
OpenTP1 Version 7
Programming Guide

3000-3-D51-30(E)

Relevant program products
Note: In the program products listed below, those marked with an asterisk (*) might be released later than the other program
products.
For AIX 5L V5.1, AIX 5L V5.2, AIX 5L V5.3, and AIX V6.1
P-1M64-2131 uCosminexus TP1/Server Base 07-03*
P-1M64-2331 uCosminexus TP1/FS/Direct Access 07-03*
P-1M64-2431 uCosminexus TP1/FS/Table Access 07-03*
P-1M64-2531 uCosminexus TP1/Client/W 07-02
P-1M64-2631 uCosminexus TP1/Offline Tester 07-00
P-1M64-2731 uCosminexus TP1/Online Tester 07-00
P-1M64-2831 uCosminexus TP1/Multi 07-00
P-1M64-2931 uCosminexus TP1/High Availability 07-00
P-1M64-3131 uCosminexus TP1/Message Control 07-03
P-1M64-3231 uCosminexus TP1/NET/Library 07-04
P-1M64-8131 uCosminexus TP1/Shared Table Access 07-00
P-1M64-8331 uCosminexus TP1/Resource Manager Monitor 07-00
P-1M64-8531 uCosminexus TP1/Extension 1 07-00
P-1M64-C371 uCosminexus TP1/Message Queue 07-01
P-1M64-C771 uCosminexus TP1/Message Queue - Access 07-01
P-F1M64-31311 uCosminexus TP1/Message Control/Tester 07-00
P-F1M64-32311 uCosminexus TP1/NET/User Agent 07-00
P-F1M64-32312 uCosminexus TP1/NET/HDLC 07-00
P-F1M64-32313 uCosminexus TP1/NET/X25 07-00
P-F1M64-32314 uCosminexus TP1/NET/OSI-TP 07-00
P-F1M64-32315 uCosminexus TP1/NET/XMAP3 07-01
P-F1M64-32316 uCosminexus TP1/NET/HSC 07-00
P-F1M64-32317 uCosminexus TP1/NET/NCSB 07-00
P-F1M64-32318 uCosminexus TP1/NET/OSAS-NIF 07-01
P-F1M64-3231B uCosminexus TP1/NET/Secondary Logical Unit - TypeP2 07-00
P-F1M64-3231C uCosminexus TP1/NET/TCP/IP 07-02
P-F1M64-3231D uCosminexus TP1/NET/High Availability 07-00
P-F1M64-3231U uCosminexus TP1/NET/User Datagram Protocol 07-00
R-1M45F-31 uCosminexus TP1/Web 07-00
For AIX 5L V5.3 and AIX V6.1
P-1M64-1111 uCosminexus TP1/Server Base(64) 07-03*
P-1M64-1311 uCosminexus TP1/FS/Direct Access(64) 07-03*
P-1M64-1411 uCosminexus TP1/FS/Table Access(64) 07-03*
P-1M64-1911 uCosminexus TP1/High Availability(64) 07-00
P-1M64-1L11 uCosminexus TP1/Extension 1(64) 07-00
For HP-UX 11i V1 (PA-RISC) and HP-UX 11i V2 (PA-RISC)
P-1B64-3F31 uCosminexus TP1/NET/High Availability 07-00
P-1B64-8531 uCosminexus TP1/Extension 1 07-00
P-1B64-8931 uCosminexus TP1/High Availability 07-00
R-18451-41K uCosminexus TP1/Client/W 07-00
R-18452-41K uCosminexus TP1/Server Base 07-00

R-18453-41K uCosminexus TP1/FS/Direct Access 07-00
R-18454-41K uCosminexus TP1/FS/Table Access 07-00
R-18455-41K uCosminexus TP1/Message Control 07-03*
R-18456-41K uCosminexus TP1/NET/Library 07-04*
R-18459-41K uCosminexus TP1/Offline Tester 07-00
R-1845A-41K uCosminexus TP1/Online Tester 07-00
R-1845C-41K uCosminexus TP1/Shared Table Access 07-00
R-1845D-41K uCosminexus TP1/Resource Manager Monitor 07-00
R-1845E-41K uCosminexus TP1/Multi 07-00
R-1845F-41K uCosminexus TP1/Web 07-00
R-F18455-411K uCosminexus TP1/Message Control/Tester 07-00
R-F18456-411K uCosminexus TP1/NET/User Agent 07-00
R-F18456-415K uCosminexus TP1/NET/XMAP3 07-01*
R-F18456-41CK uCosminexus TP1/NET/TCP/IP 07-02*
For HP-UX 11i V2 (IPF) and HP-UX 11i V3 (IPF)
P-1J64-3F21 uCosminexus TP1/NET/High Availability 07-00
P-1J64-4F11 uCosminexus TP1/NET/High Availability(64) 07-00
P-1J64-8521 uCosminexus TP1/Extension 1 07-00
P-1J64-8611 uCosminexus TP1/Extension 1(64) 07-00
P-1J64-8921 uCosminexus TP1/High Availability 07-00
P-1J64-8A11 uCosminexus TP1/High Availability(64) 07-00
P-1J64-C371 uCosminexus TP1/Message Queue 07-01
P-1J64-C571 uCosminexus TP1/Message Queue(64) 07-01
P-1J64-C871 uCosminexus TP1/Message Queue - Access(64) 07-00
R-18451-21J uCosminexus TP1/Client/W 07-02
R-18452-21J uCosminexus TP1/Server Base 07-03*
R-18453-21J uCosminexus TP1/FS/Direct Access 07-03*
R-18454-21J uCosminexus TP1/FS/Table Access 07-03*
R-18455-21J uCosminexus TP1/Message Control 07-03*
R-18456-21J uCosminexus TP1/NET/Library 07-04*
R-18459-21J uCosminexus TP1/Offline Tester 07-00
R-1845A-21J uCosminexus TP1/Online Tester 07-00
R-1845C-21J uCosminexus TP1/Shared Table Access 07-00
R-1845D-21J uCosminexus TP1/Resource Manager Monitor 07-00
R-1845E-21J uCosminexus TP1/Multi 07-00
R-1845F-21J uCosminexus TP1/Web 07-00
R-1B451-11J uCosminexus TP1/Client/W(64) 07-02
R-1B452-11J uCosminexus TP1/Server Base(64) 07-03*
R-1B453-11J uCosminexus TP1/FS/Direct Access(64) 07-03*
R-1B454-11J uCosminexus TP1/FS/Table Access(64) 07-03*
R-1B455-11J uCosminexus TP1/Message Control(64) 07-03*
R-1B456-11J uCosminexus TP1/NET/Library(64) 07-04*
R-F18455-211J uCosminexus TP1/Message Control/Tester 07-00
R-F18456-215J uCosminexus TP1/NET/XMAP3 07-01*

R-F18456-21CJ uCosminexus TP1/NET/TCP/IP 07-02*
R-F1B456-11CJ uCosminexus TP1/NET/TCP/IP(64) 07-02*
For Solaris 8, Solaris 9, and Solaris 10
P-9D64-3F31 uCosminexus TP1/NET/High Availability 07-00
P-9D64-8531 uCosminexus TP1/Extension 1 07-00
P-9D64-8931 uCosminexus TP1/High Availability 07-00
R-19451-216 uCosminexus TP1/Client/W 07-00
R-19452-216 uCosminexus TP1/Server Base 07-00
R-19453-216 uCosminexus TP1/FS/Direct Access 07-00
R-19454-216 uCosminexus TP1/FS/Table Access 07-00
R-19455-216 uCosminexus TP1/Message Control 07-03*
R-19456-216 uCosminexus TP1/NET/Library 07-04*
R-19459-216 uCosminexus TP1/Offline Tester 07-00
R-1945A-216 uCosminexus TP1/Online Tester 07-00
R-1945C-216 uCosminexus TP1/Shared Table Access 07-00
R-1945D-216 uCosminexus TP1/Resource Manager Monitor 07-00
R-1945E-216 uCosminexus TP1/Multi 07-00
R-F19456-2156 uCosminexus TP1/NET/XMAP3 07-01*
R-F19456-21C6 uCosminexus TP1/NET/TCP/IP 07-02*
For Red Hat Enterprise Linux AS 4 (AMD64 & Intel EM64T), Red Hat Enterprise Linux AS 4 (x86), Red Hat Enterprise Linux ES
4 (AMD64 & Intel EM64T), and Red Hat Enterprise Linux ES 4 (x86)
P-9S64-2161 uCosminexus TP1/Server Base 07-00
P-9S64-2351 uCosminexus TP1/FS/Direct Access 07-00
P-9S64-2451 uCosminexus TP1/FS/Table Access 07-00
P-9S64-2551 uCosminexus TP1/Client/W 07-00
P-9S64-3151 uCosminexus TP1/Message Control 07-00
P-9S64-3251 uCosminexus TP1/NET/Library 07-00
P-9S64-C371 uCosminexus TP1/Message Queue 07-01
P-F9S64-3251C uCosminexus TP1/NET/TCP/IP 07-00
P-F9S64-3251U uCosminexus TP1/NET/User Datagram Protocol 07-00
R-1845F-A15 uCosminexus TP1/Web 07-00
For Red Hat Enterprise Linux AS 4 (AMD64 & Intel EM64T), Red Hat Enterprise Linux AS 4 (x86), Red Hat Enterprise Linux ES
4 (AMD64 & Intel EM64T), Red Hat Enterprise Linux ES 4 (x86), Red Hat Enterprise Linux 5 (AMD/Intel 64), Red Hat Enterprise
Linux 5 (x86), Red Hat Enterprise Linux 5 Advanced Platform (AMD/Intel 64), and Red Hat Enterprise Linux 5 Advanced Platform
(x86)
P-9S64-2951 uCosminexus TP1/High Availability 07-00
P-9S64-8551 uCosminexus TP1/Extension 1 07-00
P-9S64-C771 uCosminexus TP1/Message Queue - Access 07-01
P-F9S64-3251D uCosminexus TP1/NET/High Availability 07-00
For Red Hat Enterprise Linux 5 (AMD/Intel 64), Red Hat Enterprise Linux 5 (x86), Red Hat Enterprise Linux 5 Advanced Platform
(AMD/Intel 64), and Red Hat Enterprise Linux 5 Advanced Platform (x86)
P-9S64-2171 uCosminexus TP1/Server Base 07-03
P-9S64-2361 uCosminexus TP1/FS/Direct Access 07-03
P-9S64-2461 uCosminexus TP1/FS/Table Access 07-03
P-9S64-2561 uCosminexus TP1/Client/W 07-02
P-9S64-3161 uCosminexus TP1/Message Control 07-03*

P-9S64-3261 uCosminexus TP1/NET/Library 07-04*
P-9S64-C571 uCosminexus TP1/Message Queue 07-01
P-F9S64-32611 uCosminexus TP1/NET/User Agent 07-00
P-F9S64-3261C uCosminexus TP1/NET/TCP/IP 07-02
P-F9S64-3261U uCosminexus TP1/NET/User Datagram Protocol 07-00
For Red Hat Enterprise Linux 5 (AMD/Intel 64) and Red Hat Enterprise Linux 5 Advanced Platform (AMD/Intel 64)
P-9W64-2111 uCosminexus TP1/Server Base(64) 07-03
P-9W64-2311 uCosminexus TP1/FS/Direct Access(64) 07-03
P-9W64-2411 uCosminexus TP1/FS/Table Access(64) 07-03
P-9W64-2911 uCosminexus TP1/High Availability(64) 07-02
P-9W64-8511 uCosminexus TP1/Extension 1(64) 07-02
For Red Hat Enterprise Linux AS 4 (IPF)
P-9V64-2121 uCosminexus TP1/Server Base 07-00
P-9V64-2321 uCosminexus TP1/FS/Direct Access 07-00
P-9V64-2421 uCosminexus TP1/FS/Table Access 07-00
P-9V64-2521 uCosminexus TP1/Client/W 07-00
P-9V64-3121 uCosminexus TP1/Message Control 07-00
P-9V64-3221 uCosminexus TP1/NET/Library 07-00
P-9V64-C371 uCosminexus TP1/Message Queue(64) 07-01
P-9V64-C771 uCosminexus TP1/Message Queue - Access(64) 07-00
P-F9V64-3221C uCosminexus TP1/NET/TCP/IP 07-00
P-F9V64-3221U uCosminexus TP1/NET/User Datagram Protocol 07-00
For Red Hat Enterprise Linux AS 4 (IPF), Red Hat Enterprise Linux 5 (Intel Itanium), and Red Hat Enterprise Linux 5 Advanced
Platform (Intel Itanium)
P-9V64-2921 uCosminexus TP1/High Availability 07-00
P-9V64-8521 uCosminexus TP1/Extension 1 07-00
P-F9V64-3221D uCosminexus TP1/NET/High Availability 07-00
For Red Hat Enterprise Linux 5 (Intel Itanium) and Red Hat Enterprise Linux 5 Advanced Platform (Intel Itanium)
P-9V64-2131 uCosminexus TP1/Server Base 07-02
P-9V64-2331 uCosminexus TP1/FS/Direct Access 07-02
P-9V64-2431 uCosminexus TP1/FS/Table Access 07-02
P-9V64-2531 uCosminexus TP1/Client/W 07-02
P-9V64-3131 uCosminexus TP1/Message Control 07-03*
P-9V64-3231 uCosminexus TP1/NET/Library 07-04*
P-F9V64-3231C uCosminexus TP1/NET/TCP/IP 07-02*
P-F9V64-3231U uCosminexus TP1/NET/User Datagram Protocol 07-00
For Windows 2000, Windows Server 2003, Windows Server 2003 x64 Editions, Windows Server 2003 R2, Windows Server 2003
R2 x64 Editions, Windows XP, Windows Vista, and Windows Vista x64
P-2464-2144 uCosminexus TP1/Client/P 07-02
For Windows 2000, Windows Server 2003, Windows Server 2003 x64 Editions, Windows Server 2003 R2, Windows Server 2003
R2 x64 Editions, and Windows XP
R-1845F-8134 uCosminexus TP1/Web 07-00
For Windows 2000, Windows Server 2003, Windows Server 2003 x64 Editions, Windows Server 2003 R2, Windows Server 2003
R2 x64 Editions, Windows XP, Windows Vista, Windows Vista x64, Windows Server 2008, and Windows Server 2008 x64
P-2464-7824 uCosminexus TP1/Client for .NET Framework 07-03

R-15451-21 uCosminexus TP1/Connector for .NET Framework 07-03
For Windows Server 2003, Windows Server 2003 x64 Editions, Windows Server 2003 R2, Windows Server 2003 R2 x64 Editions,
Windows XP, Windows Vista, Windows Vista x64, Windows Server 2008, and Windows Server 2008 x64
P-2464-2274 uCosminexus TP1/Server Base 07-03*
P-2464-2374 uCosminexus TP1/FS/Direct Access 07-03*
P-2464-2474 uCosminexus TP1/FS/Table Access 07-03*
P-2464-2544 uCosminexus TP1/Extension 1 07-00
P-2464-3154 uCosminexus TP1/Message Control 07-03*
P-2464-3254 uCosminexus TP1/NET/Library 07-04*
P-2464-3354 uCosminexus TP1/Messaging 07-00
P-2464-C374 uCosminexus TP1/Message Queue 07-01
P-2464-C774 uCosminexus TP1/Message Queue - Access 07-00
P-F2464-3254C uCosminexus TP1/NET/TCP/IP 07-02*
R-15452-21 uCosminexus TP1/Extension for .NET Framework 07-00
R-1945B-24 uCosminexus TP1/LiNK 07-02
For Windows Server 2003, Windows Server 2003 x64 Editions, Windows Server 2003 R2, Windows Server 2003 R2 x64 Editions,
and Windows XP
P-F2464-32545 uCosminexus TP1/NET/XMAP3 07-01*
For Windows Server 2003, Windows Server 2003 x64 Editions, Windows Server 2003 R2, Windows Server 2003 R2 x64 Editions,
Windows Server 2008, and Windows Server 2008 x64
P-2464-2934 uCosminexus TP1/High Availability 07-00
P-F2464-3254D uCosminexus TP1/NET/High Availability 07-00
For Java VM
P-2464-7394 uCosminexus TP1/Client/J 07-02
P-2464-73A4 uCosminexus TP1/Client/J 07-02
This manual can be used for products other than the products shown above. For details, see the Release Notes.
This product was developed under a quality management system that has received ISO9001 and TickIT certification.

Trademarks
AIX is a trademark of International Business Machines Corporation in the United States, other countries, or both.
AIX 5L is a trademark of International Business Machines Corporation in the United States, other countries, or both.
AMD, AMD Opteron, and combinations thereof, are trademarks of Advanced Micro Devices, Inc.
COBOL/2 is a trademark of International Business Machines Corporation in the United States, other countries, or both.
Gauntlet is a registered trademark of Network Associates, Inc. and/or its affiliates in the US and/or other countries.
HP-UX is a product name of Hewlett-Packard Company.
Itanium is a trademark of Intel Corporation in the United States and other countries.
Java is either a registered trademark or a trademark of Oracle and/or its affiliates.
Linux(R) is the registered trademark of Linus Torvalds in the U.S. and other countries.
Microsoft is either a registered trademark or a trademark of Microsoft Corporation in the United States and/or other countries.
MS-DOS is a registered trademark of Microsoft Corp. in the U.S. and other countries.
ORACLE is either a registered trademark or a trademark of Oracle and/or its affiliates.
Oracle is either a registered trademark or a trademark of Oracle Corporation and/or its affiliates.
Oracle and Oracle 10g are either registered trademarks or trademarks of Oracle and/or its affiliates.
Oracle and Oracle9i are either registered trademarks or trademarks of Oracle and/or its affiliates.
OSF is a trademark of the Open Software Foundation, Inc.
Red Hat is a trademark or a registered trademark of Red Hat Inc. in the United States and other countries.

Solaris is either a registered trademark or a trademark of Oracle and/or its affiliates.
UNIX is a registered trademark of The Open Group in the United States and other countries.
Windows is either a registered trademark or a trademark of Microsoft Corporation in the United States and/or other countries.
Windows Server is either a registered trademark or a trademark of Microsoft Corporation in the United States and/or other countries.
Windows Vista is either a registered trademark or a trademark of Microsoft Corporation in the United States and/or other countries.
X/Open is a registered trademark of The Open Group in the U.K. and other countries.
Portions of this document are extracted from X/Open CAE Specification System Interfaces and Headers, Issue 4, (C202 ISBN
1-872630-47-2) Copyright (C) July 1992, X/Open Company Limited with the permission of X/Open;
part of which is based on IEEE Std 1003.1-1990, (C) 1990 Institute of Electrical and Electronics Engineers, Inc., and IEEE Std
1003.2/D12, (C) 1992 Institute of Electrical and Electronics Engineers, Inc.
No further reproduction of this material is permitted without the prior permission of the copyright owners.
Portions of this document are extracted from X/Open Preliminary Specification Distributed Transaction Processing: The TxRPC
Specification (P305 ISBN 1-85912-000-8) Copyright (C) July 1993, X/Open Company Limited with the permission of X/Open.
No further reproduction of this material is permitted without the prior permission of the copyright owners.
Portions of this document are copyrighted by Open Software Foundation, Inc.
This document and the software described herein are furnished under a license, and may be used and copied only in accordance with
the terms of such license and with the inclusion of the above copyright notice. Title to and ownership of the document and software
remain with OSF or its licensors.
Other product and company names mentioned in this document may be the trademarks of their respective owners. Throughout this
document Hitachi has attempted to distinguish trademarks from descriptive terms by writing the name with the capitalization used
by the manufacturer, or by writing the name with initial capital letters. Hitachi cannot attest to the accuracy of this information. Use
of a trademark in this document should not be regarded as affecting the validity of the trademark.

Restrictions
Information in this document is subject to change without notice and does not represent a commitment on the part of Hitachi. The
software described in this manual is furnished according to a license agreement with Hitachi. The license agreement contains all of
the terms and conditions governing your use of the software and documentation, including all warranty rights, limitations of liability,
and disclaimers of warranty.
Material contained in this document may describe Hitachi products not available or features not available in your country.
No part of this material may be reproduced in any form or by any means without permission in writing from the publisher.
Printed in Japan.

Edition history
Edition 1 (3000-3-D51(E)): June 2006
Edition 3 (3000-3-D51-30(E)): October 2010

Copyright
All Rights Reserved. Copyright (C) 2006, 2010, Hitachi, Ltd.

Summary of amendments
The following table lists changes in this manual (3000-3-D51-30(E)) and product
changes related to this manual for uCosminexus TP1/Server Base 07-03, uCosminexus
TP1/Server Base(64) 07-03, uCosminexus TP1/Message Control 07-03, uCosminexus
TP1/Message Control(64) 07-03, uCosminexus TP1/NET/Library 07-04, and
uCosminexus TP1/NET/Library(64) 07-04

The following table lists changes in this manual (3000-3-D51-30(E)) and product
changes related to this manual for uCosminexus TP1/Message Control 07-02 and
uCosminexus TP1/NET/Library 07-03

Changes Location

A note has been added about coding of OpenTP1 UAPs. 1.3.1(3)

A note about the dc_clt_chained_accept_notification function has been
added to the explanation about the CUP on the receiving end.

2.1.10

An explanation about global domains has been added. 2.1.17

The prctee process, used to redirect the standard output and standard error output
of OpenTP1, can now be stopped and restarted.
With this change, the following command has been added:
• prctctrl

2.4.1(1)

Application timer start request statuses can now be displayed.
With this change, the following command has been added:
• mcfalstap

2.4.1(1)

User timer monitoring statuses can now be displayed.
With this change, the following command has been added:
• mcftlsutm

2.4.1(1), 3.8.4

Explanations have been added about the causes of MCF events that report UAP
abnormal terminations and that report discarding of unprocessed messages.

3.7.1(3)(a), Table 3-16 in
3.10

An explanation has been added regarding the fact that timer start request messages
are immediately discarded and an ERREVTA error event is reported when an
OpenTP1 normal termination command is executed.

3.10.5(1)

The description has been added about an item in the examples/tools/ directory. 8.1.2(1)(b)

Changes Location

The facility for dynamic loading of service functions can now be used by MHPs. 1.2.3(1), 1.3.4(3), 2.1.19

Library functions can now be used to display the statuses of the MCF
communication service and the application start service.
With this change, the following functions have been added:
• dc_mcf_tlscom

• CBLDCMCF('TLSCOM ')

Table 1-2 in 1.4.2(1), Table
1-7 in 1.4.2(2), 3.1

Library functions can now be used to display connection statuses, and to establish
and release connections.
With this change, the following functions have been added:
• dc_mcf_tactcn

• dc_mcf_tdctcn

• dc_mcf_tlscn

• CBLDCMCF('TACTCN ')

• CBLDCMCF('TDCTCN ')

• CBLDCMCF('TLSCN ')

Table 1-2 in 1.4.2(1), Table
1-7 in 1.4.2(2), 3.2, 3.2.1,
3.2.2

Library functions can now be used to start and stop reception of server-type
connection establishment requests.
With this change, the following functions have been added:
• dc_mcf_tofln

• dc_mcf_tonln

• CBLDCMCF('TOFLN ')

• CBLDCMCF('TONLN ')

Table 1-2 in 1.4.2(1), Table
1-7 in 1.4.2(2), 3.2.3

Library functions can be now used to display the reception status of connection
establishment requests.
With this change, the following functions have been added:
• dc_mcf_tlsln

• CBLDCMCF('TLSLN ')

Table 1-2 in 1.4.2(1), Table
1-7 in 1.4.2(2), 3.2.3

Library functions can now be used to delete application timer start requests.
With this change, the following functions have been added:
• dc_mcf_adltap

• CBLDCMCF('ADLTAP ')

Table 1-2 in 1.4.2(1), Table
1-7 in 1.4.2(2), 3.3

Library functions can now be used to display the status of logical terminals, shut
down logical terminals, release the shutdown status of logical terminals, and delete
the output queues of logical terminals.
With this change, the following functions have been added:
• dc_mcf_tactle

• dc_mcf_tdctle

• dc_mcf_tdlqle

• dc_mcf_tlsle

• CBLDCMCF('TACTLE ')

• CBLDCMCF('TDCTLE ')

• CBLDCMCF('TDLQLE ')

• CBLDCMCF('TLSLE ')

Table 1-2 in 1.4.2(1), Table
1-7 in 1.4.2(2), 3.4, Table
3-16 in 3.10, 3.10.5

The network status of messages exchanged with a remote system can now be
displayed.
With this change, the following command has been added:
• mcftlsln

2.4.1(1)

Changes Location

The following table lists changes in this manual (3000-3-D51-30(E)) and product
changes related to this manual for uCosminexus TP1/Message Control 07-01 and
uCosminexus TP1/NET/Library 07-01

In addition to the above changes, minor editorial corrections have been made.

The following table lists changes in the manual (3000-3-D51-20(E)) and product
changes related to that manual for uCosminexus TP1/Server Base 07-02, uCosminexus
TP1/Message Control 07-01, and uCosminexus TP1/NET/Library 07-01.

The following table lists changes in the manual (3000-3-D51-20(E)) and product
changes related to that manual for uCosminexus TP1/Server Base 07-01.

Explanations have been added about the functional differences between functions
used in operations and the corresponding operation commands.

3.1(2), 3.2.1(3), 3.2.3(1),
3.3(2), 3.4(4)

Explanations have been added about the relationship between products that support
communications protocols and functions used in operations.

3.5

Changes Location

Starting and stopping the reception of server-type connection establishment
requests can now be performed manually.
With this change, the following commands have been added:
• mcftofln

• mcftonln

2.4.1(1)

MCF information can now be acquired as real-time statistical information. 8.1.2(2)(a), 8.10

Changes

A facility for outputting audit logs has been added.
With this addition, a method of acquiring audit logs from a UAP has been added.

A facility for dynamic loading of service functions has been added.

The description of the remote API facility has been changed.

Changes

A function has been added for displaying the product name, version number, and other information about products
operating in environments set up in the OpenTP1directory.
With this addition, the dcpplist command has been added.

Changes Location

i

Preface

This manual explains how to create application programs which can be used with the
following program products of OpenTP1:

• Distributed transaction processing facility TP1/Server Base

• Distributed application server TP1/LiNK

In this manual, an application program which is created by the user is abbreviated to a
User Application Program (UAP).

Products described in this manual, other than those for which the manual is released,
may not work with OpenTP1 Version 7 products. You need to confirm that the products
you want to use work with OpenTP1 Version 7 products.

Intended readers
This manual is intended for programmers who create application programs used with
TP1/Server Base or TP1/LiNK.

Readers of this manual are assumed to have knowledge about operating systems,
online systems, handling of the machine to be used, and the syntax of the high-level
language (C, C++, or COBOL) used for coding application programs.

This manual assumes that the reader has read the OpenTP1 Description manual or
TP1/LiNK User's Guide manual.

Organization of this manual
This manual is organized into the following chapters and appendixes:

1. OpenTP1 Application Programs
This chapter outlines application programs used with OpenTP1.

2. Basic OpenTP1 Facilities (TP1/Server Base, TP1/LiNK)
This chapter explains the facilities available with application programs which run
at nodes comprising only the base product of OpenTP1 system, TP1/Server Base
or TP1/LiNK.

3. Facilities Provided by TP1/Message Control
This chapter explains the facilities available with application programs which run
at nodes where the product for message exchanging mode communication, TP1/
Message Control, is installed in the system.

ii

4. Facilities for User Data
This chapter explains how to use various user files with OpenTP1 application
programs.

5. X/Open-compliant Application Programming Interface
This chapter explains the X/Open specification which is useful for OpenTP1
application programs.

6. X/Open-compliant Inter-application Communication (TxRPC)
This chapter explains the X/Open specification which can be created as an
OpenTP1 application program (TxRPC interface).

7. Facilities Provided by TP1/Multi
This chapter explains the facilities available with application programs which run
at nodes where the product TP1/Multi for a cluster/parallel mode OpenTP1
system is installed in the system.

8. OpenTP1 Samples
This chapter explains how to use samples given by the OpenTP1 for easy setup of
the system.

A. Output Format of Undecided Transaction Information
This appendix explains the output format of undecided transaction information to
be used for analyzing the conditions of transactions which have not been
processed successfully.

B. Output Format of Deadlock Information
This appendix explains the output format of deadlock and timeout information
which will be output by OpenTP1 when a deadlock between application programs
occurs.

C. Examples of System Configurations Requiring Consideration of the
Multi-Scheduler Facility

This appendix explains the examples of system configurations for which you
should consider the multi-scheduler facility and examples of resolutions. As
systems become larger and machines and networks boast increasingly better
performances, conventional scheduler may experience difficulty scheduling
messages efficiently.

Related publications
This manual is part of a related set of manuals. The manuals in the set are listed below
(with the manual numbers):

iii

OpenTP1 products

• OpenTP1 Version 7 Description (3000-3-D50(E))

• OpenTP1 Version 7 Programming Guide (3000-3-D51(E))

• OpenTP1 Version 7 System Definition (3000-3-D52(E))

• OpenTP1 Version 7 Operation (3000-3-D53(E))

• OpenTP1 Version 7 Programming Reference C Language (3000-3-D54(E))

• OpenTP1 Version 7 Programming Reference COBOL Language
(3000-3-D55(E))

• OpenTP1 Version 7 Messages (3000-3-D56(E))

• OpenTP1 Version 7 Tester and UAP Trace User's Guide (3000-3-D57(E))

• OpenTP1 Version 7 TP1/Client User's Guide TP1/Client/W, TP1/Client/P
(3000-3-D58(E))

• OpenTP1 Version 7 TP1/Client User's Guide TP1/Client/J (3000-3-D59(E))

• OpenTP1 Version 7 TP1/LiNK User's Guide (3000-3-D60(E))#

• OpenTP1 Version 7 Protocol TP1/NET/TCP/IP (3000-3-D70(E))

• OpenTP1 Version 7 TP1/Message Queue User's Guide (3000-3-D90(E))#

• OpenTP1 Version 7 TP1/Message Queue Messages (3000-3-D91(E))#

• OpenTP1 Version 7 TP1/Message Queue Application Programming Guide
(3000-3-D92(E))#

• OpenTP1 Version 7 TP1/Message Queue Application Programming Reference
(3000-3-D93(E))#

Other OpenTP1 products

• TP1/Web User's Guide and Reference (3000-3-D62(E))#

Other related products

• Indexed Sequential Access Method ISAM (3000-3-046(E))

• XP/W (3000-3-047(E))

• Extended Mapping Service 2/Workstation XMAP2/W DESCRIPTION/USER'S
GUIDE (3000-7-421(E))

• SEWB 3 General Information (3000-7-450(E))

• Job Management Partner 1/Base User's Guide (3020-3-K06(E))

iv

• Job Management Partner 1/Base Messages (3020-3-K07(E))

• Job Management Partner 1/Base Software Developer's Guide (3020-3-K08(E))

For OpenTP1 protocol manuals, please check whether English versions are available.

#

If you want to use this manual, confirm that it has been published. (Some of these
manuals might not have been published yet.)

Reference manuals for using TP1/Message Control (message exchanging
facility)

The OpenTP1 Version 6 Programming Reference manual does not contain information
about syntax which, when TP1/Message Control is in use, is specific to products
supporting the communication protocol. For the syntax of the following APIs, see the
OpenTP1 Protocol manual in the version for the pertinent protocol:

• Receive a message (dc_mcf_receive(), CBLDCMCF('RECEIVE '))

• Receive a synchronous message (dc_mcf_recvsync(),
CBLDCMCF('RECVSYNC'))

• Send a response message (dc_mcf_reply(), CBLDCMCF('REPLY '))

• Resend a message (dc_mcf_resend(), CBLDCMCF('RESEND '))

• Send a message (dc_mcf_send(), CBLDCMCF('SEND '))

• Exchange a synchronous message (dc_mcf_sendrecv(),
CBLDCMCF('SENDRECV'))

• Send a synchronous message (dc_mcf_sendsync(),
CBLDCMCF('SENDSYNC'))

Conventions: Abbreviations for product names
This manual uses the following abbreviations for product names:

Abbreviation Full name or meaning

AIX AIX 5L V5.1

AIX 5L V5.2

AIX 5L V5.3

AIX V6.1

Client .NET TP1/Client for .NET
Framework

uCosminexus TP1/Client for .NET Framework

Connector .NET TP1/Connector for
.NET Framework

uCosminexus TP1/Connector for .NET Framework

v

DPM JP1/ServerConductor/Deployment Manager

HI-UX/WE2 HI-UX/workstation Extended Version 2

HP-UX HP-UX (IPF) HP-UX 11i V2 (IPF)

HP-UX 11i V3 (IPF)

HP-UX (PA-RISC) HP-UX 11i V1 (PA-RISC)

HP-UX 11i V2 (PA-RISC)

IPF Itanium(R) Processor Family

Java JavaTM

JP1 JP1/AJS2 JP1/AJS2 - Agent JP1/Automatic Job Management System 2 - Agent

JP1/AJS2 -
Manager

JP1/Automatic Job Management System 2 - Manager

JP1/AJS2 - View JP1/Automatic Job Management System 2 - View

JP1/AJS2 -
Scenario
Operation

JP1/AJS2 - Scenario
Operation Manager

JP1/Automatic Job Management System 2 - Scenario
Operation Manager

JP1/AJS2 - Scenario
Operation View

JP1/Automatic Job Management System 2 - Scenario
Operation View

JP1/NETM/Audit JP1/NETM/Audit - Manager

Linux Linux(R)

Linux (AMD64/Intel EM64T/x86) Red Hat Enterprise Linux AS 4 (AMD64 & Intel EM64T)

Red Hat Enterprise Linux AS 4 (x86)

Red Hat Enterprise Linux ES 4 (AMD64 & Intel EM64T)

Red Hat Enterprise Linux ES 4 (x86)

Red Hat Enterprise Linux 5 (AMD/Intel 64)

Red Hat Enterprise Linux 5 (x86)

Red Hat Enterprise Linux 5 Advanced Platform (AMD/Intel
64)

Red Hat Enterprise Linux 5 Advanced Platform (x86)

Linux (IPF) Red Hat Enterprise Linux AS 4 (IPF)

Abbreviation Full name or meaning

vi

Red Hat Enterprise Linux 5 (Intel Itanium)

Red Hat Enterprise Linux 5 Advanced Platform (Intel
Itanium)

MS-DOS Microsoft(R) MS-DOS(R)

NETM/DM JP1/NETM/DM Client

JP1/NETM/DM Manager

JP1/NETM/DM SubManager

Oracle Oracle 10g

Oracle9i

Solaris Solaris 8

Solaris 9

Solaris 10

TP1/Client TP1/Client/J uCosminexus TP1/Client/J

TP1/Client/P uCosminexus TP1/Client/P

TP1/Client/W uCosminexus TP1/Client/W

uCosminexus TP1/Client/W(64)

TP1/EE uCosminexus TP1/Server Base Enterprise Option

uCosminexus TP1/Server Base Enterprise Option(64)

TP1/Extension 1 uCosminexus TP1/Extension 1

uCosminexus TP1/Extension 1(64)

TP1/FS/Direct Access uCosminexus TP1/FS/Direct Access

uCosminexus TP1/FS/Direct Access(64)

TP1/FS/Table Access uCosminexus TP1/FS/Table Access

uCosminexus TP1/FS/Table Access(64)

TP1/High Availability uCosminexus TP1/High Availability

uCosminexus TP1/High Availability(64)

TP1/LiNK uCosminexus TP1/LiNK

Abbreviation Full name or meaning

vii

TP1/Message Control uCosminexus TP1/Message Control

uCosminexus TP1/Message Control(64)

TP1/Message Control/Tester uCosminexus TP1/Message Control/Tester

TP1/Message Queue uCosminexus TP1/Message Queue

uCosminexus TP1/Message Queue(64)

TP1/Message Queue - Access uCosminexus TP1/Message Queue - Access

uCosminexus TP1/Message Queue - Access(64)

TP1/Messaging uCosminexus TP1/Messaging

TP1/Multi uCosminexus TP1/Multi

TP1/NET/HDLC uCosminexus TP1/NET/HDLC

TP1/NET/High Availability uCosminexus TP1/NET/High Availability

uCosminexus TP1/NET/High Availability(64)

TP1/NET/HSC uCosminexus TP1/NET/HSC

TP1/NET/Library uCosminexus TP1/NET/Library

uCosminexus TP1/NET/Library(64)

TP1/NET/NCSB uCosminexus TP1/NET/NCSB

TP1/NET/OSAS-NIF uCosminexus TP1/NET/OSAS-NIF

TP1/NET/OSI-TP uCosminexus TP1/NET/OSI-TP

TP1/NET/SLU -
TypeP2

TP1/NET/
Secondary Logical
Unit - TypeP2

uCosminexus TP1/NET/Secondary Logical Unit - TypeP2

TP1/NET/TCP/IP uCosminexus TP1/NET/TCP/IP

uCosminexus TP1/NET/TCP/IP(64)

TP1/NET/UDP uCosminexus TP1/NET/User Datagram Protocol

TP1/NET/User Agent uCosminexus TP1/NET/User Agent

TP1/NET/X25 uCosminexus TP1/NET/X25

TP1/NET/X25-Extended uCosminexus TP1/NET/X25-Extended

TP1/NET/XMAP3 uCosminexus TP1/NET/XMAP3

Abbreviation Full name or meaning

viii

TP1/Offline Tester uCosminexus TP1/Offline Tester

TP1/Online Tester uCosminexus TP1/Online Tester

TP1/Resource Manager Monitor uCosminexus TP1/Resource Manager Monitor

TP1/Server Base uCosminexus TP1/Server Base

uCosminexus TP1/Server Base(64)

TP1/Shared Table Access uCosminexus TP1/Shared Table Access

TP1/Web uCosminexus TP1/Web

Windows 2000 Microsoft(R) Windows(R) 2000 Advanced Server Operating
System

Microsoft(R) Windows(R) 2000 Datacenter Server Operating
System

Microsoft(R) Windows(R) 2000 Professional Operating
System

Microsoft(R) Windows(R) 2000 Server Operating System

Windows Server 2003 Microsoft(R) Windows Server(R) 2003, Datacenter Edition

Microsoft(R) Windows Server(R) 2003, Enterprise Edition

Microsoft(R) Windows Server(R) 2003, Standard Edition

Windows Server 2003 R2 Microsoft(R) Windows Server(R) 2003 R2, Enterprise Edition

Microsoft(R) Windows Server(R) 2003 R2, Standard Edition

Windows Server 2003 x64 Editions Microsoft(R) Windows Server(R) 2003, Datacenter x64 Edition

Microsoft(R) Windows Server(R) 2003, Enterprise x64 Edition

Microsoft(R) Windows Server(R) 2003, Standard x64 Edition

Windows Server 2003 R2 x64 Editions Microsoft(R) Windows Server(R) 2003 R2, Enterprise x64
Edition

Microsoft(R) Windows Server(R) 2003 R2, Standard x64
Edition

Windows Server 2008 Microsoft(R) Windows Server(R) 2008 Datacenter (x86)

Abbreviation Full name or meaning

ix

• If there is no difference in OS functionality, the term Windows is used to indicate
Windows 2000, Windows Server 2003, Windows Server 2008, Windows XP, and
Windows Vista.

• The term UNIX is used to indicate AIX, HP-UX, Linux, and Solaris.

Conventions: Acronyms
This manual also uses the following acronyms:

Microsoft(R) Windows Server(R) 2008 Enterprise (x86)

Microsoft(R) Windows Server(R) 2008 Standard (x86)

Windows Server 2008 x64 Editions Microsoft(R) Windows Server(R) 2008 Datacenter (x64)

Microsoft(R) Windows Server(R) 2008 Enterprise (x64)

Microsoft(R) Windows Server(R) 2008 Standard (x64)

Windows Vista Microsoft(R) Windows Vista(R) Business (x86)

Microsoft(R) Windows Vista(R) Enterprise (x86)

Microsoft(R) Windows Vista(R) Ultimate (x86)

Windows Vista x64 Editions Microsoft(R) Windows Vista(R) Business (x64)

Microsoft(R) Windows Vista(R) Enterprise (x64)

Microsoft(R) Windows Vista(R) Ultimate (x64)

Windows XP Microsoft(R) Windows(R) XP Professional Operating System

Acronym Full name or meaning

ANSI American National Standards Institute

AP Application Program

API Application Programming Interface

CPU Central Processing Unit

CRM Communication Resource Manager

CUP Client User Program

DAM Direct Access Method

Abbreviation Full name or meaning

x

DBMS Database Management System

DCE Distributed Computing Environment

DML Data Manipulation Language

DNS Domain Name System

GUI Graphical User Interface

HA High Availability

I/O Input/Output

ID Identifier

IDL Interface Definition Language

ISAM Indexed Sequential Access Method

IST Internode Shared Table

LAN Local Area Network

MCF Message Control Facility

MHP Message Handling Program

MQI Message Queue Interface

OS Operating System

OSI Open Systems Interconnection

OSI TP Open Systems Interconnection Transaction Processing

PC Personal Computer

PRF Performance

RM Resource Manager

RPC Remote Procedure Call

RTS Real Time Statistic

SPP Service Providing Program

SUP Service Using Program

TAM Table Access Method

TCP/IP Transmission Control Protocol/Internet Protocol

Acronym Full name or meaning

xi

Conventions: Diagrams
This manual uses the following conventions in diagrams:

UAP User Application Program

UOC User Own Coding

VM Virtual Machine

WAN Wide Area Network

WS Workstation

XA Extended Architecture

XAR Extended Architecture Resource

Acronym Full name or meaning

xii

Conventions: Differences between JIS and ASCII keyboards
The JIS code and ASCII code keyboards are different in the input characters
represented by the following codes. In this manual, the use of a JIS keyboard is
assumed for these characters.

Conventions: Differences in installation directory paths
This manual uses the notation /BeTRAN to indicate the OpenTP1 installation directory.

Code JIS keyboard ASCII keyboard

(5c)16 (yen symbol)
\ (backslash)

(7e)16 (overline)
~ (tilde)

xiii

The actual installation directory differs depending on the operating system. Use the
following table to determine the actual installation directory for your OS.

Conventions: Fonts and symbols
The following table explains the fonts used in this manual:

The following table explains the symbols used in this manual:

As written in
this manual

Actual directory for each OS

AIX, HP-UX, and Solaris Linux Windows

/BeTRAN /BeTRAN /opt/OpenTP1 The directory in which
OpenTP1 was installed

Font Convention

Bold Bold type indicates text on a window, other than the window title. Such text includes
menus, menu options, buttons, radio box options, or explanatory labels. For example:
• From the File menu, choose Open.
• Click the Cancel button.
• In the Enter name entry box, type your name.

Italics Italics are used to indicate a placeholder for some actual text to be provided by the user
or system. For example:
• Write the command as follows:

copy source-file target-file
• The following message appears:

A file was not found. (file = file-name)
Italics are also used for emphasis. For example:
• Do not delete the configuration file.

Code font A code font indicates text that the user enters without change, or text (such as
messages) output by the system. For example:
• At the prompt, enter dir.
• Use the send command to send mail.
• The following message is displayed:

The password is incorrect.

Symbol Convention

| In syntax explanations, a vertical bar separates multiple items, and has the
meaning of OR. For example:
A|B|C means A, or B, or C.

{ } In syntax explanations, curly brackets indicate that only one of the enclosed items
is to be selected. For example:
{A|B|C} means only one of A, or B, or C.

xiv

Conventions: KB, MB, GB, and TB
This manual uses the following conventions:

• 1 KB (kilobyte) is 1,024 bytes.

• 1 MB (megabyte) is 1,0242 bytes.

• 1 GB (gigabyte) is 1,0243 bytes.

• 1 TB (terabyte) is 1,0244 bytes.

Conventions: Platform-specific notational differences
For the Windows version of OpenTP1, there are some notational differences from the
description in the manual. The following table describes these differences.

[] In syntax explanations, square brackets indicate that the enclosed item or items
are optional. For example:
[A] means that you can specify A or nothing.
[B|C] means that you can specify B, or C, or nothing.

... In coding, an ellipsis (...) indicates that one or more lines of coding are not shown
for purposes of brevity.
In syntax explanations, an ellipsis indicates that the immediately preceding item
can be repeated as many times as necessary. For example:
A, B, B, ... means that, after you specify A, B, you can specify B as many
times as necessary.

Item Description in the manual Change to:

Environment variable $aaaaaa
Example: $DCDIR

%aaaaaa%
Example: %DCDIR%

Path name separator Colon (:) Semicolon (;)

Directory name separator Slash (/) Backslash (\)

Absolute path name A path from the root directory
Example: /tmp

A path name from a drive letter and the
root directory
Example: C:\tmp

Executable file name File name only (without an
extension)
Example: mcfmngrd

File name with an extension
Example: mcfmngrd.exe

make command make nmake

Symbol Convention

xv

Conventions: Version numbers
The version numbers of Hitachi program products are usually written as two sets of
two digits each, separated by a hyphen. For example:

• Version 1.00 (or 1.0) is written as 01-00.

• Version 2.05 is written as 02-05.

• Version 2.50 (or 2.5) is written as 02-50.

• Version 12.25 is written as 12-25.

The version number might be shown on the spine of a manual as Ver. 2.00, but the same
version number would be written in the program as 02-00.

Acknowledgments
Quotations from X/Open CAE Specification Distributed Transaction Processing:
The XATMI Specification published by X/Open Company Limited

The specification as interpreted in the above document is quoted in the following
section of this manual to give information about the usage with OpenTP1:

Chapter 5. X/Open-Compliant Application Programming Interface
5.1 XATMI Interface (Client/Server Mode Communication)

Quotations from X/Open CAE Specification Distributed Transaction Processing:
The TX (Transaction Demarcation) Specification published by X/Open Company
Limited

The specification as interpreted in the above document is quoted in the following
section of this manual to give information about the usage with OpenTP1:

Chapter 5. X/Open-Compliant Application Programming Interface
5.2 TX Interface (Transaction Control)

Quotation from X/Open Preliminary Specification Distributed Transaction
Processing: The TxRPC Specification published by X/Open Company Limited

The specification as interpreted in the above document is quoted in the following
section of this manual to give information about the usage with OpenTP1:

Chapter 6. X/Open-Compliant Inter-Application Communication (TxRPC)
COBOL

COBOL was developed by CODASYL (the Conference on Data Systems Languages).
Of the OpenTP1 application programming interface specifications, the data
manipulation language (DML) specification was developed by relying on the
communication section in CODASYL COBOL (1981) as well as the RECEIVE,
SEND, COMMIT, and ROLLBACK statements and adding original specifications and

xvi

interpretations made by Hitachi, Ltd. The publisher of this manual expresses
acknowledgment to the original developer and presents the following
acknowledgment statement as requested by CODASYL. This statement is quoted from
the acknowledgment in the original CODASYL COBOL specification titled COBOL
Journal of Development 1984.

