HITACHI

Inspire the Next

OpenTP1 Version 7

Programming Reference C Language

3000-3-D54-30(E)

B Relevant program products

Note: In the program products listed below, those marked with an asterisk (*) might be released later than the other program
products.

For AIX 5L V5.1, AIX 5L V5.2, AIX 5L V5.3, and AIX V6.1
P-1M64-2131 uCosminexus TP1/Server Base 07-03*
P-1M64-2331 uCosminexus TP1/FS/Direct Access 07-03*
P-1M64-2431 uCosminexus TP1/FS/Table Access 07-03*
P-1M64-2531 uCosminexus TP1/Client/W 07-02

P-1M64-2631 uCosminexus TP1/Offline Tester 07-00
P-1M64-2731 uCosminexus TP1/Online Tester 07-00
P-1M64-2831 uCosminexus TP1/Multi 07-00

P-1M64-2931 uCosminexus TP1/High Availability 07-00
P-1M64-3131 uCosminexus TP1/Message Control 07-03
P-1M64-3231 uCosminexus TP1/NET/Library 07-04
P-1M64-8131 uCosminexus TP1/Shared Table Access 07-00
P-1M64-8331 uCosminexus TP1/Resource Manager Monitor 07-00
P-1M64-8531 uCosminexus TP1/Extension 1 07-00
P-1M64-C371 uCosminexus TP1/Message Queue 07-01
P-1M64-C771 uCosminexus TP1/Message Queue - Access 07-01
P-FIM64-31311 uCosminexus TP1/Message Control/Tester 07-00
P-FIM64-32311 uCosminexus TP1/NET/User Agent 07-00
P-F1M64-32312 uCosminexus TP1/NET/HDLC 07-00
P-F1M64-32313 uCosminexus TP1/NET/X25 07-00
P-F1M64-32314 uCosminexus TP1/NET/OSI-TP 07-00
P-F1M64-32315 uCosminexus TP1/NET/XMAP3 07-01
P-F1M64-32316 uCosminexus TP1/NET/HSC 07-00
P-F1M64-32317 uCosminexus TP1/NET/NCSB 07-00
P-F1M64-32318 uCosminexus TP1/NET/OSAS-NIF 07-01
P-FIM64-3231B uCosminexus TP1/NET/Secondary Logical Unit - TypeP2 07-00
P-F1IM64-3231C uCosminexus TP1/NET/TCP/IP 07-02
P-FIM64-3231D uCosminexus TP1/NET/High Availability 07-00
P-FIM64-3231U uCosminexus TP1/NET/User Datagram Protocol 07-00
R-1M45F-31 uCosminexus TP1/Web 07-00

For AIX 5L V5.3 and AIX V6.1

P-1M64-1111 uCosminexus TP1/Server Base(64) 07-03*
P-1M64-1311 uCosminexus TP1/FS/Direct Access(64) 07-03*
P-1M64-1411 uCosminexus TP1/FS/Table Access(64) 07-03*
P-1M64-1911 uCosminexus TP1/High Availability(64) 07-00
P-1M64-1L11 uCosminexus TP1/Extension 1(64) 07-00

For HP-UX 11i V1 (PA-RISC) and HP-UX 11i V2 (PA-RISC)
P-1B64-3F31 uCosminexus TP1/NET/High Availability 07-00
P-1B64-8531 uCosminexus TP1/Extension 1 07-00

P-1B64-8931 uCosminexus TP1/High Availability 07-00
R-18451-41K uCosminexus TP1/Client/W 07-00

R-18452-41K uCosminexus TP1/Server Base 07-00

R-18453-41K uCosminexus TP1/FS/Direct Access 07-00
R-18454-41K uCosminexus TP1/FS/Table Access 07-00
R-18455-41K uCosminexus TP1/Message Control 07-03*
R-18456-41K uCosminexus TP1/NET/Library 07-04*
R-18459-41K uCosminexus TP1/Offline Tester 07-00
R-1845A-41K uCosminexus TP1/Online Tester 07-00
R-1845C-41K uCosminexus TP1/Shared Table Access 07-00
R-1845D-41K uCosminexus TP1/Resource Manager Monitor 07-00
R-1845E-41K uCosminexus TP1/Multi 07-00

R-1845F-41K uCosminexus TP1/Web 07-00

R-F18455-411K uCosminexus TP1/Message Control/Tester 07-00
R-F18456-411K uCosminexus TP1/NET/User Agent 07-00
R-F18456-415K uCosminexus TP1/NET/XMAP3 07-01*
R-F18456-41CK uCosminexus TP1/NET/TCP/IP 07-02*

For HP-UX 11i V2 (IPF) and HP-UX 11i V3 (IPF)

P-1J64-3F21 uCosminexus TP1/NET/High Availability 07-00
P-1J64-4F11 uCosminexus TP1/NET/High Availability(64) 07-00
P-1J64-8521 uCosminexus TP1/Extension 1 07-00

P-1J64-8611 uCosminexus TP1/Extension 1(64) 07-00
P-1J64-8921 uCosminexus TP1/High Availability 07-00
P-1J64-8A11 uCosminexus TP1/High Availability(64) 07-00
P-1J64-C371 uCosminexus TP1/Message Queue 07-01
P-1J64-C571 uCosminexus TP1/Message Queue(64) 07-01
P-1J64-C871 uCosminexus TP1/Message Queue - Access(64) 07-00
R-18451-21] uCosminexus TP1/Client/W 07-02

R-18452-21] uCosminexus TP1/Server Base 07-03*
R-18453-21] uCosminexus TP1/FS/Direct Access 07-03*
R-18454-21] uCosminexus TP1/FS/Table Access 07-03*
R-18455-21] uCosminexus TP1/Message Control 07-03*
R-18456-21] uCosminexus TP1/NET/Library 07-04*
R-18459-21J uCosminexus TP1/Offline Tester 07-00
R-1845A-21J uCosminexus TP1/Online Tester 07-00
R-1845C-21J uCosminexus TP1/Shared Table Access 07-00
R-1845D-21J uCosminexus TP1/Resource Manager Monitor 07-00
R-1845E-21J uCosminexus TP1/Multi 07-00

R-1845F-21J uCosminexus TP1/Web 07-00

R-1B451-11J uCosminexus TP1/Client/W(64) 07-02
R-1B452-11J uCosminexus TP1/Server Base(64) 07-03*
R-1B453-11J uCosminexus TP1/FS/Direct Access(64) 07-03*
R-1B454-11J uCosminexus TP1/FS/Table Access(64) 07-03*
R-1B455-11J uCosminexus TP1/Message Control(64) 07-03*
R-1B456-11J uCosminexus TP1/NET/Library(64) 07-04*
R-F18455-211] uCosminexus TP1/Message Control/Tester 07-00
R-F18456-215J uCosminexus TP1/NET/XMAP3 07-01*

R-F18456-21CJ uCosminexus TP1/NET/TCP/IP 07-02*
R-F1B456-11CJ uCosminexus TP1/NET/TCP/IP(64) 07-02*
For Solaris 8, Solaris 9, and Solaris 10

P-9D64-3F31 uCosminexus TP1/NET/High Availability 07-00
P-9D64-8531 uCosminexus TP1/Extension 1 07-00
P-9D64-8931 uCosminexus TP1/High Availability 07-00
R-19451-216 uCosminexus TP1/Client/W 07-00
R-19452-216 uCosminexus TP1/Server Base 07-00
R-19453-216 uCosminexus TP1/FS/Direct Access 07-00
R-19454-216 uCosminexus TP1/FS/Table Access 07-00
R-19455-216 uCosminexus TP1/Message Control 07-03*
R-19456-216 uCosminexus TP1/NET/Library 07-04*
R-19459-216 uCosminexus TP1/Offline Tester 07-00
R-1945A-216 uCosminexus TP1/Online Tester 07-00
R-1945C-216 uCosminexus TP1/Shared Table Access 07-00
R-1945D-216 uCosminexus TP1/Resource Manager Monitor 07-00
R-1945E-216 uCosminexus TP1/Multi 07-00

R-F19456-2156 uCosminexus TP1/NET/XMAP3 07-01*
R-F19456-21C6 uCosminexus TP1/NET/TCP/IP 07-02*

For Red Hat Enterprise Linux AS 4 (AMD64 & Intel EM64T), Red Hat Enterprise Linux AS 4 (x86), Red Hat Enterprise Linux ES
4 (AMD64 & Intel EM64T), and Red Hat Enterprise Linux ES 4 (x86)

P-9S64-2161 uCosminexus TP1/Server Base 07-00

P-9S64-2351 uCosminexus TP1/FS/Direct Access 07-00

P-9S64-2451 uCosminexus TP1/ES/Table Access 07-00

P-9S64-2551 uCosminexus TP1/Client/W 07-00

P-9S64-3151 uCosminexus TP1/Message Control 07-00

P-9S64-3251 uCosminexus TP1/NET/Library 07-00

P-9S64-C371 uCosminexus TP1/Message Queue 07-01
P-F9S64-3251C uCosminexus TP1/NET/TCP/IP 07-00
P-F9S64-3251U uCosminexus TP1/NET/User Datagram Protocol 07-00
R-1845F-A15 uCosminexus TP1/Web 07-00

For Red Hat Enterprise Linux AS 4 (AMD64 & Intel EM64T), Red Hat Enterprise Linux AS 4 (x86), Red Hat Enterprise Linux ES
4 (AMD64 & Intel EM64T), Red Hat Enterprise Linux ES 4 (x86), Red Hat Enterprise Linux 5 (AMD/Intel 64), Red Hat Enterprise
Linux 5 (x86), Red Hat Enterprise Linux 5 Advanced Platform (AMD/Intel 64), and Red Hat Enterprise Linux 5 Advanced Platform
(x86)

P-9S64-2951 uCosminexus TP1/High Availability 07-00
P-9S64-8551 uCosminexus TP1/Extension 1 07-00
P-9S64-C771 uCosminexus TP1/Message Queue - Access 07-01
P-F9S64-3251D uCosminexus TP1/NET/High Availability 07-00

For Red Hat Enterprise Linux 5 (AMD/Intel 64), Red Hat Enterprise Linux 5 (x86), Red Hat Enterprise Linux 5 Advanced Platform
(AMD/Intel 64), and Red Hat Enterprise Linux 5 Advanced Platform (x86)

P-9S64-2171 uCosminexus TP1/Server Base 07-03
P-9S64-2361 uCosminexus TP1/FS/Direct Access 07-03
P-9S64-2461 uCosminexus TP1/FS/Table Access 07-03
P-9S64-2561 uCosminexus TP1/Client/W 07-02
P-9S64-3161 uCosminexus TP1/Message Control 07-03*

P-9564-3261 uCosminexus TP1/NET/Library 07-04*

P-9564-C571 uCosminexus TP1/Message Queue 07-01

P-F9S64-32611 uCosminexus TP1/NET/User Agent 07-00
P-F9S64-3261C uCosminexus TP1/NET/TCP/IP 07-02
P-F9S64-3261U uCosminexus TP1/NET/User Datagram Protocol 07-00
For Red Hat Enterprise Linux 5 (AMD/Intel 64) and Red Hat Enterprise Linux 5 Advanced Platform (AMD/Intel 64)
P-9W64-2111 uCosminexus TP1/Server Base(64) 07-03

P-9W64-2311 uCosminexus TP1/FS/Direct Access(64) 07-03
P-9W64-2411 uCosminexus TP1/FS/Table Access(64) 07-03
P-9W64-2911 uCosminexus TP1/High Availability(64) 07-02
P-9W64-8511 uCosminexus TP1/Extension 1(64) 07-02

For Red Hat Enterprise Linux AS 4 (IPF)

P-9V64-2121 uCosminexus TP1/Server Base 07-00

P-9V64-2321 uCosminexus TP1/FS/Direct Access 07-00

P-9V64-2421 uCosminexus TP1/FS/Table Access 07-00

P-9V64-2521 uCosminexus TP1/Client/W 07-00

P-9V64-3121 uCosminexus TP1/Message Control 07-00

P-9V64-3221 uCosminexus TP1/NET/Library 07-00

P-9V64-C371 uCosminexus TP1/Message Queue(64) 07-01
P-9V64-C771 uCosminexus TP1/Message Queue - Access(64) 07-00
P-F9V64-3221C uCosminexus TP1/NET/TCP/IP 07-00
P-FOV64-3221U uCosminexus TP1/NET/User Datagram Protocol 07-00

For Red Hat Enterprise Linux AS 4 (IPF), Red Hat Enterprise Linux 5 (Intel Itanium), and Red Hat Enterprise Linux 5 Advanced
Platform (Intel Itanium)

P-9V64-2921 uCosminexus TP1/High Availability 07-00

P-9V64-8521 uCosminexus TP1/Extension 1 07-00

P-FOV64-3221D uCosminexus TP1/NET/High Availability 07-00

For Red Hat Enterprise Linux 5 (Intel Itanium) and Red Hat Enterprise Linux 5 Advanced Platform (Intel Itanium)
P-9V64-2131 uCosminexus TP1/Server Base 07-02

P-9V64-2331 uCosminexus TP1/FS/Direct Access 07-02

P-9V64-2431 uCosminexus TP1/FS/Table Access 07-02

P-9V64-2531 uCosminexus TP1/Client/W 07-02

P-9V64-3131 uCosminexus TP1/Message Control 07-03*

P-9V64-3231 uCosminexus TP1/NET/Library 07-04%*

P-F9V64-3231C uCosminexus TP1/NET/TCP/IP 07-02*
P-FOV64-3231U uCosminexus TP1/NET/User Datagram Protocol 07-00

For Windows 2000, Windows Server 2003, Windows Server 2003 x64 Editions, Windows Server 2003 R2, Windows Server 2003
R2 x64 Editions, Windows XP, Windows Vista, and Windows Vista x64

P-2464-2144 uCosminexus TP1/Client/P 07-02

For Windows 2000, Windows Server 2003, Windows Server 2003 x64 Editions, Windows Server 2003 R2, Windows Server 2003
R2 x64 Editions, and Windows XP

R-1845F-8134 uCosminexus TP1/Web 07-00

For Windows 2000, Windows Server 2003, Windows Server 2003 x64 Editions, Windows Server 2003 R2, Windows Server 2003
R2 x64 Editions, Windows XP, Windows Vista, Windows Vista x64, Windows Server 2008, and Windows Server 2008 x64

P-2464-7824 uCosminexus TP1/Client for NET Framework 07-03

R-15451-21 uCosminexus TP1/Connector for .NET Framework 07-03

For Windows Server 2003, Windows Server 2003 x64 Editions, Windows Server 2003 R2, Windows Server 2003 R2 x64 Editions,
Windows XP, Windows Vista, Windows Vista x64, Windows Server 2008, and Windows Server 2008 x64

P-2464-2274 uCosminexus TP1/Server Base 07-03*
P-2464-2374 uCosminexus TP1/FS/Direct Access 07-03*
P-2464-2474 uCosminexus TP1/FS/Table Access 07-03*
P-2464-2544 uCosminexus TP1/Extension 1 07-00
P-2464-3154 uCosminexus TP1/Message Control 07-03*
P-2464-3254 uCosminexus TP1/NET/Library 07-04*
P-2464-3354 uCosminexus TP1/Messaging 07-00

P-2464-C374 uCosminexus TP1/Message Queue 07-01
P-2464-C774 uCosminexus TP1/Message Queue - Access 07-00
P-F2464-3254C uCosminexus TP1/NET/TCP/IP 07-02*
R-15452-21 uCosminexus TP1/Extension for .NET Framework 07-00
R-1945B-24 uCosminexus TP1/LiNK 07-02

For Windows Server 2003, Windows Server 2003 x64 Editions, Windows Server 2003 R2, Windows Server 2003 R2 x64 Editions,
and Windows XP

P-F2464-32545 uCosminexus TP1/NET/XMAP3 07-01*

For Windows Server 2003, Windows Server 2003 x64 Editions, Windows Server 2003 R2, Windows Server 2003 R2 x64 Editions,
Windows Server 2008, and Windows Server 2008 x64

P-2464-2934 uCosminexus TP1/High Availability 07-00

P-F2464-3254D uCosminexus TP1/NET/High Availability 07-00

For Java VM

P-2464-7394 uCosminexus TP1/Client/J 07-02

P-2464-73A4 uCosminexus TP1/Client/J 07-02

This manual can be used for products other than the products shown above. For details, see the Release Notes.
These products were developed under a quality management system that has received ISO9001 and TickIT certification.
B Trademarks

AIX is a trademark of International Business Machines Corporation in the United States, other countries, or both.
AIX 5L is a trademark of International Business Machines Corporation in the United States, other countries, or both.
AMD, AMD Opteron, and combinations thereof, are trademarks of Advanced Micro Devices, Inc.

HP-UX is a product name of Hewlett-Packard Company.

Itanium is a trademark of Intel Corporation in the United States and other countries.

Java is a registered trademark of Oracle and/or its affiliates.

Linux(R) is the registered trademark of Linus Torvalds in the U.S. and other countries.

Microsoft is either a registered trademark or a trademark of Microsoft Corporation in the United States and/or other countries.
MS-DOS is a registered trademark of Microsoft Corp. in the U.S. and other countries.

ORACLE is either a registered trademark or a trademark of Oracle and/or its affiliates.

Oracle is either a registered trademark or a trademark of Oracle Corporation and/or its affiliates.

Oracle and Oracle 10g are either registered trademarks or trademarks of Oracle and/or its affiliates.

Oracle and Oracle9i are either registered trademarks or trademarks of Oracle and/or its affiliates.

OSF is a trademark of the Open Software Foundation, Inc.

Red Hat is a trademark or a registered trademark of Red Hat Inc. in the United States and other countries.

Solaris is either a registered trademark or a trademark of Oracle and/or its affiliates.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Windows is either a registered trademark or a trademark of Microsoft Corporation in the United States and/or other countries.
Windows Server is either a registered trademark or a trademark of Microsoft Corporation in the United States and/or other countries.
Windows Vista is either a registered trademark or a trademark of Microsoft Corporation in the United States and/or other countries.
X/Open is a registered trademark of The Open Group in the U.K. and other countries.

Portions of this document are extracted from X/Open CAE Specification System Interfaces and Headers, Issue 4, (C202 ISBN
1-872630-47-2) Copyright (C) July 1992, X/Open Company Limited with the permission of X/Open;

part of which is based on /EEE Std 1003.1-1990, (C) 1990 Institute of Electrical and Electronics Engineers, Inc., and /EEE Std
1003.2/D12, (C) 1992 Institute of Electrical and Electronics Engineers, Inc.

No further reproduction of this material is permitted without the prior permission of the copyright owners.

Portions of this document are extracted from X/Open Preliminary Specification Distributed Transaction Processing: The TxRPC
Specification (P305 ISBN 1-85912-000-8) Copyright (C) July 1993, X/Open Company Limited with the permission of X/Open.

No further reproduction of this material is permitted without the prior permission of the copyright owners.
Portions of this document are copyrighted by Open Software Foundation, Inc.

This document and the software described herein are furnished under a license, and may be used and copied only in accordance with
the terms of such license and with the inclusion of the above copyright notice. Title to and ownership of the document and software
remain with OSF or its licensors.

Other product and company names mentioned in this document may be the trademarks of their respective owners. Throughout this
document Hitachi has attempted to distinguish trademarks from descriptive terms by writing the name with the capitalization used
by the manufacturer, or by writing the name with initial capital letters. Hitachi cannot attest to the accuracy of this information. Use
of a trademark in this document should not be regarded as affecting the validity of the trademark.

B Restrictions

Information in this document is subject to change without notice and does not represent a commitment on the part of Hitachi. The
software described in this manual is furnished according to a license agreement with Hitachi. The license agreement contains all of
the terms and conditions governing your use of the software and documentation, including all warranty rights, limitations of liability,
and disclaimers of warranty.

Material contained in this document may describe Hitachi products not available or features not available in your country.
No part of this material may be reproduced in any form or by any means without permission in writing from the publisher.
Printed in Japan.

B Edition history

Edition 1 (3000-3-D54(E)): June 2006

Edition 3 (3000-3-D54-30(E)): October 2010

B Copyright

All Rights Reserved. Copyright (C) 2006, 2010, Hitachi, Ltd.

Summary of amendments

The following table lists changes in this manual (3000-3-D54-30(E)) and product
changes related to this manual for uCosminexus TP1/Server Base 07-03, uCosminexus
TP1/Server Base(64) 07-03, uCosminexus TP1/Message Control 07-03, uCosminexus
TP1/Message Control(64) 07-03, uCosminexus TP1/NET/Library 07-04, and

uCosminexus TP1/NET/Library(64) 07-04.

Changes

Location

Explanations have been added about the maximum length of segments
that can be sent or received.

Message exchange processing
(dc_mcf ~) in Chapter 2
dc_mcf execap,
dc_mcf receive,
dc_mcf recvsync,dc_mcf reply,
dc_mcf send, dc_mcf sendrecv,
dc_mcf sendsync

Explanations have been added about global domains.

Remote procedure call (dc_rpc_~) in
Chapter 2
dc_rpc_call to,
DCRPC_BINDTBL_SET,
DCRPC _DIRECT SCHEDULE

Tables listing interface changes have been added to assist in migrating
from TP1/Message Control Version 6 and earlier.

Appendix B

The following table lists changes in this manual (3000-3-D54-30(E)) and product
changes related to this manual for uCosminexus TP1/Message Control 07-02 and

uCosminexus TP1/NET/Library 07-03

Changes

Location

A library function can now be used to delete application timer startup
requests.
To support this change, the following function has been added:

® dc_mcf_adltap

1.1.1,1.1.1(2), 1.1.1(3), Message
exchange processing (dc_mcf ~) in
Chapter 2

dc_mcf adltap

Library functions can now be used to display the status of connections and
to establish and release connections.
To support this change, the following functions have been added:

® dc_mcf tactcn

® dc_mcf tdctcn

® dc_mcf_tlscn

1.1.1,1.1.1(2), 1.1.1(3), Message
exchange processing (dc_mcf ~) in
Chapter 2

dc_mcf tacten, de_mcf tdcten,
dc_mcf tlscn

A library function can now be used to display the status of MCF

communication services and application startup services.

To support this change, the following function has been added:
® dc_mcf tlscom

1.1.1,1.1.1(2), 1.1.1(3), Message
exchange processing (dc_mcf ~) in
Chapter 2

dc_mcf tlscom

Changes

Location

Library functions can now be used to display the status of logical
terminals, to shut down logical terminals, to release logical terminals from
shutdown status, and to delete the output queue of logical terminals.
To support this change, the following functions have been added:

® dc_mcf_tactle

® dc_mcf_tdctle

® dc_mcf_tdlgle

® dc_mcf tlsle

1.1.1,1.1.1(2), 1.1.1(3), Message
exchange processing (dc_mcf ~) in
Chapter 2

dc_mcf tactle, dc_mcf tdctle,
dc_mcf tdlgle, dc_mcf tisle

A library function can now be used to acquire the acceptance status of
connection establishment requests.

To support this change, the following function has been added:

® dc_mcf _tlsln

1.1.1,1.1.1(2),1.1.1(3)

Message exchange processing

(dc_mcf ~) in Chapter 2
dc_mcf tlsln

Library functions can now be used to start and stop acceptance of
server-type connection establishment requests.
To support this change, the following functions have been added:
® dc_mcf tofln
® dc_mcf tonln

1.1.1,1.1.1(2), 1.1.1(3), Message
exchange processing (dc_mcf ~) in
Chapter 2

dc_mcf tofln, dc_mcf tonln

MHPs can now use the facility for dynamic loading of service functions.

1.2.1(3), 1.2.5(2)(d)

In addition to the above changes, minor editorial corrections have been made.

The following table lists changes in the manual (3000-3-D54-20(E)) and product
changes related to that manual for uCosminexus TP1/Server Base 07-02, uCosminexus
TP1/Message Control 07-01, and uCosminexus TP1/NET/Library 07-01.

Changes

An audit log output function was added.
To support this change, the dc_log_audit_print function was added.

A facility that allows service functions to be loaded dynamically was added.

A function that allows the system to operate without the use of system journal files (journal fileless mode) was

added.

To support this change, some function arguments, return values, and notes were changed.

The description of the remote API facility was changed.
To support this change, return values were changed or added.

The following table lists changes in the manual (3000-3-D54-20(E)) and product
changes related to that manual for uCosminexus TP1/Server Base 07-01.

Changes

The C language interface in the 32-bit architecture and the C language interface in the 64-bit architecture have

been unified.

Changes

Notes and return values have been added.

Preface

This manual explains the syntax of dedicated library functions which can be used with
the OpenTP1 application programs. The program products of OpenTP1 are as follows:

¢ Distributed transaction processing facility TP1/Server Base
¢ Distributed application server TP1/LiNK

In this manual, an application program which is created by the user is abbreviated to a
UAP (User Application Program).

Products described in this manual, other than those for which the manual is released,
may not work with OpenTP1 Version 7 products. You need to confirm that the products
you want to use work with OpenTP1 Version 7 products.

Intended readers

This manual is intended for programmers who create user application programs
(UAPs) used with TP1/Server Base or TP1/LiNK.

Readers of this manual are assumed to have knowledge about operating systems,
online systems, handling of the machine to be used, and the syntax of the C language
(ANSI C, C++, or Classic C) used for coding application programs.

This manual assumes that the reader has read the OpenTP1 Programming Guide.
Organization of this manual

This manual is organized as follows:

1. Creating Application Programs

Explains the procedure for creating application programs to be used with the
OpenTP1.

2. Syntax of OpenTP1 Library Functions
Explains the syntax of the OpenTP1 library functions.
3. Syntax of OpenTP1 Library Functions (Message Log Reporting)

Explains the syntax of the OpenTP1 library functions for receiving message logs
to obtain OpenTP1 statuses.

4. X/Open-compliant Application Programming Interface
Explains the syntax of the library functions complying with the X/Open.

5. Syntax of OpenTP1 Library Functions (Association Status Notification)

An SPP for a communication event is required for the client/server
communication that uses the OSI TP communication protocol. This chapter
explains the library functions used by SPPs for communication event and the
formats of receive communication events.

6. X/Open-compliant Inter-application Communication (TxRPC)

Explains the syntax of Inter-Application communication (TxRPC) complying
with the X/Open.

7. Coding Samples
Gives coding samples for OpenTP1 application programs.
8. Reference for Application Activation

Explains the communication facilities in the message exchange configuration,
focusing on user exit routines relating to application program activate and MCF
event (ERREVT4) reference information.

Appendix 4. Using OpenTP1 Remote Procedure Calls and XATMI-interfaced
Functions in Combination

Explains the procedures for creating UAPs that use OpenTP1 remote procedure
calls and XATMI interface functions in combination.

Appendix B. Changes to the Interfaces (for Migrating from Version 6 or Earlier)

Provides tables that list changes in the interfaces to assist in migrating to Version
7 from Version 6 or earlier.

Related publications

This manual is part of a related set of manuals. The manuals in the set, including this
manual, are listed below. The manual numbers follow the manual titles.

OpenTP1 products
e OpenTPl Version 7 Description (3000-3-D50(E))
e OpenTPl Version 7 Programming Guide (3000-3-D51(E))
e OpenTPl Version 7 System Definition (3000-3-D52(E))
e OpenTPl Version 7 Operation (3000-3-D53(E))
e OpenTPl Version 7 Programming Reference C Language (3000-3-D54(E))

e OpenTPl Version 7 Programming Reference COBOL Language
(3000-3-D55(E))

e OpenTPl Version 7 Messages (3000-3-D56(E))

OpenTP1 Version 7 Tester and UAP Trace User's Guide (3000-3-D57(E))

OpenTP1 Version 7 TP1/Client User's Guide TP1/Client/W, TP1/Client/P
(3000-3-D58(E))

OpenTP1 Version 7 TP1/Client User's Guide TP1/Client/J (3000-3-D59(E))

OpenTP1 Version 7 TP1/LiNK User's Guide (3000-3-D60(E))*!
OpenTP1 Version 7 Protocol TP1/NET/TCP/IP (3000-3-D70(E))

OpenTP1 Version 7 TP1/Message Queue User's Guide (3000-3-D90(E))*!

OpenTP1 Version 7 TP1/Message Queue Messages (3000—3—D91(E))#1
OpenTP1 Version 7 TP1/Message Queue Application Programming Guide
(3000-3-D92(E))*!

OpenTP1 Version 7 TP1/Message Queue Application Programming Reference
(3000-3-D93(E))*!

Other OpenTP1 products

TP1/Web User's Guide and Reference (3000-3-D62(E))*!

Other related products

Indexed Sequential Access Method ISAM (3000-3-046(E))
XP/W (3000-3-047(E))

Extended Mapping Service 2/Workstation XMAP2/W DESCRIPTION/USER'S
GUIDE (3000-7-421(E))

SEWB 3 General Information (3000-7-450(E))

Job Management Partner 1/Base User's Guide (3020-3-K06(E))

Job Management Partner 1/Base Messages (3020-3-K07(E))

Job Management Partner 1/Base Software Developer's Guide (3020-3-KO08(E))

For OpenTP1 protocol manuals, please check whether English versions are available.

#1

If you want to use this manual, confirm that it has been published. (Some of these
manuals might not have been published yet.)

Conventions: Abbreviations for product names

This manual uses the following abbreviations for product names:

Abbreviation

Full name or meaning

AIX AIX 5L V5.1
AIX 5L V5.2
AIX SL V5.3
AIX V6.1
Client .NET TP1/Client for NET | uCosminexus TP1/Client for .NET Framework
Framework
Connector NET TP1/Connector for uCosminexus TP1/Connector for NET Framework
NET Framework
DPM JP1/ServerConductor/Deployment Manager
HI-UX/WE2 HI-UX/workstation Extended Version 2

HP-UX | HP-UX (IPF)

HP-UX 11i V2 (IPF)

HP-UX 11i V3 (IPF)

HP-UX (PA-RISC)

HP-UX 11i V1 (PA-RISC)

HP-UX 11i V2 (PA-RISC)

IPF Itanium(R) Processor Family
Java JavalM
JP1 JP1/AJS2 JP1/AJS2 - Agent JP1/Automatic Job Management System 2 - Agent
JP1/AJS2 - JP1/Automatic Job Management System 2 - Manager
Manager
JP1/AJS2 - View JP1/Automatic Job Management System 2 - View
JP1/AJS2 - JP1/AJS2-Scenario | JP1/Automatic Job Management System 2 - Scenario
Scenario Operation Manager | Operation Manager
Operation
JP1/AJS2-Scenario | JP1/Automatic Job Management System 2 - Scenario
Operation View Operation View
JPI/NETM/Audit JP1/NETM/Audit - Manager
Linux Linux(R)

Linux (AMD64/Intel EM64T/x86)

Red Hat Enterprise Linux AS 4 (AMD64 & Intel EM64T)

Red Hat Enterprise Linux AS 4 (x86)

Red Hat Enterprise Linux ES 4 (AMD64 & Intel EM64T)

Abbreviation

Full name or meaning

Red Hat Enterprise Linux ES 4 (x86)

Red Hat Enterprise Linux 5 (AMD/Intel 64)

Red Hat Enterprise Linux 5 (x86)

Red Hat Enterprise Linux 5 Advanced Platform (AMD/Intel
64)

Red Hat Enterprise Linux 5 Advanced Platform (x86)

Linux (IPF)

Red Hat Enterprise Linux AS 4 (IPF)

Red Hat Enterprise Linux 5 (Intel Itanium)

Red Hat Enterprise Linux 5 Advanced Platform (Intel
Itanium)

MS-DOS

Microsoft® MS-DOS®)

NETM/DM

JP1/NETM/DM Client

JPI/NETM/DM Manager

JP1/NETM/DM SubManager

Oracle

Oracle 10g

Oracle9i

Solaris

Solaris 8

Solaris 9

Solaris 10

TP1/Client

TP1/Client/J

uCosminexus TP1/Client/J

TP1/Client/P

uCosminexus TP1/Client/P

TP1/Client/W

uCosminexus TP1/Client/W

uCosminexus TP1/Client/W(64)

TP1/EE

uCosminexus TP1/Server Base Enterprise Option

uCosminexus TP1/Server Base Enterprise Option(64)

TP1/Extension 1

uCosminexus TP1/Extension 1

uCosminexus TP1/Extension 1(64)

Abbreviation

Full name or meaning

TP1/FS/Direct Access uCosminexus TP1/FS/Direct Access
uCosminexus TP1/FS/Direct Access(64)

TP1/FS/Table Access uCosminexus TP1/FS/Table Access
uCosminexus TP1/FS/Table Access(64)

TP1/High Availability uCosminexus TP1/High Availability
uCosminexus TP1/High Availability(64)

TP1/LiNK uCosminexus TP1/LiNK

TP1/Message Control uCosminexus TP1/Message Control

uCosminexus TP1/Message Control(64)

TP1/Message Control/Tester

uCosminexus TP1/Message Control/Tester

TP1/Message Queue

uCosminexus TP1/Message Queue

uCosminexus TP1/Message Queue(64)

TP1/Message Queue - Access

uCosminexus TP1/Message Queue - Access

uCosminexus TP1/Message Queue - Access(64)

TP1/Messaging uCosminexus TP1/Messaging
TP1/Multi uCosminexus TP1/Multi
TP1/NET/HDLC uCosminexus TP1/NET/HDLC

TP1/NET/High Availability

uCosminexus TP1/NET/High Availability

uCosminexus TP1/NET/High Availability(64)

TP1/NET/HSC uCosminexus TP1/NET/HSC

TP1/NET/Library uCosminexus TP1/NET/Library
uCosminexus TP1/NET/Library(64)

TP1/NET/NCSB uCosminexus TP1/NET/NCSB

TP1/NET/OSAS-NIF

uCosminexus TP1/NET/OSAS-NIF

TP1/NET/OSI-TP

uCosminexus TP1/NET/OSI-TP

TP1/NET/SLU - TP1/NET/
TypeP2 Secondary Logical
Unit - TypeP2

uCosminexus TP1/NET/Secondary Logical Unit - TypeP2

Vi

Abbreviation

Full name or meaning

TP1/NET/TCP/IP uCosminexus TP1/NET/TCP/IP

uCosminexus TP1/NET/TCP/IP(64)
TP1/NET/UDP uCosminexus TP1/NET/User Datagram Protocol
TP1/NET/User Agent uCosminexus TP1/NET/User Agent
TP1/NET/X25 uCosminexus TP1/NET/X25

TP1/NET/X25-Extended

uCosminexus TP1/NET/X25-Extended

TP1/NET/XMAP3 uCosminexus TP1/NET/XMAP3
TP1/Oftline Tester uCosminexus TP1/Offline Tester
TP1/Online Tester uCosminexus TP1/Online Tester

TP1/Resource Manager Monitor

uCosminexus TP1/Resource Manager Monitor

TP1/Server Base

uCosminexus TP1/Server Base

uCosminexus TP1/Server Base(64)

TP1/Shared Table Access

uCosminexus TP1/Shared Table Access

TP1/Web

uCosminexus TP1/Web

Windows 2000

Microsoft® Windows® 2000 Advanced Server Operating
System

Microsoft® Windows® 2000 Datacenter Server Operating
System

Microsoft® Windows® 2000 Professional Operating
System

Microsoft® Windows® 2000 Server Operating System

Windows Server 2003

Microsoft® Windows Server® 2003, Datacenter Edition

Microsoft® Windows Server® 2003, Enterprise Edition

Microsoft® Windows Server® 2003, Standard Edition

Windows Server 2003 R2

Microsoft® Windows Server® 2003 R2, Enterprise Edition

Microsoft® Windows Server® 2003 R2, Standard Edition

Windows Server 2003 x64 Editions

Microsoft® Windows Server® 2003, Datacenter x64 Edition

vii

Abbreviation Full name or meaning

Microsoft® Windows Server® 2003, Enterprise x64 Edition

Microsoft® Windows Server® 2003, Standard x64 Edition

Windows Server 2003 R2 x64 Editions Microsoft® Windows Server® 2003 R2, Enterprise x64
Edition

Microsoft® Windows Server® 2003 R2, Standard x64
Edition

Windows Server 2008 Microsoft® Windows Server® 2008 Datacenter (x86)

Microsoft® Windows Server® 2008 Enterprise (x86)

Microsoft® Windows Server® 2008 Standard (x86)

Windows Server 2008 x64 Editions Microsoft® Windows Server® 2008 Datacenter (x64)

Microsoft® Windows Server® 2008 Enterprise (x64)

Microsoft® Windows Server® 2008 Standard (x64)

Windows Vista Microsoft® Windows Vista® Business (x86)

Microsoft® Windows Vista® Enterprise (x86)

Microsoft® Windows Vista® Ultimate (x86)

Windows Vista x64 Editions Microsoft® Windows Vista® Business (x64)

Microsoft® Windows Vista® Enterprise (x64)

Microsoft® Windows Vista® Ultimate (x64)

Windows XP Microsoft® Windows®) XP Professional Operating System

e The term Windows is used to indicate Windows Server 2003, Windows XP and
Windows Vista if the difference in functions among them need not be considered.

e The term UNIX is used to indicate AIX, HP-UX, Linux, and Solaris.
Conventions: Acronyms

This manual also uses the following acronyms:

viii

Acronym

Full name or meaning

ACL Access Control List

ANSI American National Standards Institute
AP Application Program

API Application Programming Interface
C/S Client/Server

CRM Communication Resource Manager
CupP Client User Program

DAM Direct Access Method

DBMS Database Management System
DML Data Manipulation Language

DNS Domain Name System

FEP Front End Processor

GUI Graphical User Interface

HA High Availability

ISAM Indexed Sequential Access Method
IST Internode Shared Table

LAN Local Area Network

MCF Message Control Facility

MHP Message Handling Program

MQA Message Queue Access

MQI Message Queue Interface

(0N Operating System

OSI Open Systems Interconnection

OSI TP Open Systems Interconnection Transaction Processing
PC Personal Computer

PRF Performance

RM Resource Manager

Acronym Full name or meaning
RPC Remote Procedure Call
SPP Service Providing Program
SUP Service Using Program
TAM Table Access Method
TCP/IP Transmission Control Protocol/Internet Protocol
UAP User Application Program
UocC User Own Coding
VM Virtual Machine
WAN Wide Area Network
WS Workstation

Conventions: Diagrams

This manual uses the following conventions in diagrams:

® File @ Data flow @ Control flow

@ |/O operation @ Screen display @® Program
%7 o l,E-
ZA _

@ File contents

Conventions: Differences between JIS and ASCII keyboards

The JIS code and ASCII code keyboards are different in the input characters
represented by the following codes. In this manual, the use of a JIS keyboard is
assumed for these characters.

Code JIS keyboard ASCII keyboard
(5¢)16 ¥ (yen symbol) \ (backslash)
7 - ~ (tild
(e (overline) (tilde)

Conventions: Fonts and symbols

The following table explains the fonts used in this manual:

Font

Convention

Bold

Bold type indicates text on a window, other than the window title. Such text includes
menus, menu options, buttons, radio box options, or explanatory labels. For example:
¢ From the File menu, choose Open.
¢ Click the Cancel button.
¢ In the Enter name entry box, type your name.

Italics

Italics are used to indicate a placeholder for some actual text to be provided by the user
or system. For example:
* Write the command as follows:
copy source-file target-file
¢ The following message appears:
A file was not found. (file = file-name)
Italics are also used for emphasis. For example:
* Do not delete the configuration file.

Code font

A code font indicates text that the user enters without change, or text (such as
messages) output by the system. For example:
* At the prompt, enter dir.
* Use the send command to send mail.
¢ The following message is displayed:
The password is incorrect.

The following table explains the symbols used in this manual:

Symbol

Convention

In syntax explanations, a vertical bar separates multiple items, and has the
meaning of OR. For example:
A|B|Ccmeans A, or B, or C.

Xi

Symbol Convention

{} In syntax explanations, curly brackets indicate that only one of the enclosed items
is to be selected. For example:
{a|B|C} means only one of A, or B, or C.

[In syntax explanations, square brackets indicate that the enclosed item or items
are optional. For example:

[A] means that you can specify A or nothing.

[B|c] means that you can specify B, or C, or nothing.

In coding, an ellipsis (...) indicates that one or more lines of coding are not shown
for purposes of brevity.

In syntax explanations, an ellipsis indicates that the immediately preceding item
can be repeated as many times as necessary. For example:

A, B, B, ... means that, after you specify A, B, you can specify B as many
times as necessary.

~ The item before this symbol must be specified according to the rule given in <>
after this symbol.

<> Information between these symbols is the syntax of the item.

Conventions for permitted characters

In most cases, only the following characters are permitted as syntax elements (if other
characters are permitted, the manual will state this explicitly):

Type Definition

Upper-case alphabetic characters AtoZ

Lower-case alphabetic characters atoz

Alphabetic characters AtoZ,atoz

Numeric characters 0to9

Alphanumeric characters AtoZ,atoz,0to9

Symbols L#, 8, %5,& ',)X+, -, ., /0,5, =,>,2,@, [, \’]5Aa_a 5, {5 |’ }5
and ~

Path name String that is composed of alphanumeric characters, slashes (/), and
periods (.) and conforms to the rule under the OS used.

Service group name Must be an ASCII character string of up to 31 bytes. Note that null
characters, spaces, at marks (@), and periods cannot be used. When a
service group name is specified in a data area, it must end with a space.
This space will not be included in the length of the character string.

Xii

Type Definition

Service name Must be an ASCII character string of up to 31 bytes. Note that null and
space characters cannot be used. When a service name is specified in a data
area, it must end with a space. This space will not be included in the length
of the character string.

Physical file name Must be a path name consisting of the special file name followed by a name
of 14 or less bytes. The entire path name must not exceed 63 characters.

Logical file name Must be an alphanumeric character string of 1 to 8 bytes that begins with
an alphabetic character.

Conventions: KB, MB, GB, and TB
This manual uses the following conventions:
¢ 1 KB (kilobyte) is 1,024 bytes.
+ 1 MB (megabyte) is 1,024 bytes.
* 1 GB (gigabyte) is 1,024 bytes.
* 1 TB (terabyte) is 1,0244 bytes.
Conventions: Platform-specific notational differences

For the Windows version of OpenTP1, there are some notational differences from the
description in the manual. The following table describes these differences.

Item Description in the manual Change to:
Environment variable $aaaaaa saaaaaa%
Example: $DCDIR Example: $DCDIR%
Path name separator Colon (:) Semicolon (;)
Directory name separator Slash (/) Backslash (\)
Absolute path name A path from the root directory A path name from a drive letter and the
Example: /tmp root directory

Example: C:\tmp

Executable file name File name only (without an File name with an extension
extension) Example: mcfmngrd. exe
Example: mcfmngrd

make command make nmake

Conventions: Version numbers

The version numbers of Hitachi program products are usually written as two sets of

xiii

two digits each, separated by a hyphen. For example:
e Version 1.00 (or 1.0) is written as 01-00.
* Version 2.05 is written as 02-05.
* Version 2.50 (or 2.5) is written as 02-50.
* Version 12.25 is written as 12-25.

The version number might be shown on the spine of a manual as Ver: 2.00, but the same
version number would be written in the program as 02-00.

Acknowledgments

Xiv

This manual contains information from the X/Open CAE Specification System
Interfaces and Headers, Issue 4, (C202 ISBN 1-872630-47-2) Copyright (C) July
1992, X/Open Company Limited pursuant to approval from this company.

Part of that information is based on IEEE Std 1003.1-1990, (C) 1990 Institute of
Electrical and Electronics Engineers, Inc. and IEEE Std 1003.2/D12, (C) 1992 Institute
of Electrical and Electronics Engineers, Inc.

Any part of this manual that is copyrighted by the companies above may not be copied
or reproduced in any form without prior approval gained from the copyright holders.

This manual contains information from the X/Open Preliminary Specification
Distributed Transaction Processing: The TXxRPC Specification, (P305 ISBN
1-85912-000-8) Copyright (C) July 1993, X/Open Company Limited, pursuant to
approval from X/Open Company Limited.

Any part of this manual that is copyrighted by the above mentioned company may not
be copied or reproduced in any form without prior approval gained from the copyright
holder.

This manual contains information that is copyrighted by Open Software Foundation,
Inc.

This document and the software described herein are furnished under a license, and
may be used and copied only in accordance with the terms of such license and with the
inclusion of the above copyright notice. Title to and ownership of the document and
software remain with OSF or its licensors.

Quotations from X/Open CAE Specification Distributed Transaction Processing:
The XATMI Specification published by X/Open Company Limited

The following section comes from Chapter 5. C Reference Manual Pages of the above
document.

e Chapter 4. X/Open-Compliant Application Programming Interface
4.1 XATMI-Interfaced Application Programming Interface (tp~)

Quotations from X/Open CAE Specification Distributed Transaction Processing:
The TX (Transaction Demarcation) Specification published by X/Open Company
Limited

The following section comes from Chapter 5. C Reference Manual Pages of the above
document.

¢ Chapter 4. X/Open-Compliant Application Programming Interface
4.2 TX-Interfaced Application Programming Interface (tx_~)

Quotations from X/Open Preliminary Specification Distributed Transaction
Processing: The TXRPC Specification published by X/Open Company Limited

The following chapter comes from parts of Chapter /. Introduction, Chapter 2 Model
and Definitions, and Chapter 3. Interface Overview of the above document.

* Chapter 6. X/Open-Compliant Inter-Application Communication (TxRPC)
Important note on this manual

Please check the availability of the products and manuals for HAmonitor,
ServerConductor/DeploymentManager, Cosminexus, and Job Management Partner 1/
Automatic Job Management System 2.

XV

Contents

Preface i
Intended T AAETSceeiuiieieiie et i
Organization of this MaNUAlccoeviiiiiiiiiiiece e i
Related pUblICAtIONSccciiiieiiiiiiieciieciee ettt ettt e e e s te e s b e e eveesabaeearaeans ii
Conventions: Abbreviations for product NAMES...........ccceevverecieeerieerieecee e iii
CONVENTIONS: ACTOMYINIS ...veeevieereeeireeteeesreesseeaseessesesseeessseessseessseesssesssseesssseenses viii
Conventions: DIAGIAMSccveeiiieiiiiiiieeiieeeteeeeeesteeeaeeebeeeaeeessaeessaeessseesssesssseaans X
Conventions: Differences between JIS and ASCII keyboards.........ccceeeevveevveennnn. Xi
Conventions: Fonts and SYMDOIS.........cccccccvieiiiiiiiiiiiiiecicececcree e Xi
Conventions: KB, MB, GB, and TBcccoviiiiiiiieeeeeeeeee e X1l
Conventions: Platform-specific notational differences...........cccccoevvevvirieceeicnnnns xiil
Conventions: VErsion NUIMDETS........cccceerierierieniiriieeiieeteeete ettt xiii
ACKNOWISAZMENTSoovvviiieiiieiiiiciie ettt ettt eeteesre e ete e etaeesaeeeneseenens Xiv
Important note on this ManUal.............cccceeeviiiiiiiiiii e e XV

1. Creating Application Programs 1

1.1 Coding appliCation PrOZIAIMNcccueeevierrieereeerireeereeereeereeesreeseseesseesseeesseeessseessseas 2
1.1.1 Relationship between application programs and functions..............cccceeeeuennns 2
1.1.2 COAING TUIES ..eovviieiiieiieeeiie ettt ettt et e et e et e e b e e s b e esebeeeseeesbeeeseeas 30

1.2 Creating application programs (TCP/IP)........cccoceoviiiviieiiieeciecee et 33
1.2.1 Procedure for creating application programscceeeeveeerveerveeeseeesnveennnnns 33
1.2.2 Creating StUDScciiiiiiecieecieeeiee et eteeste et e stve e s e reeetaeesabaessneessseassneas 40
1.2.3 Creating Stub SOUICE flle.......ccuiiviiiriiiiie et 43
1.2.4 stbmake - Stub source file creationcceceeeiieiiieiieniiieeeee e, 43
1.2.5 Compiling and linking application programcccceeeveeerveerveeesveeenveennnns 44

1.3 Creating XATMI interface application programs (TCP/IP, OSI TP)........................ 47
1.3.1 Procedure for creating X ATMI-interfaced application programs.................. 47
1.3.2 Creating stubs for XATMI interface..........ccceevveeeviieeiiierieeciiesiee e e 49
1.3.3 Creating stub source files for XATMI interface...........cccceevvievvieenceeeneveennnen. 57
1.3.4 stbmake - Stub source file creation for XATMI interface..........cccceceeruennee. 58
1.3.5 tpstbmk - Creation of an XATMI interface stub OSI TP communication60

1.4 Executing appliCation PrOZIAMSeecveeerieerereeeireeereeereeessreeseseessseesssesesseeessseensnes 63
1.4.1 Starting and terminating each application programccceceveeeeeeernveennen. 63
1.4.2 Operating environment of application programs started by OpenTP1 64
1.4.3 Application's environment variablescccceeveeiirciieeciieeniieiee e 66

2. Syntax of OpenTP1 Library Functions 67

Format for explaining fUNCHONScceeevieriereiieeiiiiieiiee ettt e e e s eneees 68

Xvii

xviii

Creating main and Service fUNCLIONS.........c..ccuvrriierieeiieere ettt eieesee e see e e ssaesene e 70

Create a main function (SUP, SPP, MHP)ccooooiiiiiiiieecee e 71
Create a service function (SPP)ccocciiiiiiiiriie ittt 73
Create a service function (IMHP)ccoooviiiiiiiiiiiecee e 77
System operation management (AC_ admM._ ~)........ccecevrriiriirciiriieeieere e 79
dc_adm_call command - Execute an operation commandcceeevverreesreereereennnns 80
dc_adm_complete - Report the completion of user server start processing................... 84
dc_adm_status - Report the status of @ USEr SEIVET.........cccvvvvivieiiiecie e 86
Multinode facility (dc_adm ZEt ~) ...ccccciieiiieiieiieiieeere et 88
dc_adm_get nd status - Acquire the status of a specified OpenTP1 node.................... 89
dc_adm_get nd status begin - Start acquiring the status of an OpenTP1 node............ 92
dc_adm_get nd status_done - Terminate acquiring the status of an OpenTP1 node 94
dc_adm_get nd status next - Acquire the status of an OpenTP1 nodecc.......... 95
dc_adm_get nodeconf begin - Start acquiring a node identifier.............cccocvervrrirennnn 98
dc_adm_get nodeconf done - Terminate acquiring a node identifier 100
dc_adm_get nodeconf next - Acquire a node identifier...........cccevvvverervereereercrennnnnnn, 101
dc_adm_get node_id - Acquire the node identifier of the local node.......................... 103
dc_adm_get sv_status - Acquire the status of a specified user server..............co......... 104
dc_adm_ get sv status_begin - Start acquiring the status of a user server................... 107
dc_adm get sv status done - Terminate acquiring the status of a user server 110
dc_adm_get sv status next - Acquire the status of a user server............cceevereverveenen. 111
DAM file service (AC_ dam. ~)......ccceeceriiieiiiiiieiieie ettt saeese e seneeneas 113
dc_dam bseek - Seek a physical file BlOCKcccoecievieniieiiiiieiecece e 114
dc_dam_close - Close a 10Zical fileccveevirriieriieriierr et 116
dc_dam_create - Allocate a physical file..........ccoeverciierirciieirecee e 118
dc_dam_dget - Input directly a physical file block...........ccceevvevieriiiniiircieiieieeee, 121
dc_dam_dput - Output directly a physical file block..........ccovvevierieiiiriiiiiiiiee e, 123
dc_dam_end - Terminate using an unrecoverable DAM file.........cccccovevveiveiivenieennnne 125
dc_dam_get - Input a physical file BIOCK..........ccocveviirciiriieiriieceeee e 126
dc_dam_hold - Shut down a logical file.........ccccevvieviiiecieiiieecie e 128
dc_dam iclose - Close a physical file..........cceevereieriiiiieiiieiee e 130
dc_dam _iopen - Open a physical filec.cccveviieriiiciierieiecee e 132
dc_dam_open - Open a logical file........cccccuvviiriiiiieniieie e 134
dc_dam_put - Output a physical file bIOCK..........cccevirreiiriieerieeier e 139
dc_dam read - Input a logical file Blockccoevivriiiiiiiieieeeeee e 141
dc_dam release - Release a logical file from the shutdown statecccccovevvennnnee. 147
dc_dam_rewrite - Update a logical file BlocK..........cccvevvrriierieniieiiieciccieeeee e 150
dc_dam_start - Start using an unrecoverable DAM filec.cccceeveviiniiniieniieerie e, 154
dc_dam_status - Reference the status of a logical file...........ccoccvevviriiiciieciienieneee, 155
dc_dam_write - Output a logical file bIOCKcccveevieriiriiirieiecee e 159
IST SErVICE (AC ISt ~)uiiiiieiieiieieeieeie et ettt et eeresteetesebe e e saseesseesseenseesseenseensennsennes 163
dc_ist close - Close an internode shared tablec.ccoevevienierciinircieeeeeee e 164
dc_ist open - Open an internode shared table............ccccvevierienienciiniereee e 165
dc_ist read - Input an internode shared table record............ccoevveriieciieniinienieeie e, 167

dc_ist write - Output an internode shared table record............cceevvevierirnienieecieeieenee. 169

User journal acquisition (dC JNl ~).....ccccvivieriiiiiieriieiirie e 172
dc_jnl ujput - Acquire a USEr JOUINAL.......c.cccverviriieeriienieeiieseeieestesieeseeseeesnesseeseseennes 173
Lock for resources (Ac 10K ~)..ociviiiiiiiiiiieiie et 175
dc_Ick get - Enable locking 0f @ r€SOUICE.........cccvveeiierieeiieieeiiesieee e 176
dc_Ick release all - Release all the resources from 1ocK..........ccooevervveviniienieneenennne, 179
dc_Ick release byname - Release resource from lock specified by name.................... 181
Audit log output (dc_10g aUAIt ~) ..eccvieiiieiieiieeieieree e 183
dc_log audit print - output audit 10g datacceeevveriecrienieiieiee e 184
Output Message 1og (AC LOZ~)..cuiiiiiieiiieieeieeiee ettt s 189
dc_logprint - Output MESSAZE LOZ.....ceevvirierieeiiiie ettt enbe s 190
Message exchange processing (dc MC ~) .o.ooviivieiiiiniienii e 193
dc_mcf adltap - Delete an application timer start TeqUEStcevcverveerreecreerieerreerenenes 195
dc_mcf ap info - Report the application informationcc.cceeeereiveriereenceeneesnennn, 198
dc_mcf ap info uoc - Report the application information to user exit routines.......... 204
dc_mcf close - Close the MCF environment............cceecververeeereenreneeeseennesnesnesnennnes 210
dc_mcf commit - Commit an MHPcccooiiiiiiiiniieice e 211
dc_mcf contend - Terminate continuous-inquiry-response processingecev.e... 214
dc_mcf execap - Activate an application Programcceeeeerveeererveereeerreesseesseesenenns 216
dc_mcf mainloop - Start an MHP SEIVICEcceevvieriierieriierieiiesieee e 224
dc_mcf open - Open the MCF environment.............ccovcvevveeeierieecienienienreeneeseaveennes 225
dc_mcf receive - RECEIVE @ MESSAZEvevvveiieiieiieiiesie e steiee e reeesveieessnesreessseenees 227
dc_mcf recvsync - Receive a Synchronous messageceeveerveerieervereesneevesveennes 232
dc_mcf reply - Send a reSPONSE MESSAZEeeveereerieerieeriierieriieniesreesreseaesresssesssennnes 233
dc_mcf resend - Resend @ MESSAZEeevvervveriiriieiiinie ettt 234
dc_mcf rollback - Enable MHP rollback..........ccccceevivriieniiicieniieiecie e 235
dc_ mcf send - Send @ MESSAZEeevveeeveeriieiieieieeree ettt e e sreesneeeeees 237
dc_mcf sendrecv - Exchange a synchronous messagecoceeeverveereeveecreenseeneeenenns 238
dc_mcf sendsync - Send a Synchronous mesSage...........ecvverveeveerverieervesvessressnessseennes 239
dc_mcf tactcn - Establish @ CONNECHIONccuevvviriiiiiieiieieeie e 240
dc_mcf tactle - Release a logical terminal from shutdown statusccccceveeveeenennen. 245
dc_mcf tdcten - Release & CONNECTIONvevieiieriieeieeieeie e ees 249
dc_mcf tdctle - Shut down a logical terminal..............cccoeevierirciienieeiieieee e 254
dc_mcf tdlgle - Delete a logical terminal's output QUEUEc.eevverieerverierieereeieenee. 258
dc_mcf tempget - Accept temporary-stored datacccvevveriercieniienciinie e 262
dc_mcf tempput - Update temporary-stored data...........ccceeveververcrerienciinienieere e 265
dc_mcf timer cancel - Cancel user timer MONItOringccecververreerevereescreecvesneennes 268
dc_mcf timer set - Set user timer MONILOTINGcccveveerierrierreererreereereeseeseeseenes 270
dc_mcf tlscn - Acquire a CONNECLION SALUSeeeveerieerreeriierieriieriereeesreeneeseeneesseennes 274
dc_mcf tlscom - Acquire the status of MCF communication Services.............ccecuvun... 280
dc_mcf tlsle - Acquire a logical terminal Statuscceeevverieeciierieeriierienee e 284
dc_mcf tlsln - Acquire the acceptance status for a server-type connection establishment

L0 | L] USRI 289
dc_mcf tofln - Stop accepting server-type connection establishment requests............. 293

Xix

XX

dc_mcf tonln - Start accepting server-type connection establishment requests........... 295

Performance verification trace (dc prf ~)......ccccevieriirriieriieiierie e 297
dc_prf get trace num - Report the sequential number for an acquired performance
VETTTICALION TTACE «..euvietieiieietieicet ettt ettt ettt ettt ettt sbe e e e e enes 298
dc_prf utrace put - Acquire user-specific performance verification traces................. 299
Remote API facility (dC TaP ~)..iciiirierierieiierieseese ettt sne e s 301
dc_rap connect - Establish a connection with a RAP-processing listener................... 302
dc_rap disconnect - Release a connection with a RAP-processing listener................. 305
Remote procedure call (dC IPC ~)..uiiciriiriiriieiicieeit ettt e 307
dc_rpc_call - REqUESt @ TEMOLE SETVICE ..eeuvvvveeiierieerieeierereeiesereesieeseeseenseeseesseesseenns 308
dc_rpc_call to - Invoke a remote service with a communication destination

SPECITICA ..ttt et e st e sttt e e te et e e be e b e ensaenteenbeensennseanrens 328
DCRPC BINDTBL SET and DCRPC DIRECT SCHEDULE - Create the

