEGIN (start the transaction)
 560 */
 570 rc = tx_begin();
 580 if(rc != TX_OK){
 590 printf("SUP01:tx_begin failed. CODE = %d \n",
 595 rc);
 600 goto TRAN_END;
 610 }
 620
 630 /*
 640 * TX-INFO (acquire transaction information)
 650 */
 660 rc = tx_info(&info);
 670 if(rc <= 0){
 680 printf("SUP01:Currently the system is not in "
 685 "the transaction mode. CODE = %d \n",rc);
 690 goto PROG_END;
 700 }else if (rc == 1){
 710 printf("SUP01:return=%d,control=%d,timeout=%d,"
 715 "state=%d\n",
 720 info.when_return,info.transaction_control,
 730 info.transaction_timeout, info.transaction_state);
 740 }
 750 /*
 760 * RPC-CALL (request a remote service)
 770 */

7. Coding Samples

607

 780 strcpy(in_buf,"SUP01:DATA OpenTP1!!");
 790 in_buf_len = strlen(in_buf) + 1;
 800 out_buf_len = 1024;
 810 rc = dc_rpc_call("svr01","svr01",in_buf,&in_buf_len,
 820 out_buf,&out_buf_len,DCNOFLAGS);
 830 if(rc != DC_OK){
 840 printf("SUP01:The service request failed. "
 845 "CODE = %d \n",rc);
 850 goto TRAN_END;
 860 }
 870 printf("SUP01:SERVICE FUNCTION RETURN = %s\n",
 875 out_buf);
 880 /*
 890 * TX-SET-TRANSACTION-CONTROL (set the unchained mode)
 900 */
 910 TRAN_END:
 920 rc = tx_set_transaction_control(TX_UNCHAINED);
 930 if(rc != TX_OK){
 940 printf("SUP01:tx_set_transaction_control "
 945 "failed. CODE = %d \n",rc);
 950 }
 960 /*
 970 * TX-COMMIT (commit in unchained mode)
 980 */
 990 rc = tx_commit();
1000 if(rc != TX_OK){
1010 printf("SUP01:tx_commit failed. CODE = %d \n",
1015 rc);
1020 }
1030 /*
1040 * TX-CLOSE (close the resource manager)
1050 */
1060 PROG_END:
1070 rc = tx_close();
1080 if(rc != TX_OK){
1090 printf("SUP01:tx_close failed. CODE = %d \n",
1095 rc);
1100 goto PROG_END;
1110 }
1120 /*
1130 * RPC-CLOSE (terminate the UAP)
1140 */
1150 dc_rpc_close(DCNOFLAGS);
1160 printf("SUP01:Processing is finished.\n");
1170 exit(0);
1180 }

7. Coding Samples

608

7.5 TxRPC examples (templates created by the IDL compiler)

This section explains templates output by the IDL compiler. The user should modify
these templates depending on the work.

7.5.1 Outline of creation procedures
This subsection outlines the creation procedures.

(1) Creating a stub and coding a UAP
The procedures for creating a stub and coding a UAP are explained below.

(a) For IDL-only TxRPC
1. Create the following files:

(1) IDL file

(2) Client program

(3) Manager program

2. Use the txidl compiler to compile the IDL file that was created in step 1. As a
result, the files below are created. A value enclosed in parentheses indicates a
default name. (xxxx indicates an IDL file name.)

(4) Template of a server program (The name is fixed to serv.c)

The template of a server program can be used without modification. To
change the contents, change the name as required, then code the additional
processing.

(5) Template of a user service definition

The template of a user service definition cannot be used without
modification. For how to define the required items, see the explanations of
the user service definition in the manual OpenTP1 System Definition.

(6) Template of an environment definition file (when the -cptype wdce option
is specified)

The template of an environment definition file cannot be used without
modification. For how to define the required items, see the explanations of
the client environment definition in the manual OpenTP1 TP1/Client/W,
TP1/Client/P.

(7) Client stub (xxxx_cstub.c)

(8) Server stub (xxxx_sstub.c)

(9) Header file (xxxx.h)

7. Coding Samples

609

(2) Compiling and linking UAPs
Compile the program with the C compiler. The library to be linked depends on the
specified process type. The libraries to be linked are as follows:

-lbetran

TP1/Server Base library

-lclt

TP1/Client library

The process types to be specified and the libraries required for the client and server
programs are listed below.

-cptype ndce and -sptype ndce

Client: -lbetran and -ltactk

Server: -lbetran and -ltactk

-cptype wdce and -sptype ndce

Client: -ltpldce and -lclt, and DCE-related libraries

Server: -lbetran and -ltactk

-cptype ndce and -sptype wdce

Client: -lbetran and -ltactk

Server: -ltpldce, -lbetran, and DCE-related libraries

-cptype wdce and -sptype nbet

Client: DCE-related libraries

Server: DCE-related libraries

-cptype nbet and -sptype wdce

Client: DCE-related libraries

Server: DCE-related libraries

-cptype nbet and -sptype nbet

Client: DCE-related libraries

Server: DCE-related libraries

7.5.2 Examples of Files
This subsection gives examples of the following files:

• IDL file

7. Coding Samples

610

• Client program

• Manager program

• ACF file

• Template of a server program

• Template of a user service definition

• Template of an environment definition

(1) Example of an IDL file
The following shows an example of an IDL file.
 10 /*
 20 * (1) Example of IDL file (sample.idl)
 30 */
 40 [
 50 uuid(f990a82a-10e5-11ce-9b02-0000870000ff),
 60 version(1.0),
 70 transaction_mandatory
 80]
 90 interface sample_ope
 100 {
 110 const long NAME_LENGTH = 20;
 115 /* size of name field in record */
 120 const long AGE_LEN = 3;
 125 /* size of age field in record */
 130 const long MAXRECORD = 10;
 135 /* max number of records in database */
 140
 150 /* struct info: */
 155 /* record format of customer information database */
 160 typedef struct info{
 170 char name[NAME_LENGTH]; /* name (20 bytes) */
 180 char sex; /* sex (1 byte) */
 190 char age[AGE_LEN]; /* age (3 bytes) */
 200 long sale; /* sales (4 bytes) */
 210 }info_t;
 220
 230 error_status_t getinfo
 240 (
 250 [in] unsigned char name[NAME_LENGTH],
 255 /* input parameter */
 260 [out] info_t *ptr /* output parameter */
 270);
 280 }
 290 /* EOF */

7. Coding Samples

611

(2) Example of a client program
The following shows an example of a client program.
 10 /*
 20 * (2) Example of a client program
 30 * Note: dc_rpc_open(), dc_adm_complete(),
 40 * and dc_rpc_close() are required for
 45 * the ndce type;
 50 * dc_clt_cltin(), dc_rpc_open(),
 55 * dc_rpc_close(), and dc_clt_cltin()
 60 * are required for the wdce type.
 70 * For the header file to be included,
 75 * use the TP1/Client library.
 80 * clt.c
 90 * Functions = main()
 100 */
 110
 120 #include <stdio.h>
 130 #include <dcrpc.h>
 140 #include <dctrp.h>
 150 #include <dcadm.h>
 160 #include <tx.h>
 170 #include "sample.h"
 180
 190 /*
 200 * Program Specification
 210 * Build customer information database.
 215 * Allow actions noting the following.
 220 * * Reference processing
 230 * Refer to information using "name" as the key.
 240 *
 250 * Customer information database
 260 * *---*
 270 * | Name | Sex | Age | Sales |
 280 * |------------------------------------|
 290 * | Smith | Male | 30 | 10,000 |
 300 * | Johnson | Female | 23 | 15,000 |
 310 * | Williams | Female | 26 | 8,000 |
 320 * | Jones | Male | 24 | 10,000 |
 330 * | Brown | Male | 35 | 18,000 |
 340 * | Davis | Male | 20 | 3,000 |
 350 * | Miller | Female | 28 | 10,000 |
 360 * | Wilson | Female | 27 | 21,000 |
 370 * | Moore | Male | 25 | 6,000 |
 380 * | Taylor | Male | 24 | 11,000 |
 390 * *--*
 400 *
 410 * This program requires service.