Any organization interested in reproducing the COBOL report and specifications in
whole or in part, using ideas from this report as the basis for an instruction manual or
for any other purpose, is free to do so. However, all such organizations are requested
to reproduce the following acknowledgement paragraphs in their entirety as part of the
preface to any such publication. Any organization using a short passage from this
document, such as in a book review, is requested to mention "COBOL" in
acknowledgement of the source, but need not quote the acknowledgement.

COBOL is an industry language and is not the property of any company or group of
companies, or of any organization or group of organizations.

No warranty, expressed or implied, is made by any contributor or by the CODASYL
COBOL Committee as to the accuracy and functioning of the programming system
and language. Moreover, no responsibility is assumed by any contributor, or by the
committee, in connection therewith.

The authors and copyright holders of the copyrighted material used herein

FLOW-MATIC (trademark of Sperry Rand Corporation), Programming for the Univac
(R) I and II, Data Automation Systems copyrighted 1958, 1959, by Sperry Rand
Corporation; IBM Commercial Translator Form No. F 28-8013, copyrighted 1959 by
IBM; FACT, DSI 27A5260-2760, copyrighted 1960 by Minneapolis-Honeywell

have specifically authorized the use of this material in whole or in part, in the COBOL
specifications. Such authorization extends to the reproduction and use of COBOL
specifications in programming manuals or similar publications.

xvii

Contents

Preface i

Intended readers ...i
Organization of this manual ...i
Related publications ..ii
Conventions: Abbreviations for product names...iv
Conventions: Acronyms...ix
Conventions: Diagrams ..xi
Conventions: Differences between JIS and ASCII keyboards................................xii
Conventions: Differences in installation directory paths ..xii
Conventions: Fonts and symbols... xiii
Conventions: KB, MB, GB, and TB ..xiv
Conventions: Platform-specific notational differences ..xiv
Conventions: Version numbers..xv
Acknowledgments ...xv

1. OpenTP1 Application Programs 1

1.1 Relationship between user application programs and communication modes2
1.1.1 Application programs in client/server mode ...3
1.1.2 Application programs in message exchange mode ...4
1.1.3 Application programs in message queuing mode ...5
1.1.4 Application program load balancing ...6
1.1.5 Transaction processing with application program...7

1.2 Types of application program ...8
1.2.1 Using services UAP (SUP) ...10
1.2.2 Providing services UAP (SPP)..13
1.2.3 Message handling UAP (MHP)...18
1.2.4 UAP that handles offline work..24

1.3 Creation of application programs ...26
1.3.1 Coding ...28
1.3.2 Creating stubs..31
1.3.3 Compilation and linkage (when using a stub) ...34
1.3.4 Compilation and linkage (when using dynamic loading of service

functions) ..35
1.3.5 Application program environment setup...36
1.3.6 User server load balancing and scheduling ...37

1.4 OpenTP1 library functions ...46
1.4.1 Application programming interface facilities ...46
1.4.2 List of OpenTP1 library functions ..47

xviii

1.5 Debuggers and testers for application programs.. 69
1.5.1 Types of UAP tester facility ... 69
1.5.2 UAPs that can be tested .. 70
1.5.3 Reporting the test status of a user server .. 70

2. Basic OpenTP1 Facilities (TP1/Server Base, TP1/LiNK) 71

2.1 Remote procedure call ... 72
2.1.1 How to implement the remote procedure call .. 72
2.1.2 Transferring data through the remote procedure call 73
2.1.3 Outline of remote procedure call modes... 74
2.1.4 Nesting services.. 81
2.1.5 Using nontransactional RPC from transaction process 82
2.1.6 Setting schedule priorities for service requests .. 82
2.1.7 Acquiring node address of client UAP... 83
2.1.8 Referencing and changing response waiting intervals of service request 83
2.1.9 Acquiring descriptor of asynchronous-response-type RPC request which has

encountered error.. 84
2.1.10 Report data to CUP unidirectionally .. 84
2.1.11 Relationship between remote procedure calls and processes for executing

services ... 86
2.1.12 Notes on using a recursive call ... 90
2.1.13 Retrying a service function... 91
2.1.14 User data compression.. 92
2.1.15 Monitoring the service function execution time... 93
2.1.16 RPC with the multi-scheduler facility .. 94
2.1.17 RPC with a communication destination specified...................................... 96
2.1.18 Service request with domain qualification ... 98
2.1.19 Relationship between service functions and stubs 100

2.2 Remote API facility ..111
2.2.1 Application of the remote API facility ..114
2.2.2 Permanent connection..116
2.2.3 Connection mode...116
2.2.4 Chained RPCs using the remote API facility ..118
2.2.5 Notes on the remote API facility ...119

2.3 Transaction control .. 121
2.3.1 Transaction in client/server mode... 121
2.3.2 Acquiring a synchronization point ... 122
2.3.3 Specification of transaction attribute .. 127
2.3.4 Relationship between remote procedure call modes and synchronization

points .. 129
2.3.5 Transaction optimization .. 135
2.3.6 Posting information about the current transaction...................................... 153
2.3.7 Disposal in case of heuristic situation .. 153
2.3.8 Notes on transaction processing ... 153

xix

2.4 System operation management...155
2.4.1 Executing operation commands ..155
2.4.2 Reporting completion of user server start processing164
2.4.3 Detecting the user server status...165

2.5 Message log output...169
2.5.1 Outputting message log from application programs169

2.6 Audit log output..173
2.7 User journal acquisition..176
2.8 Journal data editing...178
2.9 Receiving message log notification..180
2.10 Client/server mode communication using OSI TP...182

2.10.1 Application programs used for OSI TP communication...........................183
2.10.2 SPPs for a communication event...183
2.10.3 Errors encountered during OSI TP communication..................................185

2.11 Acquiring performance verification traces ...186
2.12 Real-time statistical information acquisition..187

3. Facilities Provided by TP1/Message Control 189

3.1 MCF communication service operations..190
3.2 Connection establishment and release..191

3.2.1 Establishing or releasing a connection by issuing a function from the
UAP...191

3.2.2 Coding examples for re-establishing or forcibly releasing a connection194
3.2.3 Start and terminate acceptance of connection establishment requests198

3.3 Application-related operations ...199
3.4 Shutdown and release of logical terminals ...200
3.5 Communication protocol products and functions available in operations202
3.6 Message exchange processing ..205

3.6.1 Message communication modes..206
3.6.2 Message structure ..215
3.6.3 Receiving messages...216
3.6.4 Sending messages..217
3.6.5 Synchronous message processing ...218
3.6.6 Continuous-inquiry-response processing ..222
3.6.7 Resending messages..226

3.7 MCF transaction control...228
3.7.1 MHP transaction control ...228

3.8 MCF extended facilities ...233
3.8.1 Starting application programs ...233
3.8.2 MHP startup using command..242
3.8.3 Nontransaction attribute MHP ..243
3.8.4 Time monitoring with the facility for user timer monitoring......................244

3.9 User exit routines..248

xx

3.9.1 User exit routine that edits input message and application name
determination.. 250

3.9.2 User exit routine that determines the inheriting timer-start message 251
3.9.3 User exit routine that edits sequential number of send message 251
3.9.4 User exit routine that edits output message .. 252

3.10 MCF events.. 253
3.10.1 MCF event that reports detection of an invalid application name

(ERREVT1).. 261
3.10.2 MCF event that reports discarding of a message (ERREVT2) 262
3.10.3 MCF event that reports UAP abnormal termination (ERREVT3) 263
3.10.4 MCF event that reports discarding of a timer-start message (ERREVT4)265
3.10.5 MCF event that reports discarding of an unprocessed send message

(ERREVTA) ... 266
3.10.6 MCF event that reports a send error (SERREVT).................................... 269
3.10.7 MCF event that reports send completion (SCMPEVT)............................ 271
3.10.8 MCF event that reports an error (CERREVT, VERREVT) 272
3.10.9 MCF event that reports establishing a connection (COPNEVT,

VOPNEVT).. 273
3.10.10 MCF event that reports releasing a connection (CCLSEVT,

VCLSEVT)... 275
3.10.11 Message format for MCF events .. 276

3.11 MCF processes used by application programs... 279
3.11.1 Types of MCF process .. 281
3.11.2 Files for using MCF processes ... 281

4. Facilities for User Data 285

4.1 DAM file service (TP1/FS/Direct Access) .. 286
4.1.1 DAM file configuration .. 286
4.1.2 Physical files and logical files .. 286
4.1.3 Outline of access to DAM files .. 287
4.1.4 Access to a DAM file in online mode (operation from an SUP, SPP, or

MHP).. 288
4.1.5 Access to a DAM file in offline mode (operation from a UAP that handles

offline work)... 297
4.1.6 Creating physical files (operation from a UAP that handles offline work) 300
4.1.7 Locking DAM files... 301
4.1.8 Access to unrecoverable DAM files ... 303
4.1.9 Interchangeability of DAM and TAM services .. 312

4.2 TAM file service (TP1/FS/Table Access) .. 313
4.2.1 TAM file configuration... 313
4.2.2 Conditions for accessing a TAM table.. 314
4.2.3 Name used when a TAM table is accessed... 315
4.2.4 Procedure for accessing a TAM table... 315
4.2.5 Relationship between transactions and TAM access 319

xxi

4.2.6 Lock for TAM tables ...329
4.2.7 TAM table access facility without table-based lock....................................331
4.2.8 Creating TAM files..342
4.2.9 Interchangeability of TAM and DAM services ...342
4.2.10 TAM service statistical information ..343
4.2.11 Notes on adding and deleting TAM records..343

4.3 IST service (TP1/Shared Table Access) ...350
4.3.1 System configuration of IST service ...350
4.3.2 Outline of internode shared tables...351
4.3.3 Procedure for accessing an internode shared table......................................354
4.3.4 Lock for internode shared tables ...355

4.4 ISAM file service (ISAM, ISAM/B) ..356
4.4.1 Outline of ISAM files..356
4.4.2 Types of ISAM service..356

4.5 Accessing database management systems..358
4.5.1 Relation to OpenTP1 transaction processing ..358
4.5.2 Preparation for using other vendors' DBMS in cooperation with OpenTP1

through XA interface ..359
4.6 Lock for resources ..361

4.6.1 Resources which can be put under lock ..361
4.6.2 Types of lock ...361
4.6.3 Specifying the maximum lock wait time...362
4.6.4 Insufficient table pool for lock ..362
4.6.5 Releasing a resource from lock ...362
4.6.6 Lock migration ..363
4.6.7 Lock test ..364

4.7 Responses to the occurrence of deadlocks ...366
4.7.1 Notes for avoiding deadlocks ..366
4.7.2 OpenTP1 responses to deadlocks ..366

5. X/Open-compliant Application Programming Interface 369

5.1 XATMI interface (client/server-mode communication) ...370
5.1.1 Communication paradigms available with XATMI interface370
5.1.2 XATMI interface functions ...371
5.1.3 Request/response service paradigm ..375
5.1.4 Conversational service paradigm ..379
5.1.5 Notes on using xatmi interface for communication under OpenTP1..........383
5.1.6 Communication data types ..384
5.1.7 How to create server UAP...389
5.1.8 Relationship between OpenTP1 facility and XATMI interface390

5.2 TX interface (transaction control) ..393
5.2.1 TX interfaces usable with OpenTP1 ...393
5.2.2 How to use TX_ functions ..394
5.2.3 Restrictions on using TX_ functions ...396

xxii

5.2.4 Comparison with transaction control functions of OpenTP1 (dc_trn_ ~) .. 397

6. X/Open-compliant Inter-application Communication (TxRPC) 399

6.1 Communication through TxRPC interface .. 400
6.1.1 Types of TxRPC communication.. 400
6.1.2 Application programs that can be created .. 401
6.1.3 Necessary libraries.. 401

6.2 Communication allowed with application programs ... 402
6.2.1 TxRPC remote procedure calls... 402
6.2.2 TxRPC transaction processing.. 402
6.2.3 Relation between application programs using OpenTP1 facilities and TxRPC

application programs .. 403
6.3 Procedures for creating application programs for TxRPC communication........... 404

6.3.1 Procedure for creating UAP for IDL-only TxRPC communication........... 404

7. Facilities Provided by TP1/Multi 407

7.1 Application programs in cluster/parallel mode.. 408
7.1.1 Node on which application programs can be executed 408
7.1.2 Prerequisites to application program execution.. 408

7.2 Facilities available with the use of application programs...................................... 410
7.2.1 Acquisition of OpenTP1 node status .. 410
7.2.2 Acquisition of user server status..411
7.2.3 Acquisition of OpenTP1 node identifier .. 413

7.3 Conditions for using multinode facility functions ... 416

8. OpenTP1 Samples 419

8.1 Outline of samples ... 420
8.1.1 Types of sample programs.. 420
8.1.2 Sample program directory configuration.. 421
8.1.3 Explanation format of samples ... 426

8.2 How to use Base sample .. 428
8.2.1 Procedure common to all samples (Base sample) 429
8.2.2 Tasks specific to the Base sample (when using a stub) 430
8.2.3 Tasks for using OpenTP1 (when using a stub) ... 433
8.2.4 Tasks specific to the Base sample (when using dynamic loading of service

functions).. 435
8.2.5 Tasks for using OpenTP1 (when using dynamic loading of service

functions).. 437
8.3 How to use DAM sample... 440

8.3.1 Procedure common to all samples (DAM sample)..................................... 442
8.3.2 DAM sample specific work.. 442
8.3.3 Work for using OpenTP1.. 444

8.4 How to use TAM sample ... 447
8.4.1 Procedure common to all samples (TAM sample) 449

xxiii

8.4.2 TAM sample specific work ...449
8.4.3 Work for using OpenTP1 ..451

8.5 Specifications of sample programs...455
8.5.1 Contents of database used by samples ..455
8.5.2 Outline of sample program processing..455
8.5.3 Structure of sample programs..457
8.5.4 Details of programs specific to each sample ...459

8.6 How to use MCF sample ..462
8.6.1 MCF sample directory configuration ..462
8.6.2 Notes on using MCF sample ...466

8.7 Samples to be used to dispatch multi OpenTP1 command467
8.8 COBOL language templates...469

8.8.1 Files of COBOL language templates ..469
8.8.2 How to use the cobol language templates ...469

8.9 How to use sample scenario template...472
8.10 How to use real-time acquisition item definition templates473

Appendixes 475

A. Output Format of Undecided Transaction Information ...476
B. Output Format of Deadlock Information ...481
C. Examples of System Configurations Requiring Consideration of the Multi-Scheduler

Facility..488
C.1 Overview of processing by the scheduler facility ...488
C.2 Examples of system configurations in which the scheduler is likely to be the

cause of error...491
C.3 Example of a system configuration using the multi-scheduler facility496
C.4 Notes ..504

Index 505

xxiv

List of figures

Figure 1-1: OpenTP1 and UAP positions in network .. 3
Figure 1-2: Outlines of UAPs in client/server mode.. 4
Figure 1-3: Outline of message exchange processing.. 5
Figure 1-4: Outline of UAPs using Message Queuing... 6
Figure 1-5: Outline of UAP roles and positions (client/server mode) 9
Figure 1-6: Outline of UAP roles and positions (message exchange mode) 10
Figure 1-7: Outline of SUP ...11
Figure 1-8: Outline of SUP processing (C language) .. 13
Figure 1-9: Outline of SPP... 14
Figure 1-10: SPP configuration (when using a stub) ... 15
Figure 1-11: SPP configuration (when using dynamic loading of service functions).............. 16
Figure 1-12: Outline of SPP processing (C language) ... 18
Figure 1-13: Outline of MHP... 19
Figure 1-14: MHP configuration (using a stub) ... 20
Figure 1-15: MHP configuration (using dynamic loading of service functions) 21
Figure 1-16: Outline of MHP processing (C language) ... 24
Figure 1-17: Outline of UAP that handles offline work... 25
Figure 1-18: Procedure for UAP creation (when using a stub).. 27
Figure 1-19: Procedure for UAP creation (when using dynamic loading of service

functions) .. 28
Figure 1-20: Outline of UAP coding in C .. 30
Figure 1-21: Outline of UAP coding in COBOL ... 31
Figure 1-22: Stub linked to server UAP... 32
Figure 1-23: Stub creation procedure... 34
Figure 1-24: Process load balancing .. 40
Figure 1-25: Outline of internode load-balancing facility ... 42
Figure 1-26: Example of using the multi-scheduler facility .. 45
Figure 2-1: Client/server relationship in communication using RPC 73
Figure 2-2: Data transfer through remote procedure call... 74
Figure 2-3: RPC modes .. 74
Figure 2-4: Synchronous-response-type RPC.. 76
Figure 2-5: Asynchronous-response-type RPC (asynchronous receiving of processing

results) .. 78
Figure 2-6: Asynchronous-response-type RPC (rejection of receiving processing results) 80
Figure 2-7: Nonresponse-type RPC ... 81
Figure 2-8: Example of nesting RPCs.. 82
Figure 2-9: Outline of reporting data to CUP unidirectionally .. 85
Figure 2-10: Relationship between RPCs and processes ... 86
Figure 2-11: Relationship between chained RPCs and processes.. 89
Figure 2-12: Outline of retry of service function ... 92

xxv

Figure 2-13: Outline of the data compression facility ..93
Figure 2-14: Outline of service function execution time monitoring94
Figure 2-15: Outline of an RPC with the multi-scheduler facility ...95
Figure 2-16: Example of communication using the function dc_rpc_call_to()........................98
Figure 2-17: Outline of service request with domain qualification ..100
Figure 2-18: Using a stub to acquire service functions (SPP) ..102
Figure 2-19: Using a stub to acquire service functions (MHP) ..104
Figure 2-20: Using dynamic loading of service functions only (SPP)106
Figure 2-21: Using dynamic loading of service functions only (MHP)107
Figure 2-22: Using both dynamic loading of service functions and a stub (SPP)109
Figure 2-23: Using both dynamic loading of service functions and a stub (MHP)110
Figure 2-24: Remote API facility ...112
Figure 2-25: Remote procedure call to a UAP within a firewall ..115
Figure 2-26: Outline of automatic connection mode ..117
Figure 2-27: Outline of non-automatic connection mode...118
Figure 2-28: Transactions in chained/unchained mode ..123
Figure 2-29: Transaction rollback...125
Figure 2-30: Transaction rollback if an error occurs during synchronization point acquisition

processing..126
Figure 2-31: Relationship between RPCs and transaction attribute128
Figure 2-32: Relationship between synchronous-response-type RPC and synchronization

point...130
Figure 2-33: Relationship between asynchronous-response-type RPC and synchronization

point...131
Figure 2-34: Relationship between nonresponse-type RPC and synchronization point.........132
Figure 2-35: Relationship between chained RPCs and synchronization point (transactional

chained RPCs) ...133
Figure 2-36: Relationship between chained RPCs and synchronization points (if a specification

is given so that the server processing will not end with the non-transactional
chained RPCs) ...134

Figure 2-37: Outline of ordinary transaction processing (two-phase commit).......................136
Figure 2-38: Outline of commit optimization...138
Figure 2-39: Outline of prepare optimization ...140
Figure 2-40: Outline of asynchronous prepare optimization ..142
Figure 2-41: Outline of one-phase optimization...144
Figure 2-42: Outline of read-only optimization..146
Figure 2-43: Outline of no-access optimization ...148
Figure 2-44: Outline of rollback optimization..150
Figure 2-45: Outline of optimization using chained RPCs...152
Figure 2-46: Outline of OpenTP1 command execution using function dc_adm_call_command

() ..155
Figure 2-47: Transition of user server status (SUP) ...166
Figure 2-48: Transition of user server status (SPP, MHP)..167

xxvi

Figure 2-49: Transition of user server status (server that receives requests from socket
(SPP)) ... 168

Figure 2-50: Outline of message log output from UAP... 169
Figure 2-51: Output format of message logs.. 171
Figure 2-52: Outline of audit logging from UAPs ... 173
Figure 2-53: Acquiring user journals ... 177
Figure 2-54: Journal data editing ... 179
Figure 2-55: Reception of message log notification .. 181
Figure 2-56: Concept of client/server mode communication using OSI TP.......................... 182
Figure 2-57: Outline of SPP for a communication event ... 184
Figure 2-58: Example of acquiring real-time statistical information in arbitrary sections 188
Figure 3-1: Example of establishing a connection using the function dc_mcf_tactcn() . 192
Figure 3-2: Example of releasing a connection using the function dc_mcf_tdctcn() 193
Figure 3-3: UAP example for automatically re-establishing a connection 194
Figure 3-4: UAP example for forcibly releasing a connection .. 196
Figure 3-5: Outline of message exchange mode communication .. 206
Figure 3-6: Message communication modes.. 207
Figure 3-7: Relationship between logical message and segments ... 216
Figure 3-8: Message receiving ... 217
Figure 3-9: Message send processing (asynchronous message sending)............................... 218
Figure 3-10: Synchronous message processing ... 221
Figure 3-11: Outline of continuous-inquiry-response processing.. 225
Figure 3-12: Relationship between message exchange processing and transactions............. 231
Figure 3-13: How to start application program.. 236
Figure 3-14: Starting MHP from MHP that received send-only message 238
Figure 3-15: Starting MHP from MHP that received inquiry-response message 239
Figure 3-16: Starting MHP, which sends send-only message, from MHP that handles

inquiry-response message processing... 240
Figure 3-17: Starting MHP from SPP handling transaction processing................................. 241
Figure 3-18: MHP activation by operation command.. 243
Figure 3-19: Example of using the facility for user timer monitoring 246
Figure 3-20: Positions of user exit routines ... 249
Figure 3-21: Outline of ERREVT1 .. 261
Figure 3-22: Outline of ERREVT2 .. 263
Figure 3-23: Outline of ERREVT3 .. 264
Figure 3-24: Outline of ERREVT4 .. 266
Figure 3-25: Outline of ERREVTA ... 268
Figure 3-26: Outline of SERREVT.. 270
Figure 3-27: Outline of SERREVT.. 271
Figure 3-28: Outline of CERREVT (VERREVT) ... 273
Figure 3-29: Outline of COPNEVT (VOPNEVT)... 274
Figure 3-30: Outline of CCLSEVT (VCLSEVT) .. 275
Figure 3-31: Segments of logical message passed as MCF event ... 277
Figure 3-32: Outline of MCF processes used by UAPs... 280

xxvii

Figure 3-33: Configuration of directories for storing files needed to use MCF service.........283
Figure 4-1: DAM file configuration ...286
Figure 4-2: Access to DAM files in online mode...290
Figure 4-3: Procedure for accessing DAM files in offline mode..300
Figure 4-4: Procedure for creating DAM file ...301
Figure 4-5: Procedure for accessing unrecoverable DAM file ...305
Figure 4-6: TAM file configuration ..314
Figure 4-7: Access to TAM tables ..318
Figure 4-8: Locking resources when updating records...333
Figure 4-9: Locking resources when adding records..334
Figure 4-10: Processing that is performed by the TAM table access facility with table-based lock

when competition for access to the same record occurs335
Figure 4-11: Processing that is performed by the TAM table access facility without table-based

lock when competition for access to the same record occurs336
Figure 4-12: How the dc_tam_open function locks resources ...337
Figure 4-13: An example of a DCTAMER_NOAREA error caused by an attempt to add

records ...338
Figure 4-14: Processing that is performed to obtain a number of empty records equal to the

number of records to be added ..339
Figure 4-15: Processing that is performed to add records after the record deletion transaction is

committed..340
Figure 4-16: Example in which a deadlock occurs after change from a TAM table that uses the

TAM table access facility with table-based lock to a TAM table that uses the TAM
table access facility without table-based lock ...345

Figure 4-17: Example of update and addition ..347
Figure 4-18: Occurrence of a deadlock...348
Figure 4-19: When the same value is not specified in the internode shared table definition for

all nodes...351
Figure 4-20: Updating an internode shared table record ..352
Figure 4-21: Procedures for accessing internode shared tables ..355
Figure 4-22: Form of ISAM file services ...357
Figure 4-23: Outline of lock migration...364
Figure 5-1: Communication with synchronous response reception based on request/response

service paradigm ...376
Figure 5-2: Communication with asynchronous response reception based on request/response

service paradigm ...377
Figure 5-3: Communication without response reception based on request/response service

paradigm..378
Figure 5-4: Communication based on conversational service paradigm................................382
Figure 6-1: Outline of communication through TxRPC interface ..400
Figure 6-2: Communication by using application programs ..403
Figure 6-3: Procedure for creating UAP for IDL-only TxRPC communication405
Figure 7-1: Outline of application programs in cluster/parallel mode....................................409
Figure 7-2: Procedure for acquiring OpenTP1 nodes in succession.......................................411

xxviii

Figure 7-3: Procedure for acquiring user server statuses in succession................................. 413
Figure 7-4: Procedure for acquiring OpenTP1 node identifiers in succession 414
Figure 8-1: Configuration of directories for storing samples... 422
Figure 8-2: Outline of procedure for using samples (Base sample when using a stub)......... 428
Figure 8-3: Outline of procedure for using samples (Base sample when using dynamic loading

of service functions) ... 429
Figure 8-4: Outline of procedure for using samples (DAM sample) 441
Figure 8-5: Outline of procedure for using samples (TAM sample)...................................... 448
Figure 8-6: Relationship between client and server UAP calls (C language)........................ 456
Figure 8-7: Relationship between client and server UAP calls (COBOL language) 457
Figure 8-8: Program structure of client and server UAPs (C language) 458
Figure 8-9: Program structure of client and server UAPs (COBOL language) 459
Figure 8-10: Program structure of client and server UAPs (DAM sample written in COBOL

language) .. 460
Figure 8-11: Configuration of directories for MCF sample ... 463
Figure A-1: Output format of undecided transaction information ... 477
Figure A-2: Output example of undecided transaction information 480
Figure B-1: Output format of deadlock information.. 482
Figure B-2: Output example of deadlock information... 483
Figure B-3: Output format of timeout information .. 484
Figure B-4: Output example of timeout information ... 486
Figure B-5: Output format of TAM resource deadlock information...................................... 487
Figure C-1: Overview of processing by the scheduler facility .. 489
Figure C-2: Overview of processing service request messages ... 490
Figure C-3: Example of a system that has insufficient socket descriptors............................. 492
Figure C-4: Example of a system in which the connect system call encountered an error.... 493
Figure C-5: Example of a system using networks that have different line speeds................. 494
Figure C-6: Example of a system in which service request messages are interrupted 495
Figure C-7: Example of a system in which the processing threads are temporarily deficient496
Figure C-8: Example of a system configuration that solves the deficiency of socket

descriptors... 497
Figure C-9: Example of a system configuration that solves errors with the connect system

call .. 498
Figure C-10: Example of a system that effectively uses a network having a high line speed 500
Figure C-11: Example of a system in which service request messages are not interrupted... 502
Figure C-12: Example of a system with an increased number of simultaneously executable

processing threads .. 503

xxix

List of tables

Table 1-1: OpenTP1 library functions (basic OpenTP1 facilities) ...48
Table 1-2: OpenTP1 library functions (TP1/Message Control functions)................................50
Table 1-3: OpenTP1 library functions (user data manipulation functions)53
Table 1-4: OpenTP1 library functions (X/Open-compatible functions)55
Table 1-5: OpenTP1 library functions (functions used in special style)...................................57
Table 1-6: Library functions available with UAPs (basic OpenTP1 facilities)58
Table 1-7: Library functions available with UAPs (TP1/Message Control functions).............61
Table 1-8: Library functions available with UAPs (operate user data)63
Table 1-9: Library functions available with UAPs (X/Open-compatible functions)65
Table 1-10: Library functions available with UAPs (functions used in special style)..............67
Table 2-1: OpenTP1 commands which can be executed from UAPs.....................................156
Table 2-2: Contents of message logs output to message log file ..170
Table 2-3: Items output to audit log file..174
Table 2-4: Specifying the flags argument to the function dc_rts_utrace_put().......................187
Table 3-1: Functional differences between the function and the operation command (MCF

communication service operations)...190
Table 3-2: Functional differences between functions and operation commands (connection

establishment and release)...193
Table 3-3: Functional differences between functions and operation commands (start and

terminate acceptance of connection establishment requests)..............................198
Table 3-4: Functional differences between the function and operation command

(application-related operations)...199
Table 3-5: Functional differences between functions and operation commands (shutdown and

release of logical terminals) ..201
Table 3-6: Communication protocol products and functions available in operations (1/3)....202
Table 3-7: Communication protocol products and functions available in operations (2/3)....203
Table 3-8: Communication protocol products and functions available in operations (3/3)....203
Table 3-9: Correspondence between the types of application and message exchange

functions ..209
Table 3-10: Functions available in communication modes used by communication protocol

products (1/5) ..210
Table 3-11: Functions available in communication modes used by communication protocol

products (2/5) ..211
Table 3-12: Functions available in communication modes used by communication protocol

products (3/5) ..212
Table 3-13: Functions available in communication modes used by communication protocol

products (4/5) ..213
Table 3-14: Functions available in communication modes used by communication protocol

products (5/5) ..214
Table 3-15: User exit routines available with OpenTP1...250

xxx

Table 3-16: MCF events ... 253
Table 3-17: Relationship between MHPs for an MCF event and application attributes........ 256
Table 3-18: Relationship between communication protocol products and reported MCF events

(1/5) .. 256
Table 3-19: Relationship between communication protocol products and reported MCF events

(2/5) .. 257
Table 3-20: Relationship between communication protocol products and reported MCF events

(3/5) .. 258
Table 3-21: Relationship between communication protocol products and reported MCF events

(4/5) .. 259
Table 3-22: Relationship between communication protocol products and reported MCF events

(5/5) .. 260
Table 4-1: Functions able to access the same block in one transaction (recoverable DAM

files) .. 291
Table 4-2: Functions able to access the same block in different transaction (recoverable DAM

files) .. 294
Table 4-3: Functions able to access the same block in one UAP (unrecoverable DAM

files) .. 305
Table 4-4: Functions able to access the same block in different UAP (unrecoverable DAM

files) .. 307
Table 4-5: Differences in access to recoverable and unrecoverable DAM files 310
Table 4-6: Differences in locking range upon access to recoverable and unrecoverable DAM

files ..311
Table 4-7: Processing results when function was called more than once for the same record (in

one global transaction) ... 320
Table 4-8: Processing results when function was called more than once for the same record (in

a different global transaction)... 324
Table 4-9: Lock specifications in TAM service functions and actual lock statuses............... 330
Table 4-10: Actual lock status, as compared to the lock setting of the TAM service function used

to activate the TAM table access facility without table-based lock 332
Table 4-11: Conditions that require program recompilation .. 341
Table 4-12: Conditions that require program relinkage ... 342
Table 4-13: Combinations of lock modes and resource sharing enabled/disabled 362
Table 5-1: XATMI interface library functions ... 371
Table 5-2: Relationship between XATMI interface functions and OpenTP1 UAPs.............. 372
Table 5-3: Relationship between XATMI interface facilities and communication protocol.. 374
Table 5-4: Data types that can be used with each communication data type 386
Table 5-5: Relationship between online tester facilities and XATMI interface 391
Table 5-6: TX_ functions available with OpenTP1 UAPs... 393
Table 5-7: Relationship between OpenTP1 UAPs and TX_ functions 394
Table 5-8: Relationship between TX_ functions and transaction control functions of OpenTP1

(dc_trn_ ~) .. 397
Table 7-1: Conditions for using multinode facility functions .. 416
Table 8-1: Definition files and content to be modified (Base sample)................................... 431

xxxi

Table 8-2: List of files in OpenTP1 file system (Base sample) ..434
Table 8-3: Definition files and content to be modified (Base sample)436
Table 8-4: List of files in the OpenTP1 file system (Base sample) ..438
Table 8-5: Definition files and content to be modified (DAM sample)..................................443
Table 8-6: List of files in OpenTP1 file system (DAM sample)...446
Table 8-7: Definition files and content to be modified (TAM sample)450
Table 8-8: List of files in OpenTP1 file system (TAM sample) ...453
Table 8-9: Specifications of the TAM sample file ..453
Table 8-10: Format of customer information database ...455
Table 8-11: File name and content of each real-time acquisition item definition file473

1

Chapter

1. OpenTP1 Application Programs

This chapter outlines OpenTP1 application programs.

The facilities are explained using C-language function names. For each function, the
name of the equivalent COBOL-language API function is indicated in brackets []
when the function appears first in this chapter. After that, only the C-language function
name is written.

This chapter contains the following sections:

1.1 Relationship between user application programs and communication modes
1.2 Types of application program
1.3 Creation of application programs
1.4 OpenTP1 library functions
1.5 Debuggers and testers for application programs

1. OpenTP1 Application Programs

2

1.1 Relationship between user application programs and
communication modes

OpenTP1# application programs (UAP: User Application Program) are created to
perform online transaction processing for communication among the mainframe,
workstations (WSs), personal computers (PCs), and distributors connected through a
network (LAN or WAN).

Three communication modes are available with OpenTP1 UAPs:

• Client/server mode UAP

• Message exchange mode UAP

• Message Queuing mode UAP

#

Throughout this manual, both the distributed transaction processing facility TP1/
Server Base and the distributed application server TP1/LiNK are referred to as
OpenTP1.

The figure below shows the positions of OpenTP1 and UAPs in the network.

1. OpenTP1 Application Programs

3

Figure 1-1: OpenTP1 and UAP positions in network

1.1.1 Application programs in client/server mode
A UAP in client/server mode can call and use the program of another process. Units of
programs which can be called and used are called services. Processes which provide
services are called servers. UAP servers are called user servers.

UAPs in client/server mode are categorized into two types: UAPs (client UAPs) which
request services and UAPs (server UAPs) which provide services. A client UAP and a
server UAP are required to implement one job.

A server UAP must be created only to provide services. The server UAP can be shared
by multiple UAPs.

A client UAP can request a server UAP service by using a remote procedure call
(RPC). The RPC allows the client UAP to request the server without recognizing the
node at which the server UAP exists. Also, the UAPs do not have to consider the

1. OpenTP1 Application Programs

4

communication protocol between nodes.

For client/server mode communication under the OpenTP1, either TCP/IP or OSI TP
can be used as the communication protocol. For either case, UAPs need not be aware
of the internode communication protocol.

Node
In this manual, a node means a machine at which OpenTP1 connected to a
network operates. When multi OpenTP1 is used, a node consists of more than one
OpenTP1.

The figure below shows UAPs in client/server mode.

Figure 1-2: Outlines of UAPs in client/server mode

1.1.2 Application programs in message exchange mode
UAPs in message exchange mode enable communication between a host and a
distributor which are connected through a protocol (e.g., OSI TP) that complies with
the OSI, TCP/IP, and conventional networks.

The host and the distributor communicate with each other by sending and receiving

1. OpenTP1 Application Programs

5

messages. UAPs in message exchange mode are mainly used for communication with
an own system which is in a wide area network (WAN) via a communication
management program.

Coding formats are different between a UAP for message exchange processing and a
UAP using the RPC in client/server mode. Unlike UAPs used for processing in client/
server mode, once a UAP is created for message exchange processing, this UAP is
used only to send and receive messages.

Nodes that use a UAP for message exchange processing must incorporate the
OpenTP1 message exchange facility (TP1/Message Control, TP1/NET/Library), as
well as products that support the appropriate communication protocol (TP1/NET/
xxx)#.

#

Throughout this manual, the OpenTP1 message exchange facility (TP1/Message
Control, TP1/NET/Library) and products supporting the appropriate
communication protocol are referred to as Message Control Facility (MCF) or the
MCF service.

The figure below shows how messages are sent and received in an OpenTP1 system.

Figure 1-3: Outline of message exchange processing

1.1.3 Application programs in message queuing mode
A UAP in Message Queuing mode communicates by putting and getting elements of
a data storing queue (message queue). Like electronic mail, data can be sent and
received even if the remote system's application program is not running.

1. OpenTP1 Application Programs

6

Use the API called Message Queue Interface (MQI) from a UAP to use Message
Queuing.

OpenTP1 nodes which use Message Queuing must have TP1/Message Queue. For the
usage of Message Queuing, see the OpenTP1 TP1/Message Queue User's Guide.

The figure below shows UAPs using Message Queuing.

Figure 1-4: Outline of UAPs using Message Queuing

1.1.4 Application program load balancing
OpenTP1 enables jobs to be executed efficiently by running UAPs in multiple
processes. On a node, one UAP processing is executed in multiple processes to

1. OpenTP1 Application Programs

7

increase efficiency of the server system. This facility is called multiserver. It also
enables UAPs having the same name to be placed on multiple machines so that service
requests can be handled on any node. This facility is called internode load-balancing
facility. For details of the relationship between UAPs and processes to be executed, see
1.3.6 User server load balancing and scheduling.

1.1.5 Transaction processing with application program
UAP processing must be divided into units of job processing in order to determine
whether to enable/disable the results of each processing. Units in which processing is
either enabled/disabled are called transactions. OpenTP1 UAPs ensure processing in
these transactions.

A division for each job processing in transactions is called a synchronization point.
When transaction processing reaches the synchronization point, a decision is made on
whether the transaction processing terminated normally (enabled) or abnormally
(disabled). Acquisition of a synchronization point at which processing terminated
normally is called commitment. If transaction processing fails to terminate normally
without reaching a synchronization point, OpenTP1 cancels processing up to the
abnormal termination and recovers on the assumption that the processing did not exist.
This synchronization point processing is called rollback (partial recovery).

(1) Transaction processing with UAP in client/server mode
OpenTP1 can execute, as transactions, processing of UAPs which use the RPC in
client/server mode. Processing which continues requesting many services extending
over different nodes can also be treated as one transaction processing.

Transaction processing of UAP in client/server processing can be executed when the
UAP calls functions which specify transaction start and commitment. Multiple
services nested by the UAP that declared the transaction start can be processed as one
transaction.

OpenTP1 enables UAPs in client/server mode to maintain the reliability of transaction
processing in conventional data communication.

(2) Transaction processing in message exchange mode
A message handling UAP can be processed as a transaction from the start to the end of
message processing. In this case, OpenTP1 automatically controls synchronization
point processing.

After the message handling UAP receives a message, transaction control functions for
processing in client/server mode cannot be used.

1. OpenTP1 Application Programs

8

1.2 Types of application program

OpenTP1 UAPs are available in the following types:

UAPs used for communication in client/server mode

• Service using program (SUP)

This UAP is dedicated to a client. The SUP requires the basic OpenTP1
facility (TP1/Server Base or TP1/LiNK).

• Service providing program (SPP)

This UAP (server UAP) offers service upon request from a client UAP. The
SPP requires the basic OpenTP1 facility (TP1/Server Base or TP1/LiNK).

UAPs used for communication in message exchange mode

• Message handling program (MHP)

This UAP receives and processes messages sent through communication
lines. An MHP process can request an SPP for service. The MHP requires
the basic OpenTP1 facility and message exchange facility (TP1/Message
Control).

UAPs which initialize user files

• UAP that handles offline work

This UAP performs user-specified arbitrary processing. UAPs that handle
offline work can use only OpenTP1 library functions for initially creating
DAM files and accessing them in a batch environment.

UAPs used with the OpenTP1 client facility (TP1/Client)

• Client user program (CUP)

This UAP is dedicated to a client. Programs which request SPPs for service
using TP1/Client library functions from WSs or PCs are called by the generic
name of CUP. The CUP requires the OpenTP1 client facility (TP1/Client/W
or TP1/Client/P).

For the CUP, see the manual OpenTP1 TP1/Client User's Guide TP1/Client/
W, TP1/Client/P.

You can use TP1/Client for Java to create Java applets and Java applications
that request services from SPPs.

You can use TP1/Client/J to create Java applets, Java applications, and Java
servlets. For further information, see the manual OpenTP1 TP1/Client User's
Guide TP1/Client/J.

1. OpenTP1 Application Programs

9

Figure 1-5 shows client/server mode UAPs (SUP, SPP) and Figure 1-6 shows a
message exchange mode UAP (MHP).

Figure 1-5: Outline of UAP roles and positions (client/server mode)

1. OpenTP1 Application Programs

10

Figure 1-6: Outline of UAP roles and positions (message exchange mode)

1.2.1 Using services UAP (SUP)
A UAP dedicated to a client is called a service using program (SUP). An SUP is a UAP
which requests the server UAP (SPP) for service and starts communication in client/
server mode.

Communication started by an SUP is used only for requesting the SPP for service. It
is impossible to create functions for making other UAPs offer service.

The figure below shows the outline of the SUP.

1. OpenTP1 Application Programs

11

Figure 1-7: Outline of SUP

(1) SUP start
The SUP can be started either at the same time as OpenTP1 or anytime after OpenTP1
is started. If the first method is selected, UAP processing will start as soon as OpenTP1
starts. The starting time can be selected according to the purpose of the created SUP.

(a) Starting at the same time as OpenTP1
Before starting OpenTP1, specify that the SUP is to start at the same time as OpenTP1.
The specification method is as follows:

• TP1/Server Base

Specify the user server name of the SUP in the definition command dcsvstart
for the user service configuration definition.

• TP1/LiNK

When setting up the user server environment, specify that the SUP is to start
automatically.

(b) Starting anytime after OpenTP1 is started
To start the SUP after OpenTP1 is started, specify the user server name of the SUP as
the argument to the dcsvstart command.

(2) During SUP operation
Reserve the SUP process as a resident process.

If an error occurs during the SUP process in online mode, the SUP process can be
started automatically from another process. In the case of TP1/Server Base, to make
another process start the SUP process, specify Y for auto_restart in the user service

1. OpenTP1 Application Programs

12

definition. In the case of TP1/LiNK, automatic startup of the SUP process is specified.

If automatic restart is impossible under OpenTP1, use the dcsvstart command.

(3) SUP termination
SUP termination is not under OpenTP1 control. If the SUP is to be normally
terminated when the intended work terminates, design the SUP so that it will terminate
itself. If the SUP requests to start a transaction, it must be terminated after commitment
the transaction (acquire the synchronization point). If it is necessary to bring the SUP
to abnormal termination when processing is unsuccessful, design the SUP so that it
will terminate itself by using exit() or abort().

The SUP cannot be normally terminated by the dcsvstop command. However, the
SUP can be forced to termination using the dcsvstop -f command.

Do not use the kill command to terminate the SUP process.

(4) Outline of SUP processing
After using the UAP start function (dc_rpc_open()[CBLDCRPC('OPEN ')]) with
the SUP, call the user server start completion report function
(dc_adm_complete()[CBLDCADM('COMPLETE')]) to post the completion of server
start to OpenTP1.

The figure below shows SUP processing.

1. OpenTP1 Application Programs

13

Figure 1-8: Outline of SUP processing (C language)

1.2.2 Providing services UAP (SPP)
A UAP which offers a requested service is called a service providing program (SPP).
While OpenTP1 is active, the SPP offers the service requested by the client UAP. The
client UAP requests the SPP for service in a way similar to a function call. The client
UAP need not be aware which node the SPP exists at.

The SPP starts its service when requested. It waits for a request while it is not offering
service.

The SPP works as a server by accessing a user file at the node containing OpenTP1.
The SPP can access OpenTP1-specific files by way of library functions and can access
ORACLE and other DBMS via SQL statements.

An SPP can request another SPP for service, meaning that services can be nested.

The figure below shows an outline of an SPP.

1. OpenTP1 Application Programs

14

Figure 1-9: Outline of SPP

(1) SPP configuration
Multiple services corresponding to requests of various client UAPs are created. The
created services are grouped into an SPP executable file. When C language is used,
each service is called a service function; when COBOL language is used, each service
is called a service program. To produce an SPP executable file, link multiple services
with a main function (or a main program in COBOL language). Then, define the SPP
executable file, comprising one main function and multiple service functions, as a
service group in OpenTP1.

The facility for dynamic loading of service functions allows multiple services to be
rolled into a UAP shared library#. This eliminates the need to link the services with the
main function.

#

Refers to the concept of compiling UAP source files to produce UAP object files,
which are then linked to create a shared library.

The figures below show SPP configurations, the first of which uses a stub and the
second of which uses dynamic loading of service functions.

1. OpenTP1 Application Programs

15

Figure 1-10: SPP configuration (when using a stub)

1. OpenTP1 Application Programs

16

Figure 1-11: SPP configuration (when using dynamic loading of service
functions)

(2) SPP start
The SPP can be started either at the same time as OpenTP1 or anytime after OpenTP1
is started. If the first method is selected, SPP processing will start as soon as OpenTP1
starts. The starting time can be selected according to the purpose of the SPP.

(a) Starting at the same time as OpenTP1
Before starting OpenTP1, specify that the SPP is to start at the same time as OpenTP1.

1. OpenTP1 Application Programs

17

The specification method is as follows:

• TP1/Server Base

Specify the user server name of the SPP in the definition command dcsvstart
for the user service configuration definition.

• TP1/LiNK

During the operation to set up the user server environment, specify that the SPP
is to start automatically.

(b) Starting anytime after OpenTP1 is started
To start the SPP anytime after OpenTP1 is started, specify the user server name of the
SPP as the argument to the dcsvstart command.

The SPP process is initiated from the main function. It becomes ready to offer service
when the SPP service starting function
(dc_rpc_mainloop()[CBLDCRSV('MAINLOOP')]) is normally executed.

(3) During SPP operation
The started SPP works as a previously specified process so that memory can be used
efficiently. The started SPP may be activated as a resident process or nonresident
process. In the former case, the SPP starts processing upon receiving a service request.
Even in the latter case, a service request activates the process, thereby starting SPP
processing.

For details about setting up UAP processes, see 1.3.5 Application program
environment setup.

(4) SPP termination
The SPP is normally terminated when:

• OpenTP1 is normally terminated.

• The dcsvstop command in which the user server name of the SPP is specified
is executed during OpenTP1 operation.

When one of the above events occurs, the function dc_rpc_mainloop() returns,
thereby terminating the SPP.

Do not use the kill command to terminate the SPP process.

(5) Outline of SPP processing
Perform the following pre-processing for SPP main functions:

• Application program start (dc_rpc_open()[CBLDCRPC('OPEN ')]).

• SPP service start (dc_rpc_mainloop()[CBLDCRSV('MAINLOOP')]).

If the transaction start function has been called from the SPP, terminate the SPP after

1. OpenTP1 Application Programs

18

using the transaction commitment function (synchronization point acquisition).

To use an MCF function from the SPP, call the MCF environment open function
(dc_mcf_open()[CBLDCMCF('OPEN ')]) and the MCF environment close
function (dc_mcf_close()[CBLDCMCF('CLOSE ')]) as main functions.

The figure below shows SPP processing.