DCRPC _BINDING TBL StIUCHUIC ...ccuvveeeitieeiiieeiieeiieesieeeeiieesiieeeieeseeessseeesneeesneeesneeas 336
dc_rpc_close - Terminate an application Program............cceeeveeeveerveerreereeeseesnessuesseenns 341
dc_rpc_cltsend - Report data to CUP unidirectionallyccccvevvevirriininiiienieeinenn, 342
dc_rpc_discard further replies - Reject the receiving of processing results 345
dc_rpc_discard specific_reply - Reject acceptance of particular processing results ... 346
dc_rpc_get callers address - Acquire the node address of a client UAP 348
dc_rpc_get error descriptor - Acquire the descriptor of an asynchronous response-type
RPC request which has encountered an error............cceeceevveeciercieenieeieeeee e 350
dc_rpc_get gateway address - Acquire the node address of a gateway 352
dc_rpc_get service prio - Reference the schedule priority of a service request.......... 354
dc_rpc_get watch time - Reference the service response waiting interval 355
dc_rpc_mainloop - Start an SPP SEIVICE......cccveviirieriiriiie e 356
dc_rpc_open - Start an application Program..........c.cceevverreerveseerveseennesseesnesssessennnes 358
dc_rpc_poll any replies - Receive processing results in asynchronous mode............. 360
dc_rpc_service retry - Retry a service fUnCtionccoccvevevirieeciiecieenieeneeseeseenenenns 368
dc_rpc_set_service prio - Set a schedule priority of a service requestcoc........ 370
dc_rpc_set watch time - Update a service response waiting intervalcc......... 372
Real-time statistical information service (dC_ItS ~)......ccecveviveeiieriienierririeseeeee e 373
dc_rts_utrace put - Acquire real-time statistical information for arbitrary section 374
TAM file Service (AC tAM ~)....cccviiieriieiieriieiieiteieeeerteee e e e e e sbeesseenseenseeseenseenes 377
dc_tam close - Close @ TAM table.......cccecuieciieriienienieseenee e 378
dc_tam delete - Delete a TAM table recordccoeevveviveriieriesiienieiiesie e 380
dc_tam get inf- Acquire TAM table Status.........ccccvereeriierierienienie e e e eee e ens 385
dc_tam open - Open @ TAM table.......ccceeviiriiiiiieiienie ettt 387
dc_tam read - Input a TAM table record.........cccvevieriercierieiierie e 391
dc_tam read cancel - Cancel the input of a TAM table recordcccevvvvrveeneeennnnne. 398
dc_tam rewrite - Update a TAM table record on the assumption of input 401
dc_tam_status - Acquire TAM table informationcceevvevverienieneeniesee e 405
dc_tam_ write - Update/add a TAM table 1eCordcccvevvverienieeiirieeieeie e 410
Transaction control (AC TN ~) ..iecierieiiierieiierie ettt eea e s e eaeenre s 415
dc trn_begin - Start a tranSaCtioNceeceecvierieereeriereesieeseesreeseesseeseaesreessnesaessnennns 416

dc_trn_chained commit - Enable commitment in chained modecccocvervennnen. 418

dc_trn_chained rollback - Enable rollback in chained modec.ccccveevverreneennnnnnen. 421
dc_trn_info - Report the information about the current transaction..............cccecveeiene.. 424
dc_trn_unchained commit - Enable commitment in unchained mode.......................... 425
dc_trn_unchained rollback - Enable rollback in unchained modec...cccoveneennnen. 427
Online tester management (AC U0 ~)coveriieriirierieieenieeie e eresete e eneereeresnseenees 429
dc_uto test status - Report the test status of @ USer Servercceevvevvereerieeeenreenee. 430
3. Syntax of OpenTP1 Library Functions (Message Log Reporting) 433
Message 1og reporting (AC 10Z ~)....iiviiciiiiiiiieeeie ettt 434
dc_log notify close - Terminate message 10g reCeptionc.eccvevveerverveerreecveenenennes 435
dc_log notify open - Start message 10g reCePtion..........ccvververieerierieerieeireerieesreesenenens 436
dc_log notify receive - Receive message 10gS....c..oovevverieecierciieeeiieriesee e 438
dc_log notify send - Send user-kept message 10gScovvvvvverveeriiniiienieniierie e 440
4. X/Open-compliant Application Programming Interface 443
X/Open-compliant fUNCIONcuieieiieiiieiiie et ee et eree et e eveereeesebeesebeeeaeeas 444
XATMI-interfaced application programming interface (tp~)........ccceeevreeveeerreercreeennnenn 448
tpacall - Send @ SEIVICE TEQUEST.......cuuiiiiierieeeiieeeeieeerireerieeeereesteeesereesereeeeseeeseseensseesnneas 449
tpadvertise - AAVErtiSe @ SEIVICE NAIMECeecveeerireerieeieeesieerreeesseeesereessseeessessseessnes 453
tpalloc - Allocate a typed BUTTEr.........oocvviieciiieiice e 455
tpcall - Send a service request and synchronously await its reply.........cccceeeeeveerveeennnen. 457
tpcancel - Cancel a call descriptor for an outstanding reply........ccceveveeviienciiecnveeenen. 463
tpconnect - Establish a conversational service connection............ccceeeveeecveeerreennneennne. 465
tpdiscon - Terminate a conversational service connection abortively...........c.ccccvvenee.. 469
tpfree - Free a typed DULTer.......ocviiiiiiicce e 471
tpgetrply - Get a reply from a previous Service reqUEStcccveeereeerveenieeeereenereeeneens 473
tprealloc - Change the size of a typed buffer...........cccvevviieiiiiciiii e 478
tprecv - Receive a message in a conversational connection..........cceeevveeveeeeveeeneeennnen. 480
tpreturn - Return from a SErvice TOULINEccveeeeviieriieiieeeieeeeieeeetee e sreeeeveeevee s 485
tpsend - Send a message in a conversational CONNECtioNcccveeeeveeeieeervienneeennn. 490
tpservice - Template for SEIVICE TOULINES.......cc.eeerireeiieeiieerie e eereeerveeereeeeaeeneeee e 494
tptypes - Determine information about a typed buffercccccoeveviivciiiciiiiieieee. 497
tpunadvertise - Unadvertise a SEIviCe NAMEcecuveerveeerreerreeenreeeseveesreeesreeseveesnnes 499
TX-interfaced application programming interface (tX_~)......ccccceeveerevirerveeencreeerveeennns 501
tX_begin - Begin a tranSactioNc.eccveeeiieeiiiieiieeeiiesteeesiieeveesreesereeeereeeeseesseessneas 502
tx_close - Close a set 0f reSOUICe MANAZETScccueeeviieiireerrienreeereeerereeereeesereeseseeeeeas 505
tx_commit - Commit a global transactioncceeeevvererieercieeriieeeiieeeee e 507
tx_info - Return global transaction informationcccceeeeveerveeivieeccieeeeieeeie e 510
tx_open - Open a set Of TESOUICE MANAZETS......cccuveeeevieereeeirietieeeteeereeesreeesereessreeesenens 512
tx_rollback - Roll back a global transaction.............cc.eeceeeecrienciieenieeniee e e e 514
tx_set commit return - Set commit return characteristiccoevveevveenveeernveenveeennen. 517
tx_set transaction control - Set transaction _control characteristicccccveeveveennne.. 520
tx_set transaction timeout - Set transaction_timeout characteristicccceevveenne.. 522

XXi

5. Syntax of OpenTP1 Library Functions (Association Status Notification) 525

Association operation (AC XAt ~)..c..cccvcieeriireiieriieieeieereeereeseeseesteeseesseeseesseesseesseenns 526

dc_xat connect - Establish an association............ceccveveverieriirieeieeieeeieesreesieeseesene e 527

Formats of receive communiCation €VENLSc.ceeeeruerereerieneeienieneeeeeneeseeeeeeeseeens 529

6. X/Open-compliant Inter-application Communication (TxRPC) 533

6.1 Preparation procedures for TXRPC communication............cc.eeeveeecierecnieescreesneens 534

6.1.1 Procedures for using IDL-only TXRPCccccooeiieiiiiiiiieciiiiie e 534

6.2 Notes on creating application PrOZIAINScccvveerveerrveeerieerirreeireeesreesreeeseeesseeens 537

6.3 Creating interface definition language files (IDL files).......c.cccocuverviiiicieeiieeennnnns 538

6.3.1 SYNLAX TULES .eveeiiieiiieciie ettt e e et e e sae e e taeetaeessbaeesbeeeseeensaaens 538

6.3.2 Interface definition fOrmat..........cceeeerieniiiiiiniiiene e 539

6.3.3 Syntax of interface definition file............ccoeveviiiiiiiniiiiiiieceecceece, 540

6.4 Syntax of interface definition header............cocovviviiiiiiiiniii e 542

6.5 Interface definition BOAY........cceevviiiiciiiiiiiiiiiecce et 544

6.6 ATTIDULES ..ooueieieeieieeteeet ettt ettt ettt et ete st e eneese e seenteseensestesseensensensenneas 551

(O D T 1 ¥ T 5 oL PP RPUPP 557

6.8 TYPE AECLATALOTScvviieiieeiieeiiee ettt ettt ettt e sve e be e et e e sebeeeabeeetsaessaeessseensseeans 562

6.9 Attribute configuration languageeeeveeriieiiieeiie et 564

6.10 IDL compiler (txidl command)...........ccceeruieriiiieiieeiie et sree e e 565

6.11 TXRPC @ITOT COULS.....eiuiiiieiiieiieeiie ettt ettt et 571

7. Coding Samples 573

7.1 Coding samples for client/server configuration UAPs (SUP, SPP DAM access) . 574

7.2 Coding samples for client/server configuration UAPs (SPP TAM access) 580

7.3 Coding samples for message exchange configuration UAPs (MHP).................... 585

7.4 Coding samples for X/Open-compliant UAPS..........ccceeeeiiiiciieiiiiniieiee e 589

7.4.1 XATMI interface SAMPIES........cccvveeviieriieniieeiie et eee e eree e eeeree e 589

7.4.2 TX Interface SAMPIeC.......ccccvievviiiiiiiiiieiie ettt e ae e 605

7.5 TxRPC examples (templates created by the IDL compiler).........cccceveeveeieeennnnnne 608

7.5.1 Outline of creation ProCeAUIESccviervierieeerieenieeeieeereeereeesreesreeens 608

7.5.2 EXamples OF FIleSccccviiiiiiiiiiiciiiecicee ettt e 609

8. Reference for Application Activation 619

Function format of the user exit routine that determines whether to inherit the timer-start

SCELITIES 1.uvtieutiieetieeeiteeeitee et ee sttt e eteeeteeestee e ebeessaeeasseessseeasseeesseearseeensaeenseeenssaensseeasseeanraeans 620

Structure format of mcf event that reports discarding of a timer-start message

(ERREVTA) .ottt ettt sttt ettt et e et e st et ensesseeneennees 624

Appendix 627
A. Using OpenTP1 Remote Procedure Calls and XATMI-interfaced Functions in

COMDINATION ...ttt sttt ettt sttt et besb e et e st e b emeeneeeeees 628

A.1 Modes of cOMDINEd USEccueruirieieriieieie et 628

XXii

A.2 Creating stubs of application programs that are used together 629

A.3 Callable XATMI interface functionsccccecvververieeriereenieeseeseeseesenenenens 630

B. Changes to the Interfaces (for Migrating from Version 6 or Earlier) 632

B.1 Message transmission INtErfACeSccevvereverrererireeniieeiieereesieereeseeseesenens 633

B.2 USEI €XIt TOULINEScuviievieiieieeiieieeieesteeieesteesbeesseesseesseesseesseesseesseesssesseessaens 646

B.3 MCF event INterfaces........ccccverierieriereeriesieiiesieieesieesteesseeseesseessnenseessnenns 647

B.4 Coding example for the MHP service function...........cceeceeveverevervenciennennnnns 648

Index 651

xXiii

List of figures

Figure 1-1:
Figure 1-2:
Figure 1-3:

Figure 1-4:
Figure 1-5:

Figure 1-6:
Figure 1-7:
Figure 1-8:
Figure 1-9:
Figure 6-1:
Figure 7-1:
Figure 7-2:
Figure 7-3:
Figure 7-4:

Figure 7-5:
Figure A-1:

XXiv

General procedure for creating SUPS.........ccoocvvvciiiiiiiicie e 34
General procedure for creating an SPP (when using a stub).........ccccooceevienenenene 35
General procedure for creating an SPP (when using dynamic loading of service
FUNCLIONS) 1.ttt ettt et e e et e et e e v e e ebeeeteeeereeeeareenns 36
General procedure for creating an MHP (when using a stub)..........ccccoeoeevenennnee. 38
General procedure for creating an MHP (when using dynamic loading of service
FUNCLIONS) 1.ttt ettt et e e et e et e e v e e ebeeeteeeereeeeareenns 39
General procedure for creating a UAP that handles offline work............ccc..c..... 40
Stub Creation ProCEAUIE.c.uiiiiiiiiieciieeie ettt et et eeeeeeee e sbeesereeebeeeeseenes 41
Procedure for creating UAP (XATMI Interface TCP/IP, OSI TP)........cccevveennennee 48
Procedure for creating stub for XATMI interfacecccccevvveeiiinciienciieenieeeieens 50
Procedures for creating a UAP that communicates with IDL-only TxRPC 535
Client/Server configuration UAP sample (DAM access)ocevvverveerreeenneeennnen. 574
Client/server configuration UAP sample (TAM access).....ccceevvvrerereercnveereveennnen. 580
Message exchange configuration UAP sample (MHP).......c.cccovvvvviiviiiinenennen. 585
Communication of request/response services receiving responses

SYNCRTONOUSLYuvviiiiieiiie ettt ettt e et e e s ve e reeeseaeesaee e 589
Communication of conversational SEIVICEcereeruirierieeieeieere e 597
Modes of combined use of inter-process communication and the stubs

FEQUITEM . ..evieiiie ettt eeie et ee ettt et et e et te et eeseteetbeesteeesbeessseessseeasseesnseesnseeesseeessean 629

List of tables

Table 1-1:
Table 1-2:
Table 1-3:
Table 1-4:
Table 1-5:
Table 1-6:
Table 1-7:
Table 2-1:
Table 2-2:
Table 4-1:
Table 4-2:
Table 6-1:
Table A-1:

Table B-1:

Functions in OpenTP1 library and their facilitiescccceeeereeeveereieninieieeene 2
Facilities and functions available with SUPScccccoooviiiiiiiiiiiiiieceeeeeeceee e, 7
Facilities and functions available With SPPSccccviiviiviiiiiieeieeeec e, 12
Facilities and functions available with MHPScc.cccoovviiiiiiiiiiciiceceeeeeee. 20
Facilities and functions available with UAPs that handles offline work................. 30
Data types that can be used as LYPES.....cerueeieieriirieierierieee ettt 52

UAP signals set by OpenTP1c.cocveiiiiiiiiiiiicieeeciesee e 65
Correspondence between audit event types and reserved words............ceeveeneene. 186
Relationship between search types and indeX types.......ccceceveevveeriieeenieesieeennnenns 391
Relationship between X/Open-compliant functions and facilities 444
Relationship between X/Open-compliant functions and OpenTP1 UAPs............ 445
TXRPC EITOT COUBS ...ttt ettt ettt ettt sae e 571
XATMI interface functions that can be used by an SPP called by the function

AC IPC CALL()ariinerieiiieeiie ettt ettt et e e et e e s beeenbaeeaaaen 630
List of changes to the interfaces.........cccviiiiiiriiiiiiecie e 632

XXV

Chapter
1. Creating Application Programs

This chapter outlines how to create OpenTP1 application programs in the C language.
This chapter contains the following sections:

1.1 Coding application program

1.2 Creating application programs (TCP/IP)

1.3 Creating XATMI interface application programs (TCP/IP, OSI TP)
1.4 Executing application programs

1. Creating Application Programs

1.1 Coding application program

1.1.1 Relationship between application programs and functions

The table below shows the correspondences between the OpenTP1 library functions

and their facilities.

Table 1-1: Functions in OpenTP1 library and their facilities

Facility classification

OpenTP1 function names and facilities

System operation management

dc_adm_call_command

Execute an operation command.

dc_adm_complete

Report the completion of user server
start processing.

dc_adm_status

Report the status of a user server.

Multinode facility

dc_adm_get_nd_status

Acquire the status of a specified
OpenTP1 node.

dc_adm_get_nd_status_begi
n

Start acquiring the status of an
OpenTP1 node.

dc_adm_get_nd_status_done

Terminate acquiring the status of an
OpenTP1 node.

dc_adm get nd status_next

Acquire the status of an OpenTP1
node.

dc_adm get nodeconf begin

Start acquiring a node identifier.

dc_adm_get nodeconf done

Terminate acquiring a node identifier.

dc_adm_get_nodeconf_next

Acquire a node identifier.

dc_adm_get_node_id

Acquire the node identifier of the
local node.

dc_adm_get_sv_status

Acquire the status of a specified user
server.

dc_adm get sv_status_begi
n

Start acquiring the status of a user
Server.

dc_adm _get sv_status_done

Terminate acquiring the status of a
user server.

dc_adm get sv_status_next

Acquire the status of a user server.

DAM file service

dc_dam_bseek

Seek a physical file block.

1. Creating Application Programs

Facility classification

OpenTP1 function

names and facilities

dc_dam_close

Close a logical file.

dc_dam_create

Allocate a physical file.

dc_dam_dget

Input directly a physical file block.

dc_dam_dput

Output directly a physical file block.

dc_dam_end

Terminate using an unrecoverable
DAM file.

dc_dam_get

Input a physical file block.

dc_dam_hold

Shut down a logical file.

dc_dam iclose Close a physical file.
dc_dam_iopen Open a physical file.
dc_dam_open Open a logical file.

dc_dam_put

Output a physical file block.

dc_dam_read

Input a logical file block.

dc_dam_release

Release a logical file from the
shutdown state.

dc_dam_rewrite

Update a logical file block.

dc_dam_start

Start using an unrecoverable DAM
file.

dc_dam_status

Reference the status of a logical file.

dc_dam _write

Output a logical file block.

IST service

dc_ist_close

Close an internode shared table.

dc_ist_open

Open an internode shared table.

dc_ist read

Input an internode shared table
record.

dc_ist_write

Output an internode shared table
record.

User journal acquisition

de_jnl_ujput

Acquire a user journal.

Lock for resources

dc_lck get

Enable locking of a resource.

dc_lck release_ all

Release all the resources from lock.

1. Creating Application Programs

Facility classification

OpenTP1 function

names and facilities

dc_1lck_release_byname

Release resource from lock specified
by name.

Audit log output

dc_log audit_print

Output audit log data.

Message log output

dc_logprint

Output message log.

Message exchange processing

dc_mcf adltap

Delete an application timer start
request.

dc_mcf_ap_info

Report the application information.

dc_mcf ap info_uoc

Report application information to a
user exit routine.

dc_mcf_close

Close the MCF environment.

dc_mcf commit

Commit an MHP.

dc_mcf contend

Terminate continuous-inquiry
response processing.

dc_mcf execap

Activate an application program.

dc_mcf mainloop

Start an MHP service.

dc_mcf open

Open the MCF environment.

dc_mcf_receive

Receive a message.

dc_mcf_recvsync

Receive a synchronous message.

dc_mcf_reply

Send a response message.

dc_mcf resend

Resend a message.

dc_mcf rollback

Enable MHP rollback.

dc_mcf send

Send a message.

dc_mcf_sendrecv

Exchange a synchronous message.

dc_mcf_sendsync

Send a synchronous message.

dc_mcf_tactcn

Establish a connection.

dc_mcf tactle

Release a logical terminal from
shutdown status.

dc_mcf_tdctcn

Release connection.

dc_mcf tdctle

Shut down a logical terminal.

1. Creating Application Programs

Facility classification

OpenTP1 function names and facilities

dc_mcf_tdlgle

Delete a logical terminal's output
queue.

dc_mcf_tempget

Accept temporary-stored data.

dc_mcf_tempput

Update temporary-stored data.

dc_mcf_ timer set

Set user timer monitoring.

dc_mcf timer cancel

Cancel user timer monitoring.

dc_mcf _tlscn

Acquire a connection status.

dc_mcf_tlscom

Acquire the status of MCF
communication services.

dc_mcf_tlsle

Acquire a logical terminal status.

dc_mcf_tlsln

Acquire the acceptance status for a
server-type connection establishment
request.

dc_mcf tofln

Stop accepting server-type connection
establishment requests.

dc_mcf_tonln

Start accepting server-type
connection establishment requests.

Performance verification trace

dc_prf_get_trace_num

Report the sequential number for an
acquired performance verification
trace.

dc_prf utrace put

Acquire user-specific performance
verification traces.

Remote API facility

dc_rap_ connect

Establish a connection with a
RAP-processing listener.

dc_rap_disconnect

Release a connection with a
RAP-processing listener.

Remote procedure call

dc_rpc_call

Request a remote service.

dc_rpc_call_to

Invoke a remote service with a
communication destination specified.

dc_rpc_close

Terminate an application program.

dc_rpc_cltsend

Report data to CUP unidirectionally.

dc_rpc _discard further re
plies

Reject the receiving of processing
results.

1. Creating Application Programs

Facility classification

OpenTP1 function names and facilities

dc_rpc_discard_specific_r
eply

Reject acceptance of particular
processing results.

dc_rpc_get_callers_addres
s

Acquire the node address of a client
UAP.

dc_rpc_get_error_ descript
or

Acquire the descriptor of an
asynchronous response-type RPC
request which has encountered an
error.

dc_rpc_get_gateway_addres
s

Acquire the node address of a
gateway.

dc_rpc_get_service_prio

Reference the schedule priority of a
service request.

dc_rpc_get _watch time

Reference the service response
waiting interval.

dc_rpc_mainloop

Start an SPP service.

dc_rpc_open

Start an application program.

dc_rpc_poll any replies

Receive processing results in
asynchronous mode.

dc_rpc_service retry

Retry a service function.

dc_rpc_set_service_prio

Set a schedule priority of a service
request.

dc_rpc_set _watch time

Update a service response waiting
interval.

Real-time statistical information
service

dc_rts_utrace_put

Acquire real-time statistical
information for arbitrary section.

TAM file service

dc_tam close

Close a TAM table.

dc_tam delete

Delete a TAM table record.

dc_tam get_inf

Acquire TAM table status.

dc_tam_open

Open a TAM table.

dc_tam_read

Input a TAM table record.

dc_tam_read_cancel

Cancel the input of a TAM table
record.

1. Creating Application Programs

Facility classification

OpenTP1 function

names and facilities

dc_tam_rewrite

Update a TAM table record on the
assumption of input.

dc_tam_status

Acquire TAM table information.

dc_tam write

Update/add a TAM table record.

Transaction control

dc_trn begin

Start a transaction.

dc_trn chained commit

Enable commitment in chained mode.

de_trn chained rollback

Enable rollback in chained mode.

de_trn_info

Report the information about the
current transaction.

de_trn unchained commit

Enable commitment in unchained
mode.

dc_trn unchained rollback

Enable rollback in unchained mode.

Online tester management

dc_uto_test status

Report the test status of a user server.

(1) Facilities and functions available with SUPs

The table below lists the facilities and functions which can be used with SUPs.

Table 1-2: Facilities and functions available with SUPs

Facility available with SUP

OpenTP1 function

SUP operating conditions

Outside the Inside the
transaction transaction
processing processing
range range
System Execute an operation dc_adm_call_ comm Y Y
operation command. and
management
Report the completion of | dc_adm complete Y N
user server start
processing.
Report the status ofauser | dc_adm_status Y Y
server.
Multinode Acquire the status of a dc_adm_get_nd_st Y Y
facility specified OpenTP1 node. | atus
Start acquiring the status | dc_adm get nd_st Y Y
of an OpenTP1 node. atus_begin

1. Creating Application Programs

Facility available with SUP

OpenTP1 function

SUP operating conditions

Outside the Inside the
transaction transaction
processing processing
range range
Terminate acquiring the dc_adm_get _nd_st Y Y
status of an OpenTP1 atus_done
node.
Acquire the status of an dc_adm_get nd_st Y Y
OpenTP1 node. atus_next
Start acquiring a node dc_adm_get_nodec Y Y
identifier. onf_begin
Terminate acquiring a dc_adm_get_nodec Y Y
node identifier. onf done
Acquire a node identifier. | dc_adm_get_nodec Y Y
onf next
Acquire the node dc_adm_get node Y Y
identifier of the local id
node.
Acquire the status of a dc_adm_get_sv_st Y Y
specified user server. atus
Start acquiring the status | dc_adm_get_sv_st Y Y
of a user server. atus_begin
Terminate acquiring the dc_adm_get_sv_st Y Y
status of a user server. atus_done
Acquire the status of a dc_adm_get sv_st Y Y
user server. atus_next
DAM file Close a logical file. dc_dam_close Y Y
service
Terminate using an dc_dam_end Y Y
unrecoverable DAM file.
Shut down a logical file. dc_dam_hold N Y
Open a logical file. dc_dam_open Y Y
Input a logical file block. | dc_dam read Y Y
Release a logical file dc_dam_release N Y

from the shutdown state.

1. Creating Application Programs

Facility available with SUP OpenTP1 function SUP operating conditions
Outside the Inside the
transaction transaction
processing processing

range range

Update a logical file dc_dam_rewrite Y) Y
block.
Start using an dc_dam_start Y Y
unrecoverable DAM file.
Reference the status ofa | dc_dam status Y Y
logical file.
Output a logical file dc_dam write) Y
block.

IST service Closeaninternode shared | dc_ist close Y Y
table.
Open an internode shared | dc_ist_open Y Y
table.
Input an internode shared | dc_ist_read Y Y

table record.

Output an internode dc_ist_write Y Y
shared table record.

User journal Acquire a user journal. dc_jnl ujput Y Y
acquisition
Lock for Enable locking of a dc_1lck_get N Y
resources resource.
Release all the resources | dc_lck release_a N Y
from lock. 11
Release resource from dc_lck_release b N Y
lock specified by name. yname
Audit log Output audit log data. dc_log_audit_pri Y Y
output nt
Message log Output message log dc_logprint Y Y
output
Performance Report the sequential dc_prf get trace Y Y
verification number for an acquired _num
trace performance verification
trace.

1. Creating Application Programs

Facility available with SUP

OpenTP1 function

SUP operating conditions

Outside the Inside the
transaction transaction
processing processing
range range
Acquire user-specific dc_prf_utrace_pu Y Y
performance verification | t
traces.
Remote API Establish a connection dc_rap_connect Y N
facility with a RAP-processing
listener.
Release a connection dc_rap_disconnec Y N
with a RAP-processing t
listener.
Remote Request a remote service. | dc_rpc_call Y Y
procedure call
Invoke a remote service dc_rpc call to Y Y
with a communication
destination specified.
Terminate an application | dc_rpc_close Y N
program.
Reject the receiving of dc_rpc_discard f Y Y
processing results. urther replies
Reject acceptance of dc_rpc_discard s Y Y
particular processing pecific_reply
results.
Acquire the descriptor of | dc_rpc get_error Y Y
an asynchronous _descriptor
response-type RPC
request which has
encountered an error.
Reference the schedule dc_rpc_get_servi Y Y
priority of a service ce prio
request.
Reference the service dc_rpc_get watch Y Y
response waiting interval. | time
Start an application dc_rpc_open Y N

program.

10

1. Creating Application Programs

Facility available with SUP OpenTP1 function SUP operating conditions
Outside the Inside the
transaction transaction
processing processing

range range
Receive processing dc_rpc_poll any Y Y
results in asynchronous replies
mode.
Set a schedule priority of | dc_rpc_set servi Y Y
a service request. ce prio
Change the response dc_rpc_set_watch Y Y
waiting interval of a _time

service request.

Real-time Acquire real-time dc_rts_utrace pu Y Y
statistical statistical information for | t
information arbitrary section.
service
TAM file Close a TAM table. dc_tam_close Y Y
service
Delete a TAM table dc_tam delete N Y
record.
Acquire TAM table dc_tam get inf Y Y
status.
Open a TAM table. dc_tam_open Y Y

Inputa TAM tablerecord. | dc_tam read

Cancel the input of a dc_tam_read canc N Y
TAM table record. el
Update a TAM table dc_tam rewrite N Y
record on the assumption
of input.
Acquire TAM table dc_tam_status Y Y
information.
Update/add a TAM table | dc_tam write N Y
record.
Transaction Start a transaction. dc_trn_begin Y N
control
Enable commitment in dc_trn_chained c N Y
chained mode. ommit

11

1. Creating Application Programs

Facility available with SUP

OpenTP1 function

SUP operating conditions

Outside the Inside the
transaction transaction
processing processing
range range
Enable rollback in dc_trn_chained r N Y
chained mode. ollback
Report the information dc_trn_info Y Y
about the current
transaction.
Enable commitment in dc_trn_unchained N Y
unchained mode. _commit
Enable rollback in dc_trn_unchained N Y
unchained mode. _rollback
Online tester Report the test status of a | dc_uto_test_stat Y Y
management user server. us

Legend:

Y: Can be used with SUPs.
(Y): Can be used only in access to an unrecoverable DMA file.
N: Cannot be used with SUPs.

(2) Facilities and functions available with SPPs

The table below lists the facilities and functions which can be used with SPPs.

Table 1-3: Facilities and functions available with SPPs

Facility available with SPP OpenTP1 function SPP operating conditions
Outside the Inside the
transaction transaction
processing processing

range range
Root Not
root
System Execute an operation dc_adm_call command Y Y Y
operation command.
management
Report the status ofauser | dc_adm status Y Y Y
SCrver.

12

1. Creating Application Programs

Facility available with SPP

OpenTP1 function

SPP operating conditions

Outside the Inside the
transaction transaction
processing processing
range range
Root Not
root
Multinode Acquire the status of a dc_adm get nd_statu Y Y Y
facility specified OpenTP1 node. | s
Start acquiring the status | dc_adm get nd_statu Y Y Y
of an OpenTP1 node. s_begin
Terminate acquiring the dc_adm get nd_statu Y Y Y
status of an OpenTP1 s _done
node.
Acquire the status of an dc_adm_get_nd_statu Y Y Y
OpenTP1 node. s_next
Start acquiring a node dc_adm_get nodeconf Y Y Y
identifier. _begin
Terminate acquiring a dc_adm_get nodeconf Y Y Y
node identifier. _done
Acquire a node identifier. | dc_adm get nodeconf Y Y Y
_next
Acquire the node dc_adm_get_node_id Y Y Y
identifier of the local
node.
Acquire the status of a dc_adm get sv_statu Y Y Y
specified user server. s
Start acquiring the status | dc_adm get sv_statu Y Y Y
of a user server. s_begin
Terminate acquiring the dc_adm get sv_statu Y Y Y
status of a user server. s_done
Acquire the status of a dc_adm_get_sv_statu Y Y Y
user server. s_next
DAM file Close a logical file. dc_dam_close Y Y Y
service
Terminate using an dc_dam_end Y Y Y
unrecoverable DAM file.

13

1. Creating Application Programs

Facility available with SPP

OpenTP1 function

SPP operating conditions

Outside the Inside the
transaction transaction
processing processing
range range
Root Not
root
Shut down a logical file. dc_dam _hold N Y
Open a logical file. dc_dam_open Y Y Y
Input a logical file block. | dc_dam read N Y Y
Release a logical file dc_dam_release N Y Y
from the shutdown state.
Update a logical dc_dam_rewrite Y) Y Y
fileblock.
Start using an dc_dam_start Y Y Y
unrecoverable DAM file.
Reference the status of a | dc_dam status Y Y Y
logical file.
Output a logical file dc_dam write) Y Y
block.
IST service Close an internode shared | dc_ist close Y Y Y
table.
Open an internode shared | dc_ist open Y Y Y
table.
Input an internode shared | dc_ist read Y Y Y
table record.
Output an internode dc_ist_write Y Y Y
shared table record.
User journal Acquire a user journal. dc_jnl_ujput Y Y Y
acquisition
Lock for Enable locking of a dc_lck_get N Y Y
resources resource.
Release all the resources | dc_lck release all N Y Y
from lock.
Release resource from dc_lck_release byna N Y Y
lock specified by name. me

14

1. Creating Application Programs

Facility available with SPP

OpenTP1 function

SPP operating conditions

Outside the Inside the
transaction transaction
processing processing
range range
Root Not
root
Audit log Output audit log data. dc_log audit print Y Y Y
output
Message log Output message log. dc_logprint Y Y Y
output
Message Delete an application dc_mcf_adltap Y Y Y
exchange timer start request.
processing
Close the MCF dc_mcf close (0] N N
environment.
Activate an application dc_mcf_ execap N Y Y
program.
Open the MCF dc_mcf open o N N
environment.
Receive a synchronous dc_mcf_ recvsync Y Y Y
message.
Resend a message. dc_mcf resend
Send a message. dc_mcf_ send
Exchange a synchronous | dc_mcf sendrecv
message.
Send a synchronous dc_mcf_ sendsync Y Y Y
message.
Establish a connection. dc_mcf tactcn Y Y Y
Release alogical terminal | dc_mcf tactle
from shutdown status.
Release connection. dc_mcf tdctcn
Shut down a logical dc_mcf tdctle
terminal.
Delete alogical terminal's | dc_mcf_tdlgle Y Y Y
output queue.

15

1. Creating Application Programs

Facility available with SPP

OpenTP1 function

SPP operating conditions

Outside the Inside the
transaction transaction
processing processing
range range
Root Not
root
Set user timer dc_mcf timer set Y Y Y
monitoring.
Cancel user timer dc_mcf timer cancel Y Y Y
monitoring.
Acquire a connection dc_mcf_tlscn Y Y Y
status.
Acquire the status of dc_mcf_tlscom Y Y Y
MCF communication
services.
Acquire a logical dc_mcf_tlsle Y Y Y
terminal status.
Acquire the acceptance dc_mcf tlsln Y Y Y
status for a server-type
connection establishment
request.
Stop accepting dc_mcf tofln Y Y Y
server-type connection
establishment requests.
Start accepting dc_mcf_tonln Y Y Y
server-type connection
establishment requests.
Performance Report the sequential dc_prf get trace nu Y Y Y
verification number for an acquired m
trace performance verification
trace.
Acquire user-specific dc_prf utrace put Y Y Y
performance verification
traces.
Remote API Establish a connection dc_rap_ connect Y N N
facility with a RAP-processing
listener.

16

1. Creating Application Programs

Facility available with SPP

OpenTP1 function

SPP operating conditions

Outside the Inside the
transaction transaction
processing processing
range range
Root Not
root
Release a connection dc_rap_ disconnect Y N N
with a RAP-processing
listener.
Remote Request a remote service. | dc_rpc_call Y Y Y
procedure call
Invoke a remote service dc_rpc_call_to Y Y Y
with a communication
destination specified.
Terminate an application | dc_rpc close o N N
program.
Report data to CUP dc_rpc_cltsend Y Y Y
unidirectionally.
Reject the receiving of dc_rpc_discard furt Y Y Y
processing results. her replies
Reject acceptance of dc_rpc_discard_spec Y Y Y
particular processing ific reply
results.
Acquire the node address | dc_rpc_get callers_ Y Y Y
of'a client UAP. address
Acquire the descriptor of | dc_rpc_get error de Y Y Y
an asynchronous scriptor
response-type RPC
request which has
encountered an error.
Acquire the node address | dc_rpc_get_gateway Y Y Y
of a gateway. address
Reference the schedule dc_rpc_get_service_ Y Y Y
priority of a service prio
request.
Reference the service dc_rpc_get watch_ti Y Y Y
response waiting interval. | me
Start an SPP service. dc_rpc_mainloop o N N

17

1. Creating Application Programs

Facility available with SPP

OpenTP1 function

SPP operating conditions

Outside the Inside the
transaction transaction
processing processing
range range
Root Not
root
Start an application dc_rpc_open o N N
program.
Receive processing dc_rpc_poll any rep Y Y Y
results in asynchronous lies
mode.
Retry a service function. dc_rpc_service retr Y N N
Y
Set a schedule priority of | dc_rpc_set service_ Y Y Y
a service request. prio
Update the response dc_rpc_set_watch_ti Y Y Y
waiting interval of a me
service request.
Real-time Acquire real-time dc_rts_utrace_put Y Y Y
statistical statistical information for
information arbitrary section.
service
TAM file Close a TAM table. dc_tam close Y Y Y
service
Delete a TAM table dc_tam delete N Y Y
record.
Acquire TAM table dc_tam get inf Y Y Y
status.
Open a TAM table. dc_tam_open
Input a TAM table record. | dc_tam read
Cancel the input of a dc_tam_read_cancel
TAM table record.
Update a TAM table dc_tam rewrite N Y Y
record on the assumption
of input.
Acquire TAM table dc_tam status Y Y Y
information.

18

1. Creating Application Programs

Facility available with SPP

OpenTP1 function

SPP operating conditions

Outside the Inside the
transaction transaction
processing processing
range range
Root Not
root
Update/add a TAM table | dc_tam write N Y Y
record.
Transaction Start a transaction. dc_trn_begin Y N N
control
Enable commitment in dc_trn_chained comm N Y N
chained mode. it
Enable rollback in dc_trn_chained roll N Y N
chained mode. back
Report the information dc_trn_info Y Y Y
about the current
transaction.
Enable commitment in dc_trn_unchained co N Y N
unchained mode. mmit
Enable rollback in dc_trn_unchained ro N Y Y
unchained mode. llback
Online tester Report the test status of a | dc_uto_test_status Y Y Y
management user server.
Legend:
Y: Can be used with SPPs.
(Y): Can be used only in access to an unrecoverable DAM file.
N: Cannot be used with SPPs.
O: Can be used only from the main function.
Note

(3) Facilities and functions available with MHPs

Root means the root transaction branch, and Not root means a transaction branch
other than the root transaction branch.

The table below lists the facilities and functions which can be used with MHPs.

19

1. Creating Application Programs

Table 1-4: Facilities and functions available with MHPs

Facility available with MHP OpenTP1 function MHP operating
conditions

Outside Inside
the the
transacti transacti
on on
processin | processi

g range ng range

System operation management Execute an dc_adm_call_comma Y Y
operation nd
command.
Report the status | dc_adm_status Y Y

of a user server.

Multinode facility Acquire the dc_adm get nd sta Y Y
status of a tus
specified
OpenTP1 node.
Start acquiring dc_adm get nd sta Y Y
the status of an tus_begin

OpenTP1 node.

Terminate dc_adm_get nd_sta Y Y
acquiring the tus_done
status of an

OpenTP1 node.

Acquire the dc_adm get nd sta Y Y
status of an tus_next
OpenTP1 node.

Start acquiringa | dc_adm_get nodeco Y Y
node identifier. nf begin

Terminate dc_adm _get nodeco Y Y
acquiring anode | nf done

identifier.

Acquire a node dc_adm_get_nodeco Y Y
identifier. nf next

Acquirethenode | dc_adm get_node_i Y Y
identifier of the d

local node.

20

1. Creating Application Programs

Facility available with MHP

OpenTP1 function

MHP operating

conditions
Outside Inside
the the
transacti | transacti
on on
processin | processi
g range ng range
Acquire the dc_adm_get_sv_sta Y Y
status of a tus
specified user
server.
Start acquiring dc_adm_get_sv_sta Y Y
the status of a tus_begin
user server.
Terminate dc_adm get_sv_sta Y Y
acquiring the tus_done
status of a user
server.
Acquire the dc_adm get_sv_sta Y Y
status of a user tus next
server.
DAM file service Close a logical dc_dam_close Y Y
file.
Terminate using | dc_dam_end Y Y
anunrecoverable
DAM file.
Shut down a dc_dam _hold N Y
logical file.
Open a logical dc_dam open Y Y
file.
Input a logical dc_dam_read Y Y
file block.
Release alogical | dc_dam release N Y
file from the
shutdown state.
Update a logical | dc_dam rewrite) Y
file block.

21

1. Creating Application Programs

Facility available with MHP

OpenTP1 function

MHP operating

conditions
Outside Inside
the the
transacti | transacti
on on
processin | processi
g range ng range
Start using an dc_dam_start Y Y
unrecoverable
DAM file.
Reference the dc_dam_status Y Y
status of a
logical file.
Output a logical | dc_dam write Y) Y
file block.
IST service Close an dc_ist _close Y Y
internode shared
table.
Open an dc_ist_open Y Y
internode shared
table.
Input an dc_ist read Y Y
internode shared
table record.
Output an dc_ist_write Y Y
internode shared
table record.
User journal acquisition Acquire a user dc_jnl ujput Y Y
journal.
Lock for resources Enable locking dc_lck_get N Y
of a resource.
Release all the dc_lck_release al N Y
resources from 1
lock.
Releaseresource | dc_lck release by N Y
from lock name
specified by
name.

22

1. Creating Application Programs

Facility available with MHP

OpenTP1 function

MHP operating

conditions
Outside Inside
the the
transacti | transacti
on on
processin | processi
g range ng range
Audit log output Output audit log | dc_log audit_prin Y Y
data. t
Message log output Output message dc_logprint Y Y
log.
Message exchange processing Delete an dc_mcf_adltap Y Y
application timer
start request.
Report the dc_mcf_ap_info NO Y
application
information.
Close the MCF dc_mcf _close o (0]
environment.
Commit an dc_mcf commit N Y
MHP.
Terminate dc_mcf_contend NO Y
continuous-inqui
Iy response
processing.
Activate an dc_mcf execap NO Y
application
program.
Start an MHP dc_mcf_mainloop o N
service.
Open the MCF dc_mcf open o (0]
environment.
Receive a dc_mcf receive NO Y
message.
Receive a dc_mcf_ recvsync Y Y
synchronous
message.

23

1. Creating Application Programs

Facility available with MHP

OpenTP1 function

MHP operating

conditions
Outside Inside
the the
transacti | transacti
on on
processin | processi
g range ng range
Send aresponse | dc_mcf reply NO Y
message.
Resend a dc_mcf resend N Y
message
Enable MHP dc_mcf_rollback N Y
rollback.
Send a message. | dc_mcf send NO Y
Exchange a dc_mcf_sendrecv Y
synchronous
message.
Send a dc_mcf_sendsync Y Y
synchronous
message.
Establish a dc_mcf_tactcn Y Y
connection.
Releasealogical | dc_mcf tactle Y Y
terminal from
shutdown status.
Release dc_mcf_tdcten Y Y
connection
Shut down a dc_mcf tdctle Y Y
logical terminal.
Delete the output | dc_mcf tdlgle Y Y
queue of a
logical terminal.
Accept dc_mcf_tempget NO Y
temporary-store
d data.
Update dc_mcf tempput NO Y
temporary-store
d data.

24

1. Creating Application Programs

Facility available with MHP

OpenTP1 function

MHP operating
conditions

Outside Inside
the the
transacti transacti
on on
processin | processi

g range ng range

Set user timer
monitoring.

dc_mcf_ timer set

Y Y

Cancel user
timer
monitoring.

dc_mcf_timer canc
el

Y Y

Acquire the
connection
status.

dc_mcf _tlscn

Acquire the
MCF
communication
service status.

dc_mcf_tlscom

Acquire the
logical terminal
status.

dc_mcf_tlsle

Acquire the
acceptance
status for a
server-type
connection
establishment
request.

dc_mcf_tlsln

Stop accepting
server-type
connection
establishment
requests.

dc_mcf_tofln

Start accepting
server-type
connection
establishment
requests.

dc_mcf_tonln

25

1. Creating Application Programs

Facility available with MHP OpenTP1 function MHP operating
conditions

Outside Inside
the the
transacti transacti
on on
processin | processi

g range ng range

Performance verification trace Report the dc_prf_get_trace_ Y Y
sequential num
number for an
acquired
performance
verification
trace.

Acquire dc_prf_utrace_put Y Y
user-specific
performance
verification
traces.

Remote API facility Establish a dc_rap_connect Y N
connection with
a
RAP-processing
listener.

Release a dc_rap_ disconnect Y N
connection with
a
RAP-processing
listener.

Remote procedure call Requestaremote | dc_rpc call Y Y
service

Invoke aremote | dc_rpc call to Y Y
service with a
communication
destination
specified.

Terminate an dc_rpc_close o N
application
program.

Report data to dc_rpc_cltsend Y Y
CUP
unidirectionally.

26

1. Creating Application Programs

Facility available with MHP

OpenTP1 function

MHP operating
conditions

Outside Inside
the the
transacti transacti
on on
processin | processi

g range ng range

Reject the
receiving of
processing
results.

dc_rpc_discard fu
rther replies

Y Y

Reject
acceptance of
particular
processing
results.

dc_rpc_discard_ sp
ecific_reply

Acquire the
descriptor of an
asynchronous
response-type
RPC request
which has
encountered an
erTor.

dc_rpc_get_ error
descriptor

Reference the
schedule priority
of a service
request.

dc_rpc_get_servic
e_prio

Reference the
service response
waiting interval.

dc_rpc_get _watch
time

Start an
application
program.

dc_rpc_open

Receive
processing
results in
asynchronous
mode.

dc_rpc _poll any r
eplies

Set a schedule
priority of a
service request.

dc_rpc_set_servic
e_prio

27

1. Creating Application Programs

Facility available with MHP

OpenTP1 function

MHP operating

conditions
Outside Inside
the the
transacti | transacti
on on
processin | processi
g range ng range
Update the dc_rpc_set_watch_ Y Y
response waiting | time
interval of a
service request.
Real-time statistical information Acquire dc_rts_utrace_put Y Y
service real-time
statistical
information for
arbitrary section.
TAM file service Close a TAM dc_tam_close Y Y
table.
Delete a TAM dc_tam delete N Y
table record.
Acquire TAM dc_tam get inf Y Y
table status.
Open a TAM dc_tam open Y Y
table.
Input a TAM dc_tam_read N Y
table record.
Cancel the input | dc_tam read_cance N Y
of a TAM table 1
record.
Update a TAM dc_tam rewrite N Y
table record on
the assumption
of input.
Acquire TAM dc_tam status Y Y
table
information.
Update/add a dc_tam_write N Y
TAM table
record.

28

1. Creating Application Programs

Facility available with MHP

OpenTP1 function

MHP operating

conditions
Outside Inside
the the
transacti transacti
on on
processin | processi
g range ng range
Transaction control Start a dc_trn_begin o N
transaction.
Report the dc_trn_info Y Y
information
about the current
transaction.
Enable dc_trn_unchained N (0]
commitment in commit
unchained mode.
Enable rollback dc_trn unchained N (0]
in unchained rollback
mode.
Online tester management Report the test dc_uto_test_statu Y Y
status of a user s
server.

Legend:

Y: Can be used with MHPs.

(Y): Can be used only in access to an unrecoverable DAM file.

O: Can be used only from the main function.

NO: The function can be used only in the service-function range of nontransaction

attribute MHPs.

N: Cannot be used with MHPs.

Note

"Outside the transaction processing range" means the range of nontransaction
attribute MHPs or MHP main functions.

(4) Facilities and functions available with UAPs that handles offline work

The table below lists the facilities and functions which can be used with UAPs that

handles offline work.

29

1. Creating Application Programs

Table 1-5: Facilities and functions available with UAPs that handles offline

work
Facility available with UAP that handles offline work OpenTP1 function
DAM file service Seek a physical file block. dc_dam_bseek
Allocate a physical file. dc_dam_create
Input directly a physical file block. dc_dam_dget
Output directly a physical file block. dc_dam dput
Input a physical file block. dc_dam get
Close a physical file. dc_dam_iclose
Open a physical file. dc_dam_iopen
Output a physical file block. dc_dam put
Performance verification trace Report the sequential number for an dc_prf get trace num
acquired performance verification trace.
Acquire user-specific performance dc_prf_utrace_put
verification traces.

1.1.2 Coding rules
(1) Notes on coding

30

For OpenTP1, a UAP can be created in either C or C++ language. If you are using C
language, code the UAP according to the ANSI C format or the pre-ANSI K&R
format. If you are using C++ language, code the UAP in conformance with the C++
language specifications. Although the availability of some functions in the provided
standard library is limited, most functions in the library can be used together with the
functions in the OpenTP1 library.

In addition, any system calls and program libraries can also be used. However, it is
recommendable to use OS-provided standard functions and system calls when writing
UAPs in order to assure high portability of the UAPs.

When creating UAPs which use system calls and arbitrary program libraries, note the
following:

1. When using a signal from the UAP, do not register the type of a signal handler
(SIGILL or SIGBUS) which creates a core file during operation with the signal
default specified. If the signal handler is registered, a core file is not created even
when the program terminates abnormally. As a result, troubleshooting is
impossible.

2. When using a signal from the UAP, do not use a function in the OpenTP1 library

1. Creating Application Programs

from the signal handler.
3. Do not use the following system call:
* chdir (change of the current working directory)
4. Do not use the following system calls after the function dc_rpc_open ():
* fork (new process creation)
* exec (file execution)
* system (shell command issuance)

5. Do not use jump functions (setjmp and longjmp) which extend over functions
in the C-language library.

6. When using another program library, do not use Xlib and OSF/Motif functions
which control event-driven dispatching.

If the OS is HP-UX, always specify immediate as the bind mode at linkage. If an
executable file created as a bind mode other than immediate is used as an OpenTP1
UAP, the system operation is undefined. Use the OS chatr command to check whether
the bind mode for the created UAP is immediate.

(2) Notes on naming

(a)

(b)

We recommend that you include a certain prefix character string in the names of any
variables or definitions coded by the user. If any names duplicate those used by the OS
or OpenTP1, system operation is unpredictable.

Service function names

Service functions must be given names which are 20 or less alphanumeric characters
in length and begin with an alphabetic character. Do not give service functions the
following names:

* Names beginning with dc

* Names beginning with CBLDC

* Names beginning with tx or TX

* Names beginning with tp or TP
External variable names

Do not give external variables the following names except when such names are used
according to the instructions in this manual:

* Names beginning with dc
* Names beginning with CBLDC

* Names beginning with tx or TX

31

1. Creating Application Programs

* Names beginning with tp or TP
(c) Constant names

Do not give the following names as constant names defined in #define statements
except when such names are used according to the instructions in this manual:

* Names beginning with DC
* Names beginning with CBLDC
* Names beginning with TX
* Names beginning with TP
(3) Termination method

If the COBOLSS5 program has been executed even only once in a process of a UAP
created in C language, use the cblend function to enable exit. If the UAP is
terminated without using the cblend function, some information will not be output
(such as the COBOLSS5 count information). See the corresponding COBOL language
manual for details on the cblend function.

(4) When using Windows

Conform to the specifications of the C compiler used by Windows for compiling and
linking UAPs when the OpenTP1 (TP1/LiNK) is used by Windows.

(5) When using TP1/Message Control

The source files of C user application programs and user exit routines used in Version
6 can also be used as is in Version 7 in the following cases: (1) when both Versions 6
and 7 are for the 32-bit architecture, and (2) when both Versions 6 and 7 are for the
64-bit architecture.

32

1. Creating Application Programs

1.2 Creating application programs (TCP/IP)

1.2.1 Procedure for creating application programs
(1) General procedure for creating an SUP

The figure below shows the procedure for creating an SUP.

33

1. Creating Application Programs

Figure 1-1: General procedure for creating SUPs

Code SUP

Source
program

Compile

Object file

OpenTP1
libraries

Link

If the OS is HP-UX, always specify

Create user Executable| immediate forthe bind mode at linkage.

service definitions

file

User

service Execute SUP
definition
file

(2) General procedures for creating an SPP

The SPP creation procedure depends on whether the SPP uses a stub or uses dynamic
loading of service functions.

34

1. Creating Application Programs

(a) General procedure for creating an SPP (when using a stub)
The figure below shows the general procedure for creating an SPP by using a stub.

Figure 1-2: General procedure for creating an SPP (when using a stub)

[
Code SPP J Code SPP Create RPC
service functions main function interface definitions
Source Source Source
progral progral progral
Generate stub
with the stub
generator
Compile Compile
Stub
Compile
O?i{:Ct Object f Object f

Link
Create user
service definitions

If the OS is HP-UX, always specify
immediate for the bind mode at linkage.

H Execute SPP

35

1. Creating Application Programs

(b) General procedure for creating an SPP (when using dynamic loading of
service functions)

The following shows the general procedure for creating an SPP that dynamically loads
service functions.

Figure 1-3: General procedure for creating an SPP (when using dynamic
loading of service functions)

[
Code SPP J Code SPP
service functions main function

Source Source Source
progral progral progral
Compile
Compile

Obig Obiject f
file

Link
Create user
service definitions

Link dynamically

Execute SPP

36

1. Creating Application Programs

(3) General procedures for creating an MHP

The MHP creation procedure depends on whether the MHP uses a stub or uses
dynamic loading of service functions.

(a) General procedure for creating an MHP (when using a stub)

The figure below shows the general procedure for creating an MHP that uses a stub.

37

1. Creating Application Programs

38

Figure 1-4: General procedure for creating an MHP (when using a stub)

Code MHP

I
Code MHP J
service functions main function

Create RPC
interface definitions

Source Source Source
progra progra progra
|Compe ‘ | Compile
Object Object Objec
file file file

Stub

Generate stub
with the stub
generator

l Compile

Stub
object fi

Link

Create MCF Create user
application definitions service definitions

Perform pre-
processing

|| Execute MHP

If the OS is HP-UX, always specify
immediate for the bind mode at linkage.

1. Creating Application Programs

(b) General procedure for creating an MHP (when using dynamic loading of

service functions

The figure below shows the general procedure for creating an MHP that uses dynamic

loading of service functions.

Figure 1-5: General procedure for creating an MHP (when using dynamic

loading of service functions)

[
Code MHP J Code MHP
service functions main function

Source

Source

Source
program

program

program

Compile
Compile
Obig Preniiy Obiject file
file libraries

Link

Create user
service definitions

Create MCF
application definitions

UAP MHP

shared
library

executable
file

Link dynamically

Execute MHP

J

User
service

definition
file

v

MCF

application
definition
file

Perform pre-
processing

39

1. Creating Application Programs

(4) General procedure for creating UAP that handles offline work

The figure below shows the general procedure for creating a UAP that handles offline
work.

Figure 1-6: General procedure for creating a UAP that handles offline work

Code UAP

Source
program

Compile

OpenTP1 Object
libraries file

Link

If the OS is HP-UX, always specify
immediate for the bind mode at linkage.

Executable
file

Execute UAP that
handles offline work

1.2.2 Creating stubs

UAPs used with the OpenTP1 require libraries for fulfilling inter-UAP service
requests. One of these libraries is called a stub.

The explanation below deals with stubs of UAPs (SUP and SPP) which use an
OpenTP1 remote procedure calls (dc_rpc_call ())and MHP stubs. See 1.3

40

1. Creating Application Programs

Creating XATMI interface application programs (TCP/IP, OSI TP) on how to create
stubs which will be used when the XATMI interface is used for communication.

(1) Application programs requiring stubs

Among the UAPs used with the OpenTP1, UAPs having service functions (SPP and
MHP) usually require a stub. However, a stub is not required if all service functions

are put in the UAP shared library from which they are loaded dynamically. The UAP
shared library is created by linking the UAP object files compiled from UAP source

files.

Note that UAPs that handle offline work and SUPs do not require a stub because they
do not have a service function.

(2) Stub creation procedure

Before creating a stub, create a file (RPC interface definition file) in which UAP
service functions are defined. Execute the stbmake command with this file as the
argument.

When the stbmake command is executed, a source file (C-language source file) for
the stub is created. Compile this file with the C-language compiler and link it to the
object file of the UAP.

When modifying the stub, create the UAP from scratch. Modify the RPC interface
definition file, recreate the stub, and link it to the object file of the recompiled UAP.

The figure below shows the stub creation procedure.
Figure 1-7: Stub creation procedure
Creation of RPC interface definitions
entry. ..

oL

Store

stbmake
command

Create

RPC Compile

interface
definition
file

Link to UAP
object file

Stub
source file

Stub
object file

N

C language

compiler

41

1. Creating Application Programs

(3) Creation of RPC interface definition file

When creating a stub, create a file which defines entry points to the SPP and MHP
services. This is called the RPC interface definition. The file containing this definition
is called the RPC interface definition file.

Create an RPC interface definition file for each executable file of the SPP or MHP.
(a) Format of RPC interface definition
Write the RPC interface definition in the following format:

Format

entry "entry-point-name" ["entry-point-name" . . .] ;

Description

This statement specifies the names of the entry points to the SPP and MHP service
functions. Each entry point name must be a C-language function name.

Use 20 characters or fewer to specify each entry point.

The entry point names must correspond to the service names as specified in the
user service definition.

Comments can be added to the RPC interface definition. Begin each comment
with /* and terminate it with * /. Comments cannot be nested. Comments cannot
be written within a keyword, identifier, or other character string.

More than one entry statement can be written in one file. An example of RPC
interface definition is given below.

Example

Specification of RPC interface definition for a UAP which has service functions
with their entry points identified by sv01 and sv02 (use either format below)

Format 1:

entry "sv01";
entry "sv02";

Format 2:

entry "svO01l" "svO02";

(4) RPC interface definition file name

The file name must end with the suffix .def indicating an RPC interface definition
file. The directory to contain the file must be in a path that the stbmake command can
search. No other restrictions are placed on it.

42

1. Creating Application Programs

The name of an RPC interface definition file can have up to 255 characters. However,
the name that can be specified may be shorter than 255 characters due to OS
restrictions.

After the stbmake command is executed, a stub source file is created under a name
different from that of the RPC interface definition file. Therefore, the RPC interface
definition file is not used during the OpenTP1 operation.

1.2.3 Creating stub source file

To create the source file of the stub, execute the stbmake command with the RPC
interface definition file name as the argument.

(1) File created by stbmake command

When the stbmake command is executed, the following file is created (xxxxx is the
RPC interface definition file name minus the suffix .def).

* Stub source file (file name: xxxxx_sstb.c)
The name of the source file can be changed using an option to the command.

The source file name can have up to 255 characters. However, the name that can
be specified may be shorter than 255 characters due to OS restrictions. Compile
the stub source file with the C-language compiler and link it with the UAP object
file.

1.2.4 stbmake - Stub source file creation
(1) Format

stbmake [-s [stub-source-file-namel] definition-file-name

(2) Description
Creates a stub source file from the RPC interface definition file.

When creating a UAP that uses OpenTP1 remote procedure calls and XATMI interface
functions in combination, see the descriptions of the stbmake command in 4. Using
OpenTP1 Remote Procedure Calls and XATMI-interfaced Functions in Combination.
(3) Options
B -s stub-source-file-name ~ <pathname>
Specify the pathname of the stub source file to be created. If no pathname is
specified here, the source file name is the same as the RPC interface definition file

name except that the suffix .def is replaced with _sstb. c and the source file is
created in the current directory.

If a source file with the specified file name is already present, it is replaced with
the created source file and is lost.

43

1. Creating Application Programs

(4) Command argument
m definition-file-name~ <pathname>
Specify the pathname of the RPC interface definition file.
(5) Notes

The name in the stbmake command of a file that can be input and output can be up to
255 characters in length. However, the name that can be specified may be shorter than
255 characters due to OS restrictions.

(6) Example
An example of using the stbmake command is given below.

Creating a stub source file from an RPC interface definition file test .def in the
current directory.