7. Coding Samples

612

 420 * <refer> refer Taylor's information.
 430 *
 440 */
 450 /*
 460 * name = main()
 470 * func = Client program for sample_ope interface
 480 * (1) service requirement (reference)
 490 * (2) output result of service requirement
 500 * arg = nothing
 510 * return = void
 520 */
 530
 540 int main()
 550 {
 560 static unsigned char name[] = "Taylor";
 565 /* input parameter */
 570 info_t out_data; /* output parameter */
 580 error_status_t status; /* return code for server */
 590 int rc; /* return code */
 600
 610 /*
 620 * Start UAP
 630 */
 640 rc = dc_rpc_open(DCNOFLAGS);
 650 /* error processing */
 660 if(rc != DC_OK){
 670 fprintf(stderr,"client:dc_rpc_open failed. "
 675 "rc = %d\n",rc);
 680 goto END;
 690 }
 700
 710 /*
 720 ** Post completion of user process start processing
 730 */
 740 rc = dc_adm_complete(DCNOFLAGS);
 750 /* error processing */
 760 if(rc != DC_OK){
 770 fprintf(stderr,"client:dc_adm_complete failed. "
 775 "rc = %d\n",rc);
 780 goto END;
 790 }
 800
 810 /*
 820 * Begin transaction
 830 */
 840
 850 rc = tx_begin();
 860 /* error processing */

7. Coding Samples

613

 870 if(rc != DC_OK){
 880 fprintf(stderr,"client:tx_begin failed. "
 885 "rc = %d\n",rc);
 890 goto END;
 900 }
 910
 920 /*
 930 * getinfo:
 940 * get information for input parameter
 950 */
 960 status = getinfo(name,&out_data);
 970 if(status != 0){
 980 fprintf(stderr,"client:getinfo "
 985 "failed.rc = %d\n",status);
 990 }else{
1000 fprintf(stdout,"NAME: %s SEX: %c AGE: %s "
1005 "SALE:%ld\n",
1010 out_data.name,
1020 out_data.sex,
1030 out_data.age,
1040 out_data.sale);
1050 }
1060 /*
1070 * commit transaction
1080 */
1090
1100 rc = tx_commit();
1110 /* error processing */
1120 if(rc != DC_OK){
1130 fprintf(stderr,"client:tx_commit failed. "
1135 "rc = %d\n",rc);
1140 goto END;
1150 }
1160 /*
1170 * Termination processing
1180 */
1190 END:
1200 dc_rpc_close(DCNOFLAGS);
1210 return(0);
1220 }

(3) Example of a manager program
The following shows an example of a manager program.
 10 /*
 20 *
 30 * (3) Example of manager program
 40 * sv.c
 50 * Data Table = customers

7. Coding Samples

614

 60 * Functions = main()
 70 * getinfo()
 80 */
 90
 100 #include <stdio.h>
 110 #include <string.h>
 120 #include "sample.h"
 130
 140 /*
 150 * name = customers
 160 * func = customer information database
 170 * field = name (20 bytes)
 180 * sex (1 byte)
 190 * age (3 bytes)
 200 * sales (4 bytes)
 210 * record = 10 records (1 record = 28 bytes)
 220 */
 230 static info_t customers[MAXRECORD] =
 240 { {"Smith", 'M',"30",10000},
 250 {"Johnson", 'F',"23",15000},
 260 {"Williams",'F',"26", 8000},
 270 {"Jones", 'M',"24",10000},
 280 {"Brown", 'M',"35",18000},
 290 {"Davis", 'M',"20", 3000},
 300 {"Miller", 'F',"28",10000},
 310 {"Wilson", 'F',"27",21000},
 320 {"Moore", 'M',"25", 6000},
 330 {"Taylor", 'M',"24",11000}
 340 };
 350
 360 /*
 370 * name = getinfo()
 380 * func = Manager routine for sample_ope interface
 390 * (1) search suitable record.
 400 * (2) set found record to output parameter.
 410 * arg = name :i: name
 420 * out_data:o: information for input parameter
 430 * return = result
 440 * 0 : success getinfo
 450 */
 460
 470 error_status_t getinfo(name,out_data)
 480 unsigned char *name;
 490 info_t *out_data;
 500 {
 510 int i; /* counter of for loop */
 520 info_t *ptr; /* pointer for search record */
 530

7. Coding Samples

615

 540 /* point 1st record of database(customers) */
 550 ptr = customers;
 560
 570 /* search until record found with same name */
 575 /* or end of database */
 580 for (i = 0; i < MAXRECORD; i++, ptr++) {
 590 /* compare name */
 600 if(strcmp(name,ptr->name) == 0) {
 610 memcpy(out_data,ptr,sizeof(info_t));
 620 return (0);
 630 }
 640 }
 650 return(1);
 660 }

(4) Example of an ACF file
The following shows an example of an ACF file.
 10 /*
 20 *
 30 * (4) Available only in the example of
 40 * ACF file RPC TxRPC sample.acf
 50 */
 60
 70 [auto_handle] interface sample_ope
 80 {
 90 [comm_status, fault_status] getinfo();
 100 }

(5) Template example of a server program
The template example of a server program depends on the value specified for the
argument of the txidl command. The following shows an example when the option
specified.-sptype ndce is specified.
 10 /*
 20 *
 30 * (5) Template for server program (name: serv.c)
 40 * <For -sptype ndce>
 50 */
 60
 70 #include <dctrp.h>
 80
 90 main()
 100 {
 110 idl_long_int rc;
 120 rc = dc_rpc_open(DCNOFLAGS);
 130 if(rc != DC_OK) {
 140 printf("server : dc_rpc_open failed. rc=%d\n", rc);
 150 goto end_of_program;

7. Coding Samples

616

 160 }
 170 rc=dc_rpc_mainloop(DCNOFLAGS);
 180 if(rc != DC_OK) {
 190 printf("server : dc_rpc_mainloop failed. "
 195 "rc=%d\n", rc);
 200 }
 210 end_of_program:
 220 dc_rpc_close(DCNOFLAGS);
 230 exit(0);
 240 }

(6) Template example of a user service definition
The template example of a user service definition depends on the value specified for
the argument of the txidl command. The following shows an example when each
option is specified.

• When the -cptype ndce option is specified
 10 /*
 20 * (6) Example of user service definition template
 30 * <For -cptype ndce>
 40 */
 50
 60 #Don't change the 2 definitions below.
 70
 80 set atomic_update = Y
 90
 100 set trn_expiration_time_suspend = Y
 110
 120 # If this program is SUP, set none.
 125 # If other, set queue or socket.
 130
 140 set receive_from = none
 150
 160 #Set your modulename.
 170
 180 set module = "modulename"
 190
 200 #Set non-zero value.
 210
 220 set trn_expiration_time = 180
 230
 240 #Add any definition you need.

• When the -sptype ndce option is specified
 10 /*
 20 * (6) Example of user service definition template
 30 * <For -sptype ndce>
 40 */

7. Coding Samples

617

 50
 60 #Don't change the 4 definitions below.
 70
 80
 90 set atomic_update = Y
 100
 110 set trn_expiration_time_suspend = Y
 120
 130 set service_group = "sample_ope"
 140
 150 set service = "_getinfo=_getinfo"
 160
 170 #Set your modulename.
 180
 190 set module = "modulename"
 200
 210 #Set non-zero value.
 220
 230 set trn_expiration_time = 180
 240
 250 #Add any definition you need.

• When the -sptype wdce option is specified
 10 /*
 20 * (6) Example of user service definition template
 30 * <For -sptype wdce>
 40 */
 50
 60 #Don't change the 4 definitions below.
 70
 80 set atomic_update = N
 90
 100 set receive_from = queue
 110
 120 set service_group = "sample_ope"
 130
 140 set service = "_getinfo=_getinfo"
 150
 160 #Set your modulename.
 170
 180 set module = "modulename"
 190
 200 #Add any definition you need.

(7) Template example of an environment definition
The following shows an example of an environment definition template.
 10 /*
 20 * (7) Example of an environment definition template

7. Coding Samples

618

 30 * <For -cptype wdce>
 40 */
 50
 60 #Set the 2 definitions below
 70
 80 #DCNAMPORT =
 90
 100 #DCHOST =
 110
 120 #Add any definition you need.

619

Chapter

8. Reference for Application
Activation

This chapter explains user exit routines and MCF event reference information which
are related to the facility for activating application programs in an environment where
the TP1/Message Control is used.

This chapter contains the following sections:

Function format of the user exit routine that determines whether to inherit the
timer-start settings

Structure format of mcf event that reports discarding of a timer-start message
(ERREVT4)

Function format of the user exit routine that determines whether to inherit the timer-start settings

620

Function format of the user exit routine that determines whether to
inherit the timer-start settings

The exit routine for determining timer start inheritance is called in the following
format:

Format
ANSI C , C++

K&R C

Description
If the timer-started function dc_mcf_execap() is followed by an error which raises
the need for rerunning the OpenTP1, this exit routine can change the timer-start
environment. It can perform the following:

• Inherit or cancel the current timer-start

• Make inherited timer-start immediate start

• Change the name of the application to be timer-started

When installing in the MCF the exit routine that determines the inheriting timer-start
message, specify the address of the exit routine function in the MCF main function for
the application startup service. The MCF main function for the application startup
service does not depend on the communication protocol.

For details on how to create the MCF main function for the application startup service,
see the manual OpenTP1 Operation.

When uoc_func (exit routine that determines the inheriting time-start message) is
called, the following parameters are passed from the MCF to parm.

#include <dcmpsv.h>
DCLONG uoc_func(dcmpsv_uoc_rtime *parm)

#include <dcmpsv.h>
DCLONG uoc_func(parm)
dcmpsv_uoc_rtime *parm;

Function format of the user exit routine that determines whether to inherit the timer-start settings

621

Parameters
dcmpsv_uoc_rtime

Arguments whose value is passed from MCF to exit routine
le_name

The input source logical terminal name is set here. If the function dc_mcf_execap()
is called from the SPP, '*' is set here.

ap_name

The application name specified by the UAP in the timer-started function
dc_mcf_execap() is set here.

exec_time

The MHP start time specified by the UAP in the timer-started function
dc_mcf_execap() is set here, as the number of seconds counted from 00:00:00 on
January 1, 1970.

ap_type

The application type of the UAP which issued the timer-started function
dc_mcf_execap() is set here:

'a': ans type

'n': noans type

time_type

The timer-start type specified by the UAP in the timer-started function
dc_mcf_execap() is set here:

'i': Interval specification for timer start

't': Time point specification for timer start

typedef struct {
 char le_name[9]; ... Input source logical terminal name
 char reserve1[7]; ... Reserved
 char ap_name[9]; ... Application name
 char reserve2[7]; ... Reserved
 DCLONG exec_time; ... Timer-start time
 char ap_type; ... Application type
 'a': ans type; 'n': noans type
 char time_type; ... Timer-start type
 'i': Interval specification for timer start
 't': Time point specification for timer start
 char reserve3[26]; ... Reserved
} dcmpsv_uoc_rtime;

Function format of the user exit routine that determines whether to inherit the timer-start settings

622

Arguments whose value is set in the exit routine
ap_name

To change the application to be timer-started, specify the new application name here.
The name specified here has effect when DCMPSV_UOC_TIME_JUST is specified for
the return value.