Figure 1-12: Outline of SPP processing (C language)

1.2.3 Message handling UAP (MHP)
A UAP used for message exchange processing is called a message handling program
(MHP). The MHP enables an own system connected with the MCF to communicate in
message exchange mode. For details on message exchange processing see 3.6 Message
exchange processing.

The MHP can use the functions of OpenTP1 message exchange facilities. The MHP
can also request SPP services from MHP processing by using the RPC.

To use the MHP, the MCF must be at the node at which the MHP exists.

The figure below shows the MHP.

1. OpenTP1 Application Programs

19

Figure 1-13: Outline of MHP

(1) MHP configuration
Like the SPP, the MHP comprises a main function and service functions.

An application which is scheduled according to the application name in a message
received by the MCF is created as a service function (a service program when COBOL
language is used). Create more than one service function, link the service functions
with a main function (a main program when COBOL language is used), and group all
the functions into an executable file. Then, define the MHP executable file, comprising
one main function and multiple service functions, as a service group in OpenTP1.

Since the facility for dynamic loading of service functions groups multiple services
into a UAP shared library# before using them, it is not necessary to group them in the
main function.

#

UAP shared library creation refers to linking the UAP object files created by
compiling UAP source files and grouping them in a shared library.

1. OpenTP1 Application Programs

20

The figures below show MHP configurations, the first of which uses a stub and the
second of which uses dynamic loading of service functions.

Figure 1-14: MHP configuration (using a stub)

1. OpenTP1 Application Programs

21

Figure 1-15: MHP configuration (using dynamic loading of service functions)

(2) MHP start
The MHP can be started either at the same time as OpenTP1 or anytime after OpenTP1
is started. If the first method is selected, MHP processing will start as soon as OpenTP1
starts. The starting time can be selected according to the purpose of the MHP.

1. OpenTP1 Application Programs

22

(a) Starting at the same time as OpenTP1
Before starting OpenTP1, specify that the MHP is to start at the same time as
OpenTP1. Specify the user server name of the MHP in the definition command
dcsvstart for the user service configuration definition.

(b) Starting anytime after OpenTP1 is started
To start the MHP anytime after OpenTP1 is started, specify the user server name of the
MHP as the argument to the dcsvstart command.

The MHP is initiated from the main function. It becomes ready to receive messages
when the MHP service starting function
(dc_mcf_mainloop()[CBLDCMCF('MAINLOOP')]) is normally executed. If the
MHP terminates abnormally before the service starting function is called, processing
is determined by the values assigned to the hold operand and term_watch_time
operand in the relevant user service definition (or user service default definition).

(3) During MHP operation
The started MHP works as a previously specified process so that memory can be used
efficiently. The started MHP may be activated as a resident process or nonresident
process. In the former case, the MHP starts processing upon receiving a service
request. Even in the latter case, a service request activates the process, thereby starting
MHP processing.

For details about setting up UAP processes, see 1.3.5 Application program
environment setup.

(a) Starting a message handling MHP
After the MCF receives a message, the corresponding MHP process is started. The
MHP is scheduled according to the application name in the first segment of the
message. In the MCF application definition, correspond the application name to the
service name for recognizing the UAP service in OpenTP1.

The message handling MHP can be started at either of the following times by using the
function dc_mcf_execap()[CBLDCMCF('EXECAP')] by another UAP (MHP or
SPP):

• When the UAP that called the function dc_mcf_execap() terminates normally
(transaction commitment)

• When the specified number of seconds have passed after the UAP called the
function dc_mcf_execap() or when the specified time comes

(b) Starting an MHP for an MCF event
If an MCF error or an MHP error occurs, a message is output for posting the error
status from the MCF. This feature is called an MCF event. Create an MHP for an MCF
event in case an MCF event is reported so that the MHP for an MCF event will perform

1. OpenTP1 Application Programs

23

error recovery processing specific to the MCF event. Create an MHP for an MCF event
in correspondence to the event code of an MCF event which might report. If the MCF
event reports, the corresponding MHP for an MCF event is started. For details on MCF
events see 3.10 MCF events.

(4) MHP termination
The MHP is normally terminated when:

• OpenTP1 is normally terminated.

• The dcsvstop command in which the user server name of the MHP is specified
is executed during OpenTP1 operation.

When one of the above events occurs, the function dc_mcf_mainloop() returns,
thereby terminating the MHP.

Do not use the kill command to terminate the MHP process.

(5) Outline of MHP processing
Perform the following pre-processing for MHP main functions:

• Starts an application program.

(dc_rpc_open() [CBLDCRPC('OPEN ')])

• Opens an MCF environment.

(dc_mcf_open() [CBLDCMCF('OPEN ')])

• Starts an MHP service.

(dc_mcf_mainloop() [CBLDCMCF('MAINLOOP')])

• Closes an MCF environment.

(dc_mcf_close() [CBLDCMCF('CLOSE ')])

The figure below shows MHP processing.

(6) Note
You cannot call the MHP service functions using the RPC.

1. OpenTP1 Application Programs

24

Figure 1-16: Outline of MHP processing (C language)

1.2.4 UAP that handles offline work
A UAP for handling batch jobs can be created if necessary. A UAP which handles the
initialization, allocation, and deletion of DAM files as well as batch jobs is executed
under the offline environment.

OpenTP1 facilities which can be used by a UAP that handles offline work are as
follows:

• Facility to process physical DAM files

• Facility to edit journal data in the output file of the jnlrput command.

UAP that handles offline work cannot use the OpenTP1 functions which are used in
online mode. The RPC for service requests cannot be used between a UAP that handles
offline work and a UAP (SUP, SPP, or MHP) operating under the online environment.
Services to be provided for another UAP cannot be created by a UAP that handles
offline work.

The figure below shows a UAP that handles offline work.

1. OpenTP1 Application Programs

25

Figure 1-17: Outline of UAP that handles offline work

(1) Starting and terminating UAP that handles offline work
Use the shell to start a UAP that handles offline work. Users are to manage the start
and termination of UAP that handles offline work.

1. OpenTP1 Application Programs

26

1.3 Creation of application programs

This section explains the procedure for creating OpenTP1 UAPs. The figure below
shows the procedure from UAP creation to execution.

1. OpenTP1 Application Programs

27

Figure 1-18: Procedure for UAP creation (when using a stub)

1. OpenTP1 Application Programs

28

Figure 1-19: Procedure for UAP creation (when using dynamic loading of
service functions)

1.3.1 Coding
Use the C, C++ or COBOL language when coding OpenTP1 UAPs. Not only
OpenTP1 facilities, but also standard OS facilities and structured query language
(SQL) can be used for OpenTP1 UAPs. For details of the coding rules, see the
applicable OpenTP1 Programming Reference manual. For details on the SQL coding
rules, see the appropriate reference manual.

(1) Coding in C or C++
(a) When using C

Code the UAP in either the ANSI C format or the pre-ANSI K&R format (Classic C).

1. OpenTP1 Application Programs

29

To use an OpenTP1 facility from the UAP, call the corresponding OpenTP1 library
function.

(b) When using C++
Code the UAP in the ANSI C format according to the C++ specification. To use an
OpenTP1 facility from the UAP, call the corresponding OpenTP1 library function.
Note that linking the UAP coded in C++ causes the OpenTP1 library function to be
linked and operated as a C function because the header file (dcxxx.h) specifies that
OpenTP1 library functions should be linked to elements written in C.

(c) How to use OpenTP1 functions
As in the case of OS-provided standard functions, when calling functions, set their
arguments.

Whether a function has been normally executed can be determined from the return
value from the function. Some functions give return values, whereas others do not.

The figure below shows UAP coding in C.

1. OpenTP1 Application Programs

30

Figure 1-20: Outline of UAP coding in C

(2) Coding in COBOL

COBOL/2# or COBOL85 is available for UAP coding in the COBOL language. To use
OpenTP1 facilities from the UAP, use COBOL-UAP creation programs corresponding
to OpenTP1 library functions. The COBOL-UAP creation program is called by the
CALL statement in COBOL and transfers control from UAP processing to the
OpenTP1 library.

The results of CALL statement execution can be identified by the numeric value
returned (status code). Some COBOL-UAP creation programs do not return status
codes.

The figure below shows UAP coding in COBOL.

1. OpenTP1 Application Programs

31

Figure 1-21: Outline of UAP coding in COBOL

#

In Base samples, the DATA DIVISION template can be used for each
COBOL-UAP creation program. For details on the DATA DIVISION template,
see 8.8 COBOL language templates.

(3) Note
Do not use coding that creates multiple threads, because it might cause problems
during UAP termination.

OpenTP1-provided APIs are not thread-safe. They are internally controlled by
their own threads. Therefore, all OpenTP1 APIs must be run on the main thread.
No OpenTP1 APIs can be issued outside the main thread except for the following
APIs:

• TP1/EE C language interfaces that have names beginning with ee_

• TP1/EE COBOL language interfaces that have names beginning with CBLEE

1.3.2 Creating stubs
UAPs used with OpenTP1 require libraries for fulfilling inter-UAP service requests.

1. OpenTP1 Application Programs

32

One of these libraries is called a stub. Information about UAP service is specified in
the stub. Information about the destination of communication is created in some cases.

For details on how to create stubs, see the applicable OpenTP1 Programming
Reference manual.

(1) Types of stub linked to application programs
Stubs are linked to the server or client UAP.

(a) Stub linked to server UAP
A stub linked to the server UAP, working in cooperation with service distribution
functions, makes the UAP ready to offer its service. The service distribution functions,
which are called by the main function of the server UAP, are listed below.

• For SPPs: dc_rpc_mainloop() [CBLDCRSV('MAINLOOP')]

• For MHPs: dc_mcf_mainloop() [CBLDCMCF('MAINLOOP')]

The figure below shows a stub linked to the server UAP.

Figure 1-22: Stub linked to server UAP

(b) Stub linked to client UAP
A stub linked to the client UAP enables communication with a server UAP according
to information specified about that server UAP. The client UAP requires a stub only
when the XATMI interface is used for communication. When OpenTP1 RPCs are in
use, the client UAP requires no stub.

1. OpenTP1 Application Programs

33

(2) UAPs requiring a stub
Whether a UAP requires a stub depends on the type of UAP and the communication
method used.

• UAPs using OpenTP1 remote procedure call (SUP, SPP)

SPPs require a stub. SUPs require no stub.

• MHP

MHPs require a stub. Create a stub with a procedure similar to that in the case of
SPPs.

• Client/server mode communication through XATMI interface

Both client UAPs (SUP, SPP) and the server UAP (SPP) require stubs.

No stub is required for UAP that handles offline work because they do not contain a
service function.

(3) Stub creation procedure

Before creating a stub, create a file (RPC interface definition file#) containing
information about the UAP definition. Execute the stub creation command with its
argument specified to identify this file. The following stub creation commands are
available:

• When the UAP is for TCP/IP communication: stbmake command

• When the UAP is for OSI TP communication: tpstbmk command

When the stub creation command is executed, a stub source file (source file in C) is
created. Compile this file with the C compiler and link it to the object file of the UAP.

When an MHP is coded in ANSI C or C++ style, define DCMHP at compilation of the
stub which is linked to the MHP.

When modifying the stub, create the UAP from scratch. Modify the RPC interface
definition file, recreate the stub, and link it to the object file of the recompiled UAP.

#

For stubs compliant with the XATMI interface, this file is referred to as the
XATMI interface definition file.

The figure below shows the stub creation procedure.

1. OpenTP1 Application Programs

34

Figure 1-23: Stub creation procedure

1.3.3 Compilation and linkage (when using a stub)
This subsection explains the procedure for compiling and linking created programs.
The UAP is compiled and linked into an executable file. For details on the compilation
and linkage procedure, see the applicable OpenTP1 Programming Reference manual.

(1) Compilation
The following programs must be compiled:

• UAP source file (main and service functions)

• Stub (if required for the UAP)

Use the C language compiler to compile source programs written in C and the COBOL
language compiler to compile source programs written in COBOL.

(2) Linkage
Compiled object files are linked to the OpenTP1 library and other necessary files. If a
non-OpenTP1 resource manager is used, it must be linked to the library specified by
the non-OpenTP1 resource manager. To use a non-OpenTP1 resource manager with
the XA interface, link the library to the UAP by performing the following steps:

1. Specify the resource manager identifier for the non-OpenTP1 resource manager
in the trnmkobj command and execute this command to create a transaction

1. OpenTP1 Application Programs

35

control object file.

2. Link the object file to the UAP.

(3) Note
If the OS is HP-UX, the bind mode for linkage must be specified as immediate. If an
executable file created in another mode is used as an OpenTP1 UAP, the system
operation is unpredictable. To check that the bind mode of the created UAP is
immediate, use the chatr command of the OS.

1.3.4 Compilation and linkage (when using dynamic loading of
service functions)

This subsection explains the procedure for compiling and linking created programs,
and how to incorporate them into a UAP shared library#.

First, the main function of the UAP is compiled and linked into an executable file.
Next, the UAP's service functions are incorporated into a UAP shared library#. For
details on the compilation and linkage procedure, see the applicable OpenTP1
Programming Reference manual.

#

Refers to the concept of compiling UAP source files to produce UAP object files,
which are then linked to create a shared library.

(1) Compilation
The following programs must be compiled:

• UAP source file (main and service functions)

Use the C language compiler to compile source programs written in C, and the
COBOL language compiler to compile source programs written in COBOL

(2) Linkage
The object file created by compiling the source files for the UAP main function is
linked to the OpenTP1 library and other necessary files. If a non-OpenTP1 resource
manager is used, the object file must be linked to the library specified by the
non-OpenTP1 resource manager. To use a non-OpenTP1 resource manager with the
XA interface, link the library to the UAP by performing the following steps:

1. Specify the resource manager identifier for the non-OpenTP1 resource manager
in the trnmkobj command and execute this command to create a transaction
control object file.

2. Link the object file to the UAP.

1. OpenTP1 Application Programs

36

(3) Creating a UAP shared library
Incorporate the object file you created by compiling the source file for the service
functions into the shared library. In the same manner as in (2) above, the source file is
linked to the OpenTP1 library and other necessary files. See the TP1/Server Base
sample file (make_svdl) for compilation and linkage options.

(4) Note
If the OS is HP-UX, immediate must be specified for the bind mode for linkage. If
an executable file created in another bind mode is used as an OpenTP1 UAP, system
operation cannot be guaranteed. To check whether the bind mode of a created UAP is
immediate, use the chatr command of the OS.

1.3.5 Application program environment setup
An appropriate environment must be set up before the executable file of the created
UAP can be used as an OpenTP1 user server.

(1) Directory containing UAP
The executable file of the created UAP is stored in the $DCDIR/aplib/ directory
(where $DCDIR represents the OpenTP1 home directory).

(2) UAP registration
The executable file of the UAP is registered with OpenTP1. An OpenTP1 UAP is
called a user server because it offers services.

(a) UAP registration method
When registering a UAP with OpenTP1, set up the environment in which the UAP will
run. The setting method is as follows:

• TP1/Server Base

Set a UAP execution environment in the user service definition.

• TP1/LiNK

Use the dcsysset -u command for UNIX or the Application Control icon for
Windows.

(b) User server name
The UAP name (user server name) under OpenTP1 is as follows:

• TP1/Server Base

File name of the user service definition

• TP1/LiNK

When setting up a UAP execution environment, give any user server name

1. OpenTP1 Application Programs

37

associated with the executable file name.

(3) UAP names
Names given to programs created as UAPs are explained below.

• UAP executable file name

This name is set in an option to the linkage command when the UAP object file
is linked to the library.

• User server name

This name is set when the UAP is registered with OpenTP1. It is specified as the
argument to the dcsvstart command. It is 1 to 8 characters long.

• Service group name and service name

These names are specified as arguments to functions which are used to request
service through OpenTP1 remote procedure calls or communication via the
XATMI interface. When the user server name is registered with OpenTP1, these
names are also specified.

Each UAP executable file is given a service group name.

Each service function is given a service name which works as a function name.

• Application name

After a message is received through TP1/Message Control, it is processed by the
application identified by this name. MHP service functions are registered under
application names given to them. The relationship between service names and
application names is specified in the MCF application definition.

1.3.6 User server load balancing and scheduling
This subsection explains the multiserver facility provided for efficient use of UAPs
(user servers) and how to schedule UAPs.

When OpenTP1 system services or user servers are run, the OS work area is used.
Operation performed on this work area is called a process. The process generated by
running a user server is specifically called the user server process, the UAP process,
or simply the process. OpenTP1 controls the total number of processes in use so that
the number of processes will not increase or decrease beyond appropriate levels.

Before the user server process can be controlled, the user server must be started. The
user server must be started at the same time as OpenTP1 or by executing the
dcsvstart -u command.

(1) Multiserver facility
When a user server running to handle a service request receives another service
request, user server processing for the new service request can be performed by a new

1. OpenTP1 Application Programs

38

process. In this way, one user server can run another process in parallel to the current
process. This is referred to as the multiserver facility.

The multiserver facility is available to SPPs that use the schedule queue
(queue-receiving servers), not to servers that receive requests from socket. For a server
that receives requests from socket, specify only one process to be used.

(2) Resident and nonresident processes
UAP processes for which multiserver facility is specified can be acquired either always
during OpenTP1 operation or dynamically. An always acquired process is called a
resident process. A process which is not acquired during OpenTP1 operation, but is
started when necessary is called a nonresident process.

If processes are specified as nonresident, the memory area in the OpenTP1 system can
be used efficiently. When a process is specified as resident, its user server processing
is quicker than when it is specified as nonresident.

If free memory space is unavailable in the system, a nonresident process will start after
the currently running nonresident process terminates.

(3) Method for process setup
The number of processes to be started by the user server as resident/nonresident
processes is set up in advance. The specified number of processes can be started in
parallel. The setup method is as follows:

• TP1/Server Base

Specify the total number of processes to be used (the number of resident processes
and the number of nonresident processes) for parallel_count in the user
service definition.

• TP1/LiNK

When setting up a UAP execution environment, specify the number of processes
to be used (the number of resident processes and the number of nonresident
processes).

If more than one resident process is specified, the specified number of processes will
be started in parallel. If more than one nonresident process is specified, the specified
number of processes can be started dynamically.

(4) Multiserver load balance
The number of nonresident processes can be increased or decreased according to the
number of service requests in the schedule queue. This is called the multiserver load
balancing facility.

When to start a nonresident process is determined by the value assigned to the
balance_count operand in the user service definition. When the number of service
requests in the schedule queue exceeds the product of the value assigned to the

1. OpenTP1 Application Programs

39

balance_count operand and the number of active processes, the OpenTP1 starts a
nonresident process. When the number of service requests in the schedule queue drops
below the product of the value assigned to the balance_count operand and the
number of active processes, the OpenTP1 terminates a nonresident process.

The method for specifying the value determining when to start a nonresident process
is as follows:

• TP1/Server Base

Assign a value to balance_count in the user service definition.

• TP1/LiNK

The value assigned to the balance_count operand is equal to the maximum
number of remaining request services which was specified when the UAP
execution environment was set up.

(5) Schedule priority
Each user server can be given a schedule priority. Nonresident processes of a user
server given a higher schedule priority will be scheduled with priority over other
nonresident processes.

When processes to be used with a user server are set up, their schedule priorities are
also set up.

The figure below shows a process load balancing.

1. OpenTP1 Application Programs

40

Figure 1-24: Process load balancing

(6) Internode load-balancing facility
When user servers having the same service group name are placed on multiple nodes,
a service request can be handled by any user server on any node. As the result, the load

1. OpenTP1 Application Programs

41

can be distributed among nodes. This facility is called internode load-balancing
facility. Particular environment setup is not required to use this facility. OpenTP1
distributes the load automatically if only the user servers having the same service
group name on these nodes are activated.

Consider a service group in the OpenTP1 system which contains some user servers that
use the multi-scheduler facility, and some that do not. In this case, even when there is
a significant load on the user servers that use the multi-scheduler facility, the load is
not distributed to the user servers that do not use the multi-scheduler facility. To
distribute the load to user servers that do not use the multi-scheduler facility, specify
the -t option in the scdmulti definition command of the schedule service definition.
For details on the scdmulti definition command, see the description of the schedule
service definition in the manual OpenTP1 System Definition.

The internode load-balancing facility can distribute loads to 128 or less nodes.

The internode load-balancing facility distributes the load to the node which can
process the request more efficiently according to the schedule status of the nodes.
When the user server on the node which contains the UAP requesting the service is to
be scheduled with priority, specify Y in the scd_this_node_first operand of the
schedule service definition for the node.

The figure below shows the outline of the internode load-balancing facility.

1. OpenTP1 Application Programs

42

Figure 1-25: Outline of internode load-balancing facility

(7) Extended internode load-balancing facility
You can define the following specifications:

Schedule rate for LEVEL0 nodes

You can define the schedule rate for nodes whose load level is LEVEL0 by
specifying an appropriate value in the schedule_rate operand of the schedule
service definition.

Load monitoring interval time

You can define the load monitoring interval time for each service group by
specifying an appropriate value in the loadcheck_interval operand of the
user service definition or the user service default definition.

Thresholds for load levels

1. OpenTP1 Application Programs

43

You can define the thresholds for each service group by specifying appropriate
values in the levelup_queue_count and leveldown_queue_count
operands of the user service definition or the user service default definition. These
thresholds will determine load levels based on the number of service requests
remaining.

Number of retries on a communication error

If a communication error occurs during service requests scheduling, the process
usually returns with an error and does not attempt re-scheduling.

You can define the number of retries attempted in order to schedule requests to nodes
other than where a communication error occurred by specifying an appropriate value
in the scd_retry_of_comm_error operand of the schedule service definition.

TP1/Extension 1 must be installed before you can use this facility. Note that operation
will be unpredictable if you run the facility while TP1/Extension 1 is not installed.

(8) Multi-scheduler facility
When a client UAP requests a service provided by a queue-receiving server (SPP that
uses the schedule queue) on a remote node, the scheduler daemon on the node
containing the request destination server receives the service request message and
stores it in the schedule queue of the relevant queue-receiving-server. A scheduler
daemon is a system daemon that provides a schedule service.

The scheduler daemon is a single process provided on each OpenTP1 system.
Therefore, as systems become larger and machines and networks boast increasingly
better performances, the conventional scheduler daemon may experience difficulty
scheduling messages efficiently. If the conventional scheduler daemon cannot
schedule messages efficiently, see C. Examples of System Configurations Requiring
Consideration of the Multi-Scheduler Facility.

OpenTP1 provides a daemon exclusively for receiving service requests (referred to
below as the multi-scheduler daemon) in addition to the conventional scheduler
daemon (referred to below as the master scheduler daemon). The multi-scheduler
daemon prevents scheduling delays caused by contention during receive processing. It
does this by starting multiple processes and running receive processing for service
request messages in parallel. This facility is called the multi-scheduler facility.

TP1/Extension 1 must be installed before you can use this facility. Note that operation
will be unpredictable if you run the facility while TP1/Extension 1 is not installed.

To use the multi-scheduler facility, you must specify the following definitions:

On the RPC receiver:

Schedule service definition scdmulti

User service definition scdmulti

1. OpenTP1 Application Programs

44

On the RPC sender:

User service definition multi_schedule

You can also group several multi-scheduler daemons for each queue-receiving server.
This prevents contention when different servers receive service request messages. To
group and use multi-scheduler daemons, you must specify the -g option in the user
service definition scdmulti on the server.

When OpenTP1 starts, it starts the multi-scheduler daemon specified in the definition
at the well known port number in addition to the master scheduler daemon. It starts the
multi-scheduler daemon as a system daemon providing schedule services. For details
on requesting a service using the multi-scheduler facility provided by TP1/Client, see
the manual OpenTP1 TP1/Client User's Guide TP1/Client/W, TP1/Client/P.

For details on RPC that uses the multi-scheduler facility, see 2.1.16 RPC with the
multi-scheduler facility.

The figure below shows an example of using the multi-scheduler facility.

1. OpenTP1 Application Programs

45

Figure 1-26: Example of using the multi-scheduler facility

1. OpenTP1 Application Programs

46

1.4 OpenTP1 library functions

1.4.1 Application programming interface facilities
The following facilities are available through OpenTP1 library functions:

(1) Basic OpenTP1 facility (TP1/Server Base, TP1/LiNK)
• Remote procedure call

A method similar to function calls can be used for communication between UAPs.

• Transaction control

UAP processes can be controlled as transactions.

• System operation management

UAPs can execute commands and report the status of user servers.

• Message log output

UAPs can output any user information as message logs.

• User journal acquisition

User journals (UJs) can be acquired in system journal files.

• Journal data editing

Journal data in the file containing the execution result of the jnlrput command
can be edited.

• Real-time statistical information acquisition

Real-time statistical information can be acquired in an arbitrary section in the
UAP.

(2) Facilities available with TP1/Message Control
• Message exchanging

TP1/Message Control allows message exchange mode communication in a
wide-area network and between systems interconnected through TCP/IP.

(3) Facilities available for files
• DAM file service

Direct files can be used as OpenTP1-dedicated user files.

• TAM file service

Table access based direct files can be used as OpenTP1-dedicated user files.

1. OpenTP1 Application Programs

47

• ISAM file service#

Indexed sequential files complying with the X/Open ISAM model can be used.

• IST service (TP1/Shared Table Access)

One or more tables (internode shared tables) in shared memory can be shared
between two or more OpenTP1 systems. For the IST service, the entity of each
user file does not exist and data is stored in an internode shared table in memory
instead.

• Lock for resources

OpenTP1 APIs can lock any files (UNIX files).

#

For details on the ISAM file service, see the manual Indexed Sequential Access
Method ISAM.

(4) X/Open-compliant application program interfaces
• XATMI interface

This interface allows client/server mode communication between X/
Open-compliant APIs.

• TX interface

X/Open-compliant APIs can control transactions.

(5) Facilities that are used in special styles
Listed below are functions for facilities that are used in special styles.

(a) Facilities available with TP1/Multi
• Multinode facility

Various facilities are available to UAPs in cluster/parallel OpenTP1 systems.

(b) Facilities available with online tester (TP1/Online Tester)
• Management of online tester

The user server test status can be obtained by calling an appropriate function from
the UAP.

1.4.2 List of OpenTP1 library functions
(1) List of library functions

Tables 1-1 to 1-5 list the OpenTP1 library functions.

1. OpenTP1 Application Programs

48

Table 1-1: OpenTP1 library functions (basic OpenTP1 facilities)

Facility Library function name

C language library COBOL-UAP creation
program

Remote
procedure call

Start a UAP dc_rpc_open CBLDCRPC('OPEN ')

Start an SPP service dc_rpc_mainloop CBLDCRSV('MAINLOOP')

Request a remote service dc_rpc_call CBLDCRPC('CALL ')

Invoke a remote service
with a communication
destination specified#1

dc_roc_call_to --

Receive processing result
in asynchronous mode

dc_rpc_poll_any_replie
s

CBLDCRPC('POLLANYR')

Acquire the descriptor of
an asynchronous RPC
request which has
encountered an error

dc_rpc_get_

error_

descriptor

CBLDCRPC('GETERDES')

Reject the receiving of
processing results

dc_rpc_discard_further
_replies

CBLDCRPC('DISCARDF')

Reject reception of
selected processing results

dc_rpc_discard_specifi
c_reply

CBLDCRPC('DISCARDS')

Retry a service program dc_rpc_

service_retry

CBLDCRPC('SVRETRY')

Set a schedule priority of
service request

dc_rpc_set_

service_prio

CBLDCRPC('SETSVPRI')

Reference the schedule
priority of service request

dc_rpc_get_

service_prio

CBLDCRPC('GETSVPRI')

Reference the service
response waiting interval

dc_rpc_get_

watch_time

CBLDCRPC('GETWATCH')

Update the service
response waiting interval

dc_rpc_set_

watch_time

CBLDCRPC('SETWATCH')

Acquire the node address
of a client UAP

dc_rpc_get_

callers_address

CBLDCRPC('GETCLADR')

Acquire the node address
of a gateway

dc_rpc_get_

gateway_address

CBLDCRPC('GETGWADR')

1. OpenTP1 Application Programs

49

Report data to CUP
unidirectionally

dc_rpc_cltsend CBLDCRPC('CLTSEND ')

Terminate a UAP dc_rpc_close CBLDCRPC('CLOSE ')

Remote API
facility

Establish a connection
with a RAP-processing
listener

dc_rap_connect CBLDCRAP('CONNECT ')

CBLDCRAP('CONNECTX')

Release a connection with
a RAP-processing listener

dc_rap_

disconnect

CBLDCRAP('DISCNCT ')

Transaction
control

Start a transaction dc_trn_begin CBLDCRPC('BEGIN ')

Enable commitment in
chained mode

dc_trn_chained_commit CBLDCRPC('C-COMMIT')

Enable rollback in chained
mode

dc_trn_chained_rollbac
k

CBLDCRPC('C-ROLL ')

Enable commitment in
unchained mode

dc_trn_

unchained_

commit

CBLDCRPC('U-COMMIT')

Enable rollback in
unchained mode

dc_trn_

unchained_

rollback

CBLDCRPC('U-ROLL ')

Report the information
about the current
transaction

dc_trn_info CBLDCRPC('INFO ')

System
operation
management

Execute operation
command

dc_adm_call_

command

CBLDCADM('COMMAND ')

Report completion of
processing that starts a
user server

dc_adm_complete CBLDCADM('COMPLETE')

Report the status of a user
server

dc_adm_status CBLDCADM('STATUS ')

Output audit
log

Output audit log dc_log_audit_print CBLDCADT('PRINT ')

Output
message log

Output message log dc_logprint CBLDCLOG('PRINT ')

Facility Library function name

C language library COBOL-UAP creation
program

1. OpenTP1 Application Programs

50

Legend:

--: Not applicable

#1

You cannot use this facility on the COBOL-UAP creation program.

#2

Journal data editing cannot use C Language API.

Table 1-2: OpenTP1 library functions (TP1/Message Control functions)

User journal
acquisition

Acquire user journal dc_jnl_ujput CBLDCJNL('UJPUT ')

Journal data
editing#2

Close the jnlrput output
file

-- CBLDCJUP('CLOSERPT')

Open the jnlrput output file -- CBLDCJUP

('OPENRPT ')

Input journal data of the
jnlrput output file

-- CBLDCJUP('RDGETRPT')

Performance
verification
trace

Acquire user-specific
performance verification
traces

dc_prf_utrace_

put

CBLDCPRF('PRFPUT ')

Report the sequential
number for an acquired
performance verification
trace

dc_prf_get_

trace_num

CBLDCPRF('PRFGETN ')

Real-time
statistical
information
service

Acquire real-time
statistical information for
arbitrary section

dc_rts_utrace_put CBLDCRTS('RTSPUT ')

Facility Library function name

C language library COBOL-UAP creation
program

Message
exchanging

Open the MCF
environment

dc_mcf_open CBLDCMCF('OPEN ')

Start an MHP service dc_mcf_mainloop CBLDCMCF('MAINLOOP')

Facility Library function name

C language library COBOL-UAP creation
program

1. OpenTP1 Application Programs

51

Receive a message dc_mcf_receive CBLDCMCF('RECEIVE')

Send a response message dc_mcf_reply CBLDCMCF('REPLY ')

Send a message dc_mcf_send CBLDCMCF('SEND ')

Resend a message dc_mcf_resend CBLDCMCF('RESEND ')

Receive a synchronous
message

dc_mcf_recvsync CBLDCMCF('RECVSYNC')

Send a synchronous
message

dc_mcf_sendsync CBLDCMCF('SENDSYNC')

Exchange a synchronous
message

dc_mcf_sendrecv CBLDCMCF('SENDRECV')

Accept temporary-stored
data

dc_mcf_tempget CBLDCMCF('TEMPGET ')

Update temporary-stored
data

dc_mcf_tempput CBLDCMCF('TEMPPUT ')

Terminate
continuous-inquiry-resp
onse processing

dc_mcf_contend CBLDCMCF('CONTEND ')

Activate an application
program

dc_mcf_execap CBLDCMCF('EXECAP ')

Report the application
information

dc_mcf_ap_info CBLDCMCF('APINFO ')

Report the application
information to user exit
routines

dc_mcf_ap_info_uoc --

Set user timer
monitoring

dc_mcf_timer_

set

CBLDCMCF('TIMERSET')

Cancel user timer
monitoring

dc_mcf_timer_

cancel

CBLDCMCF('TIMERCAN')

Commit an MHP dc_mcf_commit CBLDCMCF('COMMIT ')

Enable MHP rollback dc_mcf_rollback CBLDCMCF('ROLLBACK')

Close the MCF
environment

dc_mcf_close CBLDCMCF('CLOSE ')

Facility Library function name

C language library COBOL-UAP creation
program

1. OpenTP1 Application Programs

52

Legend:

--: Not applicable

Acquire the MCF
communication service
status

dc_mcf_tlscom CBLDCMCF('TLSCOM ')

Acquire the connection
status

dc_mcf_tlscn CBLDCMCF('TLSCN ')

Establish a connection dc_mcf_tactcn CBLDCMCF('TACTCN ')

Release a connection dc_mcf_tdctcn CBLDCMCF('TDCTCN ')

Acquire the acceptance
status for a server-type
connection
establishment request

dc_mcf_tlsln CBLDCMCF('TLSLN ')

Start acceptance of
server-type connection
establishment requests

dc_mcf_tonln CBLDCMCF('TONLN ')

Terminate acceptance of
server-type connection
establishment requests

dc_mcf_tofln CBLDCMCF('TOFLN ')

Delete an
application-related timer
activation request

dc_mcf_adltap CBLDCMCF('ADLTAP ')

Acquire the status of a
logical terminal

dc_mcf_tlsle CBLDCMCF('TLSLE ')

Shut down a logical
terminal

dc_mcf_tdctle CBLDCMCF('TDCTLE ')

Release a logical
terminal from shutdown

dc_mcf_tactle CBLDCMCF('TACTLE ')

Delete the output queue
of a logical terminal

dc_mcf_tdlqle CBLDCMCF('TDLQLE ')

Facility Library function name

C language library COBOL-UAP creation
program

1. OpenTP1 Application Programs

53

Table 1-3: OpenTP1 library functions (user data manipulation functions)

Facility Library function name

C language library COBOL-UAP creation
program

DAM file
service

Open a logical file dc_dam_open CBLDCDAM('DCDAMSVC','O
PEN')

Input a logical file block dc_dam_read CBLDCDAM('DCDAMSVC','R
EAD')

Update a logical file
block

dc_dam_rewrite CBLDCDAM('DCDAMSVC','R
EWT')

Output a logical file
block

dc_dam_write CBLDCDAM('DCDAMSVC','W
RIT')

Close a logical file dc_dam_close CBLDCDAM('DCDAMSVC','C
LOS')

Shut down a logical file dc_dam_hold CBLDCDAM('DCDAMSVC','H
OLD')

Release a logical file
from the shutdown state

dc_dam_release CBLDCDAM('DCDAMSVC','R
LES')

Reference the status of a
logical file

dc_dam_status CBLDCDAM('DCDAMSVC','S
TAT')

Start using an
unrecoverable DAM file

dc_dam_start CBLDCDAM('DCDAMSVC','S
TRT')

Terminate using an
unrecoverable DAM file

dc_dam_end CBLDCDAM('DCDAMSVC','E
ND ')

Allocate a physical file dc_dam_create CBLDCDMB('DCDAMINT','C
RAT')

Open a physical file dc_dam_iopen CBLDCDMB('DCDAMINT','O
PEN')

Input a physical file
block

dc_dam_get CBLDCDMB('DCDAMINT','G
ET ')

Output a physical file
block

dc_dam_put CBLDCDMB('DCDAMINT','P
UT ')

Seek a physical file block dc_dam_bseek CBLDCDMB('DCDAMINT','B
SEK')

Input directly a physical
file block

dc_dam_dget CBLDCDMB('DCDAMINT','D
GET')

1. OpenTP1 Application Programs

54

Output directly a
physical file block

dc_dam_dput CBLDCDMB('DCDAMINT','D
PUT')

Close a physical file dc_dam_iclose CBLDCDMB('DCDAMINT','C
LOS')

TAM file
service

Open a TAM table# dc_tam_open --

Input a TAM table record dc_tam_read CBLDCTAM('FxxR')('FxxU
')('VxxR')('VxxU')

Update a TAM table
record on the assumption
of input

dc_tam_rewrite CBLDCTAM

('MFY ')('MFYS')

('STR ')('WFY ')

('WFYS')('YTR ')
Update/add a TAM table
record

dc_tam_write

Delete a TAM table
record

dc_tam_delete CBLDCTAM('ERS ')

('ERSR')('BRS ')

('BRSR')

Cancel the input of a
TAM table record#

dc_tam_read_cancel --

Acquire TAM table
status

dc_tam_get_inf CBLDCTAM('GST ')

Acquire TAM table
information

dc_tam_status CBLDCTAM('INFO')

Close a TAM table# dc_tam_close --

IST service Open an internode
shared table

dc_ist_open CBLDCIST('DCISTSVC','O
PEN')

Input an internode shared
table record

dc_ist_read CBLDCIST('DCISTSVC','R
EAD')

Output an internode
shared table record

dc_ist_write CBLDCIST('DCISTSVC','W
RIT')

Delete an internode
shared table record

dc_ist_close CBLDCIST('DCISTSVC','C
LOS')

Facility Library function name

C language library COBOL-UAP creation
program

1. OpenTP1 Application Programs

55

Legend:

--: Not applicable

#

COBOL-UAP creation programs cannot be used.

Table 1-4: OpenTP1 library functions (X/Open-compatible functions)

Resource lock
control

Enable locking of a
resource

dc_lck_get CBLDCLCK('GET ')

Release all resources
from lock

dc_lck_release_all CBLDCLCK('RELALL ')

Release the resource
from lock specified by
name

dc_lck_release_byname CBLDCLCK('RELNAME ')

Facility Library function name

C language library COBOL-UAP creation
program

XATMI
interface

Send a service request
and synchronously await
its reply

tpcall() TPCALL

Send a service request tpacall() TPACALL

Get a reply from a
previous service request

tpgetrply() TPGETRPLY

Cancel a call descriptor
for an outstanding reply

tpcancel() TPCANCEL

Establish a
conversational service
connection

tpconnect() TPCONNECT

Terminate a
conversational service
connection abortively

tpdiscon() TPDISCON

Receive a message in a
conversational
connection

tprecv() TPRECV

Facility Library function name

C language library COBOL-UAP creation
program

1. OpenTP1 Application Programs

56

Send a message in a
conversational
connection

tpsend() TPSEND

Allocate a typed buffer tpalloc() --

Free a typed buffer tpfree() --

Change the size of a
typed buffer

tprealloc() --

Determine information
about a typed buffer

tptypes() --

Advertise a service name tpadvertise() TPADVERTISE

Unadvertise a service
name

tpunadvertise() TPUNADVERTISE

Template for service
routines

tpservice() TPSVCSTART

Return from a service
routine

tpreturn() TPRETURN

TX interface Begin a global a
transaction

tx_begin() TXBEGIN

Commit a global
transaction

tx_commit() TXCOMMIT

Return global transaction
information

tx_info() TXINFORM

Open a set of resource
managers

tx_open() TXOPEN

Roll back a global
transaction

tx_rollback() TXROLLBACK

Close a set of resource
managers

tx_close() TXCLOSE

Set commit_return
characteristic

tx_set_commit_

return()

TXSETCOMMITRET

Set transaction_
control characteristic

tx_set_

transaction_

control()

TXSETTRANCTL

Facility Library function name

C language library COBOL-UAP creation
program

1. OpenTP1 Application Programs

57

Legend:

--: There is no COBOL API on the XATMI interface that provides this facility.

Table 1-5: OpenTP1 library functions (functions used in special style)

Set transaction_
timeout characteristic

tx_set_

transaction_

timeout0

TXSETTIMEOUT

Facility Library function name

C language library COBOL-UAP creation
program

Multinode
facility#

Start acquiring the status
of OpenTP1 node

dc_adm_get_nd_

status_begin

--

Acquire the status of
OpenTP1 node

dc_adm_get_nd_

status_next

--

Acquire the status of a
specified OpenTP1 node

dc_adm_get_nd_

status

--

Terminate acquiring the
status of OpenTP1 node

dc_adm_get_nd_

status_done

--

Start acquiring a node
identifiers

dc_adm_get_

nodeconf_begin

--

Acquire a node identifier dc_adm_get_

nodeconf_next

--

Terminate acquiring a
node identifiers

dc_adm_get_

nodeconf_done

--

Acquire the node
identifier of the local
node

dc_adm_get_node_

id

--

Start acquiring the status
of user server

dc_adm_get_sv_

status_begin

--

Acquire the status of user
server

dc_adm_get_sv_

status_next

--

Facility Library function name

C language library COBOL-UAP creation
program

1. OpenTP1 Application Programs

58

Legend:

--: Not applicable

#

Multinode facility APIs cannot use COBOL-UAP creation programs.

(2) Types of UAP and available library functions
Tables 1-6 to 1-10 list the library functions available to OpenTP1 UAPs. The UAPs
that can use the listed library functions are SUPs, SPPs, MHPs, and UAPs that handle
offline work.

Table 1-6: Library functions available with UAPs (basic OpenTP1 facilities)

Acquire the status of a
specified user server

dc_adm_get_sv_

status

--

Terminate acquiring the
status of user server

dc_adm_get_sv_

status_done

--

Online tester
management

Report the test status of a
user server

dc_uto_test_

status

CBLDCUTO

('T-STATUS')

OpenTP1 library function
name

SUP SPP MHP Off-
line

Out In Out Transaction
range

Out In

Rt N-Rt

dc_rpc_open Y N O N N O N N

dc_rpc_mainloop N N O N N N N N

dc_rpc_call Y Y Y Y Y Y Y N

dc_rpc_call_to Y Y Y Y Y Y Y N

dc_rpc_poll_any_replies Y Y Y Y Y Y Y N

dc_rpc_get_error_descripto
r

Y Y Y Y Y Y Y N

dc_rpc_discard_further_rep
lies

Y Y Y Y Y Y Y N

Facility Library function name

C language library COBOL-UAP creation
program

1. OpenTP1 Application Programs

59

dc_rpc_discard_specific_re
ply

Y Y Y Y Y Y Y N

dc_rpc_service_retry N N Y N N Y N N

dc_rpc_set_service_prio Y Y Y Y Y Y Y N

dc_rpc_get_service_prio Y Y Y Y Y Y Y N

dc_rpc_get_watch_time Y Y Y Y Y Y Y N

dc_rpc_set_watch_time Y Y Y Y Y Y Y N

dc_rpc_get_callers_address N N Y Y Y N N N

dc_rpc_get_gateway_address N N Y Y Y N N N

dc_rpc_cltsend Y Y Y Y Y Y Y N

dc_rpc_close Y N O N N O Y N

dc_rap_connect Y N Y N N Y N N

dc_rap_disconnect Y N Y N N Y N N

dc_trn_begin# Y N Y N N O N N

dc_trn_chained_commit# N Y N Y N N N N

dc_trn_chained_rollback# N Y N Y N N N N

dc_trn_unchained_commit# N Y N Y N N O N

dc_trn_unchained_rollback# N Y N Y Y N O N

dc_trn_info Y Y Y Y Y Y Y N

dc_adm_call_command Y Y Y Y Y Y Y N

dc_adm_complete Y N N N N N N N

dc_adm_status Y Y Y Y Y Y Y N

dc_log_audit_print Y Y Y Y Y Y Y N

dc_logprint Y Y Y Y Y Y Y N

OpenTP1 library function
name

SUP SPP MHP Off-
line

Out In Out Transaction
range

Out In

Rt N-Rt

1. OpenTP1 Application Programs

60

Legend:

Out: Outside transaction range

In: Inside transaction range (root)

Rt: Root

N-Rt: Non-root

Off-line: UAP that handles offline work

Y: Can be used with UAPs.

O: Can be used only by the main function.

N: Cannot be used with UAPs.

Note
Outside transaction range indicates the range of nontransaction attribute MHPs or
MHP main functions.

#

UAPs which use this function must be specified so that they will be run as
transactions as follows:

TP1/Server Base:

- Specify atomic_update=Y in the user service definition.

TP1/LiNK:

dc_jnl_ujput# N Y N Y Y N Y N

CBLDCJUP('CLOSERPT') N N N N N N N Y

CBLDCJUP('OPENRPT ') N N N N N N N Y

CBLDCJUP('RDGETRPT') N N N N N N N Y

dc_prf_utrace_put Y Y Y Y Y Y Y Y

dc_prf_trace_num Y Y Y Y Y Y Y Y

dc_rts_utrace_put Y Y Y Y Y Y Y N

OpenTP1 library function
name

SUP SPP MHP Off-
line

Out In Out Transaction
range

Out In

Rt N-Rt

1. OpenTP1 Application Programs

61

- When setting up an application program environment, specify that the
transaction facility will be used.

Table 1-7: Library functions available with UAPs (TP1/Message Control
functions)

OpenTP1 library
function name

SUP SPP MHP Off-
line

Out In Out Transaction
range

Out In

Rt N-Rt

dc_mcf_open -- -- M -- -- M M --

dc_mcf_mainloop -- -- -- -- -- M -- --

dc_mcf_receive -- -- -- -- -- N Y --

dc_mcf_reply -- -- -- -- -- N Y --

dc_mcf_send -- -- -- Y Y N Y --

dc_mcf_resend -- -- -- Y Y -- Y --

dc_mcf_recvsync -- -- Y Y Y Y Y --

dc_mcf_sendsync -- -- Y Y Y Y Y --

dc_mcf_sendrecv -- -- Y Y Y Y Y --

dc_mcf_tempget -- -- -- -- -- N Y --

dc_mcf_tempput -- -- -- -- -- N Y --

dc_mcf_contend -- -- -- -- -- N Y --

dc_mcf_execap -- -- -- Y Y N Y --

dc_mcf_ap_info -- -- -- -- -- N Y --

dc_mcf_ap_info_uoc -- -- -- -- -- N Y --

dc_mcf_timer_set -- -- Y Y Y Y Y --

dc_mcf_timer_cancel -- -- Y Y Y Y Y --

dc_mcf_commit -- -- -- -- -- -- Y --

dc_mcf_rollback -- -- -- -- -- -- Y --

dc_mcf_close -- -- M -- -- M M --

dc_mcf_tlscom -- -- Y Y Y Y Y --

1. OpenTP1 Application Programs

62

Legend:

Out: Outside transaction range

In: Inside transaction range (root)

Rt: Root

N-Rt: Non-root

Off-line: UAP that handles offline work

Y: Can be used with UAPs.

M: Can be used only by the main function.

N: Can be used only from MHPs which have the nontransaction attribute and are
in the service function range.

--: Cannot be used with UAPs.