Format 1:

stbmake test.def

A stub source file test sstb.c is created from an RPC interface definition file
test.def in the current directory.

Format 2:

stbmake -s stub/test.c test.def

A directory stub is created under the current directory and a stub source file test.c
is created in the created directory.

1.2.5 Compiling and linking application program

For details on how to compile and link UAPs, see the reference documentation for the
OS being used.

m Note on UAP creation

Be careful of the OpenTP1 version in creating a UAP. Some system services do
not accept functions called from UAPs in old versions. To use a UAP created in
an old version, the UAP should be recompiled in the OpenTP1 version.

(1) Compilation

To create the object file of a UAP written in C language, compile the source program
with the C compiler. Also, use the C compiler to compile the stub source program.

(2) Linkage
The following notes (#1 to #3) apply to files treated in (a) to (d) below.

44

#1:

#2:

#3:

1. Creating Application Programs

The object file for transaction control is required to execute transactions that
access the resource manager via the XA interface. Note that any resource manager
provided by OpenTP1 is accessed by the XA interface. An object file for
transaction control is created by using an OpenTP1 command (t rnmkobj
command). For details on the t rnmkobj command, see the manual OpenTP1
Operation.

The object file provided by resource manager is required to access the resource
manager. The following arguments can be specified in the linkage command to
link object files provided by OpenTP1:

Arguments for using the message exchange facility: - lmcf and - lmnet
Argument for using the DAM access facility: - 1dam

Argument for using the TAM access facility: - 1tam

Arguments for using the ISAM facility: -1ismb, -1isam, and -1rsort
Argument for using the message queuing facility: - 1mga

For details on how to link object files for a non-Hitachi resource manager, see the
documentation for the resource manager.

The object file provided by the online tester is required to use the
dc_uto test status function, which reports the user server test status. The
following argument is specified to link the object file for the online tester:

Argument for reporting the user server test status: -luto

(a) Files to be linked to SPP and MHP
The executable file of an SPP or MHP is linked to the following files when it is created:

UAP object file (main and service functions)

Stub object file
Object file for transaction control®!
Object file provided by resource manager#2

Object file provided by online tester”
OpenTP1 library

45

1. Creating Application Programs

(b)

(c)

(d)

Files to be linked to SUP
The executable file of an SUP is linked to the following files when it is created:
* UAP object file (main function)

* Object file for transaction control®!

¢ Object file provided by resource manager#2

e Object file provided by online tester”>
e OpenTP1 library
Files to be linked to UAP that handles offline work

The executable file of UAP that handles offline work is linked to the following files
when it is created:

¢ UAP object file (main function)
¢ OpenTP1 library

Files to be linked to an SPP or MHP that dynamically loads service
functions

When the executable file of an SPP or MHP that dynamically loads service functions
is created, it is linked to the following files:

¢ UAP object file (main function)
¢ OpenTP1 library

* Object file for transaction control”!

* Object file provided by resource rnanager#2

* Object file provided by online tester™

In addition to the above files, the following files are required when the SPP also uses
a service search that employs a stub:

¢ UAP object file (service function)
¢ Stub object file

(3) Notes

46

If the OS is HP-UX, always specify immediate as the bind mode at linkage. If an
executable file created as a bind mode other than immediate isused as an OpenTP1
UAP, the system operation is undefined. Use the OS chatr command to check whether
the bind mode for the created UAP is immediate.

1. Creating Application Programs

1.3 Creating XATMI interface application programs (TCP/IP, OSI TP)

This section explains how to create a UAP that uses an XATMI interface if TCP/IP or
OSI TP is used as the communication protocol.

This method differs from how to create a UAP that uses OpenTP1 RPC in terms of the
procedure of creating a stub (execution formats for the stbmake and tpstbmk
commands) and in the file to be linked with the UAP. The other procedures are the
same as for an OpenTP1 UAP. For details on how to create UAPs, see 1.1 Coding
application program and 1.4 Executing application programs.

1.3.1 Procedure for creating XATMI-interfaced application programs
The figure below shows the procedure for creating UAP.

47

1. Creating Application Programs

Figure 1-8: Procedure for creating UAP (XATMI Interface TCP/IP, OSI TP)

Create XATMI

Code UAP interface definitions

Source
progral

Create stub with
stbmake command or

Htps tbmk command

r a -
XAT

XATM
stub
eader fi

Compile

stub sol
file

l Compile

UAP Stub
object fi object fi

Link

Create user
service definitions If the OS is HP-UX, always specify

immediate for the bind mode at linkage.

Execute UAP

48

1. Creating Application Programs

1.3.2 Creating stubs for XATMI interface

This subsection explains how to create the stub for the XATMI interface. For UAP
communication through the XATMI interface, stubs are necessary on both the client
and server UAPs.

To create a stub, create a file (XATMI interface definition file) that defines an XATMI
interface, then execute a stub creating command. The following commands create a
stub:

¢ For a UAP that supports TCP/IP communication: stbmake command
¢ For a UAP that supports OSI TP communication: tpstbmk command

Compile the created stub source file with the C-language compiler and link it to the
UAP object file.

The figure below provides an overview of the procedure for creating a stub for the
XATMI interface.

49

1. Creating Application Programs

Figure 1-9: Procedure for creating stub for XATMI interface

» Procedure for creating
XATMI stub for server UAP

Contents of XATMI interface
definition

» Procedure for creating
XATMI stub for client UAP

Contents of XATMI interface
definition

« typed buffer to be used

+ Service function names
and argument information

+ Definition which will be
used when calling another
server UAP

XATMI
interface
definition

file

stbmake command or
tpstbmk command

XATMI XATMI XATMI

stub stub stub

header source header
file file file

(1) XATMI interface definition (for client UAP)

The XATMI interface definition for the client UAP (SUP or SPP) is in the format

explained below.

Format

XATMI interface
definition file name
for server UAP

XATMI
interface
definition

file

stbmake command or
tpstbmk command

XATMI
stub

source
file

called servers={"server-definition-file-name"
[, "server-definition-file-name"] . . . } ;

50

1. Creating Application Programs

Description

Specify all XATMI interface definition file names defined in the server UAP.
When a server UAP definition file is specified, the typed buffer defined in the
server definition file can be used by the client UAP process.

Parameters
* server-definition-file-name

Specify the file name of the XATMI interface definition file of the server
UAP. The definition file name must have a suffix .def.

Multiple definition files names can be specified in braces {} in one
called_servers statement. It is also possible to write multiple
called servers statements in one XATMI interface definition file.

Example

Defining a client UAP which communicates with server UAP1 and server UAP2
through the XATMI interface (assuming that the server UAP1 definition file name
is servl.def and the server UAP2 definition file name is serv2.def).

Format 1:

called servers = { "servl.def", "serv2.def" };

Format 2:

called servers = { "servl.def" };
called servers = { "serv2.def" };

(2) XATMI interface definition (for server UAP)

For the XATMI interface definition of a server UAP, the following items must be
specified in any order:

¢ Definition of the typed buffer to be used
¢ Definition of service function name and argument information
* called servers statement (if the server UAP is to call another server UAP)
(a) Definition of the typed buffer to be used
Format

type-name subtype-name
data-type data-name ;
[data-type data-name ;]

}i

51

1. Creating Application Programs

Description

Define the type, subtype, and structure of the typed buffer to be used with the
server UAP. Ifthe server UAP is to call service from another server UAP process,
the typed buffer which can be used by the calling process can also be used by any
local process. Therefore, define here only the typed buffer to be used for I/O by
the service function within the local process. However, X OCTET will always be
recognized. If X_OCTET is defined, the execution of a stub creation command
(stbmake or tpstbmk command) will encounter an error.

Parameters

* tYpe-name

Specify the type name of the typed buffer to be used with the server UAP.
* subtype-name

Specify the subtype name of the typed buffer to be used with the server UAP.
* data-type

Specify the data type of the data contained in the structure of the typed buffer
to be used with the server UAP.

e data-name

Specify the data name of the data contained in the structure of the typed
buffer to be used with the server UAP.

List of the data types that can be used as types

Table 1-6 lists the data types that can be used as #ypes. Identifier means a data type
to be written in the XATMI interface definition. Data type in C means data type
of a typed buffer actually defined in a stub. To convert a data type in order to
communicate with a system other than OpenTP1, specify the identifier to be
converted in the XATMI interface definition.

For OpenTP1, a value of type int has four bytes. Therefore, int4 is written in the
definition file so that the fact is explicitly indicated.

Table 1-6: Data types that can be used as types

Type Identifier Data type in C Communication Remarks
protocol
TCP/IP OSsI TP
X_OCTET ol ol Y Y None
X_COMMON short a short a Y Y None
short a[n] short a[n] Y Y None

52

1. Creating Application Programs

Type Identifier Data type in C Communication Remarks
protocol
TCP/IP OSsI TP

long a long a Y Y None
long a[n] long a[n] Y Y None

char a2 char a Y Y Unconverted
array

octet a char a Y Y Unconverted
array

tchar a chara (0] Y Converted

array

char a[n]"? char a[n] Y Y Unconverted
array

octet a[n] char a[n] Y Y Unconverted
array

tchar a[n] char a[n] o Y Converted

array
X C_TYPE short a short a Y N None
short a[n] short a[n] Y N None
long a DCLONG a Y N None
long a[n] DCLONG a[n] Y N None
int4 a DCLONG a Y N None
int4 a[n] DCLONG a[n] Y N None
char a™? char a Y N None
octet a char a N None
tchar a char a N None
char a[n]"? char a[n] Y N None
octet a[n] char a[n] Y N None
tchar a[n] char a[n] Y N None
float a float a Y N None
float a[n] float a[n] Y N None

53

1. Creating Application Programs

Type Identifier Data type in C Communication Remarks
protocol
TCP/IP OSsI TP
double a double a Y N None
double a[n] double a[n] Y None
octet a[n][n] char a[n][n] Y N None
tchar a[n][n] char a[n][n] Y N None
str a[n] char a[n] Y N None
str a[n][n] char a[n][n] Y N None
tstr a[n] char a[n] Y N None
tstr a[n][n] char a[n][n] Y N None
Legend:

Y: Can be used for the applicable communication protocol.

N: Cannot be used for the applicable communication protocol.

O: Even an identifier to be converted is treated as it is without conversion.
#1

X_OCTET is automatically recognized if it is not defined. If X_OCTET is specified
in the XATMI interface definition, an error occurs when a command that creates a
stub is executed.

#2

This identifier can also be used. However, to create a new program, use one of the
following identifiers:

For X _COMMON: octet or tchar
Forx C TYPE: strortstr

Example

X C_TYPE subtypel {
char name[8];
int4 datall0];
int4 flags;

}i

54

1. Creating Application Programs

(b) Definition of service function name and argument information

Format

service service-function-name (type-name [subtype-name]) | (ALL) | ([void])};

Description

Specify the function name of the service function in the server UAP and the type
name and subtype name of the typed buffer to be passed as the arguments. The
argument is the data member of the svc _info structure which is the actual
argument to the service function.

For the X_OCTET type, specify only the type name because there is no subtype. If
intended processing does not involve reference to the data member of the
svc_info structure in the service function, assign nothing or void to the
argument.

The tpcall (), tpacall (), and tpconnect () functions can call a service
function without sending the typed buffer. If data indicated by a member of the
svcinfo structure with a service function is not to be referenced explicitly, assign
nothing or void to the argument.

To call a specified function, set NULL for the pointer to the typed buffer sent with
the tpcall (), tpacall (), or tpconnect () functions at the client side. For
the X_OCTET type, a specified function can be called even if NULL is not set for
the pointer or the length of the sent data is zero.

If specification is not to limit the typed buffer to be received as an argument,
assign ALL to the argument. The service function defined with argument ALL can
receive any type of typed buffers as long as they are recognizable in the local
process.

Parameters
* service-function-name
Specify the function name in the server UAP.
* type-name
Specify the type name given to the argument to the function.
* subtype-name
Specify the subtype name given to the argument to the function.
Examples

Example 1:

service svc_funcl (X_C TYPE subtypel) ;

55

1. Creating Application Programs

Example 2 (argument type is X_OCTET):

service svc_func2 (X_OCTET) ;

Example 3 (service function without argument reception):

service svc_func3(void); or service svc_func3();

Example 4 (service function without argument limitation):

service svc_func4 (ALL) ;

(c) If the server UAP is to call another server UAP:

Specify the XATMI interface definition (called servers statement) of the client
UAP.

(3) Name of an XATMI interface definition file

The file name must end with the suffix . def indicating an XATMI interface definition
file. The directory to contain the file must be in a path that a stub creation command
(stbmake or tpstbmk command) can search. No other restrictions are placed on it.

The name of an XATMI interface definition file can have up to 255 characters.
However, the name that can be specified may be shorter than 255 characters due to OS
restrictions.

After a command that creates a stub (stbmake or tpstbmk command) is executed, a
stub source file is created under a name different from that of the XATMI interface
definition file. Therefore, the XATMI interface definition file is not used while
OpenTP1 running.

(4) Including the definition file

If the same typed buffer is to be used by different processes, the user can create a
definition file for the shared typed buffer and include it in the definition file for each
process.

The statement for including the definition file is in the same format as in the C
language as follows:

#include <file-name> or #include "file-name"

56

The include file will be read through the search path specified by the -i option to a stub
creation command (stbmake or tpstbmk command). If the appropriate file is not
found in the search path, the current directory will finally be searched.

The file to be included may be given any name (the suffix need not be .h). However,
if the file is directly specified in a stub creation command (stbmake or tpstbmk
command) as the XATMI interface definition file, observe the definition naming

1. Creating Application Programs

convention.

The contents of the file to be included are the same as those of the XATMI interface
definition file. However, the file should not contain the definition of a service function
within the local process in order to avoid name duplication

(5) Naming conventions

1. Service functions and subtypes must be named according to the OpenTP1 rules as
follows:

* Any name cannot begin with dc, DC, CBLDC, tx, TX, tp, or TP.
* Service function names must be 20 characters or less long.

* The maximum subtype name length is 32 characters. Of these characters, the
first 16 characters are valid. These 16 characters are checked for duplication.

* Up to 32 characters can be used for the data names of data used in the
structures of typed buffers.

2. Service function names must be unique within the same process.

3. Subtype names may be duplicate in the same process only if the types and
structures are identical. Otherwise, a stub creation command (stbmake or
tpstbmk command) returns with an error.

4. Identical service function names or subtype names may be used in different
processes. However, processes treated as different servers will be regarded as the
same process by the client if they are called from one client.

1.3.3 Creating stub source files for XATMI interface
Create a stub for the XATMI from the created XATMI interface definition file.

To create a stub, create a file (XATMI interface definition file) that defines an XATMI
interface, then execute a stub creation command. The following commands create a
stub:

¢ For a UAP that holds TCP/IP communication: stbmake command
e For a UAP that holds OSI TP communication: tpstbmk command
Create stubs for the client and server UAPs in the following way:
(1) Files created by the stbmake command or tpstbmk command

The following three files are created by executing the command (xxxxx is the XATMI
interface definition file name minus the suffix .def):

* XATMI stub source file (default file name: xxxxx_stbx.c)

* XATMI stub header file (default file name: xxxxx stbx.h)

57

1. Creating Application Programs

* XATMI stub copy file (subtype name followed by .cbl)

The file name can have up to 255 characters. However, the name that can be specified
may be shorter than 255 characters due to OS restrictions.

The directory in which a file is created, and the file name can be changed by a
command option.

(a) XATMI stub source file

The XATMI stub source file will be compiled with the C-language compiler and linked
to the UAP object file.

(b) XATMI stub header file

The XATMI stub header file will be included in the UAP source file and XATMI stub
source file.

(c) XATMI stub copy file
The file is used not in a UAP written in C, but rather in a UAP written in COBOL.
1.3.4 stbmake - Stub source file creation for XATMI interface
(1) Format

stbmake [-x] [-b]l [-S stub-source-file-name]
[-H stub-header-file-name)
[-i include-file-pathname)
[-m server-definition-file-pathname)
[-p] definition-file-name

(2) Description

When you intend to hold TCP/IP communication via an XATMI interface, create the
source file for the required XATMI stub. The stbmake command outputs the
following files based on the XATMI interface definition file:

e XATMI stub source file
e XATMI stub header file (used in a UAP written in C)
* XATMI stub copy file (used in a UAP written in COBOL)

When creating a UAP that uses OpenTP1 remote procedure calls and XATMI interface
functions in combination, see the descriptions of the stbmake command in 4. Using
OpenTP1 Remote Procedure Calls and XATMI-interfaced Functions in Combination.

(3) Options
B -x

Indicates that the stub created will serve the UAP which uses the XATMI
interface. The -x option can be omitted.

58

1. Creating Application Programs

-b

To create an XATMI stub to be used in a UAP in C, omit the -b option. To create
an XATMI stub copy file to be used in a UAP written in COBOL, specify the -b
option.

- S stub-source-file-name ~ <pathname>

Specify this option if the XATMI stub source file created is to be renamed. The
relative or absolute pathname may be used for this file name.

If this option is omitted, the file will be created with name xxxxx_stbx. c in the
current directory.

-H stub-header-file-name ~ <pathname>

Specify this option if the XATMI stub header file created is to be renamed. The
relative or absolute pathname may be used for this file name.

If this option is omitted, the file will be created with name xxxxx_stbx.h in the
current directory.

-1 include-file-pathname ~ <pathname>

Specify the search path containing the include file specified by the #include
statement to be used. The stbmake command searches the directory identified by
the -1 option for the include file.

If the - i option is omitted, the current directory is searched for the include file.

The -1 option can be specified only once. If more than one search path is needed,
the pathnames must be followed by the desired paths separated by colons (:). The
search order is the order in which the paths are written as the argument to the - 1
option. Use alphanumeric characters, underscore (), slash (/), and period (.) when
specifying a search pathname.

-m server-definition-file-pathname ~ <pathname>

Specify the search path containing the server definition file to be used. The
stbmake command searches the directory identified by the -m option for the
server definition file specified by the called servers statement.

If the -m option is omitted, the current directory is searched for the definition file.

The -m option can be specified only once. If more than one search path is needed,
the pathnames must be followed by the desired paths separated by colons (:). The
search order is the order in which the paths are written as the argument to the -m
option.

Use alphanumeric characters, underscore (), slash (/), and period (.) when
specifying a search pathname.

-p

59

1. Creating Application Programs

Specify this option to output the allocation status of the typed buffer in memory
to the standard output. Use the -p option to learn about how XATMI structure
members are allocated in memory.

When the -p option is specified, the stbmake command creates no files. Thus,
output file names specified in the - S and -H option are ignored. Specify the -m
and -1 options to search for files as needed.

(4) Command argument
m definition-file-name
Specify the XATMI interface definition file name. Its suffix must be . def.
(5) Notes

* FEach option to the stbmake command for XATMI stub creation can be specified
only once. If an option is specified more than once, the last specified value will
be valid

* The name in the stbmake command of a file that can be input and output can be
up to 255 characters in length. However, the name that can be specified may be
shorter than 255 characters due to OS restrictions.

1.3.5 tpstbmk - Creation of an XATMI interface stub OSI TP
communication

(1) Format

tpstbmk [-b] [-S stub-source-file-name)
[-H stub-header-file-name)
[-i include-file-search-pathname)
[-m server-definition-file-search-pathname)
definition-file-name

(2) Description

When you intend to hold OSI TP communication via an XATMI interface, create the
source file for the required XATMI stub. The tpstbmk command outputs the
following files based on the XATMI interface definition file:

e XATMI stub source file
e XATMI stub header file (used in a UAP written in C)
e XATMI stub copy file (used in a UAP written in COBOL)

When you intend to create a UAP that uses an XATMI interface and OpenTP1 remote
procedure calls, seethe explanation about the tpstbmk command in 4. Using
OpenTP1 Remote Procedure Calls and XATMI-interfaced Functions in Combination.

60

(3) Options

1. Creating Application Programs

-b

To create an XATMI stub to be used in a UAP in C, omit the -b option. To create
an XATMI stub copy file to be used in a UAP written in COBOL, specify the -b
option.

- S stub-source-file-name ~ <pathname>

Specify the name of the XATMI stub source file to be created. Relative and
absolute pathnames can be used.

If the - s option is omitted, the XATMI stub source file is created in the current
directory under the name XXXXX stbx.c.

-H stub-header-file-name ~ <pathname>

Specify the name of the XATMI stub header file to be created. Relative and
absolute pathnames can be used.

If the -H option is omitted, the XATMI stub header file is created in the current
directory under the name XXXXX stbx.h.

-1 include-file-search-pathname ~ <pathname>

Specify the include file name specified in the #include statement of the XATMI
interface definition file using a search path. The include file is searched for
starting at the directory specified in the -1 option.

If the - i option is omitted, the search starts at the current directory in which the
command was executed.

The - 1 option can be specified only once. Separate search paths with a colon. The
search paths are searched in the order in which they are described in the
arguments for the -1 option.

Specify a search path using alphanumeric characters, underscore (), slash (/), and
period (.).

-m server-definition-file-search-pathname ~ <pathname>

Specify the server definition file name specified in the called servers
statement of the XATMI interface definition file using a search path. The include
file is searched for starting at the directory specified in the -m option.

If the -m option is omitted, the search starts at the current directory in which the
command was executed.

Specify a search path using alphanumeric characters, underscore (), slash (/), and
period (.).

The -m option can be specified only once. Separate search paths with a colon (:).

61

1. Creating Application Programs

The search paths are searched in the order in which they are described in the
arguments for the -m option.

(4) Command argument
m definition-file-name ~ <pathname>

Specify the name of an XATMI interface definition file. The name must have the
suffix .def.

(5) Notes

* Inthe tpstbmk command, each option can be specified only once. If an option is
specified more than once, only the last value is valid.

* The name in the tpstbmk command of a file that can be input and output can be
up to 255 characters in length. However, the name that can be specified may be
shorter than 255 characters due to OS restrictions.

62

1. Creating Application Programs

1.4 Executing application programs

This section explains how to start and terminate UAPs and what environments are
needed for executing UAPs.

1.4.1 Starting and terminating each application program
(1) Starting and terminating SUP
(a) Starting
The SUP is started when:

¢ The OpenTP1 starts if the server name of the SUP is specified in the user service
structure definition, or

e The desvstart command is executed if the server name of the SUP is not
specified in the user service structure definition.

Before the SUP can request an SPP for service, the SPP must begin the service and
must have started before the SUP has.

(b) Terminating

Once the SUP has been started, it cannot be terminated normally by the OpenTP1.
Even when a command to exit the OpenTP1 normally is executed, the OpenTP1 will
not terminate until all the SUPs in the OpenTP1 terminate. When coding the SUP,
design it so that it will terminate by itself. To bring an SUP into abnormal termination
because of some problem, design the SUP so that it will terminate by itself by exit ()
or abort ().

The SUP cannot be terminated normally by the dcsvstop command. However, the
SUP can be brought into forced termination by the dcsvstop -£f command.

Do not terminate any SUP process by the ki1l command.
(2) Starting and terminating SPP and MHP
(a) Starting

The SPPs and MHPs belonging to one user server (service group) start at once. They
start when:

¢ The OpenTP1 starts if the server name of the SPPs and MHPs is specified in the
user service structure definition, or

¢ The dcsvstart command is executed if the server name of the SPPs and MHPs
is not specified in the user service structure definition.

If the multiserver facility is in use, the same number of user server processes as the
specified number of resident processes are acquired. If the number of service requests

63

1. Creating Application Programs

increases, nonresident processes will start as well.
(b) Terminating
The SPP or MHP terminates when:

e Termination processing begins because one of the following OpenTP1 terminate
commands is executed:

destop (normal termination)

dcstop -n (forced normal termination)
dcstop -a (planned termination A)
destop -b (planned termination B)
destop -f£ (forced termination)

* The active online process enters termination steps because one of the following
server terminate commands is executed:

desvstop (normal termination)
desvstop -f£ (forced termination)

* The active online process is brought into termination by the OpenTP1 because the
maximum number of processes in the user service definition is exceeded;

¢ The SPP or MHP which is executing as a nonresident process finishes service
processing; or

* The number of requests addressed to the service group decreases if loads on SPPs
or MHPs are distributed using a multiserver configuration.

Do not terminate any SPP or MHP process by the ki1l command.
(3) Starting and terminating UAPs that handle offline work

Users can start UAPs that handle offline work by any method. The UAPs are
terminated by terminating the processes by the shell. Users are responsible for starting
and terminating UAPs that handle offline works.

1.4.2 Operating environment of application programs started by
OpenTP1

* The standard input (stdin), standard output (stdout), and standard error output
(stderr) of SUPs, SPPs, and MHPs are redirected by OpenTP1.

* When a UAP is activated, a directory $DCDIR/tmp/home /user-server-name.xx
(where xx is a sequence number) is created. The UAP runs with this directory as
the current working directory.

You can change this directory by setting the prc_current work_path operand

64

in the system common definition.

1. Creating Application Programs

e The user ID (UID) and group ID (GID) have the values specified at environment
setup for the user server.

* The root directory remains a forward slash (/).

* The following file descriptors are open during UAP execution:

File descriptor 0: Standard input file descriptor

File descriptor 1: Standard output file descriptor

File descriptor 2: Standard error output file descriptor

¢ umaskis 000.

¢ No control terminal is used.

* OpenTPI1 automatically sets a UAP signal when a UAP process is created. The
table below lists UAP signals set by OpenTP1.

Table 1-7: UAP signals set by OpenTP1

Signal name Setting upon UAP process creation Operation
SIGHUP SIG_DFL(default) exit
SIGINT SIG_IGN(ignored) ignore
SIGQUIT SI1G_DFL(default) core
SIGILL SI1G_DFL(default) core
SIGTRAP SIG_IGN(ignored) ignore
s1GIOT! S1G_DFL(default) core
STIGABRT" S1G_DFL(default) core
SIGEMT SIG_DFL(default) core
SIGFEP SI1G_DFL(default) core
SIGKILL - exit
SIGBUS SI1G_DFL(default) core
SIGSEGV SIG_DFL(default) core
SIGSYS SIG_DFL(default) core
SIGPIPE" SIG_IGN(ignored) ignore
SIGALRM SIG_IGN(ignored) ignore

65

1. Creating Application Programs

Signal name Setting upon UAP process creation Operation
SIGTERM SI1G_DFL(default) exit
SIGUSR1 SIG_IGN(ignored) ignore
SIGUSR2 SIG_IGN(ignored) ignore
SIGCLD SIG_DFL(default) ignore
Legend:

Note

N: Not applicable

When specifying signal operations using UAP, do not stop the process by
invoking exit () or abort () within the specified signal handler. When the
process is stopped in the signal handler, the OpenTP1 system will shut down even
if the signal interruption occurs during critical OpenTP1 processing. Furthermore,
do not rewrite the value of the external variable errno in the signal handler.

The signals marked with # cannot be respecified. Do not change the settings of
these signal operations in the program when creating a UAP.

1.4.3 Application's environment variables

UAP environment variables can be set for each user server at environment setup for
the user server. However, the following environment variables are set by OpenTP1.

The OpenTP1 sets the following environment variables:

DCDIR: OpenTP1 home directory

DCCONFPATH: Directory containing OpenTP1 system definition files
DCSVNAME: User server name

DCSVGNAME: Service group name (can be referenced only with SPPs or MHPs)

DCUAPCONFPATH: Directory containing OpenTP1 user service definition files
(only when the files are to be stored in a different directory from DCCONFPATH)

In addition to the above, environment variables beginning with DC are used by the
OpenTP1. Since these environment variables are for reference only, do not change
them. If changed, the system operation is undefined.

SUPs, SPPs, and MHPs that run under OpenTP1 do not inherit the environment
variables set when the user logs in as an OpenTP1 system administrator using telnet or
other means. Set these environment variables again in the user service definition.

66

Chapter

2. Syntax of OpenTP1 Library
Functions

This chapter explains the syntax of OpenTP1 library functions.
This chapter contains the following sections:

Format for explaining functions

Creating main and service functions
System operation management (dc_adm_~)
Multinode facility (dc_adm_get ~)

DAM file service (dc_dam_~)

IST service (dc_ist_~)

User journal acquisition (dc_jnl_~)

Lock for resources (dc_Ick ~)

Audit log output (dc_log_audit ~)

Output message log (dc_log~)

Message exchange processing (dc_mcf ~)
Performance verification trace (dc_prf ~)
Remote API facility (dc_rap ~)

Remote procedure call (dc_rpc ~)
Real-time statistical information service (dc_rts_~)
TAM file service (dc_tam_~)

Transaction control (dc_trm_~)

Online tester management (dc_uto ~)

67

Format for explaining functions

Format for explaining functions

Format

This section explains functions provided by OpenTP1 in the following format:

Indicates the formats of OpenTP1 library functions and the data types of arguments.

To code a UAP in C++ language or the ANSI C format, see the format provided under
ANSI C, C++ in the function's Format section. To code a UAP in the pre-ANSI K&R
format, see the format provided under K&R C in the function's Format section.

Use the data types given in this section when allocating values to arguments. A specific
name can be arbitrarily assigned to an argument if not specially noted.

Description

Explains the facilities of the corresponding function.

Argument(s) whose value(s) is set in the UAP

Indicates the argument(s) whose value(s) should be specified when the function is
executed. Specify a value for each argument according to the explanation. If a value is
not always specified for an argument, the explanation of the argument is enclosed in
brackets [] when the value is specified for the argument.

Argument(s) whose value(s) is returned from OpenTP1

Indicates the argument(s) whose value(s) is returned from OpenTP1 after the function
is executed. Reference the contents of the argument after the function is executed. If a
value is not always returned to an argument from OpenTP1, the explanation of the
argument is enclosed in brackets [| when the value is returned.

Argument(s) whose value(s) is passed from a client UAP

Indicates the argument(s) whose value(s) is passed from the client UAP when the
service function is used. Execute service function processing referencing the contents
of the argument.

Argument(s) whose value(s) is returned from a server UAP

Return

68

Indicates the argument(s) whose a value(s) is returned from the service function when
a synchronous-response-type RPC or asynchronous-response-type RPC is used. The
UAP that called the function dc_rpc_call () or the function

dc_rpc poll any replies () can reference the value of the argument shown
here.

values

Values returned when the function is executed are explained in a table. The return

Format for explaining functions
value indicates whether the function was executed normally. If an error occurs, the
return value indicates the error status.

To maintain interchangeability, use the return value with the constant name shown here
when creating a UAP. The constant name of the return value is defined in the header
file. Reference the header file definition when you need the information of the return
value.

Example

Provided only for functions with which examples are necessary
Note(s)

Explains a note(s) on using the function.

69

Creating main and service functions

Creating main and service functions

70

This section gives the syntax and other information of the following OpenTP1 UAP
main and service functions. The SPP and MHP create main and service functions,
whereas the SUP creates only main functions.

¢ Create a main function (SUP, SPP, MHP)
* Create a service function (SPP)
* Create a service function (MHP)

The method for creating SGW main and service functions must conform to the
specification of the open system being used.

TP1/LiNK can use only the SUP, SPP and MHP as the OpenTP1 UAP. However, TP1/
Messaging is required when you create MHPs under TP1/LiNK.

Create a main function (SUP, SPP, MHP)

Create a main function (SUP, SPP, MHP)

Format

The name of a main function must include main(). For the other rules of creating main
functions, comply with the specifications of the C language for coding. OpenTP1 does
not limit creation of main functions. Main functions can be created according to the
explanation of this section.

Description
After the UAP process starts, the OS first calls the main function.
B SUP main function
The following OpenTP1 functions are always called in the SUP main function:
1. dc_rpc_open() (Start an application program)
2. dc_adm complete () (Report the completion of user server start processing)
3. dc_rpc_close() (Terminate an application program after job terminate)

In addition to the above OpenTP1 functions, the function for initializing UAP
processes required for jobs, the termination processing function, and the function
dc_rpc_call() can also be called.

B SPP main function

Service functions created as services which are provided by an SPP are grouped into
one executable file. An executable file comprising one main function and multiple
service functions corresponds to a service group.

The OpenTP1 functions listed below are always called in the SPP main function. To
use an MCF function with an SPP service, call the function dc_mcf open () and the
function dc_mcf close ().

1. dc_rpc_open() (Start an application program)
2. dc_rpc _mainloop () (Start an SPP service)
3. dc_rpc_close() (Terminate an application program after job terminate)

After initialization processing, the main function stops when the function

dc_rpc _mainloop () is called. Meanwhile, the main function performs processing
requested by service functions. In addition to the above OpenTP1 functions, the
function for initializing SPP processes required for jobs, the termination processing
function, and the function dc_rpc_call () can also be used in the main function.

71

Create a main function (SUP, SPP, MHP)

B MHP main function

Service functions created as applications for message processing are grouped into one
executable file. An executable file comprising one main function and multiple service
functions corresponds to a service group. The service group name must be unique in
the domain (in the entire network).

The following OpenTP1 functions are always called in the MHP main function:
dc_rpc_open () (Start an application program)
dc_mcf open () (Open the MCF environment)

dc_mcf mainloop () (Start an MHP service)

W b=

dc_mcf _close () (Close the MCF environment)
5. dc_rpc_close () (Terminate an application program after job terminate)

The MHP having the service function corresponding to the application name is started.
After initialization processing, the main function stops when the function

dc_mcf mainloop () is called. Meanwhile, the main function performs processing
requested by service functions. In addition to the above OpenTP1 functions, the
function for initializing MHP processes required for jobs, the termination processing
function, and the function dc_rpc_call () can also be used in the main function.

Argument

No argument is passed to the main function.

72

Create a service function (SPP)

Create a service function (SPP)

Format
B ANSIC, C++

void function-name (char *in, DCULONG *in len, char *out,
DCULONG * out_len)

Service processing

}

B K&R C
void function-name (in, in_len, out, out_ len)
char *in;
DCULONG *in len;
char *out ;
DCULONG *out_len;

{

Service processing

}

Description

The SPP service function executes a service and returns the execution results. The SPP
service function is called by the function dc_rpc_call () of the client UAP. Create
the service function in the above format as required.

The service function name corresponds to the entry point name of the service function.
Specify this correspondence at execution environment setup for a UAP. The method of
execution environment setup for a UAP is as follows:

* For TP1/Server Base, specify the correspondence in the user service definition.

e For TP1/LiNK, execute a command for setting up an environment for a UAP to
specify the correspondence interactively.

Argument specification

The values listed below are passed as arguments to the service function. These values
are specified in the function dc_rpc_call () of the client UAP.

* Input parameter (in)
* Input parameter length (in_len)
* Response length (out len)

The values specified for the input parameter and input parameter length in the
client UAP are passed to the service function as they are. (The expression formats

73

Create a service function (SPP)

of character codes and numbers are not converted.) The length specified in the
client UAP is passed as the response length.

For the service function, set the following values for arguments:
* Service function response (out)
¢ Length of the service function response (out len)

Set a response for out, set the response length for out len, then return the
service function.

A response is sent to the service client UAP regardless of whether the service function
was executed as a transaction or whether commitment or rollback processing was
executed. Create a response with which the service function informs the client UAP of
the occurrence of an error if necessary.

Arguments whose values are passed from the client UAP
W in
The input parameter specified in the client UAP is passed.
B in len
The input parameter length specified in the client UAP is passed.
B out len
The response length specified in the client UAP is passed.
Arguments whose values are set in the UAP
B out

Specify the response from the service function. Return the service function after
specifying the processing results for out.

B out len

Specify the length of the actual response from the service function. Set a numeric value
which is equal to or smaller than the out 1len value passed from the client UAP.

Notes on service function processing

1. The service function called by the function dc_rpc_call () of an
nonresponse-type RPC (DCRPC_NOREPLY specified for flags) cannot reference
out and out_len.

2. If'the service function is written in C language, the value upon the previous
service request remains in the static variable. Thus, initialize the value before
using it if necessary.

3. The following functions cannot be used from the service function:

74

Create a service function (SPP)

* The function dc_rpc_open (), the function dc_rpc_close (), and the
function dc_rpc_mainloop () cannot be called. Also, do not use exit ()
in the service function. The UAP operation is not ensured if any of the
functions or exit () is used.

* After system calls such as fork (), exec (), and system () are called to
create a child process, all the OpenTP1 functions cannot be called from the
child process.

4. Before an SPP service function can call a message exchange function (dc_mcf
~), the main function must call the functions dc_mcf _open () and
dc_mcf close().

The function dc_mcf_receive () cannot be called from SPP service functions.

6. Do not execute an operation or reference that extends beyond the area of the input
parameter length passed to in_1len, for the input parameter passed to in. If you
execute such an operation or reference, operation cannot be guaranteed. The
process may terminate abnormally.

Relationship between transactions and the service function

The service function is executed as a transaction branch upon the request of a service
in the following case:

* The transaction attribute has been specified in the user service definition of the
process that executes the service function, and the client UAP has been executed
as a transaction.

In the above case, do not use the function dc_trn begin () in the service function.

Commitment or rollback processing is ensured for all global transaction services.
When the service function operating as a transaction branch issues return, the service
function is assumed to request normal termination of the transaction branch.

The service function is not executed as a transaction in the following case:

¢ The transaction attribute has been specified in the user service definition, but the
client UAP has not been executed as a transaction.

To execute the service function as a transaction, use the function dc_trn begin ()
and the function dc_trn unchained commit () from the service function at any
time in order to start the transaction and acquire a synchronization point.

When no transaction attribute is specified in the user service definition, the service
function cannot be executed as a transaction by using the function dc_trn begin ()
from the service function.

Return value

No return value. The value specified with return () is not returned to the client UAP.

75

Create a service function (SPP)

OpenTP1 does not also reference any return value. Specifying -1 as a return value
does not request rollback processing.

76

Create a service function (MHP)

Create a service function (MHP)

Format
B ANSIC, C++

void function-name (void)

{

Service processing

}

B K&RC

void function-name ()

{

Service processing

}

Description

The MHP service function executes a service and returns the execution results. When
the MCF receives a message, the MHP having the service function that corresponds to
the application name is started.

Create the MHP service function in the above format as required. The service function
name corresponds to the entry point name of the service function. Specify this
correspondence in the user service definition of the process that executes the service
function.

The correspondence between the service name and the application name is specified
in the MCF application definition.

Argument
None
Notes on service function processing
1. The following functions cannot be called from the service function:
dc_rpc_open()
dc_rpc_close()
dc_mcf open()
dc_mcf close()
dc_rpc_mainloop ()

dc_mcf mainloop ()

77

Create a service function (MHP)

Also, do not use exit () in the service function. The UAP operation is not ensured if
any of the functions or exit () is used

1. After system calls such as fork (), exec (), and system () are called to create
a child process, all the OpenTP1 functions cannot be called from the child
process.

2. Another UAP cannot use a service request to the MHP service function by using
the function dc_rpc_call().

Return value

No return value. Specifying -1 as a return value does not request rollback processing.

78

System operation management (dc_adm_~)

System operation management (dc_adm_~)

This section gives the syntax and other information of the following functions which
are called by UAPs and use various OpenTP1 system facilities:

* dc _adm call command - Execute an operation command
* dc_adm complete - Report the completion of user server start processing
* dc_adm_status - Report the status of a user server

The functions for system operation management (dc_adm_~) can be used in UAPs of
both TP1/Server Base and TP1/LiNK.

79

dc_adm_call_command - Execute an operation command

dc_adm_call_command - Execute an operation command

Format
B ANSIC, C++

#include <dcadm.h>

int dc_adm call command (char *com, int *stat,
char *outmsg, DCULONG *outsiz,
char *errmsg, DCULONG *errsiz,
DCLONG flags)

B K&R C

#include <dcadm.h>
int dc_adm call command (com, stat, outmsg, outsiz,
errmsg,errsiz, flags)

char *com;
int *stat;
char *outmsg;
DCULONG *outsiz;
char *errmsg;
DCULONG *errsiz;
DCLONG flags;
Description

The function dc_adm call command () passes com from the UAP to sh(1) as in the
case of command entry in online mode. The process waits until the shell completes its
processing, and returns the exit status of the shell. After command processing is
completed, the standard output information and the standard error output information
are returned.

If the OpenTP1 uses UAPs which execute operation commands, add the directory
containing the commands to the search path. Use any of the following methods for
addition to the search path.

* Specify the path name of the command in the prcsvpath operand of the process
service definition.

* Add the search path with the prcpath command.
* Assign putenv PATH to environment variable in the user service definition.
Arguments whose values are set in the UAP
B com

Specify the character string of the operation command to be executed.

80

dc_adm_call_command - Execute an operation command

B outsiz

The execution results of the operation command are output to the standard output file.
Specify the size of the contents (value returned to outmsg) in bytes. Pre-allocate the
area in size of the number of bytes that is to be specified for outsiz. The area must begin
from the address pointed to by outmsg. The number of bytes to be specified for this
argument must be decided according to the command executed by the UAP.

After processing terminates, the actual length that was output as the execution results
of the command to the standard output file is returned.

B errsiz

The execution results of the command are output to the standard error output file.
Specify the size of the contents (value returned to errmsg) in bytes. Pre-allocate the
area in size of the number of bytes that is to be specified for errsiz. The area must begin
from the address pointed to by errmsg. The number of bytes to be specified for this
argument must be decided according to the command executed by the UAP.

After processing terminates, the actual length that was output as the execution results
of the command to the standard error output file is returned.

B flags

Specify the operation of the function dc_adm call command () ifthe complete data
of a standard output message or standard error output message cannot be acquired.

DCADM DELAY
Processing is stopped by canceling the processing for the executed command.
DCNOFLAGS

Only acquired data is returned to the argument, and the function returns with an
erTor.

Arguments whose values are returned from OpenTP1

B stat

A shell termination code” is returned indicating whether the specified command
terminated normally or abnormally.

#: Denotes an sh (1) termination status in the format specified by waitpid (2).
B outmsg

The character string that was output as the execution results of the command to the
standard output file is returned. The maximum number of bytes for the character string
is (outsiz-1). If the character string exceeds the maximum number of bytes
(outsiz-1), the excess characters are truncated. If the character string exceeds the
capacity of the pipe, the excess characters are also truncated. If the character string

81

dc_adm_call_command - Execute an operation command

does not reach the maximum number of bytes (outsiz-1), the entire character string
is returned. A null character is suffixed to the character string to be stored.

outsiz

The length of the character string that was output as the execution results of the
command to the standard output file is returned.

errmsg

The character string that was output as the execution results of the command to the
standard error output file is returned. The maximum number of bytes for the character
string is (errsiz-1). If the character string exceeds the maximum number of bytes
(errsiz-1), the excess characters are truncated. If the character string exceeds the
capacity of the pipe, the excess characters are also truncated. If the character string
does not reach the maximum number of bytes (errsiz-1), the entire character string
is returned. A null character is suffixed to the character string to be stored.

errsiz

The length of the character string that was output as the execution results of the
command to the standard error output file is returned.

Return values

Return value Return value Explanation
(numeric)

DC_OK 0 | The shell termination code is 0 (normal termination of
the command execution). The character string was
stored in the standard output area and the standard error
output area.

DCADMER_STATNOTZERO -1855 | The shell termination code is not 0 (abnormal
termination of the command execution). Standard
output data and standard error output data were stored
in the areas.

DCADMER PARAM -1852 | The argument value is invalid.

DCADMER MEMORY OUT -1856 | All the standard output data could not be stored in the
area.

DCADMER MEMORY ERR -1857 | All the standard error output data could not be stored in
the area.

DCADMER_MEMORY OUTERR -1858 | Both the standard output data and the standard error
output data could not be stored in the areas.

DCADMER _SYSTEMCALL -1859 | A system call (close, pipe, dup, or read) could not be
executed.

82

dc_adm_call_command - Execute an operation command

Note

Be careful not to duplicate the command name between directories that are specified
as search paths. The correct command will not execute if the command name is
duplicated. In addition, be careful not to duplicate the command name with that of the
command group provided by OpenTP1 (under $DCDIR/bin).

83

dc_adm_complete - Report the completion of user server start processing

dc_adm_complete - Report the completion of user server start
processing

Format
B ANSIC, C++

#include <dcadm.h>
int dc_adm complete (DCLONG flags)

B K&RC

#include <dcadm.h>
int dc_adm complete (flags)
DCLONG flags;

Description

This function dc_adm complete () notifies the OpenTP1 that SUP activation has
been completed. SUP activation is completed when the function
dc_adm complete () normally returns.

SPPs and MHPs assume the completion of start processing when the function
dc_rpc_mainloop () or the function dc_mcf mainloop () terminates normally.
Thus, there is no need to call the function dc_adm complete () for SPPs and MHPs.

The function dc_adm complete () cannot be called from UAP that handles offline
work.

Argument whose value is set in the UAP
B flags
Specify DCNOFLAGS.
Return values

Return value Return value Explanation
(numeric)
DC_OK 0 | Normal termination.
DCADMER _COMM -1851 | An error occurred during communication between
processes.
DCADMER PARAM -1852 | The argument value is invalid.
DCADMER _STS_IO -1853 | A status information input/output error occurred.

84

dc_adm_complete - Report the completion of user server start processing

Return value Return value Explanation
(numeric)
DCADMER _PROTO -1854 | The user server is not being started/restarted normally,

or the function dc_rpc_open () was not called.

85

dc_adm_status - Report the status of a user server

dc_adm_status - Report the status of a user server

Format
B ANSIC, C++

#include <dcadm.h>
int dc_adm status (DCLONG flags)

B K&RC

#include <dcadm.h>
int dc_adm status (flags)
DCLONG flags;

Description

The function dc_adm_status () reports the status of the user server that called the
function. The user server status is reported with the return value.

Argument whose value is set in the UAP
B flags
Specify DCNOFLAGS.
Return values

When the return value is positive (indicating the user server status):

Return value Return value Explanation
(numeric)
DCADM_STAT_START NORMAL 2 | The user server is being started normally.
DCADM_STAT_START RECOVER 3 | The user server is being restarted normally.
DCADM_STAT ONLINE 4 | The user server is in online mode.
DCADM_STAT STOP 5 | The user server is being terminated.

When the return value is negative (indicating an error):

Return value Return value Explanation
(numeric)
DCADMER _COMM -1851 | An error occurred during communication between
processes.
DCADMER PARAM -1852 | The argument value is invalid.

86

dc_adm_status - Report the status of a user server

Return value Return value Explanation
(numeric)
DCADMER_STS_IO -1853 | A status information input/output error occurred.
DCADMER _PROTO -1854 | The function dc_adm_status () was called from a

UAP that handles offline work. The function
dc_adm_status () cannot be used with UAP that
handles offline work.

The function dc_rpc_open () was not called.

87

Multinode facility (dc_adm_get_~)

Multinode facility (dc_adm_get_~)

88

This section gives the syntax and other information of the following functions which
are used for multinode facilities:

dc_adm get nd status - Acquire the status of a specified OpenTP1 node

dc_adm get nd status begin - Start acquiring the status of an OpenTP1
node

dc_adm get nd status_done - Terminate acquiring the status of an
OpenTP1 node

dc_adm get nd status_ next - Acquire the status of an OpenTP1 node
dc_adm _get nodeconf begin - Start acquiring a node identifier

dc_adm get nodeconf done - Terminate acquiring a node identifier
dc_adm _get nodeconf next - Acquire a node identifier
dc_adm _get node id - Acquire the node identifier of the local node
dc_adm get sv_status - Acquire the status of a specified user server
dc_adm get sv_status_ begin - Start acquiring the status of a user server

dc_adm get sv_status_done - Terminate acquiring the status of a user
server

dc_adm get sv_status next - Acquire the status of a user server

The functions for multinode facility (dc_adm get ~) can be used only in UAPs of
TP1/Server Base. They cannot be used in UAPs of TP1/LiNK.

dc_adm_get_nd_status - Acquire the status of a specified OpenTP1 node

dc_adm_get_nd_status - Acquire the status of a specified OpenTP1
node

Format
B ANSIC, C++

#include <dcadm.hs>
int dc_adm get nd status (char *node_id, DCLONG flags)

B K&RC

#include <dcadm.h>
int dc_adm get_nd status (node_id, flags)

char *node_id;
DCLONG flags;
Description

The functiondc_adm_get nd_status () acquires the status of a specified OpenTP1
node.

This function acquires the status of the execution system when the function
dc_adm get nd status () is called with a specified OpenTP1 node for the system
switch configuration.

Arguments whose value is set in the UAP
B node id
Specify the pointer to the node identifier. Add a null character after the node identifier.

The length of the node identifier must be equal to the length defined by
DCADM _NODE_ID_ LEN. If a node identifier with a different length is specified, the
function returns with an error.

B flags
Specify DCNOFLAGS.
Return values
When the return value is positive (indicating the OpenTP1 node status):

89

dc_adm_get_nd_status - Acquire the status of a specified OpenTP1 node

Return value Return value Explanation
(numeric)
DCADM_STAT NOT_UP 9 | Communication with the specified OpenTP1 node is
impossible for the following reason:
e The OpenTP1 at the OpenTP1 node must be
defined or redefined with the dcsetup command
* The value specified in the multinode physical
definition is incorrect (the OpenTP1 node is not
defined or the specified host name or port number
is incorrect).
* A communication error occurred (power is not
supplied to the OpenTP1 node machine or a
network error occurred).
DCADM_STAT_ TERM 8 | The OpenTP1 node is halted or is being terminated
abnormally.
DCADM_STAT_START NORMAL 2 | The OpenTP1 node is normally being started.
DCADM_STAT_START RECOVER 3 | The OpenTP1 node is normally being restarted.
DCADM_STAT ONLINE 4 | The OpenTP1 node is online.
DCADM_STAT STOP 5 | The OpenTP1 node is normally being terminated.
DCADM_STAT STOPA 6 | The OpenTP1 node is being terminated according to
plan A.
DCADM_STAT STOPB 7 | The OpenTP1 node is being terminated according to
plan B.
DCADM_STAT SWAP 10 | The system is being switched.

When the return value is negative (indicating an error):

Return value Return value Explanation
(numeric)
DCADMER COMM -1851 | An inter-process communication error occurred.
DCADMER PARAM -1852 | The value specified for the argument is invalid.
DCADMER_PROTO -1854 | The function dc_rpc_open () was not called.
DCADMER MEMORY -1861 | The memory became insufficient.
DCADMER_DEF -1862 | An incorrect value is specified in the multinode

configuration definition or in the multinode physical
definition.

90

dc_adm_get_nd_status - Acquire the status of a specified OpenTP1 node

Return value Return value Explanation
(numeric)
DCADMER MULTI DEF -1864 | Nis specified formulti node option in the system

common definition.

The TP1/Multi is not installed in the system.

The correct version TP1/Multi is not installed in the
system.

DCADMER REMOTE -1866 | The specified OpenTP1 node cannot use the multinode
facility for the following reason:
e Nis specified formulti node option inthe
system common definition.
e The TP1/Multi is not installed in the system.
¢ The correct version TP1/Multi is not installed in the
system.
* The memory became insufficient.

DCADMER NODE_NOT_ EXIST -1867 | The node identified by node_id is not included in the
OpenTP1 nodes.

91

dc_adm_get_nd_status_begin - Start acquiring the status of an OpenTP1 node

dc_adm_get_nd_status_begin - Start acquiring the status of an
OpenTP1 node

Format
B ANSIC, C++

#include <dcadm.h>

int dc_adm get nd status_begin (char *sub_area,
DCLONG *entry count,
DCLONG flags)

B K&R C

#include <dcadm.h>
int dc_adm get nd status_begin (sub_area, entry count,

flags)
char *sub_area;
DCLONG *entry count;
DCLONG flags;
Description

The function dc_adm get nd status begin () starts acquiring the status of an
OpenTP1 node. When this function terminates normally, it returns the number of
OpenTP1 nodes whose status will be acquired.

Arguments whose value is set in the UAP
B sub area

Specify the pointer to the multinode subarea identifier or character string (*). Add a
null character after the multinode subarea identifier. If the pointer to the character
string (*) is specified, the function will acquire the statuses of all OpenTP1 nodes
making up the multinode area.

The length of the multinode subarea identifier must be equal to or less than the
maximum length defined by DCADM_SUB_AREA NAME SIZE. If a longer identifier is
specified, the function returns with an error.

B entry count

Specify the pointer to the area to which the number of OpenTP1 nodes will be returned.
The area set here will contain the number of OpenTP1 nodes in the multinode subarea
identified by sub_area. If the pointer to the character string (*) is specified for
sub_area, the number of all OpenTP1 nodes in the multinode area will returned to
the area.

92

B flags
Specify DCNOFLAGS.

Return values

dc_adm_get_nd_status_begin - Start acquiring the status of an OpenTP1 node

Return value Return value Explanation
(numeric)

DC_OK 0 | Normal termination. This value is returned even if the
specified multinode subarea contains an OpenTP1
involving a communication error.

DCADMER PARAM -1852 | The value specified for the argument is invalid.

DCADMER SUBAREA NOT EXIST -1860 | There is no multinode subarea with the name specified
for sub_area.

DCADMER MEMORY -1861 | The memory became insufficient.

DCADMER_DEF -1862 | An incorrect value is specified in the multinode
configuration definition or in the multinode physical
definition.

DCADMER_PROTO -1854 | The function dc_adm_get nd_status_begin()
was already called.

The function dc_rpc_open () was not called.

DCADMER_MULTI_DEF -1864 | Nis specified formulti_node_ option in the system

common definition.

The TP1/Multi is not installed in the system.

The correct version TP1/Multi is not installed in the
system.

93

dc_adm_get_nd_status_done - Terminate acquiring the status of an OpenTP1 node

dc_adm_get_nd_status_done - Terminate acquiring the status of an
OpenTP1 node

Format
B ANSIC, C++

#include <dcadm.h>
int dc_adm get nd status_done (DCLONG flags)

B K&RC

#include <dcadm.h>
int dc_adm get nd status_done (flags)
DCLONG flags;

Description

The function dc_adm get nd status_ done () terminates acquiring the status of
an OpenTP1 node. Call this function when the return value from the function
dc_adm get nd status begin() is DC_OK.

Arguments whose value is set in the UAP
B flags
Specify DCNOFLAGS.

Return values

Return value Return value Explanation
(numeric)
DC_OK 0 | Normal termination.
DCADMER PARAM -1852 | The value specified for the argument is invalid.
DCADMER _PROTO -1854 | The function dc_adm get nd status begin()

was not called.

The function dc_rpc_open () was not called.

DCADMER_MULTI_DEF -1864 | Nis specified formulti_node option in the system
common definition.

The TP1/Multi is not installed in the system.

The correct version TP1/Multi is not installed in the
system.

94

dc_adm_get_nd_status_next - Acquire the status of an OpenTP1 node

dc_adm_get_nd_status_next - Acquire the status of an OpenTP1
node

Format
B ANSIC, C++

#include <dcadm.hs>
int dc_adm get nd status_next (char *node_id,
DCLONG flags)

B K&R C

#include <dcadm.hs>
int dc_adm get nd status_next (node_id, flags)

char *node_id;
DCLONG flags;
Description

The functiondc_adm get nd status next () acquires the status of one OpenTP1
node in the multinode area containing the user server which has called this function or
of one OpenTP1 node in a specified multinode subarea.

This function acquires the status of the execution system when the function
dc_adm get nd status next () is called with a specified OpenTP1 node for the
system switch configuration.

The OpenTP1 node status as acquired by this function is the status which stood when
the function dc_adm get nd status _begin () was called.

Arguments whose value is set in the UAP
B node id

Specify the pointer to the area which will receive the node identifier of the OpenTP1
node. A null character is added at the end of the node identifier. The length of the area
must be equal to the length defined by DCADM NODE ID SIZE.

B flags
Specify DCNOFLAGS.
Return values

When the return value is positive (indicating the OpenTP1 node status):

95

dc_adm_get_nd_status_next - Acquire the status of an OpenTP1 node

Return value Return value Explanation
(numeric)
DCADMER STAT NOT_UP 9 | Communication with the specified OpenTP1 node is
impossible for the following reason:
e The OpenTP1 at the OpenTP1 node must be
defined or redefined with the dcsetup command.
* The value specified in the multinode physical
definition is incorrect (the OpenTP1 node is not
defined or the specified host name or port number
is incorrect).
* A communication error occurred (power is not
supplied to the OpenTP1 node machine or a
network error occurred).
DCADM_STAT_ TERM 8 | The OpenTP1 node is halted or is being terminated
abnormally.
DCADM_STAT_START NORMAL 2 | The OpenTP1 node is normally being started.
DCADM_STAT_START RECOVER 3 | The OpenTP1 node is normally being restarted.
DCADM_STAT ONLINE 4 | The OpenTP1 node is online.
DCADM_STAT STOP 5 | The OpenTP1 node is normally being terminated.
DCADM_STAT STOPA 6 | The OpenTP1 node is being terminated according to
plan A.
DCADM_STAT STOPB 7 | The OpenTP1 node is being terminated according to
plan B.
DCADM_STAT SWAP 10 | The system is being switched.

When the return value is negative (indicating an error):

Return value Return value Explanation
(numeric)
DCADMER NO MORE_ENTRY -1865 | There is no more OpenTP1 node. The statuses of all
OpenTP1 nodes have been acquired.
DCADMER COMM -1851 | An inter-process communication error occurred.
DCADMER PARAM -1852 | The value specified for the argument is invalid.
DCADMER_PROTO -1854 | The function dc_adm_get_nd_status_begin()

was not called.

The function dc_rpc_open () was not called.

96

dc_adm_get_nd_status_next - Acquire the status of an OpenTP1 node

Return value Return value Explanation
(numeric)
DCADMER MULTI DEF -1864 | Nis specified formulti node option in the system

common definition.

The TP1/Multi is not installed in the system.

The correct version TP1/Multi is not installed in the
system.

DCADMER REMOTE -1866 | The OpenTP1 node identified by the node identifier
returned to node_id cannot use the multinode facility
for the following reason:
e Nis specified formulti node option inthe
system common definition.
e The TP1/Multi is not installed in the system.
* The correct version TP1/Multi is not installed in the
system. The memory became insufficient.
* The memory became insufficient.

97

dc_adm_get_nodeconf_begin - Start acquiring a node identifier

dc_adm_get_nodeconf_begin - Start acquiring a node identifier

Format
B ANSIC, C++

#include <dcadm.h>

int dc_adm get nodeconf begin (char *sub_area,
DCLONG *entry count,
DCLONG flags)

B K&RC

#include <dcadm.h>
int dc_adm get nodeconf begin (sub_area, entry count,

flags)
char *sub_area;
DCLONG *entry_count;
DCLONG flags;
Description

The function dc_adm get nodeconf begin () starts acquiring all node identifiers
in a specified multinode subarea. When this function terminates normally, it returns the
number of OpenTP1 nodes.

Arguments whose value is set in the UAP
B sub area

Specify the pointer to the multinode subarea identifier or character string (*). Add a
null character after the multinode subarea identifier. If the pointer to the character
string (*) is specified, the function will acquire all node identifiers making up the
multinode area.