Return values
uoc_func() must return the following values:

The subsequent MCF processing varies depending on the return value from
uoc_func() as follows:

• DCMPSV_UOC_TIME_CONTINUE

If this value is returned from the exit routine, the MCF counts the seconds from
00:00:00 on January 1, 1970 to the present time and compares it with the time
specified in the function dc_mcf_execap(). If the present time is later than the
time specified in the function, the MCF immediately starts the pertinent MHP.
Otherwise, the application will be timer-started.

• DCMPSV_UOC_TIME_JUST

If this value is returned from the exit routine, the MCF immediately starts the
pertinent MHP. If this value is to be returned, the application to be immediately
started can be changed in the exit routine. However, change to an MHP for MCF
event processing is not allowed. If the specified new application name is not
defined, ERREVT4 is reported.

If the application name of the UAP to be immediately started by the exit routine
is changed and the application types of the old and new MHPs to be started are
different, the segments to be timer-started are deleted from the output queue, with
the output of a warning message (KFCA10711-W).

• DCMPSV_UOC_TIME_DEQ

If this value is returned from the exit routine, the MCF cancels timer-start. The
segments to be timer-started are deleted from the output queue, with the output of
an information message (KFCA10700-I).

If another value is returned from the exit routine, the segments to be timer-started are

Return value Explanation

DCMPSV_UOC_TIME_CONTINUE Timer-start is inherited.

DCMPSV_UOC_TIME_JUST Immediate start will be in effect.

DCMPSV_UOC_TIME_DEQ Timer-start is canceled.

Function format of the user exit routine that determines whether to inherit the timer-start settings

623

deleted from the output queue, with the output of a warning message (KFCA10710-W).

Notes on creating user exit routines
• Functions available to user exit routines

When creating a user exit routine, you can use only the following functions in a
user exit routine. Note that using any other function may prevent the user exit
routine from operating normally.

• Memory manipulation functions

Data area management (example: malloc, free)

Shared memory management (example: shmctl, shmget, shmop)

Memory manipulation (example: memcpy)

Character string manipulation (example: strcpy)

• Time acquisition functions

• User exit routine errors

When an error is detected in a user exit routine, report the error to the MCF using
the return code prescribed by the MCF. If a process-terminating signal or
abort() is issued in a user exit routine, the MCF terminates abnormally.

• User exit routine execution timing

Execution timing of a user exit routine started by the MCF may not always
synchronize with startup or termination sequence of the OpenTP1 system or UAP.
Create user exit routines so that there is no problem if the user exit routine is
executed before UAP or the user exit routine is called after all UAPs have
terminated.

• Local variable size of user exit routines

Design the local variables to be used in user exit routines so that the total size
within each user exit routine does not exceed 1-kilobyte. In addition, do not issue
a recursive call of a function within a user exit routine.

Structure format of mcf event that reports discarding of a timer-start message (ERREVT4)

624

Structure format of mcf event that reports discarding of a timer-start
message (ERREVT4)

The format of the structure passed as the first segment of the event that reports
discarding of a timer-start message (ERREVT4) is shown below. This structure is
defined in the header file <dcmcf.h>. Include the file <dcmcf.h> with the
#include statement for the MHP which handles the MCF event information. For the
format of MCF event information other than ERREVT4, see the explanation in the
applicable OpenTP1 Protocol manual.

MCF event information common header

ERREVT4 format

Arguments
le_name

The name of the logical terminal where the message was input is set here. In the
following cases, '*' is set here:

• An error occurred in the MHP which was started by the function
dc_mcf_execap() from the SPP.

• In addition to the above error, another error occurred in the MHP which was
started by the function dc_mcf_execap() from the MHP that was started as an
MCF event processing MHP.

struct dc_mcf_evtheader {
 char mcfevt_name[9]; ... MCF event code
 char le_name[16]; ... Input source logical terminal name
 char cn_name[9]; ... Connection name
 unsigned char format_kind; ... Area used by the MCF
 char reserve01; ... Reserved
 DCLONG time; ... Message input time
} ;

struct dc_mcf_evt4_type {
 struct dc_mcf_evtheader evtheader; ... MCF event common
 header
 char reserve01[12]; ... Reserved
 char reserve02[10]; ... Reserved
 char reserve03[2]; ... Reserved
 char ap_name[10]; ... Application name (corresponding to
 timer-start message)
 short reason_code; ... Reason code
} ;

Structure format of mcf event that reports discarding of a timer-start message (ERREVT4)

625

cn_name

The connection name is set here. In the following cases, '*' is set here:

• An error occurred in the MHP which was started by issuing the function
dc_mcf_execap() from the SPP.

• In addition to the above error, another error occurred in the MHP which was
started by issuing the function dc_mcf_execap() from the MHP that was
started as an MCF event processing MHP.

time

The message input time is set here as the number of seconds counted from 00:00:00 on
January 1, 1970.

ap_name

The name of the application which is specified in the timer-started function
dc_mcf_execap() and encountered an error is set here.

reason_code

The ERREVT4 reason code is set here. The reason codes are detailed below.

Reason code in C language
(hexadecimal)

Reason

DCMCF_SCD_ERR (0020) The MHP or SPP could not be activated because of an RPC error
or inactive server.

DCMCF_QUE_BUF_ERR (0030) Since memory became insufficient, data could not be written to
the input queue.

DCMCF_QUE_FIL_OVER (0031) Since the queue file is full, data could not be written to the input
queue.

DCMCF_QUE_LIMIT_OVER (0032) Since the maximum number of storable input messages exceeded
the defined value, data could not be written to the input queue.

DCMCF_QUE_IO_ERR (0033) An error occurred in writing to the input queue.

DCMCF_AP_CLOSE (0040) An MHP application is being shut down.

DCMCF_AP_SECURE (0041) An MHP application is in the secure status.

DCMCF_SERV_CLOSE (0042) An MHP service or service group is being shut down.

DCMCF_SERV_SECURE (0043) An MHP service group is in the secure status.

627

Appendix

A. Using OpenTP1 Remote Procedure Calls and XATMI-interfaced Functions in
Combination

B. Changes to the Interfaces (for Migrating from Version 6 or Earlier)

A. Using OpenTP1 Remote Procedure Calls and XATMI-interfaced Functions in Combination

628

A. Using OpenTP1 Remote Procedure Calls and XATMI-interfaced
Functions in Combination

This appendix explains how to use OpenTP1 inter-process communication (OpenTP1
remote procedure calls and XATMI interface functions).

A.1 Modes of combined use
There are the following modes of combined use:

1. When the machine is an OpenTP1 RPC server and an XATMI interface
communication client

2. When the machine is an XATMI interface communication server and an OpenTP1
RPC client

In mode (1), specify RPC and XATMI interface definitions for one file when creating
a stub, and execute the stbmake command or tpstbmk command.

The figure below shows the modes of combined use of inter-process communication
and the stubs required.

A. Using OpenTP1 Remote Procedure Calls and XATMI-interfaced Functions in Combination

629

Figure A-1: Modes of combined use of inter-process communication and the
stubs required

A.2 Creating stubs of application programs that are used together
This section explains how to create the stubs of UAPs that are called from the function
dc_rpc_call() and call XATMI interface functions (such as tpcall()).

To create the UAP:

1. Create an interface definition file.

For the file to be created, specify the RPC and XATMI interface definitions (for
the client). Suffix the file name with .def.

2. Execute the stbmake command or tpstbmk command.

A. Using OpenTP1 Remote Procedure Calls and XATMI-interfaced Functions in Combination

630

Specify the required arguments for the stbmake command, and execute the
command. Execution of the command creates the declaration files listed below.
xxxxx indicates a character string of an interface definition file name from which
.def is excluded.

• OpenTP1 RPC stub source file (default file name: xxxxx_sstb.c)

• XATMI stub source file (default file name: xxxxx_stbx.c)

• XATMI stub header file (default file name: xxxxx_stbx.h)

If the RPC interface definition and XATMI interface definition coexist, the
XATMI stub source file and XATMI stub header file are created.

3. Compile the stub source files and link them with a UAP.

Compile the source files created in step 2 with the C compiler, and link them with
a UAP.

A.3 Callable XATMI interface functions
The table below lists XATMI interface functions that can be used by an SPP called by
the function dc_rpc_call(). The stubs explained in A.2 Creating stubs of
application programs that are used together must have been linked with the SPP that
called these functions.