Note

Outside transaction range indicates the range of nontransaction attribute MHPs or
MHP main functions.

dc_mcf_tlscn -- -- Y Y Y Y Y --

dc_mcf_tactcn -- -- Y Y Y Y Y --

dc_mcf_tdctcn -- -- Y Y Y Y Y --

dc_mcf_tlsln -- -- Y Y Y Y Y --

dc_mcf_tonln -- -- Y Y Y Y Y --

dc_mcf_tofln -- -- Y Y Y Y Y --

dc_mcf_adltap -- -- Y Y Y Y Y --

dc_mcf_tlsle -- -- Y Y Y Y Y --

dc_mcf_tdctle -- -- Y Y Y Y Y --

dc_mcf_tactle -- -- Y Y Y Y Y --

dc_mcf_tdlqle -- -- Y Y Y Y Y --

OpenTP1 library
function name

SUP SPP MHP Off-
line

Out In Out Transaction
range

Out In

Rt N-Rt

1. OpenTP1 Application Programs

63

Table 1-8: Library functions available with UAPs (operate user data)

OpenTP1 library
function name

SUP SPP MHP Off-
line

Out In Out Transaction
range

Out In

Rt N-Rt

dc_dam_open# Y Y Y Y Y Y Y N

dc_dam_read# Y Y Y Y Y Y Y N

dc_dam_rewrite# (Y) Y (Y) Y Y (Y) Y N

dc_dam_write# (Y) Y (Y) Y Y (Y) Y N

dc_dam_close# Y Y Y Y Y Y Y N

dc_dam_hold N Y N Y Y N Y N

dc_dam_release Y Y Y Y Y N Y N

dc_dam_status Y Y Y Y Y Y Y N

dc_dam_start Y Y Y Y Y Y Y N

dc_dam_end Y Y Y Y Y Y Y N

dc_dam_create N N N N N N N Y

dc_dam_iopen N N N N N N N Y

dc_dam_get N N N N N N N Y

dc_dam_put N N N N N N N Y

dc_dam_bseek N N N N N N N Y

dc_dam_dget N N N N N N N Y

dc_dam_dput N N N N N N N Y

dc_dam_iclose N N N N N N N Y

dc_tam_open Y Y Y Y Y Y Y N

dc_tam_read N Y N Y Y N Y N

dc_tam_rewrite N Y N Y Y N Y N

dc_tam_write N Y N Y Y N Y N

dc_tam_delete N Y N Y Y N Y N

1. OpenTP1 Application Programs

64

Legend:

Out: Outside transaction range

In: Inside transaction range (root)

Rt: Root

N-Rt: Non-root

Off-line: UAP that handles offline work

Y: Can be used with UAPs.

(Y): Can be used only with unrecoverable DAM files.

N: Cannot be used with UAPs.

Note
Outside transaction range indicates the range of nontransaction attribute MHPs or
MHP main functions.

dc_tam_read_cancel N Y N Y Y N Y N

dc_tam_get_inf Y Y Y Y Y Y Y N

dc_tam_status Y Y Y Y Y Y Y N

dc_tam_close Y Y Y Y Y Y Y N

dc_ist_open Y Y Y Y Y Y Y N

dc_ist_read Y Y Y Y Y Y Y N

dc_ist_write Y Y Y Y Y Y Y N

dc_ist_close Y Y Y Y Y Y Y N

dc_lck_get# N Y N Y Y N Y N

dc_lck_release_all# N Y N Y Y N Y N

dc_lck_release_byname# N Y N Y Y N Y N

OpenTP1 library
function name

SUP SPP MHP Off-
line

Out In Out Transaction
range

Out In

Rt N-Rt

1. OpenTP1 Application Programs

65

#
For UAPs which use this function, specify the transaction attribute (specify
atomic_update=Y in the user service definition) for TP1/Server Base.
However, transaction processing is not assumed with these UAPs when an
unrecoverable DAM file is accessed.

For TP1/LiNK, any UAPs which use these functions are unavailable.

Table 1-9: Library functions available with UAPs (X/Open-compatible
functions)

OpenTP1 library
function name

SUP SPP MHP Off-
line

Out In Out Transaction
range

Out In

Rt N-Rt

tpcall Y Y Y Y Y N N N

tpacall Y Y Y Y Y N N N

tpgetrply Y Y Y Y Y N N N

tpcancel Y Y Y Y Y N N N

tpconnect Y Y Y Y Y N N N

tpdiscon Y Y Y Y Y N N N

tprecv Y Y Y Y Y N N N

tpsend Y Y Y Y Y N N N

tpalloc Y Y Y Y Y N N N

tpfree Y Y Y Y Y N N N

tprealloc Y Y Y Y Y N N N

tptypes Y Y Y Y Y N N N

tpadvertise N N Y#3 Y#3 Y#3 N N N

tpunadvertise N N Y#3 Y#3 Y#3 N N N

tpservice#1 N N N N N N N N

tpreturn N N Y#4 Y#4 Y#4 N N N

tx_begin#2 Y Y Y N N Y N N

1. OpenTP1 Application Programs

66

Legend:

Out: Outside transaction range

In: Inside transaction range (root)

Rt: Root

N-Rt: Non-root

Off-line: UAP that handles offline work

Y: Can be used with UAPs.

N: Cannot be used with UAPs.

#1

tpservice is the entity of the service function.

#2

tx_commit with TX_CHAINED#2 N Y Y N N N N N

tx_commit with

TX_UNCHAINED#2
N Y Y N N N N N

tx_info Y Y Y Y Y N N N

tx_open Y N Y N N N N N

tx_rollback with

TX_CHAINED#2
N Y N Y N N N N

tx_rollback with

TX_UNCHAINED#2
N Y N Y Y N N N

tx_close Y N Y N N N N N

tx_set_commit_return#2 Y Y Y Y Y N N N

tx_set_transaction_control
#2

Y Y Y Y Y N N N

tx_set_transaction_timeout
#2

Y Y Y Y Y N N N

OpenTP1 library
function name

SUP SPP MHP Off-
line

Out In Out Transaction
range

Out In

Rt N-Rt

1. OpenTP1 Application Programs

67

UAPs which use this function must be specified so that they will be run as
transactions as follows:

TP1/Server Base:

- Specify atomic_update=Y in the user service definition.

TP1/LiNK:

- When setting up an application program environment, specify that the
transaction facility will be used.

#3

This function can be called only within service functions.

#4

This function is used only to make XATMI-interfaced service functions return.

Table 1-10: Library functions available with UAPs (functions used in special
style)

OpenTP1 library
function name

SUP SPP MHP Off-
line

Out In Out Transaction
range

Out In

Rt N-Rt

dc_adm_get_nd_status_begin
#

Y Y Y Y Y Y Y N

dc_adm_get_nd_status_next# Y Y Y Y Y Y Y N

dc_adm_get_nd_status# Y Y Y Y Y Y Y N

dc_adm_get_nd_status_done# Y Y Y Y Y Y Y N

dc_adm_get_nodeconf_begin# Y Y Y Y Y Y Y N

dc_adm_get_nodeconf_next# Y Y Y Y Y Y Y N

dc_adm_get_nodeconf_done# Y Y Y Y Y Y Y N

dc_adm_get_node_id# Y Y Y Y Y Y Y N

dc_adm_get_sv_status_begin Y Y Y Y Y Y Y N

dc_adm_get_sv_status_next Y Y Y Y Y Y Y N

dc_adm_get_sv_status Y Y Y Y Y Y Y N

1. OpenTP1 Application Programs

68

Legend:

Out: Outside transaction range

In: Inside transaction range (root)

Rt: Root

N-Rt: Non-root

Off-line: UAP that handles offline work

Y: Can be used with UAPs.

N: Cannot be used with UAPs.

#

Before a node can use functions marked #, TP1/Multi must be installed in the
node.

dc_adm_get_sv_status_done Y Y Y Y Y Y Y N

dc_uto_test_status Y Y Y Y Y Y Y N

OpenTP1 library
function name

SUP SPP MHP Off-
line

Out In Out Transaction
range

Out In

Rt N-Rt

1. OpenTP1 Application Programs

69

1.5 Debuggers and testers for application programs

OpenTP1 allows created UAPs to be tested for operation before they are put into use
for actual jobs. The facilities for testing UAPs is referred to as the UAP tester facilities.

The UAP tester facilities eliminate the need for modifying actually used resources for
test purposes. In addition, these facilities provide tests which are conducted in
response to commands entered by the operator so that the operator can check for
important test items before starting tests.

1.5.1 Types of UAP tester facility
The following OpenTP1 UAP tester facilities are available, each serving a different
purpose.

(1) Offline tester (TP1/Offline Tester)
The offline tester tests online processing UAPs in an offline environment. It tests the
UAP for operation without having to run OpenTP1. It is used when testing single
UAPs before using them with OpenTP1 resources. Since the offline tester can be
combined with debuggers written in high-level languages (C and COBOL), the
program can be double-checked through UAP testing and debugging.

The offline tester tests SPPs and MHPs for operation.

Before the offline tester can be run on a machine, TP1/Offline Tester must be installed
in the machine.

(2) Online tester (TP1/Online Tester)
The online tester tests UAPs in an online environment. It can test UAP operation in
cooperation with OpenTP1 system services. It is used when testing OpenTP1 UAPs as
integrated. Since the online tester can be combined with debuggers written in
high-level languages (C and COBOL), the program can be double-checked through
UAP testing and debugging.

The online tester can test SUPs and SPPs for operation. It can also test MHPs as
operating like SPPs.

Before the online tester can be run on a machine, TP1/Online Tester must be installed
in the machine.

(3) MCF online tester (TP1/Message Control/Tester)
The MCF online tester tests UAPs in an online environment. It is used when testing
MHPs in cooperation with TP1/Message Control. UAPs can be tested using OpenTP1
system services and MCF system services.

Before the MCF online tester can be run on a machine, TP1/Message Control/Tester

1. OpenTP1 Application Programs

70

must be installed in the machine. Before the UAP trace facility of the online tester can
be used, TP1/Online Tester must be installed.

1.5.2 UAPs that can be tested
The UAPs that can be tested by the UAP tester facilities are SUPs, SPPs, and MHPs.
The purpose of testing varies depending on the particular type of UAP tester facility.

If a CUP, which is a UAP used with the OpenTP1 client facility (TP1/Client), requests
an SPP for service, it can start the SPP in test mode.

UAPs that handle offline works cannot be tested by the UAP tester facilities.

For details on the UAP tester facilities, see the OpenTP1 Tester and UAP Trace User's
Guide.

1.5.3 Reporting the test status of a user server
When the online tester (TP1/Online Tester) is used under OpenTP1, the status of a user
server can be detected. To detect the test status, use the function
dc_uto_test_status()[CBLDCUTO('T-STATUS')]. This function provides the
following information:

• Test user ID (the value set in the environment variable DCUTOKEY)

• Whether the user server runs in test mode

• Processing status of global transaction

• The following settings in the user service definition:

Test type specified in the operand test_mode

Handling of a synchronization point of the transaction specified in the operand
test_transaction_commit

Handling of the results of executing the command specified in the operand
test_adm_call_command

71

Chapter

2. Basic OpenTP1 Facilities (TP1/
Server Base, TP1/LiNK)

This chapter explains application program facilities available at nodes where TP1/
Server Base or TP1/LiNK is used.

The facilities are explained using C-language function names. For each function, the
name of the equivalent COBOL-language API function is indicated in brackets []
when the function appears first in this chapter. After that, only the C-language function
name is written. If the C-language function has no COBOL counterpart API function,
brackets are not written.

This chapter contains the following sections:

2.1 Remote procedure call
2.2 Remote API facility
2.3 Transaction control
2.4 System operation management
2.5 Message log output
2.6 Audit log output
2.7 User journal acquisition
2.8 Journal data editing
2.9 Receiving message log notification
2.10 Client/server mode communication using OSI TP
2.11 Acquiring performance verification traces
2.12 Real-time statistical information acquisition

2. Basic OpenTP1 Facilities (TP1/Server Base, TP1/LiNK)

72

2.1 Remote procedure call

Like a function call, OpenTP1 UAP can request a service to another UAP without
recognizing which network node includes the service providing UAP. This
interprocess communication is called remote procedure call (RPC). There are three
RPCs applicable to OpenTP1 UAPs:

• OpenTP1 specific interface

• XATMI interface (RPCs conforming X/Open specifications)

• TxRPC interface (RPCs conforming X/Open specifications)

When TCP/IP is used as the communication protocol, the above three types of remote
procedure calls can be used. When OSI TP is used as the communication protocol, only
the XATMI interface can be used. For details on the remote procedure calls available
with OSI TP, see 2.10 Client/server mode communication using OSI TP and 5.1
XATMI interface (client/server-mode communication).
This section explains OpenTP1 specific interface RPCs. For details on XATMI
interface and TxRPC interface, see 5.1 XATMI interface (client/server-mode
communication) and 6.1 Communication through TxRPC interface.

Note
Assume that you want to perform a transactional RPC on an OpenTP1 system
other than the domain specified in the all_node clause of the system common
definition. In this case, you must ensure that the node identifiers (node_id clause
of the system common definition) of all OpenTP1 systems in the local domain and
remote domain are unique. In addition, all the OpenTP1 systems must be version
03-02 or later. If these conditions are not met, the transaction may not recover
properly.

2.1.1 How to implement the remote procedure call
You can request an SPP service by calling the service request function from a client
UAP. To request a service from a UAP, call the function dc_rpc_call()
[CBLDCRPC('CALL ')] with the service group name# and service name specified
as arguments. The service to be requested can be at the node of the client UAP or at a
different node. There is no need for UAPs to consider whether the service to be
requested is at the node of the client UAP. This is because the OpenTP1 name service
is responsible for recognizing the node at which the service to be requested exists.

#

When a service group name is specified with domain qualification, a service
request can also be addressed to the server UAP in the specified domain. For
details on service requests with domain qualification, see 2.1.18 Service request

2. Basic OpenTP1 Facilities (TP1/Server Base, TP1/LiNK)

73

with domain qualification.

The server UAP used by OpenTP1 is a service providing program (SPP). Client UAPs
which can request SPP services are SUPs, SPPs, and MHPs.

A server UAP can be started either at the same time as OpenTP1 (automatic startup)
or by executing the dcsvstart command after OpenTP1 started (manual startup).
Once started, a server UAP is ready to offer service. If a service is requested to a server
UAP which is not started, the function dc_rpc_call() returns with an error.

A client UAP can request service using the function dc_rpc_call() regardless of
whether the process of the started server UAP is operating. Even if the process of the
server UAP specified in the service request is inactive, OpenTP1 automatically starts
the process.

The MHP can request services by using the RPC. However, it cannot request MHP
service functions to provide services. UAP that handles offline work cannot use the
RPC.

The figure below shows the server-client relationship in communication using RPC.

Figure 2-1: Client/server relationship in communication using RPC

2.1.2 Transferring data through the remote procedure call
To request a service from the client UAP, specify the following as the arguments of the

2. Basic OpenTP1 Facilities (TP1/Server Base, TP1/LiNK)

74

function dc_rpc_call():

• Input parameter

• Input parameter length

• Response storage area

• Length of the response acceptance area

The service function sets the response into the response storage area, and the response
length into the response acceptance area, then returns the set values to the client UAP.
The figure below shows data transfer through the remote procedure call.

Figure 2-2: Data transfer through remote procedure call

2.1.3 Outline of remote procedure call modes
The RPC modes shown below are available. Set an RPC mode with the flag in the
function dc_rpc_call() of the client UAP. The figure below shows the RPC modes.

Figure 2-3: RPC modes

• Response-type RPC

This RPC returns the processing results of the server UAP to the client UAP.
There are two types of response-type RPCs: a synchronous-response-type RPC

2. Basic OpenTP1 Facilities (TP1/Server Base, TP1/LiNK)

75

which waits for the processing results of the server UAP after the function
dc_rpc_call() is called, and an asynchronous-response-type RPC which
receives the processing results asynchronously.

• Nonresponse-type RPC

This RPC does not return the processing results of the server UAP to the client
UAP. After the function dc_rpc_call() is called, this RPC returns and
continues processing. The client UAP cannot receive the processing results of the
server UAP.

For details on the relationship between the synchronization point and RPC when the
RPC is used for transaction processing, see 2.3.4 Relationship between remote
procedure call modes and synchronization points.

(1) Synchronous-response-type RPC
After the function dc_rpc_call() is called, a synchronous-response-type RPC waits
for the processing results of the server UAP. To use the synchronous-response-type
RPC, set DCNOFLAGS (or DCRPC_CHAINED) into flags of the function
dc_rpc_call().

(a) Time monitoring of a synchronous-response-type RPC
The response time after using the function dc_rpc_call() is monitored in one of the
following values:

• TP1/Server Base:

Value specified for watch_time in the user service definition

• TP1/LiNK:

180 minutes

If a long server UAP processing time prevents the response from being returned within
the specified monitoring time, the function dc_rpc_call() returns with an error.

The server UAP is aware of the response wait time on the client UAP. Therefore, when
the function dc_rpc_call() returns with an error, the server UAP discards services
that were scheduled after timeout occurred on the client UAP and does not process
them. It also aborts processing of the service that was being run and does not return a
response. You can instruct the server UAP to output a message indicating that the
service request was discarded due to timeout on the client UAP. To do this, specify set
rpc_extend_function=00000008 in the user service definition for the server
UAP.

If the server UAP terminates abnormally, the function dc_rpc_call() returns with
an error immediately. In any of the following cases, this function returns with an error
after the specified monitoring time has elapsed:

• If the entire portion of OpenTP1 for the node at which the server UAP exists

2. Basic OpenTP1 Facilities (TP1/Server Base, TP1/LiNK)

76

terminates abnormally

• If an error occurs before the server UAP receives service request data, or after the
server UAP completes processing and before the client UAP receives the
processing results

The figure below shows the synchronous-response-type RPC.

Figure 2-4: Synchronous-response-type RPC

(2) Asynchronous-response-type RPC
After the function dc_rpc_call() is called, an asynchronous-response-type RPC
continues processing without waiting for the processing results of the server UAP.
RPC parallel processing can be executed by using more than one
asynchronous-response-type RPC.

The function dc_rpc_call() (DCRPC_NOWAIT set in flags) of an
asynchronous-response-type RPC returns after requesting a service. The UAP
proceeds to processing after the function returns.

An asynchronous-response-type RPC returns without checking the acceptance of the
service request by the server. When a client UAP requests services through two or
more asynchronous-response-type RPCs to a service group, the server may not accept
the services in the order which these RPCs were issued.

(a) Receiving asynchronous-response-type RPC response
The asynchronous-response-type RPC receives the processing results of the server
UAP asynchronously by using the function dc_rpc_poll_any_replies()
[CBLDCRPC('POLLANYR')]. The processing results can be received only when the
function dc_rpc_poll_any_replies() is called.

When asynchronous-response-type RPC responses are being received, a particular
response to be received can be identified. To identify a response, the positive integer

2. Basic OpenTP1 Facilities (TP1/Server Base, TP1/LiNK)

77

(descriptor) returned by the function dc_rpc_call() for the request of the service
through asynchronous-response-type RPC must be specified as the argument to the
function dc_rpc_poll_any_replies(). With this specification, an
asynchronous-response-type RPC response identified by the descriptor is received.

If no particular response is identified, the responses are received in the order of their
returns. When the function dc_rpc_poll_any_replies() returns normally if no
response is identified, the same value as the descriptor of the received asynchronous
response is returned.

An error is returned if the call count of the function dc_rpc_poll_any_replies()
is greater than the call count of the function dc_rpc_call() of the
asynchronous-response-type RPC.

If an error occurs upon a service request, an error is returned to the function
dc_rpc_poll_any_replies().

Assume that you call the function dc_rpc_call() for which DCRPC_NOWAIT is set
in flags and then you call a function that executes transaction synchronization point
processing before the response to the function dc_rpc_call() has been received. In
such a case, when you subsequently call the function
dc_rpc_poll_any_replies(), it returns with the error
DCRPCER_ALL_RECEIVED and no response can be received. When an
asynchronous-response type RPC is used, the response must be received before you
execute transaction synchronization point processing for that process, regardless of
whether or not the RPC was executed within the transaction.

(b) Time monitoring of an asynchronous-response-type RPC
When an asynchronous-response-type RPC is used, the value specified in
watch_time of the user service definition is not referenced. For the argument
timeout, specify the maximum response wait time from when the function
dc_rpc_poll_any_replies() is called to when a response is returned.

If a long server UAP processing time prevents the response from being returned within
the specified monitoring time, the function dc_rpc_poll_any_replies() returns
with an error.

If the server UAP terminates abnormally, the function
dc_rpc_poll_any_replies() returns with an error immediately. In any of the
following cases, this function returns with an error after the specified monitoring time
has elapsed:

• If the entire portion of OpenTP1 for the node at which the server UAP exists
terminates abnormally

• If an error occurs before the server UAP receives service request data, or after the
server UAP completes processing and before the client UAP receives the
processing results

2. Basic OpenTP1 Facilities (TP1/Server Base, TP1/LiNK)

78

The figure below shows the asynchronous receiving of processing results.

Figure 2-5: Asynchronous-response-type RPC (asynchronous receiving of
processing results)

(c) Rejecting the receiving of processing results
If you do not want to receive any more replies (which have not been returned) when
an asynchronous-response-type RPC is used, call the function
dc_rpc_discard_further_replies() [CBLDCRPC ('DISCARDF')] for rejecting
the receiving of processing results. Replies returned after this function is called are
discarded instead of being received. Call this function for rejecting the receiving of
processing results when not receiving the results of an asynchronous-response-type
RPC. Otherwise, the function dc_rpc_poll_any_replies() of another
asynchronous-response-type RPC might receives unnecessary replies.

2. Basic OpenTP1 Facilities (TP1/Server Base, TP1/LiNK)

79

Use the function dc_rpc_discard_further_replies() in the following cases:

• After a response wait timeout occurs, you want to release the buffer for shutting
down results before proceeding to the next processing.

• You want only the first response when having issued more than one
asynchronous-response-type RPCs.

If you do not want to receive a selected response among responses which have not been
returned when an asynchronous-response-type RPC is used, call the function
dc_rpc_discard_specific_reply() [CBLDCRPC('DISCARDS')] for rejecting
reception of selected processing results. Responses which have the same descriptor as
the specified descriptor among the responses returned after this function is called are
discarded instead of being received.

The figure below shows the rejection of receiving processing results.

2. Basic OpenTP1 Facilities (TP1/Server Base, TP1/LiNK)

80

Figure 2-6: Asynchronous-response-type RPC (rejection of receiving
processing results)

(d) Relationship between an asynchronous-response-type RPC and a
synchronization point
If an asynchronous-response-type RPC is called in a transaction, replies cannot be
received asynchronously after synchronization point processing is executed. For
details on the relationship between a synchronization point and an

2. Basic OpenTP1 Facilities (TP1/Server Base, TP1/LiNK)

81

asynchronous-response-type RPC, see 2.3.4 Relationship between remote procedure
call modes and synchronization points.

(3) Nonresponse-type RPC
A nonresponse-type RPC does not return the processing results of the server UAP to
the client UAP. The client UAP cannot receive the processing results of the server
UAP.

Nonresponse-type RPC time is not monitored.

The function dc_rpc_call() (DCRPC_NOREPLY set in flags) of the
nonresponse-type RPC returns after requesting a service. The UAP proceeds to
processing after the function returns. The processing results of the server UAP cannot
be received.

A nonresponse-type RPC returns without checking the acceptance of the service
request by the server. Therefore, if the service request is lost because of an error (e.g.,
communication failure), the client UAP cannot recognize this. When a client UAP
requests services through two or more nonresponse-type RPCs to a service group, the
server may not accept the services in the order which these RPCs were issued.

The figure below shows the nonresponse-type RPC.

Figure 2-7: Nonresponse-type RPC

2.1.4 Nesting services
A server UAP to which a client UAP requested a service can call another server UAP.
Service processing can be distributed/layered by nesting server UAPs. The figure
below shows an example of nesting RPCs.

2. Basic OpenTP1 Facilities (TP1/Server Base, TP1/LiNK)

82

Figure 2-8: Example of nesting RPCs

2.1.5 Using nontransactional RPC from transaction process
If service is requested from a transaction process and the UAP requested for service
has the transaction attribute, processing for the service request is transaction
processing. Such service requests can be handled through nontransactional processing
(nontransactional RPC). To effect nontransactional processing, specify the argument
to the function dc_rpc_call() to indicate a nontransactional RPC.

For details on the transaction attribute, see 2.3.3 Specification of transaction attribute.

2.1.6 Setting schedule priorities for service requests
Multiple service requests called for one process can be given priorities. This can be
done by using the function dc_rpc_set_service_prio() [CBLDCRPC
('SETSVPRI')] in which a priority is specified for a service request before using the
function dc_rpc_call(). The priority of the service request is then reported to the
server via the schedule queue for the server UAP.

2. Basic OpenTP1 Facilities (TP1/Server Base, TP1/LiNK)

83

For a process that does not use the function dc_rpc_set_service_prio(), the
value 4, which is the default interpretation of the schedule service, is set as the priority
of service requests. The specified schedule priorities can be referenced using the
function dc_rpc_get_service_prio() [CBLDCRPC('GETSVPRI')].

On queue-receiving servers (SPPs scheduled by the schedule service), the priorities
specified for service requests are valid only when service_priority_control=Y
(priority control in effect) is specified in the user service definition of the server UAP.
If priority control is not used on the server UAP requested for service, the call of this
function has no effect.

On servers that receive requests from socket (SPPs which receive service requests
without intervention of a schedule queue), the priorities set by the client UAP are
always in effect.

The call of the function dc_rpc_set_service_prio() for the following service
requests has no effect:

• Second or subsequent service request on chained RPC

• Service request specified by the function dc_rpc_call() (DCNOFLAGS
specified for flags) of synchronous-response-type RPC which is called to
terminate chained RPCs.

2.1.7 Acquiring node address of client UAP
In some cases, it is desirable to limit services offered to a client UAP. Since the server
UAP recognizes client UAPs, it is possible to acquire the address of the node where
the process of the client UAP is operating. The node address of the client UAP can be
acquired by the function dc_rpc_get_callers_address()
[CBLDCRPC('GETCLADR')].

The address returned by the function dc_rpc_get_callers_address() cannot be
used for sending a response to a service or a response to an error.

The function dc_rpc_get_callers_address() must be called from a service
function. Otherwise, subsequent processing is unpredictable.

2.1.8 Referencing and changing response waiting intervals of
service request

During UAP processing, response waiting intervals of service request can be
temporarily changed. Use the function dc_rpc_get_watch_time()
[CBLDCRPC('GETWATCH')] to reference the current response waiting interval and the
function dc_rpc_set_watch_time() [CBLDCRPC('SETWATCH')] to change it. The
value set by the function dc_rpc_set_watch_time() will be effective until the
UAP calls the function dc_rpc_close().

The function dc_rpc_watch_time() returns the response waiting interval set by the
function dc_rpc_set_watch_time(). If no new interval has been set, the following

2. Basic OpenTP1 Facilities (TP1/Server Base, TP1/LiNK)

84

value is returned:

• TP1/Server Base:

Value given to watch_time in the user service definition

• TP1/LiNK:

180 minutes

The value obtained by this function is effective as the response waiting interval for the
function dc_rpc_call() of OpenTP1.

To return the response waiting interval of service request to the value which stood
before the function dc_rpc_set_watch_time() was called, set in this function the
original value returned by the function dc_rpc_get_watch_time() which was
called previously.

The function dc_rpc_set_watch_time() influences called UAP service requests,
but does not affect the value given to the watch_time operand in the system common
definition. The value specified in this function influences only the function
dc_rpc_call() which will be called later.

2.1.9 Acquiring descriptor of asynchronous-response-type RPC
request which has encountered error

You can use a means to acquire the descriptor of an asynchronous-response-type RPC
request which has encountered an error, by invoking that means just after the function
dc_rpc_poll_any_replies() [CBLDCRPC('POLLANYR')] without a particular
asynchronous response specified returns with an error.

The means used to acquire the descriptor of an asynchronous-response-type RPC
request which has encountered an error is the function
dc_rpc_get_error_descriptor() [CBLDCRPC('GETERDES')].

The descriptor of an asynchronous response can be acquired only when the error has
occurred on the SPP. If an error has occurred on the dc_rpc_poll_any_replies
[CBLDCRPC('POLLANYR')] caller, the function
dc_rpc_get_error_descriptor() [CBLDCRPC('GETERDES')] cannot acquire
the descriptor of that asynchronous response.

2.1.10 Report data to CUP unidirectionally
An OpenTP1 server UAP can report its activation to the TP1/Client application
program (CUP) by using the function dc_rpc_cltsend() [CBLDCRPC
('CLTSEND')], which sends data to the CUP. This function can be used to report the
activation of the server to the client simultaneously.

Data sent by the function dc_rpc_cltsend() is received with the function
dc_clt_chained_accept_notification() or
dc_clt_accept_notification() in the CUP. When the CUP receives data, the

2. Basic OpenTP1 Facilities (TP1/Server Base, TP1/LiNK)

85

TP1/Client knows the server is in operation. Then, the CUP requests a service to the
server.

The function dc_rpc_cltsend() can be used only when the function
dc_clt_chained_accept_notification() or
dc_clt_accept_notification() in the CUP on the receiving end is waiting for
a notification. If the CUP is not active, the function dc_rpc_cltsend() returns with
an error. The function dc_rpc_cltsend() cannot send data to any processes
(processes of the server UAP) other than the functions
dc_clt_chained_accept_notification() and
dc_clt_accept_notification() in the CUP. For details about the functions
dc_clt_chained_accept_notification() and
dc_clt_accept_notification(), see the manual OpenTP1 TP1/Client User's
Guide TP1/Client/W, TP1/Client/P.

The figure below shows the outline of reporting data to CUP unidirectionally.

Figure 2-9: Outline of reporting data to CUP unidirectionally

2. Basic OpenTP1 Facilities (TP1/Server Base, TP1/LiNK)

86

2.1.11 Relationship between remote procedure calls and processes
for executing services

A server UAP to which a service request was issued is executed in a process different
from the process of the client UAP. OpenTP1 can implement a multiserver that starts
multiple processes for executing a server UAP. When the multiserver is used to nest
RPCs, the same number of processes as services to be nested might be executed.

Even when the same server UAP is used, the server UAP is not always executed in the
same process if a different client UAP is used. Also, when a service which belongs to
the same service group as for the client UAP is requested, a new process is necessary
for executing the service group. When using a multiserver, specify a sufficient number
of processes.

The figure below shows the relationship between RPCs and processes.

Figure 2-10: Relationship between RPCs and processes

2. Basic OpenTP1 Facilities (TP1/Server Base, TP1/LiNK)

87

1. If a service is requested from client UAP1 to server UAP1, server UAP1 is
executed in process A.

2. If a service is requested from client UAP1 to server UAP2, server UAP2 is
executed in process B.

3. If a service is requested from new client UAP2 to server UAP1, server UAP1 is
executed in process C unlike when a service is requested in 1.

(1) Chained RPCs
If a synchronous-response-type RPC requests the services belonging to the same
service group more than once, the service offered in response to each request can be
run by the same process. This RPC is called a chained RPC. If chained RPCs are used
to request for services, the services are run by the same process as with the preceding
RPC, even in a multiserver environment. The number of processes needed for
transaction processing can thus be minimized. Since a UAP process is assigned for
each service group, chained RPCs can be used to request for different types of service
if these services belong to the same service group.

Processing for chained RPCs may or may not be performed as a transaction. If chained
RPCs are run as a transaction, the transaction will be a global transaction.

Operation of a chained RPC is guaranteed within each process of the client UAP.
Suppose that a service is called multiple times within the same global transaction, but
that the client UAPs involved are different. It is not guaranteed that the service offered
in response to each request is run by the same process.

(a) Starting chained RPCs
When requesting a service which will be the first of chained RPCs, specify
DCRPC_CHAINED for flags in the function dc_rpc_call() that requests the
service. The server UAP acquires a process with the recognition that the RPC is a
chained RPC. Specify DCRPC_CHAINED also for flags in the second and subsequent
service requests.

The second and subsequent service requests cannot detect the shutdown status of a user
server or service. If an error occurs during execution of the second or a subsequent
service request, the user server shuts down. In this situation, you cannot shut down
individual services.

(b) Terminating chained RPCs
Use one of the following methods to terminate chained RPCs:

• If 00000002 is not assigned to the user service definition
rpc_extend_function operand, issue a service request to the service groups
running the chained RPCs through a synchronous-response-type RPC (with
DCNOFLAGS assigned to flags).

• If the chained RPCs were initiated during a transaction, complete the global

2. Basic OpenTP1 Facilities (TP1/Server Base, TP1/LiNK)

88

transaction running the chained RPCs through synchronous point processing
(commit or rollback).

• If 00000002 is assigned to the user service definition rpc_extend_function
operand, issue a service request to the service groups running the chained RPCs
through a synchronous-response-type RPC (with DCNOFLAGS assigned to flags)
after the non-transactional chained RPCs initiated during a transaction perform
synchronous point processing.

(c) Time monitoring for chained RPCs
If an SPP fails to accept a service request because of a communication error or other
condition when a chained RPC is being processed, the process could remain assigned
to the SPP. To avoid this, the OpenTP1 time-monitors SPPs which are activated by
chained RPCs. Actually, checking is made to see whether the following value is
exceeded by the period (maximum interval) from the time a response is issued to the
time the next service request or a chained RPC termination request comes:

• TP1/Server Base:

Value given to the watch_next_chain_time operand in the user service
definition

• TP1/LiNK:

180 seconds

If the next service request or chained RPC termination request does not come within
the above interval, the OpenTP1 considers that a failure has occurred in the client UAP
and aborts the SPP process.

(d) Chained RPCs to servers that receive requests from socket
Servers that receive requests from socket (SPPs which receive service requests without
using a schedule queue) do not work as multiserver. They do not work as nonresident
processes, either. They work as one server with resident process.

When a service request carried by a chained RPC is executed to a server that receives
requests from socket, the server UAP can receive service requests only from the
pertinent client UAP. As far as possible, avoid requesting services to servers that
receive requests from socket through chained RPCs.

The figure below shows the relationship between chained RPCs and processes.

2. Basic OpenTP1 Facilities (TP1/Server Base, TP1/LiNK)

89

Figure 2-11: Relationship between chained RPCs and processes

1. When client UAP1 requests server UAP1 for service using a chained RPC

2. Basic OpenTP1 Facilities (TP1/Server Base, TP1/LiNK)

90

(DCRPC_CHAINED specified for flags), server UAP1 is run by process A.

2. When client UAP1 requests server UAP2 for service using a chained RPC, server
UAP2 is run by process B.

3. When client UAP1 requests server UAP1 for service using a chained RPC again,
server UAP1 is run by the same process A as in 1.

4. When client UAP1 requests server UAP1 for service using a
synchronous-response-type RPC (DCNOFLAGS specified for flags), server
UAP1 is run by process A. The chained RPCs for linkage between client UAP1
and server UAP1 are terminated.

5. When client UAP1 requests server UAP2 for service using a chained RPC, server
UAP2 is run by process B.

6. When the synchronization point is acquired, the chained RPCs for linkage
between client UAP1 and server UAP2 are terminated.

2.1.12 Notes on using a recursive call
The server UAP being executed can be requested by respecifying the same service
group name and service name as specified for the service. This feature is called a
recursive call. When a recursive call is used, a new process is necessary for executing
the same service. Therefore, there might be no more processes to be executed upon
service request specification when a recursive call is used. In this case, an RPC timeout
occurs or the permanent wait state is placed if a wait time is not specified. Specify a
sufficient number of processes when using a recursive call. Only queue-receiving
servers can use recursive calls. Servers that receive requests from a socket cannot use
recursive calls.

A recursive call can also be used in a transaction branch which is a component of the
global transaction. However, even if the requested service belongs to the same service
group as for the client UAP, the requested service is executed as another transaction
branch in another process.

(1) Relationship between a recursive call and the system definition
Even if a recursive call is used, the number of processes does not increase depending
on the value set in balance_count (service request remain value) of the user service
definition. Consequently, a timeout occurs. Specify 0 as the balance_count value in
the following cases:

• A recursive call is used with a user server comprising only nonresident processes
(e.g., when parallel_count = 0 or 2).

• A recursive call is used with a server comprising one resident process and
nonresident processes (e.g., when parallel_count = 1 or 2).

The following services cannot use a recursive call:

2. Basic OpenTP1 Facilities (TP1/Server Base, TP1/LiNK)

91

Services belonging to the service group for which 1 is specified as the maximum
number of processes in the user service definition (parallel_count = 1)

2.1.13 Retrying a service function
If a problem (such as a deadlock) from which the system can be recovered by a retry
occurs, you can retry the server UAP process without returning an error to the client
UAP. This function is useful when you want to retry a service function in order to
eliminate the necessity of reissuing a service request from the client UAP.

To retry a service function, invoke the function dc_rpc_service_retry()
[CBLDCRPC('SVRETRY ')] from within the service function. Then, when the service
function is made to return, it is restarted in the same process.

When a service function is retried, the settings made so far by the service function
(response storage area and response length) are invalidated.

How many times to retry the service function should be assigned to the
rpc_service_retry_count operand in the user service definition. If the number of
retries exceeds the value assigned to this operand, the function
dc_rpc_service_retry() returns with an error. Service functions that return after
this event will not be retried, but will return the value set in the response area to the
client UAP.

Before the function dc_rpc_service_retry() can be used, the following
conditions must be fulfilled. Otherwise, the function returns with an error.

• The function dc_rpc_service_retry() is invoked from within the service
function.

• The running service function is not within the range of a global transaction.

The figure below outlines the retry of a service function.

2. Basic OpenTP1 Facilities (TP1/Server Base, TP1/LiNK)

92

Figure 2-12: Outline of retry of service function

2.1.14 User data compression
The user data to be exchanged through RPCs can be compressed so that the number of
packets transmitted on the network is reduced and the load on the network is
decreased. To compress the user data, specify Y in the rpc_datacomp operand of the
system common definition of OpenTP1 on the client side.

(1) Data compression facility
With the data compression facility, the client side OpenTP1 transmits the service
request from the client UAP on the network after compressing the service request data.
The corresponding response returned from the SPP is also transmitted on the network
after the response data is compressed by the server side OpenTP1. When the client side
OpenTP1 receives the response, it decompresses the compressed data and passes it to
the client UAP.

The rpc_datacomp operand specified is made effective on the client side that
requests the service through the function dc_rpc_call(). That is, when the
rpc_datacomp=Y is specified in the client side OpenTP1, the service request and
response messages can be transmitted on the network with user data compression even
if it is not specified in the server side OpenTP1. Conversely, without specifying
rpc_datacomp=Y in the client side OpenTP1, the user data for the service request and
response messages is not compressed even if it is specified in the server side OpenTP1.
This is true only when the server side OpenTP1 supports the user data compression
facility.

The figure below shows the outline of the data compression facility.

2. Basic OpenTP1 Facilities (TP1/Server Base, TP1/LiNK)

93

Figure 2-13: Outline of the data compression facility

(2) Effect of the data compression facility
The effect of the data compression facility depends on the description of the user data.
The data compression facility has effect on the user data containing many strings that
are composed of repetitive same characters. However, it has no effect on the user data
without repetitive same characters.

For the service request whose user data is not affected by compression, it is sent
without data compression even if rpc_datacomp=Y is specified in the client side
OpenTP1. However, if the user data for the corresponding response message is
positively affected by compression, the response message is sent after data
compression. This is true only when 03-06 or higher version of TP1/Server Base is
installed on both the client and server sides. In the other versions, the response message
is sent without data compression when the service request data is not compressed.

The data compression facility introduces overhead in data compression and
decompression. To use the data compression facility, pre-evaluate its effects and
impact on the performance.

2.1.15 Monitoring the service function execution time
The execution time from when an SPP service function is started until it is terminated
can be monitored. When the dynamic loop occurs in the user-created service function
because of an error, this facility can be used to cancel such a service. When the service
function does not return after the designated monitoring time has elapsed, this facility
forces this SPP process to terminate.

2. Basic OpenTP1 Facilities (TP1/Server Base, TP1/LiNK)

94

To monitor the execution time of the service function, specify a value of
service_expiration_time in the user service definition.

This facility can only be used in an SPP, not in an MHP. This facility cannot be used
in an SPP that operates with the XATMI interface using the OSI TP protocol or with
TxRPC interface using the DCE protocol.

The figure below shows the outline of the service function execution time monitoring.

Figure 2-14: Outline of service function execution time monitoring

2.1.16 RPC with the multi-scheduler facility
A client UAP can use a combination of the following three types of RPC on a single
OpenTP1 system by using the multi-scheduler facility to request a service provided by
a queue-receiving server (SPP that uses the schedule queue) on a remote node.

1. Ordinary RPC

This method randomly selects one of the OpenTP1 systems containing a service
request destination server and sends the service request to the master scheduler
daemon of that OpenTP1 system.

2. RPC specifying multiple ports

This method randomly selects one of the multi-scheduler daemons of all
OpenTP1 systems containing service request destination servers and sends the
service request to that multi-scheduler daemon.

3. RPC with a communication destination specified

This method sends the service request to the multi-scheduler daemon having the
port number specified in the arguments of the function dc_rpc_call_to().

The figure below shows an outline of an RPC that uses the multi-scheduler facility.

2. Basic OpenTP1 Facilities (TP1/Server Base, TP1/LiNK)

95

Figure 2-15: Outline of an RPC with the multi-scheduler facility

A service request that uses the multi-scheduler facility is scheduled only to nodes on
which the multi-scheduler daemon is active. However, if there is no available
OpenTP1 system on which the specified multi-scheduler daemon is active at the time
the service request is issued, the service request is sent to the master scheduler daemon.

Specifying the port number of a multi-scheduler daemon when issuing a service
request with a specified port number causes the RPC to schedule the service request
via the specified multi-scheduler daemon.

If a service request's destination user server is blocked or terminated at the time the

2. Basic OpenTP1 Facilities (TP1/Server Base, TP1/LiNK)

96

multi-scheduler daemon receives the service request, the service request is sent to a
multi-scheduler daemon on another node that uses the multi-scheduler facility. If the
specified multi-scheduler daemon does not exist on any other node, the service request
is sent to the master scheduler daemon.

If a multi-scheduler daemon terminates abnormally while the system is online, the
client UAP allocates an appropriate port number to the multi-scheduler daemon that
terminated abnormally and restarts it. The OpenTP1 system does not go down in this
case. However, if restart fails twice, the OpenTP1 system goes down.

2.1.17 RPC with a communication destination specified
When you use the function dc_rpc_call() to request a service, the client UAP need
not be aware of the location of the requested service. This is because the name service
provided by OpenTP1 manages this information.

In contrast, by using the function dc_rpc_call_to(), you can request a service
from a specific service request destination. You cannot specify a domain qualifier in
the function dc_rpc_call_to() for requesting a service. In all other respects, the
function dc_rpc_call_to() is the same as the function dc_rpc_call().

TP1/Extension 1 must be installed before you can use this function. Note that operation
will be unpredictable if you run the function while TP1/Extension 1 is not installed.
You can use only a UAP created in C under the control of TP1/Server to call this
function. You cannot call it using a UAP created in COBOL.

To designate a service request destination, you must specify one of the following in the
arguments of the function dc_rpc_call_to().

1. Host name

Specify a host name that can be mapped to an IP address with the /etc/hosts
file or DNS to designate the request destination node.

In this case, the value specified in the name_port operand of the system common
definition on the service request destination and the value specified in the
name_port operand on the service request source (the side that called the
function dc_rpc_call_to()) must be the same.

2. Node identifier

Specify the node identifier specified in the node_id operand of the system
common definition to designate the destination OpenTP1 node for the service
request.

The host name of the destination OpenTP1 node corresponding to the specified
node identifier must exist within the global domain.#

3. Host name and port number

Specify the service request destination by specifying one of the following values.

2. Basic OpenTP1 Facilities (TP1/Server Base, TP1/LiNK)

97

• Host name that can be mapped to an IP address with the /etc/hosts file or
DNS.

• Port number of the name service specified in the name_port operand of the
system common definition of the OpenTP1 system on the host specified
above.

In this case, the value specified in the name_port operand of the service request
destination and the value specified in the name_port operand of the service
request source need not be the same.

#

Here, global domain refers to one of the following sets of node names:

When N is specified for the name_domain_file_use operand of the system
common definition:

A set of node names specified by the all_node and all_node_ex
operands of the system common definition

When Y is specified for the name_domain_file_use operand of the system
common definition:

A set of node names specified in the domain definition file. Note that the
domain definition file is stored at the following location:

• all_node domain definition file

Under the $DCCONFPATH/dcnamnd directory

• all_node_ex domain definition file

Under the $DCCONFPATH/dcnamndex directory

The figure below shows an example of communication using the function
dc_rpc_call_to() in which a node identifier is specified for designating the service
request destination.

2. Basic OpenTP1 Facilities (TP1/Server Base, TP1/LiNK)

98

Figure 2-16: Example of communication using the function dc_rpc_call_to()

2.1.18 Service request with domain qualification
When a service is requested, OpenTP1 searches the entire network constituting the
system for the communication partner. Therefore, as the network becomes larger,
scheduling the service request takes more time. In order to resolve this problem, the
network can be divided into DNS domains for requesting a service. When a service is
requested within a domain, OpenTP1 searches the domain for the partner, and the
performance on scheduling is improved.

Specify the service group name, an argument of the function dc_rpc_call(),
suffixed by the DNS domain name for domain qualification. For service requests with
domain qualification, see the description on the function dc_rpc_call() in the
applicable OpenTP1 Programming Reference manual.

(1) Prerequisites for requesting a service with domain qualification
Prerequisites for requesting a service with domain qualification are as follows:

1. The name of the host on which the domain-alternate schedule service is to be

2. Basic OpenTP1 Facilities (TP1/Server Base, TP1/LiNK)

99

activated must be registered to the DNS with the namdomainsetup command.

2. The port number of the domain-alternate schedule service must be specified in the
scd_port operand of the schedule service definition of the OpenTP1 which
activates the domain-alternate schedule service.

3. The port number of the domain-alternate schedule service specified above must
be registered in /etc/services of the host on which OpenTP1 that requests a
service with domain qualification is to be activated.

(2) Restrictions on requesting a service with domain qualification
Restrictions on requesting a service with domain qualification are as follows:

1. A service request with domain qualification can be addressed only to a
queue-receiving server, rather than a server that receives requests from socket.

2. Even if a service is requested from a transaction, the requested service processing
is not treated as a transaction branch.

The figure below shows the outline of service request with domain qualification.

2. Basic OpenTP1 Facilities (TP1/Server Base, TP1/LiNK)

100

Figure 2-17: Outline of service request with domain qualification

2.1.19 Relationship between service functions and stubs
There are two ways to create service functions in an SPP or MHP.

2. Basic OpenTP1 Facilities (TP1/Server Base, TP1/LiNK)

101

1. By using a stub

2. By using dynamic loading of service functions

These methods are described below.