The length of the multinode subarea identifier must be equal to or less than the
maximum length defined by DCADM_SUB_AREA NAME SIZE. If a longer identifier is
specified, the function returns with an error.

B entry count

Specify the pointer to the area to which the number of OpenTP1 nodes will be returned.
The area set here will contain the number of OpenTP1 nodes in the multinode subarea
identified by sub_area. If the pointer to the character string (*) is specified for
sub_area, the number of all OpenTP1 nodes in the multinode area will returned to
the area.

B flags

Specify DCNOFLAGS.

98

Return values

dc_adm_get_nodeconf_begin - Start acquiring a node identifier

Return value Return value Explanation
(numeric)

DC_OK 0 | Normal termination. The area indicated by
entry count now contains the number of OpenTP1
nodes.

DCADMER PARAM -1852 | The value specified for the argument is invalid.

DCADMER SUBAREA NOT EXIST -1860 | There is no multinode subarea with the name specified
for sub_area.

DCADMER MEMORY -1861 | The memory became insufficient.

DCADMER_DEF -1862 | An incorrect value is specified in the multinode
configuration definition or in the multinode physical
definition.

DCADMER_PROTO -1854 | The function dc_adm_get nodeconf begin() was
already called.

The function dc_rpc_open () was not called.

DCADMER_MULTI_DEF -1864 | Nis specified formulti_node_option in the system

common definition.

The TP1/Multi is not installed in the system.

The correct version TP1/Multi is not installed in the
system.

99

dc_adm_get_nodeconf_done - Terminate acquiring a node identifier

dc_adm_get_nodeconf_done - Terminate acquiring a node identifier

Format
B ANSIC, C++

#include <dcadm.h>
int dc_adm get nodeconf done (DCLONG flags)

B K&RC

#include <dcadm.h>
int dc_adm get nodeconf done (flags)
DCLONG flags;

Description

The function dc_adm_get nodeconf done () terminates acquiring a node
identifier. Call this function when the return value from the function
dc_adm get nodeconf begin () is DC_OK.

Arguments whose value is set in the UAP
B flags
Specify DCNOFLAGS.
Return values

Return value Return value Explanation
(numeric)
DC_OK 0 | Normal termination.
DCADMER _PARAM -1852 | The value specified for the argument is invalid.
DCADMER _PROTO -1854 | The function dc_adm get nodeconf begin () was
not called.

The function dc_rpc_open () was not called.

DCADMER MULTI DEF -1864 | Nis specified formulti node option in the system
common definition.

The TP1/Multi is not installed in the system.

The correct version TP1/Multi is not installed in the
system.

100

dc_adm_get_nodeconf_next - Acquire a node identifier

dc_adm_get_nodeconf_next - Acquire a node identifier

Format
B ANSIC, C++

#include <dcadm.h>
int dc_adm get nodeconf next (char *node id, DCLONG flags)

B K&RC

#include <dcadm.h>
int dc_adm get nodeconf next (node id, flags)

char *node_id;
DCLONG flags;
Description

The function dc_adm get nodeconf next () acquires the node identifier of one
node in the multinode area containing the user server which has called this function or
one node in a multinode subarea.

The data acquired by this function is data which was effective when the function
dc_adm get nodeconf begin () was called.

Arguments whose value is set in the UAP
B node id

Specify the pointer to the area which will receive the node identifier. A null character
is added at the end of the node identifier. The length of the area must be equal to the
length defined by DCADM NODE_ID SIZE.

B flags
Specify DCNOFLAGS.
Return values

Return value Return value Explanation
(numeric)
DC_OK 0 | Normal termination.
DCADMER NO MORE_ENTRY -1865 | There is no more OpenTP1 node. All node identifiers

have been acquired.

DCADMER PARAM -1852 | The value specified for the argument is invalid.

101

dc_adm_get_nodeconf_next - Acquire a node identifier

Return value Return value Explanation
(numeric)
DCADMER _PROTO -1854 | The function dc_adm get nodeconf begin () was
not called.
The function dc_rpc_open () was not called.
DCADMER_MULTI_DEF -1864 | Nis specified formulti node_option in the system

common definition.

The TP1/Multi is not installed in the system.

The correct version TP1/Multi is not installed in the
system.

102

dc_adm_get_node _id - Acquire the node identifier of the local node

dc_adm_get_node_id - Acquire the node identifier of the local node

Format
B ANSIC, C++

#include <dcadm.h>
int dc_adm get node_id (char *node_id, DCLONG flags)

B K&RC

#include <dcadm.h>
int dc_adm get node_id (node_id, flags)

char *node_id;
DCLONG flags;
Description

The function dc_adm get node id () returns the node identifier of the local

OpenTP1 node specified in the system common definition to the area identified by
node id.

Arguments whose value is set in the UAP
B node id

Specify the pointer to the area which will receive the node identifier. A null character
is added at the end of the node identifier. The length of the area must be equal to the
length defined by DCADM NODE_ID SIZE.

B flags
Specify DCNOFLAGS.
Return values

Return value Return value Explanation
(numeric)
DC_OK 0 | Normal termination.
DCADMER PARAM -1852 | The value specified for the argument is invalid.
DCADMER PROTO -1854 | The function dc_rpc_open () was not called.

103

dc_adm_get_sv_status - Acquire the status of a specified user server

dc_adm_get_sv_status - Acquire the status of a specified user
server

Format
B ANSIC, C++

#include <dcadm.h>
int dc_adm get sv_status (char *node id, char *sv_name,
DCLONG flags)

B K&R C

#include <dcadm.h>
int dc_adm get sv_status (node_id, sv_name, flags)

char *node_id;

char *sv_name;

DCLONG flags;
Description

The function dc_adm_get sv_status () acquires the status of a user server in a
specified node identifier.

Arguments whose value is set in the UAP
B node id

Specify the pointer to the node identifier or the character string (*). Add a null
character after the node identifier. If the pointer to the character string (*) is specified,
the OpenTP1 node which called this function is assumed.

The length of the node identifier must be equal to the length defined by
DCADM_NODE_ID_LEN. If a node identifier with a different length is specified, the
function returns with an error.

B sv _name

Specify the pointer to the area containing the user server name. The length of the user
server name must be equal to the length defined by SERVER NAME SIZE. Ifa user
server name with a longer length is specified, the function returns with an error.

B flags
Specify DCNOFLAGS.
Return values

When the return value is positive (indicating the status of the user server):

104

dc_adm_get_sv_status - Acquire the status of a specified user server

Return value Return value Explanation
(numeric)
DCADM_STAT TERM 8 | The user server is halted or is being terminated
abnormally.
DCADM_STAT START NORMAL 2 | The user server is normally being started.
DCADM_STAT START RECOVER 3 | The user server is being restarted.
DCADM_STAT ONLINE 4 | The user server is online.
DCADM_STAT STOP 5 | The user server is normally being terminated.

When the return value is negative (indicating an error):

Return value

Return value
(numeric)

Explanation

DCADMER _PARAM

-1852

The value specified for the argument is invalid.

DCADMER_COMM

-1851

Communication with the specified OpenTP1 node is

impossible for the following reason:

¢ The OpenTP1 at the OpenTP1 node must be
defined or redefined with the dcsetup command.

* The value specified in the multinode physical
definition is incorrect (the OpenTP1 node is not
defined or the specified host name or port number
is incorrect).

* A communication error occurred (power is not
supplied to the OpenTP1 node machine or a
network error occurred).

DCADMER_MEMORY

-1861

The memory became insufficient.

DCADMER_PROTO

-1854

The function dc_rpc_open () was not called.

DCADMER MULTI_ DEF

-1864

N is specified for multi _node option in the system
common definition or an incorrect value is specified in
the multinode physical definition.

The TP1/Multi is not installed in the system.

The correct version TP1/Multi is not installed in the
system.

DCADMER_DEF

-1862

An incorrect value is specified in the multinode
configuration definition.

DCADMER_NODE_NOT_ EXIST

-1867

The node identified by node_id is not included in the
OpenTP1 nodes.

105

dc_adm_get_sv_status - Acquire the status of a specified user server

Return value

Return value
(numeric)

Explanation

DCADMER_REMOTE

-1866

The specified OpenTP1 node cannot use the multinode

facility for the following reason:

¢ Nis specified formulti node option inthe
system common definition.

e The TP1/Multi is not installed in the system.

* The correct version TP1/Multi is not installed in the
system.

* The memory became insufficient.

DCADMER_SWAP

-1868

The status of the user server cannot be acquired because
the system is being switched.

106

dc_adm_get_sv_status_begin - Start acquiring the status of a user server

dc_adm_get_sv_status_begin - Start acquiring the status of a user
server

Format
B ANSIC, C++

#include <dcadm.h>

int dc_adm get sv _status_begin (char *node_ id,
DCLONG *entry count,
DCLONG flags)

B K&RC

#include <dcadm.h>
int dc_adm get_sv_status_begin (node_id, entry count,

flags)
char *node_id;
DCLONG *entry count;
DCLONG flags;
Description

The function dc_adm_get sv_status _begin () starts acquiring the statuses of
user servers at a specified node identifier. When this function terminates normally, it
returns the number of user servers whose status is to be acquired.

Arguments whose value is set in the UAP
B node id

Specify the pointer to the node identifier or the character string (*). Add a null
character after the node identifier. If the pointer to the character string (*) is specified,
the OpenTP1 node which called this function is assumed.

The length of the node identifier must be equal to the length defined by
DCADM _NODE_ID_LEN. If a node identifier with a different length is specified, the
function returns with an error.

B entry count

Specify the pointer to the area to which the number of user servers will be returned.
The area set here will contain the number of user servers at the OpenTP1 node
identified by node id.

B flags

Specify DCNOFLAGS.

107

dc_adm_get_sv_status_begin - Start acquiring the status of a user server

Return values

Return value

Return value
(numeric)

Explanation

DC_OK

Normal termination. The area indicated by
entry count now contains the number of user
servers.

DCADMER_PARAM

-1852

The value specified for the argument is invalid.

DCADMER_COMM

-1851

Communication with the specified OpenTP1 node is

impossible for the following reason:

¢ The OpenTP1 at the OpenTP1 node must be
defined or redefined with the decsetup command.

* The value specified in the multinode physical
definition is incorrect (the OpenTP1 node is not
defined or the specified host name or port number
is incorrect).

* A communication error occurred (power is not
supplied to the OpenTP1 node machine or a
network error occurred).

DCADMER_MEMORY

-1861

The memory became insufficient.

DCADMER_PROTO

-1854

The function dc_adm_get_sv_status_begin()
was already called.

The function dc_rpc_open () was not called.

DCADMER_MULTI DEF

-1864

N is specified formulti_node_ option in the system
common definition.

The TP1/Multi is not installed in the system.

The correct version TP1/Multi is not installed in the
system.

DCADMER_DEF

-1862

An incorrect value is specified in the multinode
configuration definition or in the multinode physical
definition.

DCADMER_NODE_NOT_ EXIST

-1867

The node identified by node_id is not included in the
OpenTP1 nodes.

DCADMER_REMOTE

-1866

The specified OpenTP1 node cannot use the multinode

facility for the following reason:

e Nis specified formulti node option inthe
system common definition.

e The TP1/Multi is not installed in the system.

e The correct version TP1/Multi is not installed in the
system.

* The memory became insufficient.

108

dc_adm_get_sv_status_begin - Start acquiring the status of a user server

Return value Return value Explanation
(numeric)
DCADMER _SWAP -1868 | The status of the user server cannot be acquired because
the system is being switched.

109

dc_adm_get_sv_status_done - Terminate acquiring the status of a user server

dc_adm_get_sv_status_done - Terminate acquiring the status of a
user server

Format
B ANSIC, C++

#include <dcadm.h>
int dc_adm get sv_status_done (DCLONG flags)

B K&RC

#include <dcadm.h>
int dc_adm get_ sv_status_done (flags)
DCLONG flags;

Description

The function dc_adm_get sv_status_ done () terminates acquiring the status of a
user server. Call this function when the return value from the function
dc_adm get sv _status begin() is DC_OK.

Arguments whose value is set in the UAP
B flags
Specify DCNOFLAGS.

Return values

Return value Return value Explanation
(numeric)
DC_OK 0 | Normal termination.
DCADMER PARAM -1852 | The value specified for the argument is invalid.
DCADMER _PROTO -1854 | The function dc_adm get sv_status begin()

was not called.

The function dc_rpc_open () was not called.

DCADMER MULTI DEF -1864 | Nis specified formulti node option in the system
common definition.

The TP1/Multi is not installed in the system.

The correct version TP1/Multi is not installed in the
system.

110

dc_adm_get_sv_status_next - Acquire the status of a user server

dc_adm_get_sv_status_next - Acquire the status of a user server

Format
B ANSIC, C++

#include <dcadm.h>
int dc_adm get sv_status_next (char *sv_name,
DCLONG flags)

B K&R C

#include <dcadm.h>
int dc_adm get_sv_status_next (sv_name, flags)

char *sSv_name;
DCLONG flags;
Description

The functiondc_adm_get sv_status_next () acquires the statuses of user servers
at a specified OpenTP1 node.

The data acquired by this function is data which was effective when the function
dc_adm get sv status begin () was called.

Arguments whose value is set in the UAP
B sv _name

Specify the pointer to the area which will receive the user server name. The length of
the area must be equal to the length defined by SERVER NAME SIZE.

B flags
Specify DCNOFLAGS.
Return values

When the return value is positive (indicating the status of the user server):

Return value Return value Explanation
(numeric)
DCADM_STAT TERM 8 | The user server is halted or is being terminated
abnormally.
DCADM_STAT START NORMAL 2 | The user server is normally being started.
DCADM_STAT START_RECOVER 3 | The user server is being restarted.
DCADM_STAT ONLINE 4 | The user server is online.

111

dc_adm_get_sv_status_next - Acquire the status of a user server

Return value

Return value
(numeric)

Explanation

DCADM_STAT_STOP

The user server is normally being terminated.

When the return value is negative (indicating an error):

Return value Return value Explanation
(numeric)
DCADMER NO MORE_ENTRY -1865 | There is no more user server. The statuses of all user
servers have been acquired.
DCADMER PARAM -1852 | The value specified for the argument is invalid.
DCADMER _PROTO -1854 | The function dc_adm get sv_status begin()
was not called.
The function dc_rpc_open () was not called.
DCADMER MULTI DEF -1864 | Nis specified formulti node option in the system

common definition.

The TP1/Multi is not installed in the system.

The correct version TP1/Multi is not installed in the
system.

112

DAM file service (dc_dam_~)

DAM file service (dc_dam_~)

This section gives the syntax and other information of the following functions which
are used for DAM file service:

Functions that can only be used in an online environment

dc_dam close - Close a logical file

dc_dam end - Terminate using an unrecoverable DAM file
dc_dam hold - Shut down a logical file

dc_dam open - Open a logical file

dc_dam read - Input a logical file block

dc_dam release - Release a logical file from the shutdown state
dc_dam rewrite - Update a logical file block

dc_dam start - Start using an unrecoverable DAM file

dc_dam status - Reference the status of a logical file

dc_dam write - Output a logical file block

Functions that can only be used in an offline environment

dc_dam bseek - Seek a physical file block

dc_dam create - Allocate a physical file

dc_dam dget - Input directly a physical file block
dc_dam dput - Output directly a physical file block
dc_dam get - Input a physical file block

dc_dam iclose - Close a physical file

dc_dam iopen - Open a physical file

dc_dam put - Output a physical file block

The functions for DAM file service (dc_dam_~) can be used only in UAPs of TP1/
Server Base. They cannot be used in UAPs of TP1/LiNK.

113

dc_dam_bseek - Seek a physical file block

dc_dam_bseek - Seek a physical file block

Format
B ANSIC, C++

#include <dcdami.h>
int dc_dam bseek (int fno, int blkno, DCLONG flags)

B K&RC

#include <dcdami.h>
int dc_dam bseek (fno, blkno, flags)

int fno;

int blkno;

DCLONG flags;
Description

The function dc_dam bseek () specifies the relative block number of a physical file
to position the file at the corresponding block. Call this function after the function
dc_dam iopen () that requests re-creation output.

When the corresponding relative block number is in the file, the relative block number
is returned without modification.

When seeking a physical file block, specify the file descriptor which is the return value
of the function dc_dam iopen ().

Arguments whose values are set in the UAP
B fno
Specify the file descriptor of the file containing a block to be located.
B blkno
Specify the relative block number to be located.
B flags
Specify DCNOFLAGS.
Return values

Return value Return value Explanation
(numeric)

0 or positive integer The value 0 or a positive integer indicates a relative
block number.

114

dc_dam_bseek - Seek a physical file block

Return value Return value Explanation
(numeric)

DCDAMER BADF -1603 | The file descriptor specified for £no is not the one
which was acquired by opening the file normally.
The DAM file is not open.

DCDAMER _SEQER -1605 | The call sequence of functions which access the DAM
file is invalid.

DCDAMER BNOER -1606 | The relative block number is invalid.

DCDAMER PARAM FLAGS -1611 | The value specified for £1ags is invalid.

DCDAMER IOER -1620 | An output error occurred.

115

dc_dam_close - Close a logical file

dc_dam_close - Close a logical file

Format
B ANSIC, C++

#include <dcdam.h>
int dc_dam close (int damfd, DCLONG flags)

B K&RC

#include <dcdam.h>

int dc_dam close (damfd, flags)
int damfd;

DCLONG flags;

Description
The function dc_dam close () closes logical files.

¢ Forrecoverable DAM files

If a logical file opened within the transaction is not closed before the transaction
terminates, the DAM service closes it at the synchronization point processing.
However, the DAM service does not close a logical file opened outside the
transaction (before the function dc_trn begin () is called) or an unrecoverable
DAM file.

If a logical file is opened before the transaction is started, it must be closed before
the UAP processing is terminated.

For unrecoverable DAM files

Since a logical file is not synchronized with the transaction, the function
dc_dam close () can arbitrarily be called when a logical file is closed.
However, opened logical files must be closed with the function

dc_dam close () before the function dc_dam end () is called.

When closing a logical file, specify the file descriptor which is the return value of the

function dc_dam_open ().
Arguments whose values are set in the UAP
B damfd
Specify the file descriptor of the file to be closed.
B flags

Specify DCNOFLAGS.

116

Return values

dc_dam_close - Close a logical file

Return value

Return value
(numeric)

Explanation

DC_OK

The logical file was closed normally.

DCDAMER_PROTO

-1600

The function dc_rpc_open () is not called.

A DAM file opened outside the transaction is closed
within the transaction. (This value is returned only
when a recoverable DAM file is accessed.)

N is specified for atomic_update in the user service
definition. (This value is returned only when a
recoverable DAM file is accessed.)

The function dc_dam_start () is not called. (This
value is returned only when an unrecoverable DAM file
is accessed.)

The UAP is incorrectly linked as follows:

* The library (-1tdam) to be used for access to a
TAM file using a DAM service function is linked
incorrectly.

* The definition of the resource manager for
transaction control object files is incorrect.

DCDAMER_BADF

-1603

The file descriptor specified for dam£d is not the one
which was acquired by opening the file normally, or the
file of the file descriptor is not open.

DCDAMER_PARAM FLAGS

-1611

The value specified for £1ags is invalid.

117

dc_dam_create - Allocate a physical file

dc_dam_create - Allocate a physical file

Format
B ANSIC, C++

#include <dcdami.h>
int dc_dam create (char *fname, int blksize, int blknum,
int pnum, DCLONG flags)

B K&R C

#include <dcdami.h>
int dc_dam create (fname, blksize, blknum, pnum, flags)

char *fname;
int blksize;
int blknum;

int pnum;
DCLONG flags;

Description
The function dc_dam_create () allocates a physical file to the OpenTP1 file system.
The size of a physical file is (block length + 8) x (number of blocks + 1).

Calling the function dc_dam iopen () is unnecessary after the function
dc_dam create () is called.

The following functions cannot be called after the function dc_dam create () is
called:

® dc_dam get ()

® dc_dam bseek()
* dc_dam _dget ()
* dc_dam dput ()

The size of an output buffer is (block length + 8) x (number of blocks collectively
processed).

Arguments whose values are set in the UAP
B fname

Specify the name of a physical file to be created in the OpenTP1 file system, with a
path name. The path name must be within (special file name + 14) bytes.

118

dc_dam_create - Allocate a physical file

blksize

Specify the length of a physical file block.
blknum

Specify the number of physical file blocks.
pnum

Specify the number of blocks collectively processed which is used as an input/output
unit.

flags

Specify the access permissions of the owner, the owner group, and another UAP. The
access permissions must be specified with the values shown below or the bit strings
shown in parentheses.

DCDAM_READ OWNER (00400): The read permission of the owner is specified.
DCDAM_WRITE_OWNER (00200): The write permission of the owner is specified.
DCDAM READ GROUP (00040): The read permission of the group owner is specified.
DCDAM WRITE GROUP (00020): The write permission of the group owner is specified.
DCDAM_READ OTHERS (00004): The read permission of another UAP is specified.
DCDAM_WRITE_OTHERS (00002): The write permission of another UAP is specified.
The following values are assumed when DCNOFLAGS is specified:

DCDAM_READ OWNER (00400)

DCDAM_WRITE_OWNER (00200)

DCDAM_READ_ GROUP (00040)

DCDAM_READ OTHERS (00004)

Return values

Return value Return value Explanation
(numeric)

0 or positive integer

0 or a positive integer indicates the file descriptor.

DCDAMER NOMEM -1607 | The memory became insufficient.
DCDAMER _OPENED -1608 | The specified physical file is opened.
DCDAMER PARAM FLAGS -1611 | The value specified for £1ags is invalid
DCDAMER FILEER -1614 | The physical file name is invalid

119

dc_dam_create - Allocate a physical file

Return value Return value Explanation
(numeric)
DCDAMER PNUMER -1615 | The value specified for the number of blocks

collectively processed is invalid.

DCDAMER EXIST -1617 | A physical file having the same name has been already
allocated.
DCDAMER _VERSION -1618 | The OpenTP1 file system versions used for creation

and allocation do not match each other.

DCDAMER IOER -1620 | An input/output error occurred.

DCDAMER_ACCESS -1628 | The UAP that called the function dc_dam_create ()
does not have the access permission for special files.

A DAM file to be allocated is protected with the
security facility. The UAP that called the function
dc_dam_create () has no access permission.

DCDAMER LBLNER -1630 | The value specified for the block length is not suitable.

DCDAMER LBNOER -1631 | The value specified for the number of blocks is not
suitable.

DCDAMER LFNMER -1632 | The physical file is not a character special file, or the

device corresponding to the special file does not exist.

DCDAMER_LNOINT -1633 | The specified OpenTP1 file has not been initialized as
an OpenTP1 file system.

DCDAMER_LFFOVF -1634 | When the OpenTP1 file was initialized as an OpenTP1
file system, an attempt was made to allocate more
OpenTP1 files (physical files) than specified.

DCDAMER _LFNOVF -1635 | The specified value exceeds the maximum number of
files which can be opened in the process being
executed.

DCDAMER_USED -1636 | The physical file specified for £name is being used in

online mode, or it is being used by another process.

DCDAMER_SPACE -1640 | The OpenTP1 file system does not have a free area
large enough to allocate physical files.

DCDAMER NO_ACL -1646 | A DAM file to be allocated is protected with the
security facility. There is no ACL for the corresponding
file.

120

dc_dam_dget - Input directly a physical file block

dc_dam_dget - Input directly a physical file block

Format
B ANSIC, C++

#include <dcdami.h>
int dc_dam dget (int fno, char *datadr, int datalen,
int blkno, DCLONG flags)

B K&R C

#include <dcdami.hs>
int dc_dam dget (fno, datadr, datalen, blkno, flags)

int fno;
char *datadr;
int datalen;
int blkno;
DCLONG flags;
Description

The function dc_dam_dget () inputs a block corresponding to a specified relative
block number. Call this function after the function dc_dam_iopen () that requests
re-creation output.

If the value specified for the block length is less than the value specified for the buffer
length, the length of the input block is returned. If the value specified for the block
length is greater than the value specified for the buffer length, an error is returned.

When directly inputting a physical file block, specify the file descriptor which is the
return value of the function dc_dam iopen().

Arguments whose values are set in the UAP
B fno
Specify the file descriptor of the file containing a block to be input directly.
B datadr
Specify the address of the input buffer.
B datalen
Specify the length of the input buffer.
B blkno
Specify the relative block number of the input block.

121

dc_dam_dget - Input directly a physical file block

B flags
Specify DCNOFLAGS.
Return values

Return value Return value Explanation
(numeric)

Positive integer A positive integer indicates the length of the input
block.

DCDAMER BADF -1603 | The file descriptor specified for £no is not the one
which was acquired by opening the file normally.

The DAM file is not open.

DCDAMER BUFER -1604 | The value specified for the input data length is less than
the value specified for the block length.

DCDAMER SEQER -1605 | The call sequence of functions which access the DAM
file is invalid.

DCDAMER BNOER -1606 | The relative block number is invalid.

DCDAMER PARAM FLAGS -1611 | The value specified for £1ags is invalid.

DCDAMER IOER -1620 | An input error occurred.

DCDAMER _ACCESS -1628 | A DAM file to be accessed is protected with the
security facility. The UAP that called the function
dc_dam_dget () has no access permission.

DCDAMER NO_ACL -1646 | A DAM file to be accessed is protected with the

security facility. There is no ACL for the corresponding
file.

122

dc_dam_dput - Output directly a physical file block

dc_dam_dput - Output directly a physical file block

Format
B ANSIC, C++

#include <dcdami.h>
int dc_dam dput (int fno, char *datadr, int datalen,
int blkno, DCLONG flags)

B K&R C

#include <dcdami.hs>
int dc_dam dput (fno, datadr, datalen, blkno, flags)

int fno;
char *datadr;
int datalen;
int blkno;
DCLONG flags;
Description

The function dc_dam dput () outputs a block corresponding to a specified relative
block number. Call this function after the function dc_dam_iopen () that requests
re-creation output.

If the value specified for the output data length is less than the value specified for the
block length, a block is output and the remaining area is padded with null characters.
If the value specified for the output data length is greater than the value specified for
the block length, an error is returned.

When directly outputting a physical file block, specify the file descriptor which is the
return value of the function dc_dam iopen().

Arguments whose values are set in the UAP
B fno
Specify the file descriptor of the file to which a block is output directly.
B datadr
Specify the address of the output data.
B datalen
Specify the length of the output data.
B blkno
Specify the relative block number of the output destination block.

123

dc_dam_dput - Output directly a physical file block

B flags
Specify DCNOFLAGS.
Return values

Return value Return value Explanation
(numeric)

Positive integer A positive integer indicates the length of the output
block.

DCDAMER BADF -1603 | The file descriptor specified for £no is not the one
which was acquired by opening the file normally.
The DAM file is not open.

DCDAMER BUFER -1604 | The value specified for the output data length is less
than the value specified for the block length.

DCDAMER SEQER -1605 | The call sequence of functions which access the DAM
file is invalid.

DCDAMER BNOER -1606 | The relative block number is invalid.

DCDAMER PARAM FLAGS -1611 | The value specified for £1ags is invalid.

DCDAMER IOER -1620 | An output error occurred.

DCDAMER _ACCESS -1628 | A DAM file to be accessed is protected with the
security facility. The UAP that called the function
dc_dam_dput () has no access permission.

DCDAMER NO_ACL -1646 | A DAM file to be accessed is protected with the

security facility. There is no ACL for the corresponding
file.

124

dc_dam_end - Terminate using an unrecoverable DAM file

dc_dam_end - Terminate using an unrecoverable DAM file

Format
B ANSIC, C++

#include <dcdam.hs>
int dc_dam end (DCLONG flags)

B K&RC

#include <dcdam.h>
int dc_dam end (flags)
DCLONG flags;

Description
The function dc_dam_end () terminates using an unrecoverable DAM file.

When the function dc_dam_start () is called, call the function dc_dam_end ()
before terminating the processing. If the function dc_dam end () is not called, a
resource used to access an unrecoverable DAM file is not released until the UAP
terminates.

Argument whose value is set in the UAP
B flags
Specify DCNOFLAGS.
Return values

Return value Return value Explanation
(numeric)

DC_OK 0 | Normal termination. Using an unrecoverable DAM file
is terminated.

DCDAMER PROTO -1600 | The function dc_rpc_open () is not called.
DCDAMER SEQER -1605 | The function dc_dam_start () is not called.
DCDAMER PARAM FLAGS -1611 | The value specified for £1ags is invalid.

125

dc_dam_get - Input a physical file block

dc_dam_get - Input a physical file block

Format
B ANSIC, C++

#include <dcdami.h>
int dc_dam get (int fno, char *datadr, int datalen,
DCLONG flags)

B K&R C

#include <dcdami.h>
int dc_dam get (fno, datadr, datalen, flags)

int fno;
char *datadr;
int datalen;

DCLONG flags;

Description

The function dc_dam_get () sequentially inputs data in blocks from a physical file of
the OpenTP1 file system. Call the function dc_dam_get () after the function
dc_dam_ iopen().

If the value specified for the block length is smaller than the value specified for the
buffer length, the length of the input block is returned. If the value specified for the
block length is greater than the value specified for buffer length, an error is returned.

When inputting a physical file block, specify the file descriptor which is the return
value of the function dc_dam iopen().

Arguments whose values are set in the UAP
B fno
Specify the file descriptor of the file containing a block to be input.
B datadr
Specify the address of the input buffer.
B datalen

Specify the length of the input buffer. You can specify a value in the range from 504
to 2147483647.

B flags

Specify DCNOFLAGS.

126

dc_dam_get - Input a physical file block

Return values

Return value Return value Explanation
(numeric)
Positive integer A positive integer indicates the length of the input
block.
DCDAMER BADF -1603 | The file descriptor specified for £no is not the one

which was acquired by opening the file normally, or the
file is not open.

DCDAMER BUFER -1604 | The value specified for the block length is greater than
the value specified for the buffer length.

The value specified for the input buffer length is
outside the range of values that can be specified.

DCDAMER_SEQER -1605 | The call sequence of functions which access the DAM
file is invalid.

DCDAMER PARAM FLAGS -1611 | The value specified for £1ags is invalid.
DCDAMER _IOER -1620 | An input error occurred.
DCDAMER _ACCESS -1628 | A DAM file to be accessed is protected with the

security facility. The UAP that called the function
dc_dam_get () has no access permission.

DCDAMER_EOF -1637 | The file end was reached.

DCDAMER _NO_ACL -1646 | A DAM file to be accessed is protected with the
security facility. There is no ACL for the corresponding
file.

127

dc_dam_hold - Shut down a logical file

dc_dam_hold - Shut down a logical file

Format
B ANSIC, C++

#include <dcdam.h>
int dc_dam hold (char *1fname, DCLONG flags)

B K&RC

#include <dcdam.h>

int dc_dam hold (lfname, flags)
char *1fname;

DCLONG flags;

Description

The function dc_dam_hold () shuts down a logical file. After the function
dc_dam hold() is executed, a logical shutdown error is always returned if another
UAP calls an access request for the logical file.

e For recoverable DAM files

If the logical file specified here is under synchronization point processing in
another transaction processing when the function dc_dam hold () is called, the
logical file is closed after the synchronization point processing terminates. Even
if the synchronization point processing is not completed, the function

dc_dam hold () returns to the accessed UAP.

Arguments whose values are set in the UAP
B 1fname
Within 1 to 8 bytes, specify the name of a logical file to be shut down.
B flags
Specify DCNOFLAGS.
Return values

Return value Return value Explanation
(numeric)
DC_OK 0 | The logical file specified for 1fname was shut down
normally.
DCDAMER PROTO -1600 | The function dc_rpc_open () is not called.

128

dc_dam_hold - Shut down a logical file

Return value

Return value
(numeric)

Explanation

N is specified for atomic_update in the user service
definition. (This value is returned only when a
recoverable DAM file is accessed.)

The function dc_dam_start () is not called. (This
value is returned only when an unrecoverable DAM file
is accessed.)

The UAP is incorrectly linked as follows:

e The library (-1tdam) to be used for access to a
TAM file using a DAM service function is linked
incorrectly.

* The definition of the resource manager for
transaction control object files is incorrect.

DCDAMER_UNDEF

-1601

The specified logical file name has not been defined.

DCDAMER _NOMEM

-1607

The memory became insufficient.

DCDAMER_ PARAM LFNAME

-1610

The logical file name specified for 1fname is invalid.

DCDAMER_ PARAM FLAGS

-1l611

The value specified for £1ags is invalid.

DCDAMER_VERSION

-1618

The version of the DAM library linked to the UAP does
not allow the UAP to operate with the current DAM
service.

DCDAMER_LHOLDED

-1625

The logical file name specified for 1 fname is in logical
shutdown state.

DCDAMER_OHOLDED

-1626

The logical file name specified for 1fname is in
shutdown state due to an error.

DCDAMER_ACCESS

-1628

A DAM file to be shut down is protected with the
security facility. The UAP that called the function
dc_dam_hold () has no access permission.

DCDAMER_NO_ACL

-1646

A DAM file to be shut down is protected with the
security facility. There is no ACL for the corresponding
file.

129

dc_dam_iclose - Close a physical file

dc_dam_iclose - Close a physical file

Format
B ANSIC, C++

#include <dcdami.h>
int dc_dam iclose (int fno, DCLONG flags)

B K&RC

#include <dcdami.h>

int dc_dam iclose (fno, flags)
int fno;

DCLONG flags;

Description

The function dc_dam iclose () closes a physical file created in the OpenTP1 file
system.

If a file is not filled with data, the remaining part up to the end of the file is padded with
blocks of null characters only in the following cases:

* The value specified for flags of the function dc_dam iopen () indicates a
creation output request (DCDAM INITIALIZE).

* The function dc_dam create () has been called.

When closing a physical file, specify the file descriptor which is the return value of the
function dc_dam_create () or dc_dam iopen ().

Arguments whose values are set in the UAP

B fno

Specify the file descriptor of the file to be closed.

B flags

Specify DCNOFLAGS.

Return values

Return value Return value Explanation
(numeric)
DC_OK 0 | The physical file was closed normally.
DCDAMER BADF -1603 | The file descriptor specified for £no is not the one

which was acquired by opening the file normally.

130

dc_dam_iclose - Close a physical file

Return value Return value Explanation
(numeric)

The specified file is not open.

DCDAMER PARAM FLAGS -1611 | The value specified for £1ags is invalid.

DCDAMER IOER -1620 | An output error occurred.

131

dc_dam_iopen - Open a physical file

dc_dam_iopen - Open a physical file

Format
B ANSIC, C++

#include <dcdami.h>
int dc_dam iopen (char *fname, int pnum, DCLONG flags)

B K&RC

#include <dcdami.h>

int dc_dam iopen (fname, pnum, flags)
char *fname;

int pnum;

DCLONG flags;

Description

The function dc_dam_iopen () opens a physical file created in the OpenTP1 file
system. However, this function cannot open a physical file being used in online mode.

Arguments whose values are set in the UAP
B fname

Specify the name of a physical file to be opened with a path name within (special file
name + 14 bytes).

B pnum

Specify the number of blocks collectively processed which is used as an input/output
unit.

B flags

Specify the type of request (creation output request or re-creation (overwrite) output
request). The value specified here determines whether to pad the remaining area with
blocks of null characters when the file is closed. The value set here will come into
effect when the call of the function dc_dam iclose () subsequent to the function
dc_dam put () brings about normal termination. Even though the function

dc_dam put () is called, the remaining area will not be padded with blocks of null
characters provided that UAP processing is terminated without the call of the function
dc_dam_iclose().

DCDAM INITIALIZE

The creation output request type is specified. (The remaining area is padded with
blocks of null characters.)

132

dc_dam_iopen - Open a physical file

DCDAM OVERWRITE

The re-creation output request type is specified. (The remaining area is not
padded with blocks of null characters.)

When DCNOFLAGS is specified, DCDAM OVERWRITE is assumed to be specified.

Return values

Return value Return value Explanation
(numeric)

0 or positive integer 0 or a positive integer indicates the file descriptor.
DCDAMER NOMEM -1607 | The memory became insufficient.
DCDAMER OPENED -1608 | The physical file specified for £name is open.
DCDAMER PARAM FLAGS -1611 | The value specified for £1ags is invalid.
DCDAMER FILEER -1614 | The physical file name specified for fname is invalid.
DCDAMER PNUMER -1615 | The value specified for the number of blocks

collectively processed is invalid.

DCDAMER NODAM -1616 | The physical file specified for fname is nota DAM file.

DCDAMER _VERSION -1618 | The OpenTP1 file system versions used for creation
and allocation do not match each other.

DCDAMER NOEXIST -1619 | The physical file specified for fname does not exist.
DCDAMER IOER -1620 | An input/output error occurred.
DCDAMER_ACCESS -1628 | The UAP that called the function dc_dam_iopen ()

does not have the access permission for special files.

DCDAMER LFNMER -1632 | The physical file is not a character special file, or the
device corresponding to the special file does not exist.

DCDAMER _LNOINT -1633 | The physical file specified for fname has not been
initialized as an OpenTP1 file system.

DCDAMER _LFNOVF -1635 | The specified value exceeds the maximum number of
files which can be opened for the process.

DCDAMER _USED -1636 | The physical file specified for £name is being used in
online mode, or it is being used by another process.

DCDAMER ACCESSF -1638 | The access permission for physical files has not been
granted.
DCDAMER _CRUSH -1639 | Physical file damage was detected.

133

dc_dam_open - Open a logical file

dc_dam_open - Open a logical file

Format

B ANSIC, C++

#include <dcdam.h>
int dc_dam open (char *lfname, DCLONG flags)

B K&RC

#include <dcdam.h>

int dc_dam open (lfname, flags)
char *1fname;

DCLONG flags;

Description

The function dc_dam open () opens a logical file.

For recoverable DAM files

Whether to apply file-based or block-based lock is specified for the logical file.
File-based lock can be applied when:

* The logical file is opened within the transaction range under the condition
that lock control for individual transaction branches is specified.

In the following conditions, file-based lock cannot be applied. Use block-based
lock:

The logical file is opened outside the transaction range.
Lock control for individual global transactions is specified.

If a logical file is closed by the function dc_dam close () and is again opened
in the same transaction branch, the status before the function dc_dam close ()
is called is inherited.

For unrecoverable DAM files

Since the transaction is not synchronized, no lock is needed.

Arguments whose values are set in the UAP

B 1fname

Within 1 to 8 bytes, specify the name of a logical file to be opened.

B flags

Specify the following items in the format below:

134

dc_dam_open - Open a logical file

File-based lock or blocks

Whether the function is to wait for the resource to be released from lock if a lock
€rTor OCCurs.

{DCDAM FILE EXCLUSIVE|DCDAM BLOCK EXCLUSIVE

[|DCDAM WAIT|DCDAM NOWAIT|] }

Flag 1

Specitfy files-based lock or blocks.

DCDAM FILE EXCLUSIVE: Files-based lock
DCDAM BLOCK_ EXCLUSIVE: Blocks-based lock
Flag 2

Specify whether the function is to wait for the resource to be released from lock
if an lock error occurs in the function,

DCDAM WAIT: The function waits for the resource to be released from lock.

DCDAM NOWAIT: The function does not wait for the resource to be released from
lock, and returns with an error.

The default is DCDAM_NOWAIT.

Setting flags

The value specified for flags depends on whether the DAM file is recoverable.

For recoverable DAM files

DCDAM WAIT (flag 2) is specified if a lock error occurs in the function

dc_dam read() ordc_dam write (). Itis not specified if a lock error occurs
in the function dc_dam_open () . If a lock error occurs in the function

dc_dam open (), the function unconditionally returns with the error value
DCDAMER_EXCER.

The table below shows the correspondence between the value specified for flags
and the type of lock when a recoverable DAM file is accessed.

Flag 1 Flag 2* Lock Specified for Flags
FILE EXCLUSIVE -- Files-based lock
BLOCK EXCLUSIVE WAIT Blocks-based lock, and waiting for release from lock if a lock
error occurs
NOWAIT Blocks-based lock, and error return if a lock error occurs

135

dc_dam_open - Open a logical file

Legend:
--: Cannot be specified.
#: The default is NOWAIT.
* For unrecoverable DAM files

DCcDaM WAIT (flag 2) is specified if a lock error occurs. If a lock error occurs in
the functiondc_dam open(),dc_dam read(),ordc dam write,whetherto
wait for lock to be released is determined according to the value specified for flag
2. When DCDAM_NOWAIT is specified for flag 2 or omitted and if a lock error
occurs, the function returns with the error value DCDAMER EXCER.

The table below shows the correspondence between the value specified for f1ags
and the type of lock when an unrecoverable DAM file is accessed.

Flag 1 Flag 2* Lock Specified for Flags

FILE EXCLUSIVE WAIT Files-based lock, and waiting for release from lock if a lock
eITor Occurs

NOWAIT Files-based lock, and error return if a lock error occurs

BLOCK_EXCLUSIVE WAIT Blocks-based lock, and waiting for release from lock if a lock
eITor Occurs

NOWAIT Blocks-based lock, and error return if a lock error occurs

#: The default is NOWAIT.

When files-based lock is specified for flag 1, no lock error occurs in the function
dc_dam read() or dc_dam write () because all files are locked regardless of
recoverable or unrecoverable files. Therefore, whether to wait for release from lock
cannot be specified. The lock release wait type specified for the argument of the
function dc_dam read () or dc_dam write () isignored.

Return values

Return value Return value Explanation
(numeric)
0 or positive integer 0 or a positive integer indicates the file descriptor.
DCDAMER PROTO -1600 | The function dc_rpc_open () is not called.

N is specified for atomic_update in the user service
definition. (This value is returned only when a
recoverable DAM file is accessed.)

136

dc_dam_open - Open a logical file

Return value

Return value
(numeric)

Explanation

The dc_dam_start () function is not called when N is
specified for the atomic_update operand in the user
service definition. (This value is returned only when an
unrecoverable DAM file is accessed.)

The UAP is incorrectly linked as follows:

* The library (-1tdam) to be used for access to a
TAM file using a DAM service function is linked
incorrectly.

* The definition of the resource manager for
transaction control object files is incorrect.

DAM file lock is specified from outside the transaction
range. (This value is returned only when a recoverable
DAM file is accessed.)

File lock is specified for the DAM file in lock control
for each global transaction. (This value is returned only
when a recoverable DAM file is accessed.)

DCDAMER_UNDEF

-1601

The logical file name specified for 1fname has not
been defined.

DCDAMER_EXCER

-1602

A lock error occurred.

DCDAMER_SEQER

-1605

The dc_dam_start () function is not called when Y is
specified for the atomic_update operand in the user
service definition. (This value is returned only when an
unrecoverable DAM file is accessed.)

DCDAMER _NOMEM

-1607

The memory became insufficient.

DCDAMER_OPENED

-1608

The logical file specified for 1fname is open.

DCDAMER_PARAM LFNAME

-1610

The value specified for the logical file name is invalid.

DCDAMER_PARAM FLAGS

-1611

The value specified for £1ags is invalid.

DCDAMER_LHOLD

-1621

The file specified for 1fname is in logical shutdown
state.

DCDAMER_OHOLD

-1622

The file specified for 1fname is in shutdown state due
to an error.

DCDAMER_OPENNUM

-1627

The number of open character special files exceeds the
specified limit.

DCDAMER_ACCESS

-1628

The access permission for character special files has
not been granted.

137

dc_dam_open - Open a logical file

Return value Return value Explanation
(numeric)

DCDAMER TMERR -1629 | Anerroroccurred in the transaction service. (This value
is returned only when a recoverable DAM file is
accessed.)

DCDAMER DLOCK -1642 | Adeadlock occurred. (This value is returned only when
an unrecoverable DAM file is accessed.)

DCDAMER _TIMOUT -1643 | The resource could not be acquired because a timeout
occurred (the wait time specified in the lock service
definition was exceeded). (This value is returned only
when an unrecoverable DAM file is accessed.)

DCDAMER _LCKOV -1645 | The number of lock requests exceeds the specified
maximum number of concurrent lock requests.

DCDAMER NO_ACL -1646 | A DAM file to be opened is protected with the security

facility. There is no ACL for the corresponding file.

138

dc_dam_put - Output a physical file block

dc_dam_put - Output a physical file block

Format
B ANSIC, C++

#include <dcdami.h>
int dc_dam put (int fno, char *datadr,
DCLONG flags)

int datalen,

B K&R C

#include <dcdami.hs>

int dc_dam put (fno, datadr, datalen, flags)
int fno;
char *datadr;
int datalen;
DCLONG flags;
Description

The function dc_dam_put () sequentially outputs data in blocks to a physical file
created in the OpenTP1 file system. If the value specified for the data length is smaller
than the value specified for the block length, the remaining part following the data is
padded with null characters. If the value specified for the data length is greater than the
value specified for the block length, an error is returned.

When outputting a physical file block, specify the file descriptor which is the return
value of the function dc_dam create () ordc_dam iopen().

Argument whose values are set in the UAP
B fno

Specify the file descriptor of the file to which a block is output.

B datadr
Specify the address of the data to be output.

B datalen

Specify the length of the data to be output. You can specify a value in the range from

504 to 2147483647.
B flags

Specify DCNOFLAGS.

139

dc_dam_put - Output a physical file block

Return values

Return value Return value Explanation
(numeric)

Positive integer A positive integer indicates the length of the data to be
output (the value specified for datalen).

DCDAMER BADF -1603 | The file descriptor specified for £no is not the one
which was acquired by opening the file normally, or the
specified file is not open.

DCDAMER_BUFER -1604 | The value specified for the data length is greater than
the value specified for the block length.

The value specified for the output data length is outside
the range of values that can be specified.

DCDAMER_SEQER -1605 | The call sequence of functions which access the DAM
file is invalid.

DCDAMER PARAM FLAGS -1611 | The value specified for £1ags is invalid.

DCDAMER_IOER -1620 | An output error occurred.

DCDAMER _ACCESS -1628 | A DAM file to be accessed is protected with the
security facility. The UAP that called the function
dc_dam_put () has no access permission.

DCDAMER_EOF -1637 | The end of the file is reached.

DCDAMER NO_ACL -1646 | A DAM file to be accessed is protected with the

security facility. There is no ACL for the corresponding
file.

140

dc_dam_read - Input a logical file block

dc_dam_read - Input a logical file block

Format
B ANSIC, C++

#include <dcdam.h>

int dc_dam read (int damfd, struct DC_DAMKEY *keyptr,
int keyno, char *bufadr, int bufsize,
DCLONG flags)

B K&RC

#include <dcdam.h>
int dc_dam read (damfd, keyptr, keyno, bufadr, bufsize,

flags)
int damfd;
struct DC_DAMKEY *keyptr;
int keyno;
char *bufadr;
int bufsize;

DCLONG flags;

Description

The function dc_dam_read () inputs a block (which is in the specified range) for
reference or update processing from the specified logical file

¢ Forrecoverable DAM files

Lock is enabled in units (files or blocks) as specified when the logical file was
opened. The function dc_dam read () can be called from a process out of the
transaction range. In this case, however, the function can be used only for
reference and lock cannot be specified.

When multiple blocks are specified at a time, an error returned if even one of the
blocks causes an error. In this case, the blocks are not input to the input buffer. All
the blocks for which an input request was made are released lock at this time.

Lock which is enabled for a block input for reference processing is released in the
following case:

After the block is input for reference processing, an input request for update
processing is made for the same block. Then, an input error occurs during the
update processing.

Even if block update during a transaction is specified
(dam update block over=flush inthe DAM service definition), an error is
returned with DCDAMER JNLOV in the following case:

141

dc_dam_read - Input a logical file block

* DAM file blocks are not updated in one transaction branch
(dc_dam rewrite ()). The function dc_dam read () (block input for
update processing) is called. Eventually, the number of blocks exceeds the
maximum number of blocks collectively updated (the value specified for
dam update block of the DAM service definition).

When inputting a block of a recoverable DAM file, call the function
dc_dam_read () from the transaction range.

For unrecoverable DAM files

There is no limit on the condition to call the function dec_dam read () when a
block of an unrecoverable DAM file is input.

For an unrecoverable DAM file, if the function dc_dam read () for update is
called more times than specified in dam update block in the DAM service
definition, the function returns with the error value DCDAMER ACSOV.

When inputting a logical file block, specify the file descriptor which is the return value
of the function dc_dam open ().

Arguments whose values are set in the UAP

B damfd

Specify the file descriptor of the file containing a block to be input.

B keyptr

Specify the address of the structure (DAM key) that indicates the block reference/
update range. For the structure, specify the block range with the first relative block
number and the last relative block number. The structure format is as shown below.

struct DC_DAMKEY {

int fstblkno;
int endblkno;

}i

fstblkno
Specify the first relative block number of the block to be referenced or updated.
endblkno

Specify the last relative block number of the block to be referenced or updated. If
0 is specified, only the block of the relative block number specified for £stblkno
is input.

B keyno

Specify the number of structures (number of structure arrays) to be set for keyptr.

142

dc_dam_read - Input a logical file block

B bufadr

Specify the address of the input buffer.

B bufsize

Specify the length of the input buffer. The length must be equal to or greater than (input
block length x number of blocks). You can specify a value in the range from 504 to
2147483647.

B flags

Specify the type of request (reference request or update request) in the following
format:

{
[
[

D
\
|

CDAM_REFERENCE | DCDAM MODIFY}
{DCDAM EXCLUSIVE|DCDAM NOEXCLUSIVE}]
{DCDAM_WAIT|DCDAM NOWAIT}]

Flag 1

Specify the purpose (reference or update) of the input request given by the
function dc_dam_read():

DCDAM REFERENCE: Input request for reference
DCDAM MODIFY: Input request for update
Flag 2

Specify whether to apply lock if the input request is for reference. If
DCDAM_ EXCLUSIVE is specified, lock will remain until processing reaches the
synchronization point.

To access a recoverable DAM file for reference from outside the transaction, lock
cannot be specified.

If flag 2 is omitted, DCDAM NOEXCLUSIVE is assumed.

If the function dc_dam_read () is called without lock application, the block
could be updated by another UAP during the processing of the function
dc_dam_read (). In this case, the details input to the block by the function
dc_dam read () depend on the update processing status on the other UAP.
Therefore, to reference the latest block contents, be sure to specify

DCDAM EXCLUSIVE.

If the input request is for update, flag 2 cannot be given no explicit value (always
DCDAM_EXCLUSIVE).

DCDAM EXCLUSIVE: Lock is enabled.

DCDAM NOEXCLUSIVE: Lock is not enabled.

143

dc_dam_read - Input a logical file block

Flag 3

Specify whether the function is to wait for the resource to be released from lock
if a lock error occurs. This item cannot be specified together with

DCDAM NOEXCLUSIVE. If file-based lock is specified as the type of lock in the
function dc_dam_open () in which the file descriptor is specified for damfd, the
value specified for this option is meaningless.

DCcDAM WAIT: The function waits for the resource to be released from lock.

DCDAM NOWAIT: The function does not wait for the resource to be released from
lock, and returns with an error.

If both items are omitted, the subsequent processing is as follows:

If DcpaM_WAIT is specified in the function dc_dam_open (), the function waits
for the resource to be released from lock.

If DcDAM NOWAIT is specified in the function dc_dam_open () or it is omitted,
the function returns with an error.

The table below shows the correspondence between flag values specified for flags
and the specified type of lock.

Flag 1 Flag 2#1 Flag 3#2 Lock Specified for Flags
REFERENCE EXCLUSIVE WAIT Input for reference, lock used, and waiting for release
from lock if a lock error occurs
NOWAIT Input for reference, lock used, and error return if a lock
error occurs
NOEXCLUSIVE N/A Input for reference, and lock not used”
MODIFY N/A WAIT Input for update, and waiting for release from lock if a
lock error occurs
NOWAIT Input for update, and error return if a lock error occurs
Legend:

N/A: Cannot be specified.

#1: The default is NOEXCLUSIVE.

#2: The default is the type of lock specified in the function dc_dam open ().

#3: For a recoverable DAM file, the function dc_dam read () can be called from a
process out of the transaction range only if flag 1 is given the value

DCDAM REFERENCE and flag 2 is given the value DCDAM NOEXCLUSIVE or is omitted.
If the function dc_dam_read () is called with other values specified for the flags from
outside the transaction range, it returns with a DCDAMER PROTO error.

144

dc_dam_read - Input a logical file block

Return values

Return value Return value Explanation
(numeric)
DC_OK 0 | All blocks were input normally.
DCDAMER PROTO -1600 | The function dc_rpc_open () is not called.

The purpose of input is updating or lock-specified
reference outside the transaction range. (This value is
returned only when a recoverable DAM file is
accessed.)

N is specified for atomic_update in the user service
definition. (This value is returned only when a
recoverable DAM file is accessed.)

The function dc_dam_start () is not called. (This
value is returned only when an unrecoverable DAM file
is accessed.)

The UAP is incorrectly linked as follows:

e The library (-1tdam) to be used for access to a
TAM file using a DAM service function is linked
incorrectly.

* The definition of the resource manager for
transaction control object files is incorrect.

DCDAMER _EXCER -1602 | A lock error occurred.

DCDAMER BADF -1603 | The file descriptor specified for dam£d is not the one
which was acquired by opening the file normally, or the
specified file is not open.

DCDAMER BUFER -1604 | The specified input buffer is too small to contain all
blocks.

The value specified for the input buffer length is
outside the range of values that can be specified.

DCDAMER BNOER -1606 | The relative block number is invalid.

DCDAMER NOMEM -1607 | The memory became insufficient.

DCDAMER _PARAM KEYNO -1609 | The value specified for keyno is smaller than 1.

DCDAMER PARAM FLAGS -1611 | The value specified for £1ags is invalid.

DCDAMER VERSION -1618 | The version of the DAM library linked to the UAP does
not allow the UAP to operate with the current DAM
service.

145

dc_dam_read - Input a logical file block

Return value Return value Explanation
(numeric)

DCDAMER JNLOV -1613 | The number of block updates exceeded the maximum
number of blocks that can be updated during one
transaction according to the DAM service definition.
(Returned only when a recoverable DAM file is
accessed.)

DCDAMER _IOER -1620 | An input error occurred.

DCDAMER LHOLD -1621 | The file of the file descriptor specified for damfd is in
logical shutdown state.

DCDAMER_OHOLD -1622 | The file with the file descriptor specified for damfd is
in shutdown state due to an error.

DCDAMER _ACCESS -1628 | A DAM file to be accessed is protected with the
security facility. The UAP that called the function
dc_dam_read () has no access permission.

DCDAMER TMERR -1629 | Anerroroccurred in the transaction service. (This value
is returned only when a recoverable DAM file is
accessed.)

DCDAMER _DLOCK -1642 | A deadlock occurred.

DCDAMER_TIMOUT -1643 | The resource could not be acquired because a timeout
occurred (the wait time specified in the lock service
definition was exceeded).

DCDAMER _LCKOV -1645 | The number of lock requests exceeds the specified
maximum number of concurrent lock requests.

DCDAMER _ACSOV -1648 | The maximum number of blocks for access to

unrecoverable DAM files is exceeded. (This value is
returned only when an unrecoverable DAM file is
accessed.)

146

dc_dam_release - Release a logical file from the shutdown state

dc_dam_release - Release a logical file from the shutdown state

Format
B ANSIC, C++

#include <dcdam.hs>
int dc_dam release (char *lfname, DCLONG flags)

B K&RC

#include <dcdam.h>

int dc_dam release (lfname, flags)
char *1fname;

DCLONG flags;

Description

The functiondc_dam_release () releases a logical file which has been logically shut
down by the function dc_dam hold (). The function dc_dam release () also
releases a logical file which has been shut down due to an error.

Arguments whose values are set in the UAP

B 1fname

Within 1 to 8 bytes, specify the name of a logical file which is released from the
shutdown state.

B flags
Specify the type of release from the shutdown state.
DCDAM LOGICAL RELEASE: A file logically shut down is released.

DCDAM_OBSTACLE RELEASE: A file shut down due to an error is released.

Return values

Return value Return value Explanation
(numeric)

DC_OK 0 | Thelogical file specified for 1 fname was released from
the shutdown state normally.

DCDAMER PROTO -1600 | The function dc_rpc_open () is not called.

N is specified for atomic_update in the user service
definition. (This value is returned only when a
recoverable DAM file is accessed.)

147

dc_dam_release - Release a logical file from the shutdown state

Return value Return value Explanation
(numeric)
The function dc_dam_start () is not called. (This
value is returned only when an unrecoverable DAM file
is accessed.)
The UAP is incorrectly linked as follows:
* The library (-1tdam) to be used for access to a
TAM file using a DAM service function is linked
incorrectly.
¢ The definition of the resource manager for
transaction control object files is incorrect.

DCDAMER UNDEF -1601 | The logical file specified for 1fname has not been
defined.

DCDAMER NOMEM -1607 | The memory became insufficient.

DCDAMER PARAM LFNAME -1610 | The logical file name specified for 1fname is invalid.

DCDAMER_PARAM FLAGS -1611 | The value specified for £1lags is invalid.

DCDAMER _VERSION -1618 | The version of the DAM library linked to the UAP does
not allow the UAP to operate with the current DAM
service.

DCDAMER NOEXIST -1619 | The physical file corresponding to the logical file
specified for 1£name does not exist.

DCDAMER IOER -1620 | An input error occurred.

DCDAMER NOLHOLD -1623 | The logical file specified for 1fname is not in logical
shutdown state.

DCDAMER NOOHOLD -1624 | Thelogical file specified for 1 fname is not in shutdown
state due to an error.

DCDAMER _OPENNUM -1627 | The number of open character special files exceeds the
specified maximum number.

DCDAMER _ACCESS -1628 | The access permission for character special files has
not been granted.

A DAM file to be accessed is protected with the
security facility. The UAP that called the function
dc_dam_release () has no access permission.

DCDAMER LFNMER -1632 | The physical file is not a character special file, or the

device corresponding to the specified special file does
not exist.

148

dc_dam_release - Release a logical file from the shutdown state

Return value Return value Explanation
(numeric)

DCDAMER _LNOINT -1633 | The physical file corresponding to the logical file
specified for 1£fname has not been initialized as a
OpenTP1 file system.

DCDAMER _ACCESSF -1638 | The access permission for the physical file that
corresponds to the logical file specified for 1 fname has
not been granted.

DCDAMER _NO_ACL -1646 | A DAM file to be released from shutdown is protected

with the security facility. There is no ACL for the
corresponding file.

149

dc_dam_rewrite - Update a logical file block

dc_dam_rewrite - Update a logical file block

Format
B ANSIC, C++

#include <dcdam.h>

int dc_dam rewrite (int damfd, struct DC_DAMKEY *keyptr,
int keyno, char *bufadr, int bufsize,
DCLONG flags)

B K&RC

#include <dcdam.h>
int dc_dam rewrite (damfd, keyptr, keyno, bufadr, bufsize,

flags)

int damfd;

struct DC_DAMKEY *keyptr;
int keyno;

char *bufadr;

int bufsize;

DCLONG flags;

Description

The function dc_dam_rewrite () outputs a block, input from the logical file for
update processing, a block input by the function dc_dam read (). It also cancels an
update request. Block updating timing is shown below.