Table A-1: XATMI interface functions that can be used by an SPP called by the
function dc_rpc_call()

XATMI interface function Call

tpacall Y

tpadvertise N

tpalloc Y

tpcall Y

tpcancel Y

tpconnect Y

tpdiscon Y

tpgetrply Y

tpfree Y

tprecv Y

tprealloc Y

tpreturn N

A. Using OpenTP1 Remote Procedure Calls and XATMI-interfaced Functions in Combination

631

Legend:

Y: Can be called.

N: Cannot be called.

Note
The tpservice indicates the entity of the service function.

tpsend Y

tpservice N

tptypes Y

tpunadvertise N

XATMI interface function Call

B. Changes to the Interfaces (for Migrating from Version 6 or Earlier)

632

B. Changes to the Interfaces (for Migrating from Version 6 or Earlier)

If you migrate from Version 6 or earlier of TP1/Message Control and the architecture
is not 32-bit, you must check the C language source files. This appendix lists the
changes to the interfaces from when migrating from Version 6 or earlier.

The following table provides an overview by interface of the changes that are
explained in this appendix.

Table B-1: List of changes to the interfaces

Changed interface Reference in the Version 7 manual

Message transmission interfaces dc_mcf_ap_info 2. dc_mcf_ap_info

dc_mcf_ap_info_uoc 2. dc_mcf_ap_info_uoc

dc_mcf_close 2. dc_mcf_close

dc_mcf_commit 2. dc_mcf_commit

dc_mcf_contend 2. dc_mcf_contend

dc_mcf_execap 2. dc_mcf_execap

dc_mcf_mainloop 2. dc_mcf_mainloop

dc_mcf_open 2. dc_mcf_open

dc_mcf_receive 2. dc_mcf_receive

dc_mcf_rollback 2. dc_mcf_rollback

dc_mcf_tempget 2. dc_mcf_tempget

dc_mcf_tempput 2. dc_mcf_tempput

dc_mcf_timer_cancel 2. dc_mcf_timer_cancel

dc_mcf_timer_set 2. dc_mcf_timer_set

User exit routines User exit routine that
determines inheritance of
timer-start messages

8. Function format of the user exit routine
that determines whether to inherit the
timer-start settings

MCF event interfaces 8. Structure format of mcf event that reports
discarding of a timer-start message
(ERREVT4)

Coding example for the MHP
service function

7.3 Coding samples for message exchange
configuration UAPs (MHP)
(2) MHP sample (service function)

B. Changes to the Interfaces (for Migrating from Version 6 or Earlier)

633

The following sections explain the changes to the interfaces between Version 6 or
earlier and Version 7. Changes are indicated by underlines.

B.1 Message transmission interfaces
This section lists the changes to the message transmission interfaces.

(1) dc_mcf_ap_info - Report the application information
(a) ANSI C, C++

(b) K&R C

Version 6 or earlier Version 7

<For 32-bit architecture>
int dc_mcf_ap_info(long flags,
 char *mcfid,
 char *apname,
 struct DC_MCFAPINFO
*apinfo,
 char *resv01,
 long resv02)

int dc_mcf_ap_info(DCLONG flags,
 char *mcfid,
 char *apname,
 struct DC_MCFAPINFO *apinfo,
 char *resv01,
 DCLONG resv02)

<For 64-bit architecture>
int dc_mcf_ap_info(int flags,
 char *mcfid,
 char *apname,
 struct DC_MCFAPINFO
*apinfo,
 char *resv01,
 int resv02)

Version 6 or earlier Version 7

<For 32-bit architecture>
int dc_mcf_ap_info(flags,
 mcfid,
 apname,
 apinfo,
 resv01,
 resv02)
long flags;
char *mcfid;
char *apname;
struct DC_MCFAPINFO *apinfo;
char *resv01;
long resv02;

int dc_mcf_ap_info(flags,
 mcfid,
 apname,
 apinfo,
 resv01,
 resv02)
DCLONG flags;
char *mcfid;
char *apname;
struct DC_MCFAPINFO *apinfo;
char *resv01;
DCLONG resv02;

B. Changes to the Interfaces (for Migrating from Version 6 or Earlier)

634

(c) Arguments whose value is returned from OpenTP1
 apinfo

<For 64-bit architecture>
int dc_mcf_ap_info(flags,
 mcfid,
 apname,
 apinfo,
 resv01,
 resv02)
int flags;
char *mcfid;
char *apname;
struct DC_MCFAPINFO *apinfo;
char *resv01;
int resv02;

Version 6 or earlier Version 7

<For 32-bit architecture>
struct DC_MCFAPINFO {
 char mcf_apinfo[4];
 long mcf_resv00;
 char mcf_ap_name[9];
 char mcf_ap_mcfid[3];
 char mcf_resv01[4];
 long mcf_ap_stat;
 long mcf_ap_type;
 char mcf_sg_name[32];
 long mcf_sg_stat;
 long mcf_sg_hold;
 char mcf_sv_name[32];
 long mcf_sv_stat;
 long mcf_ap_ntmetim;
 long mcf_ap_tempsize;
 long mcf_ap_msgcnt;
 long mcf_ap_trnmode;
 long mcf_ap_quekind;
 char mcf_resv02[72];
 }

struct DC_MCFAPINFO {
 char mcf_apinfo[4];
 DCLONG mcf_resv00;
 char mcf_ap_name[9];
 char mcf_ap_mcfid[3];
 char mcf_resv01[4];
 DCLONG mcf_ap_stat;
 DCLONG mcf_ap_type;
 char mcf_sg_name[32];
 DCLONG mcf_sg_stat;
 DCLONG mcf_sg_hold;
 char mcf_sv_name[32];
 DCLONG mcf_sv_stat;
 DCLONG mcf_ap_ntmetim;
 DCLONG mcf_ap_tempsize;
 DCLONG mcf_ap_msgcnt;
 DCLONG mcf_ap_trnmode;
 DCLONG mcf_ap_quekind;
 char mcf_resv02[72];
 }

Version 6 or earlier Version 7

B. Changes to the Interfaces (for Migrating from Version 6 or Earlier)

635

(2) dc_mcf_ap_info_uoc - Report application information to a user exit routine
(a) ANSI C, C++

(b) K&R C

<For 64-bit architecture>
struct DC_MCFAPINFO {
 char mcf_apinfo[4];
 int mcf_resv00;
 char mcf_ap_name[9];
 char mcf_ap_mcfid[3];
 char mcf_resv01[4];
 int mcf_ap_stat;
 int mcf_ap_type;
 char mcf_sg_name[32];
 int mcf_sg_stat;
 int mcf_sg_hold;
 char mcf_sv_name[32];
 int mcf_sv_stat;
 int mcf_ap_ntmetim;
 int mcf_ap_tempsize;
 int mcf_ap_msgcnt;
 int mcf_ap_trnmode;
 int mcf_ap_quekind;
 char mcf_resv02[72];
 }

Version 6 or earlier Version 7

<For 32-bit architecture>
int dc_mcf_ap_info_uoc(long flags,
 char *apname,
 struct DC_MCFAPINFO_UOC
*apinfo)

int dc_mcf_ap_info_uoc(DCLONG flags,
 char *apname,
 struct
DC_MCFAPINFO_UOC *apinfo)

<For 64-bit architecture>
int dc_mcf_ap_info_uoc(int flags,
 char *apname,
 struct DC_MCFAPINFO_UOC *apinfo)

Version 6 or earlier Version 7

<For 32-bit architecture>
int dc_mcf_ap_info_uoc(flags,apname,
 apinfo)
long flags;
char *apname;
struct DC_MCFAPINFO_UOC *apinfo;

int dc_mcf_ap_info_uoc(flags,apname,
 apinfo)
DCLONG flags;
char *apname;
struct DC_MCFAPINFO_UOC *apinfo;

Version 6 or earlier Version 7

B. Changes to the Interfaces (for Migrating from Version 6 or Earlier)

636

(c) Arguments whose value is returned from OpenTP1
 apinfo

<For 64-bit architecture>
int dc_mcf_ap_info_uoc(flags,apname,
 apinfo)
int flags;
char *apname;
struct DC_MCFAPINFO_UOC *apinfo;

Version 6 or earlier Version 7

<For 32-bit architecture>
struct DC_MCFAPINFO_UOC {
 char mcf_apinfo[4];
 long mcf_resv00;
 char mcf_ap_name[9];
 char mcf_ap_mcfid[3];
 char mcf_resv01[4];
 long mcf_ap_stat;
 long mcf_ap_type;
 long mcf_ap_msgcnt;
 char mcf_sg_name[32];
 long mcf_sg_stat;
 long mcf_sg_hold;
 long mcf_sg_msgcnt;
 char mcf_sv_name[32];
 long mcf_sv_stat;
 long mcf_ap_ntmetim;
 long mcf_ap_tempsize;
 long mcf_ap_max_msgcnt;
 long mcf_ap_trnmode;
 long mcf_ap_quekind;
 char mcf_resv02[64];
 };

struct DC_MCFAPINFO_UOC {
 char mcf_apinfo[4];
 DCLONG mcf_resv00;
 char mcf_ap_name[9];
 char mcf_ap_mcfid[3];
 char mcf_resv01[4];
 DCLONG mcf_ap_stat;
 DCLONG mcf_ap_type;
 DCLONG mcf_ap_msgcnt;
 char mcf_sg_name[32];
 DCLONG mcf_sg_stat;
 DCLONG mcf_sg_hold;
 DCLONG mcf_sg_msgcnt;
 char mcf_sv_name[32];
 DCLONG mcf_sv_stat;
 DCLONG mcf_ap_ntmetim;
 DCLONG mcf_ap_tempsize;
 DCLONG mcf_ap_max_msgcnt;
 DCLONG mcf_ap_trnmode;
 DCLONG mcf_ap_quekind;
 char mcf_resv02[64];
 };