(1) Using a stub
Stubs are required to communicate between UAPs using RPCs. A stub is a program
which corresponds the service group name and service name specified by the client
UAP to the server UAP service.

The stub defines the point of entry (entry point) for each UAP service.

When creating a server UAP, link the stub to the object file of the server UAP.

For SUP and UAP that handles offline work, there is no need to define and link the
stub.

The figures below show how service functions are created using a stub, for SPP and
for MHP separately.

2. Basic OpenTP1 Facilities (TP1/Server Base, TP1/LiNK)

102

Figure 2-18: Using a stub to acquire service functions (SPP)

1. The entry point of the service function is defined in the RPC interface definition,
and a stub is generated by the stbmake command.

The service group name and the service name are defined in the user service

2. Basic OpenTP1 Facilities (TP1/Server Base, TP1/LiNK)

103

definition.

2. In the execution form file of the server UAP to which a service was requested, the
library created according to the stub and the user service definition is searched for
the corresponding service during execution. The results of service processing are
then returned to the client UAP.

2. Basic OpenTP1 Facilities (TP1/Server Base, TP1/LiNK)

104

Figure 2-19: Using a stub to acquire service functions (MHP)

1. The entry point of the service function is defined in the RPC interface definition,

2. Basic OpenTP1 Facilities (TP1/Server Base, TP1/LiNK)

105

and a stub is generated by the stub-generating command.

The application name, service group name, and service name are associated with
each other in the MCF application definition. The service group name and service
name are defined in the user service definition.

2. During execution, TP1/Message Control searches for the service name that
corresponds to the application name based on the MCF application definition, and
starts the corresponding server UAP. In the execution form file of the server UAP
to which a service was requested, the library created according to the stub and
user service definition is searched for the corresponding service. The service is
then processed and service completion is communicated to TP1/Message Control.

(2) Using dynamic loading of service functions
When the facility for dynamic loading of service functions is used, the service
functions are acquired from a UAP library that specifies the point of entry (entry point)
for each UAP service. There is no need to create a stub. Instead, you need to create a
UAP shared library# that incorporates the service functions. You can then acquire
service functions from the UAP shared library, eliminating the need to incorporate
multiple services into the main function.

#

A UAP shared library is created by compiling UAP source files to produce UAP
object files, which are then linked to create a shared library.

The figures below show how service functions are created using dynamic loading of
service functions, separately for SPP and MHP.

2. Basic OpenTP1 Facilities (TP1/Server Base, TP1/LiNK)

106

Figure 2-20: Using dynamic loading of service functions only (SPP)

2. Basic OpenTP1 Facilities (TP1/Server Base, TP1/LiNK)

107

Figure 2-21: Using dynamic loading of service functions only (MHP)

Note that a UAP that uses a stub can also use dynamic loading of service functions. In

2. Basic OpenTP1 Facilities (TP1/Server Base, TP1/LiNK)

108

this case, a service function can be added without modifying the UAP that uses a stub.

The figures below show, separately for SPP and MHP, how service functions are
created using both a stub and dynamic loading of service functions.

2. Basic OpenTP1 Facilities (TP1/Server Base, TP1/LiNK)

109

Figure 2-22: Using both dynamic loading of service functions and a stub (SPP)

2. Basic OpenTP1 Facilities (TP1/Server Base, TP1/LiNK)

110

Figure 2-23: Using both dynamic loading of service functions and a stub (MHP)

2. Basic OpenTP1 Facilities (TP1/Server Base, TP1/LiNK)

111

2.2 Remote API facility

When a UAP on a client node issues an API, OpenTP1 can transfer the API to the
server for processing on the server. This facility is called the remote API facility. A
UAP which requests the remote API facility from a client node is called a
RAP-processing client. The API issued by the RAP-processing client is accepted by
the RAP-processing listener on OpenTP1 and is run on the server node by the
RAP-processing server. The RAP-processing listener and RAP-processing server run
as user services on OpenTP1. You must set up the operating environment for the
RAP-processing listener and RAP-processing server using the rapsetup command.

To use the remote API facility, define the service information (host name and port
number) of the communication destination in the user service network definition.
Include the -w option in the definition. Create a RAP-processing listener service
definition on the server. Also automatically generate user service definitions for the
RAP-processing listener and RAP-processing server using the rapdfgen command.
The figure below shows the remote API facility.

2. Basic OpenTP1 Facilities (TP1/Server Base, TP1/LiNK)

112

Figure 2-24: Remote API facility

The following tables show the APIs for which remote execution is possible using the
remote API facility for each type of RAP-processing client.

2. Basic OpenTP1 Facilities (TP1/Server Base, TP1/LiNK)

113

For RAP-processing clients based on TP1/Server Base or TP1/LiNK

See the TP1/LiNK User's Guide when using TP1/LiNK.

For RAP-processing clients based on TP1/Client/P or TP1/Client/W

See the manual OpenTP1 TP1/Client User's Guide TP1/Client/W, TP1/Client/P
when using TP1/Client/P or TP1/Client/W.

For RAP-processing clients based on TP1/Client/J

See the manual OpenTP1 TP1/Client User's Guide TP1/Client/J when using TP1/
Client/J.

For RAP-processing clients based on TP1/Client for .NET Framework

C language library COBOL-UAP creation program

dc_rpc_call CBLDCRPC('CALL ')

C language library COBOL-UAP creation program

dc_rpc_call_s CBLDCRPS('CALL ')

dc_trn_begin_s CBLDCTRS('BEGIN ')

dc_trn_chained_commit_s CBLDCTRS('C-COMMIT')

dc_trn_chained_rollback_s CBLDCTRS('C-ROLL ')

dc_trn_unchained_commit_s CBLDCTRS('U-COMMIT')

dc_trn_unchained_rollback_s CBLDCTRS('U-ROLL ')

Method

rpcCall

trnBegin

trnChainedCommit

trnChainedRollback

TrnUnchainedCommit

trnUnchainedRollback

Method

Call

Begin

2. Basic OpenTP1 Facilities (TP1/Server Base, TP1/LiNK)

114

2.2.1 Application of the remote API facility
You can use the remote API facility to send a service request to a UAP which is within
a firewall. The figure below shows the procedure for sending an RPC through a
firewall.

CommitChained

RollbackChained

Commit

Rollback

Method

2. Basic OpenTP1 Facilities (TP1/Server Base, TP1/LiNK)

115

Figure 2-25: Remote procedure call to a UAP within a firewall

2. Basic OpenTP1 Facilities (TP1/Server Base, TP1/LiNK)

116

2.2.2 Permanent connection
OpenTP1 provides a logical channel (permanent connection) between the UAP
(RAP-processing client) that requested the remote API and the RAP-processing server.

There are two methods of scheduling a permanent connection: Static connection mode
and dynamic connection mode. Specify which mode is to be used in the
rap_connection_assign_type operand in the RAP-processing listener service
definition.

2.2.3 Connection mode
The method of managing permanent connections can be classified into two modes
according to the method in which the connections are established and released. The
mode whereby OpenTP1 manages the establishment and release of connections is
called the automatic connection mode. The mode whereby the user manages the
establishment and release of connections is called the non-automatic connection mode.
In the user service definition for the RAP-processing client, specify whether automatic
connection mode or non-automatic connection mode is to be used for managing
permanent connections.

(1) Automatic connection mode
In this mode, OpenTP1 manages the establishment and release of permanent
connections. OpenTP1 automatically establishes a permanent connection when a
RAP-processing client calls the function dc_rpc_call() in which the service group
name defined in the user service network definition is specified together with the -w
option as an argument.

As soon as the RAP-processing client has called the function dc_rpc_call() to
request a service from the service group defined in the user service network definition,
it calls the function dc_rpc_close(). It maintains the permanent connection until
the RPC has returned.

The figure below shows the outline of the automatic connection mode.

2. Basic OpenTP1 Facilities (TP1/Server Base, TP1/LiNK)

117

Figure 2-26: Outline of automatic connection mode

There is a limit to the number of connections that can be established between the
RAP-processing client and the RAP-processing server. If calling the function
dc_rpc_call() causes the number of connections to exceed this limit, OpenTP1
automatically releases the least recently used connection among those used by the
RAP-processing client process, and then establishes a new connection.

However, OpenTP1 cannot release a connection which is being used by a chained
RPC. When OpenTP1 cannot release any connection due to this restriction, the UAP
that issued the API goes down.

(2) Non-automatic connection mode
In this mode, the user manages the establishment and release of permanent
connections. To establish a connection from a RAP-processing client, call the function
dc_rap_connect() [CBLDCRAP('CONNECT')]. To release a connection, call the
function dc_rap_disconnect() [CBLDCRAP('DISCNCT')]. The RAP-processing
client calls the function dc_rpc_call() in which the service group name defined in
the user service network definition is specified together with the -w option as an
argument. If the user has not established a permanent connection by the time the
RAP-processing client calls the function dc_rpc_call(), the function
dc_rpc_call() returns with an error. The return value is DCRPCER_PROTO.

The figure below shows the outline of the non-automatic connection mode.

2. Basic OpenTP1 Facilities (TP1/Server Base, TP1/LiNK)

118

Figure 2-27: Outline of non-automatic connection mode

If calling the function dc_rap_connect() causes the number of connections to
exceed the maximum number of connections which the RAP-processing client can
establish with the RAP-processing server, the function dc_rap_connect() returns
with an error.

2.2.4 Chained RPCs using the remote API facility
This subsection explains chained RPCs in automatic connection mode and chained
RPCs in non-automatic connection mode, both of which are chained RPCs on a
permanent connection.

(1) Chained RPCs in automatic connection mode
There is a limit to the number of connections that can be established between the
RAP-processing client and the RAP-processing server. If calling the function
dc_rpc_call() causes the number of connections to exceed this limit, OpenTP1
automatically releases the least recently used connection among those used by the
RAP-processing client process, and then establishes a new connection.

However, OpenTP1 cannot release a connection which is being used by a chained
RPC. When OpenTP1 cannot release any connection due to this restriction, the UAP
that issued the API goes down.

(2) Chained RPC in non-automatic connection mode
The running of a chained RPC may encounter one of the following events: the calling
of the function dc_rap_disconnect() and failure or communication error of the
UAP that issued the API function. In such a case, the RAP-processing server that is
performing remote execution of the API terminates abnormally and restarts. The

2. Basic OpenTP1 Facilities (TP1/Server Base, TP1/LiNK)

119

purpose of this momentary termination is to reset the connection with the SPP that is
processing the chained RPC and clear the status.

2.2.5 Notes on the remote API facility
Note the following points when using the remote API facility:

• Do not use an asynchronous-response-type RPC with the remote API facility. If
this type of RPC is used, the remote API facility is ineffective and the RPC works
as a normal RPC.

• Do not use the XATMI interface with the remote API facility. Operation of
OpenTP1 is unpredictable if the XATMI interface is used.

• If a RAP-processing client uses the remote API facility to call the function
dc_rpc_call() from within a transaction, the requested service is not run as a
transaction.

• You cannot acquire RPC trace information on communication that was performed
using the remote API facility. However, information on the function
dc_rpc_call() that was executed on the RAP-processing server is obtained in
the RPC trace information area.

• The response statistical information and communication delay time statistical
information do not include information on services and results that were
communicated using the remote API facility.

• When executing an RPC via the gateway of an application gateway-type firewall,
you might use the remote API facility with the -w option specified in the
dcsvgdef definition command of the user service network definition. In this
case, even if you call the function dc_rpc_call() with the transaction attribute,
it is not regarded as a transaction. Therefore, when you have used the remote API
facility, the operation for starting chained RPCs from within a transaction and
terminating the chained RPCs by means of synchronization point processing does
not execute properly. Terminate the chained RPCs explicitly by calling the
function dc_rpc_call() with DCNOFLAGS specified in flags.

• Normally, the RAP-processing server is started automatically by the
RAP-processing listener. Do not independently terminate (by executing the
dcsvstop command) or start (by executing the dcsvstart command) the
RAP-processing server. However, in the following cases, use the dcsvstart
command to start the RAP-processing server.

When the RAP-processing server fails to start due to a definition error:

Even when you cannot start the RAP-processing server due to a definition
error or other problem, the RAP-processing listener cannot detect the failure
to start the RAP-processing server. The system therefore remains in the
status that indicates preparation of the remote API service (the status when

2. Basic OpenTP1 Facilities (TP1/Server Base, TP1/LiNK)

120

the message KFCA26950-I is output). If the message KFCA01812-E with
the error reason code CONFIGURATION is output when the RAP-processing
listener starts the RAP-processing server, check the definition of the
RAP-processing server and use the dcsvstart command to start the
RAP-processing server. Note that the message KFCA00244-E cannot detect
a definition error for the RAP-processing server.

When the RAP-processing listener goes down while the RAP-processing listener
and the RAP-processing server are terminating:

After the RAP-processing listener goes down, even if you start the
RAP-processing listener using the dcsvstart command, the
RAP-processing server outputs the KFCA26950-I message and the system
may remain in the status that indicates preparation of the remote API service.
If the RAP-processing server is not started, start it by executing the
dcsvstart command.

• Do not execute the scdhold command for the RAP-processing server while the
RAP-processing server is online.

• Do not call a service request that uses the remote API facility for a UAP on the
same node as the RAP-processing server. Processing cannot be guaranteed in such
a case.

2. Basic OpenTP1 Facilities (TP1/Server Base, TP1/LiNK)

121

2.3 Transaction control

OpenTP1 can perform transaction control in client/server mode. This facility enables
the UAP processing over multiple processes to be executed as one transaction. There
are two functions for transaction control applicable to OpenTP1 UAPs:

• OpenTP1 specific interface

• TX interface (transaction control conforming X/Open specifications)

This section explains OpenTP1 specific interface. For details on TX interface, see 5.2
TX interface (transaction control).
This section explains transaction control involved in UAPs (SUP, SPP) in client/server
mode. For details on transaction control involved in UAPs (MHP) in message
exchange mode, see 3.7 MCF transaction control.

Notes on using UAPs with TP1/LiNK

To implement transaction control through UAPs used with TP1/LiNK, specify
that the transaction facility will be used when setting up a TP1/LiNK execution
environment.

2.3.1 Transaction in client/server mode
OpenTP1 can implement one transaction with multiple-process RPCs. This transaction
is called a global transaction. A transaction to be processed in client/server mode can
be ensured by implementing this global transaction.

(1) Transaction start and synchronization point acquisition (commitment)
Before transactions can be controlled during client/server mode communication, the
transaction start and the acquisition of a synchronization point must be explicitly
specified in the UAP.

To start a transaction, invoke the following function:

• dc_trn_begin() [CBLDCTRN('BEGIN ')]

To acquire a synchronization point, invoke the following functions:

• dc_trn_chained_commit() [CBLDCTRN('C-COMMIT')]

• dc_trn_chained_rollback() [CBLDCTRN('C-ROLL ')]

• dc_trn_unchained_commit() [CBLDCTRN('U-COMMIT')]

• dc_trn_unchained_rollback() [CBLDCTRN('U-ROLL ')]

The client UAP becomes a root transaction branch when the transaction start function
is called. Functions for acquiring transaction synchronization points (commitment) are

2. Basic OpenTP1 Facilities (TP1/Server Base, TP1/LiNK)

122

called from the root transaction branch from which the transaction start function was
called.

After a transaction start function is called, another transaction start function cannot be
called in the global transaction.

When a UAP being executed requests a service as a transaction, the service is being
executed as a transaction upon the request. The function dc_trn_begin() cannot be
called with the requested service.

(2) UAPs that can call transaction control functions
Only SUPs and SPPs can call functions which start a transaction or acquire the
synchronization point. Since transaction processing for MHPs is automatically
controlled by OpenTP1, MHPs cannot call transaction control functions. SPPs which
are requested for service by MHPs via the function dc_rpc_call() cannot call
transaction control functions, either.

UAPs that handle offline work cannot use transaction control functions.

UAPs providing the OpenTP1 client facility (CUPs) use the transaction control
functions existing in the TP1/Client library.

2.3.2 Acquiring a synchronization point
The acquisition of a synchronization point means to make all transaction branches
comprising a global transaction synchronized and terminated with the same result
(commitment or rollback).

(1) Using commitment functions
Commitment functions can be used only with the SPP or SUP (root transaction branch)
that started a transaction using the function dc_trn_begin(). Note that commitment
functions cannot be used with another transaction branch. The global transaction
terminates normally when all transaction branches terminate normally.

(a) Commitment in chained/unchained mode
There are two types of transaction processing commitment: commitment
(dc_trn_chained_commit()) in chained mode which acquires a synchronization
point and consecutively starts the next transaction after one transaction terminates, and
commitment (dc_trn_unchained_commit()) in unchained mode which does not
start a new transaction after one transaction terminates. The figure below shows
transactions in chained/unchained mode.

2. Basic OpenTP1 Facilities (TP1/Server Base, TP1/LiNK)

123

Figure 2-28: Transactions in chained/unchained mode

(2) Using rollback functions
If you want to roll back a transaction according to UAP decision, you can call a
rollback request from the UAP.

(a) Rollback in chained/unchained mode
There are two rollback functions: dc_trn_chained_rollback() (chained mode)
and dc_trn_unchained_rollback() (unchained mode). The rollback function of
the chained mode remains in the new global transaction range even after rollback
processing is executed. If the rollback function of the unchained mode is called from
the root transaction branch, the rollback function is not in the global transaction range.

2. Basic OpenTP1 Facilities (TP1/Server Base, TP1/LiNK)

124

The rollback function of the chained mode cannot be called from the root transaction
branch. The rollback function of the unchained mode can be called from any
transaction branch.

If the rollback function of the unchained mode is called from a transaction branch, the
transaction branch is a rollback target (rollback_only status). This information is
posted to the root transaction branch. In this case, the rollback function of the
unchained mode remains in the global transaction range after rollback processing is
executed and before the function dc_rpc_call() returns.

The figure below shows transaction rollback.

2. Basic OpenTP1 Facilities (TP1/Server Base, TP1/LiNK)

125

Figure 2-29: Transaction rollback

2. Basic OpenTP1 Facilities (TP1/Server Base, TP1/LiNK)

126

(3) If an error occurs during synchronization point acquisition processing
If an error occurs during a process for acquiring transaction synchronization points, the
transaction is committed when it has been completed to phase 1 of synchronization
points; otherwise, it is rolled back. When one of the transaction branches within a
global transaction is rolled back, the whole global transaction is rolled back.

The figure below shows transaction rollback in the case of an error occurs during
synchronization point acquisition processing.

Figure 2-30: Transaction rollback if an error occurs during synchronization
point acquisition processing

(4) Action to be taken if a function for acquiring synchronization point is not
called

If a UAP which does not call a function for acquiring a synchronization point
terminates abnormally, the result of the UAP synchronization point is rolled back.

If the UAP (root transaction branch) terminates with the function exit() without
using a function for acquiring a synchronization point, OpenTP1 performs automatic
commitment. If this commitment processing encounters an error before it reaches the
end of phase 1, the global transaction is rolled back. In this case, this rollback cannot

2. Basic OpenTP1 Facilities (TP1/Server Base, TP1/LiNK)

127

be posted to the UAP.

2.3.3 Specification of transaction attribute
When setting up a UAP execution environment, specify whether to run UAP processes
as transactions. A UAP process is called a UAP with the transaction attribute if it is
specified so that it will work as a transaction. The transaction attribute must be
specified for UAPs which update files or perform other transaction processing.

(1) How to give transaction attribute to UAP
To make a server UAP process a transaction branch, specify that the UAP have the
transaction attribute. The transaction attribute is specified by the following method:

• TP1/Server Base:

Specify Y for atomic_update in the user service definition.

• TP1/LiNK:

Specify for the user server that the transaction facility will be used.

Processing of a UAP with the transaction attribute works as a transaction when:

• The UAP with the transaction attribute normally returns by using the function
dc_trn_begin() to start a transaction.

• The UAP is requested for service via the function dc_rpc_call() by another
UAP which is working as a transaction.

(2) How to give nontransaction attribute to UAP
The nontransaction attribute (atomic_update=N or the specification that the
transaction facility be not used) must be specified for server UAPs which perform only
operation and other server UAPs which do not require that transactions be guaranteed.
Server UAPs with the nontransaction attribute can always offer service to not only the
present, but also other client UAPs independent of global transaction processing. Even
if the server UAP is requested for service by multiple client UAPs, it can start handling
these service requests without waiting until synchronization point acquisition
processing is completed. This helps reduce the overhead involved in service request
waits.

The figure below shows the relationship between RPCs and the transaction attribute.

2. Basic OpenTP1 Facilities (TP1/Server Base, TP1/LiNK)

128

Figure 2-31: Relationship between RPCs and transaction attribute

#

The contents of a resource accessed by global transaction B are returned to the
status immediately before global transaction B is started. The function for

2. Basic OpenTP1 Facilities (TP1/Server Base, TP1/LiNK)

129

acquiring a synchronization point (the function
dc_trn_unchained_commit() in the figure) returns an error to report that
global transaction B has rolled back.

(a) Using nontransactional RPC from transaction process
If a transaction process requests a UAP for service and the requested UAP has the
transaction attribute, the service request is handled by a transaction process. It is
possible to make such service requests not handled by a transaction process. For this
purpose, specify the argument to the function dc_rpc_call() to indicate that the
RPC is nontransactional.

2.3.4 Relationship between remote procedure call modes and
synchronization points

If the transaction attribute is specified for an SPP called through an RPC from a UAP
(SUP, SPP, MHP) working as a transaction, the SPP works as a transaction. Each
transaction branch can be synchronized as one global transaction. Each process of
server UAP returns to the UAP that called the function dc_rpc_call() after
processing terminates. However, the next service request can be accepted only after the
service returns to the root transaction branch and synchronization point processing is
completed. Resources acquired by the server UAP can also be released after the service
returns to the root transaction branch and synchronization point processing is
completed. These features also apply when asynchronous-response-type RPCs,
nonresponse-type RPCs, or chained RPCs are used.

UAP processing can be synchronized between UAPs through RPC transaction control
as explained in the above.

Another service request can be handled in a process of the server UAP before the
synchronization point processing has been completed in the client UAP. This is called
transaction optimization. For details on transaction optimization, see 2.3.5
Transaction optimization.

(1) Relationship between synchronous-response-type RPCs and
synchronization points

In the case of transaction processing of a synchronous-response-type RPC is executed,
the transaction terminates when the processing results are returned to the root
transaction branch and synchronization point processing is completed.

If the requirements for optimizing transaction are satisfied, a process of the server UAP
can accept the next service request when processing terminates.

The figure below shows the relationship between the synchronous-response-type RPC
and the synchronization point.

2. Basic OpenTP1 Facilities (TP1/Server Base, TP1/LiNK)

130

Figure 2-32: Relationship between synchronous-response-type RPC and
synchronization point

(2) Relationship between asynchronous-response-type RPCs and
synchronization points

In the case of transaction processing of an asynchronous-response-type RPC, RPC
processing will terminate when the client UAP finishes synchronization point
processing. If a response comes from the server UAP after synchronization point
processing, the UAP which called the function dc_rpc_call() cannot receive the
response.

The figure below shows the relationship between the asynchronous-response-type
RPC and the synchronization point.

2. Basic OpenTP1 Facilities (TP1/Server Base, TP1/LiNK)

131

Figure 2-33: Relationship between asynchronous-response-type RPC and
synchronization point

2. Basic OpenTP1 Facilities (TP1/Server Base, TP1/LiNK)

132

(3) Relationship between nonresponse-type RPCs and synchronization points
In the case of transaction processing of a nonresponse-type RPC, the client UAP waits
until the server UAP finishes processing, and then executes synchronization point
acquisition processing.

The figure below shows the relationship between the nonresponse-type RPC and the
synchronization point.

Figure 2-34: Relationship between nonresponse-type RPC and synchronization
point

(4) Relationship between chained RPCs and synchronization points
Chained RPCs are executed by one server UAP process. Therefore, there is one
transaction branch regardless of the number of chained RPCs used.

In the case of transaction processing of chained RPCs, the transaction will terminate
when synchronization point processing is terminated. The server UAP process is then
freed.

If non-transactional chained RPCs are used during the transaction, the server UAP
process in charge of the processing will, in general, be freed when the synchronous
point processing ends. If you want to free the server UAP process in charge of the
processing by means of a synchronous-response-type RPC (with DCNOFLAGS assigned
to flags) rather than the termination of the synchronous point processing, assign
00000002 to the user service definition rpc_extend_function operand.

When the chained RPCs are terminated by a synchronous-response-type RPC, the

2. Basic OpenTP1 Facilities (TP1/Server Base, TP1/LiNK)

133

server UAP process can accept the next service request when processing is terminated,
provided that the requirements for optimizing transaction are satisfied.

The figures below show the relationship between chained RPCs and the
synchronization point.

Figure 2-35: Relationship between chained RPCs and synchronization point
(transactional chained RPCs)

2. Basic OpenTP1 Facilities (TP1/Server Base, TP1/LiNK)

134

Figure 2-36: Relationship between chained RPCs and synchronization points (if
a specification is given so that the server processing will not end with the
non-transactional chained RPCs)

(5) RPC error return values and synchronization points
Even when the function dc_rpc_call() or the function
dc_rpc_poll_any_replies() returns with an error, the transaction
synchronization point might becomes commitment.

A transaction might have to be rolled back depending on the return value. In this case,
use a rollback function (dc_trn_chained_rollback() or
dc_trn_unchained_rollback()) to roll back the transaction.

The following return values cause a transaction to be rolled back:

• Return value of the function dc_rpc_call()

• Return value of the function dc_rpc_poll_any_replies()

2. Basic OpenTP1 Facilities (TP1/Server Base, TP1/LiNK)

135

For details on the function dc_rpc_call() or dc_rpc_poll_any_replies() that
must be rolled back, see the applicable OpenTP1 Programming Reference manual.

2.3.5 Transaction optimization
OpenTP1 provides the following types of optimization to improve the performance of
transaction processing:

• Commit optimization: 1

• Prepare optimization: 2

• Asynchronous prepare optimization: 3

• One-phase optimization: 4

• Read-only optimization: 5

• No-access optimization: 6

• Rollback optimization: 7

There are some conditions for each optimization. Creating UAPs which satisfy the
conditions can improve the performance of transaction processing.

The priority of each optimization is as follows:

5, 6, 7 > 2 > 3 > 4 (1 is performed together with other optimization.)

The purpose of transaction optimization is to improve the performance of the
synchronization point processing between transaction branches on the client side and
the server side. Therefore, multiple types of optimization can be used in one global
transaction.

Since chained RPCs reduce the number of transaction branches in a global transaction,
they enable transactions to be executed more efficiently.

(1) Ordinary transaction processing (two-phase commit)
OpenTP1 performs control transaction via X/Open XA interface. On XA interface, the
synchronization point of transactions is acquired by prepare processing and commit
processing separately. This synchronization point processing is called two-phase
commit. Therefore, the client UAP communicates with the server UAP four times in
total: sending two requests for synchronization point processing and receiving two
responses. During two-phase commit processing, the process of transaction processing
cannot receive other service requests until the synchronization point is acquired.

The figure below shows the outline of ordinary transaction processing (two-phase
commit).

2. Basic OpenTP1 Facilities (TP1/Server Base, TP1/LiNK)

136

Figure 2-37: Outline of ordinary transaction processing (two-phase commit)

(2) Commit optimization
When the conditions for commit optimization are satisfied, the synchronization point
processing for phase 2 (commit/rollback processing) to be performed in the transaction
branch on the server is performed in the transaction branch on the client. This

2. Basic OpenTP1 Facilities (TP1/Server Base, TP1/LiNK)

137

eliminates two of the inter-process communications and improves the performance of
transaction processing.

Commit optimization is performed when all the following conditions are satisfied:

1. Both transaction branches on the client and the server are within the same
OpenTP1 system.

2. The XA interface object file for the resource manager accessed in the transaction
branch on the server has been linked to the transaction branch on the client.

During commit optimization, the transaction branch on the server can receive other
service requests when the synchronization point processing for phase 1 terminates,
without waiting for completion of processing for phase 2.

The figure below shows the outline of commit optimization.

2. Basic OpenTP1 Facilities (TP1/Server Base, TP1/LiNK)

138

Figure 2-38: Outline of commit optimization

2. Basic OpenTP1 Facilities (TP1/Server Base, TP1/LiNK)

139

(3) Prepare optimization
When the conditions for prepare optimization are satisfied, the synchronization point
processing for phase 1 (prepare processing) to be performed in the transaction branch
on the server is performed in the transaction branch on the client. This eliminates two
of the inter-process communications and improves the performance of transaction
processing.

Prepare optimization is performed when all the following conditions are satisfied:

1. Both transaction branches on the client and the server are within the same
OpenTP1 system.

2. The XA interface object file for the resource manager accessed in the transaction
branch on the server has been linked to the transaction branch on the client.

3. The transaction branch on the client uses synchronous-response RPCs.
(DCNOFLAGS is specified for flags of the function dc_rpc_call().)

Since commit optimization is also performed during prepare optimization, it results in
eliminating four of inter-process communications. The transaction branch on the
server can receive other service requests without waiting for completion of
synchronization point processing.

The figure below shows the outline of prepare optimization.

2. Basic OpenTP1 Facilities (TP1/Server Base, TP1/LiNK)

140

Figure 2-39: Outline of prepare optimization

2. Basic OpenTP1 Facilities (TP1/Server Base, TP1/LiNK)

141

(4) Asynchronous prepare optimization
When the conditions for asynchronous prepare optimization are satisfied, the
transaction branch on the server performs prepare processing at the time the service
processing terminates before control returns to the transaction branch on the client.
This eliminates two of the inter-process communications and improves the
performance of transaction processing.

Asynchronous prepare optimization is performed when all the following conditions
are satisfied:

1. The UAP on the client specifies asyncprepare in the trn_optimum_item
operand of the user service definition.

2. Prepare optimization is disallowed. (If allowed, prepare optimization has
precedence over asynchronous prepare optimization.)

3. The transaction branch on the client uses synchronous-response RPCs.
(DCNOFLAGS is specified for flags of the function dc_rpc_call().)

Asynchronous prepare optimization has a much longer RPC response time than
ordinary transaction processing. If OpenTP1 containing the transaction branch on the
client terminates abnormally during transaction processing, OpenTP1 containing the
transaction branch on the server may also terminate abnormally due to journal
acquisition.

The figure below shows the outline of asynchronous prepare optimization.

2. Basic OpenTP1 Facilities (TP1/Server Base, TP1/LiNK)

142

Figure 2-40: Outline of asynchronous prepare optimization

(5) One-phase optimization
When the conditions for one-phase optimization are satisfied, only the transaction
branch on the server performs the synchronization point processing while the
transaction branch on the client does not access the resource manager. This eliminates
two of the inter-process communications and improves the performance of transaction

2. Basic OpenTP1 Facilities (TP1/Server Base, TP1/LiNK)

143

processing.

One-phase optimization is performed when all the following conditions are satisfied:

1. Only the resource manager supporting dynamic registration has been linked to the
transaction branch on the client.

2. The transaction branch on the client neither accesses the resource manager nor
outputs the user journal.

3. The transaction branch on the client has only one child transaction branch.

The figure below shows the outline of one-phase optimization.

2. Basic OpenTP1 Facilities (TP1/Server Base, TP1/LiNK)

144

Figure 2-41: Outline of one-phase optimization

(6) Read-only optimization
When the conditions for read-only optimization are satisfied, the synchronization point
processing for phase 2 is not performed if the transaction branch on the server does not
perform update processing. This eliminates two of the inter-process communications

2. Basic OpenTP1 Facilities (TP1/Server Base, TP1/LiNK)

145

and improves the performance of transaction processing.

Read-only optimization is performed when all the following conditions are satisfied:

1. The transaction branch on the server neither updates resources (excluding
reference) nor outputs the user journal.

2. The transaction branch on the client has only one child transaction branch.

During read-only optimization, the transaction branch on the server can receive the
next service request when the synchronization point processing for phase 1 terminates,
without waiting for completion of processing for phase 2.

The figure below shows the outline of read-only optimization.

2. Basic OpenTP1 Facilities (TP1/Server Base, TP1/LiNK)

146

Figure 2-42: Outline of read-only optimization

(7) No-access optimization
When the conditions for no-access optimization are satisfied, the synchronization

2. Basic OpenTP1 Facilities (TP1/Server Base, TP1/LiNK)

147

point processing is not performed if the transaction branch on the server does not
access the resource manager. This eliminates four of the inter-process communications
and improves the performance of transaction processing.

No-access optimization is performed when all the following conditions are satisfied:

1. The transaction branch on the client uses synchronous-response RPCs.
(DCNOFLAGS is specified for flags of the function dc_rpc_call().)

2. Only the resource manager supporting dynamic registration has been linked to the
transaction branch on the server.

3. The transaction branch on the server neither accesses the resource manager nor
outputs the user journal.

4. The transaction branch on the server has no child transaction branch.
Alternatively, it has child transaction branch(es) for which read-only optimization
is available.

During no-access optimization, the transaction branch on the server can receive other
service requests without waiting for completion of the synchronization point
processing.

The figure below shows the outline of no-access optimization.

2. Basic OpenTP1 Facilities (TP1/Server Base, TP1/LiNK)

148

Figure 2-43: Outline of no-access optimization

(8) Rollback optimization
When the conditions for rollback optimization are satisfied, the transaction branch on
the server rolls back out of synchronization with other transaction branches if it uses a
rollback function. Other transaction branches do not execute the synchronization point

2. Basic OpenTP1 Facilities (TP1/Server Base, TP1/LiNK)

149

processing for phase 1. This eliminates two of the inter-process communications and
improves the performance of transaction processing.

Rollback optimization is performed when all the following conditions are satisfied:

1. The transaction branch on the client uses synchronous-response RPCs.
(DCNOFLAGS is specified for flags of the function dc_rpc_call().)

2. The transaction branch on the server uses a rollback function.

During rollback optimization, the transaction branch on the server can receive other
service requests without waiting for completion of the synchronization point
processing.

The figure below shows the outline of rollback optimization.

2. Basic OpenTP1 Facilities (TP1/Server Base, TP1/LiNK)

150

Figure 2-44: Outline of rollback optimization

2. Basic OpenTP1 Facilities (TP1/Server Base, TP1/LiNK)

151

(9) Optimization using chained RPCs
In general, when a service is requested from a transaction branch to a UAP for which
the transaction attribute is specified, the process of the transaction branch on the server
is handled as another transaction branch. However, when a chained RPC is used for the
same service group (various services can exist), that is, when DCRPC_CHAINED is
specified for flags of the function dc_rpc_call(), the process is handled as the
same transaction branch until the chained RPC is completed. When the conditions for
optimization using chained RPCs are satisfied, the performance of transaction
processing is improved since the number of transaction branches in a global
transaction is reduced.

The figure below shows the outline of optimization using chained RPCs.

2. Basic OpenTP1 Facilities (TP1/Server Base, TP1/LiNK)

152

Figure 2-45: Outline of optimization using chained RPCs

2. Basic OpenTP1 Facilities (TP1/Server Base, TP1/LiNK)

153

2.3.6 Posting information about the current transaction
If the function dc_trn_info() [CBLDCTRN('INFO ')] is used from a UAP, the
return value indicates whether the UAP is operating as a transaction.

2.3.7 Disposal in case of heuristic situation
If data cannot be exchanged between transaction branches because a communication
error occurred between nodes, the synchronization point must be acquired on each
node by executing a command. If the synchronization point is acquired on each node,
one transaction branch in the global transaction may be committed and another may be
rolled back. Acquiring the synchronization point on each node is called heuristic
decision. During heuristic decision, a function returns with an error if the
synchronization point of the global transaction is acquired from a UAP. One of the
following values will be returned from a function due to heuristic determination:

• DCTRNER_HEURISTIC (00903): The results of heuristic determination did not
match the results of the synchronization point of the global transaction.

• DCTRNER_HAZARD (00904): The results of the synchronization point of the
transaction branch that was completed by the heuristic method are unknown.

The results of the synchronization point of the UAP, resource manager, or global
transaction that caused the return value to arise can be checked by reading the contents
of the message log file.

2.3.8 Notes on transaction processing
(1) Relationship between transaction processing and the user service definition

Note the following points when requesting a service for which the transaction attribute
is defined (atomic_update=Y specified) from a service that is being executed as a
transaction:

1. Specify a sufficient number of processes for the maximum number of processes
(parallel_count) in the user service definition of the server UAP. Even after
server UAP processing terminates, no service is provided to another client UAP
until synchronization point processing of the global transaction is completed
(unless the optimizing transaction is enabled). If a transaction continues for a long
time in such a situation, processes are occupied which are equivalent to different
client UAPs that requested services during the transaction. As a result, transaction
performance might decline.

2. Depending on the value given to balance_count (the number of remaining
service requests) in the user service definition, even a user server which uses the
multiserver facility may encounter a RPC timeout without any increase in the
number of nonresident processes. Specify in the operand balance_count the
most suitable value considering the load on the server UAP.

In the following cases, be sure to specify 0 in the balance_count operand:

2. Basic OpenTP1 Facilities (TP1/Server Base, TP1/LiNK)

154

• A recursive call is used with a user server comprising only nonresident
processes (e.g., when parallel_count = 0 or 2).

• A recursive call is used with a server comprising one resident process and
nonresident processes (e.g., when parallel_count = 1 or 2).

(2) Time monitoring of transaction processing
As for time monitoring from the transaction start to synchronization point processing,
you can specify whether to include the time until the function dc_rpc_call() called
in the transaction returns. Define this specification with
trn_expiration_time_suspend of the user service definition, the user service
default definition, and the transaction service definition.

For details on the value to be assigned to trn_expiration_time_suspend and
transaction time monitoring, see the manual OpenTP1 System Definition.

2. Basic OpenTP1 Facilities (TP1/Server Base, TP1/LiNK)

155

2.4 System operation management

This section explains how to execute OpenTP1 commands by invoking functions from
within a UAP, how to report start processing completion, and how to obtain the UAP
status by invoking an appropriate function from within the UAP.

2.4.1 Executing operation commands
To support OpenTP1 system operation, you can execute commands, which can be
entered in online mode, from a UAP by using the function
dc_adm_call_command() [CBLDCADM('COMMAND ')]. The execution results of
commands are returned to the UAP. The results comprise values which are output to
the standard output or standard error output.

Give the following specification to the UAP which is to execute commands, in order
to define the directory containing the command as the command search path:

• TP1/Server Base:

Specify the environment variable for putenv PATH in the user service definition.

• TP1/LiNK:

Add a search path when setting up a TP1/LiNK environment.

The figure below outlines OpenTP1 command execution using the function
dc_adm_call_command().

Figure 2-46: Outline of OpenTP1 command execution using function
dc_adm_call_command()

2. Basic OpenTP1 Facilities (TP1/Server Base, TP1/LiNK)

156

(1) OpenTP1 commands which can be executed using the function
dc_adm_call_command()

Table 2-1 lists the OpenTP1 commands and indicates which commands can be
executed from UAPs. For details of results of command input which come from
OpenTP1, see the manual OpenTP1 Operation.

Table 2-1: OpenTP1 commands which can be executed from UAPs

Facility Command
name

Can/cannot
be executed
from UAPs

System management Catalog OpenTP1 into OS, delete OpenTP1
from OS

dcsetup N

Restart process service and reflect definitions dcreset N

Reserve or release resources for OpenTP1
internal control

dcmakeup N

Start OpenTP1 dcstart N

Terminate OpenTP1 dcstop Y#

Output system statistical information dcstats Y

Start multinode area/subarea dcmstart Y

Terminate multinode area/subarea dcmstop Y

Execute OpenTP1 commands from the scenario
template

dcjcmdex N

Specify an operand of the system definition dcjchconf N

Update the domain definition file dcjnamch Y

Display the status of OpenTP1 node dcndls Y

Display shared memory utilization status dcshmls Y

Display execution status of temporary close
processing

rpcstat Y

Redirect standard output and standard error
output

prctee N

Stop and restart the prctee process prctctrl N

Acquire maintenance documents dcrasget Y

Edit and output system statistical information to
the standard output in real time

dcreport Y

2. Basic OpenTP1 Facilities (TP1/Server Base, TP1/LiNK)

157

Delete troubleshooting information dccspool Y

Check the system definition dcdefchk N

Display product information dcpplist Y

Remote API
management

Display the RAP-processing listener or
RAP-processing server status.

rapls N

Set up the execution environment of a remote
API facility

rapsetup N

Generate automatically definitions used for a
remote API facility

rapdfgen N

Server management Start server dcsvstart Y

Terminate server dcsvstop Y

Display status of server prcls Y

Display search path names for user server and
for command activated from user server

prcpathls Y

Change search path names for user server and
for command activated from user server

prcpath Y

Abort OpenTP1 process prckill Y

Schedule
management

Display scheduling status scdls Y

Shut down the scheduling scdhold Y

Restart scheduling scdrles Y

Change the number of processes scdchprc Y

Stop and restart a process scdrsprc Y

Transaction
management

Display status of transactions trnls Y

Commit transactions trncmt Y

Roll back transactions trnrbk Y

Terminate transactions forcibly trnfgt Y

Start and terminate collecting of transaction
statistical information

trnstics Y

Facility Command
name

Can/cannot
be executed
from UAPs

2. Basic OpenTP1 Facilities (TP1/Server Base, TP1/LiNK)

158

Delete undecided transaction information file trndlinf Y

Display undecided transaction information for
OSI TP communication

tptrnls Y

XA resource
management

Display an XAR event trace information xarevtr N

Display status of an XAR file xarfills Y

Change status of an XAR transaction xarforce Y

Shut down an XA resource service xarhold Y

Create an XAR file xarinit N

Display an XAR transaction information xarls Y

Release an XA resource service from shutdown xarrles Y

Delete an XAR file xarrm N

Exclusion
management

Display lock information lckls Y

Display lock table pool information lckpool Y

Delete deadlock information file or timeout
information file

lckrminf Y

Name management Check OpenTP1 startup and delete a cache namalivechk Y

Catalog and delete domain alternate schedule
service

namdomainset
up

Y

Change domain configuration (using the system
common definition)

namndchg Y

Change domain configuration (using the domain
definition file)

namchgfl Y

Perform a forced invalidation of the startup
notice information

namunavl N

Display server information about OpenTP1 namsvinf Y

Manipulate the RPC suppression list namblad Y

Message log
management

Display message log file logcat Y

Switch message log realtime output function logcon Y

Facility Command
name

Can/cannot
be executed
from UAPs

2. Basic OpenTP1 Facilities (TP1/Server Base, TP1/LiNK)

159

Audit logs Set up the environment for audit logging dcauditsetup N

OpenTP1 file
management

Initialize a OpenTP1 file system filmkfs N

Display status of an OpenTP1 file system filstatfs Y

Display contents of an OpenTP1 file system fills Y

Back up an OpenTP1 file system filbkup N

Restore an OpenTP1 file system filrstr N

Change an OpenTP1 file group filchgrp Y

Change an OpenTP1 file access authorization
mode

filchmod Y

Change an OpenTP1 file owner filchown Y

Status file
management

Create and initialize a status file stsinit N

Display status of status files stsls Y

Display contents of a status file stsfills Y

Open a status file stsopen Y

Close a status file stsclose Y

Delete a status file stsrm Y

Swap status files stsswap Y

Journal file
management

Initialize a journal file jnlinit N

Display journal file information jnlls Y

Display information about previously read
journal files during a rerun

jnlrinf N

Open a journal file jnlopnfg Y

Close a journal file jnlclsfg Y

Allocate journal physical file jnladdpf Y

Delete journal physical file jnldelpf Y

Allocate a journal file dynamically jnladdpf Y

Swap journal files jnlswpfg Y

Facility Command
name

Can/cannot
be executed
from UAPs

2. Basic OpenTP1 Facilities (TP1/Server Base, TP1/LiNK)

160

Delete journal files jnlrm N

Change status of journal files jnlchgfg N

Unload journal files jnlunlfg N

Control the automatic unload facility jnlatunl N

Recover journal files jnlmkrf N

Integrate file recovery journals jnlcolc N

Copy unload journal files jnlcopy N

Display archive status jnlarls Y

Edit and output unload journal files or global
archive unload journal files

jnledit N

Output records from unload journal files or
global archive unload journal files

jnlrput N

Sort and merge unload journal files or global
archive unload journal files chronologically

jnlsort N

Output uptime statistical information jnlstts N

Output MCF uptime statistical information jnlmcst N

Forcibly release connection to resource group jnlardis N

DAM file
management

Initialize a physical file damload N

Display status of logical files damls Y

Add a logical file damadd Y

Remove a logical file damrm Y

Shut down a logical file logically damhold Y

Release logical file from the shutdown damrles Y

Delete a physical file damdel N

Back up a physical file dambkup N

Restore a physical file damrstr N

Recover a logical file damfrc N

Facility Command
name

Can/cannot
be executed
from UAPs

2. Basic OpenTP1 Facilities (TP1/Server Base, TP1/LiNK)

161

Set a threshold for the number of cache blocks damchdef Y

Obtain the number of cache blocks damchinf Y

TAM file
management

Initialize a TAM file tamcre N

Display status of TAM tables tamls Y

Add a TAM table tamadd Y

Remove a TAM table tamrm Y

Shut down a TAM table logically tamhold Y

Release a TAM table from shutdown tamrles Y

Load a TAM table tamload Y

Unload a TAM table tamunload Y

Delete a TAM file tamdel N

Back up a TAM file tambkup N

Restore a TAM file tamrstr N

Recover a TAM file tamfrc N

Convert a TAM locked resource name tamlckls Y

Display synonym information about hash type
TAM files and TAM tables

tamhsls N

Message queue file
management

Display status of queue groups quels Y

Allocate physical file for message queue queinit N

Delete physical file for message queue querm N

Resource manager
control

Display resource manager information trnlsrm N

Catalog and delete the resource manager trnlnkrm N

Create a transaction control object file trnmkobj N

Trace management Output UAP trace information uatdump N

Merge RPC traces rpcmrg N

Output RPC trace information rpcdump N

Facility Command
name

Can/cannot
be executed
from UAPs

2. Basic OpenTP1 Facilities (TP1/Server Base, TP1/LiNK)

162

Output shared memory dump usmdump Y

Management of
performance
verification traces

Edit and output trace information file prfed N

Get trace information file prfget N

Real-time statistical
information service
management

Edit and output RTS log files rtsedit N

Output real-time statistical information to the
standard output

rtsls N

Set up an execution environment for the
real-time statistical information service

rtssetup N

Change the settings for real-time statistical
information

rtsstats N

Connection
management

Display status of connection mcftlscn Y

Establish connections mcftactcn Y

Release connections mcftdctcn Y

Switch connections mcftchcn Y

Display network status mcftlsln Y

Start acceptance of server-type connection
establishment requests

mcftonln Y

Terminate acceptance of server-type connection
establishment requests

mcftofln Y

Display status of multiplex message processing mcftlstrd Y

Application
management

Display status of applications mcfalsap Y

Shut down applications mcfadctap Y

Release shutdown of applications mcfaactap Y

Initialize abnormal terminations counts
applications

mcfaclcap Y

Display status of application start request mcfalstap Y

Delete timer activation requests for applications mcfadltap Y

Application operation
support

Start application programs mcfuevt Y

Facility Command
name

Can/cannot
be executed
from UAPs

2. Basic OpenTP1 Facilities (TP1/Server Base, TP1/LiNK)

163

Logical terminal
management

Display status of logical terminals mcftlsle Y

Shut down logical terminals mcftdctle Y

Release shutdown of logical terminals mcftactle Y

Skip first message in a logical terminal message
queue

mcftspqle Y

Hold process of a logical terminal output queue mcfthldoq Y

Release held process of a logical terminal output
queue

mcftrlsoq Y

Delete output queues for logical terminals mcftdlqle Y

Start message journal collection for logical
terminals

mcftactmj Y

Terminate message journal collection for logical
terminals

mcftdctmj Y

Terminate forcibly continuous-inquiry-response
processing for logical terminals

mcftendct Y

Start the alternate terminal mcftstalt Y

Terminate the alternate terminal mcftedalt Y

Service group
management

Display status of service groups mcftlssg Y

Shut down service groups mcftdctsg Y

Release service groups from shutdown mcftactsg Y

Hold process of input queue for service group mcfthldiq Y

Release held process of input queues for service
group

mcftrlsiq Y

Delete the input queue for a service group mcftdlqsg Y

Service management Display status of services mcftlssv Y

Shut down services mcftdctsv Y

Release services from shutdown mcftactsv Y

Facility Command
name

Can/cannot
be executed
from UAPs

2. Basic OpenTP1 Facilities (TP1/Server Base, TP1/LiNK)

164

Legend:

Y: Can be executed from UAPs.