¢ Forrecoverable DAM files

The updated data is stored in the part of shared memory that is allocated for DAM
service, and the actual file is updated when the transaction is committed. A DAM
file with deferred update specified is updated asynchronously with the transaction
commitment.

¢ Unrecoverable DAM files
A DAM file is updated when the function dc_dam rewrite () is returned.

When multiple blocks are specified at a time and if even one of the specified blocks
causes an error, processing is stopped and an error is returned. Update processing is
not done in this case.

When updating a logical file block, specify the file descriptor which is the return value
of the function dc_dam open ().

150

dc_dam_rewrite - Update a logical file block

Arguments whose values are set in the UAP
B damfd
Specify the file name with the file descriptor.
B keyptr

Specify the address of the structure (DAM key) that indicates the block update range.
For the structure, specify the block range with the first relative block number and the
last relative block number. The structure format is as shown below.

struct DC _DAMKEY {
int fstblkno;
int endblkno;

}i

fstblkno
Specify the first relative block number of the block to be updated.
endblkno

Specify the last relative block number of the block to be updated. If 0 is specified,
only the block of the relative block number specified for £stblkno is updated.

B keyno

Specify the number of structures (number of structure arrays) to be set for keyptr.
B bufadr

Specify the address of the update data.
B bufsize

Specify the length of the update data. The length must be (block length to be updated
x number of blocks to be updated). You can specify a value in the range from 504 to
2147483647.

B flags
Specify one of the following values as the update request type:
DCDAM UPDATE
Update request
DCDAM CANCEL

Cancellation of update request

151

dc_dam_rewrite - Update a logical file block

Return values

Return value

Return value
(numeric)

Explanation

DC_OK

All blocks were updated normally.

DCDAMER_PROTO

-1600

The function dc_rpc_open () is not called.

The functiondc_dam_rewrite () is called outside the
transaction range. (This value is returned only when a
recoverable DAM file is accessed.)

N is specified for atomic_update in the user service
definition. (This value is returned only when a
recoverable DAM file is accessed.)

The function dc_dam_start () is not called. (This
value is returned only when an unrecoverable DAM file
is accessed.)

The UAP is incorrectly linked as follows:

* The library (-1tdam) to be used for access to a
TAM file using a DAM service function is linked
incorrectly.

* The definition of the resource manager for
transaction control object files is incorrect.

DCDAMER_BADF

-1603

The file descriptor specified for dam£d is not the one
which was acquired by opening the file normally, or the
specified file is not open.

DCDAMER_BUFER

-1604

The update data length (block length to be updated x
number of blocks to be updated) is too short.

The value specified for the update data length is outside
the range of values that can be specified.

DCDAMER_SEQER

-1605

The function dc_dam_read () for update processing
was not called.

DCDAMER_BNOER

-1606

The relative block number is invalid.

DCDAMER_NOMEM

-1607

The memory became insufficient.

DCDAMER_PARAM_ KEYNO

-1609

The value specified for keyno is smaller than 1.

DCDAMER_PARAM FLAGS

-1611

The value specified for £1lags is invalid.

DCDAMER_IOER

-1620

An output error occurred. (This value is returned only
when an unrecoverable DAM file is accessed.)

152

dc_dam_rewrite - Update a logical file block

Return value Return value Explanation
(numeric)

DCDAMER _JNLOV -1613 | The number of block updates exceeded the maximum
number of blocks that can be updated during one
transaction according to the DAM service definition.

DCDAMER_LHOLD -1621 | The file specified for damfd is in logical shutdown
state.

DCDAMER OHOLD -1622 | The file specified for dam£d is in shutdown state due to
an error.

DCDAMER _TMERR -1629 | An error occurred in the transaction service.

DCDAMER BUFOV -1641 | The update data length (block length to be updated x

number of blocks to be updated) is too long.

153

dc_dam_start - Start using an unrecoverable DAM file

dc_dam_start - Start using an unrecoverable DAM file

Format
B ANSIC, C++

#include <dcdam.h>
int dc_dam start (DCLONG flags)

B K&RC

#include <dcdam.h>
int dc_dam start (flags)
DCLONG flags;

Description

The function dc_dam_start () declares that an unrecoverable DAM file is used. Call
the function dc_dam_start () before the function dc_dam _open (). Call the
function dc_dam_start () for each UAP process.

When the function dc_dam_start () returns normally, the environment to access an
unrecoverable DAM file is established.

Arguments whose value is set in the UAP
B flags
Specify DCNOFLAGS.

Return values

Return value Return value Explanation
(numeric)
DC_OK 0 | Normal termination. Unrecoverable DAM files now
can be used.
DCDAMER_PROTO -1600 | The function dc_rpc_open () is not called.
DCDAMER_NOMEM -1607 | The memory became insufficient.
DCDAMER_PARAM FLAGS -1611 | The value specified for £1lags is invalid.
DCDAMER VERSION -1618 | The UAP is linked with a DAM library which is
inoperable with the current DAM service.
DCDAMER _STARTED -1647 | The function dc_dam_start () has already been
called.

154

dc_dam_status - Reference the status of a logical file

dc_dam_status - Reference the status of a logical file

Format

B ANSIC, C++

#include <dcdam.hs>
int dc_dam status (char *1fname, struct DC_DAMSTAT *stbuf,

int reserve, DCLONG flags)

B K&R C

#include <dcdam.h>
int dc_dam status (lfname, stbuf, reserve, flags)

char *fname;

struct DC_DAMSTAT *stbuf;

int reserve;

DCLONG flags;
Description

The function dc_dam_status () returns the current logical file status to structure
DC_DAMSTAT. The following values are returned:

Number of blocks in a logical file

Logical file block length

Physical file name corresponding to the logical file

Current logical file status (whether it is shut down)

Attribute of the logical file specified in the DAM service definition
Security attribute of the logical file specified in the DAM service definition

The functionde_dam_status () can be called before and after a logical file is opened
with the function dc_dam open ().

When referencing the status of a logical file, specify the logical file name.

Arguments whose values are set in the UAP

B 1fname

Specify a logical file name within eight bytes.

B stbuf

Specify the address of a structure DC_ DAMSTAT that receives the logical file status. The
logical file status set in the function dc_dam status () is returned in the structure.

155

dc_dam_status - Reference the status of a logical file

B phyfilno
Area used by the DAM service. Specify null character (0).
B flags

Specify DCNOFLAGS.

Argument whose value is returned from OpenTP1

B stbuf

The logical file status data is returned in the format of structure DC_DAMSTAT as
follows:

struct

DC_DAMSTAT ({

int st_block len;
int st_block num;
char st_file ph name([64];
char st _file stat;
char st_file def;
char st _file sec;
char st_filler 1;
char st _file inf;

}i

156

st _block len

The block length of a logical file is returned.

st_block num

The number of blocks in a logical file is returned.

st _file ph name

The physical file name corresponding to the logical file is returned.
st _file stat

The current logical file status is returned as follows:
DCDAM ST NOT HOLD: The logical file can be accessed.
DCDAM ST HOLD LOG: The logical file is logically shut down.
DCDAM ST HOLD OBS: The logical file is shut down with an error.
DCDAM ST HOLD REQ: A shutdown request is being made for the logical file.
st file def

The attribute of the logical file specified in the DAM service definition is returned
as follows:

DCDAM ST QUICK: DAM file ineligible for deferred update processing

dc_dam_status - Reference the status of a logical file

DCDAM ST DEFERRED: DAM file eligible for deferred update processing

DCDAM_ ST NORECOVER: Unrecoverable DAM file

DCDAM ST CACHELESS: Unrecoverable DAM file specified by a cache-less

access

st file sec

The security attribute of the logical file specified in the DAM service definition
is returned as follows:

DCDAM ST NON: Security is not specified.

DCDAM ST SEC: Security is specified.

st _filler 1

Reserved area 1 (A null character (0) is set.)

st _file inf

Reserved area 2 (The value -1 is set.)

Return values

Return value Return value Explanation
(numeric)

DC_OK 0 | The logical file status is set normally in the structure
DC_DAMSTAT.

DCDAMER _PROTO -1600 | The function dc_rpc_open () is not called.
N is specified for atomic_update in the user service
definition. (This value is returned only when a
recoverable DAM file is accessed.)
The function dc_dam_start () is not called. (This
value is returned only when an unrecoverable DAM file
is accessed.)

DCDAMER_UNDEF -1601 | The logical file name specified for 1fname is
undefined.

DCDAMER NOMEM -1607 | The memory became insufficient.

DCDAMER PARAM LFNAME -1610 | The logical file name specified for 1fname is invalid.

DCDAMER PARAM FLAGS -1611 | The value specified for £1ags is invalid.

DCDAMER PARAM ERROR -1612 | The value specified for the argument is invalid.

The value specified for stbuf is invalid.

157

dc_dam_status - Reference the status of a logical file

Return value Return value Explanation
(numeric)
No null character is set for reserve.

DCDAMER VERSION -1618 | The UAP is linked with a DAM library which is
inoperable with the current DAM service.

DCDAMER ACCESS -1628 | A DAM file whose status is to be referenced is
protected with the security facility. The UAP that called
the function dc_dam_status () has no access
permission.

DCDAMER NO_ACL -1646 | A DAM file whose status is to be referenced is

protected with the security facility. There is no ACL for
the corresponding file.

Note

When the function dc_dam_status () is called, the DAM service does lock control
to get data. So if the function dc_dam_status () is used too often, the throughput
may be degraded because of the lock release wait time. Therefore, reference the DAM
file status as little as possible while online.

158

dc_dam_write - Output a logical file block

dc_dam_write - Output a logical file block

Format
B ANSIC, C++

#include <dcdam.h>

int dc_dam write (int damfd, struct DC_DAMKEY *keyptr,
int keyno, char *bufadr, int bufsize,
DCLONG flags)

B K&RC

#include <dcdam.h>
int dc_dam write (damfd, keyptr, keyno, bufadr, bufsize,

flags)
int damfd;
struct DC_DAMKEY *keyptr;
int keyno;
char *bufadr;
int bufsize;
DCLONG flags;

Description

The function dc_dam_write () outputs a specified block. The block output timing is
given below.

¢ Forrecoverable DAM files

The updated data is stored in the part of shared memory that is allocated for DAM
service, and the actual file is updated when the transaction is committed. A DAM
file with deferred output specified is output asynchronously with the transaction
commitment.

¢ Unrecoverable DAM files
A DAM file is output when the function dc_dam write () returns.

When a request is made to output multiple blocks at a time and if even one of the
specified blocks causes an error, processing is stopped and an error is returned. The
blocks are not output in this case.

When outputting a logical file block, specify the file descriptor which is the return
value of the function dc_dam open ().

Arguments whose values are set in the UAP
B damfd
Specify the file descriptor of the file to which a block is output.

159

dc_dam_write - Output a logical file block

B keyptr

Specify the address of the structure (DAM key) that indicates the block output range.
For the structure, specify the block range with the first relative block number and the
last relative block number. The structure format is as shown below.

struct DC_DAMKEY {

int fstblkno;
int endblkno;

}i

160

¢ fstblkno
Specify the first relative block number of the block to be output.
* endblkno

Specify the last relative block number of the block to be output. If 0 is specified,
only the block of the relative block number specified for £stblkno is updated.

keyno

Specify the number of structures (number of structure arrays) to be set for keyptr.
bufadr

Specify the address of the update data.

bufsize

Specify the length of the output data. The length must be (block length to be output x
number of blocks to be output). You can specify a value in the range from 504 to
2147483647.

flags

Specify whether the function is to wait for the resource to be released from lock if a
lock error occurs.

DCDAM_WAIT: The function waits for the resource to be released from lock.

DCDAM NOWAIT: The function does not wait for the resource to be released from lock,
and returns with an error.

DCNOFLAGS: Processing is done according to the value specified for £1ags of the
function dc_dam open ().

If DCNOFLAGS is specified, the subsequent processing is as follows:

e IfpcpaM WAIT is specified in the function dc_dam_open (), the function waits
for the resource to be released from lock.

e IfDcDAaM NOWAIT is specified in the function dc_dam_open () or it is omitted,
the function returns with an error.

dc_dam_write - Output a logical file block

If the function dc_dam_open () in which the file descriptor is specified for damfd
specifies files-based lock as the type of lock, the value specified for this option is
meaningless.

Return values

Return value

Return value
(numeric)

Explanation

DC_OK

All blocks were output normally.

DCDAMER_PROTO

-1600

The function dc_rpc_open () is not called.

The function dc_dam_write () is called outside the
transaction range. (This value is returned only when a
recoverable DAM file is accessed.)

N is specified for atomic_update in the user service
definition. (This value is returned only when a
recoverable DAM file is accessed.)

The function dc_dam_start () is not called. (This
value is returned only when an unrecoverable DAM file
is accessed.)

The UAP is incorrectly linked as follows:

* The library (-1tdam) to be used for access to a
TAM file using a DAM service function is linked
incorrectly.

* The definition of the resource manager for
transaction control object files is incorrect.

DCDAMER_EXCER

-1602

A lock specification error occurred.

DCDAMER_BADF

-1603

The file descriptor specified for dam£d is not the one
which was acquired by opening the file normally, or the
specified file has not been defined.

DCDAMER_BUFER

-1604

The output data length (block length to be output x
number of blocks to be output) is too short.

The value specified for the output data length is outside
the range of values that can be specified.

DCDAMER_SEQER

-1605

The call sequence of functions is invalid.

DCDAMER_BNOER

-1606

The relative block number is invalid.

DCDAMER_NOMEM

-1607

The memory became insufficient.

DCDAMER_PARAM KEYNO

-1609

The value specified for keyno is smaller than 1.

DCDAMER_PARAM FLAGS

-1l611

The value specified for £1ags is invalid.

161

dc_dam_write - Output a logical file block

Return value Return value Explanation
(numeric)
DCDAMER JNLOV -1613 | The number of block updates exceeded the maximum

number of blocks that can be updated during one
transaction according to the DAM service definition.
(Returned only when a recoverable DAM file is
accessed).

DCDAMER _IOER -1620 | An output error occurred. (This value is returned only
when an unrecoverable DAM file is accessed.)

DCDAMER_LHOLD -1621 | The file specified for damfd is in logical shutdown
state.

DCDAMER _OHOLD -1622 | The file specified for dam£d is in shutdown state due to
an error.

DCDAMER ACCESS -1628 | A DAM file to be accessed is protected with the

security facility. The UAP that called the function
dc_dam_write () has no access permission.

DCDAMER_TMERR -1629 | Anerroroccurred in the transaction service. (This value
is returned only when a recoverable DAM file is
accessed.)

DCDAMER BUFOV -1641 | The output data length (block length to be output x

number of blocks to be output) is too long.

DCDAMER _DLOCK -1642 | A deadlock occurred.

DCDAMER _TIMOUT -1643 | The resource could not be acquired because a timeout
occurred (the wait time specified in the lock service
definition was exceeded).

DCDAMER _LCKOV -1645 | The number of lock requests exceeds the specified
maximum number of concurrent lock requests.

DCDAMER _ACSOV -1648 | The maximum number of blocks that can be accessed is
exceeded. (This value is returned only when an
unrecoverable DAM file is accessed.)

Note
Do the following if the values DCDAMER JNLOV and DCDAMER ACSOV are returned:

¢ Set the number of output blocks to the same or less than the maximum number of
blocks that can be updated.

¢ Ifthere is a block that has not been updated with the function
dc_dam rewrite (), update it before calling the function dc_dam write ().

162

IST service (dc_ist_~)

IST service (dc_ist_~)

This section explains functions that access an internode shared table. The syntax of the
following functions are explained:

* dc_ist close - Close an internode shared table

* dc_ist open - Open an internode shared table

* dc_ist read - Input an internode shared table record

* dc_ist write - Output an internode shared table record

The functions for IST service (dc_ist ~) can be used only in UAPs of TP1/Server
Base. They cannot be used in UAPs of TP1/LiNK.

163

dc_ist_close - Close an internode shared table

dc_ist_close - Close an internode shared table

Format
B ANSIC, C++

#include <dcist.h>
int dc_ist close (int istid, DCLONG flags)

B K&RC

#include <dcist.h>

int dc_ist close (istid, flags)
int istid;

DCLONG flags;

Description
The function dc_ist close () closes a specified internode shared table.
Arguments whose values are set in the UAP
W istid
Specify the table descriptor of the internode shared table to be closed.
B flags
Specify DCNOFLAGS.
Return values

Return value Return value Explanation
(numeric)
DC_OK 0 | The internode shared table was closed normally.
DCISTER PROTO -3800 | The call sequence of functions which access the

internode shared table is invalid.

DCISTER BADID -3803 | The table descriptor specified for istid is not the one
which was acquired by opening the table normally.

The internode shared table is not open.

DCISTER PARAM FLAGS -3811 | The value specified for £1ags is invalid.

164

dc_ist_open - Open an internode shared table

dc_ist_open - Open an internode shared table

Format
B ANSIC, C++

#include <dcist.hs
int dc_ist open (char *istname, DCLONG flags)

B K&RC

#include <dcist.hs>

int dc_ist open (istname, flags)
char *istname;

DCLONG flags;

Description

The function dc_ist open () opens a specified internode shared table. When an
internode shared table is opened normally, a table descriptor is returned.

Arguments whose values are set in the UAP
B istname
Specify the internode shared table name to be opened within eight bytes.
B flags
Specify DCNOFLAGS.
Return values

Return value Return value Explanation
(numeric)
0 or positive integer 0 or positive integer indicates a table descriptor.
DCISTER PROTO -3800 | The call sequence of functions which access the

internode shared table is invalid.

DCISTER UNDEF -3801 | Theinternode shared table name specified for istname
is undefined.

DCISTER NOMEM -3807 | The memory became insufficient.

DCISTER OPENED -3808 | The name of an already open internode shared table
was specified for istname.

DCISTER PARAM TBLNAME -3810 | The length of the value specified for the internode
shared table name is invalid.

165

dc_ist_open - Open an internode shared table

Return value Return value Explanation
(numeric)
DCISTER PARAM FLAGS -3811 | The value specified for £1ags is invalid.

166

dc_ist_read - Input an internode shared table record

dc_ist_read - Input an internode shared table record

Format

B ANSIC, C++

#include <dcist.hs
int dc_ist read (int istid, struct DC_ISTKEY *keyptr,

int keyno, char *bufadr, int bufsize,
DCLONG flags)

B K&RC

#include <dcist.h>
int dc_ist read (istid, keyptr, keyno, bufadr, bufsize,

flags)

int istid;

struct DC_ISTKEY *keyptr;
int keyno;

char *bufadr;

int bufsize;

DCLONG flags;

Description

The function dc_ist_read () inputs a record in a specified range from a specified
internode shared table. If multiple records are collectively specified and an error
occurs with any of the specified records, the function dc_ist read() returns with
an error without inputting the records to the input buffer.

When inputting an internode shared table record, specify the table descriptor which is
the return value of the function dc_ist open().

Arguments whose values are set in the UAP

istid
Specify the table descriptor of the internode shared table to be accessed.

keyptr

Specify the address of the structure (IST key) indicating the range of the relative record
numbers of the record to be referenced. For the structure, specify the record range with
the first and last relative block numbers. The structure formats are as follows:

struct

DC_ISTKEY
int fstrecno;
int endrecno;

}i

* fstrecno

167

dc_ist_read - Input an internode shared table record

Specify the first relative record number of the record to be accessed.

® endrecno

Specify the last relative record number of the record to be accessed. If 0 is
specified, only the record with the relative record number specified with
fstrecno is input.

B keyno

Specify the number of structures (number of arrays in the structure) to be specified for

keyptr.
B bufadr

Specify the input buffer address.

B bufsize

Specify the input buffer length. The value must be (input record length x number of
input records) or greater.

B flags

Specify DCNOFLAGS.

Return values

Return value Return value Explanation
(numeric)

DC_OK 0 | All specified records are normally input.

DCISTER_PROTO -3800 | The call sequence of functions which access the
internode shared table is invalid.

DCISTER BADID -3803 | The table descriptor specified for istid is not the one
which was acquired by opening the table normally.
The internode shared table is not open.

DCISTER BUFER -3804 | The input buffer length specified for bufsize is
insufficient to input all records.

DCISTER RNOER -3806 | The relative record number is invalid.

DCISTER_NOMEM -3807 | The memory became insufficient.

DCISTER_PARAM KEYNO -3809 | The value specified for keyno is less than 1.

DCISTER_PARAM FLAGS -3811 | The value specified for £1lags is invalid.

168

dc_ist_write - Output an internode shared table record

dc_ist_write - Output an internode shared table record

Format
B ANSIC, C++

#include <dcist.h>

int dc_ist write (int istid, struct DC_ISTKEY *keyptr,
int keyno, char *bufadr, int bufsize,
DCLONG flags)

B K&RC

#include <dcist.h>
int dc_ist write (istid, keyptr, keyno, bufadr, bufsize,

flags)

int istid;

struct DC_ISTKEY *keyptr;
int keyno;

char *bufadr;

int bufsize;

DCLONG flags;

Description

The function dc_ist write () outputs a record in a specified range to an internode
shared table. If multiple records are collectively specified and an error occurs with any
of the specified records, the function dc_ist write () returns with an error without
outputting the records to the output buffer.

When the function dc_ist write () terminates normally, the contents of the record
at the local node are updated. The contents of internode shared tables at other nodes
are updated with a certain time interval after this function returns normally.

When outputting an internode shared table record, specify the table descriptor which
is the return value of the function dc_ist open().

Arguments whose values are set in the UAP
B istid
Specify the table descriptor of the internode shared table to be accessed.
B keyptr

Specify the address of the structure (IST key) indicating the range of the relative record
numbers of the record to be output. For the structure, specify the record range with the
first and last relative block numbers. The structure formats are as follows:

169

dc_ist_write - Output an internode shared table record

struct DC_ISTKEY {
int fstrecno;
int endrecno;
i
* fstrecno
Specify the first relative record number of the record to be accessed.
®* endrecno
Specify the last relative record number of the record to be accessed. If 0 is
specified, only the record with the relative record number specified with
fstrecno is input.
B keyno
Specify the number of structures (number of arrays in the structure) to be specified for
keyptr.
B bufadr
Specify the address of the buffer containing update data to be output.
B bufsize
Specify the output buffer length. The value must be (output record length x number of
output records).
B flags

Specify DCNOFLAGS.

Return values

Return value Return value Explanation
(numeric)

DC_OK 0 | All specified records are normally output.

DCISTER_PROTO -3800 | The call sequence of functions which access the
internode shared table is invalid.

DCISTER BADID -3803 | The table descriptor specified for istid is not the one
which was acquired by opening the table normally.
The internode shared table is not open.

DCISTER BUFER -3804 | The output buffer length specified for bufsize is
insufficient to output all records.

DCISTER RNOER -3806 | The relative record number is invalid.

DCISTER_NOMEM -3807 | The memory became insufficient.

170

dc_ist_write - Output an internode shared table record

Return value Return value Explanation
(numeric)
DCISTER PARAM KEYNO -3809 | The value specified for keyno is less than 1.
DCISTER PARAM FLAGS -3811 | The value specified for £1ags is invalid.
DCISTER BUFOV -3841 | The output buffer length is greater than the total length
of records to be output.

171

User journal acquisition (dc_jnl_~)

User journal acquisition (dc_jnl_~)

This section gives the syntax and other information of the following function which is
used for acquiring user journals:

* dc_jnl ujput - Acquire a user journal

The function for user journal acquisition (dc_jnl ~) can be used only in UAPs of
TP1/Server Base. They cannot be used in UAPs of TP1/LiNK.

172

dc_jnl_ujput - Acquire a user journal

dc_jnl_ujput - Acquire a user journal

Format
B ANSIC, C++

#include <dcjnl.h>
int dc_jnl ujput (char *data, DCULONG dsize,
DCLONG ujcode, DCLONG flags)

B K&R C

#include <dcjnl.h>

int dc_jnl _ujput (data, dsize, ujcode, flags)
char *data;

DCULONG dsize;

DCLONG ujcode;
DCLONG flags;
Description

The function dec_jnl ujput () acquires a user journal (UJ), which is UAP historical
information, into the system journal file (system jnl file). The unit of UJ
acquired by calling the function dc_jnl ujput () once is called an UJ record.

A user journal is not output to the system journal file immediately after the function
dc_jnl ujput () is called. The UJ record is output to the system journal file when
the journal buffer becomes full or when the synchronization point at which the
transaction processing terminated normally is acquired.

The functiondc_jnl ujput () canbe called after the function dc_rpc_open () has
been called and before the function dc_rpc_close () is called. Even if an error
occurs in the transaction processing that called the functiondc_jnl ujput (), the UJ
record that has already been output cannot be invalidated through rollback processing
(partial recovery). Even when rollback processing is executed for the transaction
processing that called the function dc_jnl ujput (), the UJ record is output to the
system journal file.

Arguments whose values are set in the UAP

B data

Specify the UAP historical information to be acquired. Data valid as UAP historical
information must be as long as specified for dsize.

B dsize

Specify the length of the UAP historical information to be acquired. The specified
length must be in the range from 1 to (the value specified for the jnl max datasize

173

dc_jnl_ujput - Acquire a user journal

operand of the system journal file service definition at the acquisition destination - 8).
B ujcode

Specify the UJ code as a value from 0 to 255.
B flags

Using one of the following values, specify whether to output the UJ record to the
system journal file at acquisition of the UJ record.

DCJINL FLUSH

Output the UJ record to the system journal file at acquisition of the UJ record. If
the UJ record is acquired inside the transaction, this setting is ignored.

DCNOFLAGS

Do not output the UJ record to the system journal file at acquisition of the UJ
record.

Return values

Return value Return value Explanation
(numeric)
DC_OK 0 | Normal termination.
DCJNLER PARAM -1101 | The parameter format is invalid.
DCJINLER _SHORT -1102 | The value specified for the length of user journal

(dsize value) is O or less.

DCJINLER _LONG -1103 | The value specified for the length of user journal
(dsize value) exceeds the limit.

DCJNLER_PROTO -1105 | Thedc_rpc_open () function has not been called. Or,
thedc jnl ujput () function cannot be used because
the execution environment of the applicable system is
in journal fileless mode.

Note

A Ul record that is outside the transaction is output to the system journal file when the
journal buffer becomes full or when a transaction of another application terminates
normally (when the transaction processing is committed). To acquire the UJ record
using an application that does not generate transactions, call the function

dc_jnl ujput () in which DCINL_FLUSH is set for £ lags at the appropriate timing.

174

Lock for resources (dc_Ick_~)

Lock for resources (dc_Ick_~)

This section gives the syntax and other information of the following functions which
are used for locking arbitrary user files:

* dc_1lck_get - Enable locking of a resource
* dc 1lck release all - Release all the resources from lock
* dc 1lck release byname - Release resource from lock specified by name

The functions for lock for resources (dc_1ck ~) can be used only in UAPs of TP1/
Server Base. They cannot be used in UAPs of TP1/LiNK.

175

dc_Ick_get - Enable locking of a resource

dc_Ick_get - Enable locking of a resource

Format
B ANSIC, C++

#include <dclck.h>
int dc_lck get (char *name, DCLONG lockmode,
DCLONG ownerflag, DCLONG flags)

B K&R C

#include <dclck.h>
int dc_lck get (name, lockmode, ownerflag, flags)

char *name ;
DCLONG lockmode;
DCLONG ownerflag;
DCLONG flags;
Description

The function dc_1ck_get () specifies lock for resources to be used by UAPs. Lock
is managed in global transactions which are managed by the OpenTP1 transaction
manager.

The lock specified by the functiondc_1ck get () isreleased by lock release function
(dc_1ck release all() ordc lck release byname ()). The lock is also
released when the synchronization point of the global transaction that called the
function dec_1ck_get () is acquired.

Arguments whose values are set in the UAP
B name

Specify the name of the resource for which lock is to be specified. The name can be
specified with up to 16-byte alphanumeric characters. The OpenTP1 lock service
manages the lock on the basis of the specified resource name. If a value less than 16
bytes is specified and a null character appears, the value before the null character is
regarded as the resource name. If a value exceeding 16 bytes is specified, the value up
to 16 bytes is regarded as the resource name. The excess bytes are truncated.

The lock service does not check the contents of the character string. Specify a logically
correct name. If a value other than alphanumeric characters is used for a resource
name, the deadlock information, the timeout information, and the 1ckls command
might not be displayed normally.

B lockmode
Specify a lock mode. The lock mode must be DCLCK_PR or DCLCK_EX. They cannot

176

dc_Ick_get - Enable locking of a resource

be specified at the same time.
DCLCK_PR

The resource is referenced. Other UAPs are permitted to reference the resource
but are not permitted to update it.

DCLCK_EX

The resource is updated. Other UAPs are not permitted to reference or update the
resource.

ownerflag
Specify DCLCK_OWNER MIGRATE
B flags
Specify a flag concerning lock for the resource. The following values can be specified:
DCLCK_WAIT

If a UAP competes for the resource with another UAP, the UAP waits until the
resource is released. If this flag is not set when UAPs compete for the resource,
an error is returned.

DCLCK TEST

Specify this flag to check whether the resource can be used. Note the following
even if the function dc_1lck_get () terminates normally when this flag is set:

Lock is not enabled for the resource specified for name.

DCNOFLAGS
No flag is set.
Return values
Return value Return value Explanation
(numeric)

DC_OK 0 | Normal termination.

DCLCKER_PARAM -401 | The value specified for the argument is invalid.

DCLCKER WAIT -450 | Another UAP is using the resource specified for name.

DCLCKER_DLOCK -452 | A deadlock occurred.

DCLCKER_TIMOUT -453 | The resource could not be acquired because a timeout
occurred (the wait time specified in the OpenTP1 lock
service definition was exceeded).

DCLCKER MEMORY -454 | The table for lock is insufficient.

177

dc_Ick_get - Enable locking of a resource

Return value Return value Explanation
(numeric)
DCLCKER _OUTOFTRN -455 | The specification was made by a UAP which was not
operating as a transaction.
DCLCKER_VERSION -457 | The OpenTP1 library version does not match the lock

service version.

178

dc_Ick_release_all - Release all the resources from lock

dc_Ick_release_all - Release all the resources from lock

Format
B ANSIC, C++

#include <dclck.hs>
int dc_lck release_all (DCLONG ownerflag, DCLONG flags)

B K&RC

#include <dclck.hs>
int dc_lck release_all (ownerflag, flags)

DCLONG ownerflag;
DCLONG flags;
Description

The function dc_1ck release all () releases all the resources from lock which
was specified in the function dc_1ck_get (). Call the function

dc_1lck release all () when releasing the resources from lock before the
synchronization point is acquired.

When the global transaction with lock specified terminates, the OpenTP1 lock service
automatically releases the resources from lock. In this case, there is no need to specify
release from lock in the UAP.

Arguments whose values are set in the UAP
B ownerflag
Specify DCLCK_OWNER MIGRATE.
B flags
Specify DCNOFLAGS.
Return values

Return value Return value Explanation
(numeric)

DC_OK 0 | Normal termination.

DCLCKER _PARAM -401 | The value specified for the argument is invalid.

DCLCKER_NOTHING -456 | The resource was not acquired for the transaction that
called this function.

DCLCKER_OUTOFTRN -455 | The function was called from a UAP which was not
operating as a transaction.

179

dc_Ick_release_all - Release all the resources from lock

Return value Return value Explanation
(numeric)
DCLCKER_VERSION -457 | The OpenTP1 library version does not match the lock
service version.

180

dc_Ick_release_byname - Release resource from lock specified by name

dc_Ick_release_byname - Release resource from lock specified by
name

Format
B ANSIC, C++

#include <dclck.hs
int dc_lck release byname (char *name, DCLONG ownerflag,
DCLONG flags)

B K&R C

#include <dclck.h>
int dc_lck release byname (name, ownerflag, flags)

char *name ;

DCLONG ownerflag;

DCLONG flags;
Description

The function dc_1ck_release byname () specifies the name of a resource for
which the function dc_1ck_get () specified lock, and releases the resource from the
lock. Call the function dc_1ck_release byname () when releasing the resource
from lock before the synchronization point is acquired.

When the global transaction with lock specified terminates, the OpenTP1 lock service
automatically releases the resource from lock. In this case, there is no need to specify
release from lock in the UAP.

Arguments whose values are set in the UAP
B name

Specify the name of the resource to be released from lock. The resource name must be
identical to the name specified in the function dc_1ck get ().

B ownerflag
Specify DCLCK_OWNER MIGRATE.
B flags

Specify DCNOFLAGS.

181

dc_Ick_release_byname - Release resource from lock specified by name

Return values

Return value Return value Explanation
(numeric)
DC_OK 0 | Normal termination.
DCLCKER_PARAM -401 | The value specified for the argument is invalid.
DCLCKER_NOTHING -456 | The resource that corresponds to the resource name
specified for release from lock does not exist.
DCLCKER_OUTOFTRN -455 | The function was called from a UAP which was not
operating as a transaction.
DCLCKER_VERSION -457 | The OpenTP1 library version does not match the lock

service version.

182

Audit log output (dc_log_audit_~)

Audit log output (dc_log_audit_~)

This section gives the syntax and other information of the following functions which
are used to output audit log data from a UAP:

* dc log audit print - Output audit log data

183

dc_log_audit_print - output audit log data

dc_log_audit_print - output audit log data

Format

B ANSIC, C++

#include <dclog.h>
int dc_log audit print (char *msgid,char *compid,DCLONG ctgry,

DCLONG result,DCLONG op,char *msg,DCLONG flags)

B K&R C

#include <dclog.h>
int dc_log audit_print (msgid, compid, ctgry, result,op,msg, flags)

char *msgid;
char *compid;
DCLONG ctgry;
DCLONG result;
DCLONG op;
char *msg;
DCLONG flags;
Description

The function dc_log_audit print () outputs to the audit log file the following
information items, in addition to the information specified as arguments: header
information, serial number, date and time, relevant program name, relevant process ID,
location, subject identification information, object information, object location
information, request sender host, and location identification information. The relevant
program means the program that generated the audit log data, which is OpenTP1. If an
error occurs during output of audit log data, an error message is sent to the standard
error output and syslog.

In OpenTP1, numbers from 34000 to 34999 are assigned for message IDs used by the
function dc_log audit print (). Ifyou create a UAP, make sure that the message
IDs output by the UAP are in the range from 34000 to 34999.

For details on the items output as audit log data, see the OpenTP1 Programming
Guide.

Arguments whose values are set in the UAP

B msgid

184

Specify an identifier uniquely assigned to each audit log entry (message ID) in the
format KFcannnnn-x (11 characters) and follow the identifier with a null character.
For nnnnn, specify a five-digit serial number in the range from 34000 to 34999. For x,
specify E, W, or I as the message type according to the type of information provided by
the audit log entry to be output.

dc_log_audit_print - output audit log data

B compid

Specify any value that identifies the UAP that called the function

dc_log audit print () (calling program ID). The value you set must be two
numeric characters, alphabetic characters, or symbols followed by a null character. In
the audit log, the format is *44, with an asterisk (*) prefixed (44: character string
specified in compid).

B ctgry
Specify one of the following values as the audit event type:
DCLOG_CTG_STARTSTOP: Audit event related to a start or stop operation
DCLOG_CTG AUTH: Audit event related to identification or authentication
DCLOG_CTG ACCESS: Audit event related to access control
DCLOG_CTG CONFIG: Audit event related to the configuration definition
DCLOG_CTG_FAIL: Audit event related to failures
DCLOG_CTG_LINK: Audit event related to the linkage status
DCLOG_CTG_EXTERNAL: Audit event related to external services
DCLOG_CTG CONTENT: Audit event related to access to important information
DCLOG_CTG MAINTAIN: Audit event related to maintenance
DCLOG_CTG_ANORMALY: Audit event related to anomalies
DCLOG_CTG_MANAGE: Audit event related to management operation
For details on audit event types, see the manual OpenTPI Operation.

B result

Set one of the following values as the audit event result to be included in the audit log
data:

DCLOG_RES_SUCCESS: Successful event

DCLOG_RES_FAIL: Failed event

DCLOG_RES_OCCUR: Event that cannot be categorized as success or failure
B op

Specify the value to be included as operation information in the audit log data. Make
sure that you specify one of the following reserved words according to the audit event
type specified by ctgry. If you specify NULL, this item will not be included in the
audit log data.

185

dc_log_audit_print - output audit log data

Table 2-1: Correspondence between audit event types and reserved words

Audit event type Reserved word Meaning

DCLOG_CTG_STARTSTOP
(start or stop operation)

DCLOG_OP_ START

Start or activation

DCLOG_OP_STOP

Termination or stop

DCLOG_CTG_AUTH DCLOG_OP_LOGIN Login
(identification or authentication)
DCLOG_OP_ LOGOUT Logout
DCLOG_OP_ LOGON Logon
DCLOG_OP_LOGOFF Logoff
DCLOG_OP_DISABLE Account disabled
DCLOG_CTG_ACCESS DCLOG_OP_ENFORCE Enforcement
(access control)
DCLOG_CTG_CONFIG DCLOG_OP_REFER Reference
(configuration definition) -
DCLOG_OP_ ADD Addition
DCLOG_OP_UPDATE Updating
DCLOG_OP_ DELETE Deletion
DCLOG_CTG_FAIL (failures) DCLOG_OP_OCCUR Occurrence

DCLOG_CTG LINK
(linkage status)

DCLOG_OP_UP

Linkage active

DCLOG_OP_DOWN

Linkage inactive

DCLOG_CTG_EXTERNAL DCLOG_OP_REQ Request
(external services)
DCLOG_OP RES Response
DCLOG_OP_SEND Sending
DCLOG_OP_RECV Receiving
DCLOG_CTG_CONTENT DCLOG_OP_REFER Reference
(access to important information) —
DCLOG_OP_ADD Addition
DCLOG_OP_UPDATE Updating
DCLOG_OP_ DELETE Deletion

186

dc_log_audit_print - output audit log data

Audit event type Reserved word Meaning
DCLOG_CTG_MAINTAIN DCLOG_OP_INSTALL Installation
(maintenance) - -

DCLOG_OP_UNINSTALL Uninstallation
DCLOG_OP_UPDATE Updating
DCLOG_OP_BACKUP Backup

DCLOG_OP_MAINTAIN

Maintenance work

DCLOG_CTG_ANORMALY
(anomalies)

DCLOG_OP OCCUR

Occurrence

DCLOG_CTG_MANAGE
(management operation)

DCLOG_OP_INVOKE

Invocation (the administrator)

DCLOG_OP_NOTIFY

Notification (the administrator)

B msg

Specify the address of the area that contains the freely specified description to be
included in the audit log data. If you specify NULL, this item will not be included in

the audit log data.

You can use numeric characters, alphabetic characters, symbols, spaces, double
quotation marks ("), and commas (,). The description can have a maximum of 1024
characters, and must be followed by a null character. The null terminator character is
not included in the number of characters in the description.

In the log, the specified description is enclosed in double quotation marks (). If a
double quotation mark (") is included in the description, the double quotation mark is
prefixed by another double quotation mark.

B flags

Specify DCNOFLAGS.

187

dc_log_audit_print - output audit log data

Return value

Return value

Return value
(numeric)

Explanation

DCLOG_AUDIT OFF

Output of audit log data has been disabled. Possible
causes are as follows:

* The log_audit_ out operand in the log service
definition has been set to N or has not been
specified.

* The log audit_ suppress operand has been set
to v in the log service definition.

The message ID specified in the msgid argument has
not been specified in the 1og_audit_message
operand in the log service definition.

An invalid message has been specified.

DC_OK

The function terminated normally.

DCLOGER_PARAM ARGS

-1900

The value specified as an argument is incorrect.

DCLOGER_DEFFILE

-1904

Definition analysis failed.

DCLOGER_PROTO

-1999

The dc_rpc_open function was not issued.

DCLOGER_FATAL

-1997

An error other than the above occurred.

188

Output message log (dc_log~)

Output message log (dc_log~)

This section gives the syntax and other information of the following function which is
used for outputting message log from the UAP:

* dc_logprint - Output message log

The function for output message log (dc_log ~) can be used in UAPs of both TP1/
Server Base and TP1/LiNK.

189

dc_logprint - Output message log

dc_logprint - Output message log

Format

B ANSIC, C++

#include <dclog.h>
int dc_logprint (char *msgid, char *pgm_id, char *string,

char *info, DCLONG color, DCLONG flags)

B K&R C

#include <

dclog.h>

int dc_logprint (msgid, pgm_id, string, info, color,
flags)

char *msgid;

char *pgm_id;

char *string;

char *info;

DCLONG color;

DCLONG flags;

Description

The function dc_logprint () outputs a character string specified for an argument to
the message log file. Before the output, the function dc_logprint () adds the
following information to the character string through OpenTP1:

Line header

OpenTP1 ID

Date and time

Request source node name
Request source program ID
Message ID

OpenTP1 assigns a number from 05000 to 06999 to a message ID used in the function
dc_logprint (). Assign a number from 05000 to 06999 to a message ID output from
a UAP.

Even if an error occurs, DC_OK might be returned. Consequently, a message log might

be

missing. The missing message log can be identified by checking the message log

serial numbers.

If the function dc_logprint () is called more than once from one process, the
sequence of output to the message log file is ensured. However, if the function
dc_logprint () is called from each of multiple processes, the message logs might

190

dc_logprint - Output message log

not be output to the message log file in the issue sequence.

If a communication error (DCLOGER_COMM) or a log service inactive error
(DCLOGER_NOT UP) occurs, the message issued from the UAP is edited in the UAP
process and is output to the standard error output file. Either of the following codes
which indicate the causes of errors is added to the end of the message:

* El

Indicates that the message log could not be output to the message log file because
the log service was not activated.

* E2

Indicates that the message log could not be output to the message log file due to
a communication error.

Examples

KFCA05201-I SPP1l: A service request was received. (E1)
KFCA05410-I SPP1l: Updating starts. (E2)

If an error other than E1 or E2 is detected, OpenTP1 assigns the message ID number
specified in the function dc_logprint () to a message log indicating the error cause.
Then, it provides the log to the standard error.

Arguments whose values are set in the UAP
B msgid

Specify the message ID to be assigned to each message log. The message ID must be
in the KFCAn1n2n3n4n5-x format (11 characters) and end with a null character.
Specify a value from 05000 to 06999 for the serial number (n1n2n3n4n5) output from
the UAP.

B pgm id

Specify a user-selected value (request source program ID) for identifying the UAP that
called the function dc_logprint (). The value must comprise two alphanumeric
characters and end with a null character.

B string

Specify a character string to be output as a message log to the message log file. The
character string can be specified with up to 222 characters. The character string must
end with a null character.

B info

Specify NULL.

191

dc_logprint - Output message log

B color

Specify the display color of the message log specified in the function dc_ logprint
() when the message log is output to the NETM operation support terminal. The
following colors are available:

: Green
:Red

: White

: Blue

: Purple

: Sky blue
: Yellow

N N U Bk W N =

If a value other than the above or a null character is specified, green is assumed to be
specified.

B flags
Specify DCNOFLAGS.
Return values

Return value Return value Explanation
(numeric)
DC_OK 0 | Normal termination.
DCLOGER_PARAM ARGS -1900 | The value specified for the argument is invalid.
DCLOGER_COMM -1901 | A communication error occurred or the function

dc_rpc_open () was not issued.

DCLOGER_MEMORY -1902 | The memory became insufficient.
DCLOGER_DEFFILE -1904 | The system definition is invalid.

DCLOGER_NOT_UP -1905 | The log service is not active.

DCLOGER HEADER -1906 | An error occurred when the log service acquired the

information to be added to the message log.

Note

When a large log is output, return of the function dc_logprint may be delayed. For
example, when the volume of output messages greatly increases due to the occurrence
of an error, the transaction processing time increases. Note that this may cause a
slowdown.

192

Message exchange processing (dc_mcf_~)

Message exchange processing (dc_mcf_~)

This section gives the syntax and other information of the following functions which
are used for communication in message exchange configuration:

dc_mcf adltap: Delete an application timer start request

dc_mcf_ap info: Report the application information

dc_mcf ap info uoc: Report the application information to user exit routines
dc_mcf close: Close the MCF environment

dc_mcf commit: Commit an MHP

dc_mcf contend: Terminate continuous-inquiry-response processing

dc_mcf execap: Activate an application program

dc_mcf mainloop: Start an MHP service

dc_mcf open: Open the MCF environment

dc_mcf receive: Receive a message
dc_mcf recvsync: Receive a synchronous message#
dc_mcf reply: Send a response message”

dc_mcf resend: Resend a message#

dc_mcf rollback: Enable MHP rollback
dc_mcf send: Send a message#
dc_mcf sendrecv: Exchange a synchronous message#

dc_mcf sendsync: Send a synchronous message”

dc_mcf tactcn: Establish a connection”

dc_mcf_tactle: Release a logical terminal from shutdown status”

dc_mcf tdctcn: Release connection”

dc_mcf tdctle: Shut down a logical terminal”
dc_mcf tdlgle: Delete a logical terminal's output queue
dc_mcf tempget: Accept temporary-stored data

dc_mcf tempput: Update temporary-stored data

193

Message exchange processing (dc_mcf_~)

* dc mcf timer cancel: Cancel user timer monitoring

* dc mcf timer set: Setuser timer monitoring

* dc _mcf tlscn: Acquire a connection status”

* dc_mcf tlscom: Acquire the status of MCF communication services

* dc mcf tlsle: Acquire alogical terminal status”
* dc _mcf tlsln: Acquire the acceptance status for a server-type connection
establishment request#

* dc _mcf tofln: Stop accepting server-type connection establishment requests#

* dc _mcf tonln: Start accepting server-type connection establishment requests#
#: For details, see the applicable OpenTP1 Protocol manual.

The functions for message exchange processing (dc_mcf ~) can be used only in
UAPs of TP1/Server Base. They cannot be used in UAPs of TP1/LiNK.

194

dc_mcf_adltap - Delete an application timer start request

dc_mcf_adltap - Delete an application timer start request

Format
B ANSIC, C++

#include <dcmcf.h>

int dc_mcf adltap (DCLONG action, dcmcf adltapopt *apopt,

char *resv0l, DCLONG *resv02,
char *resv03, char *resv04)

B K&RC

#include <dcmcf.hs>

int dc_mcf adltap (action, apopt, resv0l, resv02, resv03, resv04)
DCLONG action;
dcmcf adltapopt *apopt ;
char *resv0l;
DCLONG *resv02;
char *resv03;
char *resv04;
Description

The function dc_mcf adltap () deletes a specified application timer start request
and cancels startup of the application. Note that this function cannot delete application

timer start requests of the ans and cont types.
Arguments whose values are set in the UAP

B action

Specify DCMCFAP to indicate that an application name is to be specified.

B apopt

Setin a demcf adltapopt structure the connection information that is to be the

subject of this function's processing.

The following shows the format of the structure:

typedef struct ({

DCLONG mcfid;

char resv01l [4] ;
char idnam([9] ;
char resv02[7];
char resv03[112];

. . Application start
process identifier
. . Reserved
. . Application name
. Reserved
. Reserved

195

dc_mcf_adltap - Delete an application timer start request

char resv04 [376] ; .. .Reserved
} demcf adltapopt;

* mcfid

Specify the application start process identifier of the application start service that
has the target application that is to be processed. The permitted value range is
from 1 to 239.

¢ resv0l
Fill the area with null characters.
® ijdnam

Specify the name of the application whose start is to be canceled. The application
name must be specified as a maximum of 8 bytes of characters and must end with
the null character.

* resv02, resv03, resv04
Fill the areas with null characters.
B resv0l, resv02, resv03, resv04
Specify NULL.
Return values

Return value Return value Explanation
(numeric)
DCMCFRTN_ 00000 0 | Normal termination.
DCMCFRTN_ 71001 -12001 | The dc_mcf_adltap () function cannot be accepted because the

MCEF is under start processing.

DCMCFRTN_71002 -12002 | The dc_mcf_adltap () function cannot be accepted because the
MCEF is under termination processing.

DCMCFRTN_71004 -12004 | A memory shortage occurred during dc_mcf_adltap () function
processing.

DCMCFRTN_ 71005 -12005 | A communication error occurred. For the cause, see the message log
file.

DCMCFRTN 71006 -12006 | An internal error occurred. For the cause, see the message log file.

DCMCFRTN_ 71007 -12007 | The specified application name has not been registered.

No timer start request has been issued for the specified application
name.

196

dc_mcf_adltap - Delete an application timer start request

Return value Return value Explanation
(numeric)
The specified application name belongs to an application whose type
is inquiry-response or continuous-inquiry-response.

DCMCFRTN_ 71009 -12009 | Thedc_mcf adltap () function is not supported by the applicable
application start process.

DCMCFRTN_71010 -12010 | Although the request to delete the specified application timer start
request was issued, the request was not accepted. For the cause, see
the message log file.

DCMCFRTN 72050 -13050 | DCMCFAP is not specified in action.

An unsupported flag is set in action.

DCMCFRTN 72051 -13051 | NULL is set in apopt.

DCMCFRTN_72052 -13052 | NULL is not set in resvo01l.

DCMCFRTN_72053 -13053 | NULL is not set in resv02.

DCMCFRTN 72054 -13054 | NULL is not set in resv03.

DCMCFRTN 72055 -13055 | NULL is not set in resvo04.

DCMCFRTN_ 72061 -13061 | A value of 0 or smaller or of 240 or greater is specified for mc£id in
dcmcf_adltapopt.

DCMCFRTN_ 72062 -13062 | resv0lindcmcf adltapopt is not filled with null characters.

DCMCFRTN 72063 -13063 | idnamin demcf adltapopt begins with the null character.

DCMCFRTN 72064 -13064 | resv02indcmcf_adltapopt is not filled with null characters.

DCMCFRTN 72065 -13065 | resv03 indcmcf_adltapopt is not filled with null characters.

DCMCFRTN 72067 -13067 | resv04 in decmcf_adltapopt is not filled with null characters.

DCMCFRTN_ 72073 -13073 | The character string set in idnam in demcf_adltapopt is 9 bytes
or more in length.

DCMCFRTN_72074 -13074 | The character string set in idnam in demcf_adltapopt contains an

invalid character.

197

dc_mcf_ap_info - Report the application information

dc_mcf_ap_info - Report the application information

Format
B ANSIC, C++

#include <dcmcf.h>

int dc_mcf ap info(DCLONG flags, char *mcfid, char *apname,
struct DC_MCFAPINFO *apinfo,
char *resv0l, DCLONG resv02)

B K&RC

#include <dcmcf.h>

int dc_mcf ap info (flags, mcfid, apname, apinfo, resvo0l,
resv02)

DCLONG flags;

char *mcfid;

char *apname;

struct DC_MCFAPINFO *apinfo;

char *resv0l;

DCLONG 1resv02;

Description

The function dc_mcf_ap info () acquires various types of application information
from an MHP.

This function can be used to report the application information on the MHP that called
the function dc_ mcf _ap info () or the other MHP. The application information
becomes effective only when the function dc_mcf_ap info () is normally
terminated.

Argument whose values is set in the UAP
B flags

Specify one of the following flags according to the type of the application to be
referenced:

DCMCFMYSELF

Specify this flag to acquire the application information on the MHP that called
function dc_mcf _ap info().

DCMCFOTHER

Specify this flag to acquire the information on a specific application according to
the process identifier for MCF communication service in which the application
definition is included, and application name.

198

dc_mcf_ap_info - Report the application information

B mcfid
* When specifying DCMCFMYSELF for £1ags
Specify NULL.
* When specifying DCMCFOTHER for £1ags

Specify a string indicating the MCF communication process identifier or the
application startup process identifier in which the definition of the application to
be referenced is included.

B apname
* When specifying DCMCFMYSELF for £lags
Specify NULL.
* When specifying DCMCFOTHER for £lags
Specify the name of the application to be referenced.

When specifying an error event name (ERREVT1, ERREVT2, ERREVT3, or
ERREVT4), the default value of the application definition, the no-response type
DCMCF_NOANS is set in mcf ap_type.

B apinfo

Specify the address of the area DC_MCFAPINFO which receives the application
information.

B resv0l
Specify NULL.
B resv02
Specify DCNOFLAGS.
Arguments whose values are returned from OpenTP1
B apinfo
The application information is returned with the structure DC_MCFAPINFO.

The structure has the following format:

199

dc_mcf_ap_info - Report the application information

struct DC_MCFAPINFO {

char mcf_apinfol4];
DCLONG mcf_ resv00;
char mcf_ap_name[9];
char mcf ap mcfid[3];
char mcf_resv01l[4];
DCLONG mcf_ap_stat;
DCLONG mcf_ap_type;
char mcf sg name[32];
DCLONG mcf_sg_stat;
DCLONG mcf_sg hold;
char mcf_sv_name[32];
DCLONG mcf_sv_stat;
DCLONG mcf_ap_ntmetim;
DCLONG mcf ap_ tempsize;
DCLONG mcf_ap_msgcnt;
DCLONG mcf_ ap_trnmode;
DCLONG mcf_ap_gquekind;
char mcf resv02[72];

200

mcf apinfo

This area is used by the MCF.

mcf resv00

This area is used by the MCF.

mcf ap name

The name of the application whose information is to be reported is returned.
mcf ap mcfid

The process identifier for MCF communication service that includes the
definition of the application whose information is to be reported is returned.

mcf resv0l
This area is used by the MCF.
mcf ap stat

The shutdown or release shutdown status of the application is returned with one
of the following flags:

DCMCF_IN_DACT: Input shutdown status
DCMCF_SC_DACT: Schedule shutdown status
DCMCF_DACTSTAT: Input and schedule shutdown status
DCMCF_ACTSTAT: Release shutdown status

mcf ap type

dc_mcf_ap_info - Report the application information

The type of the application is returned with one of the following flags:

(The type specified in the type operand of the -n option in the MCF application
definition mcfaalcap is set here.)

DCMCF_ANS: Response type
DCMCF_NOANS: Non-response type
DCMCF_CONT: Continuous-inquiry-response type

When specifying DCMCFOTHER for £1ags and specifying an error event name
(ERREVT1, ERREVT2, ERREVT3, or ERREVT4) for apname, the actual type is not
reported. In this case, the default value of the application definition, no-response
type (DCMCF_NOANS) is set here.

mcf sg name
The name of the service group corresponding to the application is returned.
mcf sg stat

The shutdown or release shutdown status of the service group is returned with one
of the following flags:

Input shutdown status: DCMCF_IN DACT

Schedule shutdown status: DCMCF_SC_DACT

Input and schedule shutdown status: DCMCF_DACTSTAT
Release shutdown status: DCMCF_ACTSTAT

mcf sg hold

The holding or release holding status of the service group is returned with one of
the following flags:

Input holding status: DCMCF_IN HOLD

Schedule holding status: DCMCF_SC_HOLD

Input and schedule holding status: DCMCF_HOLDSTAT

Release holding status: DCMCF_RLSSTAT

mcf sv_name

The name of the service corresponding to the application is returned.
mcf sv_stat

The shutdown or release shutdown status of the service is returned with one of the
following flags:

Input shutdown status: DCMCF_IN DACT

201

dc_mcf_ap_info - Report the application information

202

Schedule shutdown status: DCMCF_SC_DACT

Input and schedule shutdown status: DCMCF_DACTSTA

Release shutdown status: DCMCF_ACTSTAT

mcf ap ntmetim

The limit elapsed time for the non-transaction attribute MHP is returned.
When mcf_ap trnmode is DCMCF_TRN, 0 is set here.

(The value specified in the ntmet im operand of the -v option in the MCF
application definition mcfaalcap is set here. If the MCF application definition
is omitted, the value specified in the ntmetim operand of the -v option in the MCF
manager definition mcfmuap is used.)

mcf ap tempsize

The size of the temporary-stored data storage area for the continuous-inquiry
response is returned.

When mcf ap type is not DCMCF_CONT, 0 is set here.

(The value specified in the tempsize operand of the -n option in the MCF
application definition mcfaalcap is set here.)

mcf ap msgcnt
The maximum number of input messages that can be stored is returned.

(The value specified in the msgent operand of the -n option in the MCF
application definition mcfaalcap is set here.)

mcf ap trnmode
The transaction attribute of the application is returned with the flag as follows.

(The value specified in the trnmode operand of the -n option in the MCF
application definition mcfaalcap is set here.)

Managed as a transaction: DCMCF_TRN
Not managed as a transaction: DCMCF_NONTRN
mcf ap quekind

The queue to which the received message is assigned is returned with the flag as
follows.

(The value specified in the quekind operand of the -g option in the MCF
application definition mcfaalcap is set here.)

When the message is assigned to the disk queue: DCMCF_DISK

When the message is assigned to the memory queue: DCMCF_MEMORY

* mcf resv02

This area is used by the MCF.

Return values

dc_mcf_ap_info - Report the application information

Return value Return value Explanation
(numeric)

DCMCFRTN 00000 0 | Normal termination.

DCMCFRTN_72000 -13000 | The functiondc_mcf_ap info() was called from a
service other than the MHP service.

DCMCFRTN_72001 -13001 | The specified application name is invalid.
Combination of the application name and process
identifier is invalid.

DCMCFRTN_ 72016 -13016 | The value specified in a parameter is invalid.

Other than the above occurred.

An unprecedented error (e.g., program damage)

Note

When two or more MHPs for ERREVT1, ERREVT2, ERREVT3, or ERREVT4 are started
at the same time, the MHPs for the same error event name may have a different
application type. For the MHPs other than the MHP that called function

dc_mcf ap info (), the application type for the error event (ERREVT1, ERREVT2,
ERREVT3, or ERREVT4) is not reported. In this case, the default value of the MCF
application definition, no-response type is reported.

203

dc_mcf_ap_info_uoc - Report the application information to user exit routines

dc_mcf_ap_info_uoc - Report the application information to user
exit routines

Format
B ANSI, C++

#include<dcmef . h>
int dc_mcf ap info_ uoc (DCLONG flags, char *apname,
struct DC_MCFAPINFO UOC *apinfo)

B K&R C

#include<dcmef.h>

int dc_mcf ap info uoc(flags, apname, apinfo)
DCLONG flags;

char *apname;

struct DC_MCFAPINFO_UOC *apinfo;

Description

The function dc_mcf ap info uoc () returns information about the application
specified by the argument apname (application information) to the struct
DC_MCFAPINFO_UOC data area specified by the argument apinfo. This application
information includes application definitions (application attribute definitions) and
application status (status when the function dc_ mcf _ap info uoc () is called). The
application information becomes effective only when the function

dc_mcf _ap info uoc () is normally terminated.

This function can only be used to report application information about user
applications that can be activated from the communication service on which the user
exit routine is running. Furthermore, it does not report the application information
about SPPs (application definition mcfaalcap -g type=SPP) or system events
(application definition mcfaalcap -n kind=mcf£).