Version 6 or earlier Version 7

B. Changes to the Interfaces (for Migrating from Version 6 or Earlier)

637

(3) dc_mcf_close - Close the MCF environment
(a) ANSI C, C++

(b) K&R C

<For 64-bit architecture>
struct DC_MCFAPINFO_UOC {
 char mcf_apinfo[4];
 int mcf_resv00;
 char mcf_ap_name[9];
 char mcf_ap_mcfid[3];
 char mcf_resv01[4];
 int mcf_ap_stat;
 int mcf_ap_type;
 int mcf_ap_msgcnt;
 char mcf_sg_name[32];
 int mcf_sg_stat;
 int mcf_sg_hold;
 int mcf_sg_msgcnt;
 char mcf_sv_name[32];
 int mcf_sv_stat;
 int mcf_ap_ntmetim;
 int mcf_ap_tempsize;
 int mcf_ap_max_msgcnt;
 int mcf_ap_trnmode;
 int mcf_ap_quekind;
 char mcf_resv02[64];
 };

Version 6 or earlier Version 7

<For 32-bit architecture>
void dc_mcf_close(long flags) void dc_mcf_close(DCLONG flags)

<For 64-bit architecture>
void dc_mcf_close(int flags)

Version 6 or earlier Version 7

<For 32-bit architecture>
void dc_mcf_close(flags)
long flags;

void dc_mcf_close(flags)
DCLONG flags;

<For 64-bit architecture>
void dc_mcf_close(flags)
int flags;

Version 6 or earlier Version 7

B. Changes to the Interfaces (for Migrating from Version 6 or Earlier)

638

(4) dc_mcf_commit - Commit an MHP
(a) ANSI C, C++

(b) K&R C

(5) dc_mcf_contend - Terminate continuous-inquiry response processing
(a) ANSI C, C++

(b) K&R C

Version 6 or earlier Version 7

<For 32-bit architecture>
int dc_mcf_commit(long action) int dc_mcf_commit(DCLONG action)

<For 64-bit architecture>
int dc_mcf_commit(int action)

Version 6 or earlier Version 7

<For 32-bit architecture>
int dc_mcf_commit(action)
long action;

int dc_mcf_commit(action)
DCLONG action;

<For 64-bit architecture>
int dc_mcf_commit(action)
int action;

Version 6 or earlier Version 7

<For 32-bit architecture>
int dc_mcf_contend(long action,
 char *resv01)

int dc_mcf_contend(DCLONG action,
 char *resv01)

<For 64-bit architecture>
int dc_mcf_contend(int action,
 char *resv01)

Version 6 or earlier Version 7

<For 32-bit architecture>
int dc_mcf_contend(action,resv01)
long action;
char *resv01;

int dc_mcf_contend(action,resv01)
DCLONG action;
char *resv01;

<For 64-bit architecture>
int dc_mcf_contend(action,resv01)
int action;
char *resv01;

B. Changes to the Interfaces (for Migrating from Version 6 or Earlier)

639

(6) dc_mcf_execap - Activate an application program
(a) ANSI C, C++

(b) K&R C

Version 6 or earlier Version 7

<For 32-bit architecture>
int dc_mcf_execap(long action,
 long commform,
 char *resv01,
 long active,
 char *apnam,
 char *comdata,
 long cdataleng)

int dc_mcf_execap(DCLONG action,
 DCLONG commform,
 char *resv01,
 DCLONG active,
 char *apnam,
 char *comdata,
 DCLONG cdataleng)

<For 64-bit architecture>
int dc_mcf_execap(int action,
 int commform,
 char *resv01,
 int active,
 char *apnam,
 char *comdata,
 int cdataleng)

Version 6 or earlier Version 7

<For 32-bit architecture>
int dc_mcf_execap(action,commform,
 resv01,active,apnam,
 comdata,cdataleng)
long action;
long commform;
char *resv01;
long active;
char *apnam;
char *comdata;
long cdataleng;

int dc_mcf_execap(action,commform,
 resv01,active,apnam,
 comdata,cdataleng)
DCLONG action;
DCLONG commform;
char *resv01;
DCLONG active;
char *apnam;
char *comdata;
DCLONG cdataleng;

<For 64-bit architecture>
int dc_mcf_execap(action,commform,
 resv01,active,apnam,
 comdata,cdataleng)
int action;
int commform;
char *resv01;
int active;
char *apnam;
char *comdata;
int cdataleng;

B. Changes to the Interfaces (for Migrating from Version 6 or Earlier)

640

(7) dc_mcf_mainloop - Start an MHP service
(a) ANSI C, C++

(b) K&R C

(8) dc_mcf_open - Open the MCF environment
(a) ANSI C, C++

(b) K&R C

Version 6 or earlier Version 7

<For 32-bit architecture>
int dc_mcf_mainloop(long flags) int dc_mcf_mainloop(DCLONG flags)

<For 64-bit architecture>
int dc_mcf_mainloop(int flags)

Version 6 or earlier Version 7

<For 32-bit architecture>
int dc_mcf_mainloop(flags)
long flags;

int dc_mcf_mainloop(flags)
DCLONG flags;

<For 64-bit architecture>
int dc_mcf_mainloop(flags)
int flags;

Version 6 or earlier Version 7

<For 32-bit architecture>
int dc_mcf_open(long flags) int dc_mcf_open(DCLONG flags)

<For 64-bit architecture>
int dc_mcf_open(int flags)

Version 6 or earlier Version 7

<For 32-bit architecture>
int dc_mcf_open(flags)
long flags;

int dc_mcf_open(flags)
DCLONG flags;

<For 64-bit architecture>
int dc_mcf_open(flags)
int flags;

B. Changes to the Interfaces (for Migrating from Version 6 or Earlier)

641

(9) dc_mcf_receive - Receive a message
(a) ANSI C, C++

(b) K&R C

Version 6 or earlier Version 7

<For 32-bit architecture>
int dc_mcf_receive(long action,
 long commform,
 char *termnam,
 char *resv01,
 char *recvdata,
 long *rdataleng,
 long inbufleng,
 long *time)

int dc_mcf_receive(DCLONG action,
 DCLONG commform,
 char *termnam,
 char *resv01,
 char *recvdata,
 DCLONG *rdataleng,
 DCLONG inbufleng,
 DCLONG *time)

<For 64-bit architecture>
int dc_mcf_receive(int action,
 int commform,
 char *termnam,
 char *resv01,
 char *recvdata,
 int *rdataleng,
 int inbufleng,
 int *time)

Version 6 or earlier Version 7

<For 32-bit architecture>
int dc_mcf_receive(action,commform,
 termnam,resv01,
 recvdata,rdataleng,
 inbufleng,time)
long action;
long commform;
char *termnam;
char *resv01;
char *recvdata;
long *rdataleng;
long inbufleng;
long *time;

int dc_mcf_receive(action,commform,
 termnam,resv01,
 recvdata,rdataleng,
 inbufleng,time)
DCLONG action;
DCLONG commform;
char *termnam;
char *resv01;
char *recvdata;
DCLONG *rdataleng;
DCLONG inbufleng;
DCLONG *time;

B. Changes to the Interfaces (for Migrating from Version 6 or Earlier)

642

(10) dc_mcf_rollback - Enable MHP rollback
(a) ANSI C, C++

(b) K&R C

(11) dc_mcf_tempget - Accept temporarily-stored data
(a) ANSI C, C++

<For 64-bit architecture>
int dc_mcf_receive(action,commform,
 termnam,resv01,
 recvdata,rdataleng,
 inbufleng,time)
int action;
int commform;
char *termnam;
char *resv01;
char *recvdata;
int *rdataleng;
int inbufleng;
int *time;

Version 6 or earlier Version 7

<For 32-bit architecture>
int dc_mcf_rollback(long action) int dc_mcf_rollback(DCLONG action)

<For 64-bit architecture>
int dc_mcf_rollback(int action)

Version 6 or earlier Version 7

<For 32-bit architecture>
int dc_mcf_rollback(action)
long action;

int dc_mcf_rollback(action)
DCLONG action;

<For 64-bit architecture>
int dc_mcf_rollback(action)
int action;

Version 6 or earlier Version 7

<For 32-bit architecture>
int dc_mcf_tempget(long action,
 char *getdata,
 long gtempleng,
 long *gdataleng,
 char *resv01)

int dc_mcf_tempget(DCLONG action,
 char *getdata,
 DCLONG gtempleng,
 DCLONG *gdataleng,
 char *resv01)

Version 6 or earlier Version 7

B. Changes to the Interfaces (for Migrating from Version 6 or Earlier)

643

(b) K&R C

(12) dc_mcf_tempput - Update temporarily-stored data
(a) ANSI C, C++

<For 64-bit architecture>
int dc_mcf_tempget(int action,
 char *getdata,
 int gtempleng,
 int *gdataleng,
 char *resv01)