N: Cannot be executed from UAPs.

#

When the dcstop command is executed from UAPs, it should be in the
background.

2.4.2 Reporting completion of user server start processing
The function dc_adm_complete() [CBLDCADM('COMPLETE')] for reporting the
completion of user server start processing must be called for SUPs. After using the
function dc_rpc_open() (which starts UAPs) to OpenTP1, call the function
dc_adm_complete() to report the completion of start processing to OpenTP1.

SPPs and MHPs assume that start processing is completed when the function

Session management Start a session mcftactss Y

Terminate a session mcftdctss Y

Buffer management Display utilization status of buffer groups mcftlsbuf Y

Map management Change path name of a map file dcmapchg N

Display the loaded resources in the map file dcmapls N

Queue management Output contents of input/output queues mcftdmpqu Y

MCF trace acquisition
management

Swap MCF trace files forcibly mcftswptr Y

Start MCF trace acquisition mcftstrtr Y

Terminate MCF trace acquisition mcftstptr Y

Management of MCF
statistics

Edit MCF statistics mcfreport N

Output MCF statistics mcfstats Y

MCF communication
service management

Partially stop the MCF communication service mcftstop N

Partially start the MCF communication service mcftstart N

Reference the status of the MCF communication
service

mcftlscom N

User timer monitoring Display status of user timer monitoring mcftlsutm Y

Facility Command
name

Can/cannot
be executed
from UAPs

2. Basic OpenTP1 Facilities (TP1/Server Base, TP1/LiNK)

165

dc_rpc_mainloop() or the function dc_mcf_mainloop() is executed normally.
Thus, there is no need to use the function dc_adm_complete() for SPPs and MHPs.

The function dc_adm_complete() cannot be used from UAP that handles offline
work.

2.4.3 Detecting the user server status
The status of a user server (e.g., whether the user server is active) can be obtained
through a UAP. OpenTP1 returns the user server status when the function
dc_adm_status() [CBLDCADM('STATUS ')] is called from the UAP.

Figures 2-47 to 2-49 show the transition of user server status. The status of the servers
shown in the figures is returned from OpenTP1.

2. Basic OpenTP1 Facilities (TP1/Server Base, TP1/LiNK)

166

Figure 2-47: Transition of user server status (SUP)

2. Basic OpenTP1 Facilities (TP1/Server Base, TP1/LiNK)

167

Figure 2-48: Transition of user server status (SPP, MHP)

2. Basic OpenTP1 Facilities (TP1/Server Base, TP1/LiNK)

168

Figure 2-49: Transition of user server status (server that receives requests from
socket (SPP))

2. Basic OpenTP1 Facilities (TP1/Server Base, TP1/LiNK)

169

2.5 Message log output

2.5.1 Outputting message log from application programs
User-selected information can be output as a message log from OpenTP1 when the
function dc_logprint() [CBLDCLOG('PRINT ')] is called from the UAP. The
message log is output to the message log file. To display the contents of the message
log file, execute the logcat command to output the contents to the standard output.

The message log can also be output to the standard output in real time when it is output
to the message log file. Whether to output the message log to the standard output in
real time can be specified in the log service definition.

The figure below shows message log output from a UAP.

Figure 2-50: Outline of message log output from UAP

(1) Contents of output message logs
Table 2-2 explains the contents of message log information to be output to the message
log file. The request source program ID, message ID, and message log text are the
items to be specified from the UAP. The information shown in Table 2-2 and OpenTP1
control codes are output to the message log file.

2. Basic OpenTP1 Facilities (TP1/Server Base, TP1/LiNK)

170

Table 2-2: Contents of message logs output to message log file

Item
number

Item Output length Explanation

-- Line
header

Message log
serial numbers

7 single-byte
characters

Serial numbers of all message logs. If a
message log is missing due to an error, the
message log is identified because the serial
numbers do not include the corresponding
message log serial number.

Process ID 5 single-byte
characters

ID of the process that specified message log
output.

Message log
serial number
for each process

7-digit
single-byte
number

Message log serial number for each process
that requested output.

(1) OpenTP1 ID 2 single-byte
alphanumeric
characters

OpenTP1 system ID

(2) Date and time 19-digit integer Output request time of the message log. The
message log is output in the year/month/date
hour:minute:second format.

(3) Request source node name 8 single-byte
alphanumeric
characters

Name of the node having the UAP that
requested message log output.
The first 8 characters of the node name are
output.

(4) Request source program ID 3 single-byte
alphanumeric
characters

The first character is fixed as *. Two characters
specified as the request source program ID in
the UAP are set following *.

2. Basic OpenTP1 Facilities (TP1/Server Base, TP1/LiNK)

171

(2) Output format of message logs
The following figure shows the display format of message log data output from a UAP
by the function dc_logprint() and viewed in the standard output using the logcat
command. The command options are omitted in this example. For details on the
logcat command, see the manual OpenTP1 Operation. The circled numbers in the
figure correspond to the numbers in Table 2-2.

Figure 2-51: Output format of message logs

(5) Message ID 11 single-byte
alphanumeric
characters

ID given to each message log by a UAP when
the UAP requested message log output. The
message ID format is as follows:
KFCAn1n2n3n4n5-X
KFCA:

Fixed part
n1n2n3n4n5:

Serial number specified in the UAP. Serial
numbers 05000 to 06999 are assigned to
message logs output by the UAP.

X:
Uppercase letter which indicates the type
of the message log
E: Error message log
I: Informational message log
W: Warning message log
R: Response request message log

(6) Message log text Variable length up
to 222 characters

Character string in shift JIS code specified by
the UAP.

Item
number

Item Output length Explanation

2. Basic OpenTP1 Facilities (TP1/Server Base, TP1/LiNK)

172

(3) Notes on passing messages to NETM
Message logs issued by UAPs can be output to the operation support terminal of the
integrated network management system (NETM) in the same manner as for OpenTP1
message logs. The contents of a message log output to the NETM include the
following information:

• Item in the line header (specified in the log service definition)

• Message ID

• Message text

The display color of a message log to be output to the operation support terminal can
be specified in the UAP.

Note the following points when outputting a message log output by a UAP to the
NETM:

• The message log to be output to the NETM must be 160 bytes or less. If the
message log exceeds 160 bytes, the NETM divides the message when passing it
to VOS3. Consequently, another message might be inserted between lines of one
message upon output. Also, if the message log exceeds 256 bytes, the OpenTP1
log service truncates the excess bytes.

• Do not include return character \n in the message text to be output to the NETM.
If the message text includes \n, the NETM divides the message at \n when
passing the message to VOS3. Consequently, another message might be inserted
between lines of one message upon output.

NETM: Integrated Network Management System

2. Basic OpenTP1 Facilities (TP1/Server Base, TP1/LiNK)

173

2.6 Audit log output

An audit log is a file containing historical information about the operations performed
on OpenTP1 programs by system developers, operators, and users, together with the
program behavior triggered by those operations.

In OpenTP1, an entry is output to the audit log when an operation is executed on a
UAP, or when internal processing takes place in a UAP. To acquire user-specified audit
log data, call the function dc_log_audit_print() from the UAP.

The figure below shows the flow of collecting an audit log from UAPs.

Figure 2-52: Outline of audit logging from UAPs

The table below lists the items entered in an audit log file and describes their content.
The items that can be specified from the UAP are the message ID, source component,
event type, event result, action information, and comment.

2. Basic OpenTP1 Facilities (TP1/Server Base, TP1/LiNK)

174

Table 2-3: Items output to audit log file

Specified by Item Output length
(max. bytes)

Description

Items specifiable from a
UAP

Message ID 11 The ID of the audit log entry

Source component 3 The name of the component in which
the event occurred.
The source component is output in
the format *AA, where AA is the value
specified by the function
dc_log_audit_print().

Event type 32 The event category

Event result 10 The result of the event

Action information 32 The action initiated on the object by
the subject who caused the event
(Refer/Add/Update/Delete etc.)

Comment 1024 A comment describing the nature of
the event

Items specified
automatically by
OpenTP1

Header information 12 Header information in the audit log

Sequence number 7 The sequence number of the entry

Date and time 29 The date and time when the entry was
logged

Source program 32 The name of the programin which the
event occurred

Source process ID 10 The ID of the process in which the
event occurred

Source location 255 Information identifying the host
where the event occurred

Subject ID information 256 Information identifying the user who
caused the event

Object information 256 The service name
Output only when an entry is logged
from within a service function; not
output otherwise.

Object location
information

64 The user server name

2. Basic OpenTP1 Facilities (TP1/Server Base, TP1/LiNK)

175

Request source host 255 Information identifying the host that
sent the request, when the event
involves the linking of multiple
programs
Not output if there is no information
about the request source host.

Location ID information 64 The path specified in the DCDIR
environment variable

Specified by Item Output length
(max. bytes)

Description

2. Basic OpenTP1 Facilities (TP1/Server Base, TP1/LiNK)

176

2.7 User journal acquisition

Any information from UAPs can be output to system journal files as user journals
(UJs). A user journal can be acquired by using the function dc_jnl_ujput()
[CBLDCJNL('UJPUT ')].

A user journal acquisition facility can be used only with TP1/Server Base. No user
journal can be acquired by a UAP with TP1/LiNK.

Units in which user journals are acquired by using the function dc_jnl_ujput() are
called UJ records. When the function dc_jnl_ujput() is called once, one UJ record
is acquired.

You can acquire a UJ record either outside or inside the range of a transaction. A UJ
record that is acquired outside the range of a transaction is called a UJ from outside the
transaction. A UJ record that is acquired inside the range of a transaction is called a
UJ from inside the transaction. A UJ record that is outside the transaction is output to
the system journal file when the journal buffer becomes full or when a transaction of
another application terminates normally (when the transaction processing is
committed).

To acquire the UJ record using an application that does not generate transactions, call
the function dc_jnl_ujput() in which DCJNL_FLUSH is set for flags at the
appropriate timing.

The figure below shows acquisition of user journals.

2. Basic OpenTP1 Facilities (TP1/Server Base, TP1/LiNK)

177

Figure 2-53: Acquiring user journals

If an error occurs in the transaction that called the function dc_jnl_ujput(), user
journal acquisition processing cannot be invalidated by executing rollback processing.
Even if the UAP process that called this function is recovered partially, the UJ record
is output to the system journal file.

2. Basic OpenTP1 Facilities (TP1/Server Base, TP1/LiNK)

178

2.8 Journal data editing

A file to which the execution result of the jnlrput command is redirected can be
edited from a UAP by using a function. Only an API in COBOL language can support
journal data editing. There is no API in C language for this facility.

To call the function from a UAP:

1. Open the jnlrput output file with CBLDCJUP ('OPENRPT').

2. Enter journal data with CBLDCJUP ('RDGETRPT'). Enter journal data one for
each journal data type. Call CBLDCJUP ('RDGETRPT') repeatedly until required
journal data is entered completely.

3. Edit data in UAP processing.

4. Close the jnlrput output result file with CBLDCJUP ('CLOSERPT').

Only the UAP that handles offline work can access the output file of the jnlrput
command. Other UAPs are not permitted to access the jnlrput output file.

The journal data editing facility can be used only with TP1/Server Base. APIs for
journal data editing cannot be used with TP1/LiNK.

The figure below shows journal data editing.

2. Basic OpenTP1 Facilities (TP1/Server Base, TP1/LiNK)

179

Figure 2-54: Journal data editing

2. Basic OpenTP1 Facilities (TP1/Server Base, TP1/LiNK)

180

2.9 Receiving message log notification

Reception-dedicated application programs created in the system can be notified of
OpenTP1 message logs. The application program, upon receiving a notification, can
notify other vendors' network management system of the OpenTP1 status.

To enable message log notification, assign Y to the log_notify_out operand in the
OpenTP1 log service definition.

(1) Application programs that can receive message log notification
Only application programs created for reception can receive message log notification.
OpenTP1 UAPs (SUPs, SPPs, and MHPs) cannot receive a message log notification.

When receiving a notification, the application program uses OpenTP1 functions.
When writing an application program, include the header file of the OpenTP1 log
service and link the OpenTP1 library.

For an application program to receive a notification, the environment variable DCDIR
that identifies the OpenTP1 home directory must be set. The value assigned to this
environment variable must be the same as for the OpenTP1 that will send the message
log notification.

If you need all message logs generated since OpenTP1 online operation started, the
application program to receive notifications must be started before the OpenTP1.

(2) Procedure for receiving a message log notification
The application program to receive notifications must declare the starting of reception
using the function dc_log_notify_open(). It receives message logs using the
function dc_log_notify_receive(). Only one message log can be received by
one run of the function dc_log_notify_receive(). To receive multiple message
logs, repeatedly invoke the function dc_log_notify_receive().

To terminate receiving message log notifications, invoke the function
dc_log_notify_close(). Even after invoking the function
dc_log_notify_close(), you can restart receiving message log notifications by
invoking the function dc_log_notify_open().

Even after the OpenTP1 terminates, the notification reception application program
continues to wait until the function dc_log_notify_close() is invoked. To notify
a waiting application program of reception completion, send data from another
application program using the function dc_log_notify_send(). The application
program for reception completion notification cannot invoke the function
dc_log_notify_open() before invoking the function dc_log_notify_send().

The figure below shows the reception of a message log notification.

2. Basic OpenTP1 Facilities (TP1/Server Base, TP1/LiNK)

181

Figure 2-55: Reception of message log notification

(3) Notes on receiving message log notifications
Notes on receiving message log notifications are given below.

• The functions dc_log_notify_open(), dc_log_notify_receive(),
dc_log_notify_close(), and dc_log_notify_send() cannot be executed
from within an interrupt routine.

• Message log notifications may or may not be received from the OpenTP1
depending on the time the function dc_log_notify_receive() is invoked.
The following message logs cannot be received:

1. Message logs output by the OpenTP1 when the application program is
inactive, before the application program invokes the function
dc_log_notify_open(), or after the application program invokes the
function dc_log_notify_close()

2. Message logs that come after the message log receive buffer has run short of
space because the function dc_log_notify_receive() was not invoked
when a previous message log was reported by the OpenTP1

2. Basic OpenTP1 Facilities (TP1/Server Base, TP1/LiNK)

182

2.10 Client/server mode communication using OSI TP

TCP/IP and OSI TP can be used as communication protocols for OpenTP1 client/
server mode communication. This section outlines communication using OSI TP as
the communication protocol. This communication requires TP1/NET/Library, TP1/
NET/OSI-TP-Extended, and products for managing communication under OSI TP. In
addition, an OpenTP1 system service (XATMI communication service) is necessary.

Client/server mode communication using OSI TP as the communication protocol is
possible only when the basic facility of the OpenTP1 is the TP1/Server Base. If the
TP1/LiNK is used, OSI TP communication is impossible.

The figure below shows the concept of client/server mode communication using OSI
TP.

Figure 2-56: Concept of client/server mode communication using OSI TP

2. Basic OpenTP1 Facilities (TP1/Server Base, TP1/LiNK)

183

2.10.1 Application programs used for OSI TP communication
OpenTP1 UAPs use the XATMI interface for communication with remote systems.
SUPs and SPPs are OpenTP1 UAPs that can be used for client/server mode
communication using OSI TP. Other OpenTP1 UAPs (MHPs) cannot be used.

UAPs need not be aware of the protocol for internode communication.

(1) Relationship with transaction processing
An OpenTP1 system can extend transaction processing to a remote OpenTP1 system.
When an OpenTP1 system is communicating with a non-OpenTP1 system, it can
extend transaction processing to the remote system using OSI TP.

2.10.2 SPPs for a communication event
For client/server mode communication using OSI TP, it is necessary to create an SPP
that obtains information about the establishment and release of associations. This SPP
is referred to as an SPP for a communication event. Once you create a SPP for a
communication event, you can receive a communication event notifying you of
association release due to an error. By receiving this communication event, you can
know when to re-establish the association. In addition, SPP for a communication event
can obtain the attribute and status of the association from detailed information
contained in the communication event it has received.

When an association is established or released, the XATMI communication service
starts the SPP for a communication event by requesting server with a nonresponse
RPC. Communication events are reported regardless of whether the local system is the
initiating or recipient system.

For details on information received by the SPP for a communication event, see the
applicable OpenTP1 Programming Reference manual.

The figure below outlines the SPP for a communication event.

2. Basic OpenTP1 Facilities (TP1/Server Base, TP1/LiNK)

184

Figure 2-57: Outline of SPP for a communication event

(1) System definitions related to SPP for a communication event
Before a SPP for a communication event can receive communication events, its service
group name and service name must be specified in the XATMI communication service
definition. Communication events that can be received by the SPP vary depending on
the operand to which the service group name and service name are assigned as follows:

xat_aso_con_event_svcname operand:

Communication events reporting association establishment

xat_aso_discon_event_svcname operand:

Communication events reporting normal association release

xat_aso_failure_event_svcname operand:

Communication events reporting abnormal association release

If you assign the same service group name and service name to multiple operands, the
SPP for a communication event can receive multiple types of communication events.

Assign betran to the server_type operand in the user service definition for the SPP
for a communication event.

(2) Association establishment for SPP for a communication event
The SPP for a communication event can invoke a function to establish an association.
The function dc_xat_connect() [CBLDCXAT('CONNECT')] is used for this

2. Basic OpenTP1 Facilities (TP1/Server Base, TP1/LiNK)

185

purpose. When this function returns, the SPP for a communication event can receive
information about the fact that an association has been normally established.

The function dc_xat_connect() can establish an association only if the local
system is the initiating side. In addition, since the function return is not synchronized
with the association establishment, the service function that has invoked the function
dc_xat_connect() cannot receive the communication event that reports the
association establishment.

(3) Conditions for reporting association status
Association establishment is reported in the following cases:

• Association establishment at the time of OpenTP1 system start

• Association establishment caused by nettactcn command execution

• Association establishment requested by SPP for a communication event

• Association establishment initiated by remote system

Association release is reported in the following cases:

• Forced association release caused by nettactcn command execution

• Association release caused by error in lower layer

• Association release caused by fault in TP1/NET/OSI-TP-Extended

• Association release caused by XATMI communication service failure

• Failure in association release

• Normal association release initiated by remote system

• Forced association release initiated by remote system

2.10.3 Errors encountered during OSI TP communication
When an error occurs during client/server mode communication using OSI TP, the
XATMI interface function that has requested the service returns with an error. For
details on the values that may be returned, see the notes on the pertinent XATMI
interface function in the applicable OpenTP1 Programming Reference manual.

When a communication protocol error occurs, take action according to the
troubleshooting procedure in the manual OpenTP1 Protocol TP1/NET/
OSI-TP-Extended.

2. Basic OpenTP1 Facilities (TP1/Server Base, TP1/LiNK)

186

2.11 Acquiring performance verification traces

Trace information is acquired for all main events that occur in each service running on
OpenTP1. This process is called a performance verification trace (prf trace). A
performance verification trace is made up of trace information intended for enhancing
the efficiency of performance verifications and troubleshooting. A performance
verification trace has the following features:

• You can acquire a trace even if the information extends over nodes or processes.

• You can acquire traces in units of internal events instead of units of APIs. This
enables you to determine which area of processing is hindering performance.

TP1/Extension 1 must be installed before you can use this facility. Note that operation
will be unpredictable if you run the facility while TP1/Extension 1 is not installed.

To acquire a user-specific performance verification trace from a UAP, call the function
dc_prf_utrace_put() [CBLDCPRF('PRFPUT ')].

To find out the acquired sequential trace number of the latest performance verification
trace within the process, call the function dc_prf_get_trace_num()
[CBLDCPRF('PRFGETN ')]. The acquired sequential trace number of the latest
performance verification trace within the process is reported to the call source of the
function dc_prf_get_trace_num().

2. Basic OpenTP1 Facilities (TP1/Server Base, TP1/LiNK)

187

2.12 Real-time statistical information acquisition

The execution time and the execution count in an arbitrary section in the UAP can be
acquired as real-time statistical information. Note that real-time statistical information
for arbitrary sections cannot be acquired if the target UAP performs offline processing.

To acquire real-time statistical information in an arbitrary section, call the function
dc_rts_utrace_put() [CBLDCRTS('RTSPUT ')] from the UAP.

Specify the item to be acquired in event_id and the action related to acquisition in
flags. The table below lists the actions that can be specified with flags.

Table 2-4: Specifying the flags argument to the function dc_rts_utrace_put()

The execution count and the execution time acquired by the function
dc_rts_utrace_put() are edited and output as real-time statistical information for
the item ID assigned to event_id.

The figure below provides an example of acquiring real-time statistical information for
arbitrary sections.

flags value Acquisition-related action

DCRTS_START Start execution time measurement.

DCRTS_END Acquire the execution time and end measurement.

DCNOFLAGS Acquire only the execution count.

2. Basic OpenTP1 Facilities (TP1/Server Base, TP1/LiNK)

188

Figure 2-58: Example of acquiring real-time statistical information in arbitrary
sections

1. Start execution time measurement for item ID 1.

2. Start execution time measurement for item ID 2.

3. End execution time measurement for item ID 1 and acquire statistical information
(the execution time and the execution count) in the RTS service shared memory
area.

4. End execution time measurement for item ID 2 and acquire statistical information
(the execution time and the execution count) in the RTS service shared memory
area.

189

Chapter

3. Facilities Provided by TP1/
Message Control

This chapter explains the facilities which are available to application programs that use
the message exchange facility (TP1/Message Control).

The facilities are explained using C-language function names. For each function, the
name of the equivalent COBOL-language API function is indicated in brackets []
when the function appears first in this chapter. After that, only the C-language function
name is written.

This chapter contains the following sections:

3.1 MCF communication service operations
3.2 Connection establishment and release
3.3 Application-related operations
3.4 Shutdown and release of logical terminals
3.5 Communication protocol products and functions available in operations
3.6 Message exchange processing
3.7 MCF transaction control
3.8 MCF extended facilities
3.9 User exit routines
3.10 MCF events
3.11 MCF processes used by application programs

3. Facilities Provided by TP1/Message Control

190

3.1 MCF communication service operations

This section explains MCF communication service operations. For details on MCF
communication service operations that use operation commands, see the manual
OpenTP1 Operation.

(1) Displaying the status of MCF communication services
The status of MCF communication services and the application start process can be
displayed using the function dc_mcf_tlscom() [CBLDCMCF('TLSCOM ')].
Information such as the MCF communication server name, the MCF communication
server process ID, and the MCF communication service status can be displayed.

(2) Functional differences between the API and the operation command (MCF
communication service operations)

The table below shows the functional differences between the function and the
operation command used for MCF communication service operations.

Table 3-1: Functional differences between the function and the operation
command (MCF communication service operations)

Function name Operation
command name

Functional differences

dc_mcf_tlscom mcftlscom 1. Acquires the status of all MCF communication services.
Cannot acquire the status of specific MCF communication
services only.

2. Cannot acquire MCF communication service process IDs.

3. Facilities Provided by TP1/Message Control

191

3.2 Connection establishment and release

To use TP1/Messaging Control to exchange messages with the mainframe or a
workstation, a logical communication path (connection) is established between the
local system and the remote system.

This section explains how to issue a function from the UAP to establish or release a
connection. For details on using operation commands to establish or release a
connection, see the manual OpenTP1 Operation.

3.2.1 Establishing or releasing a connection by issuing a function
from the UAP

The function dc_mcf_tactcn() [CBLDCMCF('TACTCN ')] is used to establish a
connection, and the function dc_mcf_tdctcn() [CBLDCMCF('TDCTCN ')] is used
to release a connection. Furthermore, the function dc_mcf_tlscn()
[CBLDCMCF('TLSCN ')] can be used to acquire the connection status.

In TP1/NET/UDP, connection management functions cannot be used.

(1) Establishing a connection
Issuing the function dc_mcf_tactcn() requests the MCF communication process to
establish a connection with the remote system.

Depending on the protocol used, an MCF event is reported to the UAP when a
connection to the remote system is established or when connection establishment fails.
The figure below shows the flow for establishing a connection, using an example in
which the function dc_mcf_tactcn() is used on TP1/NET/TCP/IP.

3. Facilities Provided by TP1/Message Control

192

Figure 3-1: Example of establishing a connection using the function
dc_mcf_tactcn()

(2) Releasing a connection
Issuing the function dc_mcf_tdctcn() requests the MCF communication process to
release the connection with the remote system.

3. Facilities Provided by TP1/Message Control

193

Depending on the protocol used, an MCF event is reported to the UAP when the
connection is released. The figure below shows the flow for releasing a connection,
using an example in which the function dc_mcf_tdctcn() is used on TP1/NET/
TCP/IP.

Figure 3-2: Example of releasing a connection using the function
dc_mcf_tdctcn()

(3) Functional differences between APIs and operation commands (connection
establishment and release)

The table below shows the functional differences between the functions and the
operation commands used for establishing or releasing a connection.

Table 3-2: Functional differences between functions and operation commands
(connection establishment and release)

Function name Operation
command

Functional differences

dc_mcf_tactcn mcftactcn 1. Requests establishment of a single connection. Multiple
or batch specification of connections is not allowed.

2. A request to establish a connection group is not allowed.
3. Subconnections cannot be specified.
4. A connected XP service cannot be specified.

dc_mcf_tdctcn mcftdctcn 1. Requests release of a single connection. Multiple or batch
specification of connections is not allowed.

2. A request to release a connection group is not allowed.
3. Subconnections cannot be specified.

3. Facilities Provided by TP1/Message Control

194

3.2.2 Coding examples for re-establishing or forcibly releasing a
connection

This subsection provides coding examples for re-establishing or forcibly releasing a
connection.

(1) Coding example for re-establishing a connection
The figure and coding example below show an example of automatically
re-establishing a connection after CERREVT (connection error) is reported.

Figure 3-3: UAP example for automatically re-establishing a connection

void cerrevt(){
 char rcvdata[256];
 DCLONG rcv_len;
 DCLONG rtime;
 int rtn;
 dcmcf_tactcnopt cnopt;
 dcmcf_tlscnopt cnopt2;
 DCLONG infcnt = 1;

dc_mcf_tlscn mcftlscn 1. Acquires the status of a single connection. Multiple or
batch specification of connections is not allowed.

2. The status of a connection group cannot be acquired.
3. Only the protocol type and connection status can be

acquired. Other additional information or
protocol-specific information cannot be acquired.

Function name Operation
command

Functional differences

3. Facilities Provided by TP1/Message Control

195

 dcmcf_cninf inf;

 rtn = dc_mcf_receive(DCMCFFRST, DCNOFLAGS, termnam, "",
 rcvdata,&rcv_len, sizeof(rcvdata),
 &rtime);
 if (DCMCFRTN_00000 == rtn){

 /* Processing during connection release */
 /* : */

 /* Connection re-establishment request */
 memset(&cnopt, 0, sizeof(cnopt));
 strcpy(cnopt.idnam, termnam);

 rtn = dc_mcf_tactcn(DCMCFLE, &cnopt, NULL, NULL,
 NULL, NULL);
 if (DCMCFRTN_00000 == rtn){
 /* Acceptance of connection */
 /* re-establishment request: Successful */

 while(1){
 /* Connection status acquisition */
 memset(&cnopt2, 0, sizeof(cnopt2);
 strcpy(cnopt2.idnam, termnam);
 memset(&inf, 0, sizeof(inf));

 rtn = dc_mcf_tlscn(DCMCFLE, &cnopt2, NULL,
 NULL, NULL, &infcnt,
 &inf, NULL);
 if (DCMCFRTN_00000 == rtn){
 if (DCMCF_CNST_ACT == inf.status){
 /* Connection established */
 break;
 }
 } else {
 /* Error processing */
 }
 sleep(1);
 }

 /* Processing following connection establishment */
 /* : */

 } else {
 /* Acceptance of connection */
 /* re-establishment request: Failed */
 /* Error processing */
 }

3. Facilities Provided by TP1/Message Control

196

 } else {
 /* Error processing */
 }

 return;
}

(2) Coding example for forcibly releasing a connection
The figure and coding example below show an example of forcibly releasing a
connection when the received message contains a format error.

Figure 3-4: UAP example for forcibly releasing a connection

void mhprecv(){
 char rcvdata[256];
 DCLONG rcv_len;
 DCLONG rtime;
 int rtn;
 int check;
 dcmcf_tdctcnopt cnopt;
 dcmcf_tlscnopt cnopt2;
 DCLONG infcnt = 1;
 dcmcf_cninf inf;

 rtn = dc_mcf_receive(DCMCFFRST, DCNOFLAGS, termnam, "",
 rcvdata, &rcv_len, sizeof(rcvdata),
 &rtime);
 if (DCMCFRTN_00000 == rtn){

3. Facilities Provided by TP1/Message Control

197

 /* Checking of the received message */
 /* : */

 if (0 == check){
 /* Checking result: Valid */
 /* Processing when the result is normal */
 } else {
 /* Checking result: Invalid */

 /* Request to forcibly release the connection */
 memset(&cnopt, 0, sizeof(cnopt));
 strcpy(cnopt.idnam, termnam);

 rtn = dc_mcf_tdctcn(DCMCFLE | DCMCFFRC, &cnopt,
 NULL, NULL, NULL, NULL);
 if (DCMCFRTN_00000 == rtn){
 /* Acceptance of forcible */
 /* connection release request: Successful */

 while(1){
 /* Connection status acquisition */
 memset(&cnopt2, 0, sizeof(cnopt2);
 strcpy(cnopt2.idnam, termnam);
 memset(&inf, 0, sizeof(inf));

 rtn = dc_mcf_tlscn(DCMCFLE, &cnopt2, NULL,
 NULL, NULL, &infcnt,
 &inf, NULL);
 if (DCMCFRTN_00000 == rtn){
 if (DCMCF_CNST_DCT == inf.status){
 /* Connection released */
 break;
 }
 } else {
 /* Error processing */
 }
 sleep(1);
 }

 /* Processing following connection release */
 /* : */

 } else {
 /* Acceptance of forcible */
 /* connection release request: Failed */
 /* Error processing */
 }

3. Facilities Provided by TP1/Message Control

198

 }

 } else {
 /* Error processing */
 }

 return;
}

3.2.3 Start and terminate acceptance of connection establishment
requests

The function dc_mcf_tonln() [CBLDCMCF('TONLN ')] is used to start
acceptance of connection establishment requests, and the function dc_mcf_tofln()
[CBLDCMCF('TOFLN ')] is used to terminate acceptance of connection
establishment requests. Furthermore, the function dc_mcf_tlsln()
[CBLDCMCF('TLSLN ')] can be used to acquire the establishment request
acceptance status.

For details, see the applicable OpenTP1 Protocol manual.

(1) Functional differences between APIs and operation commands (start and
terminate acceptance of connection establishment requests)

The table below shows the functional differences between the functions and the
operation commands used to start or terminate acceptance of connection establishment
requests.

Table 3-3: Functional differences between functions and operation commands
(start and terminate acceptance of connection establishment requests)

Function name Operation
command

Functional differences

dc_mcf_tlsln mcftlsln 1. The MCF communication process identifier of the target
MCF communication process must be specified.
Furthermore, the acceptance status of the server-type
connection establishment requests of all MCF
communication processes cannot be acquired.

2. Only the acceptance status of the server-type connection
establishment requests can be acquired. Other additional
information cannot be acquired.

dc_mcf_tofln mcftofln None

dc_mcf_tonln mcftonln None

3. Facilities Provided by TP1/Message Control

199

3.3 Application-related operations

This section explains application-related operations. For details on using operation
commands for application-related operations, see the manual OpenTP1 Operation.

(1) Deleting application timer start requests
The function dc_mcf_adltap() [CBLDCMCF('ADLTAP ')] is used to stop the start
of an application that requested a timer start. By issuing the function
dc_mcf_adltap(), you can delete the timer start request for the specified application
and stop the start of that application.

(2) Functional differences between the API and the operation command
(application-related operations)

The table below shows the functional differences between the function and the
operation command used for application-related operations.

Table 3-4: Functional differences between the function and operation command
(application-related operations)

Function name Operation
command

Functional differences

dc_mcf_adltap mcfadltap 1. Deletes a single application timer start request. Multiple
or batch specification of applications is not allowed.

2. The application start process identifier of the application
start process must be specified. Furthermore, the timer
start requests of all application start processes cannot be
deleted.

3. Facilities Provided by TP1/Message Control

200

3.4 Shutdown and release of logical terminals

This section explains how to issue functions from the UAP to shut down or release
logical terminals. For details on how to use operation commands to shut down or
release logical terminals, see the manual OpenTP1 Operation.

(1) Displaying the status of a logical terminal
The function dc_mcf_tlsle() [CBLDCMCF('TLSLE ')] can be used to display
the status of a logical terminal. Information such as the MCF identifier, the logical
terminal name, and the logical terminal status (regardless of whether the terminal is
shut down) can be displayed.

The logical terminal status is stored in the area specified inside the UAP.

(2) Shutting down or releasing a logical terminal
When a logical terminal is shut down, it cannot send messages requested by the UAP
to the remote system. In this state, if the UAP makes a message transmission request,
it is accepted normally, but the message to be transmitted remains in the output queue.
Furthermore, in this state, scheduling of messages received from the remote system is
done normally.

The function dc_mcf_tdctle() [CBLDCMCF('TDCTLE ')] is used to shut down a
logical terminal. While the logical terminal is shut down, requests to send send-only
messages remain in the output queue. Note that a logical terminal might also be shut
down by an error.

On the other hand, when a logical terminal is released, its functions can be used.

The function dc_mcf_tactle() [CBLDCMCF('TACTLE ')] is used to release a
logical terminal. When it is released, the messages remaining in the output queue are
sent. Note that the logical terminal cannot be released if no connection has been
established.

(3) Deleting the content of the output queue of a logical terminal
The function dc_mcf_tdlqle() [CBLDCMCF('TDLQLE ')] is used to discard the
messages remaining in the output queue after a connection is established.

Issuing the function dc_mcf_tdlqle() deletes all messages remaining in the output
queues of the disk queue and the memory queue, and starts an MCF event for each
deleted message. Before the function dc_mcf_tdlqle() can be issued, the logical
terminal must be shut down using the mcftdctle command or the function
dc_mcf_tdctle().

3. Facilities Provided by TP1/Message Control

201

(4) Functional differences between APIs and operation commands (shutdown
and release of logical terminals)

The table below shows the functional differences between functions and operation
commands used to shut down or release a logical terminal.

Table 3-5: Functional differences between functions and operation commands
(shutdown and release of logical terminals)

Function name Operation
command

Functional differences

dc_mcf_tactle mcftactle 1. Requests the release of a single logical terminal. Multiple
or batch specification of logical terminals is not allowed.

2. Releases both the logical terminal and its queue.
Specification of only one or the other is not allowed.

dc_mcf_tdctle mcftdctle 1. Requests the shutdown of a single logical terminal.
Multiple or batch specification of logical terminals is not
allowed.

2. Shuts down both the logical terminal and its queue.
Specification of only one or the other is not allowed.

dc_mcf_tdlqle mcftdlqle 1. Requests the deletion of the output queue of a single
logical terminal. Multiple or batch specification of logical
terminals is not allowed.

2. Deletes both the disk queue and the memory queue.
Specification of only one or the other is not allowed.

3. If the MCF event (ERREVTA) that reports discarding of an
unsent message is defined in the MCF application
definition, ERREVTA is reported. The reporting cannot be
suppressed.

dc_mcf_tlsle mcftlsle 1. Acquires the status of a single logical terminal. Multiple
or batch specification of applications is not allowed.

2. Only the status of the logical terminal can be acquired.
Other additional information cannot be acquired.

3. Facilities Provided by TP1/Message Control

202

3.5 Communication protocol products and functions available in
operations

This section explains which functions are available in each of the operations used by
OpenTP1-provided products conforming to different communication protocols. Here,
operations refers to the following:

• MCF communication service operations

• Connection establishment and release

• Application-related operations

• Shutdown and release of logical terminals

The following tables show which functions are available in each of the operations used
by OpenTP1-provided products conforming to different communication protocols.

Table 3-6: Communication protocol products and functions available in
operations (1/3)

Function name Communication protocol product

TP1/NET/HDLC TP1/NET/HSC TP1/NET/NCSB TP1/NET/
OSAS-NIF

dc_mcf_adltap Y Y Y Y

dc_mcf_tactcn Y Y Y Y

dc_mcf_tactle Y Y Y Y

dc_mcf_tdctcn Y Y Y Y

dc_mcf_tdctle Y Y Y Y

dc_mcf_tdlqle Y Y Y Y

dc_mcf_tlscn Y Y Y Y

dc_mcf_tlscom Y Y Y Y

dc_mcf_tlsle Y Y Y Y

dc_mcf_tlsln N N N N

dc_mcf_tofln N N N N

dc_mcf_tonln N N N N

3. Facilities Provided by TP1/Message Control

203

Legend:

Y: Can be used.

N: Cannot be used.

Table 3-7: Communication protocol products and functions available in
operations (2/3)

Legend:

Y: Can be used.

N: Cannot be used.

Table 3-8: Communication protocol products and functions available in
operations (3/3)

Function name Communication protocol product

TP1/NET/OSI-TP TP1/NET/SLU -
TypeP2

TP1/NET/TCP/IP TP1/NET/User
Agent

dc_mcf_adltap Y Y Y Y

dc_mcf_tactcn Y Y Y Y

dc_mcf_tactle N Y Y Y

dc_mcf_tdctcn Y Y Y Y

dc_mcf_tdctle N Y Y Y

dc_mcf_tdlqle N Y Y Y

dc_mcf_tlscn Y Y Y Y

dc_mcf_tlscom Y Y Y Y

dc_mcf_tlsle N Y Y Y

dc_mcf_tlsln N N Y N

dc_mcf_tofln N N Y N

dc_mcf_tonln N N Y N

Function name Communication protocol product

TP1/NET/UDP TP1/NET/X25 TP1/NET/
X25-Extended

TP1/NET/XMAP3

dc_mcf_adltap Y Y Y Y

3. Facilities Provided by TP1/Message Control

204

Legend:

Y: Can be used.

N: Cannot be used.

dc_mcf_tactcn N Y Y Y

dc_mcf_tactle Y Y Y Y

dc_mcf_tdctcn N Y Y Y

dc_mcf_tdctle Y Y Y Y

dc_mcf_tdlqle Y Y Y Y

dc_mcf_tlscn N Y Y Y

dc_mcf_tlscom Y Y Y Y

dc_mcf_tlsle Y Y Y Y

dc_mcf_tlsln N N N N

dc_mcf_tofln N N N N

dc_mcf_tonln N N N N

Function name Communication protocol product

TP1/NET/UDP TP1/NET/X25 TP1/NET/
X25-Extended

TP1/NET/XMAP3

3. Facilities Provided by TP1/Message Control

205

3.6 Message exchange processing

The installation of TP1/Message Control in a system furnished with the basic
OpenTP1 facilities (TP1/Server Base) enables message exchange mode
communication with mainframes and workstations through wide area networks
(WANs), TCP/IP, and conventional networks.

MHPs are used for communication based on messages. SPPs can also be used for some
message processing.

Before the message exchange facility can be available, TP1/Message Control must be
installed in the system and the basic OpenTP1 facilities must be provided by TP1/
Server Base. TP1/Messaging is required when you create MHPs under TP1/LiNK.

The figure below shows message exchange mode communication.

3. Facilities Provided by TP1/Message Control

206

Figure 3-5: Outline of message exchange mode communication

User exit routines can be created so that UAP message processing will cover a wide
variety of purposes. They can be written to meet particular requirements for jobs and
environments. For details on user exit routines, see 3.9 User exit routines.

3.6.1 Message communication modes
(1) Message communication modes available with MHPs

Message communication modes which can be used with MHPs are shown below.
Available message modes vary depending on the communication protocol.

• Inquiry-response mode

A message is received with the function dc_mcf_receive()

3. Facilities Provided by TP1/Message Control

207

[CBLDCMCF('RECEIVE ')] from the own system, and a response message is
returned with the function dc_mcf_reply() [CBLDCMCF('REPLY ')].

• Noninquiry-response mode (receive-only mode)

A message is received with the function dc_mcf_receive() from the own
system, but no response message is returned.

• Continuous-inquiry-response mode

This mode is provided to continue the inquiry-response mode. A message is
received with the function dc_mcf_receive() from the own system, a response
message is returned with the function dc_mcf_reply(), then response
processing for inquiries is continued. Use the function dc_mcf_contend()
[CBLDCMCF('CONTEND ')] to terminate the continuous-inquiry-response mode.

The figure below shows the message communication modes.

Figure 3-6: Message communication modes

3. Facilities Provided by TP1/Message Control

208

(2) Communication modes of MHPs and message communication facilities
available to SPPs

The message communication facilities which are available to MHPs and SPPs are as
follows:

• Branch send mode

A message can be sent with the function dc_mcf_send()[CBLDCMCF('SEND
')] from the another system.

• Synchronous send mode, synchronous receive mode, synchronous exchange
mode

After a message is sent to or received from the own system, the message can be
sent synchronously (dc_mcf_sendsync() [CBLDCMCF ('SENDSYNC')]),
received synchronously (dc_mcf_recvsync() [CBLDCMCF('RECVSYNC')]),
or exchanged synchronously (dc_mcf_sendrecv()
[CBLDCMCF('SENDRECV')]). The called function does not return until send
processing or receive processing is completed.

To use the function dc_mcf_send() with an SPP, the SPP processing must be
operating as a transaction.

(3) Message communication modes and application type
For an MHP using message exchange facilities, specify the type of application
according to the message communication mode to be used. Specify the type of
application for the type operand of the MCF application definition or the application
attribute definition (mcfaalcap). There are the following three types of application:

• Response type (ans): MHP in inquiry-response mode

• Nonresponse type (noans): MHP in noninquiry-response mode

• Continuous-inquiry-response type (cont): MHP in continuous-inquiry-response
mode

Specify noans for the mode in which a message, received with the function
dc_mcf_receive(), is sent to the logical terminal of the input source by using the
function dc_mcf_send().

For MHPs, specify the type of application according to the message handling mode.
This specification is not required for SPPs.

If the specified type of application conflicts with the message handling mode, a
message exchange function returns with an error or the MHP processing is rolled back.
The type conflicts with the mode in the following cases:

• A response type MHP terminated without using the function dc_mcf_reply().
Alternatively, the MHP terminated another response type MHP which has not
been activated with the function dc_mcf_execap() [CBLDCMCF('EXECAP

3. Facilities Provided by TP1/Message Control

209

')].

• A nonresponse type MHP used the function dc_mcf_reply().

The application type of the MCF event handling MHP is determined by the reported
MCF event. See 3.10 MCF events for details.

The table below shows the correspondence between the types of application and
message exchange functions.

Table 3-9: Correspondence between the types of application and message
exchange functions

Legend:

M: Must be used.

Y: Can be used.

N: Cannot be used.

Note
The type of the logical terminal depends on the protocol. See the applicable
OpenTP1 Protocol manual.

#1

The function dc_mcf_receive() cannot be used by SPPs.

#2

Can be called when TP1/NET/OSI-TP is used.

(4) Communication protocol products and functions available in communication
modes

The following tables indicate what functions are available in each of the

Message Mode Types
of

Applicat
ion

Functions for Message Processing

receive send reply send
recv

recv
sync

send
sync

tempput,
tempget
contend

Inquiry-response
mode

ans M Y M N N N N

Noninquiry-respo
nse mode
(receive-only
mode)

noans M#1 Y N N#2 N#2 N#2 N

Continuous-inquir
y-response mode

cont M Y M N N N Y

3. Facilities Provided by TP1/Message Control

210

communication modes used by OpenTP1-provided products conforming to different
communication protocols.

Table 3-10: Functions available in communication modes used by
communication protocol products (1/5)

Legend:

Y: Available with the communication protocol product

N: Unavailable

U: This communication mode is used with the communication protocol product
in a unique way.

--: This communication mode cannot be used with the communication protocol
product.

Function name Communication protocol product used and application type

TP1/NET/User Agent TP1/NET/OSI-TP TP1/NET/TCP/IP

noans
type

ans
type

cont
type

noans
type

ans
type

cont
type

noans
type

ans
type

cont
type

dc_mcf_commit Y N -- Y -- -- Y -- --

dc_mcf_receive# Y Y -- Y -- -- Y -- --

dc_mcf_execap Y Y -- N -- -- Y -- --

dc_mcf_reply# N Y -- N -- -- N -- --

dc_mcf_rollback Y Y -- Y -- -- Y -- --

dc_mcf_send# Y Y -- N -- -- Y -- --

dc_mcf_resend# Y Y -- N -- -- Y -- --

dc_mcf_sendrecv# Y Y -- Y -- -- Y -- --

dc_mcf_sendsync# N N -- Y -- -- Y -- --

dc_mcf_recvsync# U U -- Y -- -- N -- --

dc_mcf_contend N N -- N -- -- N -- --

dc_mcf_tempget N N -- N -- -- N -- --

dc_mcf_tempput N N -- N -- -- N -- --

3. Facilities Provided by TP1/Message Control

211

#

The method of using the function might vary depending on the communication
protocol product. For details, see the applicable OpenTP1 Protocol manual.