If a user application that cannot be activated from the communication service on which
the user exit routine is running, an SPP, or a system event is specified, it is interpreted
as invalid and the function returns with an error, and the return value

DCMCFRTN 72001 is reported.

This function can be used only from user exit routines that edit input messages (user
exit routines that determine application names). It cannot be used from user exit
routines other than the above. If you attempt to use it from any other user exit routines,
system operation is unpredictable.

204

dc_mcf_ap_info_uoc - Report the application information to user exit routines

Arguments whose values are set in the UAP
B flags
Specify DCNOFLAGS.
B apname

Specify the name of the application about which you want to acquire the application
information.

B apinfo

Specify the address of the area DC_MCFAPINFO_UOC that receives the application
information.

Arguments whose values are returned from OpenTP1
B apinfo
The application information is returned with the structure DC_MCFAPINFO.

The structure has the following format:

struct DC MCFAPINFO UOC {
char mcf apinfol[4];
DCLONG mcf_resv00;
char mcf _ap name[9];
char mcf_ap mcfid[3];
char mcf resv01l([4];
DCLONG mcf_ap_stat;
DCLONG mcf_ap_ type;
DCLONG mcf_ap_msgcnt;
char mcf sg name[32];
DCLONG mcf_sg stat;
DCLONG mcf_ sg hold;
DCLONG mcf_sg msgcnt;
char mcf_sv_name[32];
DCLONG mcf_sv_stat;
DCLONG mcf ap ntmetim;
DCLONG mcf_ap_tempsize;
DCLONG mcf_ap max_ msgcnt;
DCLONG mcf_ap_trnmode;
DCLONG mcf ap_ quekind;
char mcf_resv02[64];

}i

* mcf apinfo
This area is used by the MCF.
* mcf resv00

This area is used by the MCF.

* mcf ap name

205

dc_mcf_ap_info_uoc - Report the application information to user exit routines

206

The name of the application whose information is to be reported is returned.
mcf ap mcfid

The process identifier for MCF communication service that includes the
definition of the application whose information is to be reported is returned.

mcf resv0l
This area is used by the MCF.
mcf ap stat

The shutdown or release shutdown status of the application is returned with one
of the following flags:

Input shutdown status: DCMCF_IN DACT

Schedule shutdown status: DCMCF_SC_DACT

Input and schedule shutdown status: DCMCF_DACTSTAT

Release shutdown status: DCMCF_ACTSTAT

mcf ap type

The type of the application is returned with one of the following flags:
Response type: DCMCF_ANS

Non-response type: DCMCF_NOANS

Continuous-inquiry-response type: DCMCF_CONT

(The type specified in the type operand of the -n option in the MCF application
definition mcfaalcap is set here.)

When specifying DCMCFOTHER for £1ags and specifying an error event name
(ERREVT1, ERREVT2, ERREVT3, or ERREVT4) for apname, the actual type is not
reported. In this case, the default value of the application definition, no-response
type (DCMCF_NOANS) is set here.

mcf ap msgcnt

The number of remaining input messages in this application is returned.

mcf sg name

The name of the service group corresponding to the application is returned.
mcf sg stat

The shutdown or release shutdown status of the service group is returned with one
of the following flags:

Input shutdown status: DCMCF_IN DACT

dc_mcf_ap_info_uoc - Report the application information to user exit routines

Schedule shutdown status: DCMCF_SC_DACT

Input and schedule shutdown status: DCMCF_DACTSTAT
Release shutdown status: DCMCF_ACTSTAT
mcf sg hold

The holding or release holding status of the service group is returned with one of
the following flags:

Input holding status: DCMCF_IN HOLD

Schedule holding status: DCMCF_SC_HOLD

Input and schedule holding status: DCMCF_HOLDSTAT

Release holding status: DCMCF_RLSSTAT

mcf sg msgcnt

The number of remaining input messages in this service group is returned.
mcf sv_name

The name of the service corresponding to the application is returned.

mcf sv_stat

The shutdown or release shutdown status of the service is returned with one of the
following flags:

Input shutdown status: DCMCF_IN DACT

Schedule shutdown status: DCMCF_SC_DACT

Input and schedule shutdown status: DCMCF_DACTSTAT
Release shutdown status: DCMCF_ACTSTAT

mcf ap ntmetim

The limit of time that can be elapsed for the non-transaction attribute MHP is
returned. When mcf_ap_ trnmode is DCMCF_TRN, 0 is set here.

(The value specified in the ntmet im operand of the -v option in the MCF
application definition mcfaalcap is set here. If the MCF application definition
is omitted, the value specified in the ntmetim operand of the -v option in the
MCF manager definition mcfmuap is used.)

mcf ap tempsize

The size of the temporary-stored data storage area for the continuous-inquiry
response is returned.

When mcf ap type is not DCMCF_CONT, 0 is set here.

207

dc_mcf_ap_info_uoc - Report the application information to user exit routines

(The value specified in the tempsize operand of the -n option in the MCF
application definition mcfaalcap is set here.)

* mcf ap max msgcnt

The maximum number of input messages that can be stored is returned. (The
value specified in the msgent operand of the -n option in the MCF application
definition mcfaalcap is set here.)

* mcf ap trnmode

The transaction attribute of the application is returned with one of the following

flags:

Managed as a transaction: DCMCF_TRN

Not managed as a transaction: DCMCF_NONTRN

(The value specified in the trnmode operand of the -n option in the MCF
application definition mcfaalcap is set here.)

* mcf ap gquekind

The queue to which the received message is assigned is returned with one of the

following flags:

When the message is assigned to the disk queue: DCMCF_DISK

When the message is assigned to the memory queue: DCMCF_MEMORY

(The value specified in the quekind operand of the -g option in the MCF
application definition mcfaalcap is set here.)

* mcf resv02

This area is used by the MCF.

Return values

Return value Return value Explanation
(numeric)

DCMCFRTN_ 00000 0 | Normal termination.

DCMCFRTN 72000 -13000 | The functiondc_mcf_ap_ info uoc() was called
from a service other than the MHP service.

DCMCFRTN_72001 -13001 | The specified application name is invalid.
No information about the specified application could be
acquired.

DCMCFRTN 72016 -13016 | The value specified in a parameter is invalid.

Other than the above

An unprecedented error (e.g., program damage)
occurred.

208

dc_mcf_ap_info_uoc - Report the application information to user exit routines

Note

1. The functiondc_mcf ap info uoc () can only be used from user exit routines
that edit input messages (user exit routines that determine application names),
even though no check is performed if this function is called from user exit routines
other than the above. If you attempt to use it from any other user exit routines,
system operation is unpredictable. For details about user exit routines, see the
applicable OpenTP1 Protocol manual.

2. This function can only be used to acquire application information about user
applications that can be activated from the communication service on which the
user exit routine is running. Furthermore, it does not report application
information about SPPs (MCF application definition mcfaalcap -g type=SPP)
or system events (MCF application definition mcfaalcap -n kind=mcf).

3. No UAP trace can be acquired.

209

dc_mcf_close - Close the MCF environment

dc_mcf_close - Close the MCF environment

Format
B ANSIC, C++

#include <dcmef.h>
void dc_mcf close(DCLONG flags)

B K&RC

#include <dcmef.h>
void dc_mcf close (flags)
DCLONG flags;

Description

The function dc_mcf close () closes the environment in which MCF facilities are
used. Call the function dc_mcf close () only once in the process before the UAP
that called the function dc_mcf open () calls the function dc_rpc_close () inthe
main function.

Argument whose value is set in the UAP
B flags
Specify DCNOFLAGS.
Return value

There is no return value of the function dc_mcf close().

210

dc_mcf_commit - Commit an MHP

dc_mcf_commit - Commit an MHP

Format
B ANSIC, C++

#include <dcmef.hs
int dc_mcf commit (DCLONG action)

B K&RC

#include <dcmef.hs
int dc_mcf commit (action)
DCLONG action;

Description

The function dc_ mcf commit () notifies the UAP at the transaction branch as a root
transaction branch making up the transaction, the transaction service, and the resource
manager that the global transaction initiated by the MHP has terminated processing
normally (the global transaction has been committed).

When the function dc_mcf commit () terminates normally, a new global transaction
is generated.

If a global transaction consists of multiple transaction branches [it involves programs
other than the MHP which called the function dc_ mcf commit ()], the entire global
transaction will not be committed until each transaction branch is committed. If the
global transaction is composed of multiple resource managers, it will not be committed
until the results of each resource manager's processing are committed. If the global
transaction is not committed, all the transaction branches are rolled back and the
function returns with an error, giving the return value DCMCFRTN ROLLBACK.

The function dc_mcf commit () can be called only by an MHP specified as
nonresponse-type (type=noans) in the MCF application definition. If it is called by
an MHP of another type, it returns with an error, giving the return value
DCMCFRTN_72000. Ifit is called by a UAP other than an MHP, it also returns with an
error, giving the return value DCMCFRTN_72000.

Arguments whose value is set in the UAP
B action

Specify DCNOFLAGS.

211

dc_mcf_commit - Commit an MHP

Return values

Return value

Return value
(numeric)

Explanation

DCMCFRTN_00000

Normal termination. If this return value returns, the
process which called the function dc_mcf commit ()
has started a new transaction.

DCMCFRTN_ROLLBACK

-11906

The transaction was not committed, but was rolled
back. If this return value returns, the process which
called the function dc_mcf commit () has started a
new transaction.

DCMCFRTN_HEURISTIC

-11907

The global transaction which called the function
dc_mcf_commit () was subjected to a heuristic
decision which brought about the following: Some
transaction branches were committed, whereas other
transaction branches were rolled back. If this return
value returns, the process which called the function
dc_mcf commit () has started a new transaction.

DCMCFRTN_HAZARD

-11908

The transaction branch of the global transaction was
completed heuristically. However, the synchronization
point of the heuristically completed transaction branch
cannot be identified. If this return value returns, the
process which called the function dc_mcf commit ()
has started a new transaction.

This function returns DCMCFRTN_HAZARD even when
you specify 00000001 for the

trn_extend function operand in the transaction
service definition and the return value from the
resource manager at one-phase commit is XAER_NOTA.

DCMCFRTN_72000

-13000

If the function returns at MHP execution:
The function dc_mcf commit () was called at a
wrong position. The MHP called the function
dc_mcf_commit () before the function
dc_mcf receive () for receiving the first
segment.
The function dc_mcf_commit () was called by an
MHP which is not specified as nonresponse-type
(type=noans) in the MCF application definition.
The function dc_mcf_commit () was called by an
MHP with the nontransaction attribute.

If the function returns at SPP execution:

The function dc_mcf_commit () cannot be called
by SPPs.

DCMCFRTN_72016

-13016

The value specified for action is invalid.

212

dc_mcf_commit - Commit an MHP

Return value Return value Explanation
(numeric)

Other than the above An unprecedented error (e.g., program damage)

occurred.

Notes

Even when the function dc_ mcf commit () terminates normally, the input message
is not deleted from the input queue. This means that when message processing is
restarted after the MHP is rescheduled, the already committed range (up to what point
the results of processing have been committed) is unknown. The MHP is rescheduled
when:

1. An MCF event is reported to schedule an MHP for MCF event processing.

2. Since the system is terminated abnormally, the OpenTP1 reschedules the MHP for
the process.

If message processing is to be continued by the rescheduled MHP, the user is
responsible for learning the committed range of processing results.

213

dc_mcf_contend - Terminate continuous-inquiry-response processing

dc_mcf_contend - Terminate continuous-inquiry-response
processing

Format
B ANSIC, C++

#include <dcmef.h>
int dc_mcf contend (DCLONG action,char *resv01l)

B K&RC

#include <dcmcf.h>

int dc_mcf_ contend (action, resv01l)
DCLONG action;

char *resv0l;

Description

The function dc_mcf contend () terminates continuous-inquiry-response
processing. Before terminating continuous-inquiry-response processing, verify that
nextap of the function dc_mcf reply () called from the MHP is a null character
and that the function dc_ mcf execap () for activating a cont-type MHP has not been
called. If the MHP to be activated next is specified for nextap of the function
dc_mcf_reply () orif the function dc_mcf execap () for activating a cont-type
MHP has been called, the function dc_mcf contend () returns with an error.

After the function dc_mcf contend () is called, the dc_mcf tempget () function
and the function dc_mcf tempput () for accessing temporary-stored data cannot be
called.

Arguments whose values are set in the UAP
B action
Specify DCNOFLAGS.
B resvo0l
Specify a null character.

Return values

Return value Return value Explanation
(numeric)

DCMCFRTM_00000 0 | Normal termination.

214

dc_mcf_contend - Terminate continuous-inquiry-response processing

Return value

Return value
(numeric)

Explanation

DCMCFRTN_72000

-13000

Return at MHP execution
The function dc_mcf_contend () was called out
of sequence. The function dc_mcf_contend ()
was called before the function
dc_mcf_receive () (for receiving the first
segment) was called from the MHP.

Return at SPP execution

The function dc_mcf_contend () cannot be
called from an SPP.

DCMCFRTN_72016

-13016

The value specified for action is invalid.
The value of the area pointed to by resvo01 is nota
null character.

DCMCFRTN_72101

-13101

The function dc_mcf contend () was called from an
MHP for which continuous-inquiry-response type
(type=cont) was not specified in the MCF application
definition.

DCMCFRTN_72107

-13107

The function dc_mcf contend () was called.

DCMCFRTN_72111

-13111

The continuous-inquiry-response type application to be
activated next was specified, a response message was
sent (value specified for nextap of the function
dc_mcf_reply()), then the function

dc_mcf contend () was called.

The function dc_mcf execap () that specified the
continuous-inquiry-response type application to be
activated next was called, then the function

dc_mcf contend () was called.

Other than the above

An unprecedented error (e.g., program damage)
occurred.

215

dc_mcf_execap - Activate an application program

dc_mcf_execap - Activate an application program

Format
B ANSIC, C++

#include <dcmcf.h>

int dc_mcf execap (DCLONG action,DCLONG commform,char *resv01l,
DCLONG active,char *apnam,char *comdata,
DCLONG cdataleng)

B K&RC

#include <dcmcf.h>
int dc_mcf execap (action, commform, resv0l, active,
apnam, comdata, cdataleng)

DCLONG action;
DCLONG commform;
char *resv0l;
DCLONG active;
char *apnam;
char *comdata;
DCLONG cdataleng;
Description

The function dc_mcf execap () starts the MHP or SPP of the application name
specified for apnam from a UAP (SPP or MHP). After the UAP terminates, it can be
started immediately or after a specified interval has passed. After the transaction or
service function has terminated, the MHP or SPP with the application name specified
for apnam can be started immediately or after a preset length of time.

To call the function dc_mcf_execap () from an SPP, process the SPP as a transaction
and call the function dc_mcf open () in the SPP main function.

If an MHP is activated by issuing the function dc_mcf execap () from another MHP,
the name in the first-received message is used as the logical terminal name of the input
source that receives messages through the activated MHP. If the function

dc_mcf execap () is called from the MHP, the name in the first-received message is
also used as the logical terminal name of the input source that receives messages.

If an MHP is activated by issuing the function dc_mcf execap () from an SPP, an
asterisk (*) is used as the logical terminal name of the input source that receives
messages through the activated MHP. If the function dc_mcf execap () is called
from the MHP, an asterisk (*) is also used as the logical terminal name of the input
source that receives messages.

The maximum length of a single message segment that can be sent is 32 kilobytes.
Note that the actual value might be smaller depending on the protocol. For details, see

216

dc_mcf_execap - Activate an application program

the applicable OpenTP1 Protocol manual.

The figure below shows the segment format of the message to be passed to the MHP
to be activated. With buffer format 1, L is 8 bytes; with buffer format 2, L is 4 bytes.

comdata

1
L cdataleng —>{ (Units: bytes)

Area used by MCF Message segment passed to MHP

Arguments whose values are set in the UAP
B action
Specify the following items in the format shown below:

* Whether the segment to be passed to the MHP or SPP to be activated is the last
segment of a logical message

e When to activate the MHP or SPP

¢ Buffer format to be used

{DCMCFESTI | DCMCFBUF1} [| {DCMCFJUST | DCMCFINTV | DCMCFTIME }]
[| {DCMCFEMI | DCMCFBUF2 }]

DCMCFESI

Specify DCMCFEST to pass the first segment or an intermediate segment. If the
function dc_mcf execap () with DCMCFESI specified is called, the function
dc_mcf execap () with DCMCFEMI specified for action must be called.

DCMCFEMI

Specify DCMCFEMI to pass the last segment. If the logical message comprises only
a single segment, also specify DCMCFEMI. Also specify DCMCFEMI if the sending
of the first or an intermediate segment is to be followed by the notice of the
completion of message sending.

DCMCFJUST

Specify DCMCFJUST to enable immediate start. The value specified for active is
ignored in this case.

DCMCFINTV

Specify DCMCFINTV for an interval timer. The MHP or SPP will be activated the
time specified for active after the function dc_ mcf execap () is called.

DCMCFTIME

217

dc_mcf_execap - Activate an application program

Specify DCMCFTIME for a time-point timer. The MHP or SPP will be activated at
the time specified for active.

DCMCFBUF1
Specify DCMCFBUF1 when using buffer format 1.
DCMCFBUF2
Specify DCMCFBUF2 when using buffer format 2.
B commform
Specify DCNOFLAGS.
B resv0l
Specify a null character.
B active
¢ Interval timer drive (specification of DCMCFINTV for action)

Specify the number of seconds which will elapse from the call of the function
dc_mcf execap () to the activation of the MHP or SPP. The value must be 1 to
360000 (1 second to 100 hours).

* Time-point timer drive (specification of DCMCFTIME for action)

Specify when to activate the MHP or SPP specified for apnam. The time is in
seconds relative to 00:00:00 in local time.

Time setting example

To activate the MHP or SPP at 2:30:30 p.m. in local time:

14*3600+30*60+30=52230

Assign 52230 to active.

The range of specifiable values is 0 (activation at 00:00:00) to 86399 (activation at
23:59:59).

The value specified for active is valid only for timer-driven activation. If immediate
activation is specified, the value specified for active is ignored.

Since OpenTP1 checks whether the activation time has been reached at regular
intervals, there is a difference between the time specified for active and the actual
activation time. The accuracy of time monitoring depends on the value for the time
monitoring interval specified for the bt im operand in the -t option of the MCF
communication configuration definition mcfttim.

218

B apnam

dc_mcf_execap - Activate an application program

Specify the application name of the MHP or SPP to be started. The application name
can be specified with up to 8 bytes. The application name must end with a null

character.

B comdata

Specify the contents of the message segment to be passed to the MHP or SPP which is
to start. Specify also segment if the sending of the first or an intermediate segment is
to be followed by the notice of the completion of message sending.

B cdataleng

Specify the length of the segment to be passed to the MHP or SPP to be started. Specify
0 for cdataleng if the sending of the first or an intermediate segment is to be followed
by the notice of the completion of message sending.

Return values

Return value

Return value
(numeric)

Explanation

DCMCFRTN_00000

Normal termination.

DCMCFRTN_71002

-12002

An error occurred during input/output processing for
the message queue.

The message queue is in shutdown state.

No message queue was allocated.

The value specified for the segment length exceeds
32,000 bytes.

The MHP or SPP specified for apnam cannot be
activated because the MCF is being terminated.

DCMCFRTN_71003

-12003

The message queue is full.

DCMCFRTN_71004

-12004

The buffer for storing messages could not be acquired
in the memory.

DCMCFRTN_71108

-12108

An attempt was made to start the MHP or SPP of the
application name specified for apnam, but the MHP's or
SPP's management table could not be acquired.

The local memory of the process is insufficient.

DCMCFRTN_72000

-13000

Return at MHP execution
The functiondc_mcf_execap () was called before
the function dc_mcf_receive () with
DCMCFFRST specified for action.

219

dc_mcf_execap - Activate an application program

Return value Return value Explanation
(numeric)
Return at SPP execution
The function dc_mcf_execap () is called from a
nontransaction SPP process.
DCMCFRTN_72001 -13001 | The specified application name is not defined in the

MCF.

The application name is incorrect.

The application startup process name is not specified in
the communication service definition (mcfmcname
definition command) for the MCF manager.

The application startup process identifier is not
specified in the MCF application environment
definition (the -p option of the mcfaenv definition
command) corresponding to an application startup
process.

The application startup process identifier specified in
the application environment definition (the -p option
of the mcfaenv definition command) does not match
the identifier specified in the communication
configuration definition (the mcftenv definition
command) for the process.

For starting of non-response MHPs and SPPs:

* No value is specified for the logical terminal (the
1name operand in the -n option of the mcfaalcap
definition command) in the attribute definition of
the application to be started.

* The logical terminal specified in the attribute
definition of the application to be started is not
defined in the communication configuration
definition (mcftalcle definition command) of the
application startup process.

* The logical terminal specified in the application
attribute definition of the application to be started is
not for send-only communication (mcftalcle
-t=send).

* The logical terminal specified in the attribute
definition of the application to be started cannot
start the application.

220

dc_mcf_execap - Activate an application program

Return value

Return value
(numeric)

Explanation

For starting of response and continuous inquiry
response MHPs:

¢ The internal communication path (the cname
operand in the -n option of the mcfaalcap
definition command) is not specified in the
attribute definition of the application to be started.

¢ The internal communication path specified in the
attribute definition of the application to be started is
not defined in the communication configuration
definition (the -c option of the mcftpsvr
definition command) of the application startup
process.

e The inquiry logical terminal (mcftalcle
-t=request) is not specified in the
communication configuration definition
(mcftalcle definition command) of the
application start process.

When starting an application from an SPP:

* The application startup process identifier is not
specified in the mcf_psv_id operand for the user
service or user service default definition of the
starting UAP.

¢ The following two values do not match:
Application startup process identifier specified in
the mcf_psv_id operand for the user service or
user service default definition of the staring UAP.
Application startup process identifier specified in
the communication configuration definition (the - s
option of the mcftenv definition command) and
application environment definition (the -p option
of the mcfaenv definition command) of the
application startup process.

¢ The MCF manager identifier specified in the
mcf_mgrid operand of the user service or user
service default definition of the starting UAP does
not match the identifier of the MCF manager to
which the application startup process belongs.

DCMCFRTN_72005

-13005

A value less than 1 byte was specified as the message
segment length in the function dc_mcf_execap () in
which DCMCFEST was specified for action.

DCMCFRTN_72007

-13007

From a response type (type=ans) MHP which already
called the function dc_mcf_reply (), another
response type MHP was started by the function
dc_mcf_execap().

221

dc_mcf_execap - Activate an application program

Return value

Return value
(numeric)

Explanation

From a continuous-inquiry-response type
(type=cont) MHP which already called the function
dc_mcf_reply (), another
continuous-inquiry-response type MHP was started by
the function dc_mcf_execap ().

DCMCFRTN_72009

-13009

From a response type (type=ans) MHP, a response
type MHP was started by the function
dc_mcf_execap () more than once.

From a continuous-inquiry-response type
(type=cont) MHP, a continuous-inquiry-response
type MHP was started by the function
dc_mcf_execap () more than once.

DCMCFRTN_72011

-13011

From an MHP which is not response type (type=ans),
a response type MHP was started by the function
dc_mcf_execap().

From an MHP which is not
continuous-inquiry-response type (type=cont), a
continuous-inquiry-response type MHP was started by
the function dc_mcf execap ().

DCMCFRTN_72016

-13016

The value specified for action is invalid.

The value specified for resvo01 is not a null character.

The application start method specified for action is
invalid.

The specified argument is invalid.

DCMCFRTN_72024

-13024

DCNOFLAGS was not specified for commform.

DCMCFRTN_72026

-13026

The value specified as the segment type for action is
invalid. DCMCFEMI must be specified for the last
segment. DCMCFESI must be specified for a segment
other than the last segment.

DCMCFRTN_72041

-13041

The function dc_mcf_execap () with a segment other
than the last segment (DCMCFEST) specified was not
called for the application name, but the function
dc_mcf_execap () with the last segment (DCMCFEMI
send segment length = 0) specified was called for the
application name.

222

dc_mcf_execap - Activate an application program

Return value Return value Explanation
(numeric)
DCMCFRTN 72044 -13044 | From a continuous-inquiry-response type

(type=cont) MHP which already called the function
dc_mcf_contend (), another
continuous-inquiry-response type MHP was started by
the function dc_mcf_execap ().

DCMCFRTN_72108 -13108 | The value specified for active exceeds the limit.

DCMCFRTN 72109 -13109 | An attempt was made to activate an MHP, for which
type=cont (continuous-inquiry-response type) was
specified in the MCF application definition, by the
functiondc_mcf_execap () with timer start specified.

DCMCFRTN_ 77001 -18001 | The logical terminal (LE) corresponding to the
application to be activated is being started and cannot
be used, or no logical terminals are available.

Other than the above An unprecedented error (e.g., program damage)
occurred

Note

1. The activation order of application programs varies depending on the mcfmuap
-c order specification in the UAP common definition of the MCF manager
definition.

2. Ifyou use a single service function to update a TAM or DAM file and call the
function dc_mcf execap () to start an application that will reference the
updated file, make sure that the application will lock the file. If the application
references the file without locking the file, the data existing before the file was
updated might be referenced.

223

dc_mcf_mainloop - Start an MHP service

dc_mcf_mainloop - Start an MHP service

Format
B ANSIC, C++

#include <dcmef.h>
int dc_mcf mainloop (DCLONG flags)

B K&RC

#include <dcmef.h>
int dc_mcf mainloop (flags)
DCLONG flags;

Description

The function dc_mcf mainloop () starts accepting service requests to service
functions which are included in the service group being executed in the process that
called this function. The function dc_mcf mainloop () does not return until it
receives a termination request from OpenTP1.

Argument whose value is set in the UAP
B flags
Specify DCNOFLAGS.
Return values

Return value Return value Explanation
(numeric)

DC_OK 0 | The function dc_mcf _mainloop () received a
termination request from OpenTP1. The UAP that
called the function dc_mcf mainloop () must
immediately execute termination processing for its
process. Then, the UAP must call the function
dc_mcf_close () and the functiondc_rpc_close ()
to enable exit ().

DCMCFER_INVALID ARGS -11900 | The specified argument is invalid.

DCMCFER_PROTO -11901 | The function dc_rpc_open () was not called before
the function dc_mcf_mainloop ().

DCMCFER_FATAL -11902 | The service could not be started.

DCMCFER_NOMEM -11903 | The memory became insufficient.

224

dc_mcf_open - Open the MCF environment

dc_mcf_open - Open the MCF environment

Format
B ANSIC, C++

#include <dcmef.hs
int dc_mcf open (DCLONG flags)

B K&RC

#include <dcmef.hs
int dc_mcf open (flags)
DCLONG flags;

Description

The function dc_mcf_open () constructs the environment in which MCF facilities
are used. Call the function dc_mcf_open () for UAPs which use MCF facilities.

After the dc_rpc_open () is called, the function dc_mcf_open () must be called in
the main function. Issue the function dc_mcf open () only once in the process before
the function dc_ mcf mainloop () (function dc_rpc mainloop () for an SPP).
The following shows when to call the function dc_ mcf open () :

dc_rpc_open()
dc_mcf_open ()
dc_mcf mainloop() (dc_rpc mainloop() for an SPP)

dc_mcf_close()
dc_rpc_close ()

Argument whose value is set in the UAP
B flags
Specify DCNOFLAGS.

Return values

Return value Return value Explanation
(numeric)
DC_OK 0 | Normal termination.
DCMCFER_INVALID ARGS -11900 | The value specified for £1ags is invalid.
DCMCFER_PROTO -11901 | The function dc_rpc_open () was not called.

225

dc_mcf_open - Open the MCF environment

Return value Return value Explanation
(numeric)
The function dc_mcf_open () was called.
DCMCFER_FATAL -11902 | Initialization processing was unsuccessful.
DCMCFER_NOMEM -11903 | The memory became insufficient.

226

dc_mcf_receive - Receive a message

dc_mcf_receive - Receive a message

Format
B ANSIC, C++

#include <dcmcf.hs>

int dc_mcf receive (DCLONG action,DCLONG commform,char *termnam,
char *resv0l,char *recvdata,DCLONG *rdataleng,
DCLONG inbufleng,DCLONG *time)

B K&RC

#include <dcmcf.hs>
int dc_mcf receive (action, commform, termnam, resvo0l,
recvdata, rdataleng, inbufleng, time)

DCLONG action;
DCLONG commform;
char *termnam;
char *resv0l;

char *recvdata;
DCLONG *rdataleng;
DCLONG inbufleng;
DCLONG *time;

Description

The function dc_mcf_receive () receives a segment of a message. When a whole
logical message is received, call this function as many times as there are segments.

The function dc_mcf_receive () can receive the following messages:
* Messages which are sent from the remote system via communication protocol
* MCF events which are reported from the local system

* Messages which are sent by the function dc_mcf execap () (Activate an
application program) from a UAP of the local system

* Messages which are sent by executing the mcfuevt command on the local system

When receiving a message which is sent from the remote system via communication
protocol, the syntax of the function dc_mcf receive () varies according to
communication protocol in use. For the syntax of the function dc_mcf_receive ()
which receives a message from the remote system, see the explanation in the
applicable OpenTP1 Protocol manual.

The maximum length of a single segment that can be received is 1 megabyte. Note that
the actual value might be smaller depending on the protocol. For details, see the
applicable OpenTP1 Protocol manual.

227

dc_mcf_receive - Receive a message

The figure below shows the format of the receive segment area. With buffer format 1,
L is 8 bytes; with buffer format 2, L is 4 bytes.

recvdata

l

L rdataleng — > (Units: bytes)

Area used by MCF Message segment received

inbufleng

Arguments whose values are set in the UAP
B action

Specify whether the first segment of the message is received and the buffer format to
be used in the format shown below:

{DCMCFFRST | DCMCFSEG} [| { DCMCFBUF1 | DCMCFBUF2 }]

DCMCFFRST

Specify DCMCFFRST to receive the first segment. If the message comprises only
a single segment, also specify DCMCFFRST.

DCMCFSEG
Specify DCMCFSEG to receive an intermediate segment or the last segment.
DCMCFBUF1

Specify DCMCFBUF1 when using buffer format 1. In general, buffer format 1 is
used.

DCMCFBUF2
Specify DCMCFBUF2 when using buffer format 2.
B commform
Specify DCNOFLAGS.
B termnam [when an intermediate segment or the last segment is received]

Specify the input logical terminal name. Specify the logical terminal name returned
when the first segment is received.

B resvol

Specify a null character.

228

dc_mcf_receive - Receive a message

B recvdata

Specify the receive segment area. When the message is sent from the local system, the
maximum length of receive segment is 32,000 bytes.

When the message is sent from the remote system, the maximum length of receive
segment depends on the product adopting the communication protocol.

When the function dc_mcf_receive () terminates, a segment of the message is
returned.

B inbufleng
Specify the length of the receive segment area.
Arguments whose values are returned from OpenTP1
B termnam [when the first segment is received]
The input logical terminal name is returned.

Specify the returned logical terminal name when an intermediate segment or the last
segment is received.

B recvdata

The contents of the receive segment are returned.
B rdataleng

The length of the receive segment is returned.
B time

The time when the message is received is returned in total seconds since 00:00:00 on
January 1, 1970.

Return values

Return values Return value Explanation
(numeric)
DCMCFRTN_00000 0 | Normal termination.
DCMCFRTN_71000 -12000 | The function dc_mcf_receive () for receiving the

first segment was called more than once. To receive an
intermediate segment or the last segment, call the
function dc_mcf_receive () with DCMCFSEG
specified for action.

229

dc_mcf_receive - Receive a message

Return values

Return value
(numeric)

Explanation

DCMCFRTN_71001

-12001

The function dc_mcf receive () for receiving the
next segment was called after the last segment of the
message is received. The function

dc_mcf receive () called immediately before
receives a message completely. If the function

dc_mcf receive () is called again after this value is
returned, the return value DCMCFRTN_ 72000 is
returned.

DCMCFRTN_71002

-12002

An error occurred during input processing for the
message queue.

The message queue is in shutdown state.

DCMCFRTN_72000

-13000

Return at MHP execution
The functiondc_mcf_receive () forreceiving an
intermediate segment or the last segment was
called before the function dc_mcf receive () for
receiving the first segment was called. To receive
the first segment, call the function
dc_mcf receive () with DCMCFFRST specified
for action.
The function dc_mcf_receive () was called
again after the return value DCMCFRTN 71001 was
returned.

Return at SPP execution

The function dc_mcf_receive () cannot be
called from an SPP.

DCMCFRTN_72001

-13001

The logical terminal name specified for termnam is
invalid.

DCMCFRTN_72013

-13013

A segment exceeding the length of the receive area was
received. The excess portion was truncated.

DCMCFRTN_72016

-13016

The value specified for action is invalid.

The value specified for resvo1 is invalid.

The value specified for the argument is invalid.

DCMCFRTN_72024

-13024

The value specified for commform is invalid.

DCMCFRTN_72025

-13025

The value of the segment type specified for action is
invalid. The value must be DCMCFFRST or DCMCFSEG.

DCMCFRTN_72036

-13036

The segment receive area is insufficient. Allocate an
area of 9 bytes or more for buffer format 1; 5 bytes or
more for buffer format 2.

230

dc_mcf_receive - Receive a message

Return values Return value Explanation
(numeric)

Other than the above An unprecedented error (e.g., program damage)
occurred.

231

dc_mcf_recvsync - Receive a synchronous message

dc_mcf_recvsync - Receive a synchronous message

Format

For details of the format, see the explanation in the applicable OpenTP1 Protocol
manual.

Description

232

The function dc_mcf recvsync () receives a logical message from other system
during the processing of an active UAP. When the function dc_mcf recvsync () is
called by a UAP, it searches the input queue for a message sent from the logical
terminal name specified in it and receives the message. If there is not such a message,
the function waits until an appropriate message arrives. In this way, the reception of a
logical message is synchronized with the call of the function dc_mcf recvsync ()
from the UAP.

The function receives a segment of a logical message. If the logical message consists
of one segment, the function dc_mcf recvsync () must be issued only once. If the
logical message consists of multiple segments, the function dc_mcf recvsync ()
must be called as many times as the segments to receive the logical message.

The maximum length of a single segment that can be received is 1 megabyte. Note that
the actual value might be smaller depending on the protocol. For details, see the
applicable OpenTP1 Protocol manual.

The MCF area which holds the segment received by the function
dc_mcf recvsync () consists of the area used by the MCF and the area actually
holding the received message segment.

The values to be specified for the arguments and the return values vary with the
communication protocol in use. For details, see the applicable OpenTP1 Protocol
manual.

dc_mcf_reply - Send a response message

dc_mcf_reply - Send a response message

Format

For details on the format, see the explanation in the applicable OpenTP1 Protocol
manual.

Description

The function dc_mcf _reply () sends a logical message in response to other system.
It sends a response to the logical terminal from which a message was received by the
function dc_mcf receive ().

The function dc_mcf reply () can be called only by MHPs whose application type
IS ans or cont.

The function sends a segment of a logical message as a response. If the received logical
message consists of one segment, the function dc_mcf reply () must be called only
once to send a response. If the received logical message consists of multiple segments,
the function dc_mcf reply () must be called as many times as the segments to send
one logical message in response.

The application which is under MCF control (MHP service function) allows the MCF
to send a message after the function dc_mcf reply () is issued to send the logical
message to its end and the MHP terminates normally. In this way, message sending by
the function dc_mcf reply () is asynchronous with MHP processing.

The maximum length of a single message segment that can be sent is 32 kilobytes.
Note that the actual value might be smaller depending on the protocol. For details, see
the applicable OpenTP1 Protocol manual.

The MCF area which holds the segment to be sent by the function dc_mcf reply ()
consists of the area used by the MCF and the area actually holding the message
segment to be transmitted in response.

The values to be specified for the arguments and the return values vary with the
communication protocol in use. For details, see the applicable OpenTP1 Protocol
manual.

233

dc_mcf_resend - Resend a message

dc_mcf_resend - Resend a message

Format

For details on the format, see the explanation in the applicable OpenTP1 Protocol
manual.

Description

Note

234

The function dc_mcf resend () resends an already sent logical message to other
system. The resent message is treated as a new message separate from the already sent
message. The message to be resent can be selected using information about already
sent messages as follows:

¢ Output-destination logical terminal name
* Message sequence number
* Message type (general branch or priority branch)

Before a node can use the function dc_mcf resend (), it must use a queue (disk
queue) for holding already sent messages.

If the message to be resent was not sent, the function dc_mcf resend () returns with
an error. It also returns with an error if the message to be resent is not found in the
output queue.

The values to be specified for the arguments and the return values vary with the
communication protocol in use. For details, see the explanation in the applicable
OpenTP1 Protocol manual.

The message resend order varies depending on the mcfmuap -c order specification
in the UAP common definition of the MCF manager definition.

dc_mcf_rollback - Enable MHP rollback

dc_mcf_rollback - Enable MHP rollback

Format
B ANSIC, C++

#include <dcmef.hs
int dc_mcf rollback (DCLONG action)

B K&RC

#include <dcmef.hs
int dc_mcf rollback (action)
DCLONG action;

Description

The function dc_mcf_rollback () cancels processing between when the MHP
service program that defines the transaction attribute is started and when the function
dc_mcf rollback () is called. If DCMCFRTRY is specified for action, processing
between when the MHP is started and when the function dc_mcf rollback () is
called is canceled, and the canceled MHP processing is rescheduled.

Arguments whose values are set in the UAP
B action
Specify DCMCFRTRY, DCMCFRRTN, or DCMCFNRTN for the type of rollback.
DCMCFRTRY

Processing between the MHP is started and when the function

dc_mcf rollback () iscalled is canceled, and the canceled MHP processing is
rescheduled (any received messages are stored at the end of the relevant input
queue and the MHP is rescheduled). Control does not return from the function
dc_mcf rollback (), and the process is terminated.

DCMCFRRTN

Processing between the MHP is started and when the function

dc_mcf rollback () iscalled is canceled, and control returns. Processing after
the normal termination of the function dc_mcf rollback () with DCMCFRRTN
specified is treated as another transaction.

DCMCFNRTN

Processing between the MHP is started and when the function
dc_mcf rollback () is called is canceled. Control does not return from the
function dc_mcf_rollback (), and the process is terminated.

235

dc_mcf_rollback - Enable MHP rollback

Return values

Return value Return value Explanation
(numeric)
DCMCFRTN_ 00000 0 | Normal termination.
DCMCFRTN_ 72000 -13000 | Return at MHP execution

The function dc_mcf_rollback () was called out
of sequence. The function dc_mcf rollback ()
with DCMCFRRTN specified for action was called
before the function dc_mcf_receive () (for
receiving the first segment) was called from the
MHP.The function dc_mcf_rollback () was
called by an MHP with the nontransaction attribute.

Return at SPP execution
The function dc_mcf_rollback () cannot be

called from an SPP.
DCMCFRTN 72027 -13027 | The value specified for action is invalid.
Other than the above An unprecedented error (e.g., program damage)
occurred.

236

dc_mcf_send - Send a message

dc_mcf_send - Send a message

Format

For details on the format, see the explanation in the applicable OpenTP1 Protocol
manual.

Description

Note

The function dc_mcf send () sends a logical message to other system.

The function sends a segment of a logical message. If the sent logical message consists
of one segment, the function dc_mcf send () must be called only once. If the sent
logical message consists of multiple segments, the function dc_mcf send () must be
called as many times as the segments to send one logical message.

The application which is under MCF control (MHP service function) or SPP allows the
function dc_mcf send () to send messages asynchronously to UAP processing.

The maximum length of a single message segment that can be sent is 32 kilobytes.
Note that the actual value might be smaller depending on the protocol. For details, see
the applicable OpenTP1 Protocol manual.

The MCEF area which holds the segment to be sent by the function dc_mcf send ()
consists of the area used by the MCF and the area actually holding the message
segment to be sent.

The values to be specified for the arguments and the return values vary with the
communication protocol in use. For details, see the applicable OpenTP1 Protocol
manual.

The message send order varies depending on the mcfmuap -c order specification in
the UAP common definition of the MCF manager definition.

237

dc_mcf_sendrecv - Exchange a synchronous message

dc_mcf_sendrecv - Exchange a synchronous message

Format

For details on the format, see the explanation in the applicable OpenTP1 Protocol
manual.

Description

238

The function dc_mcf sendrecv () sends a logical message to other system, during
the processing of an active UAP and receives a response from the logical terminal.
Once the function dc_mcf sendrecv () is called by a UAP, it waits until message
sending to the logical terminal designated in the function and response arrival are
completed. In this way, the sending and reception of a logical message is synchronized
with the call of the function dc_mcf sendrecv () from the UAP.

The function dc_mcf sendrecv () enters the state of wait for a response when the
MCF sends a message by making the function dc_mcf sendrecv () send the last
segment of the message.

The function dc_mcf sendrecv () sends a segment of a logical message. If the
logical message consists of one segment, the function dc_mcf sendrecv () must be
called only once. If the logical message consists of multiple segments, the function
dc_mcf sendrecv () must be called as many times as the segments to send the
logical message.

When the MCF receives all segments of the response message from the logical
terminal, the function dc_mcf sendrecv () that sent the last segment receives only
the first segment of the response message. The intermediate and subsequent segments
are received by the function dc_mcf recvsync ().

The maximum length of a single segment that can be received is 1 megabyte. Note that
the actual value might be smaller depending on the protocol. The maximum length of
a single message segment that can be sent is 32 kilobytes. Note that the actual value
might be smaller depending on the protocol. For details, see the applicable OpenTP1
Protocol manual.

The MCF area which holds the segment to be sent by the function
dc_mcf sendrecv () consists of the area used by the MCF and the area actually
holding the message segment to be sent.

The values to be specified for the arguments and the return values vary with the
communication protocol in use. For details, see the applicable OpenTP1 Protocol
manual.

dc_mcf_sendsync - Send a synchronous message

dc_mcf_sendsync - Send a synchronous message

Format

For details on the format, see the explanation in the applicable OpenTP1 Protocol
manual.

Description

The function dc_mcf sendsync () sends a logical message to other system, during
the processing of an active UAP. Once the function dc_mcf sendsync () is called by
a UAP, it waits until the message is written in the output queue and is completely sent
to the logical terminal designated in the function. In this way, the sending of a logical
message is synchronized with the call of the function dc_mcf sendsync () from the
UAP.

The function sends a segment of a logical message. If the logical message consists of
one segment, the function dc_mcf sendsync () must be called only once. If the
logical message consists of multiple segments, the function dc_mcf sendsync ()
must be called as many times as the segments to send the logical message.

The maximum length of a single message segment that can be sent is 32 kilobytes.
Note that the actual value might be smaller depending on the protocol. For details, see
the applicable OpenTP1 Protocol manual.

The MCF area which holds the segment to be sent by the function
dc_mcf sendsync () consists of the area used by the MCF and the area actually
holding the message segment to be sent.

The values to be specified for the arguments and the return values vary with the
communication protocol in use. For details, see the applicable OpenTP1 Protocol
manual.

239

dc_mcf_tactcn - Establish a connection

dc_mcf_tactcn - Establish a connection

Format

B ANSIC, C++

#include <dcmcf.h>
int dc_mcf tactcn (DCLONG action, demcf tactcnopt *cnopt,

char *proinf, DCLONG *resv02, char *resv03,
char *resv04)

B K&RC

#include <dcmcf.h>
int dc_mcf tactcn (action, cnopt, proinf, resv02, resv03, resv04)

DCLONG action;

dcmcf tactcnopt *cnopt ;

char *proinf;

DCLONG *resv02;

char *resv03;

char *resv04;
Description

The dc_mcf tacten () function establishes a connection.

Normal termination of the dc_mcf tactcn () function indicates that the connection
establishment request was accepted successfully by the protocol product. However,
this does not necessarily mean that connection with the remote system has been
established.

If you intend to perform any connection-related operation after calling the
dc_mcf tacten () function, first use the dc_mcf tlscn () function to check the
connection status.

Arguments whose values are set in the UAP

B action

240

Depending on the communication protocol, specify in one of the following formats the
method used to specify for this function the connection that is established:

{DCMCFLE | DCMCFCN} [| DCMCFPRO]

DCMCFLE

Specifies that a logical terminal name is specified for the connection that is

established.

dc_mcf_tactcn - Establish a connection

This argument is not supported by TP1/NET/NCSB or TP1/NET/X25-Extended.

DCMCFCN

Specifies that a connection ID is specified for the connection that is established.

DCMCFPRO

Specifies that the function depends on the communication protocol being used.

cnopt

Setin a demcf_tactcnopt structure the connection information that is to be subject

to this function's processing.

The following shows the format of the structure:

typedef struct {
DCLONG

char
char

char
char
char
char
char
char
char
char
char

mcfid;

resv01l[4];
idnam([9] ;

resv02
resv03
scnnam
resv04

[71;
[112];
[9]
[71;
yournam[9
[7]
m[l
(17
[18

h

resv05
hostna
resv06
resvQ07

413]
]l
4] I

} demcf tactcnopt;

* mcfid

. . MCF communication

process identifier

. Reserved
. . Logical terminal name

or connection ID

. .Reserved

. . .Reserved

. .Area used by MCF
. . .Reserved

. . Area used by MCF
. . .Reserved

. .Area used by MCF

. . Reserved

. . Reserved

Specify the MCF communication process identifier of the MCF communication
service for the connection to be processed. The permitted value range is from 0 to

2309.

This argument is ignored when a logical terminal name is used to request

connection establishment.

If you specify 0, the system searches for the MCF communication service to
which the specified connection ID belongs. In a configuration where many MCF
communication services are running or when you issue this function many times
from a UAP, we recommend that you specify the MCF communication process

identifier.

241

dc_mcf_tactcn - Establish a connection

¢ resv0l
Fill the area with null characters.
® ijdnam

Specify the logical terminal name or connection ID of the connection to be
established. The logical terminal name or connection ID must be specified as a
maximum of § bytes of characters and must end with the null character.

* resv02,resv03, scnnam, resv04, yournam, resv05, hostnam, resv06,
resv07

Fill the areas with null characters.
B proinf
Specify a protocol-specific area.

If you do not use a function that depends on the communication protocol, specify
NULL.

The following shows the format of a protocol-specific area:

proinf

L Protocol-specific area

The maximum size of a protocol-specific area is 1024 bytes.

The permitted value depends on the communication protocol being used. For details,
see the applicable OpenTP1 Protocol manual.

B resv02,resv03, resv04

Specify NULL.
Return values
Return value Return value Explanation
(numeric)
DCMCFRTN_ 00000 0 | Normal termination.
DCMCFRTN 71001 -12001 | The dc_mcf tacten () function cannot be accepted because the
MCEF is under start processing.

242

dc_mcf_tactcn - Establish a connection

Return value Return value Explanation
(numeric)

DCMCFRTN_ 71002 -12002 | The dc_mcf tacten () function cannot be accepted because the
MCF is under termination processing.

DCMCFRTN_71004 -12004 | A memory shortage occurred during dc_mcf_tactcn() function
processing.

DCMCFRTN 71005 -12005 | A communication error occurred. For the cause, see the message log
file.

DCMCFRTN_ 71006 -12006 | An internal error occurred. For the cause, see the message log file.

DCMCFRTN_71007 -12007 | The specified connection name has not been registered.

DCMCFRTN_71008 -12008 | The specified logical terminal name has not been registered.

DCMCFRTN_ 71009 -12009 | Thedc mcf tactcn() function is not supported by the applicable
MCF communication process.

DCMCFRTN_71010 -12010 | Although the request to establish a connection was issued to the
MCF communication process, the request was not accepted. For the
cause, see the message log file.

DCMCFRTN 71011 -12011 | The dc_mcf tacten () function cannot be accepted because the
connection has been deleted.

DCMCFRTN 71014 -12014 | The specified logical terminal name belongs to TP1/NET/NCSB or
TP1/NET/X25-Extended; or, the specified connection group name
belongs to TP1/NET/OSI-TP or TP1/NET/TCP/IP.

DCMCFRTN_72050 -13050 | Anunsupported flag is set in action.

DCMCFRTN_72051 -13051 | NULL is set in cnopt.

DCMCFRTN_ 72052 -13052 | When DCMCFPRO is not set in action:

NULL is not set in proinf.

When DCMCFPRO is set in action:

A value smaller than 0 or a value 1025 or greater is specified for the
size of protocol-specific area L pointed to by proint.

DCMCFRTN_72053 -13053 | NULL is not set in resv02.

DCMCFRTN_72054 -13054 | NULL is not set in resvo03.

DCMCFRTN 72055 -13055 | NULL is not set in resvo04.

DCMCFRTN 72060 -13060 | DCMCFLE and DCMCFCN cannot be specified together in action.

DCMCFRTN_ 72061 -13061 | A value smaller than 0 or a value 240 or greater is specified for

mcfid in demcf tactcnopt.

243

dc_mcf_tactcn - Establish a connection

Return value Return value Explanation
(numeric)
DCMCFRTN_ 72062 -13062 | resv0lindecmcf_ tactcnopt is not filled with null characters.
DCMCFRTN_ 72063 -13063 | idnamin dcmcf tactcnopt begins with the null character.
DCMCFRTN_ 72064 -13064 | resv02indcmcf_tactcnopt is not filled with null characters.
DCMCFRTN_ 72065 -13065 | resv03 in decmcf_tactcnopt is not filled with null characters.
DCMCFRTN 72066 -13066 | scnnamin demcf_tactcnopt is not filled with null characters.
DCMCFRTN_ 72067 -13067 | resv04 in demcf_tactcnopt is not filled with null characters.
DCMCFRTN_ 72068 -13068 | yournamin dcmcf tactcnopt is not filled with null characters.
DCMCFRTN 72069 -13069 | resv05 indecmcf_tactcnopt is not filled with null characters.
DCMCFRTN_72070 -13070 | hostnamin demcf tactcnopt is not filled with null characters.
DCMCFRTN 72071 -13071 | resv06 in demcf_tactcnopt is not filled with null characters.
DCMCFRTN 72072 -13072 | resv07in decmcf_tactcnopt is not filled with null characters.
DCMCFRTN_72073 -13073 | The character string setin idnamindcmcf_tactcnopt is 9 or more
bytes in length.
DCMCFRTN_72074 -13074 | The character string set in idnamin dcmcf_tactcnopt contains an
invalid character.

244

dc_mcf_tactle - Release a logical terminal from shutdown status

dc_mcf_tactle - Release a logical terminal from shutdown status

Format
B ANSIC, C++

#include <dcmcf.h>

int dc_mcf tactle (DCLONG action, dcmcf tactleopt *leopt,
char *proinf, DCLONG *resv02,
char *resv03, char *resv04)

B K&RC

#include <dcmcf.hs>
int dc_mcf tactle (action, leopt, proinf, resv02, resv03, resv04)
DCLONG action;

dcmcf tactleopt *leopt;

char *proinf;

DCLONG *resv02;

char *resv03;

char *resv04;
Description

The dc_mcf tactle () function releases a logical terminal from shutdown status.

Normal termination of the dc_mcf tactle () function indicates that the logical
terminal shutdown release request was accepted successfully by the protocol product.
However, this does not necessarily mean that the logical terminal has been released
from shutdown status.

If you intend to perform any operation related to the logical terminal after calling the
dc_mcf tactle () function, first use the dc_mcf tlsle () function to check the
logical terminal's status.

Arguments whose values are set in the UAP
B action

Depending on the communication protocol, specify in one of the following formats the
method used to specify for this function the logical terminal that is released from
shutdown status:

DCMCFLE [| DCMCFPRO]

DCMCFLE

245

dc_mcf_tactle - Release a logical terminal from shutdown status

246

Specifies that the logical terminal name is used.
DCMCFPRO
Specifies that the function depends on the communication protocol being used.
B leopt

Set in a demcf_tactleopt structure the information about the logical terminal that
is to be the subject of this function's processing.

The following shows the format of the structure:

typedef struct {

DCLONG mcfid; . . .MCF communication
process identifier

char resv01l[4]; .. .Reserved

char idnam[9] ; . . .Logical terminal name

char resv02[7]; .. .Reserved

char resv03[112]; ...Reserved

char resv04 [376]; ...Reserved

} demcf tactleopt;

* mcfid

Specify the MCF communication process identifier of the MCF communication
service for the logical terminal to be processed. The permitted value range is from
0to239.

If you specify 0, the system searches for the MCF communication service to
which the specified logical terminal name belongs. In a configuration where many
MCF communication services are running or when you issue this function many
times from a UAP, we recommend that you specify the MCF communication
process identifier.

¢ resv0l
Fill the area with null characters.
* ijdnam

Specify the name of the logical terminal that is released from shutdown status.
The logical terminal name must be specified as a maximum of § bytes of
characters and must end with the null character.

* resv02, resv03, resv04
Fill the areas with null characters.
B proinf

Specify a protocol-specific area.

dc_mcf_tactle - Release a logical terminal from shutdown status

If you do not use a function that depends on the communication protocol, specify
NULL.

The following shows the format of a protocol-specific area.

proinf

L Protocol-specific area

The maximum size of a protocol-specific area is 1024 bytes.

The permitted value depends on the communication protocol being used. For details,
see the applicable OpenTP1 Protocol manual.

B resv02, resv03, resv04
Specify NULL.
Return values

Return value Return value Explanation
(numeric)
DCMCFRTN_ 00000 0 | Normal termination.
DCMCFRTN 71001 -12001 | The dc_mcf tactle () function cannot be accepted because the

MCF is under start processing.

DCMCFRTN_ 71002 -12002 | The dc_mcf tactle () function cannot be accepted because the
MCF is under termination processing.

DCMCFRTN_71004 -12004 | A memory shortage occurred during dc_mcf_tactle () function
processing.

DCMCFRTN 71005 -12005 | A communication error occurred. For the cause, see the message log
file.

DCMCFRTN_ 71006 -12006 | An internal error occurred. For the cause, see the message log file.

DCMCFRTN_71008 -12008 | The specified logical terminal name has not been registered.

DCMCFRTN_71009 -12009 | Thedc_mcf tactle () function is not supported by the applicable

MCF communication process.

DCMCFRTN_71010 -12010 | Although the request to release the logical terminal from shutdown
status was issued to the MCF communication process, the request
was not accepted. For the cause, see the message log file.

247

dc_mcf_tactle - Release a logical terminal from shutdown status

Return value Return value Explanation
(numeric)
DCMCFRTN 71011 -12011 | The dc_mcf_tactle () function cannot be accepted because the
logical terminal has been deleted.
DCMCFRTN_72050 -13050 | DCMCFLE is not set in action.
An unsupported flag is set in action.
DCMCFRTN_ 72051 -13051 | NULL is set in leopt.
DCMCFRTN_ 72052 -13052 | When DCMCFPRO is not set in action:
NULL is not set in proinf.
When DCMCFPRO is set in action:
A value smaller than 0 or a value 1025 or greater is specified for the
size of protocol-specific area L pointed to by proinf.
DCMCFRTN 72053 -13053 | NULL is not set in resv02.
DCMCFRTN_ 72054 -13054 | NULL is not set in resv03.
DCMCFRTN 72055 -13055 | NULL is not set in resvo04.
DCMCFRTN_ 72061 -13061 | A value smaller than 0 or a value 240 or greater is specified for
mcfidin demecf tactleopt.
DCMCFRTN_ 72062 -13062 | resv0lindcmcf_ tactleopt is not filled with null characters.
DCMCFRTN 72063 -13063 | idnamindcmcf_tactleopt begins with the null character.
DCMCFRTN 72064 -13064 | resv02in decmcf_tactleopt is not filled with null characters.
DCMCFRTN 72065 -13065 | resv03 indecmcf_tactleopt is not filled with null characters.
DCMCFRTN_ 72067 -13067 | resv04 in decmcf_tactleopt is not filled with null characters.
DCMCFRTN 72073 -13073 | The character string setin idnamindcmcf_tactleopt is 9 or more
bytes in length.
DCMCFRTN_ 72074 -13074 | The character string set in idnamin dcmcf tactleopt contains an

invalid character.

248

dc_mcf_tdctcen - Release a connection

dc_mcf_tdctcn - Release a connection

Format
B ANSIC, C++

#include <dcmcf.h>

int dc_mcf tdctcen (DCLONG action, dcmcf tdctcnopt *cnopt,
char *proinf, DCLONG *resv02, char *resv03,
char *resv04)

B K&RC

#include <dcmcf.hs>
int dc_mcf tdctcen (action, cnopt, proinf, resv02, resv03, resv04)

DCLONG action;

dcmecf tdctcnopt *cnopt ;

char *proinf;

DCLONG *resv02;

char *resv03;

char *resv04;
Description

The dc_mcf tdcten () function releases a connection.

Normal termination of the dc_mcf tdcten () function indicates that the connection
release request was accepted successfully by the protocol product. However, this does
not necessarily mean that the connection with the remote system has been released.

If you intend to perform any connection-related operation after calling the
dc_mcf tdcten () function, first use the dc_mcf tlscn () function to check the
status of the connection.

Arguments whose values are set in the UAP
B action

Depending on the communication protocol, specify in one of the following formats the
method used to specify for this function the connection that is released:

{DCMCFLE | DCMCFCN} [| DCMCFFRC] [| DCMCFPRO]

DCMCFLE

Specifies that a logical terminal name is specified for the connection that is
released.

249

dc_mcf_tdctcn - Release a connection

250

This argument is not supported by TP1/NET/NCSB or TP1/NET/X25-Extended.
DCMCFCN

Specifies that a connection ID is specified for the connection that is released.
DCMCFFRC

Specifies that a connection is released forcibly.
DCMCFPRO

Specifies that the function depends on the communication protocol being used.
cnopt

Set in the dcmcf_tdctenopt structure the connection information to be the subject
of this function's processing.

The following shows the format of the structure:

typedef struct {

DCLONG mefid; . . .MCF communication
process identifier

char resv01l[4]; .. .Reserved

char idnam[9] ; . . . Logical terminal name
or connection ID

char resv02[7]; . .Reserved

char resv03[112]; ...Reserved

char scnnam[9] ; . . .Area used by MCF

char resv04 [7]; . Reserved

char resv05[360] ; .. .Reserved

} demcf tdctcnopt;

* mcfid

Specify the MCF communication process identifier of the MCF communication
service for the connection to be processed. The permitted value range is from 0 to
2309.

This argument is ignored when a logical terminal name is used to request a
connection release.

If you specify 0, the system searches for the MCF communication service to
which the specified connection ID belongs. In a configuration where many MCF
communication services are running or when you issue this function many times
from a UAP, we recommend that you specify the MCF communication process
identifier.

®* resv0l

dc_mcf_tdctcen - Release a connection

Fill the area with null characters.
* ijdnam

Specify the logical terminal name or connection ID of the connection to be
released. The logical terminal name or connection ID must be specified as a
maximum of § bytes of characters and must end with the null character.

* resv02, resv03, scnnam, resv04, resv05
Fill the areas with null characters.
B proinf
Specify a protocol-specific area.