Version 6 or earlier Version 7

<For 32-bit architecture>
int dc_mcf_tempget(action,getdata,
 gtempleng,gdataleng,
 resv01)
long action;
char *getdata;
long gtempleng;
long *gdataleng;
char *resv01;

int dc_mcf_tempget(action,getdata,
 gtempleng,gdataleng,
 resv01)
DCLONG action;
char *getdata;
DCLONG gtempleng;
DCLONG *gdataleng;
char *resv01;

<For 64-bit architecture>
int dc_mcf_tempget(action,getdata,
 gtempleng,gdataleng,
 resv01)
int action;
char *getdata;
int gtempleng;
int *gdataleng;
char *resv01;

Version 6 or earlier Version 7

<For 32-bit architecture>
int dc_mcf_tempput(long action,
 char *putdata,
 long pdataleng,
 char *resv01)

int dc_mcf_tempput(DCLONG action,
 char *putdata,
 DCLONG pdataleng,
 char *resv01)

<For 64-bit architecture>
int dc_mcf_tempput(int action,
 char *putdata,
 int pdataleng,
 char *resv01)

Version 6 or earlier Version 7

B. Changes to the Interfaces (for Migrating from Version 6 or Earlier)

644

(b) K&R C

(13) dc_mcf_timer_cancel - Cancel user timer monitoring
(a) ANSI C, C++

(b) K&R C

Version 6 or earlier Version 7

<For 32-bit architecture>
int dc_mcf_tempput(action,putdata,
 pdataleng,resv01)
long action;
char *putdata;
long pdataleng;
char *resv01;

int dc_mcf_tempput(action,putdata,
 pdataleng,resv01)
DCLONG action;
char *putdata;
DCLONG pdataleng;
char *resv01;

<For 64-bit architecture>
int dc_mcf_tempput(action,putdata,
 pdataleng,resv01)
int action;
char *putdata;
int pdataleng;
char *resv01;

Version 6 or earlier Version 7

<For 32-bit architecture>
int dc_mcf_timer_cancel(long flags,
 long timer_id,
 char *lename)

int dc_mcf_timer_cancel(DCLONG flags,
 DCLONG timer_id,
 char *lename)

<For 64-bit architecture>
int dc_mcf_timer_cancel(int flags,
 int timer_id,
 char *lename)

Version 6 or earlier Version 7

<For 32-bit architecture>
int dc_mcf_timer_cancel(flags,
 timer_id,
 lename)
long flags;
long timer_id;
char *lename;

int dc_mcf_timer_cancel(flags,
 timer_id,
 lename)
DCLONG flags;
DCLONG timer_id;
char *lename;

<For 64-bit architecture>
int dc_mcf_timer_cancel(flags,
 timer_id,
 lename)
int flags;
int timer_id;
char *lename;

B. Changes to the Interfaces (for Migrating from Version 6 or Earlier)

645

(14) dc_mcf_timer_set - Set user timer monitoring
(a) ANSI C, C++

(b) K&R C

Version 6 or earlier Version 7

<For 32-bit architecture>
int dc_mcf_timer_set(long flags,
 long timer,
 long timer_id,
 char *lename,
 char *apname,
 char *data,
 long data_leng,
 long resv01,
 long resv02)

int dc_mcf_timer_set(DCLONG flags,
 DCLONG timer,
 DCLONG timer_id,
 char *lename,
 char *apname,
 char *data,
 DCLONG data_leng,
 DCLONG resv01,
 DCLONG resv02)

<For 64-bit architecture>
int dc_mcf_timer_set(int flags,
 int timer,
 int timer_id,
 char *lename,
 char *apname,
 char *data,
 int data_leng,
 int resv01,
 int resv02)

Version 6 or earlier Version 7

<For 32-bit architecture>
int dc_mcf_timer_set(flags,timer,
 timer_id,lename,
 apname,data,data_leng,
 resv01,resv02)
long flags;
long timer;
long timer_id;
char *lename;
char *apname;
char *data;
long data_leng;
long resv01;
long resv02;

int dc_mcf_timer_set(flags,timer,
 timer_id,lename,apname,
 data,data_leng,resv01,
 resv02)
DCLONG flags;
DCLONG timer;
DCLONG timer_id;
char *lename;
char *apname;
char *data;
DCLONG data_leng;
DCLONG resv01;
DCLONG resv02;

B. Changes to the Interfaces (for Migrating from Version 6 or Earlier)

646

B.2 User exit routines
This section lists the changes to user exit routines.

(1) User exit routine that determines inheritance of timer-start messages
(a) Format

ANSI C, C++

K&R C

<For 64-bit architecture>
int dc_mcf_timer_set(flags,timer,
 timer_id,lename,
 apname,data,data_leng,
 resv01,resv02)
int flags;
int timer;
int timer_id;
char *lename;
char *apname;
char *data;
int data_leng;
int resv01;
int resv02;

Version 6 or earlier Version 7

<For 32-bit architecture>
long uoc_func(dcmpsv_uoc_rtime *parm) DCLONG uoc_func(dcmpsv_uoc_rtime *parm)

<For 64-bit architecture>
int uoc_func(dcmpsv_uoc_rtime *parm)

Version 6 or earlier Version 7

<For 32-bit architecture>
long uoc_func(parm)
dcmpsv_uoc_rtime *parm ;

DCLONG uoc_func(parm)
dcmpsv_uoc_rtime *parm ;

<For 64-bit architecture>
int uoc_func(parm)
dcmpsv_uoc_rtime *parm ;

Version 6 or earlier Version 7

B. Changes to the Interfaces (for Migrating from Version 6 or Earlier)

647

(b) Parameters
Contents of dcmpsv_uoc_rtime

B.3 MCF event interfaces
This section lists the changes to the MCF event interfaces.

(1) Structure format of MCF event that reports discarding of a timer-start
message (ERREVT4)

(a) Format of the common header for MCF event information

Version 6 or earlier Version 7

<For 32-bit architecture>
typedef struct {char le_name[9];
 char reserve1[7];
 char ap_name[9];
 char reserve2[7];
 long exec_time;
 char ap_type;
 char time_type;
 char reserve3[26];
 } dcmpsv_uoc_rtime;

typedef struct {char le_name[9];
 char reserve1[7];
 char ap_name[9];
 char reserve2[7];
 DCLONG exec_time;
 char ap_type;
 char time_type;
 char reserve3[26];
 } dcmpsv_uoc_rtime;

<For 64-bit architecture>
typedef struct {char le_name[9];
 char reserve1[7];
 char ap_name[9];
 char reserve2[7];
 int exec_time;
 char ap_type;
 char time_type;
 char reserve3[26];
 } dcmpsv_uoc_rtime;

Version 6 or earlier Version 7

<For 32-bit architecture>
struct dc_mcf_evtheader {
 char mcfevt_name[9] ;
 char le_name[16] ;
 char cn_name[9] ;
 unsigned char format_kind;
 char reserve01;
 long time ;
 };

struct dc_mcf_evtheader {
 char mcfevt_name[9] ;
 char le_name[16] ;
 char cn_name[9] ;
 unsigned char format_kind;
 char reserve01;
 DCLONG time ;
 };

B. Changes to the Interfaces (for Migrating from Version 6 or Earlier)

648

B.4 Coding example for the MHP service function
This section lists the changes to the example of creating a user application program.
The changes are indicated by underlines.

 10 /*
 20 * MHP service function
 30 */
 40 #include <stdio.h>
 50 #include <sys/types.h>
 60 #include <dcmcf.h>
 70 #include <dcrpc.h>
 80
 90 void svrA()
100 {
110 DCLONG action ;
120 DCLONG commform ;
130 DCLONG opcd ;
140 DCLONG active ;
150 char recvdata [1024] ;
160 DCLONG rdataleng ;
170 DCLONG time ;
180 DCLONG inbufleng ;
190 int rtn_cod ;
200 DCLONG cdataleng ;
210 char termnam [10] ;
220 static char execdata [32] = " SVRA EXECAP DATA" ;
230 static char senddata [32] = " SVRA REPLY DATA1" ;
240 static char resv01 [9] = "\0" ;
250 static char resv02 [9] = "\0" ;
260 static char resv03 [9] = "\0" ;
270 static char apnam [9] = "aprepB" ;
280
290 printf("***** UAP START *****\n") ;
300
310 printf("***** MCF RECEIVE *****\n") ;
320 /*

<For 64-bit architecture>
struct dc_mcf_evtheader {
 char mcfevt_name[9] ;
 char le_name[16] ;
 char cn_name[9] ;
 unsigned char format_kind;
 char reserve01;
 int time ;
 };