Table 3-11: Functions available in communication modes used by
communication protocol products (2/5)

Legend:

Y: Available with the communication protocol product

N: Unavailable

#

The method of using the function might vary depending on the communication
protocol product. For details, see the applicable OpenTP1 Protocol manual.

Function name Communication protocol product used and application type

TP1/NET/XMAP3 TP1/NET/HNA-560/20 TP1/NET/HNA-560/20
DTS

noans
type

ans
type

cont
type

noans
type

ans
type

cont
type

noans
type

ans
type

cont
type

dc_mcf_commit Y N N Y N N Y N N

dc_mcf_receive# Y Y Y Y Y Y Y Y Y

dc_mcf_execap Y Y Y Y Y Y Y Y Y

dc_mcf_reply# N Y Y N Y Y N Y Y

dc_mcf_rollback Y Y Y Y Y Y Y Y Y

dc_mcf_send# Y Y Y Y Y Y Y Y Y

dc_mcf_resend# Y Y Y Y Y Y Y Y Y

dc_mcf_sendrecv# N N N N N N N N N

dc_mcf_sendsync# N N N N N N N N N

dc_mcf_recvsync# N N N N N N N N N

dc_mcf_contend N N Y N N Y N N Y

dc_mcf_tempget N N Y N N Y N N Y

dc_mcf_tempput N N Y N N Y N N Y

3. Facilities Provided by TP1/Message Control

212

Table 3-12: Functions available in communication modes used by
communication protocol products (3/5)

Legend:

n typ: noans type

a typ: ans type

c typ: cont type

Y: Available with the communication protocol product

N: Unavailable

U: This communication mode is used with the communication protocol product
in a unique way.

--: This communication mode cannot be used with the communication protocol

Function name Communication protocol product used and application type

TP1/NET/
OSAS-NIF

TP1/NET/
HNA-NIF

TP1/NET/
HSC(1)

TP1/NET/
HSC(2)

n
typ

a
typ

c
typ

n
typ

a
typ

c
typ

n
typ

a
typ

c
typ

n
typ

a
typ

c
typ

dc_mcf_commit Y Y -- Y -- -- Y -- -- Y -- --

dc_mcf_receive# Y Y -- Y -- -- Y -- -- Y -- --

dc_mcf_execap Y Y -- Y -- -- Y -- -- N -- --

dc_mcf_reply# N Y -- N -- -- N -- -- N -- --

dc_mcf_rollback Y Y -- Y -- -- Y -- -- Y -- --

dc_mcf_send# Y Y -- Y -- -- Y -- -- Y -- --

dc_mcf_resend# Y Y -- Y -- -- Y -- -- Y -- --

dc_mcf_sendrecv# Y Y -- N -- -- N -- -- N -- --

dc_mcf_sendsync# N N -- N -- -- N -- -- Y -- --

dc_mcf_recvsync# U U -- N -- -- N -- -- Y -- --

dc_mcf_contend N N -- N -- -- N -- -- N -- --

dc_mcf_tempget N N -- N -- -- N -- -- N -- --

dc_mcf_tempput N N -- N -- -- N -- -- N -- --

3. Facilities Provided by TP1/Message Control

213

product.

#

The method of using the function might vary with the communication protocol
product. For details, see the applicable OpenTP1 Protocol manual.

Table 3-13: Functions available in communication modes used by
communication protocol products (4/5)

Legend:

Y: Available with the communication protocol product

N: Unavailable

--: This communication mode cannot be used with the communication protocol
product.

Function name Communication protocol product used and application type

TP1/NET/HDLC TP1/NET/X25 TP1/NET/
X25-Extended

noans
type

ans
type

cont
type

noans
type

ans
type

cont
type

noans
type

ans
type

cont
type

dc_mcf_commit Y -- -- Y -- -- Y -- --

dc_mcf_receive# Y -- -- Y -- -- Y -- --

dc_mcf_execap Y -- -- Y -- -- Y -- --

dc_mcf_reply# N -- -- N -- -- N -- --

dc_mcf_rollback Y -- -- Y -- -- Y -- --

dc_mcf_send# Y -- -- Y -- -- Y -- --

dc_mcf_resend# Y -- -- Y -- -- Y -- --

dc_mcf_sendrecv# N -- -- N -- -- N -- --

dc_mcf_sendsync# N -- -- N -- -- N -- --

dc_mcf_recvsync# N -- -- N -- -- N -- --

dc_mcf_contend N -- -- N -- -- N -- --

dc_mcf_tempget N -- -- N -- -- N -- --

dc_mcf_tempput N -- -- N -- -- N -- --

3. Facilities Provided by TP1/Message Control

214

#

The method of using the function might vary depending on the communication
protocol product. For details, see the applicable OpenTP1 Protocol manual.

Table 3-14: Functions available in communication modes used by
communication protocol products (5/5)

Legend:

n typ: noans type

a typ: ans type

c typ: cont type

Y: Available with the communication protocol product

N: Unavailable

Function name Communication protocol product used and application type

TP1/NET/SLU -
TypeP1

TP1/NET/SLU -
TypeP2

TP1/NET/NCSB TP1/NET/UDP

n
typ

a
typ

c
typ

n
typ

a
typ

c
typ

n
typ

a
typ

c
typ

n
typ

a
typ

c
typ

dc_mcf_commit Y Y -- Y -- -- Y -- -- Y -- --

dc_mcf_receive# Y Y -- Y -- -- Y -- -- Y -- --

dc_mcf_execap Y Y -- Y -- -- Y -- -- Y -- --

dc_mcf_reply# N Y -- N -- -- N -- -- N -- --

dc_mcf_rollback Y Y -- Y -- -- Y -- -- Y -- --

dc_mcf_send# Y N -- Y -- -- Y -- -- Y -- --

dc_mcf_resend# Y N -- Y -- -- Y -- -- Y -- --

dc_mcf_sendrecv# N N -- Y -- -- N -- -- N -- --

dc_mcf_sendsync# N N -- N -- -- N -- -- Y -- --

dc_mcf_recvsync# N N -- U -- -- N -- -- N -- --

dc_mcf_contend N N -- N -- -- N -- -- N -- --

dc_mcf_tempget N N -- N -- -- N -- -- N -- --

dc_mcf_tempput N N -- N -- -- N -- -- N -- --

3. Facilities Provided by TP1/Message Control

215

U: This communication mode is used with the communication protocol product
in a unique way.

--: This communication mode cannot be used with the communication protocol
product.

#

The method of using the function might vary depending on the communication
protocol product. For details, see the applicable OpenTP1 Protocol manual.

3.6.2 Message structure
This subsection explains the message structure.

(1) Logical messages and segments
A unit of data significant for inter-system communication is called a logical message.
A logical message consists of one or more segments. A segment is a unit of
information which can be processed by a single call to a library function from a UAP
process.

When a logical message consists of one segment, the message can be processed by a
single call to a function. When a logical message consists of multiple segments, the
message should be processed by calling the same number of functions as the segments.

(2) Segment structure
A segment consists of the header area used by the MCF and segment data. The length
of the header area determines buffer format 1 or buffer format 2. The user can decide
which format should be used. However, only buffer format 2 is available with TP1/
NET/XMAP3.

The length of the header area varies by the communication protocol product. For more
information, see the explanation of message exchange APIs in the OpenTP1 Protocol
manual.

The figure below shows the relationship between a logical message and segments.

3. Facilities Provided by TP1/Message Control

216

Figure 3-7: Relationship between logical message and segments

3.6.3 Receiving messages
When the MCF finishes receiving the last segment of a message from another system,
it passes the message to the MHP identified by the application name. The MHP calls
the function dc_mcf_receive() [CBLDCMCF('RECEIVE ')] to receive the message
and starts processing. This message reception is called asynchronous message
reception.

The function dc_mcf_receive() receives one segment of a message at one time.

If the message consists of one segment (single-segment message), the function
dc_mcf_receive() is called only once.

If the message consists of more than one segment, the function dc_mcf_receive()
is called as many times as the segments. The MHP receives the message, beginning
with the first segment and proceeding to intermediate segments. After receiving
intermediate segments, the MCF finally receives a return value indicating that there is
no more segment to be received. It then recognizes that it has received the entire
message, including the last segment.

User exit routines can be used to edit messages to be passed to the MHP and to change
the application name.

Application name:

An application name is expressed with alphanumeric characters comprising 1 to
8 bytes (from the beginning of the message to the byte followed by a space). If
there is no space up to the ninth byte or the application name begins with a space,
the specified application name is treated as invalid.

Application names can be edited by using the user exit routine that edits input
message.

3. Facilities Provided by TP1/Message Control

217

The figure below shows the receiving of a message.

Figure 3-8: Message receiving

3.6.4 Sending messages
After all processing of the segment sending UAP terminates (MHP termination or
normal termination of SPP transaction), OpenTP1 sends, as messages, all the segments
sent from the UAP at a time. Sending messages in this manner is called asynchronous
message send processing. Use the function dc_mcf_send() [CBLDCMCF('SEND
')] for send-only messages. Use the function dc_mcf_reply() [CBLDCMCF('REPLY
')] for response messages.

During asynchronous message send processing, if rollback processing is executed due
to the following after the function has sent segments, all the segment send functions
used from the UAP are invalidated:

• The UAP process terminates abnormally or message processing fails.

Before segments sent from the UAP are output, the user exit routine enables you to do
processing such as editing of serial numbers or output messages.

The figure below shows message send processing.

3. Facilities Provided by TP1/Message Control

218

Figure 3-9: Message send processing (asynchronous message sending)

3.6.5 Synchronous message processing
Use synchronous message processing to confirm the completion of the sending of
messages during MHP processing or to synchronize UAP message exchange
processing between systems. As for synchronous message exchange processing, send
or receive processing is requested, the processing is completed, then the function
called by the UAP returns.

(1) Types of synchronous message
The following functions are available for synchronous message exchange processing:

• Send function only for send processing

• Receive function only for receive processing

3. Facilities Provided by TP1/Message Control

219

• Exchange function to execute send and receive processing consecutively

Synchronous message send processing

Use the function dc_mcf_sendsync() [CBLDCMCF('SENDSYNC')] to execute
synchronous message send processing. When the UAP calls the function
dc_mcf_sendsync(), the MCF writes a message to the output buffer (the output
queue in memory), then sends the message to the own system. After the MCF confirms
that the sending of the message to the own system is completed, the function
dc_mcf_sendsync returns.

Synchronous message receive processing

When receiving a message from the own system, the MCF stores the message in the
input buffer. The MHP calls the function dc_mcf_recvsync()
[CBLDCMCF('RECVSYNC')] to receive the message.

If a message has been received from the own system, the message is passed to the
function dc_mcf_recvsync(). If a message has not been received from the own
system, the function dc_mcf_recvsync() continues waiting until a message is
received. As soon as a message is received from the own system, the message is passed
to the function dc_mcf_recvsync().

Synchronous message exchange processing

Send processing and receive processing for synchronous messages can be done by one
function. The MHP calls the function dc_mcf_sendrecv()
[CBLDCMCF('SENDRECV')] to request the MCF to send a message. The MCF writes a
message to the output queue, then sends the message to the own system. Even after
send processing is completed, the function dc_mcf_sendrecv() does not return and
proceeds to receive processing. The function dc_mcf_sendrecv() returns when
receive processing is completed.

(2) Time monitoring of synchronous message processing
Monitoring time can be set to prevent the UAP from waiting for a response infinitely
during synchronous message processing. Set the monitoring time for the argument
watchtime. If 0 is specified, the synchronous exchange monitoring time specified in
the UAP common definition of the MCF manager definitions is assumed to be
specified. If 0 is defined as the monitoring time in the UAP common definition, the
UAP waits for a response infinitely.

You can select whether to include the synchronous message processing time in the
expiry time in a transaction branch. Specify this value using
trn_expiration_time_suspend of the user service definition, user service
default definition, and transaction service definition. You cannot include synchronous
message processing time in a non-transactional MHP expiry time. For details on the
value to be assigned to trn_expiration_time_suspend and transaction time
monitoring, see the manual OpenTP1 System Definition.

3. Facilities Provided by TP1/Message Control

220

(3) Synchronous message processing and rollback
If the MHP is rolled back, the synchronous message is not discarded. However, the
message is discarded if multiple segments were sent by the function
dc_mcf_sendsync() or dc_mcf_sendrecv and the function return() was
called without the designation of the last segment (EMI).

The figure below shows synchronous message processing.

3. Facilities Provided by TP1/Message Control

221

Figure 3-10: Synchronous message processing

3. Facilities Provided by TP1/Message Control

222

3.6.6 Continuous-inquiry-response processing
Messages are transferred between a terminal and a UAP by continuing
inquiry-response processing. Continuous inquiry-response processing can be executed
by only MHPs for which continuous-inquiry-response type (cont) is specified as the
application type.

(1) Outline of continuous-inquiry-response processing
An MHP executing continuous-inquiry-response processing calls the function
dc_mcf_receive(), then receives a message from the terminal. After terminating
processing, the MHP returns a response with the function dc_mcf_reply(). To
switch to an MHP for continuous processing when a response is returned, specify the
application name of the new MHP in the function dc_mcf_reply(). Without the
application name specified, the previous MHP is started.

Also, the MHP, handling continuous-inquiry-response processing, can start an
application by using the function dc_mcf_execap(). Only immediate start is
permitted. In this case, only one MHP with cont specified can be started by executing
the function dc_mcf_execap(). The MHP that started the application with cont
specified cannot use the function dc_mcf_reply() because the continuous response
right has moved from the MHP. Also, the MHP cannot use the function
dc_mcf_contend().

The function dc_mcf_send() (a send-only message to a terminal) can be used even
during continuous-inquiry-response processing.

(2) Access to temporary-stored data
Temporary-stored data can be used during continuous inquiry-response processing.
The temporary-stored data is used as information for transferring processing to the
subsequent MHP to be started. Temporary-stored data can be used at a logical terminal.
Thus, continuous-inquiry-response processing can be carried out by using one MHP
shared by multiple logical terminals.

Allocate an update area and a recovery area as temporary-stored data areas in the
shared memory. For each MHP, specify the length of the temporary-stored data storage
area in the MCF application definition.

Temporary-stored data can be used only when the continuous-inquiry-response mode
is enabled. Temporary-stored data cannot be used in other message communication
modes.

(a) Receiving temporary-stored data
Call the function dc_mcf_tempget() [CBLDCMCF('TEMPGET')] to use
temporary-stored data from an MHP. The function dc_mcf_tempget() is executed
on the assumption that there is (00)16 of the length specified in tempsize of the MCF
application attribute definition in the following cases:

3. Facilities Provided by TP1/Message Control

223

• The temporary-stored data storage area is in initial state.

• There is no temporary-stored data.

If the receive area length specified in the function dc_mcf_tempget() is shorter than
the length of temporary-stored data, only the portion of temporary-stored data
equivalent to the specified length is received. The excess portion is truncated. If the
receive area length specified in the function dc_mcf_tempget() is larger than the
temporary-stored data length, only the temporary-stored data is stored in the receive
area.

(b) Updating temporary-stored data
To update temporary-stored data, use the function dc_mcf_tempput()
[CBLDCMCF('TEMPPUT')]. When the temporary-stored data, area for storing is
updated, the data itself is replaced. A value exceeding the value specified in the MCF
application definition cannot be set as the length of update area.

Call the function dc_mcf_tempget() before the function dc_mcf_tempput().
Otherwise, the dc_mcf_tempput() returns with an error.

(3) Terminating continuous-inquiry-response processing
Continuous-inquiry-response processing terminates when one of the events shown
below is executed. The temporary-stored data storage area which has been used is
deleted when continuous-inquiry-response processing terminates.

• The function dc_mcf_contend() [CBLDCMCF('CONTEND ')] is called from the
MHP.

• The logical terminal name is specified in the mcftendct command in order to
forcibly terminate continuous-inquiry-response processing.

The mcftendct command can also be called by using the function
dc_adm_call_command() from a UAP which is not involved in
continuous-inquiry-response processing.

• The UAP terminates abnormally.

The UAP terminates abnormally if the MHP that executed
continuous-inquiry-response processing does not use the function
dc_mcf_reply().

(4) Processing if an error event occurs due to UAP abnormal termination
If the UAP terminates abnormally during continuous-inquiry-response processing,
ERREVT3 is reported. The continuous-inquiry-response processing can be continued
by the following:

• Use the MCF event handling MHP corresponding to this ERREVT3 in order to use
the function dc_mcf_reply() in which the name of the next application to be
started is specified. The continuous-inquiry-response processing terminates if the

3. Facilities Provided by TP1/Message Control

224

function dc_mcf_reply() is not called.

The figure below shows continuous-inquiry-response processing.

3. Facilities Provided by TP1/Message Control

225

Figure 3-11: Outline of continuous-inquiry-response processing

3. Facilities Provided by TP1/Message Control

226

3.6.7 Resending messages
Sent messages can be resent using the function dc_mcf_resend()
[CBLDCMCF('RESEND ')]. A resent message is treated as a new message separate
from the message that was sent in the past. Messages are resent in the following cases:

• When a sent message is printed, characters are unclear and damaged printed.

• Multiple copies of a document are necessary.

• The screen showing a message is cleared.

(1) Conditions for resending messages
The following messages can be resent:

• Sent messages that have been assigned output sequence numbers

• Sent messages that remain in the output queue

• Messages sent to terminals

If the message to be resent is not found in the message queue (disk queue), the function
dc_mcf_resend() returns with an error.

(2) Specification for messages to be resent
Messages to be resent are identified using the following information which was
specified on the sent message:

• Output destination logical terminal name

The output destination logical terminal name determines the output queue which
contains the message to be selected.

• Message output sequence number

Output sequence numbers can be set in one of the following ways. When
resending messages, it is possible to give them new output sequence numbers:

1. Output sequence number of the message to be resent

2. Specification that, of all the sent messages, the message with the last output
sequence number is to be resent.

• Message type (general branch or priority branch)

When a message is resent, its message type can be newly specified.

(3) Relationship with network communication definition
Resending of a message requires the use of a work area with the size equal to the
maximum segment length specified for the -e option to the UAP common definition
(mcfmuap) included in the MCF manager definition. If the segment of the message
being resent is larger than this work area, the function dc_mcf_resend() returns

3. Facilities Provided by TP1/Message Control

227

with an error. Therefore, the value specified for the -e option to the UAP common
definition must be at least the maximum length of the message to be resent.

More than one message with the same sequence number may be present in the message
queue file, depending on the sequence number specification given in the -l option to
the UAP common definition included in the MCF manager definition. In this case,
which message is resent is unpredictable.

3. Facilities Provided by TP1/Message Control

228

3.7 MCF transaction control

OpenTP1 can treat processing of a message from the remote system as a transaction.

This section explains transaction control of message exchange application programs
(MHPs). For details on transaction control of client/server mode UAPs (SUPs and
SPPs), see 2.3 Transaction control.

3.7.1 MHP transaction control
An MHP always behaves as a transaction during a period from the MHP start (when
OpenTP1 receives a message) to the MHP termination. This means that OpenTP1
treats all MHP processing as transactions.#

MHP service functions cannot use a transaction control function (dc_trn_begin()
or other synchronization point acquisition function beginning with dc_trn). Also, if
a service request is called from an MHP to an SPP, the SPP cannot use the transaction
control function. When requesting a service from an MHP to an SPP, verify that the
transaction control function has not been called in the SPP.

#

When an MCF extended facility is used, MHP processing is not treated as a
transaction. Such an MHP is called a nontransaction attribute MHP. For details
on nontransaction attribute MHP, see 3.8.3 Nontransaction attribute MHP.

(1) Specification of transaction attribute
For MHPs, the user service definition must include the specification of
atomic_update=Y indicating that the MHP has the transaction attribute.

(2) MHP's synchronization point acquisition
During MHP processing, the synchronization point can be acquired as a commitment
in chained mode. To acquire the synchronization point, call the function
dc_mcf_commit() [CBLDCMCF('COMMIT ')]. When the function
dc_mcf_commit() returns, the subsequent MHP process becomes a global
transaction.

Suppose that a global transaction beginning with an MHP consists of more than one
transaction branch (the MHP calls the SPP with the function dc_rpc_call()).
Unless the processing result of each transaction branch brings about a commitment, no
commitment comes into effect. If the global transaction is not committed, all
transaction branches are rolled back.

Before a message is received, the synchronization point cannot be acquired using the
function dc_mcf_commit(). In addition, once the synchronization point is acquired
using the function dc_mcf_commit(), the MHP can no longer receive the message.

3. Facilities Provided by TP1/Message Control

229

Message processing for which synchronization point acquisition using the function
dc_mcf_commit() is performed is the activation of an asynchronous message and an
application. Processing for sending or receiving a synchronous message is not the
target of synchronization point acquisition.

The function dc_mcf_commit() can be used only from MHPs for which the
nonresponse type (noans type) is specified in the MCF application definition. If the
function is called from an MHP of another type, it returns with an error. UAPs other
than MHPs cannot call the function dc_mcf_commit().

(3) MHP rollback processing
(a) If MHP processing terminates abnormally:

If an MHP terminates abnormally or rolls back,#1 an error event is generated. The type
of the error event depends on whether the function dc_mcf_receive() has received
the first segment.

• ERREVT2#2: The MHP terminated abnormally before the function
dc_mcf_receive() received the first segment.

• ERREVT3: The MHP terminated abnormally after the function
dc_mcf_receive() received the first segment.

#1

Excludes cases in which r is specified for the recvmsg operand in the MCF
application definition (mcfaalcap -g) or in which DCMCFRTRY or DCMCFRRTN
is specified for action of the function dc_mcf_rollback().

#2

When a non-resident MHP cannot start for a reason such as those given below,
ERREVT2 is not reported.

• The corresponding load module does not exist.

• There is no service function corresponding to the entry point defined in the
RPC interface definition file.

In this case, the system shuts down the schedule of the input queue for the relevant
service group and leaves a receive message in the input queue.

(b) If an error occurs during MHP processing:
If MHP transaction processing ends up with an error, call the function
dc_mcf_rollback() [CBLDCMCF('ROLLBACK')] from the MHP in order to return
to the status before the message was received. If the MHP that received the message
was rolled back, OpenTP1 decides whether to reschedule the MHP according to the
argument specification in the function dc_mcf_rollback().

• If NORETURN (DCMCFNRTN for action) is specified:

3. Facilities Provided by TP1/Message Control

230

After the rollback, control does not return to the MHP. The MHP terminates
abnormally and ERREVT3 is reported.

• If RETURN (DCMCFRRTN for action) is specified:

If the rollback is successful, the function dc_mcf_rollback() returns.
Thereafter, the MHP can continue any processing. After the rollback, a new
separate transaction comes into effect.

• If RETRY (DCMCFRTRY for action) is specified:

When the function dc_mcf_rollback() does not return, the MHP terminates
the process. After the rollback, the MHP is rescheduled. Before the function
dc_mcf_rollback() can be used for setting this value, an application startup
process must be present on the node.

The figure below shows the relationship between message exchange processing and
transactions.

3. Facilities Provided by TP1/Message Control

231

Figure 3-12: Relationship between message exchange processing and
transactions

Explanation:

3. Facilities Provided by TP1/Message Control

232

1. When TP1/Message Control receives a message, processing started by the
MHP becomes a global transaction.

2. If an error occurs during MHP transaction processing, control is returned to
the MCF after rollback processing (partial recovery) is executed.

New transaction processing can be executed by using the function
dc_mcf_rollback() in which return is specified (DCMCFRRTN set in
action).

(4) If an MHP is committed when the message exchange function returns with an
error:

If MHP processing is terminated because the message exchange function returns with
an error, the transaction itself might be committed. If the resource manager (RM) has
been accessed (DAM, TAM) in the MHP processing, this access processing is
committed. To roll back the access processing, call the abort function or create
processing for using the function dc_mcf_rollback() after an error is returned.

(5) Using the transaction start function from an MHP
Even MHPs can use a transaction starting function (dc_trn_begin()) if the function
is outside the service function processing range (within the main function processing
range). The transaction start function and commitment functions can be called between
main functions (e.g., between the dc_rpc_open() and the dc_mcf_mainloop() or
between the dc_mcf_mainloop() and the dc_rpc_close()).

If the function dc_trn_begin() is called as an MHP main function, acquire a
synchronization point by using the function dc_trn_unchained_commit()
(commitment in unchained mode) as an MHP main function.

3. Facilities Provided by TP1/Message Control

233

3.8 MCF extended facilities

The following MCF facilities are also supported in addition to the message exchange
facility:

• Starting application programs

• MHP startup using command

• MHP with nontransaction attribute

• Time monitoring with the facility for user timer monitoring

3.8.1 Starting application programs
An MHP or SPP can be started from another MHP or an SPP. In the function
dc_mcf_execap() [CBLDCMCF('EXECAP ')] (for starting application programs),
specify the application name of the MHP or SPP to be started and the message segment
to be transferred.

(1) MCF processes used for starting application programs
When the application active facility (dc_mcf_execap()) is in use, an MCF process
separate from the message exchange functions (such as dc_mcf_receive() and
dc_mcf_send()) is used. The MCF process used for message exchanging is called
an MCF communication process, whereas an MCF process used by the function
dc_mcf_execap() is called an application startup process. Application startup
processes do not depend on the communication protocol.

(2) How to start application programs
Only MHPs and SPPs can be started with the function dc_mcf_execap(). MHPs can
be started by calling the function dc_mcf_execap().

(a) Ordinary starting of application programs (starting MHPs)
Segments sent from the function dc_mcf_execap() can be received with the
function dc_mcf_receive() called by an MHP. MHPs can be started only if they
exist in the same node as the UAP that called the function dc_mcf_execap(). MHPs
at other nodes cannot be started using the function dc_mcf_execap().#

#

There is no restriction when communicating by using TP1/NET/HNA-NIF,
because message exchanging is done with the function dc_mcf_execap().

(3) Time to start
The MHP or SPP which has been designated for activation will actually start when:

• If the MHP has called the function dc_mcf_execap():

3. Facilities Provided by TP1/Message Control

234

The MHP transaction is committed (the MHP normally returns or the function
dc_mcf_commit() normally returns).

• If the SPP has called the function dc_mcf_execap():

The transaction is committed.

If the SPP has called the function dc_mcf_execap(), the prerequisite condition
is that the SPP is working as a transaction and that the main function of the SPP
calls the function dc_mcf_open().

(4) How to start application programs
An MHP or SPP can be started by either of the following methods:

(a) Immediate start
The application program is started immediately after the UAP process which called the
function dc_mcf_execap() is committed.

(b) Timer start
The application program is started at the specified time after the function
dc_mcf_execap() is called. Timer starts in either of the following two ways:

• Interval timer start

The application program is started a specified number of seconds after the
function dc_mcf_execap() is called. If the UAP process which called the
function dc_mcf_execap() is not committed after the specified number of
seconds, the application program will be started when commitment occurs.

• Time point timer start

The application program will be started when the specified time comes after the
function dc_mcf_execap() is called.

If the time the function dc_mcf_execap() called is later than the time specified
in the function, the application program is immediately started or will be started
at the specified time on the following day, depending on the specification given
in the UAP common definition included in the MCF manager definition.

When the application active facility is used, note the following: if the time
schedule is changed from Standard to Daylight Saving or vice versa during the
period from activation request issuance to the scheduled UAP start time, the UAP
will be activated based on the schedule that was in use when the activation request
was issued.

(5) Error event if an error occurs before an application program is started
After the function dc_mcf_execap(), if an error occurs before the MHP or SPP is
started, the following MCF events are generated:

3. Facilities Provided by TP1/Message Control

235

• With immediate start: ERREVT2

• With timer start: ERREVT4

For details on the error events, see 3.10 MCF events.

The figure below shows how to start an application program.

3. Facilities Provided by TP1/Message Control

236

Figure 3-13: How to start application program

3. Facilities Provided by TP1/Message Control

237

(6) Network communication definition
(a) MCF communication configuration definition

In addition to an ordinary execution process, an application startup process is required
for the node at which the UAP that calls the function dc_mcf_execap() exists.
Specify the application startup process in the application start environment definition.
With OpenTP1 which uses the application program start function, create the
application startup environment definition of the MCF communication configuration
definitions.

(b) MCF application definition
The application type specified in the type operand of the application attribute
definition (mcfaalcap) in the MCF application definitions determines which type of
MHP is to be started.

• When starting a response type (ans) MHP:

Only an MHP with the response type (ans) specified can send response messages.
When an ans type MHP is started from the MHP that received an inquiry
message, the response right is transferred. Because of this, the ans type MHP can
be started only once. Response messages cannot be sent from the MHP that
started the ans type MHP. The ans type MHP cannot also be started from an
MHP which has sent a response message.

An ans type MHP cannot be started from an SPP.

• When starting a nonresponse type MHP (noans specified):

An MHP with the nonresponse type (noans) specified can be started more than
once from one transaction.

• When starting a continuous-inquiry-response type MHP (cont specified):

An MHP with the continuous-inquiry-response type (cont) specified can be
started only from an MHP handling continuous-inquiry-response processing. In
this case, only immediate start is permitted (timer start is not permitted). Only one
cont type MHP can be started if the function dc_mcf_execap() is called from
an MHP handling continuous-inquiry-response processing. The MHP that started
a cont type application cannot call the function dc_mcf_reply() because the
continuous response right has been transferred from the MHP. Also, the MHP
cannot call the function dc_mcf_contend().

(7) Input source logical terminal name to be passed to the MHP to be started
When an MHP starts another MHP by using the function dc_mcf_execap(), the
started MHP receives the name in the first-received message as the logical terminal
name of the message input source. Also, when the function dc_mcf_execap() is
called from the MHP, the name in the first-message is passed as the logical terminal
name of the message input source.

3. Facilities Provided by TP1/Message Control

238

When an SPP starts an MHP by using the function dc_mcf_execap(), the started
MHP receives * as the logical terminal name of the message input source. Also, when
the function dc_mcf_execap() is called from the MHP, * is received as the logical
terminal name of the message input source.

Figures 3-14 to 3-17 show how application programs are started, and specification of
the type operand.

Figure 3-14: Starting MHP from MHP that received send-only message

3. Facilities Provided by TP1/Message Control

239

Figure 3-15: Starting MHP from MHP that received inquiry-response message

3. Facilities Provided by TP1/Message Control

240

Figure 3-16: Starting MHP, which sends send-only message, from MHP that
handles inquiry-response message processing

3. Facilities Provided by TP1/Message Control

241

Figure 3-17: Starting MHP from SPP handling transaction processing

(8) Handling of timer start upon TP1/Message Control rerun
Explained below is the handling of timer start upon an OpenTP1 rerun subsequent to
a fault which occurs during wait for timer start. After an OpenTP1 rerun, timer start
can be inherited only when the disk queue is in use. If a rerun occurs, the function
dc_mcf_execap() to be timer-started is handled as follows:

(a) Definition of timer start inheritance
If reruntm=yes is specified for the -o option to the mcftpsvr definition command for
the MCF communication configuration definition, the timer start message before the
rerun is inherited. If the time specified in the function dc_mcf_execap() has already
come, the timer start message is inherited as an immediate start message. Otherwise,
the application program will be started at the specified time.

If reruntm=no is specified, timer start is not inherited once a rerun occurs. The
timer-started function dc_mcf_execap() must be called from the UAP.

3. Facilities Provided by TP1/Message Control

242

(b) User exit routines for modifying conditions for timer start inheritance
Definition of timer start inheritance user exit routines can be used to modify conditions
for timer start inheritance. These user exit routines are called exit routines for
determining timer start inheritance. Before a user exit routine for determining timer
start inheritance can be used, reruntm=yes must be specified for the -o option to the
mcftpsvr definition command for the MCF communication configuration definition.

For details on user exit routines for determining timer start inheritance, see 3.9.2 User
exit routine that determines the inheriting timer-start message.

3.8.2 MHP startup using command
MHPs can be activated using OpenTP1 command (mcfuevt command). Even if an
MHP is usually started by message reception, it can be activated by mcfuevt
command to become ready for sending messages to other systems.

Only nonresponse type (noans type) MHPs can be activated by mcfuevt commands.
If an MHP is to be activated by mcfuevt command, specify the noans type for the
MHP.

(1) Definition of MHPs to be activated by command
Suppose that the application name of the MHP to be activated by mcfuevt command
is UCMDEVT. Specify the following values for the -n option to the mcfaalcap operand
for the application attribute definition in the MCF application definition:

name operand: UCMDEVT

kind operand: user (optional)

type operand: noans (optional)

(2) How to start MHP
The mcfuevt command is executed to start an MHP. The MCF communication
process identifier and the input message to be passed to the MHP are specified as the
arguments to the mcfuevt command.

If the mcfuevt command is executed before UCMDEVT is defined, it returns with an
error. In this event, ERREVT1 does not inform.

Since MHPs activated by commands do not depend on the communication protocol, it
is recommendable that an application startup process should be specified for the MCF
communication process specified in the mcfuevt command.

(3) Input source logical terminal name and connection name of MHP activated by
command

The input source logical terminal name of an MHP activated by mcfuevt command
is @UCEVxxx, where xxx is the MCF process identifier. If a message is sent from a UAP
to this input source logical terminal name, the function returns with an error.

3. Facilities Provided by TP1/Message Control

243

The connection name is ********.

The figure below shows how an MHP is activated by command.

Figure 3-18: MHP activation by operation command

3.8.3 Nontransaction attribute MHP
MHPs which do not work as a transaction (the nontransaction attribute MHPs) can be
created. The nontransaction attribute MHPs cannot be treated as transactions, but
assure a higher processing speed than ordinary MHPs.

(1) Difference from MHPs working as transactions
The nontransaction attribute MHPs can use message exchange functions like MHPs
which work as transactions, but the following differences are involved:

• A message output sequence number can be specified, but it is not eligible for error
recovery.

• The nontransaction attribute MHPs cannot use synchronization point processing
functions (dc_mcf_commit() and dc_mcf_rollback()) and cannot call the
message resend function (dc_mcf_resend()). If one of these functions is
called, it returns with an error.

(2) Definition of nontransaction attribute MHPs
(a) Available message queue

The nontransaction attribute MHPs can use memory queues, but cannot use disk
queues. Specify the memory queue in the quekind operand that is the -g option to the
mcfaalcap operand for the application attribute definition in the MCF application
definition.

(b) Transaction attribute of MHPs
For the nontransaction attribute MHPs, specify nontrn in the trnmode operand for

3. Facilities Provided by TP1/Message Control

244

the application attribute definition in the MCF application definition. The MHP is not
treated as a transaction even if atomic_update=Y is specified in the user service
definition.

(c) Time monitoring
Time monitoring of the nontransaction attribute MHPs is specified by the -v option to
the mcfaalcap operand for the application attribute definition in the MCF application
definition. When the specified time comes, the nontransaction attribute MHP
terminates abnormally. If 0 is specified in this definition, time monitoring is not in
effect.

If a synchronous message exchange request is used from a nontransaction attribute
MHP, the processing time for this message exchange is not included in the time
monitored. If a nontransaction attribute MHP requests a service to an SPP, the SPP
processing time is also included in the time monitored (if the SPP processes a
synchronous message, the processing time is included in the time monitored).

(3) If an error occurs in the nontransaction attribute MHP:
The MHP for handling MCF event ERREVT2 or ERREVT3 is activated depending on
the specification in the MCF application definition. If the nontransaction attribute
MHP is requesting an SPP for service, nothing is done on the SPP process.

If temporary-stored data cannot be actually updated during processing in continuous
inquiry response mode, the processing in continuous inquiry response mode is
terminated regardless of the error event definition. If the processing in continuous
inquiry response mode cannot be terminated because of an internal error or other
condition, a message log is output to prompt the execution of the command for force
termination of continuous inquiry response (mcftendct -f). Execute this command
to terminate processing in continuous inquiry response mode.

3.8.4 Time monitoring with the facility for user timer monitoring
You can use a function from an MHP or SPP to set time monitoring and to cancel the
setting. This facility is called the facility for user timer monitoring. It enables you to
monitor a desired time. To use the facility for user timer monitoring, you must specify
usertime=yes in the -p option of the MCF communication configuration definition
mcfttim.

To set user timer monitoring, call the function dc_mcf_timer_set()
[CBLDCMCF('TIMERSET')]. To cancel a user timer monitoring, call the function
dc_mcf_timer_cancel() [CBLDCMCF('TIMERCAN')]. Processing for setting and
canceling user timer monitoring is run when the function is called regardless of
transactions.

At a fixed time monitoring interval, the MCF checks whether timeout has occurred.
Specify the time monitoring interval in the btim operand of the -t option of the MCF
communication configuration definition mcfttim.

3. Facilities Provided by TP1/Message Control

245

If timeout has occurred, OpenTP1 starts the MHP specified in the arguments of the
function dc_mcf_timer_set(). Specifying user data in the arguments of the
function dc_mcf_timer_set() causes OpenTP1 to pass the data as a message to the
MHP started after timeout occurs.

The mcftlsutm command can be used to display the user timer monitoring status. For
details about the mcftlsutm command, see the manual OpenTP1 Operation.

The facility for user timer monitoring can be used under any protocol.

(1) Example
The figure below gives an example of using the facility for user timer monitoring. This
example shows how the time of responses from a remote system is monitored.

3. Facilities Provided by TP1/Message Control

246

Figure 3-19: Example of using the facility for user timer monitoring

3. Facilities Provided by TP1/Message Control

247

(2) Notes on using the facility for user timer monitoring
1. User timer monitoring is set or canceled when the relevant function is called.

Therefore, processing for setting or canceling user timer monitoring is not
disabled even if the transaction is rolled back.

2. The MHP to be started upon occurrence of timeout must be a nonresponse-type
(noans type) MHP. If the MHP specified in the arguments is not
nonresponse-type, the function dc_mcf_timer_set() called from an MHP or
SPP for setting a user timer monitoring returns an error.

3. Since OpenTP1 monitors timeout at fixed intervals, an error occurs between the
monitoring time specified when the user timer monitoring was set and the time
that elapses before actual detection of timeout.

4. If the function dc_mcf_timer_cancel() is called immediately before the
MHP is started due to timeout, the function may return an error with the message
Timeout occurred and the MHP may start.

5. If timeouts occur frequently while you are using the user timer monitoring
facility, the performance of normal message control processing is affected. Do not
set up normal processing so that an application starts when timeout occurs.

6. You must specify the maximum number of requests allowed for running a user
timer monitoring in the timereqno operand in the -p option of the
communication configuration definition mcfttim. Before processing starts, the
MCF allocates the same number of monitoring tables as the number of requests
specified in this operand. The tables are allocated on static shared memory.
Setting one value requires static shared memory equivalent to about 100 bytes +
user data size. Add the total capacity of static shared memory on all MCFs to the
-p option of the MCF manager definition mcfmcomn and the
static_shmpool_size operand of the system environment definition.

7. If the system goes down while time monitoring is in progress, monitoring is
disabled when the system restarts (at rerun). However, if a disk queue is being
used as the input queue and the system goes down immediately before the MHP
is started due to timeout, the MHP may start after the system restarts. Therefore,
we recommend using a memory queue as the input queue.

8. Note above also applies when the MCF is restarted (rerun) individually.

9. You cannot set or cancel user timer monitoring for MCFs on other nodes.

3. Facilities Provided by TP1/Message Control

248

3.9 User exit routines

User exit routines are programs which help UAPs with message processing when
OpenTP1 is in process of message exchange mode communication.

Either C or C++ is used for coding user exit routines. When the C is used, code the user
exit routine in either the ANSI C format or the pre-ANSI K&R format (Classic C).
When the C++ is used, code the user exit routine according to the C++ specification.

The figure below shows the relationship between message processing and user exit
routines.

3. Facilities Provided by TP1/Message Control

249

Figure 3-20: Positions of user exit routines

User exit routines available with OpenTP1

The table below lists user exit routines available with OpenTP1.

3. Facilities Provided by TP1/Message Control

250

Table 3-15: User exit routines available with OpenTP1

The user exit routines listed in Table 3-15 vary in syntax depending on the
communcation protocol product used with the MCF. You can use some user exit
routines. There are also UOCs not included in this table that are specific to
products that support particular communication protocols. For the syntax of user
exit routines, see the applicable OpenTP1 Protocol manual.

In Table 3-15, user exit routines that determine the inheriting timer-start message
do not depend on a communication protocol product. For the syntax of user exit
routines, see the manual OpenTP1 Programming Reference C Language.

3.9.1 User exit routine that edits input message and application
name determination

This user exit routine determines the application name of the MHP which processes
input messages. When this user exit routine is incorporated, messages which OpenTP1
receives from other systems are passed to the user exit routine. After processing by the
user exit routine ends, the message data is passed to the input queue. Then, the message
data is transferred to the function for receiving MHP messages scheduled by OpenTP1.

When an MCF event informs and recovery processing is to be performed by the MCF
event handling MHP, the user exit routine that edits input message and determines
application name is not used.

For the format of the user exit routine that edits input message and determines
application name, see the applicable OpenTP1 Protocol manual.

Type of user exit routine Processing that can be
performed by user exit

routine

Processing that is performed
if user exit routine is not used

User exit routine that edits input
messages/user exit routine that
determines application name

• Edits received messages.
• Determines the application

name of the MHP which is to
process the message.

The first up to 8 characters before
the first space on the first segment
are treated as the application name.

User exit routine that edits
sequential number of send message

• Gives sequence numbers to
segments to be sent.

The segments are given the
sequence numbers specified in the
function which is to send the
message.

User exit routine that determines the
inheriting timer-start message

• Can change the condition for
activating timer-started
applications after a rerun.

Whether the timer start message is
inherited is determined according
to the specification in the
definition.

User exit routine that edits output
message

• Edits the message to be output. The message to be output is sent
without editing.

3. Facilities Provided by TP1/Message Control

251

(1) Incorporation into OpenTP1
Specify the function address of the created user exit routine in the MCF main function
(start function: dc_mcf_svstart()). The function address of the user exit routine
that edits input message can be determined optionally. If the MCF main function is
compiled and link-edited, the object file of the user exit routine is linked to the MHP
execution form file and can be executed. For details on the MCF main function, see the
manual OpenTP1 Operation.

3.9.2 User exit routine that determines the inheriting timer-start
message

This user exit routine changes the environment for timer start when an error causes
OpenTP1 to rerun after the timer started function dc_mcf_execap() is called or
when the MCF service is rerun singly. This exit routine enables the following:

• Inherit or cancel the timer start specification

• Make the inherited timer start immediate start

• Change the name of the application to be started

(1) Incorporation into OpenTP1
Specify a function address of the created user exit routine in the MCF main function
(dc_mcf_svstart()) for the application start service. Any function address may be
specified. When the MCF main function is compiled and linked, the object file of the
user exit routine is linked to the executable file of application start service and becomes
ready to run. For details on the MCF main function for application start
communication service, see the manual OpenTP1 Operation.

3.9.3 User exit routine that edits sequential number of send
message

This user exit routine assigns serial numbers to send messages. It is started by
specifying the function which sends messages from MHP.

This user exit routine is created as the send_uoc(). It is started when the first segment
of the message send function is sent. Therefore, only the first segment can be edited by
this user exit routine.

For the format of the user exit routine that edits sequential number of send message,
see the applicable OpenTP1 Protocol manual.

(1) Incorporation into OpenTP1
Register the user exit routine as the function dc_mcf_regster() in the MHP main
function.

3. Facilities Provided by TP1/Message Control

252

3.9.4 User exit routine that edits output message
This user exit routine edits response messages or send-only messages. It needs to be
positioned so that the send messages called by UAP are processed before they are
actually sent to other systems.

For the format of the user exit routine that edits output message, see the applicable
OpenTP1 Protocol manual.

(1) Incorporation into OpenTP1
Specify the function address name in the start function called by the MCF main
function, in the same way as the user exit routine that edits input message and
determines application name. The function address of the user exit routine that edits
output message can be determined optionally. For details about MCF main function,
see the manual OpenTP1 Operation.

3. Facilities Provided by TP1/Message Control

253

3.10 MCF events

When messages are exchanged with OpenTP1, TP1/Message Control outputs the
message which post various system information items of OpenTP1 to MHP. Such
messages are called MCF events. If an error or failure reported during message
exchange processing, what occurred in the system is indicated by an MCF event. There
are two types of MCF events: error events such as errors and failures, and
communication events dependent on the protocol such as establishment and release of
a connection. The MHP which handles failures based on MCF events is called the
MHP for an MCF event. Creating this MHP enables individual failure recovery
processing.

An MCF event is passed to the input queue, and the MHP for an MCF event is started.
At this time, the user exit routine that edits input message and determines application
name is not used. An MCF event is never started as the result of a failure occurring in
an MCF event.

The table below lists MCF events. Some MCF events which are not included in the
table are reported as events specific to communication protocol supporting products.
For MCF events specific to communication protocol supporting products, see the
applicable OpenTP1 Protocol manual.

Table 3-16: MCF events

MCF event
name

MCF event
code

Cause of MCF event occurrence Example of processing
by MHP for an MCF event

MCF event
that reports
detection of an
invalid
application
name

ERREVT1 The application name of the message was
not found in the MCF application
definition.

Posts that the application
name was not found. For an
inquiry message, a response
message can be output.

3. Facilities Provided by TP1/Message Control

254

MCF event
that reports
discarding of a
message

ERREVT2 The message in the input queue received
with MCF or the message input to the input
queue as a result of immediate startup of an
application was discarded for any of the
following reasons:
• An error related to the input queue

occurred.
• MHP service, service group, or

application was shut down.
• MHP service, service group, or

application is in secure state.
• MHP terminated abnormally before the

segment was passed to the function
dc_mcf_ receive() of MHP.

• There is no MHP service corresponding
to the application name.

• When MCF cannot activate SPP.
• MHP is not running.

Posts that the message was
discarded. For an inquiry
message, a response message
can be output.

MCF event
that reports
UAP abnormal
termination

ERREVT3 MHP terminated abnormally or rolled
back# after the segment was passed to the
function dc_mcf_receive() invoked by
MHP.

Reports that the UAP
terminated abnormally or
rolled back.
For an inquiry message, a
response message can be sent.

MCF event
that reports
discarding of a
timer-start
message

ERREVT4 The message input as a result of startup of
the timer start application was discarded.

Posts that the message was
discarded. In the case of an
inquiry message, a response
message can be output.