If you do not use a function that depends on the communication protocol, specify
NULL.

The following shows the format of a protocol-specific area:

proinf

L Protocol-specific area

The maximum size of a protocol-specific area is 1024 bytes.

The permitted value depends on the communication protocol being used. For details,
see the applicable OpenTP1 Protocol manual.

B resv02, resv03, resv04
Specify NULL.
Return values

Return value Return value Explanation
(numeric)
DCMCFRTN_ 00000 0 | Normal termination.
DCMCFRTN 71001 -12001 | The dc_mcf tdcten () function cannot be accepted because the

MCF is under start processing.

DCMCFRTN_ 71002 -12002 | The dc_mcf tdcten () function cannot be accepted because the
MCF is under termination processing.

251

dc_mcf_tdctcn - Release a connection

Return value Return value Explanation
(numeric)

DCMCFRTN_ 71004 -12004 | A memory shortage occurred during dc_mcf tdctcen () function
processing.

DCMCFRTN 71005 -12005 | A communication error occurred. For the cause, see the message log
file.

DCMCFRTN_ 71006 -12006 | An internal error occurred. For the cause, see the message log file.

DCMCFRTN_71007 -12007 | The specified connection name has not been registered.

DCMCFRTN_ 71008 -12008 | The specified logical terminal name has not been registered.

DCMCFRTN_ 71009 -12009 | Thedc mcf tdcten() function is not supported by the applicable
MCF communication process.

DCMCFRTN_ 71010 -12010 | Although the request to release the connection was issued to the
MCF communication process, the request was not accepted. For the
cause, see the message log file.

DCMCFRTN_ 71011 -12011 | The dc_mcf_tdcten () function cannot be accepted because the
connection has been deleted.

DCMCFRTN 71014 -12014 | The specified logical terminal name belongs to TP1/NET/NCSB or
TP1/NET/X25-Extended; or, the specified connection group name
belongs to TP1/NET/OSI-TP or TP1/NET/TCP/IP.

DCMCFRTN_72050 -13050 | Anunsupported flag is set in action.

DCMCFRTN_ 72051 -13051 | NULL is set in cnopt.

DCMCFRTN_ 72052 -13052 | When DCMCFPRO is not set in action:

NULL is not set in proinf.

When DCMCFPRO is set in action:

A value smaller than 0 or a value 1025 or greater is specified for the
size of protocol-specific area L pointed to by proinf.

DCMCFRTN_72053 -13053 | NULL is not set in resv02.

DCMCFRTN 72054 -13054 | NULL is not set in resv03.

DCMCFRTN 72055 -13055 | NULL is not set in resvo04.

DCMCFRTN_72060 -13060 | DCMCFLE and DCMCFCN cannot be specified together in action.

DCMCFRTN_ 72061 -13061 | A value smaller than 0 or a value 240 or greater is specified for
mcfid in demecf tdctcnopt.

DCMCFRTN_ 72062 -13062 | resv0lin decmcf_tdctcnopt is not filled with null characters.

DCMCFRTN 72063 -13063 | idnamin dcmcf_tdctcnopt begins with the null character.

252

dc_mcf_tdctcen - Release a connection

Return value Return value Explanation
(numeric)
DCMCFRTN 72064 -13064 | resv02indcmcf_tdctcnopt is not filled with null characters.
DCMCFRTN_ 72065 -13065 | resv03indecmcf_tdctcnopt is not filled with null characters.
DCMCFRTN_ 72066 -13066 | scnnamindcmcf_tdctcnopt is not filled with null characters.
DCMCFRTN 72067 -13067 | resv04 in demcf_tdctcnopt is not filled with null characters.
DCMCFRTN 72069 -13069 | resv05 indecmcE_tdctcnopt is not filled with null characters.
DCMCFRTN_72073 -13073 | The character string set in idnam in demcf_tdctcnopt is 9 or more
bytes in length.
DCMCFRTN_72074 -13074 | The character string set in idnam in demcf_tdctcnopt contains an

invalid character.

253

dc_mcf_tdctle - Shut down a logical terminal

dc_mcf_tdctle - Shut down a logical terminal

Format

B ANSIC, C++

#include <dcmcf.h>
int dc_mcf tdctle (DCLONG action, dcmcf tdctleopt *leopt,

char *proinf, DCLONG *resv02,
char *resv03, char *resv04)

B K&RC

#include <dcmcf.h>
int dc_mcf tdctle (action, leopt, proinf, resv02, resv03, resv04)

DCLONG action;

dcmcf tdctleopt *leopt;

char *proinf;

DCLONG *resv02;

char *resv03;

char *resv04;
Description

The dc_mcf tdctle () function shuts down a logical terminal.

Normal termination of the dc_mcf tdctle () function indicates that the logical
terminal shutdown request was accepted successfully by the protocol product.
However, this does not necessarily mean that the logical terminal has been shut down.

If you intend to perform any operation related to the logical terminal after calling the
dc_mcf tdctle () function, first use the dc_mcf tlsle () function to check the
logical terminal's status.

Arguments whose values are set in the UAP

B action

254

Depending on the communication protocol, specify in one of the following formats the
method used to specify for this function the logical terminal that is shut down:

DCMCFLE [| DCMCFPRO]

DCMCFLE

Specifies that the logical terminal name is used.

dc_mcf_tdctle - Shut down a logical terminal

DCMCFPRO
Specifies that the function depends on the communication protocol being used.
B leopt

Setin a demcf_tdctleopt structure the information about the logical terminal that
is to be the subject of this function's processing.

The following shows the format of the structure:

typedef struct {

DCLONG mcfid; . . .MCF communication
process identifier

char resv0l[4]; .. .Reserved

char idnam[9] ; . . .Logical terminal name

char resv02[7]; .. .Reserved

char resv03[112]; ...Reserved

char resv04 [376]; ...Reserved

} demcf tdctleopt;

* mcfid

Specify the MCF communication process identifier of the MCF communication
service for the logical terminal that is to be processed. The permitted value range
is from 0 to 239.

If you specify 0, the system searches for the MCF communication service to
which the specified logical terminal name belongs. In a configuration where many
MCF communication services are running or when you issue this function many
times from a UAP, we recommend that you specify the MCF communication
process identifier.

¢ resv0l
Fill the area with null characters.
® ijdnam

Specify the name of the logical terminal to be shut down. The logical terminal
name must be specified as a maximum of 8 bytes of characters and must end with
the null character.

* resv02, resv03, resv04
Fill the areas with null characters.
B proinf
Specify a protocol-specific area.

If you do not use a function that depends on the communication protocol, specify

255

dc_mcf_tdctle - Shut down a logical terminal

NULL.

The following shows the format of a protocol-specific area:

proinf

L Protocol-specific area

The maximum size of a protocol-specific area is 1024 bytes.

The permitted value depends on the communication protocol being used. For details,
see the applicable OpenTP1 Protocol manual.

B resv02, resv03, resv04
Specify NULL.

Return values

Return value Return value Explanation
(numeric)
DCMCFRTN_ 00000 0 | Normal termination.
DCMCFRTN_ 71001 -12001 | The dc_mcf_tdctle () function cannot be accepted because the

MCEF is under start processing.

DCMCFRTN_ 71002 -12002 | The dc_mcf_tdctle () function cannot be accepted because the
MCEF is under termination processing.

DCMCFRTN_71004 -12004 | A memory shortage occurred during dc_mcf_tdctle () function
processing.

DCMCFRTN 71005 -12005 | A communication error occurred. For the cause, see the message log
file.

DCMCFRTN_ 71006 -12006 | An internal error occurred. For the cause, see the message log file.

DCMCFRTN_71008 -12008 | The specified logical terminal name has not been registered.

DCMCFRTN_71009 -12009 | Thedc mcf_tdctle() function is not supported by the applicable

MCF communication process.

DCMCFRTN_71010 -12010 | Although the request to shut down the logical terminal was issued to
the MCF communication process, the request was not accepted. For
the cause, see the message log file.

256

dc_mcf_tdctle - Shut down a logical terminal

Return value Return value Explanation
(numeric)
DCMCFRTN 71011 -12011 | The dc_mcf tdctle () function cannot be accepted because the
logical terminal has been deleted.
DCMCFRTN_72050 -13050 | DCMCFLE is not set in action.
An unsupported flag is set in action.
DCMCFRTN_ 72051 -13051 | NULL is set in leopt.
DCMCFRTN_ 72052 -13052 | When DCMCFPRO is not set in action:
NULL is not set in proinf.
When DCMCFPRO is set in action:
A value smaller than 0 or a value 1025 or greater is specified for the
size of protocol-specific area L pointed to by proinf.
DCMCFRTN 72053 -13053 | NULL is not set in resv02.
DCMCFRTN 72054 -13054 | NULL is not set in resv03.
DCMCFRTN 72055 -13055 | NULL is not set in resvo04.
DCMCFRTN 72061 -13061 | A value smaller than 0 or a value 240 or greater is specified for
mcfid in demcf tdctleopt.
DCMCFRTN_ 72062 -13062 | resv0lindcmcf tdctleopt is not filled with null characters.
DCMCFRTN 72063 -13063 | idnamindemcf_tdctleopt begins with the null character.
DCMCFRTN 72064 -13064 | resv02indcmcE_tdctleopt is not filled with null characters.
DCMCFRTN 72065 -13065 | resv03 indcmcf_tdctleopt is not filled with null characters.
DCMCFRTN_ 72067 -13067 | resv04 indcmcf_tdctleopt is not filled with null characters.
DCMCFRTN_ 72073 -13073 | The character string set in idnam in dcmcf_tdctleopt is 9 or more
bytes in length.
DCMCFRTN 72074 -13074 | The character string set in idnam in demcf_tdctleopt contains an

invalid character.

257

dc_mcf_tdlgle - Delete a logical terminal's output queue

dc_mcf_tdiqgle - Delete a logical terminal's output queue

Format
B ANSIC, C++

#include <dcmcf.h>

int dc_mcf tdlgle (DCLONG action, dcmcf tdlgleopt *leopt,
char *resv0l, DCLONG *resv02,
char *resv03, char *resv04)

B K&RC

#include <dcmcf.h>
int dc_mcf tdlgle (action, leopt, resv0l, resv02, resv03, resv04)

DCLONG action;
dcmcf tdlgleopt *leopt;
char *resvO0l;
DCLONG *resv02;
char *resv03;
char *resv04;

Description
The dc_mcf tdlgle () function deletes a logical terminal's output queue.

When the function deletes the output queue successfully, it sends an event that reports
that unprocessed send messages have been discarded (ERREVTA).

Arguments whose values are set in the UAP
B action
Specify DCMCFLE to indicate that a logical terminal name is being specified.
B leopt

Setin a decmcf tdlgleopt structure the connection information about the logical
terminal that is to be the subject of this function's processing.

The following shows the format of the structure:

typedef struct ({

DCLONG mcfid; . . .MCF communication
process identifier

char resv01l[4]; . . .Reserved

char idnam[9] ; . . . Logical terminal name

char resv02[7]; .. .Reserved

char resv03[112]; .. .Reserved

258

dc_mcf_tdigle - Delete a logical terminal's output queue

char resv04 [376] ; .. .Reserved
} demcf tdlgleopt;

* mcfid

Specify the MCF communication process identifier of the MCF communication
service for the logical terminal to be processed. The permitted value range is from
0to239.

If you specify 0, the system searches for the MCF communication service to
which the specified logical terminal name belongs. In a configuration where many
MCF communication services are running or when you issue this function many
times from a UAP, we recommend that you specify the MCF communication
process identifier.

¢ resv0l
Fill the area with null characters.
* ijdnam

Specify the name of the logical terminal whose output queue is deleted. The
logical terminal name must be specified as a maximum of 8 bytes of characters
and must end with the null character.

* resv02, resv03, resv04
Fill the areas with null characters.
B resv0l, resv02, resv03, resv04
Specify NULL.

Return values

Return value Return value Explanation
(numeric)
DCMCFRTN 00000 0 | Normal termination.
DCMCFRTN_ 71001 -12001 | The dc_mcf_tdlgle () function cannot be accepted because the

MCF is under start processing.

DCMCFRTN_71002 -12002 | The dc_mcf_tdlgle () function cannot be accepted because the
MCEF is under termination processing.

DCMCFRTN_71004 -12004 | A memory shortage occurred during dc_mcf_tdlgle () function
processing.

DCMCFRTN_ 71005 -12005 | A communication error occurred. For the cause, see the message log
file.

259

dc_mcf_tdlgle - Delete a logical terminal's output queue

Return value Return value Explanation
(numeric)

DCMCFRTN_ 71006 -12006 | An internal error occurred. For the cause, see the message log file.

DCMCFRTN_ 71008 -12008 | The specified logical terminal name has not been registered.

DCMCFRTN_71009 -12009 | Thedc mcf tdlgle() function is not supported by the applicable
MCF communication process.

DCMCFRTN_ 71010 -12010 | Although the request to delete the logical terminal's output queue
was issued to the MCF communication process, the request was not
accepted. For the cause, see the message log file.

DCMCFRTN 71011 -12011 | The dc_mcf_tdlgle () function cannot be accepted because the
logical terminal has been deleted.

DCMCFRTN_ 71017 -12017 | The dc_mcf_tdlgle () function cannot be accepted because the
logical terminal has not been shut down.

DCMCFRTN 71018 -12018 | The dc_mcf_tdlgle () function cannot be accepted because the
session has not been closed.

DCMCFRTN_ 71019 -12019 | The dc_mcf tdlgle () function cannot be accepted because an
alternate send operation is underway.

DCMCFRTN_72050 -13050 | DCMCFLE is not setin action.

An unsupported flag is set in action.

DCMCFRTN_ 72051 -13051 | NULL is set in leopt.

DCMCFRTN_72052 -13052 | NULL is not set in resvo01l.

DCMCFRTN_72053 -13053 | NULL is not set in resv02.

DCMCFRTN_72054 -13054 | NULL is not set in resv03.

DCMCFRTN 72055 -13055 | NULL is not set in resvo04 .

DCMCFRTN_ 72061 -13061 | A value smaller than 0 or a value 240 or greater is specified for
mcfidin demcf tdlgleopt.

DCMCFRTN_ 72062 -13062 | resv0lindcmcf tdlgleopt is not filled with null characters.

DCMCFRTN 72063 -13063 | idnamindcmcf tdlgleopt begins with the null character.

DCMCFRTN_ 72064 -13064 | resv2indcmcf tdlgleopt is not filled with null characters.

DCMCFRTN_ 72065 -13065 | resv03 in demcf_tdlgleopt is not filled with null characters.

DCMCFRTN 72067 -13067 | resv04 in demcf_tdlgleopt is not filled with null characters.

260

dc_mcf_tdigle - Delete a logical terminal's output queue

Return value Return value Explanation
(numeric)
DCMCFRTN_ 72073 -13073 | The character string set in idnam in dcmcf_tdlgleopt is 9 or more
bytes in length.
DCMCFRTN_72074 -13074 | The character string set in idnam in demcf_tdlgleopt contains an
invalid character.

261

dc_mcf_tempget - Accept temporary-stored data

dc_mcf_tempget - Accept temporary-stored data

Format
B ANSIC, C++

#include <dcmcf.hs>}
int dc_mcf tempget (DCLONG action,char *getdata,DCLONG gtempleng,
DCLONG *gdataleng,char *resv01l)

B K&R C

#include <dcmcf.h>
int dc_mcf_ tempget (action,getdata,gtempleng,gdataleng,resv0l)

DCLONG action;
char *getdata;
DCLONG gtempleng;
DCLONG *gdataleng;
char *resv0l;
Description

The function dc_mcf tempget () receives data stored in the temporary-stored area
which is used for continuous-inquiry-response processing.

For gtempleng, specify a value from 1 to 32,000 bytes. If the temporary-stored data
exceeds the length specified for gtempleng, the excess portion is truncated. If the
temporary-stored data is shorter than gtempleng -8 (with buffer format 1) or
gtempleng -6 (with buffer format 2), no processing is done for the remaining receive
area.

If there is no temporary-stored data, the function dc_mcf tempget () is executed on
the assumption that (00),, equivalent to the length specified for tempsize in the MCF

application definition is specified.

The figure below shows the format of the receive segment area. With buffer format 1,
L is 8 bytes; with buffer format 2, L is 6 bytes.

getdata
l

L gdataleng — > (Units: bytes)

Temporarily-stored data for continuous-
inquiry-response processing

Area used by MCF

gtempleng

262

dc_mcf_tempget - Accept temporary-stored data

Arguments whose values are set in the UAP
B action

Specify the type of buffer format to be used.

{DCMCFBUF1 | DCMCFBUF?2 }

DCMCFBUF1
Specify DCMCFBUF1 when using buffer format 1.
DCMCFBUF2
Specify DCMCFBUF2 when using buffer format 2.
B getdata

Specify the area for receiving temporary-stored data. After the function
dc_mcf tempget () is called, the temporary-stored data is returned to the area
indicated by getdata.

B gtempleng

Specify the length of the area for receiving temporary-stored data. The number of bytes
to be specified varies depending on the buffer format.

B resv0l
Specify a null character.
Arguments whose values are returned from OpenTP1
B getdata
The temporary-stored data is returned.
B gdataleng
The length of previously updated data is returned.
Return values

Return value Return value Explanation
(numeric)

DCMCFRTN 00000 0 | Normal termination.

DCMCFRTN 72000 -13000 | The function dc_mcf_tempget () cannot be called
from an SPP.

DCMCFRTN_ 72013 -13013 | Temporary-stored data exceeding the length of the
receive area was received. The excess portion was
truncated.

263

dc_mcf_tempget - Accept temporary-stored data

Return value Return value Explanation
(numeric)

DCMCFRTN 72016 -13016 | The value specified for action is invalid.

The value of the area pointed to by resvo01 is not a null
character.

DCMCFRTN_ 72036 -13036 | The receive area length is less than 9 bytes (with buffer
format 1) or less than 7 bytes (with buffer format 2).

DCMCFRTN_72101 -13101 | The function dc_mcf_tempget () was called from an
MHP for which type=cont
(continuous-inquiry-response type) was not specified
in the MCF application definition.

DCMCFRTN_ 72106 -13106 | The function dc_mcf tempget () was called before
the function dc_mcf_receive () for receiving the
first segment.

DCMCFRTN_ 72107 -13107 | The function dc_mcf_tempget () was called after the

function dc_mcf_contend ().

Other than the above

An unprecedented error (e.g., program damage)
occurred.

264

dc_mcf_tempput - Update temporary-stored data

dc_mcf_tempput - Update temporary-stored data

Format
B ANSIC, C++

#include <dcmcf.hs>
int dc_mcf tempput (DCLONG action,char *putdata,DCLONG pdataleng,
char *resv01l)

B K&R C

#include <dcmcf.h>
int dc_mcf_ tempput (action, putdata, pdataleng, resv0l)

DCLONG action;
char *putdata;
DCLONG pdataleng;
char *resv0l;
Description

The function dc_mcf_tempput () updates data stored in the temporary-stored area
which is used for continuous-inquiry-response processing.

Call the function dc_mcf tempget () before the function dc_ mcf tempput ().
The figure below shows the format of the send segment area. With buffer format 1, L
is 8 bytes; with buffer format 2, L is 6 bytes.

putdata
l

L pdataleng (Units: bytes)

Temporarily-stored data for continuous-

Area used by MCF A .
inquiry-response processing

Arguments whose values are set in the UAP
B action

Specify the type of buffer format to be used.

{DCMCFBUF1 | DCMCFBUF?2 }

DCMCFBUF1
Specify that buffer format 1 is used.
DCMCFBUF2

265

dc_mcf_tempput - Update temporary-stored data

Specify that buffer format 2 is used.

B putdata

Specify the area storing the temporary-stored data to be updated.

B ptempleng

Specify the length of the temporary-stored data to be updated.

B resvol

Specify a null character.

Return values

Return value Return value Explanation
(numeric)

DCMCFRTN_ 00000 0 | Normal termination.

DCMCFRTN_ 71103 -12103 | The area for updating the temporary-stored data could
not be acquired.

DCMCFRTN_72000 -13000 | The function dc_mcf_tempput () cannot be called
from an SPP.

DCMCFRTN_ 72016 -13016 | The value specified for action is invalid.

The value of the area pointed to by resvo01 is not a null
character.

DCMCFRTN_ 72035 -13035 | The value specified for the data update length exceeds
the value specified for the temporary data storage area
length in the MCF application definition.

The value specified for the data update length is less
than 1 byte.

DCMCFRTN_72101 -13101 | The function dc_mcf_tempput () was called from an
MHP for which type=cont
(continuous-inquiry-response type) was not specified
in the MCF application definition.

DCMCFRTN_ 72105 -13105 | The function dc_mcf_tempput () was called before
the function dc_mcf_tempget ().

DCMCFRTN 72106 -13106 | The function dc_mcf_tempput () was called before
the function dc_mcf_receive () for receiving the
first segment.

DCMCFRTN_ 72107 -13107 | The function dc_mcf tempput () was called after the

function dc_mcf_contend ().

266

dc_mcf_tempput - Update temporary-stored data

Return value

Return value
(numeric)

Explanation

Other than the above

An unprecedented error (e.g., program damage)

occurred.

267

dc_mcf_timer_cancel - Cancel user timer monitoring

dc_mcf_timer_cancel - Cancel user timer monitoring

Format
B ANSIC, C++

#include <dcmef.h>
int dc_mcf timer cancel (DCLONG flags,DCLONG timer id,char *lename)

B K&RC

#include <dcmef.h>
int dc_mcf timer cancel(flags,timer id,lename)

DCLONG flags;

DCLONG timer id;

char *lename;
Description

The function dc_mcf_timer cancel () cancels user timer monitoring that was set
by the function dc_mcf timer set ().

This function cancels user timer monitoring as soon as the function
dc_mcf timer cancel () returns normally.

If user timer monitoring has reached timeout and an MHP has already been started at
the time this function is called, the function dc_mcf timer cancel () returns with
the error DCMCFER_PARAM TIM_ ID.

Only a user server can call the function dc_mcf timer cancel ().
Arguments whose values are set in the UAP
B flags
Specify DCNOFLAGS.
B timer id

Specify the same timer request identifier as that specified when user timer monitoring
was set.

B lename

Specify the same logical terminal name as that specified when user timer monitoring
was set.

268

Return values

dc_mcf_timer_cancel - Cancel user timer monitoring

Return value Return value Explanation
(numeric)
DC_OK 0 | Normal termination.
DCMCFER_PARAM FLAGS -11911 | The value specified for £1ags is invalid.
DCMCFER_PARAM TIM ID -11910 | The timer request identifier specified for timer idis
not registered.
Timeout already occurred and the MHP has started, or
user timer monitoring was already canceled.
DCMCFER_PARAM LENAME -11912 | The value specified for 1ename is invalid.
DCMCFER_NO_DEFINE -11916 | The requested facility is not defined in the MCF.

269

dc_mcf_timer_set - Set user timer monitoring

dc_mcf_timer_set - Set user timer monitoring

Format
B ANSIC, C++

#include <dcmcf.h>

int dc_mcf timer set (DCLONG flags,DCLONG timer,DCLONG timer id,
char *lename,char *apname,char *data,DCLONG data_leng,
DCLONG resv0l,DCLONG resv02)

B K&RC

#include <dcmcf.h>
int dc_mcf timer set (flags, timer, timer id, lename,
apname, data, data_leng, resvO01l,

resv02)
DCLONG flags;
DCLONG timer;
DCLONG timer_id;
char *lename;
char *apname ;
char *data;
DCLONG data_leng;
DCLONG resvO0l;
DCLONG resv02;
Description

Use the function dc_mcf timer set () froma UAP to set user timer monitoring for
monitoring the desired interval. To call this function, you must specify
usertime=yes in the -p option of the MCF communication configuration definition
mcfttim.

Only a user server can call the function dc_mcf timer set ().

When the time (in seconds) specified for timer elapses (when timeout occurs), the
logical terminal specified for lename generates an event and starts the MHP having
the application name specified for apname. You can omit lename only when the UAP
is an MHP. In this case, the input source logical terminal is assumed.

The MHP to be started when timeout occurs must be a non-response-type (noans
type) MHP. The figure below shows the format of the message segment when a
message is passed to the MHP. With buffer format 1, L is 8 bytes; with buffer format
2, L is 4 bytes.

270

dc_mcf_timer_set - Set user timer monitoring

L 4 data_leng > (Unit: bytes)
Timer request Message segment passed to the
Area used by MCF identifier MHP
(timer_id) (data)

To cancel the user timer monitor set by the function dc_mcf timer set (), call the
function dc_mcf timer cancel () with the same values specified for timer id
and lename as specified in the function dc_mcf timer set ().

The time monitor starts as soon as the function dc_mcf timer set () is called.

The maximum number of time monitors you can run concurrently is indicated by the
maximum number of time monitoring requests specified for the timereqno operand in
the -p option of the MCF communication configuration definition mcfttim.

Arguments whose values are set in the UAP
B flags
Specify DCNOFLAGS.
B timer

Specify the number of seconds that are to elapse before the MHP is started after the
functiondc_mcf timer set () iscalled. The specifiable range is 1 to 360000 (from
1 second to 100 hours).

Since OpenTP1 monitors timeout at fixed intervals, an error arises between the time
specified for t imer and the time that elapses before actual detection of timeout. The
accuracy of time monitoring depends on the value of the interval of time monitoring
specified for the bt im operand in the -t option of the MCF communication
configuration definition mcfttim.

B timer id
Specify the timer request identifier.

timer_ id provides information for identifying this timer. Be sure to specify a value
for timer id that is unique in the logical terminal specified for lename.

B lename

Specify in 8 or fewer bytes the name of the logical terminal that is to generate an event
when timeout occurs. Append a null character to the end of the logical terminal name.
When omitting this value, specify a null character. The default is the input source
logical terminal.

B apname

Specify the application name of the MHP to be started. The attribute of this application

271

dc_mcf_timer_set - Set user timer monitoring

must be defined in the application attribute definition (mcfaalcap) field within the
MCEF application definition that is specified by the -a option to the MCF
communication configuration definition mcftenv. This MCF communication
configuration definition (mcftenv) is for the MCF communication server that serves
the logical terminal specified by Lename. server having the logical terminal name
specified for lename. Specify the application name in up to 8 bytes. Append a null
character to the end of the application name. The MHP must be a non-response-type
(noans type) MHP. The specified application name must be a user event.

data

Specify the contents of the message segment to be passed to the MHP to be started.
You cannot specify multiple segments. I[f no segment is to be passed to the MHP to be
started, specify a null character.

data leng

Specify the length of the segment to be passed to the MHP to be started. If no segment
is to be passed to the MHP to be started, specify 0.

The specifiable range is 0 to 256. The maximum specifiable value depends on the
maximum message length specified for the msgsize operand in the

-p option of the MCF communication configuration definition mcfttim.
resvo0l

Specify DCNOFLAGS.

resv02

Specify DCNOFLAGS.

Return values

Return value Return value Explanation
(numeric)

DC_OK 0 | Normal termination.
DCMCFER_PARAM FLAGS -11911 | The value specified for £1ags is invalid.
DCMCFER_PARAM LENAME -11912 | The value specified for 1ename is invalid
DCMCFER_PARAM TIMER -11909 | The value specified for t imer is invalid.
DCMCFER_PARAM APNAME -11913 | The value specified for apname is invalid.
DCMCFER_PARAM DATA -11915 | The value specified for data is invalid.
DCMCFER_PARAM LENG -11914 | The value specified for data_leng is invalid.

272

dc_mcf_timer_set - Set user timer monitoring

Return value Return value Explanation
(numeric)
DCMCFER_PARAM TIM ID -11910 | The timer request identifier specified for timer idis
already registered.
DCMCFER_INVALID ARGS -11900 | The value specified for an argument is invalid.
DCMCFER_NO DEFINE -11916 | The requested facility is not defined in the MCF.
DCMCFER_NO TIMER_ENT -11917 | User timer monitoring cannot be set because there is no

free space in the timer registration area. To reserve the
timer registration area, revise the value of the
timeregno operand in the -p option of the MCF
communication configuration definition mcfttim. If
required, check the values of the -p option of the MCF
manager definition mcfmcomn and the
static_shmpool_ size operand in the system
environment definition.

273

dc_mcf_tlscn - Acquire a connection status

dc_mcf_tlscn - Acquire a connection status

Format
B ANSIC, C++

#include <dcmcf.h>

int dc_mcf tlscn (DCLONG action, decmcf tlscnopt *cnopt,
char *resv0l, DCLONG *resv02,
char *resv03, DCLONG *infcnt,
demcf_cninf *inf, char *resv04)

B K&RC

#include <dcmcf.h>
int dc_mcf tlscn (action, cnopt, resv0l, resv02, resv03, infcnt,
inf, resv04)

DCLONG action;
dcmcf_tlscnopt *cnopt ;
char *resv0l;
DCLONG *resv02;
char *resv03;
DCLONG *infent;
decmcf_cninf *inf;

char *resv04;

Description
The dc_mcf tlscn () function acquires the status of a connection.
Arguments whose values are set in the UAP
B action

Specify in one of the following formats the method used to specify the connection
whose status is to be acquired:

{DCMCFLE | DCMCFCN}

DCMCFLE

Specifies that a logical terminal name is specified for the connection whose status
is to be acquired.

This argument is not supported by TP1/NET/NCSB or TP1/NET/X25-Extended.

DCMCFCN

274

dc_mcf_tlscn - Acquire a connection status

Specifies that a connection ID is specified for the connection whose status is to be
acquired.

B cnopt

Setin a demcf tlscnopt structure the information about the connection that is to be
the subject to this function's processing.

The following shows the format of the structure:

typedef struct {

DCLONG mcfid; . . .MCF communication
process identifier

char resv0l[4]; .. .Reserved

char idnam[9] ; . . .Logical terminal name
or connection ID

char resv02[7]; . . .Reserved

char resv03[112]; ...Reserved

char resv04 [376] ; . .Reserved

} demcf tlscnopt;

mcfid

Specify the MCF communication process identifier of the MCF communication
service for the connection to be processed. The permitted value range is from 0 to
2309.

This argument is ignored when a logical terminal name is used to request
connection status acquisition.

If you specify 0, the system searches for the MCF communication service to
which the specified connection ID belongs. In a configuration where many MCF
communication services are running or when you issue this function many times
from a UAP, we recommend that you specify the MCF communication process
identifier.

resvo0l
Fill the area with null characters.
idnam

Specify the logical terminal name or connection ID of the connection whose
status is to be acquired. The logical terminal name or connection ID must be
specified as a maximum of 8 bytes of characters and must end with the null
character.

resv02, resv03, resv04

Fill the areas with the null characters.

275

dc_mcf_tlscn - Acquire a connection status

B resv0l, resv02, resv03
Specify NULL.
B infcnt
Specify 1 as the number of demcf cninf areas to be used to store connection status.

When the processing is completed, the number of corresponding connections is
returned.

B inf
Specify the dcmcf _cninf area for storing the connection status.
The size of this area must be at least the size of the demcf cninf structure X infent.
B resv04
Specify NULL.
Arguments whose values are returned from OpenTP1
B infent
Returns the number of connections that were processed by this function.
B inf

Returns the demcf_cninf structure containing the information about the connection
that was processed by this function.

The following shows the format of the structure:

typedef struct ({

char idnam[9] ; . . . Connection ID
char resv01l[7]; . . .Reserved

char pnam[4]; . . . Protocol type
DCLONG status; .. . Connection status
char resv02[40] ; .. .Reserved

} demcf cninf;

¢ idnam

Sets the connection ID of the requested connection.
* resvO0l

Fills the area with null characters.
® pnam

Sets one of the following values as the protocol type of the requested connection:

276

dc_mcf_tlscn - Acquire a connection status

"UA !
TP1/NET/User Agent (OSAS/UA protocol)
'hds'
TP1/NET/HDLC (HDLC protocol)
1X25"
TP1/NET/X25 (X.25 protocol)
‘TP
TP1/NET/OSI-TP (OSI TP protocol)
'Xp
TP1/NET/XMAP3
'HS1'
TP1/NET/HSC (HSC1 protocol)
'HS2!
TP1/NET/HSC (HSC2 protocol)
'CSB'
TP1/NET/NCSB (NCSB protocol)
'NIF'
TP1/NET/OSAS-NIF (NIF protocol)
'SL2!

TP1/NET/Secondary Logical Unit - TypeP2 (SLUTYPE-P protocol
(secondary station))

'TCP"
TP1/NET/TCP/IP (TCP/IP protocol)
'X2E"
TP1/NET/X25-Extended (X.25 protocol)
status
Sets one of the following values as the status of the requested connection:
DCMCF_CNST ACT
A connection has been established.

DCMCF_CNST ACT B

277

dc_mcf_tlscn - Acquire a connection status

Connection establishment processing is underway.
DCMCF_CNST DCT
A connection has been released.
DCMCF_CNST DCT B
Connection release processing is underway.
® resv02
Fills the area with null characters.

Return values

Return value Return value Explanation
(numeric)
DCMCFRTN_ 00000 0 | Normal termination.
DCMCFRTN_ 71001 -12001 | The dc_mcf_tlscn() function cannot be accepted because the

MCEF is under start processing.

DCMCFRTN_71004 -12004 | A memory shortage occurred during dc_mcf_tlscn() function
processing.

DCMCFRTN_ 71005 -12005 | A communication error occurred. For the cause, see the message log
file.

DCMCFRTN_ 71006 -12006 | Aninternal error occurred. For the cause, see the message log file.

DCMCFRTN_ 71007 -12007 | The specified connection name has not been registered.

DCMCFRTN_71008 -12008 | The specified logical terminal name has not been registered.

DCMCFRTN_71009 -12009 | The dc_mcf_tlscn() function is not supported by the applicable

MCF communication process.

DCMCFRTN_71010 -12010 | Although the request to acquire the connection status was issued to
the MCF communication process, the request was not accepted. For
the cause, see the message log file.

DCMCFRTN 71011 -12011 | The dc_mcf tlscn() function cannot be accepted because the
connection has been deleted.

DCMCFRTN_71014 -12014 | The specified logical terminal name belongs to TP1/NET/NCSB or
TP1/NET/X25-Extended; or, the specified connection group name
belongs to TP1/NET/OSI-TP or TP1/NET/TCP/IP.

DCMCFRTN_72050 -13050 | An unsupported flag is set in action.
DCMCFRTN 72051 -13051 | NULL iS set in cnopt.
DCMCFRTN_ 72052 -13052 | NULL iS not set in resvo01.

278

dc_mcf_tlscn - Acquire a connection status

Return value Return value Explanation
(numeric)

DCMCFRTN 72053 -13053 | NULL is not set in resv02.

DCMCFRTN 72054 -13054 | NULL is not set in resv03.

DCMCFRTN 72055 -13055 | NULL is not set in resvo04.

DCMCFRTN_72056 -13056 | NULL is setin infcnt.

DCMCFRTN_72057 -13057 | NULL is set in inf.

DCMCFRTN 72060 -13060 | DCMCFLE and DCMCFCN cannot be specified together in action.

DCMCFRTN_ 72061 -13061 | A value smaller than 0 or a value 240 or greater is specified for
mcfid in demcf_tlscnopt.

DCMCFRTN 72062 -13062 | resv0lindcmcE_tlscnopt is not filled with null characters.

DCMCFRTN_ 72063 -13063 | idnamindemcf tlscnopt begins with the null character.

DCMCFRTN 72064 -13064 | resv02indcmcf_tlscnopt is not filled with null characters.

DCMCFRTN_ 72065 -13065 | resv03indcmcf_tlscnopt is not filled with null characters.

DCMCFRTN 72067 -13067 | resv04 indemcf_tlscnopt is not filled with null characters.

DCMCFRTN_72073 -13073 | The character string set in idnam in demcf_tlscnopt is 9 or more
bytes in length.

DCMCFRTN_72074 -13074 | The character string set in idnam in demcf_tlscnopt contains an
invalid character.

DCMCFRTN_ 72076 -13076 | The value 1 is not set in infent.

279

dc_mcf_tlscom - Acquire the status of MCF communication services

dc_mcf_tlscom - Acquire the status of MCF communication services

Format

B ANSIC, C++

#include <dcmcf.h>
int dc_mcf tlscom (DCLONG action, char *resv0l, DCLONG *infcnt,

demcf svinf *inf, char *resv02)

B K&RC

#include <dcmcf.h>
int dc_mcf_ tlscom (action, resv0l, infcnt, inf, resv02)

DCLONG action;

char *resv0l;

DCLONG *infent;

decmcf_svinf *inf;

char *resv02;
Description

The dc_mcf tlscom() function acquires the statuses of the MCF communication
services or application start services.

Arguments whose values are set in the UAP

B action

280

Specify DCNOFLAGS.
resv0l

Specify NULL.
infcnt

Specify the number of demcf svinf areas used to store the statuses of the MCF
communication services or application start services.

When the processing is completed, the number of corresponding MCF communication
services is returned.

inf
Specify the decmcf svinf area used to store the statuses of the MCF communication

services or application start services.

The size of this area must be at least the size of the demcf svinf structure X infent.

dc_mcf_tlscom - Acquire the status of MCF communication services

B resv02
Specify NULL.
Arguments whose values are returned from OpenTP1
B infcnt

Returns the number of application start services or MCF communication services that
have been registered in the MCF service.

B inf
Returns the demcf_svinf structure that contains information about the application

start services or MCF communication services registered in the MCF service.

The following shows the format of the structure:

typedef struct ({
DCLONG mcfid; . . . MCF communication
process identifier or
Application start
process identifier

char svname [9] ; .. .MCF communication
service name

char resv01l[7]; . . .Reserved

char pnam[20] ; . . . Protocol type

DCLONG status; . . .Status of MCF
communication service

char resv02[20] ; .. .Reserved

} demcf svinf;

* mcfid

Sets an application start process identifier or MCF communication process
identifier.

b svname

Sets the MCF communication service name.
* resvO0l

Fills the area with null characters.
® pnam

Sets the protocol type.

' MCF AAAAAAAAAAAAAAAAA !

Application start service for TP1/Message Control

281

dc_mcf_tlscom - Acquire the status of MCF communication services

'User AAgent AAAAAAAAAA !
TP1/NET/User Agent (OSAS/UA protocol)
'HDLC AMAAAAAAAAAAAA !
TP1/NET/HDLC (HDLC protocol)
1 X2 5 AAAAAAAAAAAAAAAA
TP1/NET/X25 (X.25 protocol)
TP AAMMAAAAAAAAAAAAAA !
TP1/NET/OSI-TP (OSI TP protocol)
' XMAP3 AAAAAAAAAAAAAA !
TP1/NET/XMAP3
THSC AAMAAAAAAAAAAAAA
TP1/NET/HSC (HSC protocol)
' NCSB AMAAAAAAAAAAAA !
TP1/NET/NCSB (NCSB protocol)
'OSAS -NTIF AAAAAAAAAAAA !
TP1/NET/OSAS-NIF (NIF/OSI protocol)
'NET/SLUP2 AAAAAAAAAAA !

TP1/NET/Secondary Logical Unit - TypeP2 (SLUTYPE-P protocol
(secondary station))

' TCP/ IP AAAAAAAAAAAAAA !
TP1/NET/TCP/IP (TCP/IP protocol)
' X25 - EX AAMMAAAAAAAAAAA !
TP1/NET/X25-Extended (X.25 protocol)
'UDP/ I P AAAAAAAAAAAAAA !
TP1/NET/User Datagram Protocol (UDP protocol)
* status

Sets one of the following values as the status of the MCF communication service
or application start service:

DCMCF_SVST OFLN

Service is stopped.

282

dc_mcf_tlscom - Acquire the status of MCF communication services

DCMCF_SVST START
Service is under preparation processing.
DCMCF_SVST ONLN
Service has started or is under preparation processing for termination.
DCMCF_SVST PREEND
Service is under preparation processing for terminating partial stop.
DCMCF_SVST END
Service is under stop processing.
* resv02
Fills the area with null characters.

Return values

Return value Return value Explanation
(numeric)
DCMCFRTN 00000 0 | Normal termination.
DCMCFRTN_ 71001 -12001 | The dc_mcf_tlscom() function cannot be accepted because the

MCEF is under start processing.

DCMCFRTN_71004 -12004 | A memory shortage occurred during dc_mcf_tlscom() function
processing.

DCMCFRTN_ 71005 -12005 | A communication error occurred. For the cause, see the message log
file.

DCMCFRTN 71006 -12006 | Aninternal error occurred. For the cause, see the message log file.

DCMCFRTN 72013 -13013 | The number of MCF communication services or application start

services exceeded the value specified in infent. Information about
the excess services was discarded.

DCMCFRTN_72050 -13050 | DCNOFLAGS is not set in action.
DCMCFRTN_ 72052 -13052 | NULL is not set in resvo01.

DCMCFRTN_ 72053 -13053 | NULL is not set in resv02.

DCMCFRTN 72056 -13056 | NULL is set in infcnt.

DCMCFRTN 72057 -13057 | NULL is set in inf.

DCMCFRTN_72076 -13076 | A value of 0 or smaller is set in infcnt.

283

dc_mcf_tlsle - Acquire a logical terminal status

dc_mcf_tisle - Acquire a logical terminal status

Format
B ANSIC, C++

#include <dcmcf.h>

int dc_mcf tlsle (DCLONG action, dcmcf tlsleopt *leopt,
char *resv0l, DCLONG *resv02,
char *resv03, DCLONG *infcnt,
demef _leinf2 *inf, char *resv04)

B K&RC

#include <dcmcf.h>
int dc_mcf tlsle (action, leopt, resv0l, resv02, resv03, infcnt,
inf, resv04)

DCLONG action;
dcmcf_tlsleopt *leopt;
char *resv0l;
DCLONG *resv02;
char *resv03;
DCLONG *infent;
dcmcf leinf2 *inf;

char *resv04;

Description
The dc_mcf tlsle () function acquires the status of a logical terminal.
Arguments whose values are set in the UAP
B action
Specify DCMCFLE to indicate that a logical terminal name is to be specified.
B leopt

Set in a demcf_tlsleopt structure the connection information about the logical
terminal that is to be the subject to this function's processing.

The following shows the format of the structure:

typedef struct {

DCLONG mcfid; .. .MCF communication
process identifier

char resv01l[4]; .. .Reserved

char idnam[9] ; . . . Logical terminal name

284

dc_mcf_tlsle - Acquire a logical terminal status

char resv02[7]; .. .Reserved
char resv03[112]; ...Reserved
char resv04 [376]; ...Reserved

} demcf tlsleopt;

* mcfid

Specify the MCF communication process identifier of the MCF communication
service for the logical terminal that is to be processed. The permitted value range
is from 0 to 239.

If you specify 0, the system searches for the MCF communication service to
which the specified logical terminal name belongs. In a configuration where many
MCF communication services are running or when you issue this function many
times from a UAP, we recommend that you specify the MCF communication
process identifier.

¢ resv0l
Fill the area with null characters.
® ijdnam

Specify the name of the logical terminal whose status is to be acquired. The
logical terminal name must be specified as a maximum of 8 bytes of characters
and must end with the null character.

* resv02, resv03, resv04
Fill the areas with null characters.
resv0l, resv02, resv03
Specify NULL.
infcnt

Specify 1 as the number of demcf leinf2 areas for storing the logical terminal
status.

When the processing is completed, the number of corresponding logical terminals is
returned.

inf
Specify a dcmcf leinf2 area for storing the logical terminal status information.

The size of this area must be at least the size of the dcmcf leinf2 structure X
infent.

resv04

Specify NULL.

285

dc_mcf_tlsle - Acquire a logical terminal status

Arguments whose values are returned from OpenTP1
B infcnt
Returns the number of logical terminals that were processed by this function.
W inf

Returns the dcmecf_leinf2 structure containing the information about the logical
terminal that was processed by this function.

The following shows the format of the structure:

typedef struct ({

char idnam[9] ; . . Logical terminal name
char resv01l[7]; . . .Reserved
char resv02[4]; . . .Reserved
DCLONG status; . . . Logical terminal status
char resv03[40]; .. .Reserved

} demcf leinf2;

¢ idnam
Sets the name of the requested logical terminal.
® resv0l, resv02
Fills the areas with null characters.
® status
Sets one of the following values as the status of the requested logical terminal:
DCMCF LEST ACT
Logical terminal has been released from shutdown status.
DCMCF_LEST DCT
Logical terminal has been shut down.
* resv03
Fills the area with null characters.

Return values

Return value Return value Explanation
(numeric)
DCMCFRTN_ 00000 0 | Normal termination.
DCMCFRTN_ 71001 -12001 | The dc_mcf tlsle() function cannot be accepted because the
MCEF is under start processing.

286

dc_mcf_tlsle - Acquire a logical terminal status

Return value Return value Explanation
(numeric)

DCMCFRTN 71004 -12004 | A memory shortage occurred during dc_mcf tlsle () function
processing.

DCMCFRTN 71005 -12005 | A communication error occurred. For the cause, see the message log
file.

DCMCFRTN_ 71006 -12006 | An internal error occurred. For the cause, see the message log file.

DCMCFRTN_71008 -12008 | The specified logical terminal name has not been registered.

DCMCFRTN_ 71009 -12009 | The dc_mcf tlsle() function is not supported by the applicable
MCF communication process.

DCMCFRTN_71010 -12010 | Although the request to acquire the logical terminal status was issued
to the MCF communication process, the request was not accepted.
For the cause, see the message log file.

DCMCFRTN 71011 -12011 | The dc_mcf tlsle() function cannot be accepted because the
logical terminal has been deleted.

DCMCFRTN 72050 -13050 | DCMCFLE is not set in action.
An unsupported flag is set in action.

DCMCFRTN_72051 -13051 | NULL is set in leopt.

DCMCFRTN_72052 -13052 | NULL is not set in resvo01l.

DCMCFRTN_72053 -13053 | NULL is not set in resv02.

DCMCFRTN 72054 -13054 | NULL is not set in resv03.

DCMCFRTN 72055 -13055 | NULL is not set in resvo04.

DCMCFRTN_ 72056 -13056 | NULL is set in infcnt.

DCMCFRTN_72057 -13057 | NULL is set in inf.

DCMCFRTN 72061 -13061 | A value smaller than 0 or a value 240 or greater is specified for
mcfid in demcf tlsleopt.

DCMCFRTN 72062 -13062 | resv0lindcmcE_tlsleopt is not filled with null characters.

DCMCFRTN 72063 -13063 | idnamindcmcf tlsleopt begins with the null character.

DCMCFRTN 72064 -13064 | resv02indcmcE_tlsleopt is not filled with null characters.

DCMCFRTN_ 72065 -13065 | resv03indcmcf_tlsleopt is not filled with null characters.

DCMCFRTN_ 72067 -13067 | resv04 indecmcf_tlsleopt is not filled with null characters.

287

dc_mcf_tlsle - Acquire a logical terminal status

Return value Return value Explanation
(numeric)
DCMCFRTN 72073 -13073 | The character string set in idnam in demcf_tlsleopt is 9 bytes or
more in length.
DCMCFRTN_72074 -13074 | The character string set in idnam in demcf_tlsleopt contains an
invalid character.
DCMCFRTN_72076 -13076 | The value 1 is not set in infent.

288

dc_mcf_tlsIn - Acquire the acceptance status for a server-type connection establishment request

dc_mcf_tlsIn - Acquire the acceptance status for a server-type
connection establishment request

Format
B ANSIC, C++

#include <dcmcf.hs>
int dc_mcf tlsln (DCLONG action, DCLONG mcfid, char *resvo01l,
DCLONG *infcnt, dcmcf 1lninf *inf, char *resv02)

B K&RC

#include <dcmcf.h>
int de_mcf tlsln (action, mcfid, resv0l, infcnt, inf, resvo02)

DCLONG action;
DCLONG mcfid;
char *resv0l;
DCLONG *infent;
demcf Ininf *inf;
char *resv02;
Description

The dc_mcf_tlsln() function acquires the acceptance status for a server-type
connection establishment request.

Arguments whose values are set in the UAP
B action
Set DCNOFLAGS.
B mcfid

Specify the MCF communication process identifier of the MCF communication
service that is to be processed. The permitted value range is from 1 to 239.

B resvo0ol
Specify NULL.
B infcnt

Specify 1 as the number of dcmcf 1ninf areas to be used to store the acceptance
status of the server-type connection establishment request.

When the processing is completed, the number of corresponding MCF communication
services is returned.

289

dc_mcf_tlsIn - Acquire the acceptance status for a server-type connection establishment request

B inf

Specify a decmcf 1ninf area to be used to store the acceptance status of the
server-type connection establishment request.

The size of this area must be at least the size of the demcf 1ninf structure X infent.
B resv02
Specify NULL.
Arguments whose values are returned from OpenTP1
B infcnt

Returns the number of MCF communication services that were processed by this
function.

B inf

Returns the demecf_1ninf structure containing the acceptance status of the
server-type connection establishment request for the MCF communication service that
was processed by this function.

The following shows the format of the structure:

typedef struct ({
DCLONG status; . . . Acceptance status
char resv01l[60]; . . .Reserved
} demcf lninf;

¢ status

Sets one of the following values as the acceptance status of the server-type
connection establishment request:

DCMCF_ LNST LISTEN

The acceptance process for the server-type connection establishment request
has started.

DCMCF_ LNST RETRY

The acceptance process for the server-type connection establishment request
is under start processing.

DCMCF_ LNST ONLN W

The acceptance process for the server-type connection establishment request
is in start request wait status.

DCMCF LNST INIT

290

dc_mcf_tlsIn - Acquire the acceptance status for a server-type connection establishment request

The acceptance process for the server-type connection establishment request

has ended.
The table below shows the relationship between the status and function
availability.
Value of status Library function availability
dc_mcf_tonln() dc_mcf_tofin()

DCMCF_LNST LISTEN N Y
DCMCF_LNST RETRY N Y
DCMCF_LNST ONLN W Y Y
DCMCF_LNST INIT Y N

Legend:
Y: Can be used
N: Cannot be used

®* resv0l

Fills the area with null characters.

Return values

Return value Return value Explanation
(numeric)

DCMCFRTN_ 00000 0 | Normal termination.

DCMCFRTN 71001 -12001 | The dc_mcf tlsln() function cannot be accepted because the
MCF is under start processing.

DCMCFRTN_ 71002 -12002 | The dec_mcf tlsln() function cannot be accepted because the
MCF is under termination processing.

DCMCFRTN_71004 -12004 | A memory shortage occurred during dc_mcf_tlsln() function
processing.

DCMCFRTN 71005 -12005 | A communication error occurred. For the cause, see the message log
file.

DCMCFRTN_ 71006 -12006 | An internal error occurred. For the cause, see the message log file.

DCMCFRTN_71009 -12009 | The dc_mcf_tlsln() function is not supported by the applicable
MCF communication process.

291

dc_mcf_tlsIn - Acquire the acceptance status for a server-type connection establishment request

Return value Return value Explanation
(numeric)

DCMCFRTN_ 71010 -12010 | Although the request to acquire the acceptance status of the
server-type connection establishment request was issued to the MCF
communication process, the request was not accepted. For the cause,
see the message log file.

DCMCFRTN_72050 -13050 | DCNOFLAGS is not set in action.

DCMCFRTN_ 72052 -13052 | NULL is not set in resvo01.

DCMCFRTN_72053 -13053 | NULL is not set in resvo02.

DCMCFRTN_72056 -13056 | NULL is setin infcnt.

DCMCFRTN_72057 -13057 | NULL is set in inf.

DCMCFRTN_ 72061 -13061 | A value of 0 or smaller or of 240 or greater is specified for mcfid.

DCMCFRTN_ 72076 -13076 | The value 1 is not set in infent.

292

dc_mcf_tofln - Stop accepting server-type connection establishment requests

dc_mcf_tofln - Stop accepting server-type connection establishment
requests

Format
B ANSIC, C++

#include <dcmcf.hs>
int dc_mcf tofln (DCLONG action, DCLONG mcfid, char *resvo01l,
char *resv02)

B K&RC

#include <dcmcf.h>
int dc_mcf tofln (action, mcfid, resv0l, resv02)

DCLONG action;
DCLONG mcfid;
char *resv0l;
char *resv02;
Description

Thedc_mcf tofln() function stops accepting server-type connection establishment
requests.

Arguments whose values are set in the UAP
B action
Set DCNOFLAGS.
B mcfid

Specify the MCF communication process identifier of the MCF communication
service that is to be processed. The permitted value range is from 1 to 239.

B resv0l, resv02
Specify NULL.
Return values

Return value Return value Explanation
(numeric)
DCMCFRTN_00000 0 | Normal termination.
DCMCFRTN 71001 -12001 | The dc_mcf tofln() function cannot be accepted because the
MCEF is under start processing.

293

dc_mcf_tofln - Stop accepting server-type connection establishment requests

Return value Return value Explanation
(numeric)

DCMCFRTN_ 71002 -12002 | The dc_mcf tofln() function cannot be accepted because the
MCEF is under termination processing.

DCMCFRTN_71004 -12004 | A memory shortage occurred during dc_mcf_tofln() function
processing.

DCMCFRTN 71005 -12005 | A communication error occurred. For the cause, see the message log
file.

DCMCFRTN_ 71006 -12006 | An internal error occurred. For the cause, see the message log file.

DCMCFRTN_71009 -12009 | The dc_mcf_tofln() function is not supported by the applicable
MCF communication process.

DCMCFRTN 71010 -12010 | Although the request to stop accepting server-type connection
establishment requests was issued to the MCF communication
process, the request was not accepted. For the cause, see the message
log file.

DCMCFRTN_72050 -13050 | DCNOFLAGS is not set in action.

DCMCFRTN_ 72052 -13052 | NULL is not set in resvo01l.

DCMCFRTN 72053 -13053 | NULL is not set in resv02.

DCMCFRTN_ 72061 -13061 | A value of 0 or smaller or of 240 or greater is specified for mcfid.

294

dc_mcf_tonlin - Start accepting server-type connection establishment requests

dc_mcf_tonin - Start accepting server-type connection
establishment requests

Format
B ANSIC, C++

#include <dcmcf.hs>
int dc_mcf tonln (DCLONG action, DCLONG mcfid, char *resvo01l,
char *resv02)

B K&RC

#include <dcmcf.h>
int dc_mcf tonln (action, mcfid, resv0l, resv02)

DCLONG action;
DCLONG mcfid;
char *resv0l;
char *resv02;
Description

Thedc_mcf _tonln () function starts accepting server-type connection establishment
requests.

Arguments whose values are set in the UAP
B action
Set DCNOFLAGS.
B mcfid

Specify the MCF communication process identifier of the MCF communication
service that is to be processed. The permitted value range is from 1 to 239.

B resv0l, resv02
Specify NULL.
Return values

Return value Return value Explanation
(numeric)
DCMCFRTN_00000 0 | Normal termination.
DCMCFRTN 71001 -12001 | The dc_mcf tonln() function cannot be accepted because the
MCEF is under start processing.

295

dc_mcf_tonlin - Start accepting server-type connection establishment requests

Return value Return value Explanation
(numeric)

DCMCFRTN_ 71002 -12002 | The dc_mcf tonln() function cannot be accepted because the
MCEF is under termination processing.

DCMCFRTN_71004 -12004 | A memory shortage occurred during dc_mcf_tonln () function
processing.

DCMCFRTN 71005 -12005 | A communication error occurred. For the cause, see the message log
file.

DCMCFRTN_ 71006 -12006 | An internal error occurred. For the cause, see the message log file.

DCMCFRTN_71009 -12009 | The dc_mcf_tonln() function is not supported by the applicable
MCF communication process.

DCMCFRTN 71010 -12010 | Although the request to start accepting server-type connection
establishment requests was issued to the MCF communication
process, the request was not accepted. For the cause, see the message
log file.

DCMCFRTN_72050 -13050 | DCNOFLAGS is not set in action.

DCMCFRTN_ 72052 -13052 | NULL is not set in resvo01l.

DCMCFRTN 72053 -13053 | NULL is not set in resv02.

DCMCFRTN_ 72061 -13061 | A value of 0 or smaller or of 240 or greater is specified for mcfid.

296

Performance verification trace (dc_prf_~)

Performance verification trace (dc_prf_~)

This section describes the functions available for the performance verification trace.
The functions for the performance verification trace are as follows:

* dc prf get trace num - Report the sequential number for an acquired
performance verification trace

* dc prf utrace put - Acquire user-specific performance verification traces

The functions (dc_prf ~) for the performance verification trace are available on
UAPs that run TP1/Server Base or TP1/LiNK. However, you must have installed TP1/
Extension 1 before you can use this facility. Note that operation will be unpredictable
if you run the facility while TP1/Extension 1 is not installed.

297

dc_prf_get_trace_num - Report the sequential number for an acquired performance verification trace

dc_prf_get_trace_num - Report the sequential number for an
acquired performance verification trace

Format
B ANSIC, C++

#include <dcprf.h>
int dc_prf get trace num(unsigned short *trace num,
DCLONG flags)

B K&R C

#include <dcprf.h>

int dc_prf get trace num(trace num, flags)
unsigned short *trace_ num;

DCLONG flags;

Description

The function dc_prf get trace num() reports the acquired sequential trace
number within the process of the latest performance verification trace (prf trace)
acquired before the function was called. It reports this information to the function call
source.

If no performance verification trace has been acquired in the process that called the
function dc_prf get trace num(), the acquired sequential trace number is 0.

Arguments whose values are set in the UAP
B trace num

Specify the leading pointer of the area in which you want to set the sequential number
for an acquired performance verification trace.

B flags
Specify DCNOFLAGS.

Return values

Return value Return value Explanation
(numeric)
DC_OK 0 | Normal termination.
DCPRFER_PARAM -4601 | The value specified for an argument is invalid.

298

dc_prf_utrace_put - Acquire user-specific performance verification traces

dc_prf_utrace_put - Acquire user-specific performance verification
traces

Format
B ANSIC, C++

#include <dcprf.hs>

int dc_prf utrace put (unsigned short event id, unsigned
short datalen, char *buffaddr,
DCLONG flags)

B K&RC

#include <dcprf.hs>

int dc_prf utrace_put (event_id, datalen, buffaddr, flags)
unsigned short event id;

unsigned short datalen;

char *buffaddr;
DCLONG flags;
Description

The function dec_prf utrace put () acquires a user-specific performance
verification trace (prf trace).

Arguments whose values are set in the UAP
B event id

Specify the event ID of the event to be acquired. The range of available event IDs is
0x0001 to 0x0040.

B datalen

Specify the data length of the trace data to be acquired. The specifiable data length is
4 bytes to 256 bytes. The data length must be a multiple of 4 bytes.

B buffaddr
Specify the leading pointer of the buffer holding the trace data to be acquired.
B flags

Specify DCNOFLAGS.

299

dc_prf_utrace_put - Acquire user-specific performance verification traces

Return values

Return value Return value Explanation
(numeric)
DC_OK 0 | Normal termination.
DCPRFER_PARAM -4601 | The value specified for an argument is invalid.