Version 6 or earlier Version 7

B. Changes to the Interfaces (for Migrating from Version 6 or Earlier)

649

330 * MCF- RECEIVE (receive messages)
340 */
350 action = DCMCFFRST ;
360 commform = DCNOFLAGS ;
370 inbufleng = sizeof(recvdata) ;
380 rtn_cod = dc_mcf_receive(action, commform, termnam,
resv01,
390 recvdata, &rdataleng, inbufleng, &time) ;
400 if(rtn_cod != DCMCFRTN_00000) {
410 /*
420 * MCF- ROLLBACK (error processing)
430 */
440 printf("dc_mcf_receive failed !! CODE = %d \n", rtn_cod)
;
450 rtn_cod = dc_mcf_rollback(DCMCFNRTN) ;
460 }
470
480 printf("***** MCF EXECAP *****\n") ;
490 /*
500 * MCF-EXECAP (start the application program)
510 */
520 action = DCMCFEMI | DCMCFJUST ;
530 commform = DCNOFLAGS ;
540 active = 0 ;
550 cdataleng = 16 ;
560 rtn_cod = dc_mcf_execap(action, commform, resv01,
active,
570 apnam, comdata, cdataleng) ;
580 if(rtn_cod != DCMCFRTN_00000) {
590 /*
600 * MCF- ROLLBACK (error processing)
610 */
620 printf("dc_mcf_execap failed !! CODE = %d \n", rtn_cod)
;
630 rtn_cod = dc_mcf_rollback(DCMCFNRTN) ;
640 }
650
660 printf("***** MCF REPLY *****\n") ;
670 /*
680 * MCF-REPLY (send a response message)
690 */
700 action = DCMCFEMI ;
710 commform = DCNOFLAGS ;
720 opcd = DCNOFLAGS ;
730 cdataleng = 16 ;
740 rtn_cod = dc_mcf_reply(action, commform, resv01,
resv02,
750 senddata, cdataleng, resv03, opcd) ;

B. Changes to the Interfaces (for Migrating from Version 6 or Earlier)

650

760 if(rtn_cod != DCMCFRTN_00000) {
770 /*
780 * MCF- ROLLBACK (error processing)
790 */
800 printf("dc_mcf_reply failed !! CODE = %d \n", rtn_cod) ;
810 rtn_cod = dc_mcf_rollback(DCMCFNRTN) ;
820 }
830 }

651

Index

Symbols
.def 56

A
abbreviations for products iii
acquiring

acceptance status for server-type connection
establishment request 289
connection status 274
descriptor of asynchronous response-type RPC
request which has encountered error 350
logical terminal status 284
MCF communication service status 280
node address of client UAP 348
node address of gateway 352
node identifier 101
node identifier of local node 103
real-time statistical information for arbitrary
section 374
status of OpenTP1 node 95
status of specified OpenTP1 node 89
status of specified user server 104
status of user server 111
TAM table information 405
TAM table status 385
user journal 173
user-specific performance verification
trace 299

acronyms viii
ANSI C 30, 68
application activation, reference for 619
application program

activating 216
coding 2
compiling and linking 44
creating 1, 33, 47
environment variable for 66
executing 63

note on creating 537
relationship between function and 2
starting 63
terminating 63

application programming interface, X/Open-
compliant 443
argument

data type of 68
whose value is passed from client UAP 68
whose value is returned from OpenTP1 68
whose value is returned from server UAP 68
whose value is set in UAP 68

array 562
association operation 526
association operation function 526
attribute 551
attribute configuration language 564
audit log data, outputting 183, 184

B
bind mode 31
boolean type 559
byte type 559

C
C language 30
C++ language 30, 68
called_servers statement 51
canceling

call descriptor for outstanding reply 463
input of TAM table record 398
user timer monitoring 268

CGW 41
chained mode

enabling commitment in 418
enabling rollback 421

character string 563
character type 558

Index

652

client environment definition, template of 536
client program 535
client stub 536
client/server configuration UAP, coding sample
for 574, 580
closing

internode shared table 164
logical file 116
MCF environment 210
physical file 130
set of resource managers 505
TAM table 378

coding
application program 2
note on 30

coding rule 30
coding sample 573

client/server configuration UAP 574, 580
message exchange configuration UAP 585
X/Open-compliant UAP 589

committing
global transaction 507
MHP 211

communication event
format of 529
format of receiving 529
processing SPP 529
structure of 529

compiling 44
application program 44

constant declaration 545
constant name 32
conventions

abbreviations for products iii
acronyms viii
diagrams x
fonts and symbols xi
KB, MB, GB, and TB xiii
permitted characters xii
version numbers xiii

conversational service paradigm sample 596
correspondence between service name and application
name 77
creating

application program 1, 33, 47
DCRPC_BINDING_TBL structure 336
interface definition language file 538
main and service function 70
main function 71
MHP 37
service function 73, 77
source file of stub 43
SPP 34
stub 40, 41, 49
stub for XATMI interface 49
stub of application programs to be used
together 629
stub source file for XATMI interface 57, 58
SUP 33
UAP that handles offline work 40
XATMI interface stub OSI TP
communication 60
XATMI-interfaced application program 47

D
DAM access facility 45
DAM file service 113
data type 557

argument 68
data types that can be used as types 52

list of 52
dc_adm_call_command 80
dc_adm_complete 84
dc_adm_get_nd_status 89
dc_adm_get_nd_status_begin 92
dc_adm_get_nd_status_done 94
dc_adm_get_nd_status_next 95
dc_adm_get_node_id 103
dc_adm_get_nodeconf_begin 98
dc_adm_get_nodeconf_done 100
dc_adm_get_nodeconf_next 101
dc_adm_get_sv_status 104
dc_adm_get_sv_status_begin 107
dc_adm_get_sv_status_done 110
dc_adm_get_sv_status_next 111
dc_adm_status 86
dc_dam_bseek 114
dc_dam_close 116

Index

653

dc_dam_create 118
dc_dam_dget 121
dc_dam_dput 123
dc_dam_end 125
dc_dam_get 126
dc_dam_hold 128
dc_dam_iclose 130
dc_dam_iopen 132
dc_dam_open 134
dc_dam_put 139
dc_dam_read 141
dc_dam_release 147
dc_dam_rewrite 150
dc_dam_start 154
dc_dam_status 155
dc_dam_write 159
dc_ist_close 164
dc_ist_open 165
dc_ist_read 167
dc_ist_write 169
dc_jnl_ujput 173
dc_lck_get 176
dc_lck_release_all 179
dc_lck_release_byname 181
dc_log_audit_print 184
dc_log_notify_close 435
dc_log_notify_open 436
dc_log_notify_receive 438
dc_log_notify_send 440
dc_logprint 190
dc_mcf_adltap 195
dc_mcf_ap_info 198
dc_mcf_ap_info_uoc 204
dc_mcf_close 210
dc_mcf_commit 211
dc_mcf_contend 214
dc_mcf_execap 216
dc_mcf_mainloop 224
dc_mcf_open 225
dc_mcf_receive 227
dc_mcf_recvsync 232
dc_mcf_reply 233
dc_mcf_resend 234
dc_mcf_rollback 235

dc_mcf_send 237
dc_mcf_sendrecv 238
dc_mcf_sendsync 239
dc_mcf_tactcn 240
dc_mcf_tactle 245
dc_mcf_tdctcn 249
dc_mcf_tdctle 254
dc_mcf_tdlqle 258
dc_mcf_tempget 262
dc_mcf_tempput 265
dc_mcf_timer_cancel 268
dc_mcf_timer_set 270
dc_mcf_tlscn 274
dc_mcf_tlscom 280
dc_mcf_tlsle 284
dc_mcf_tlsln 289
dc_mcf_tofln 293
dc_mcf_tonln 295
dc_prf_get_trace_num 298
dc_prf_utrace_put 299
dc_rap_connect 302
dc_rap_disconnect 305
dc_rpc_call 308
dc_rpc_call_to 328
dc_rpc_close 341
dc_rpc_cltsend 342
dc_rpc_discard_further_replies 345
dc_rpc_discard_specific_reply 346
dc_rpc_get_callers_address 348
dc_rpc_get_error_descriptor 350
dc_rpc_get_gateway_address 352
dc_rpc_get_service_prio 354
dc_rpc_get_watch_time 355
dc_rpc_mainloop 356
dc_rpc_open 358
dc_rpc_poll_any_replies 360
dc_rpc_service_retry 368
dc_rpc_set_service_prio 370
dc_rpc_set_watch_time 372
dc_rts_utrace_put 374
dc_tam_close 378
dc_tam_delete 380
dc_tam_get_inf 385
dc_tam_open 387

Index

654

dc_tam_read 391
dc_tam_read_cancel 398
dc_tam_rewrite 401
dc_tam_status 405
dc_tam_write 410
dc_trn_begin 416
dc_trn_chained_commit 418
dc_trn_chained_rollback 421
dc_trn_info 424
dc_trn_unchained_commit 425
dc_trn_unchained_rollback 427
dc_uto_test_status 430
dc_xat_connect 527
DCCONFPATH 66
DCDIR 66
DCRPC_BINDING_TBL structure, creating 336
DCRPC_BINDTBL_SET 336
DCRPC_DIRECT_SCHEDULE 336
DCSVGNAME 66
DCSVNAME 66
DCUAPCONFPATH 66
dcxat.h 529
deleting

application timer start request 195
logical terminal output queue 258
TAM table record 380

diagram conventions x

E
enabling

commitment in chained mode 418
commitment in unchained mode 425
locking resource 176
MHP rollback 235
rollback in chained mode 421
rollback in unchained mode 427

entry 42
entry point 42
entry point name 42
environment variable 66
ERREVT4 624
error status type 560
establishing

association 527

connection 240
connection with RAP-processing listener 302
conversational service connection 465

executing
application program 63
operation command 80

execution environment setup for UAP, method of 73
external variable name 31

F
facilities and functions 7

available with MHP 19
available with SPP 12
available with SUP 7
available with UAP that handles offline
work 29

facility
correspondence between function and 444
correspondence between library function
and 2
relationship between X/Open-compliant
function and 444

file name that can be input and output 44, 60, 62
file to be linked to

MHP that dynamically loads service
function 46
SPP and MHP 45
SPP that dynamically loads service
function 46
SUP 46
UAP that handles offline work 46

floating-point type 558
font conventions xi
format

communication event 529
for explaining function 68
interface definition 539
receiving communication event 529

function
format for explaining 68
relationship between application program
and 2
used to maintain status of online tester from
user server 429

Index

655

X/Open-compliant 444
function names and facilities, list of 2

G
GB meaning xiii
global transaction, rolling back 514

H
header file 536

I
IDL compiler 534, 565
IDL file 534, 536
IDL-only TxRPC 608

using 534
import declaration 544
in attribute 554
integer type 558
inter-application communication, X/Open-
compliant 533
interface definition body 539, 544
interface definition header 539, 542
interface definition language file 534, 536

creating 538
interface definition, format of 539
internode shared table

closing 164
inputting record of 167
opening 165
outputting record of 169

ISAM facility 45
IST service 163

K
K&R format 30, 68
KB meaning xiii

L
library function 2, 67

correspondence between facility and 2
syntax of 67

linking 44
application program 44

object file for non-Hitachi resource
manager 45

lock for resource 175
logical file

closing 116
opening 134
referencing status of 155
releasing, from shutdown state 147
shutting down 128

logical file block
inputting 141
outputting 159
updating 150

logical terminal, shutting down 254

M
main function 71

creating 70, 71
manager program 536
MB meaning xiii
MCF environment

closing 210
opening 225

MCF event that reports discarding of timer-start
message, structure format of 624
message

resending 234
message exchange configuration UAP, coding sample
for 585
message exchange facility 45
message exchange processing 193
message log

note on receiving 434
outputting 189
receiving 434
reporting 434

message queuing 45
message, receiving 227
MHP 40

creating 37
facilities and functions available with 19
that dynamically loads service function, file to
be linked to 46

MHP service, starting 224

Index

656

multi-language type 560
multinode facility 88

N
naming conventions 57
naming, note on 31
notes

coding 30
creating application program 537
naming 31, 537
receiving message log 434
service function processing 74, 77

O
object file, linking for non-Hitachi resource
manager 45
online tester management 429
opening

internode shared table 165
logical file 134
MCF environment 225
physical file 132
set of resource managers 512
TAM table 387

OpenTP1 IDL-only TxRPC restriction 540
OpenTP1 UAP, relationship between X/Open-
compliant function and 445
operating environment 64
operation declaration 547
out attribute 554
outputting

audit log data 184
message log 190

P
parameter declaration 548
performance verification trace 297
permitted character conventions xii
physical file

allocating 118
closing 130
opening 132

physical file block

inputting 126
inputting directly 121
outputting 139
outputting directly 123
seeking 114

pointer 563
pointer attribute 555
pointer_default attribute 552
preparing TxRPC communication 534

R
real-time statistical information service 373
receiving

message in conversational connection 480
message log 438
processing result in asynchronous mode 360
synchronous message 232

referencing
schedule priority of service request 354
service response waiting interval 355

rejecting
acceptance of particular processing result 346
receiving of processing result 345

releasing
all resources from lock 179
connection 249
connection with RAP-processing listener 305
logical terminal from shutdown status 245
resource from lock specified by name 181

remote API facility 301
remote procedure call 307
remote service

requesting 308
with communication destination specified,
invoking 328

reply from previous service request, getting 473
reporting

application information 198
application information to user exit
routine 204
completion of user server start processing 84
data to CUP unidirectionally 342
information about current transaction 424

Index

657

sequential number for acquired performance
verification trace 298
status of user server 86
test status of user server 430

request/response service paradigm sample 589
restriction on OpenTP1 IDL-only TxRPC 540
return value 68
returning

from service routine 485
global transaction information 510

RPC interface definition 42
RPC interface definition file 42

creating 42
name of 43

S
sending

message 237
message in conversational connection 490
response message 233
service request 449
service request and synchronously awaiting its
reply 457
synchronous message 239
user-kept message log 440

server program, template of 536
server stub 536
server_type operand 526
service 55
service function

creating 70, 73, 77
relationship between transaction and 75
retrying 368

service function name 31
service function processing, note on 74, 77
service name

advertising 453
correspondence between application name
and 77
unadvertising 499

set of resource managers
closing 505
opening 512

setting

commit_return characteristic 517
schedule priority of service request 370
transaction_control characteristic 520
transaction_timeout characteristic 522
user timer monitoring 270

signal 65
source file name 43
SPP 40

creating 34
facilities and functions available with 12
that dynamically loads service function, file to
be linked to 46

SPP and MHP
file to be linked to 45
starting and terminating 63

SPP service, starting 356
starting

accepting server-type connection
establishment request 295
acquiring node identifier 98
acquiring status of OpenTP1 node 92
acquiring status of user server 107
application program 358
message log reception 436
MHP service 224
SPP service 356
transaction 416
UAP 63
using unrecoverable DAM file 154

starting and terminating
SPP and MHP 63
SUP 63
UAP that handles offline work 64

stbmake 43, 44, 49, 58, 60, 628
stopping accepting server-type connection
establishment request 293
structure 561

communication event 529
structure format of MCF event that reports discarding
of timer-start message 624
stub 40

application program requiring 41
creating 40, 41, 49, 629
creating source file of 43, 57

Index

658

creating, for XATMI interface 49
for XATMI 57
modifying 41

SUP 40
creating 33
facilities and functions available with 7
file to be linked to 46
starting and terminating 63

symbol conventions xi
synchronous message, exchanging 238
syntax of OpenTP1 library function 67
system operation management 79

T
TAM access facility 45
TAM file service 377
TAM table

closing 378
opening 387

TAM table record
adding 410
inputting 391

TB meaning xiii
template

for service routine 494
of client environment definition 536
of server program 536
of user service definition 536

temporary-stored data, accepting 262
terminating

acquiring node identifier 100
acquiring status of OpenTP1 node 94
acquiring status of user server 110
application program 341
continuous-inquiry-response processing 214
conversational service connection
abortively 469
message log reception 435
UAP 63
using unrecoverable DAM file 125

termination method 32
TP1/Message Control, when using 32
tpacall 449
tpadvertise 453

tpalloc 455
tpcall 457
tpcancel 463
tpconnect 465
tpdiscon 469
tpfree 471
tpgetrply 473
tprealloc 478
tprecv 480
tpreturn 485
tpsend 490
tpservice 494
tpstbmk 49, 60, 62, 628
tptypes 497
tpunadvertise 499
transaction

beginning 502
relationship between service function and 75

transaction_control 415
transaction_mandatory attribute 553
transaction_optional attribute 554
trnmkobj command 45
TX interface sample 605
TX-interfaced application programming
interface 501
tx_begin 502
tx_close 505
tx_commit 507
tx_info 510
tx_open 512
tx_rollback 514
tx_set_commit_return 517
tx_set_transaction_control 520
tx_set_transaction_timeout 522
txidl command 534
TxRPC communication, preparing 534
TxRPC error code 571
TxRPC example 608
type declaration 546
type declarator 562
typed buffer 51

allocating 455
changing size of 478
determining information about 497

Index

659

freeing 471

U
UAP shared library 41
UAP signals set by OpenTP1, list of 65
UAP that handles offline work

creating 40
facilities and functions available with 29
file to be linked to 46
starting and terminating 64

UAP that uses XATMI interface 47
unchained mode

enabling commitment in 425
enabling rollback in 427

updating
service response waiting interval 372
TAM table record 410
TAM table record on assumption of input 401
temporary-stored data 265

user exit routine that determines whether to inherit
timer-start settings, function format of 620
user header file 536
user journal acquisition 172
user server test status, reporting 45
user service definition

of SPP for communication event 526
template of 536

using
IDL-only TxRPC 534
OpenTP1 remote procedure call and XATMI-
interfaced function together 628

V
version attribute 552
version number conventions xiii
void type 559

W
Windows, when using 32

X
X/Open-compliant

application programming interface 443

function 444
inter-application communication 533

X/Open-compliant function
correspondence between facility and 444
relationship between facility and 444
relationship between OpenTP1 UAP function
and 445

X/Open-compliant UAP, coding sample for 589
X_C_TYPE 53
X_COMMON 52
X_OCTET 52
xat_aso_con_event_svcname operand 529
xat_aso_discon_event_svcname operand 529
xat_aso_failure_event_svcname operand 529
XATMI communication service definition 529
XATMI interface 628
XATMI interface definition 50, 51
XATMI interface definition file 49

name of 56
suffix indicating 56

XATMI interface sample 589
XATMI stub copy file 58
XATMI stub header file 57
XATMI stub source file 57
XATMI-interfaced application programming
interface 448

Reader’s Comment Form
We would appreciate your comments and suggestions on this manual. We will use
these comments to improve our manuals. When you send a comment or suggestion,
please include the manual name and manual number. You can send your comments
by any of the following methods:

• Send email to your local Hitachi representative.
• Send email to the following address:

 WWW-mk@itg.hitachi.co.jp
• If you do not have access to email, please fill out the following information

and submit this form to your Hitachi representative:

Manual name:

Manual number:

Your name:

Company or
organization:

Street address:

Comment:

(For Hitachi use)