Notes

Even if the function dc_prf utrace put () returns the value DC_OK, the trace has
not necessarily been properly acquired. This is because data may be lost during trace
acquisition processing if multiple processes issue acquisition requests simultaneously
because no lock is used.

300

Remote API facility (dc_rap_~)

Remote API facility (dc_rap_~)

This section explains the functions to be used when the user uses remote API facility
to manage establishment and release of connections. The functions provided by the
remote API facility are as follows:

* dc_rap_connect - Establish a connection with a RAP-processing listener
* dc_rap_disconnect - Release a connection with a RAP-processing listener

The functions (dc_rap_~) provided by the remote API facility can be used in UAPs
of TP1/Server Base or TP1/LiNK.

301

dc_rap_connect - Establish a connection with a RAP-processing listener

dc_rap_connect - Establish a connection with a RAP-processing
listener

Format
B ANSIC, C++

#include <dcrap.h>
int dc_rap connect (char *target host, DCLONG target port,
DCRAP_SV_ID *sv_id, DCLONG rflags)

B K&R C

#include <dcrap.h>

int dc_rap connect (target host, target port, sv_id, rflags)
char *target_host;

DCLONG target port;

DCRAP SV _ID *sv_id;

DCLONG rflags;

Description

The function dc_rap connect establishes a connection between a RAP-processing
listener and a RAP-processing client.

The RAP-processing listener with which a connection is to be established is the
RAP-processing listener that was activated at target port on target host.

Arguments whose values are set in the UAP
B target host ((1 to 255 alphanumeric characters, periods, or hyphens))

Specify the host name of the OpenTP1 node on which the RAP-processing listener was
activated.

B target port <unsigned integer> ((1 to 65535))

Specify the port number of the well-known port being used by the RAP-processing
listener.

B rflags
Specify DCNOFLAGS.
Arguments whose values are returned from OpenTP1
B sv_id

A service ID is returned when the function dc_rap connect terminates normally or
DCRAPER ALREADY CONNECT is returned.

302

Return values

dc_rap_connect - Establish a connection with a RAP-processing listener

Return value Return value Explanation
(numeric)
DC_OK 0 | Normal termination. A connection was established
with the RAP-processing listener.
DCRAPER PARAM -5501 | The value specified for the argument is invalid.
DCRAPER_PROTO -5502 | The protocol is invalid. A possible cause is as follows:

* The function dc_rpc_open was not called.

e Although the rpc_rap auto connect operand
in the user service definition had been set to v, the
function dc_rap_connect was called.

* The -w option was not specified in the dcsvgde£
definition command in the user service network
definition.

DCRAPER NOMEMORY -5503 | The memory became insufficient.

DCRAPER MAX_ CONNECTION -5517 | The specified value exceeds the maximum number of
dc_rap_connect functions which can be called from
a single process.

DCRAPER_NETDOWN -5505 | A network error occurred during communication with
the RAP-processing listener.

DCRAPER TIMEDOUT -5506 | A timeout occurred during communication with the
RAP-processing listener.

DCRAPER NOSOCKET -5507 | The number of sockets became insufficient.

DCRAPER NOHOSTNAME -5508 | The host name cannot be resolved.

DCRAPER SHUTDOWN -5521 | The RAP-processing listener is being terminated.

DCRAPER NOCONTINUE -5522 | An error which prevents continuation of processing
occurred. Possible causes of the error are as follows:

* An unexpected message was received.

* A message was received unexpectedly from a
remote system.

DCRAPER SYSCALL -5523 | An unexpected error occurred during system call.

DCRAPER UNKNOWN NODE -5531 | An attempt was made to establish a connection with a
RAP-processing listener which is on an unconnected
network.

DCRAPER_NOMEMORY_ SV -5520 | The memory became insufficient on the

RAP-processing listener or RAP-processing server.

303

dc_rap_connect - Establish a connection with a RAP-processing listener

Return value Return value Explanation
(numeric)
DCRAPER TIMEOUT SV -5532 | A connection could not be established within the

message exchange monitoring time specified in the
rap_watch_ time operand of the RAP-processing
listener service definition.

DCRAPER PANIC SV -5533 | A system error occurred in the RAP-processing
listener.
DCRAPER MAX_ CONNECTION SV -5534 | The specified value exceeds the maximum number of

requests which can be accepted for connection with a
RAP-processing client that is managed by a
RAP-processing listener.

DCRAPER NOSERVICE -5528 | The RAP-processing listener is being started or
terminated.
DCRAPER ALREADY CONNECT -5529 | A connection has already been established with the

RAP-processing listener.

Note

Ifthe function dc_rap_connect returns with an error (returns with a value other than
DCRAPER ALREADY CONNECT), connection was not established with the
RAP-processing listener.

The error code acquired by the UAP trace is as follows:

0: No error

1: The function dc_rpc_open () was not called.

3: The value specified for the host name contains an error.
4: The value specified for the port number contains an error.
5: An area for storing the service ID was not specified.

6: Thedc_rap connect () function was called while the value Y was specified in the
rpc_rap auto connect operand in the user service definition. Alternatively, the
user service network definition has not been defined.

304

dc_rap_disconnect - Release a connection with a RAP-processing listener

dc_rap_disconnect - Release a connection with a RAP-processing
listener

Format
B ANSIC, C++

#include <dcrap.h>
int dc_rap disconnect (DCRAP_SV_ID sv_id, DCLONG rflags)

B K&RC

#include <dcrap.h>
int dc_rap_connect (sv_id, rflags)
DCRAP_SV_ID sv_id;
DCLONG rflags;

Description

The function dc_rap_disconnect releases a connection established between a
RAP-processing listener and a RAP-processing client.

Arguments whose values are set in the UAP
B sv_id
Specify the service ID that was received for the function dc_rap connect.
B rflags
Specify DCNOFLAGS.

Return values

Return value Return value Explanation
(numeric)

DC_OK 0 | Normal termination. The connection with the
RAP-processing listener was released.

DCRAPER PARAM -5501 | The argument is invalid. Possible causes are as follows:
* The service ID differs from the service ID received
by the function dc_rap_connect.

305

dc_rap_disconnect - Release a connection with a RAP-processing listener

Return value Return value Explanation
(numeric)
DCRAPER_PROTO -5502 | The protocol is invalid. Possible causes of the error are
as follows:

e The function dc_rpc_open was not called.

e Although the rpc_rap auto connect operand
in the user service definition had been set to v, the
function dc_rap_disconnect was called.

* The -w option was not specified in the dcsvgdef
definition command in the user service network

definition.
DCRAPER NOMEMORY -5503 | The memory became insufficient.
DCRAPER NETDOWN -5505 | A network error occurred during communication with

the RAP-processing listener.

DCRAPER _TIMEDOUT -5506 | A timeout occurred during communication with the
RAP-processing listener.

DCRAPER SHUTDOWN -5521 | The RAP-processing listener is being terminated.

DCRAPER NOCONTINUE -5522 | An error which prevents continuation of processing

occurred. Possible causes of the error are as follows:

* An unexpected message was received.

* A message was received unexpectedly from a
remote system.

DCRAPER SYSCALL -5523 | An unexpected error occurred during system call.

Note

If the function dc_rap disconnect returns with an error (returns with a value other
than DCRAPER PARAM or DCRAPER PROTO), the connection with the RAP-processing
listener was released. The error code acquired by the UAP trace is as follows:

0: No error
1: The function dc_rpc_open () was not called.

3: The dc_rap disconnect () function was called while the value Y was specified
inthe rpc rap auto connect operand in the user service definition.

306

Remote procedure call (dc_rpc_~)

Remote procedure call (dc_rpc_~)

This section gives the syntax and other information of the following OpenTP1 remote
procedure call functions which are used for client-server communication.

dc_rpc_call - Request a remote service

dc_rpc _call to - Invoke a remote service with a communication destination
specified

DCRPC_BINDTBL_SET, DCRPC_DIRECT SCHEDULE - Create the
DCRPC_BINDING TBL structure

dc_rpc_close - Terminate an application program
dc_rpc_cltsend - Report data to CUP unidirectionally

dc_rpc discard further replies - Reject the receiving of processing
results

dc_rpc discard specific reply - Reject acceptance of particular
processing results

dc_rpc _get callers address - Acquire the node address of a client UAP

dc_rpc _get error descriptor - Acquire the descriptor of an asynchronous
response-type RPC request which has encountered an error

dc_rpc_get gateway address - Acquire the node address of a gateway

dc_rpc_get service prio - Reference the schedule priority of a service
request

dc_rpc_get watch time - Reference the service response waiting inter - val
dc_rpc _mainloop - Start an SPP service
dc_rpc_open - Start an application program

dc_rpc poll any replies - Receive processing results in asynchronous
mode

dc_rpc_service retry - Retry a service function
dc_rpc_set service prio - Seta schedule priority of a service request

dc_rpc_set watch time - Update a service response waiting interval

The functions for remote procedure call (dc_rpc_~) can be used in UAPs of both
TP1/Server Base and TP1/LiNK.

307

dc_rpc_call - Request a remote service

dc_rpc_call - Request a remote service

Format
B ANSIC, C++

#include <dcrpc.h>

int dc_rpc_call (char *group, char *service, char *in,
DCULONG *in_len, char *out,
DCULONG *out_len, DCLONG flags)

B K&RC

#include <dcrpc.h>
int dc_rpc call (group, service, in, in len, out, out_ len,

flags)

char *group;

char *gservice;

char *in;

DCULONG *in len;

char *out ;

DCULONG *out_len;

DCLONG flags;
Description

The function dec_rpc_call () requests an SPP service. This function can be called
without consideration of the node containing the requesting service.

Specify a service group name and service name as arguments of the function
dc_rpc_call () torequest a service. A service request is addressed to the service
function corresponding to the specified names.

A UAP which calls the function dc_rpc_call () can be used regardless of whether
it has been executed as a transaction. When a service is requested by the function
dc_rpc_call() from the process which has been executed as a transaction, the
requested service process runs as a transaction branch.

Before this function can be used, the OpenTP1 at the node containing the server UAP
to which the service request is addressed must be active.

Receiving a signal while waiting for a response after execution of the function
dc_rpc_call() does not cause the function to be returned.

The following items are described after the list of return values. See each description
For details on the function dc_rpc _call().

(1) Arguments of the function dc_rpc_call ()
(2) Error cases of the function dc_rpc_call ()

308

dc_rpc_call - Request a remote service

(3) Timing when the function dc_rpc_call () results in error

(4) Specification for reexecuting the service request if the function dc_rpc_call ()
results in error

(5) When a priority is given to a service request

(6) Difference between return values DCRPCER_NO_SUCH_SERVICE GROUP and
DCRPCER_NET_ DOWN

(7) Specification for returning the value DCRPCER_SERVICE TERMINATED
(8) Relationship between return values and synchronization point processing
(9) Notes on requesting a service
(10) When a service is requested with domain qualification
Arguments whose values are set in the UAP
B group

Specify the SPP service group name with an ASCII character string of up to 31 bytes.
End the character string with a null character. The null character is not counted in the
length of the character string.

When requesting a service with domain qualification, specify the service group name
suffixed by an at mark (@) and the DNS domain name, and end the character string
with a null character.

B service

Specify the SPP service name with an ASCII character string of up to 31 bytes. End
the character string with a null character. The null character is not counted in the length
of the character string.

B in
Specify the input parameter of the service.

B in len
Specify the input parameter length of the service within the range from 1 to
DCRPC_MAX_MESSAGE_SIZE#.DCRPC_MAX_MESSAGE_SIZEisdeﬁnedhldcrpc.h.

#: If youused the rpc_max message size operand, the value of this data area is the
value specified in the rpc_max message size operand and not the value of
DCRPC_MAX MESSAGE SIZE (1 megabyte).

B out

Specify the area for the response from the service function. This area will receive the
response from the service function.

309

dc_rpc_call - Request a remote service

B out len

Specify the length of the response from the service function within the range from 1 to
DCRPC_MAX_MESSAGE_SIZE#. DCRPC_MAX MESSAGE SIZE isdefined indcrpc.h.

#: If youused the rpc_max message size operand, the value of this data area is the
value specified in the rpc_max message size operand and not the value of
DCRPC_MAX MESSAGE SIZE (1 megabyte).

Even if the RPC is the non response-type, you must specify the address of the area for
which the length of the response from the service is specified. If it is, the length of the
response from the service must be 0.

flags
Specify the RPC mode and option in the following format:

{DCNOFLAGS | DCRPC_NOWAIT | DCRPC_NOREPLY | DCRPC_CHAINED}
[| DCRPC_TPNOTRAN] [| DCRPC_DOMAIN]

310

DCNOFLAGS

Synchronous response-type RPC
DCRPC_NOWAIT

Asynchronous response-type RPC
DCRPC_NOREPLY

Nonresponse-type RPC
DCRPC_CHAINED

Chained RPC
DCRPC_TPNOTRAN

Specify this option not to handle the requested processing as a transaction. When
DCRPC_TPNOTRAN is specified, the processing of the service function is not
handled as a transaction even if the service is requested from the transaction.

DCRPC_DOMAIN

Specify this option when the service group name is specified with domain
qualification. An RPC with domain qualification cannot be a transaction branch.
Therefore, specify this option together with DCRPC_TPNOTRAN whenever the
function dc_rpc_call () is used from the transaction.

Specify DCRPC_TPNOTRAN and/or DCRPC_DOMAIN together with the RPC mode.
Example 1:

When a nontransaction service is requested by using a synchronous response-type

dc_rpc_call - Request a remote service

RPC, specify for flags as follows:

DCNOFLAGS ‘ DCRPC_TPNOTRAN

Example 2:

When a service is requested by using a synchronous response-type RPC with
domain qualification from the transaction, specify for flags as follows:

DCNOFLAGS | DCRPC_TPNOTRAN | DCRPC_DOMAIN

Arguments whose values are returned from server UAP
B out
The response set by the service function is returned.
B out len
The length of the response set by the service function is returned.
Return values

The following return values are returned from the OpenTP1, not from the service
function.

Return value Return value Explanation
(numeric)

0 or positive integer Normal termination. In the case of asynchronous
response-type RPC, the positive integer is the
descriptor.

DCRPCER_INVALID ARGS -301 | The value specified for the argument is invalid.

DCRPCER_PROTO -302 | The function dc_rpc_open () was not called.

DCRPCER_NO_BUFS -304 | A memory shortage occurred. Or, a service request was
not accepted because a space shortage occurred in the
message storage buffer pool

(message_store buflen operand) of the SPP to
which the service was requested.

If necessary, revise the message _store buflen
operand in the user service default definition or in the
user service definition of the SPP to which the service
was requested.

DCRPCER_NET_ DOWN -306 | A communication failure occurred.
Check if a network failure has occurred.

311

dc_rpc_call - Request a remote service

Return value Return value Explanation
(numeric)
DCRPCER_TIMED OUT -307 | The response wait time in the dc_rpc_call()

function has elapsed.

If necessary, revise the response wait time specified in
the dc_rpc_call () function (watch_time operand
and arguments in the dc_rpc_set_watch_time ()
function).

The SPP to which the service was requested terminated
abnormally during execution of a service function.
Check the cause of abnormal termination of the SPP to
which the service was requested.

DCRPCER_MESSAGE_TOO BIG -308 | The input parameter length specified in in_len
exceeded the maximum.
If necessary, revise the in_1len setting.

DCRPCER_REPLY TOO_BIG -309 | The length of the response (out_len) set in the service
function of the SPP to which the service was requested
exceeded the response length (out_1len) in the
dc_rpc_call() function.

If necessary, revise the response length (out_len) set
in the service function of the SPP to which the service
was requested.

DCRPCER_NO SUCH SERVICE GR -310 | The service group name set in group is invalid, or the
ouP SPP to which the service was requested with the service
group set in group was not running.

If necessary, revise the group setting, or start the SPP
to which the service was requested with the service
group set in group.

DCRPCER_NO_SUCH_SERVICE -311 | The service name set in service is invalid, or the
service name set in service by the SPP to which the
service was requested has not been specified in the
service operand in the user service definition file.

If necessary, revise the service setting, or specify the
service name set in service also in the service
operand for the SPP to which the service was requested.

DCRPCER_SERVICE CLOSED -312 | The SPP to which the service was requested with the
service group set in group is under server shutdown or
service shutdown status.

Check the cause of the shutdown, and then release the
SPP from shutdown status.

DCRPCER_SERVICE TERMINATIN -313 | The SPP to which the service was requested is under
G termination processing.

312

dc_rpc_call - Request a remote service

Return value

Return value
(numeric)

Explanation

DCRPCER_SERVICE NOT UP

-314

The SPP to which the service was requested with the
service group set in group is not running, or a
communication failure might have occurred during the
service request send processing.

Start the SPP to which the service was requested with
the service group set in group. If the SPP is already
running, check to see if a network failure has occurred.

While o was specified for the service request response
time (watch_time operand and an argument in the
dc_rpc_set_watch_time () function), the SPP to
which the service was requested terminated abnormally
during execution of a service function.

Check the cause of abnormal termination of the SPP to
which the service was requested.

DCRPCER_OLTF NOT UP

-315

OpenTP1 for the SPP to which the service was
requested is not running. OpenTP1 might be under
termination processing or a communication failure
might have occurred during the service request send
processing.

Start OpenTP1 for the SPP to which the service was
requested, or check for a network failure.

DCRPCER_SYSERR_AT SERVER

-316

A system error (internal conflict) occurred in the SPP to
which the service was requested.

DCRPCER_NO_BUFS_AT SERVER

-317

A memory shortage occurred in the SPP to which the
service was requested.

DCRPCER_SYSERR

-318

A system error (internal conflict) occurred in the UAP
that requested the service.

DCRPCER_INVALID REPLY

-319

The response length (out_1len) set by a service
function of the SPP to which the service was requested

is outside the range from 1 to the value defined in

DCRPC_MAX_MESSAGE_SIZE#

If necessary, revise the response length (out_len) in
the service function of the SPP to which the service was
requested.

DCRPCER_OLTF_INITIALIZING

-320

OpenTP1 for the SPP to which the service was
requested is under start processing.

313

dc_rpc_call - Request a remote service

Return value

Return value
(numeric)

Explanation

DCRPCER_NO_BUFS_RB

-323

A memory shortage occurred in the UAP that is
requesting the service or the SPP to which the service
was requested. When this value is returned, the
transaction branch rolls back.

Check whether unneeded memory was allocated by the
UAP that is requesting the service, or by the SPP to
which the service was requested.

DCRPCER_SYSERR_RB

-324

A system error (internal conflict) occurred in the UAP
that requested the service. When this value is returned,
the transaction branch rolls back.

DCRPCER_SYSERR AT SERVER R
B

-325

A system error (internal conflict) occurred in the SPP to
which the service was requested. When this value is
returned, the transaction branch rolls back.

DCRPCER_REPLY TOO BIG RB

-326

The response length (out_1len) set in the service
function of the SPP to which the service was requested
exceeded the response length (out_1len) in the
dc_rpc_call() function. When this value is returned,
the transaction branch rolls back.

If necessary, revise the response length (out_len) set
in the service function of the SPP to which the service
was requested.

DCRPCER_TRNCHK

-327

When the inter-node load-balancing facility and the
extended internode load-balancing facility are used, the
transaction attributes (atomic_update operand) do
not match among the SPPs with the same service group
name to which the service was requested. Another
possibility is that the inter-node load-balancing facility
and the extended internode load-balancing facility
cannot be used because the version of OpenTP1 at the
node to which loads are to be distributed is earlier than
that of the OpenTP1 for the UAP that is requesting the
service.

This value is returned only when the service request is
issued to an SPP that uses the inter-node load-balancing
facility and the extended internode load-balancing
facility.

If necessary, revise the transaction attribute
(atomic_update operand) of the SPP that uses the
inter-node load-balancing facility and the extended
internode load-balancing facility, or revise if necessary
the version of OpenTP1.

314

dc_rpc_call - Request a remote service

Return value

Return value
(numeric)

Explanation

The dcsvgdef definition command was used to issue a
service request to a user server with the non-transaction
attribute (the atomic_update operand is N in the user
service definition or the jnl fileless option
operand is Y in the system common definition), but a
disjunction with DCRPC_TPNOTRAN was not specified
in the £1ags argument of the dc_rpc_call()
function.

If necessary, revise the dcsvgde£ definition command
or the £lags argument of the dc_rpc_call ()
function.

DCRPCER_NO_SUCH_DOMAIN

-328

The domain name of the service group name with the
domain qualification in group is invalid.
If necessary, revise the domain name.

DCRPCER_NO_ PORT

-329

A service was requested with a domain qualification in
group, but the port number of the domain
representative schedule service was not found.

If necessary, revise the domain masters_port
operand setting in the system common definition and
the port number setting for the domain representative
schedule service in /etc/services.

DCRPCER_SERVER_BUSY

-356

The SPP to which the service was requested (on a
server that receives requests through a socket) cannot
receive the service request.

If necessary, revise the max_socket msg and
max_socket_msglen operands in the user service
definition or the user service default definition for the
SPP to which the service was requested.

DCRPCER_TESTMODE

-366

When the online tester was being used, a service
request was issued from a UAP in the test mode to an
SPP in the nontest mode or from a UAP in the nontest
mode to an SPP in the test mode.

If necessary, revise the UAP's test mode setting.

DCRPCER_NOT_TRN_EXTEND

-367

Thedc_rpc_call () function with DCRPC_TPNOTRAN
set in £1lags was called to request a service after a
chained RPC with the transaction attribute was
executed.

315

dc_rpc_call - Request a remote service

Return value

Return value
(numeric)

Explanation

DCRPCER_SECCHK

-370

The SPP to which the service was requested is
protected by the security facility.

The UAP that requested the service by executing the
dc_rpc_call() function does not have permission to
access the SPP to which the service was requested. If
necessary, revise the access permissions for the SPP to
which the service was requested.

DCRPCER_TRNCHK_EXTEND

-372

The transaction branch cannot be started because it
exceeds the maximum number of transaction branches
that can be activated concurrently in the OpenTP1 for
the SPP to which the service was requested.

If necessary, revise the setting in the

trn_tran process_count operand in the
transaction service definition.

The transaction branch cannot be started because it
exceeds the maximum number of child transaction
branches that can be activated from one transaction
branch by the UAP that is requesting the service.
If necessary, revise the setting in the
trn_max_subordinate count operand in the
transaction service definition.

DCRPC_TPNOTRAN is not specified for £1ags when a
service with domain qualification specified in a
transaction is requested.

Transaction branching cannot start because the SPP to
which the service was requested encountered a resource
manager (RM) error.

Eliminate the cause of the resource manager (RM)
error, and then re-execute the function.

In the System Environment window of TP1/LiNK, the
Transaction Facility item is not set to Yes.

If necessary, revise the Transaction Facility setting in
the System Environment window of TP1/LiNK.

316

dc_rpc_call - Request a remote service

Return value Return value Explanation
(numeric)
DCRPCER_SERVICE TERMINATED -378 | The SPP to which the service was requested terminated

abnormally during service function execution.

If necessary, revise the service function processing of
the SPP to which the service was requested. This value
is returned only for a UAP that was requesting a service
for which 00000001 was specified in the
rpc_extend_function operand in the user service
definition. If 0000000 is specified in the
rpc_extend function operand or if the operand is
omitted, DCRPCER_TIMED OUT Or
DCRPCER_SERVICE_NOT UP is returned rather than
this value.

#: If youused the rpc_max message size operand, the value of this data area is the
value specified in the rpc_max message size operand and not the value of
DCRPC_MAX MESSAGE SIZE (1 megabyte).

(1) Arguments of the function dc_rpc_call()

Arguments of the function dc_rpc _call () are explained below.

B Values passed to server UAP

Allocate an area (out) for the response from the service function before requesting a
service. The client UAP sets the following values in the function dc_rpc_call ().

Input parameter (in)
Input parameter length (in_len)
Response length (out len)

The input parameter, input parameter length, and response length values which
are set in the function dc_rpc_call () of the client UAP are passed to the
service function as is. Change the notation of character codes or digits in the
processing of the client UAP or requested service function if required. If a service
request is addressed to the service function which does not return any response,
the specified response length is ignored.

The maximum values of input parameter length and response length are declared
as DCRPC_MAX_MESSAGE SIZE' in the header file derpc . h. See the contents of
dcrpc.h to confirm the maximum values.

#: If you used the rpc_max message size operand, the value of this data area
is the value specified in the rpc_max message_size operand and not the value
of DCRPC_MAX MESSAGE_SIZE (1 megabyte).

317

dc_rpc_call - Request a remote service

318

B Values returned from server UAP

When the service function terminates and response is returned, the following values
can be referenced:

* Response from service function (out)
* Length of response from service function (out_len)

The value of out_len is the length of the response which is actually returned from the
service function. The values of out and out_1len can be referenced in the following
cases depending on the RPC mode:

* In the case of synchronous response-type RPC and chained RPC

The values of out and out_1len can be referenced when the function
dc_rpc_call () returns.

* In the case of asynchronous response-type RPC

The value of out can be referenced when the function
dc_rpc poll any replies () whichreceives the response returns. The value
of out_len cannot be referenced.

* In the case of nonresponse-type RPC
The values of out and out_1en cannot be referenced.

If the function dc_rpc_call() ordc_rpc_poll any replies () returns with an
error, the values of out and out_len cannot be referenced.

If the returned response is larger than the response area acquired by the client UAP, the
function returns with an error, giving the return value DCRPCER_REPLY TOO BIG.

Value specified for flags

The value specified for £1ags and the execution result of the function
dc_rpc_call () are explained below.

* Synchronous response-type RPC (when DCNOFLAGS is specified for flags)

The function dc_rpc_call () will not return until a response returns or a
communication error occurs.

* Asynchronous response-type RPC (when DCRPC_NOWAIT is specified for
flags)

The function dc_rpc_call () will return immediately. The response can be
referenced after the response is received asynchronously in the function
dc_rpc poll any replies (). Do not free the response storage area (out)
until the asynchronous response-type RPC is terminated due to one of the
following causes:

* A response is received by the function dc_rpc poll any replies ()

dc_rpc_call - Request a remote service

* The receiving of responses is rejected by the function
dc_rpc _discard further replies()

e Commitment or rollback is performed when a service is requested from a
transaction.

When an asynchronous response-type RPC is used in a transaction, receive
responses by using the function dc_rpc_poll any replies () before
performing the synchronization point processing (commitment or rollback). No
response can be received by the function dc_rpc_poll any replies () after
the synchronization point processing. To designate a specific response received
by the function dc_rpc_poll any replies (), specify the positive integer
(descriptor), which is returned by the function dec_rpc_call (), as the argument
of the function dc_rpc_poll any replies (). Thus, hold the return value of
the function dc_rpc_call () to designate a specific response received.

To receive responses after the synchronization point processing while in
non-transaction processing, specify the corresponding option in the
rpc_extend function operand of the system service definition.

For details about rpc_extend function, see the manual OpenTP1 System
Definition.

* Nonresponse-type RPC (when DCRPC_NOREPLY is specified for £1ags)

The function dc_rpc_call () will return immediately without waiting for
completion of the service function processing. The service function is treated as
a function which does not return any response. Therefore, the UAP requesting a
service cannot determine whether the service function has been performed. With
this specification, the response (out) and its length (out len) cannot be
referenced.

* Chained RPC (when DCRPC_CHAINED is specified for £1ags)

The function dc_rpc_call () will not return until a response is returned or a
communication error occurs. If two or more services belonging to the same
service group in chained RPCs are requested, the subsequent services can be
handled in the same process as for the service requested first.

There are the following restrictions on the use of chained RPCs:

1. The shutdown state of the user server or service cannot be detected by the second
and subsequent calls of the function dc_rpc_call ().

2. The entire user server enters in shutdown state if an error occurs during the service
function processing of the second and subsequent calls of the function
dc_rpc_call(). Services do not enter in shutdown state individually.

(2) Error cases of the function dc_rpc_call()

Reasons why the function dc_rpc_call () returns with an error are explained below.

319

dc_rpc_call - Request a remote service

B If the OpenTP1 at the node containing the server UAP is not active

If the OpenTP1 to which the service request is addressed is not active, the function
dc_rpc_call () returns with an error, giving one of the following return values:

* DCRPCER NET DOWN

* DCRPCER SERVICE NOT UP

* DCRPCER OLTF_NOT UP

* DCRPCER OLTF_INITIALIZING
B If the server UAP is not active

When the server UAP is a multiserver, the service request is dealt with a new process
which is activated by the OpenTP1 even if the server UAP is being terminated
abnormally or being partially recovered. However, the function dc_rpc_call ()
returns with an error in the following cases:

1. No service request can be addressed to the SPP in shutdown state. If the service
group is shut down, the function dc_rpc_call () returns with an error, giving
the return value DCRPCER_SERVICE_CLOSED.

2. Ifthe SPP is being terminated or has been terminated by the stop command for
the user server (dcsvstop command) or for OpenTP1 (dcstop command), the
dc_rpc_call () function returns with an error and sets one of the following
status code values:

¢ DCRPCER_SERVICE TERMINATING
¢ DCRPCER_SERVICE CLOSED
¢ DCRPCER NO_SUCH SERVICE GROUP

The value that is returned depends on the timing of calling the dc_rpc_call ()
function.

3. Ifthe OpenTP1 is being started, the function dc_rpc_call () returns with an
error, giving the return value DCRPCER_OLTF_INITIALIZING. In this case, a
service may be requested normally after activation of the server UAP or OpenTP1
is completed. Since activation of the OpenTP1 is completed when a message log
with the message ID KFCA01809-1I is output, request a service again after this
message appears.

B When a service is requested in the environment for the internode load-balancing
facility and the extended internode load-balancing facility

In the environment for the internode load-balancing facility and the extended internode
load-balancing facility, if the schedule of the applicable service is closed, OpenTP1
automatically transfers a service request to another node. However, the function
dc_rpc_call returns DCRPCER TRNCHK, and control is returned due to an error

320

dc_rpc_call - Request a remote service

under either of the following conditions:

1. For transaction processing, the transaction attribute of the service on the transfer
destination node does not match the closed service.

2. The version of the OpenTP1 on the transfer destination node is earlier than that of
the node for the OpenTP1 that requested the service.

When control is returned as a result of the foregoing error, take the following actions:

1. Force the transaction attributes of the SPPs making up the internode
load-balancing facility and the extended internode load-balancing facility to
match.

2. Force the OpenTP1 versions making up the internode load-balancing facility and
the extended internode load-balancing facility to match.

B When a service request is addressed to the server that receives requests from socket

The server that receives requests from socket controls message congestion according
to the specified values for max socket msgand max socket msglen in the user
service definition. It is probable that service requests cannot be accepted if a message
exceeds the defined value. In this case, the function dc_rpc_call () returns with an
error, giving the return value DCRPCER_SERVER_BUSY. If this value is returned, the
client UAP can sometimes reissue the service request successfully after waiting for a
while.

B When a chained RPC is used

If the function de_rpc_call () which is not a transaction is called from the UAP
using a chained RPC which is processed as a transaction to the same server UAP, the
function dc_rpc_call () returns with an error, giving the return value
DCRPCER_NOT_ TRN EXTEND.

B When the online tester is used

If the online tester is in use and the function dc_rpc_call () is called from a UAP in
test mode to a UAP in nontest mode or vice versa, the function dc_rpc_call()
returns with an error, giving the return value DCRPCER_TESTMODE.

B When the security facility is used

If the desired service is protected with the security facility when the function
dc_rpc_call () is called and the client UAP which called the function does not have
the access permission for the SPP, the function dc_rpc_call () returns with an error,
giving the return value DCRPCER_SECCHK.

(3) Timing when the function dc_rpc_call() results in error

The following explains the timing when an error is returned to the client UAP if the
SPP to which the service request is addressed terminates abnormally.

321

dc_rpc_call - Request a remote service

¢ Synchronous response-type RPC or chained RPC (when DCNOFLAGS or
DCRPC_CHAINED is specified for £1ags)

If an SPP which executes a service terminates abnormally before completion of
the processing, the function dc_rpc_call () returns with an error, giving the
return value DCRPCER_TIMED OUT. If an infinite period of time is specified in
the watch time operand in the user service definition of the client UAP, the
function returns with an error, giving the return value

DCRPCER_SERVICE NOT UP.

* Asynchronous response-type RPC (when DCRPC_NOWAIT is specified for
flags)

If an SPP which executes a service terminates abnormally before completion of
the processing, the function dc_rpc poll any replies () returns with an
error, giving the return value DCRPCER_TIMED OUT. If an infinite period of time
is specified in the watch time operand in the user service definition of the client
UAP, the function returns with an error, giving the return value
DCRPCER_SERVICE NOT UP.

* Nonresponse-type RPC (when DCRPC_NOREPLY is specified for £1ags)

The client UAP cannot detect abnormal termination of server UAP.

B When the function dc_rpc_call() results in error due to time monitoring of the client

UAP

In the following cases, the function dc_rpc_call () returns with an error, giving the
return value DCRPCER_TIMED OUT, after the time specified in the watch time
operand in the user service definition of the client UAP has elapsed:

* The entire OpenTP1 at the node containing the SPP terminates abnormally.

* An error occurs before the server UAP receives service request data or before the
client UAP receives the result after the server UAP processing is completed.

(4) Specification for reexecuting the service request if the function
dc_rpc_call() results in error

322

Even if the OpenTP1 to which the service request is issued is not active because it is
being started or is engaged in system switching, you can have the OpenTP1 re-execute
the requested search and service request transmission without treating the
dc_rpc_call () function processing as an error.

To re-execute the requested search and service request transmission, specify Y in the
rpc_retry operand in the system common definition. You use the

rpc_retry count and rpc_retry interval operands to specify the
re-execution count and re-execution interval, respectively, for a requested search and
service request transmission. If this count value exceeds the re-execution count value
specified in the system common definition, the dc_rpc call () function returns with

dc_rpc_call - Request a remote service

an error and sets one of the following status code values:

DCRPCER_INVALID ARGS
DCRPCER_NET DOWN
DCRPCER_SERVICE NOT UP
DCRPCER_NO_ SUCH_ SERVICE GROUP
DCRPCER_OLTF NOT_UP

DCRPCER_OLTF INITIALIZING

(5) When a priority is given to a service request

To specify a schedule priority for a service request, call the function

dc_rpc_set service prio () immediately before the functiondc rpc call().
If no schedule priority is specified, the priority of the service request is determined
according to the default interpretation of the schedule service.

(6) Difference between return values
DCRPCER_NO_SUCH_SERVICE_GROUP and DCRPCER_NET_DOWN

These return values are returned if the user server corresponding to the service group
name is not found.

DCRPCER_NO SUCH SERVICE_GROUP

Indicates the user server is not found after searching all nodes specified for
all node in the system common definition.

DCRPCER_NET DOWN

Indicates a communication error occurred on one or more nodes specified for
all node during the search. This return value may indicate the corresponding
OpenTP1 system is not found.

(7) Specification for returning the value
DCRPCER_SERVICE_TERMINATED

You may want to determine whether the SPP that requested a service terminated
abnormally before completion of processing based on a returned value other than
DCRPCER_TIMED OUT or DCRPCER_SERVICE NOT UP. If so, specify 00000001 in
the rpc_extend function operand ofthe user service definition. This specification
returns DCRPCER_SERVICE TERMINATED if the above error occurs. If 00000000 is
specified in the rpc extend function operand, or the operand is omitted,
DCRPCER_TIMED OUT or DCRPCER_SERVICE _NOT UP is returned rather than
DCRPCER_SERVICE TERMINATED.

323

dc_rpc_call - Request a remote service

(8) Relationship between error return values and synchronization point
processing

The relationship between return values of the function dc_rpc call () and
synchronization point processing (commitment and rollback) is explained below. The
description applies to the service request which is a transaction, rather than the service
request which is not a transaction (including the case when DCRPC_TPNOTRAN is
specified for flags).

When commitment is performed even though the function dc_rpc_call() returns with
an error

The return value DCRPCER _TIMED OUT may be returned due to abnormal termination
of the service function which the service request is addressed, a node error, or network
error. However, when the client UAP is not a transaction, the service function to which
the service request is addressed may terminate normally and database may be updated.

Error return values which require rollback processing

If the function dc_rpc_call () called from a transaction returns with an error, some
return values always require rollback processing for the transaction (the server UAP
enters rollback only state). In this case, rollback processing is always performed
even if either of the commitment function or rollback function is used. The following
return values of the function dc_rpc_call () always require rollback processing for
the transaction:

* DCRPCER INVALID REPLY
* DCRPCER NO BUFS_AT SERVER
* DCRPCER NO SUCH SERVICE

* DCRPCER REPLY TOO BIG RB

(9) Notes on requesting a service

324

1. Define the service group name and service name at server UAP environment
setup. These names are set in the function dc_rpc_call (). If a service is
requested while invalid service group name or service name is set in the function
dc_rpc_call (), the function returns with an error, giving the return value
DCRPCER_NO SUCH_SERVICE_ GROUP or DCRPCER NO_ SUCH SERVICE.Ifthe
service function does not return response, the functiondc_rpc _call () doesnot
return with an error, giving the return value DCRPCER_NO SUCH SERVICE.

2. The process of the server UAP is different from that of the client UAP. Therefore,
the following matters are different from ordinary function calls and procedure
calls:

* Attributes (such as environment variables, schedule priority (nice value))
which are given to the process of the client UAP by the OS are not passed on

dc_rpc_call - Request a remote service

to the server UAP.

* Environment settings (such as existence of specification of transaction
attribute, time limit of transaction branch, schedule priority) of the OpenTP1
specified at the node of the client UAP are not passed on to the OpenTP1 of
the server UAP.

Do not specity the same buffer area for the input parameter (in) and the response
from the service function (out).

If DCRPC_NOREPLY is specified for £1ags, the following return values will not
return:

* Errors which never occur
DCRPCER REPLY TOO BIG
DCRPCER INVALID REPLY

* Errors which cannot be detected even though they could occur
DCRPCER NO SUCH SERVICE
DCRPCER SERVICE CLOSED
DCRPCER SERVICE TERMINATING
DCRPCER SYSERR AT SERVER
DCRPCER NO BUFS AT SERVER
DCRPCER OLTF_INITIALIZING
DCRPCER SECCHK

In addition, OpenTP1 does not output a message when an error occurs. If errors
must be detected, consider specifying DCNOFLAGS for £lags
(synchronous-response-type RPC).

When a service group is requested by the function dc_rpc call() froma
transaction, an SPP is occupied until the transaction terminates. When the same
service is requested more than once by the function dc_rpc_call () from one
transaction, do the following:

* Re-estimate the values specified for the balance count operand and
parallel count operand in the user service definition according to the
number of usages.

* Request a service by using chained RPCs so that the number of processes
will not increase.

If the values specified for the balance count operand and parallel count
operand are incorrect, the transaction will shut down abnormally and a deadlock
may occur.

325

dc_rpc_call - Request a remote service

6.

When an asynchronous response-type RPC is used, the server UAP may be
occupied until the function dc_rpc_poll any replies () receives all
asynchronous responses or the function

dc_rpc discard further replies () rejects the receiving of
asynchronous responses. This may occur regardless of whether it is a transaction
or not. Increase the number of resident processes according to how many times an
asynchronous response-type RPC is used.

An asynchronous response-type RPC requires many resources in addition to
occupying the server UAP. To prevent responses from degrading performance of
UAP processing and activation of unnecessary SPPs, ensure that responses are
received or the receiving of responses is rejected after the function
dc_rpc_call () of an asynchronous response-type RPC is used.

When a response is received after an asynchronous response-type RPC is used
twice or more consecutively, specify a separate response storage area (out) for
each. If the same area is specified, a correct response cannot be received since the
second and succeeding responses override the area.

The server UAP (SPP) that requested a service using an asynchronous
response-type RPC sends a response soon after the service function is executed,
regardless of whether the process that executed the asynchronous response-type
RPC issued the function dc_rpc_poll any replies. If the same
asynchronous response-type RPC is executed numerous times simultaneously
without the function dc_rpc_poll any replies being issued, the response
sent by the SPP may stay in the TCP/IP buffer and the SPP may fail to send a
response. [f the SPP fails to send a response, no response can be received from the
SPP even if the source of the asynchronous response-type RPC issues the function
dc_rpc poll any replies.

If a large number of asynchronous response-type RPCs or non-response type
RPCs having the transaction attribute are executed, messages about transactions
sent by the SPP can no longer be received. In this case, the transactions may roll
back.

(10) When a service is requested with domain qualification

326

Specifying a service group name with domain qualification enables requesting an
OpenTP1 service in the DNS domain. Specify the service group name suffixed by an
at mark (@) and the DNS domain name for domain qualification.

B Notes on requesting a service with domain qualification

1.

To request a service with domain qualification, specify DCRPC_DOMAIN for
flags of the function dc_rpc_call (). If the service group name with domain
qualification is specified without DCRPC_DOMAIN, the functiondc_rpc_call ()
returns with an error, giving the return value

DCRPCER _NO SUCH SERVICE GROUP.

dc_rpc_call - Request a remote service

2. Ifan RPC with domain qualification is used, a transaction cannot be extended
even if the process which called the function dc_rpc_call () is a transaction.
Therefore, to request a service with domain qualification from a transaction,
specify DCRPC_NOTRAN for £1ags not to extend the transaction. When the local
domain is specified for the domain name, the transaction also cannot be extended.

3. When an RPC with domain qualification is used, a service request can be
addressed only to a server that receives requests from queue, rather than a server
that receives requests from socket.

4. A service request with domain qualification is sent to the domain-alternate
schedule service which is activated on the host registered with the
namdomainsetup command. Obtain the port number of the domain-alternate
schedule service from /etc/services. If an error occurs while transferring the
service request and multiple host names are registered with the
namdomainsetup command, transfer of the service request is attempted to other
hosts sequentially. Even if the RPC with domain qualification terminates
normally, an error may occur during transfer to the domain-alternate schedule
service.

B Preparation for requesting a service with domain qualification
Perform the following environment setup for an RPC with domain qualification:

1. Register the name of the host on which the domain alternate schedule service is
activated in the DNS domain data file by using the namdomainsetup command.

2. Define the port number of the domain alternate schedule service in /etc/
services of the host on which the OpenTP1 which requests a service with
domain qualification is activated as follows:

OpenTPlscd port-number/tcp

3. Specify the well-known port of the domain alternate schedule service for the
scd_port operand in the schedule service definition for the OpenTP1 which
activates the domain-alternate schedule service.

Note

Assume that you want to perform a transactional RPC on an OpenTP1 system other
than the domain specified in the al1_node clause of the system common definition.
In this case, you must ensure that the node identifiers (node id clause of the system
common definition) of all OpenTP1 systems in the local domain and remote domain
are unique. In addition, all the OpenTP1 systems must be version 03-02 or later. If
these conditions are not met, the transaction may not recover properly.

327

dc_rpc_call_to - Invoke a remote service with a communication destination specified

dc_rpc_call_to - Invoke a remote service with a communication
destination specified

Format
B ANSIC, C++

#include <dcrpc.h>

int dc_rpc_call to(struct DCRPC_BINDING TBL *direction,
char *group, char *service,char *in,
DCULONG *in len, char *out,
DCULONG *out_len, DCLONG flags)

B K&RC

#include <dcrpc.h>

int dc_rpc_call to(*direction, *group, *service, *in,
*in_len, *out, *out_len, flags)

struct DCRPC_BINDING TBL *direction;

char *group;
char *service;
char *in;
DCULONG *in_len;
char *out;
DCULONG *out_len;
DCLONG flags;

Description

The function dc_rpc_call to() requests an SPP service. Like the function
dc_rpc_call (), this function sets a service group name and service name as
arguments. In addition, it sets the DCRPC_BINDING_ TBL structure in which a host
name or node identifier is specified as an argument. The host name or node identifier
specified in the DCRPC_BINDING TBL structure is used as a search key that designates
the requested service. This function requests a service from the service function that
matches the setting.

However, you cannot add a domain qualification when requesting a service. In all other
respects, this function is the same as the function dec_rpc call ().

TP1/Extension 1 must be installed before you can use this facility. Note that operation
will be unpredictable if you run the facility while TP1/Extension 1 is not installed.

Arguments whose values are set in the UAP
B direction

Specify the address of the DCRPC_ BINDING TBL structure that is to store the search
key that designates the requested service. The search key is either a host name or node
identifier.

328

dc_rpc_call_to - Invoke a remote service with a communication destination specified

The following shows the format of the DCRPC_BINDING TBL structure.

struct DCRPC BINDING TBL {

char *nid; / *Storage address for node identifier* /
char *hostnm; / *Storage address for host name* /
short portno; / *Port number* /
short fillerl; / *Spare status* /
DCLONG flags; / *Attribute* /
DCLONG filler2[4]; / *Spare status* /
}i
* nid

Specify the address of the area that stores the node identifier of the requested
service node when you want to set a node identifier as the search key. End the
character string with a null character. The null character is not counted in the
length of the character string.

The node identifier must be the name specified for node id in the system
common definition. The host name of the requested service node must exist in the

global domain® (a collection of node names specified for the a11 node operand
of the system common definition).

When you do not intend to set a node identifier as the search key, specify address
0 for nid.

hostnm

Specify the address of the area that stores the host name of the requested service
node when you want to set a host name as the search key. You can specify a
character string containing between 1 and 255 characters as the host name. This
character string can consist of alphanumeric characters and special symbols, the
period, and the hyphen (except in the IP address format). End the character string
with a null character. The null character is not counted in the length of the
character string. The name of the specified host is one that can be mapped to an
IP address with the /etc/hosts file or DNS.

It is optional whether the host name of the requested service node is specified in
the global domain® (a collection of node names specified for the a11 node
operand of the system common definition).

When you do not intend to set a host name as the search key, specify address 0 for
hostnm.

portno

Specify the port number (the value specified for name port in the system

common definition) of the name service of the requested service node when you
want to set a host name as the search key. The value specified for portno is valid
only when DCRPC_NAMPORT is specified for f1ags inthe DCRPC_BINDING TBL

329

dc_rpc_call_to - Invoke a remote service with a communication destination specified

330

structure. If you specify 0 for portno or specify DCNOFLAGS for f1lags in the
DCRPC_BINDING TBL structure, the port number of the name service at the
request source and the port number of the name service at the requested service
must match.

When you set a node identifier as the search key, the value specified for portno is
ignored.

e flags
Specify DCNOFLAGS.
If you specified a value for portno, specify DCRPC_NAMPORT.

The areas fillerl and filler2 were created to allow expandability, so you
need not set values for these areas. (Do not use the member names fillerl and
filler2.)

This global domain means a group of the following node names.

When N is specified in the name_domain file use operand in the system
common definition:

The global domain is a group of node names specified in the al1 node and
all node ex operands in the system common definition.

When Y is specified in the name_domain file use operand in the system
common definition:

The global domain is a group of node names specified in the domain
definition files. The domain definition files are stored under the following
directories:

* Domain definition file for al11 node
$DCCONFPATH/dcnamnd-directory

* Domain definition file for al1 node ex
$DCCONFPATH/dcnamndex-directory

You can create the DCRPC_ BINDING TBL structure to be specified for direction in the
function dc_rpc_call to() by using the DCRPC_BINDTBL SET function or
DCRPC_DIRECT SCHEDULE function. For details, see DCRPC_BINDTBL_SET and
DCRPC_DIRECT SCHEDULE.

group

Specify the SPP service group name with an ASCII character string of upto 31 bytes.
End the character string with a null character. The null character is not counted in the
length of the character string.

dc_rpc_call_to - Invoke a remote service with a communication destination specified

B service

Specify the SPP service name with an ASCII character string of up to 31 bytes. End
the character string with a null character. The null character is not counted in the length
of the character string.

W in
Specify the input parameter of the service.
B in len

Specify the input parameter length of the service within the range from 1 to
DCRPC_MAX MESSAGE SIZE®. DCRPC_MAX MESSAGE_SIZE isdefined indcrpc.h.

#: If youused the rpc_max message size operand, the value of this data area is the
value specified in the rpc_max message size operand and not the value of
DCRPC_MAX MESSAGE SIZE (1 megabyte).

B out

Specify the area for the response from the service function. This area will receive the
response from the service function.

B out len

Specify the length of the response from the service within the range from 1 to
DCRPC_MAX MESSAGE SIZE" DCRPC MAX MESSAGE SIZEisdefinedindcrpc.h.

#: If youused the rpc_max message size operand, the value of this data area is the
value specified in the rpc_max message size operand and not the value of
DCRPC_MAX MESSAGE SIZE (1 megabyte).

Even if the RPC is the non-response-type, you must specify the address of the area for
which the length of the response from the service is specified. Note that the length of
the response from the service must be 0.

B flags
Specify the RPC mode and option in the following format:

{DCNOFLAGS | DCRPC_NOWAIT|DCRPC_NOREPLY |DCRPC_CHAINED}
[| DCRPC_TPNOTRAN]

DCNOFLAGS

Synchronous response-type RPC
DCRPC_NOWAIT

Asynchronous response-type RPC

DCRPC_NOREPLY

331

dc_rpc_call_to - Invoke a remote service with a communication destination specified

Non-response-type RPC
DCRPC CHAINED

Chained RPC
DCRPC_TPNOTRAN

Specify this option to prevent processing requested from a transaction by a service
request from being handled as a transaction. Alternatively, specify this option
when you want to use the DCRPC_DIRECT SCHEDULE function to create the
DCRPC_BINDING TBL structure, and to request a service from a user server with
the non-transaction attribute. Here, a user server has the non-transaction attribute
when N is specified for atomic_update in the user service definition or Y is set
for jnl fileless option in the system common definition.

This value must be ORed with the type of RPC.
Example:

When a nontransaction service is requested by using a synchronous response-type
RPC, specify £1ags as follows:

DCNOFLAGS ‘ DCRPC_TPNOTRAN

Arguments whose values are returned from server UAP
B out
The response set by the service function is returned.
B out len
The length of the response set by the service function is returned.
Return values
See the return values for the function dc_rpc _call ().

The return values for the function dc_rpc_call to () include the following causes
in addition to those given in the return values for the function dc_rpc_call ().

Return value Return value Explanation
(numeric)
DCRPCER _INVALID ARGS -301 | The value specified for an argument is invalid.

The host name specified in hostnm of the
DCRPC_BINDING TBL structure cannot be mapped to
an IP address with the /etc/hosts file or DNS.

332

dc_rpc_call_to - Invoke a remote service with a communication destination specified

Return value Return value Explanation
(numeric)

The DCRPC_BINDING TBL structure specified for the
first argument of the function dc_rpc_call to()
was created using the DCRPC_DIRECT SCHEDULE
function and 0 was specified for hostnm in the
DCRPC_DIRECT SCHEDULE function.

DCRPCER_NO_SUCH_SERVICE_GR -310 | Theservice group specified in group is not defined. Or,
oUP the dc_rpc_call_to() function was executed using
a facility that is not supported by the service group
specified in group.

The node identifier specified for nid in the
DCRPC_BINDING TBL structure does not exist in the

global domain” (a collection of node names specified

for the al1 node operand of the system common
definition).

DCRPCER_TRNCHK EXTEND -372 | The transaction branch cannot be started since it
exceeds the maximum number of transaction branches
that can be activated concurrently.

The transaction branch cannot be started since it
exceeds the maximum number of child transaction
branches that can be activated from one transaction
branch.

DCRPC_TPNOTRAN is not specified for £1ags when a
service with domain qualification specified in a
transaction is requested.

Transaction branching cannot start because the
resource manager (RM) has encountered an error.

The function DCRPC_DIRECT SCHEDULE was used to
create the DCRPC_BINDING TBL structure, and a
service was requested from a user server with the
non-transaction attribute (atomic_update is N in the
user service definition or jnl_fileless_optionisy
in the system common definition). However, a
disjunction with DCRPC_TPNOTRAN was not specified
for the £1ags argument of the function
dc_rpc_call_to.

In the System Environment window of TP1/LiNK, the
Transaction Facility item is not set to Yes.

This global domain means a group of the following node names.

333

dc_rpc_call_to - Invoke a remote service with a communication destination specified

When N is specified in the name _domain file use operand in the system
common definition:

The global domain is a group of node names specified in the al1 node and
all node ex operands in the system common definition.

When Y is specified in the name _domain file use operand in the system
common definition:

The global domain is a group of node names specified in the domain
definition files. The domain definition files are stored under the following
directories:

* Domain definition file for al11 node
$DCCONFPATH/dcnamnd-directory
* Domain definition file for al1 node ex

$DCCONFPATH/dcnamndex-directory

Other related items

Notes

334

See the items for the function de_rpc call ().

Take care when specifying a value for hostnm in the DCRPC_BINDING TBL
structure, hostnm in the DCRPC_BINDING SET function, or hostnm in the
DCRPC_DIRECT SCHEDULE function under a multi-homed host mode in which
multiple LAN adaptors are connected within a single machine. In such a case, do
not specify any host name on the local machine other than the host name specified
for my host in the system common definition. If you specify any other host
name, operation will be unpredictable.

If you specify both a host name and node identifier in the DCRPC_BINDING TBL
structure, the host name is valid and the node identifier is ignored.

If you specify 0 for both the host name and node identifier in the
DCRPC_BINDING TBL structure, operation is exactly the same as for the function
dc_rpc_call().

To request a service directly from a user server managed by the schedule service,
be sure to create the DCRPC_BINDING TBL structure using the
DCRPC_DIRECT SCHEDULE function.

If you create the DCRPC_BINDING TBL structure using the

DCRPC_DIRECT SCHEDULE function and request a service from a user server
that receives requests from socket (socket is specified for receive from in the
user service definition), the function dc_rpc_call to() returns with the error
DCRPCER_SERVICE NOT UP.

10.

11.

dc_rpc_call_to - Invoke a remote service with a communication destination specified

This note applies when you call the function dc_rpc_call to() with the
DCRPC_BINDING TBL structure created by the function

DCRPC_DIRECT SCHEDULE specified in order to request a service from a user
server with the non-transaction attribute. Here, a user server has the
non-transaction attribute when N is specified for the atomic_update operand in
the user service definition or Y is specified for the jnl fileless option
operand in the system common definition. In this case, you must specify a
disjunction with DCRPC_TPNOTRAN in the £lags argument of the function
dc_rpc_call to(). Failure to specify disjunction causes the function
dc_rpc _call to() to return the error DCRPCER TRNCHK EXTEND.

If you call the function dc_rpc_call to() in which you specified a
DCRPC_BINDING TBL structure created using the DCRPC_DIRECT SCHEDULE
function, OpenTP1 running the requested service must be Version 03-02 or later.
Operation is not guaranteed if the version is earlier than 03-02.

You cannot issue an RPC that has a domain qualification. Specifying
DCRPC_DOMAIN for £lags in the function dc_rpc call to() causes the
function to return the error DCRPCER_INVALID ARGS.

In the following case, the function dc_rpc_call to () may return the error
DCRPCER_TIMED OUT: You used a host name as the search key when calling the
function dc_rpc_call to() from a service group on a node that is not
specified in the a1l node operand of the system common definition, and
subsequently you stopped or restarted OpenTP1 running on the called node and
again called the function dc_rpc _call to() from the same service group
using a host name as the search key.

When the function dc_rpc_call to() isrequested by specifying the
DCRPC_BINDING TBL structure that was created with the
DCRPC_DIRECT SCHEDULE function for direction of the function
dc_rpc call to(),the rpc_ retry operand becomes invalid.

The performance verification trace can be obtained when the function
dc_rpc_call to() isrequested by specifying the DCRPC_BINDING TBL
structure that was created with the DCRPC_DIRECT SCHEDULE function for
direction of the function dc_rpc call to(), but it cannot be linked to the
information about the UAP performance verification trace in the request
destination. The serial number of the performance verification trace obtained with
the client UAP is not inherited in the server UAP.

335

DCRPC_BINDTBL_SET and DCRPC_DIRECT_SCHEDULE - Create the DCRPC_BINDING_TBL structure

DCRPC_BINDTBL_SET and DCRPC_DIRECT_SCHEDULE - Create
the DCRPC_BINDING_TBL structure

Format
B ANSIC, C++

#include <dcrpc.h>
void DCRPC_BINDTBL_SET (struct DCRPC_BINDING TBL *direction,
char *nid, char *hostnm,
short portno, DCLONG flags)
void DCRPC_DIRECT SCHEDULE (struct DCRPC_BINDING_TBL
*direction, char *hostnm,
short scdport, DCLONG flags)

B K&RC

#include <dcrpc.hs>}

void DCRPC_BINDTBL_ SET (*direction, *nid, *hostnm,
portno, flags)

struct DCRPC_BINDING TBL *direction;

char *nid;
char *hostnm;
short portno;
DCLONG flags;
void DCRPC_DIRECT SCHEDULE (*direction, *hostnm, scdport,
flags)
struct DCRPC_BINDING TBL *direction;
char *hostnm;
short scdport;
DCLONG flags;
Description

Create the DCRPC_BINDING TBL structure to be specified for the first argument of the
function dc_rpc_call to() by using one of the following functions:

B DCRPC BINDTBL_SET function

Specify the node identifier (nid) or host name (hostnm) of the requested service
node in the DCRPC_BINDING TBL structure to create the first argument for the
function dc_rpc_call to().

B DCRPC DIRECT SCHEDULE function

Specify the host name (hostnm) of the requested service node and the port
number (scdport) of the specified schedule service in the
DCRPC_BINDING TBL structure to create the first argument for the function
dc_rpc_call to().

When you call the function dc_rpc_call to() in which you specified a

336

DCRPC_BINDTBL_SET and DCRPC_DIRECT_SCHEDULE - Create the DCRPC_BINDING_TBL structure

DCRPC_BINDING TBL structure created using the DCRPC_DIRECT SCHEDULE
function, OpenTP1 sends a service request directly to the user server managed by the
specified schedule service. However, you can use a DCRPC_BINDING TBL structure
creating using the DCRPC_DIRECT SCHEDULE function only when requesting a
service from a queue-receiving (queue is specified for receive_from in the user service
definition) user server.

You must observe numerous rules when calling the function dc_rpc_call to() in
which you specified a DCRPC_BINDING TBL structure created using the
DCRPC_DIRECT SCHEDULE function. For example, you must be aware of the version
of OpenTP1 running the requested service and the transaction attribute of the user
server. For details, see the notes for the function dc_rpc _call to().

Arguments whose values are set in the UAP
B direction

Specify the address of the DCRPC_BINDING TBL structure used for the first argument
of the function dc_rpc _call to().
B nid

In the DCRPC_BINDTBL_SET function, specify the address of the area that stores the
node identifier when you want to set a node identifier as the search key that designates
the requested service. End the character string with a null character. The null character
is not counted in the length of the character string.

The node identifier must be the name specified for node id in the system common
definition and the host name of the requested service node must exist in the global
domain® (a collection of node names specified for the al1 node operand of the
system common definition).
When you do not intend to set a node identifier as the search key, specify address 0 for
nid.
#

This global domain means a group of the following node names.

When N is specified in the name domain file use