MCF event
that reports
discarding of
an
unprocessed
send message

ERREVTA The unprocessed message from a UAP was
discarded for any of the following reasons:
• Timeout occurred in residence time

monitoring for unprocessed send
message when MCF terminated
normally.

• The output queue was deleted by the
mcftdlqle command or the function
dc_mcf_tdlqle().

• The dcstop command was executed
while a timer start request remained.

Posts that the unprocessed
message was discarded. The
unprocessed send message is
saved in a file.

MCF event
that reports a
send error

SERREVT A communication protocol error occurred
during sending of a message.

Posts that the message could
not be sent due to a failure in
the communication protocol.

MCF event
name

MCF event
code

Cause of MCF event occurrence Example of processing
by MHP for an MCF event

3. Facilities Provided by TP1/Message Control

255

Note
ERREVT1, ERREVT2, ERREVT3, ERREVT4, and ERREVTA represent error events.

SERREVT, SCMPEVT, CERREVT, COPNEVT, and CCLSEVT represent
communication events.

#

Excludes cases in which r is specified for the recvmsg operand in the MCF
application definition (mcfaalcap -g) or in which DCMCFRTRY or DCMCFRRTN
is specified for action of the function dc_mcf_rollback().

The application attribute of MHP for an MCF event

The application attribute of the MHP for an MCF event is determined according
to the cause of the MCF event occurrence. For the MHP for an MCF event,
perform processing according to the determined application type.

When starting the MHP for ERREVT1, ERREVT2, or ERREVT3, the application
startup process is required. When this process is used, the MCF communication
configuration definition needs to be created.

If an MCF event occurs when two or more MHPs were started by the function
dc_mcf_execap(), the type of the MHP for an MCF event is determined based
on the type of the MHP that called the function dc_mcf_execap() first. When
the function dc_mcf_execap() was called from SPP, the MCF event
corresponding to the application startup process reports.

The table below shows the relationship between the MHP for an MCF event and
the application attribute.

MCF event
that reports
send
completion

SCMPEVT A message was sent normally to the remote
system.

Posts that the message was
sent normally to the remote
system.

MCF event
that reports an
error

CERREVT
(VERREVT)

A connection failure or logical terminal
failure occurred with the communication
management program. It does not report
when automatic retry is specified.

Posts that a connection failure
or logical terminal failure
occurred.

MCF event
that reports an
status

COPNEVT
(VOPNEVT)

Connection has been established. Posts that connection has
been established.

CCLSEVT
(VCLSEVT)

Connection has been released normally. Posts that connection has
been released.

MCF event
name

MCF event
code

Cause of MCF event occurrence Example of processing
by MHP for an MCF event

3. Facilities Provided by TP1/Message Control

256

Table 3-17: Relationship between MHPs for an MCF event and application
attributes

#

If the MHP has the nontransaction attribute, the application attribute is not
inherited even after abnormal termination; instead, the specification for the MHP
for an MCF event is observed.

Relationship between communication protocol products and reported MCF
events

The following tables show the relationships between communication protocol
products and reported MCF events.

Table 3-18: Relationship between communication protocol products and
reported MCF events (1/5)

Event code of MCF
event

Application attribute of MHP for an MCF event

ERREVT1 The attribute is set according to the terminal type of the request source logical
terminal.
• reply-type logical terminals: ans
• Logical terminals that are not the reply type: noans

ERREVT2 The application attribute of the MHP which caused MCFevent reporting is
inherited as is.#

ERREVT3

ERREVT4

ERREVTA The nonresponse (noans) type is set.

SERREVT

SCMPEVT

CERREVT

VERREVT

COPNEVT

CCLSEVT

VCLSEVT

MCF EVENT Communication protocol product

TP1/NET/User Agent TP1/NET/OSI-TP TP1/NET/TCP/IP

ERREVT1 Y Y Y

3. Facilities Provided by TP1/Message Control

257

Legend:

Y: The event is reported by the communication protocol product.

N: The event is not reported by the communication protocol product.

Table 3-19: Relationship between communication protocol products and
reported MCF events (2/5)

ERREVT2 Y Y Y

ERREVT3 Y Y Y

ERREVT4 Y Y Y

ERREVTA Y Y Y

SERREVT N N N

SCMPEVT N N Y

CERREVT Y Y Y

COPNEVT Y Y Y

CCLSEVT Y Y Y

VERREVT N N N

VOPNEVT N N N

VCLSEVT N N N

MCF EVENT Communication protocol product

TP1/NET/XMAP3 TP1/NET/HNA-560/20 TP1/NET/HNA-560/20
DTS

ERREVT1 Y Y Y

ERREVT2 Y Y Y

ERREVT3 Y Y Y

ERREVT4 Y Y Y

ERREVTA Y Y Y

SERREVT Y# N N

MCF EVENT Communication protocol product

TP1/NET/User Agent TP1/NET/OSI-TP TP1/NET/TCP/IP

3. Facilities Provided by TP1/Message Control

258

Legend:

Y: The event is reported by the communication protocol product.

N: The event is not reported by the communication protocol product.

#

SERREVT and SCMPEVT are reported only when the print facility is used.

Table 3-20: Relationship between communication protocol products and
reported MCF events (3/5)

SCMPEVT Y# N N

CERREVT N Y Y

COPNEVT N Y Y

CCLSEVT N N N

VERREVT Y Y Y

VOPNEVT Y Y Y

VCLSEVT Y Y N

MCF EVENT Communication protocol product

TP1/NET/
OSAS-NIF

TP1/NET/
HNA-NIF

TP1/NET/HSC
(1)

TP1/NET/HSC
(2)

ERREVT1 Y Y Y Y

ERREVT2 Y Y Y Y

ERREVT3 Y Y Y Y

ERREVT4 N N Y Y

ERREVTA Y Y Y Y

SERREVT N N Y Y#

SCMPEVT N N Y Y#

CERREVT Y Y Y Y

MCF EVENT Communication protocol product

TP1/NET/XMAP3 TP1/NET/HNA-560/20 TP1/NET/HNA-560/20
DTS

3. Facilities Provided by TP1/Message Control

259

Legend:

Y: The event is reported by the communication protocol product.

N: The event is not reported by the communication protocol product.

#

TP1/NET/HSC reports SERREVT and SCMPEVT only in the asynchronous mode.

Table 3-21: Relationship between communication protocol products and
reported MCF events (4/5)

COPNEVT Y Y Y Y

CCLSEVT Y Y Y Y

VERREVT N N N N

VOPNEVT N N N N

VCLSEVT N N N N

MCF EVENT Communication protocol product

TP1/NET/HDLC TP1/NET/X25 TP1/NET/
X25-Extended

ERREVT1 Y Y Y

ERREVT2 Y Y Y

ERREVT3 Y Y Y

ERREVT4 Y Y Y

ERREVTA Y Y Y

SERREVT N N N

SCMPEVT Y N Y

CERREVT Y Y Y

COPNEVT Y Y Y

CCLSEVT Y Y Y

VERREVT N N N

MCF EVENT Communication protocol product

TP1/NET/
OSAS-NIF

TP1/NET/
HNA-NIF

TP1/NET/HSC
(1)

TP1/NET/HSC
(2)

3. Facilities Provided by TP1/Message Control

260

Legend:

Y: The event is reported by the communication protocol product.

N: The event is not reported by the communication protocol product.

Table 3-22: Relationship between communication protocol products and
reported MCF events (5/5)

Legend:

Y: The event is reported by the communication protocol product.

N: The event is not reported by the communication protocol product.

VOPNEVT N N N

VCLSEVT N N N

MCF EVENT Communication protocol product

TP1/NET/
SLU-TypeP1

TP1/NET/
SLU-TypeP2

TP1/NET/
NCSB

TP1/NET/UDP

ERREVT1 Y Y Y Y

ERREVT2 Y Y Y Y

ERREVT3 Y Y Y Y

ERREVT4 Y Y Y Y

ERREVTA Y Y Y Y

SERREVT N N N N

SCMPEVT N N N N

CERREVT Y Y Y Y

COPNEVT Y Y Y Y

CCLSEVT Y Y Y Y

VERREVT N N N N

VOPNEVT N N N N

VCLSEVT N N N N

MCF EVENT Communication protocol product

TP1/NET/HDLC TP1/NET/X25 TP1/NET/
X25-Extended

3. Facilities Provided by TP1/Message Control

261

3.10.1 MCF event that reports detection of an invalid application
name (ERREVT1)

ERREVT1 is reported if the application name specified in the received message is
invalid for any of the following reasons:

• The format of application name is invalid.

• The specified application name is not found in the MCF application definition.

With the MHP for ERREVT1, send the send-only message posting that the application
name was not found in the local node or take similar measures. At this time, send a
response message or send only-message from the MHP for an MCF event depending
on the type of the logical terminal or UAP.

The figure below shows the outline of ERREVT1.

Figure 3-21: Outline of ERREVT1

1. The MCF which received the message attempted to schedule the MHP
corresponding to the application name, but the MHP was not found.

2. Control returns to the MCF, ERREVT1 reports, and the MHP for ERREVT1 is

3. Facilities Provided by TP1/Message Control

262

scheduled.

3. The MHP for an MCF event sends the send only message posting that there is no
MHP corresponding to the message.

3.10.2 MCF event that reports discarding of a message (ERREVT2)
ERREVT2 is reported when the received message was discarded for any of the
following reasons. ERREVT2 is also reported when a communication event for which
errevt=yes (report error event at communication event failure) is specified in the -n
option of the application attribute definition mcfaalcap encounters a failure for any
of the following reasons:

• An input queue error occurred.

• An application, service, or service group was blocked or is in secure state.

• MHP terminated abnormally before the first segment is received.

• There is no MHP service function corresponding to the application name.

• SPPs cannot be started by the MCF when the remote MCF service is used.

• Messages remain in the input queue due to schedule blocking of service groups at
termination of OpenTP1.

With the MHP for ERREVT2, reference the contents of ERREVT2 and send the message
posting that processing was not possible in the local node or take similar measures. At
this time, send a response message or send only-message from the MHP for an MCF
event depending on the type of the logical terminal or UAP.

The figure below shows the outline of ERREVT2.

3. Facilities Provided by TP1/Message Control

263

Figure 3-22: Outline of ERREVT2

1. The received message was discarded from the input queue for some reason.

2. Control returns to MCF, ERREVT2 reports, and the MHP for ERREVT2 is
scheduled.

3. The send-only message posting the message resend request and so forth is sent
from the MHP for an MCF event to the other system which sent the message.

3.10.3 MCF event that reports UAP abnormal termination (ERREVT3)
ERREVT3 is reported in the following case. ERREVT3 is also reported when a
communication event for which errevt=yes (report error event at communication
event failure) is specified in the -n option of the application attribute definition
mcfaalcap encounters a failure for any of the following reasons:

• MHP terminated abnormally after the first segment was received with the
function dc_mcf_receive().

3. Facilities Provided by TP1/Message Control

264

• A failure occurred at termination of an application.

This event is reported when DCMCFNRTN is set for the flag of the function
dc_mcf_rollback() called by the MHP.

With the MHP for ERREVT3, reference the contents of ERREVT3 and send the message
posting that the UAP of the local node terminated abnormally, using the application
name as the key, or take similar measures. At this time, send a response message or
send-only message from the MHP for an MCF event depending on the type of the
logical terminal or UAP.

The figure below shows the outline of ERREVT3.

Figure 3-23: Outline of ERREVT3

1. When retry is not set for rollback, if an error occurs in the processing with the

3. Facilities Provided by TP1/Message Control

265

MHP which received the message, control returns to MCF via the output queue.

2. ERREVT3 reports based on the information sent from the MHP which caused the
error.

3. ERREVT3 schedules the MHP for an MCF event via the input queue. This MHP
sends the message posting that an error occurred in the UAP of the another
system, to the other system which sent the message.

3.10.4 MCF event that reports discarding of a timer-start message
(ERREVT4)

ERREVT4 is reported when the message was discarded for the following reason:

• The message was discarded because an error occurred during timer monitoring by
the MCF after the application program start function (the function
dc_mcf_execap()) with timer start was called from a UAP.

(1) Flow up to ERREVT4
If MHP calls the function dc_mcf_execap() of timer start, MCF fetches messages
from the output queue and performs timer monitoring. If a timer monitoring error,
scheduling error, or the like reports during the wait time before writing in the input
queue, ERREVT4 occurs. After that, the MHP to process ERREVT4 is started.

The figure below shows the outline of ERREVT4.

3. Facilities Provided by TP1/Message Control

266

Figure 3-24: Outline of ERREVT4

1. The function dc_mcf_execap() of timer start is called. If the transaction
commits it, MCF starts timer monitoring.

2. If a failure reports during timer monitoring by MCF, ERREVT4 reports.

3. ERREVT4 schedules the MHP for ERREVT4 via the input queue.

4. The MHP for an MCF event analyzes and processes ERREVT4.

3.10.5 MCF event that reports discarding of an unprocessed send
message (ERREVTA)

ERREVTA is reported in the following cases:

• The messages remaining in the output queue were discarded because timeout
occurred in residence time monitoring for unprocessed send messages after the
normal termination command for OpenTP1 (the dcstop command) was
executed.

• The output queue containing unprocessed send messages was deleted with the

3. Facilities Provided by TP1/Message Control

267

mcftdlqle command or the function dc_mcf_tdlqle() while OpenTP1 was
running.

• The timer-start function dc_mcf_execap() was called, and the command for
terminating OpenTP1 normally (dcstop command) was executed during timer
monitoring.

(1) Flow up to ERREVTA
When MHP terminates normally, the messages sent to the output queue are output.
When OpenTP1 is to be terminated normally in transmission wait state, MCF waits for
the termination until the send messages in the output queue have been sent. At this
time, if the messages cannot be sent due to a failure in the destination system, timeout
occurs and the send messages are discarded. ERREVTA reports to post that the messages
have been discarded. The period of time causing timeout is specified for the mtim
operand of the timer definition mcfttim of the MCF communication configuration
definition. Timer monitoring is performed based on this operand value.

Note that the timer start request message issued by the function dc_mcf_execap()
is not included in the monitoring of the remaining time for unprocessed send messages.
Consequently, when the normal termination command (dcstop command) for
OpenTP1 is executed, the timer start request message is discarded immediately and
ERREVTA is reported.

The figure below shows the outline of ERREVTA.

3. Facilities Provided by TP1/Message Control

268

Figure 3-25: Outline of ERREVTA

1. The normal termination command (dcstop command) for OpenTP1 is executed.
Any timer start request message remaining at this time is discarded, and MCF
reports ERREVTA.

2. The message that was processed normally by MHP is stored in the output queue.

3. Facilities Provided by TP1/Message Control

269

3. Output messages are discarded because timeout occurred for the send messages
in the output queue.

4. ERREVTA reports from MCF.

5. The MHP for ERREVTA is scheduled.

6. The message information is saved in a user file or the like.

3.10.6 MCF event that reports a send error (SERREVT)
SERREVT is reported when a failure occurs in the communication protocol while the
MCF is sending a message to a remote system after the UAP that sent the message
normally has terminated processing. Be referencing this event, you can confirm that a
failure occurred in the communication protocol even if asynchronous message send
processing was used (function dc_mcf_send() and function dc_mcf_reply()).

The MHP for an MCF event of SERREVT is a nonresponse-type (noans type) MHP.

SERREVT is not reported if you terminate OpenTP1 before events are written to the
input queue.

The figure below shows the outline of SERREVT.

3. Facilities Provided by TP1/Message Control

270

Figure 3-26: Outline of SERREVT

1. Report event is set in the arguments of the function dc_mcf_send() or function
dc_mcf_reply() and the message is sent.

2. The UAP terminates normally. The MCF that received a send request from the
UAP sends a message to the remote system.

3. A failure occurs in the communication protocol.

4. Control returns to the MCF. SERREVT is reported and the MHP for an MCF event
is scheduled.

5. The MHP for an MCF event processes SERREVT in accordance with the details
reported by SERREVT.

3. Facilities Provided by TP1/Message Control

271

3.10.7 MCF event that reports send completion (SCMPEVT)
SCMPEVT is reported by the MCF when a message was sent normally. This event
indicates that an asynchronous message was sent (function dc_mcf_send() and
function dc_mcf_reply()) normally to the remote system.

The MHP for an MCF event of SCMPEVT can start processing for synchronization with
send completion. At this time, the MHP for an MCF event is a nonresponse-type
(noans type) MHP.

SCMPEVT is not reported if you terminate OpenTP1 before events are written to the
input queue.

The figure below shows the outline of SCMPEVT.

Figure 3-27: Outline of SERREVT

3. Facilities Provided by TP1/Message Control

272

1. Report event is set in the arguments of the function dc_mcf_send() or function
dc_mcf_reply() and the message is sent.

2. The MCF that received a send request from the UAP sends a message to the
remote system.

3. The message is sent normally to the remote system.

4. Control returns to the MCF. SCMPEVT is reported and the MHP for an MCF event
is scheduled.

5. The MHP for an MCF event processes SCMPEVT in accordance with the details
reported by SCMPEVT.

3.10.8 MCF event that reports an error (CERREVT, VERREVT)
CERREVT (VERREVT) is reported if a connection failure or logical termination failure
occurred with the communication management program. CERREVT (VERREVT) is not
reported when retry of establishing connection is specified in the protocol specific
definition of MCF communication configuration definition.

The way of reporting a connection failure depends on the protocol supporting product.
For details on the format of CERREVT, see the applicable OpenTP1 Protocol manual.

The figure below shows the outline of CERREVT (VERREVT).

3. Facilities Provided by TP1/Message Control

273

Figure 3-28: Outline of CERREVT (VERREVT)

1. A connection failure occurred during communication with the remote system.

2. CERREVT (VERREVT) is reported and the MHP for an MCF event is scheduled if
retry of establishing connection is not specified or the retry count exceeds the
specified value.

3. The MHP for an MCF event performs proper processing for CERREVT
(VERREVT).

3.10.9 MCF event that reports establishing a connection (COPNEVT,
VOPNEVT)

COPNEVT (VOPNEVT) is reported when a connection has been established between the
remote system and the MCF or communication management program. The MHP can
recognize that a connection has been established by receiving COPNEVT (VOPNEVT).

3. Facilities Provided by TP1/Message Control

274

The way of reporting connection establishment depends on the protocol supporting
product. For details on the format of COPNEVT (VOPNEVT), see the applicable
OpenTP1 Protocol manual.

The figure below shows the outline of COPNEVT (VOPNEVT).

Figure 3-29: Outline of COPNEVT (VOPNEVT)

1. Connection establishment is requested from the local OpenTP1 system or the
remote system. In this example, the local OpenTP1 system requests connection
establishment. Depending on the protocol supporting product, there may be no
response.

2. When a connection has been established, COPNEVT (VOPNEVT) is reported and the
MHP for an MCF event is scheduled.

3. The MHP for an MCF event performs proper processing for COPNEVT
(VOPNEVT).

3. Facilities Provided by TP1/Message Control

275

3.10.10 MCF event that reports releasing a connection (CCLSEVT,
VCLSEVT)

CCLSEVT (VCLSEVT) is reported when the connection between the remote system and
the MCF or communication management program has been released . The MHP can
recognize that a connection has been released by receiving CCLSEVT (VCLSEVT).

The way of reporting connection release depends on the protocol supporting product.
For details on the format of CCLSEVT (VCLSEVT), see the applicable OpenTP1
Protocol manual.

The figure below shows the outline of CCLSEVT (VCLSEVT).

Figure 3-30: Outline of CCLSEVT (VCLSEVT)

1. Connection release is requested from the local OpenTP1 system or the remote
system. In this example, the local OpenTP1 system requests connection release.
Depending on the protocol supporting product, there may be no response.

3. Facilities Provided by TP1/Message Control

276

2. When the connection has been released, CCLSEVT (VCLSEVT) is reported and the
MHP for an MCF event is scheduled.

3. The MHP for an MCF event performs proper processing for CCLSEVT
(VCLSEVT).

3.10.11 Message format for MCF events
Logical messages passed as MCF events comprise MCF event information and
unprocessed messages. Unprocessed messages vary with reported MCF events as
follows:

ERREVT1

Message which did not allow the application to be identified

ERREVT2

Message which failed to be passed to the target application because of application
shutdown or other condition

ERREVT3

Message received by an MHP (application) which terminated abnormally

ERREVT4

Message which was about to be passed to an MHP when the application program
was timer-started

ERREVTA

Message which remained in the output queue

If one of the following MCF events is reported, only MCF event information is passed.
There is no unprocessed message.

• SERREVT

• SCMPEVT

• CERREVT (VERREVT)

• COPNEVT (VOPNEVT)

• CCLSEVT (VCLSEVT)

(1) MCF event message structure
When an MHP is to receive an MCF event, it uses the function for receiving ordinary
messages (dc_mcf_receive()).

The MCF event is passed to the MHP for an MCF event as a logical message consisting
of multiple segments. The first segment has MCF event information and the second
and subsequent segments carry the segments of the unprocessed message. The first

3. Facilities Provided by TP1/Message Control

277

segment of the original message is on the second segment of the MCF event message
and the n-th segment of the original message is on the (n + 1)-th segments of the MCF
event message.

ERREVT2 or ERREVT3 is passed to the MHP for an MCF event that is started by the
error event notification facility (when errevt=yes is specified in the -n option of the
application attribute definition mcfaalcap) when a failure occurs in a communication
event. MCF event information is set in the first segment and MCF event information
about the communication event that failed is set in the second segment.

The figure below shows the segment layout of a logical message passed as an MCF
event.

Figure 3-31: Segments of logical message passed as MCF event

(2) Format of data reported
MCF event information is reported according to the high-level language (C or
COBOL) in which the MHP for an MCF event is written.

For MHPs written in C, MCF event information can be received with a structure. The
structure is defined in the header file <dcmcf.h>. Include <dcmcf.h> with the
#include statement for the MHP which handles MCF event information. For some
communication events, the structure may be defined in the header file for each
communication protocol supporting product.

For MHPs written in COBOL, MCF event information can be received with a segment
list. Desired data can be fetched from any byte position of the segment.

The data format of MCF event information varies with the communication protocol
supporting product (TP1/NET/xxxx). For details of the data format of the following
MCF event information, see the applicable OpenTP1 Protocol manual:

• ERREVT1

• ERREVT2

3. Facilities Provided by TP1/Message Control

278

• ERREVT3

• ERREVTA

• SERREVT

• SCMPEVT

• CERREVT (VERREVT)

• COPNEVT (VOPNEVT)

• CCLSEVT (VCLSEVT)

For details on the data format of ERREVT4 MCF event information, see the applicable
OpenTP1 Programming Reference manual.

3. Facilities Provided by TP1/Message Control

279

3.11 MCF processes used by application programs

This section explains MCF processes used by UAPs. When UAPs exchange messages,
the following MCF service processes are used:

• MCF communication process

This system process is used when the local OpenTP1 system communicates with
the remote system.

• Application startup process

This system process is used when the OpenTP1 system exchanges messages
internally.

The reasons why MCF processes are classified as shown above are:

1. The load of processes used for MCF communication can be distributed because
the system processes are separated for external and internal communication.

2. The process for internal communication is not effected while MCF
communication processes cannot be used due to a communication protocol error.

The figure below shows the outline of MCF processes used by UAPs.

3. Facilities Provided by TP1/Message Control

280

Figure 3-32: Outline of MCF processes used by UAPs

3. Facilities Provided by TP1/Message Control

281

3.11.1 Types of MCF process
This subsection explains the MCF processes (MCF communication process and
application startup process).

(1) MCF communication process
An MCF communication process is used when the local OpenTP1 system
communicates with the remote system. This process is used when a UAP
communicates with the remote system by using the following functions:

• Receiving message (the function dc_mcf_receive())

• Sending message (the function dc_mcf_send())

• Sending response message (the function dc_mcf_reply())

• Receiving synchronous message (the function dc_mcf_recvsync())

• Sending synchronous message (the function dc_mcf_sendsync())

• Exchanging synchronous message (the function dc_mcf_sendrecv())

• Resending message (the function dc_mcf_resend())

Create an MCF communication process for each communication protocol supporting
product. When one OpenTP1 system communicates with a remote system via multiple
communication protocols, define an MCF communication process for each
communication protocol supporting product.

(2) Application startup process
This system process is used when the OpenTP1 system passes messages to an internal
MHP.

The application startup process is used when the following facilities are executed:

• Starting application program (the function dc_mcf_execap())

• MHP rollback (the function dc_mcf_rollback()) with retry specification

• When reported MCF error events (ERREVTx) are used in a job.

• When an MHP is activated with the mcfuevt command.

The application startup process is not used to communicate with other systems (does
not depend on the communication protocol). In general, define one application starting
process for each node.

3.11.2 Files for using MCF processes
Prepare the following files to use the MCF service:

• Definition object file

3. Facilities Provided by TP1/Message Control

282

• MCF executable program

• System service information definition file

For MCF communication processes, the contents of definition and syntax of the
command for creating files vary with the communication protocol supporting product.
For definitions relating to MCF communication process and definition command
utilities, see the applicable OpenTP1 Protocol manual.

For application startup processes, the files can be created independent of the
communication protocol. For definitions relating to application starting process and
definition command utilities, see the manuals OpenTP1 System Definition and
OpenTP1 Operation.

The figure below shows the configuration of directories for storing the files needed to
use the MCF service.

3. Facilities Provided by TP1/Message Control

283

Figure 3-33: Configuration of directories for storing files needed to use MCF
service

285

Chapter

4. Facilities for User Data

This chapter explains the following:

Facilities for using the OpenTP1 file services (TP1/FS/Direct Access, TP1/FS/Table
Access)

IST service (TP1/Shared Table Access)

Facilities for using ISAM files

Accessing database management systems

Facility for locking files and other resources

The facilities are explained using C-language function names. For each function, the
name of the equivalent COBOL-language API function is indicated in brackets []
when the function appears first in this chapter. After that, only the C-language function
name is written. If the C-language function has no COBOL counterpart API function,
brackets are not written.

This chapter contains the following sections:

4.1 DAM file service (TP1/FS/Direct Access)
4.2 TAM file service (TP1/FS/Table Access)
4.3 IST service (TP1/Shared Table Access)
4.4 ISAM file service (ISAM, ISAM/B)
4.5 Accessing database management systems
4.6 Lock for resources
4.7 Responses to the occurrence of deadlocks

4. Facilities for User Data

286

4.1 DAM file service (TP1/FS/Direct Access)

This section explains DAM files which can be used as user files dedicated to OpenTP1.
Before DAM files can be used, TP1/FS/Direct Access must be installed in the system
and the basic OpenTP1 facility must be TP1/Server Base. The DAM file service is
unavailable with TP1/LiNK.

4.1.1 DAM file configuration
A DAM file comprises data items. Each data item is called a block. Specify one block
of the DAM file in bytes (sector length x n - 8). Calculate the sector length with the
value of the disk unit to be used.

The figure below shows the DAM file configuration.

Figure 4-1: DAM file configuration

4.1.2 Physical files and logical files
This subsection explains DAM file names to be specified in functions which are issued
from UAPs.

(1) Physical files
To create DAM files, areas to be used as the DAM files must be allocated with
damload command or a UAP that handles offline work. The name to be used for this
allocation must be the pathname of the character type special file allocated as the
OpenTP1 file system. The file identified by this pathname is referred to as the physical
file and the file name is referred to as the physical file name. The physical file name is
used when creating initial data in the allocated DAM file and updating the contents of
the file in an offline environment.

4. Facilities for User Data

287

(2) Logical files
When DAM files are used from SUPs, SPPs, or MHPs in online mode, the logical files
given names in the system definition are accessed. These files are referred to as logical
files and their names are referred to as logical file names. Logical and physical file
names are in one-to-one correspondence. This correspondence is specified in the DAM
service definition.

(3) Notes on access from UAPs
Since logical and physical files are defined at each node, DAM files are managed at
each node independently of other nodes. This means that UAPs cannot use DAM files
located at other nodes. To use DAM files, a UAP process in the node (machine) must
access the files with the file names defined in the node.

4.1.3 Outline of access to DAM files
This subsection explains how to access DAM files. There are two types of DAM files:

• Recoverable DAM file

Block input/output is synchronized with UAP transaction processing.

• Unrecoverable DAM file

Block input/output is independent of transaction processing.

Hereafter, the explanations of the facilities specific to recoverable DAM files are given
under the heading "Recoverable DAM files". For details on unrecoverable DAM files,
see 4.1.8 Access to unrecoverable DAM files.

(1) Procedure for access to DAM files
When a UAP uses a DAM file, the UAP accesses the file with the following procedure:

1. Open the file.

2. Perform one of the following processes:

Data input (reference), data input and updating, and data output.

3. Close the file.

(2) Notes on opening DAM files
The function to open a DAM file must be called from each UAP that will use the DAM
file. Even if more than one UAP belongs to one global transaction, each of the UAPs
must call the function to open the DAM file.

• Recoverable DAM files

Logical files can be opened both inside and outside the transaction. In the
following cases, however, only block locking can be specified for logical files:

4. Facilities for User Data

288

• The logical file must be opened before the transaction starts.

• Resource locking is specified for each global transaction.

(3) Notes on receiving blocks from DAM files
DAM file blocks can be received without the specification of locking if the purpose of
input is reference. If blocks are received without the specification of locking, the input
blocks may not be up-to-date because other UAPs may update the blocks during the
input processing.

(4) Access to DAM files outside the transaction processing range (recoverable
DAM files)

Processes outside the transaction range (before the transaction starts or after the
acquisition of the synchronization point) can only receive blocks by accessing them for
a reference purpose. Blocks cannot be locked.

(5) Transaction range for access to DAM files (recoverable DAM files)
When DAM files are accessed, they are locked and unlocked for each transaction
branch or for each global transaction. For details on locking of DAM files, see 4.1.7
Locking DAM files.

(6) Notes on access to DAM files exceeding 2 gigabytes
You cannot use DAM input or output functions (dc_dam_get, dc_dam_put,
dc_dam_read, dc_dam_rewrite, dc_dam_write, CBLDCDMB('GET'),
CBLDCDMB('PUT'), CBLDCDMB('READ'), CBLDCDMB('REWT'), and
CBLDCDMB('WRIT')) to input or output DAM file data exceeding 2 gigabytes at one
time. If you attempt to use one of these functions to input or output DAM file data
exceeding 2 gigabytes, the function will return with a DCDAMER_BUFFER or 01604
error.

4.1.4 Access to a DAM file in online mode (operation from an SUP,
SPP, or MHP)

To access a DAM file from a UAP in online mode (e.g., file reference or update),
processing must be done in the transaction. If the DAM file open function is called
before the transaction is started, terminate all the transactions started after the DAM
file was opened, then close the DAM file.

(1) Name used when a DAM file is accessed
To open a DAM file, use the function dc_dam_open() [CBLDCDAM ('OPEN')] in
which the logical file name is specified. When the DAM file is opened, the file
descriptor is returned as the name for identifying the file. For processing after the file
is opened, specify this file descriptor in the function to access the file (e.g., file input,
update, or output). To close the DAM file, use the function dc_dam_close()
[CBLDCDAM('CLOS')] in which the file descriptor is specified. Shut down the file

4. Facilities for User Data

289

descriptor in the UAP even for processing after the file is opened.

A file descriptor becomes valid in the following cases:

• When the file is opened within the transaction processing range

The file descriptor remains valid until one of the following events occurs:

• Logical file is closed

• Transaction synchronization point is acquired

• UAP process is terminated

• When the file is opened outside the transaction processing range

The file descriptor remains valid until one of the following events occurs:

• Logical file is closed

• UAP process is terminated

Use the logical file name to logically shut down the DAM file, release the DAM file
from the shutdown state, or reference the status of the DAM file during processing.

(2) Inputting/outputting multiple blocks collectively
Consecutive blocks can be input/output collectively. When inputting/outputting a
DAM file, specify an access block range as a structure in the corresponding function.
The block range must be specified with the relative block number. More than one
structure can be specified.

(3) Procedure for referencing/updating blocks
To reference a DAM file block, enter the block by using the function dc_dam_read()
[CBLDCDAM('READ')]. At this time, you can also specify whether to allow another
transaction to reference/update the block.

To update a DAM file block, enter the block by using the function dc_dam_read(),
then call the function dc_dam_rewrite() [CBLDCDAM ('REWT')] to update the
block.

Call the function dc_dam_write() [CBLDCDAM('WRIT')] when you want to
overwrite a block without entering a block from a DAM file.

(4) Logical shutdown and release of a DAM file
If a logical conflict is found during processing for a DAM file block, the UAP can call
the function dc_dam_hold() [CBLDCDAM('HOLD')] to shut down the DAM file so
that another UAP cannot access the DAM file. The UAP can also call the function
dc_dam_release() [CBLDCDAM ('RLES')] to release the DAM file from the
shutdown state.

The figure below shows the procedure for accessing DAM files in online mode.

4. Facilities for User Data

290

Figure 4-2: Access to DAM files in online mode

4. Facilities for User Data

291

(5) Access from transaction process to DAM file block
If an error occurs during access from a transaction process to a DAM file, call the
function abort() from the UAP in order to terminate the transaction process
abnormally.

Depending on the function that accessed the file previously, an access to a block may
cause return with an error. The result of access (normal return or error return) varies
depending on whether the function for the access is called within the same transaction
or from a different transaction. Tables 4-1 and 4-2 list functions which can access
DAM file blocks if particular functions were previously called.

Table 4-1: Functions able to access the same block in one transaction
(recoverable DAM files)

Previously called function Function to be called Results or error return value

No function for accessing a DAM
file has been called in the transaction

dc_dam_read (input for
reference)

Y

dc_dam_read

(input for reference, lock specified)
Y

dc_dam_read (input for update) Y

dc_dam_rewrite (update) DCDAMER_SEQER (01605)

dc_dam_rewrite (update
cancellation)

DCDAMER_SEQER (01605)

dc_dam_write (output) Y

dc_dam_read (input for reference) dc_dam_read (input for
reference)

Y

dc_dam_read (input for
reference, lock specified)

Y

dc_dam_read (input for update) Y

dc_dam_rewrite (update) DCDAMER_SEQER (01605)

dc_dam_rewrite (update
cancellation)

DCDAMER_SEQER (01605)

dc_dam_write (output) Y

4. Facilities for User Data

292

dc_dam_read (input for reference,
lock specified)

dc_dam_read (input for
reference)

Y

dc_dam_read (input for
reference, lock specified)

Y

dc_dam_read (input for update) Y

dc_dam_rewrite (update) DCDAMER_SEQER (01605)

dc_dam_rewrite (update
cancellation)

DCDAMER_SEQER (01605)

dc_dam_write (output) Y

dc_dam_read (input for update) dc_dam_read (input for
reference)

Y

dc_dam_read (input for
reference, lock specified)

Y

dc_dam_read (input for update) Y

dc_dam_rewrite (update) Y

dc_dam_rewrite (update
cancellation)

Y

dc_dam_write (output) DCDAMER_SEQER (01605)

dc_dam_rewrite (update) dc_dam_read (input for
reference)

Y

dc_dam_read (input for
reference, lock specified)

Y

dc_dam_read (input for update) Y

dc_dam_rewrite (update) DCDAMER_SEQER (01605)

dc_dam_rewrite (update
cancellation)

DCDAMER_SEQER (01605)

dc_dam_write (output) Y

Previously called function Function to be called Results or error return value

4. Facilities for User Data

293

Legend:

Y: No error

dc_dam_rewrite (update
cancellation)

dc_dam_read (input for
reference)

Y

dc_dam_read (input for
reference, lock specified)

Y

dc_dam_read (input for update) Y

dc_dam_rewrite (update) DCDAMER_SEQER (01605)

dc_dam_rewrite (update
cancellation)

DCDAMER_SEQER (01605)

dc_dam_write (output) Y

dc_dam_write (output) dc_dam_read (input for
reference)

Y

dc_dam_read (input for
reference, lock specified)

Y

dc_dam_read (input for update) Y

dc_dam_rewrite (update) DCDAMER_SEQER (01605)

dc_dam_rewrite (update
cancellation)

DCDAMER_SEQER (01605)

dc_dam_write (output) Y

Previously called function Function to be called Results or error return value

4. Facilities for User Data

294

Table 4-2: Functions able to access the same block in different transaction
(recoverable DAM files)

Previously called function Function to be called Results or error return value

No function for accessing a DAM
file has been called in the transaction

dc_dam_read (input for
reference)

Y

dc_dam_read

(input for reference, lock specified)
Y

dc_dam_read (input for update) Y

dc_dam_rewrite (update) DCDAMER_SEQER (01605)

dc_dam_rewrite (update
cancellation)

DCDAMER_SEQER (01605)

dc_dam_write (output) Y

dc_dam_read (input for reference) dc_dam_read (input for
reference)

Y

dc_dam_read (input for
reference, lock specified)

Y

dc_dam_read (input for update) Y

dc_dam_rewrite (update) DCDAMER_SEQER (01605)

dc_dam_rewrite (update
cancellation)

DCDAMER_SEQER (01605)

dc_dam_write (output) Y

dc_dam_read (input for reference,
lock specified)

dc_dam_read (input for
reference)

Y

dc_dam_read (input for
reference, lock specified)

Y

dc_dam_read (input for update) DCDAMER_EXCER (01602)#

dc_dam_rewrite (update) DCDAMER_SEQER (01605)

dc_dam_rewrite (update
cancellation)

DCDAMER_SEQER (01605)

dc_dam_write (output) DCDAMER_EXCER(01602)#

4. Facilities for User Data

295

dc_dam_read (input for update) dc_dam_read (input for
reference)

Y

dc_dam_read (input for
reference, lock specified)

DCDAMER_EXCER (01602)#

dc_dam_read (input for update) DCDAMER_EXCER (01602)#

dc_dam_rewrite (update) DCDAMER_SEQER (01605)

dc_dam_rewrite (update
cancellation)

DCDAMER_SEQER (01605)

dc_dam_write (output) DCDAMER_EXCER(01602)#

dc_dam_rewrite (update) dc_dam_read (input for
reference)

Y

dc_dam_read (input for
reference, lock specified)

DCDAMER_EXCER (01602)#

dc_dam_read (input for update) DCDAMER_EXCER (01602)#

dc_dam_rewrite (update) DCDAMER_SEQER (01605)

dc_dam_rewrite (update
cancellation)

DCDAMER_SEQER (01605)

dc_dam_write (output) DCDAMER_EXCER (01602)#

dc_dam_rewrite (update
cancellation)

dc_dam_read (input for
reference)

Y

dc_dam_read (input for
reference, lock specified)

Y

dc_dam_read (input for update) Y

dc_dam_rewrite (update) DCDAMER_SEQER (01605)

dc_dam_rewrite (update
cancellation)

DCDAMER_SEQER (01605)

dc_dam_write (output) Y

Previously called function Function to be called Results or error return value

4. Facilities for User Data

296

Legend:

Y: No error

#

Waits until released from the lock state if DCDAM_WAIT is set in flags.

(6) Reasons why DAM service functions return with a DCDAMER_PROTO error
(recoverable DAM files)

DAM service functions return with a DCDAMER_PROTO error ("01600" in the case of
COBOL) for the following reasons. The reason varies with the function called:

1. The function dc_rpc_open() (CBLDCRPC('OPEN ') in the case of COBOL)
has not been called.

2. For recoverable DAM files, atomic_update=N is specified in the user service
definition.

3. The UAP is not correctly linked as follows:

• The library (-ltdam) to be used for access to a TAM file through the DAM
service API is incorrectly linked.

• The transaction control object file is incorrectly registered with the resource
manager.

4. The function dc_dam_start() (CBLDCDAM('STRT') in the case of COBOL)
has not been called when the atomic_update = N in the user service definition
(for unrecoverable DAM files).

(7) Referencing the status of a DAM file
The status of a DAM file in use can be referenced in online mode. Call the function
dc_dam_status() [CBLDCDAM('STAT')] to reference the status of a DAM file. This

dc_dam_write (output) dc_dam_read (input for
reference)

Y

dc_dam_read (input for reference
lock specified)

DCDAMER_EXCER (01602)#

dc_dam_read (input for update) DCDAMER_EXCER (01602)#

dc_dam_rewrite (update) DCDAMER_SEQER (01605)

dc_dam_rewrite (update
cancellation)

DCDAMER_SEQER (01605)

dc_dam_write (output) DCDAMER_EXCER (01602)#

Previously called function Function to be called Results or error return value

4. Facilities for User Data

297

function allows referencing of the following information:

• Number of logical file blocks

• Length of a logical file block

• Name of the physical file associated with a logical file

• Current status of a logical file (whether the file is shut down or not)

• Logical file attributes specified in the DAM service definition

• Logical file security attributes specified in the DAM service definition

(a) Note on using the function dc_dam_status()
When the function dc_dam_status() is called, the DAM service locks the file to
acquire the information. Therefore, frequent use of this function may cause lock waits
and reduced throughput. The status of a DAM file should be referenced in online mode
as little as possible.

4.1.5 Access to a DAM file in offline mode (operation from a UAP that
handles offline work)

The contents of a DAM file can be output under the batch environment. Close a
physical file opened in offline mode as soon as processing terminates. After a physical
file is opened, a mixture of input and output operations is not permitted. Before starting
block input or output, close the physical file once. Functions for use offline cannot be
used online (SUP, SPP, MHP). If you use these functions online, operation is not
guaranteed.

(1) Name used when a DAM file is accessed
To open a physical file, use the function dc_dam_iopen() [CBLDCDMB ('OPEN')] in
which the physical file name set upon the file allocation is specified. When the
physical file is opened, the file descriptor is returned. Shut down the file descriptor in
the UAP because the file descriptor is used for processing between when the file is
opened and when the file is closed.

For processing after the file is opened, specify this file descriptor in the function to
access the file. The processing includes block input (dc_dam_get()) and block
output (dc_dam_put()). To close the physical file, use the function
dc_dam_iclose() [CBLDCDMB('CLOSE')] in which the file descriptor is specified.

(2) Inputting/outputting blocks
When a physical file is opened using the function dc_dam_iopen(), its blocks can
be input/output in one of the following two methods:

• Inputting/outputting blocks one after another from the head of a file

Call the function dc_dam_get() [CBLDCDMB('GET ')] to input a block. Call the

4. Facilities for User Data

298

function dc_dam_put() [CBLDCDMB('PUT ')] to output a block. After a
physical file is opened, a combination of input and output operations is not
permitted for UAP processing. Before starting block input or output, close the
physical file once.

• Inputting/outputting arbitrary blocks

To input/output an arbitrary block, specify OVERWRITE in the function
dc_dam_iopen() before a physical file is opened. When the file is opened using
another function, arbitrary blocks cannot be input/output.

Arbitrary blocks can be input/output in one of the following two methods.
Combining these methods is not permitted. Use either of these methods to input/
output blocks:

1. Seek the relative block number of a block to be input/output by calling the
function dc_dam_bseek() [CBLDCDMB('BSEK')].

After the appropriate number is found, use the function dc_dam_get() to
input the block or the function dc_dam_put() to output the block. In this
case, a combination of input and output operations is permitted for
processing after the function dc_dam_iopen() is called and before the
function dc_dam_iclose() is called.

2. Specify the relative block number of a block to be input/output and call either
of the following functions. A combination of input and output operations is
permitted:

• Block input:

dc_dam_dget() [CBLDCDMB('DGET')]

• Block output:

dc_dam_dput() [CBLDCDMB('DPUT')]

Only the former method allows specifying that multiple blocks should be input/output
collectively.

(3) Inputting/outputting multiple blocks collectively
When a physical file is allocated and opened, the number of blocks can be specified as
an input/output unit.

(4) Initializing/recreating blocks
When an input block is output to a physical file, it is possible to specify whether the
area following the block to be output is to be padded with null characters. Specify
INITIALIZE to pad the area following the block to be output with null characters.
Otherwise, specify OVERWRITE. When OVERWRITE is specified, an arbitrary block can
be input/output. In this case, the area following the output block is not updated and
remains as it is.

4. Facilities for User Data

299

Whether to fill the remaining blocks with null characters is specified in the argument
to the function dc_dam_iopen(). This specification will be in effect when a block is
output to the file using the function dc_dam_put() and the file is closed using the
function dc_dam_iclose(). If the UAP is terminated without using the function
dc_dam_iclose(), the remaining blocks are not filled with null characters. To fill
the remaining blocks with null characters, be sure to call the function
dc_dam_iclose().

The figure below shows the procedure for accessing DAM files in offline mode.

4. Facilities for User Data

300

Figure 4-3: Procedure for accessing DAM files in offline mode

4.1.6 Creating physical files (operation from a UAP that handles
offline work)

Physical files are created in offline mode. Allocate a physical file to the OpenTP1 file
system by using the function dc_dam_create() [CBLDCDMB('CRAT')]. Set the
following information upon the allocation:

• Name of the physical file to be allocated

4. Facilities for User Data

301

• Length of a block, and the number of blocks

• Number of blocks to be processed collectively, which is used as an input/output
unit

• File owner, the owner group, and access right from another UAP

When a physical file is allocated, the file descriptor is returned.

The file descriptor is used for processing after the file is opened. The file descriptor
returned by the function dc_dam_create() is available with the following functions:

• dc_dam_put() (Output a block)

• dc_dam_iclose() (Close a file)

The file descriptor returned by the function dc_dam_create() is unavailable with
the following functions and an error is returned if used:

• dc_dam_get() (Input a block)

• dc_dam_dget(), dc_dam_dput() (Input/Output directly a block)

• dc_dam_bseek() (Seek a block)

The figure below shows the procedure for creating a DAM file as the first physical file
in the OpenTP1 file system.

Figure 4-4: Procedure for creating DAM file

4.1.7 Locking DAM files
Suppose that, when a DAM file is being updated, an interrupt for updating the same
file comes from another UAP. Two updates would then be reflected on the same logical
file and would cause inconsistencies in the file. To avoid this, the function to access a
file can contain a specification for locking the file. Through this lock control, data

4. Facilities for User Data

302

consistency can be assured on DAM files even when they are accessed from more than
one UAP.

Transaction range for access to DAM files (recoverable DAM files)

When DAM files are accessed, they can be locked for each transaction branch.
This could cause the following situation: Access from multiple transaction
branches belonging to one global transaction to the same block or file could cause
a lock error. To avoid this, it is also possible to lock files for each global
transaction. To use this type of locking, the DAM service definition for the DAM
files must include the specification that the files be accessed from each global
transaction.

When locking for each global transaction is in effect, access from a transaction
branch to a DAM file will not be parallel, but sequential. This could lower the
transaction performance. If DAM files are to be accessed in parallel from each
transaction branch, locking for each global transaction must not be specified.

(1) Lock modes
Lock conditions for accessing DAM files are called lock modes. The following lock
modes are available:

Lock for reference (shared mode PR Protected Retrieve):

The UAP can only reference files with lock specified. Other transactions are
permitted only to reference the files.

Lock for update (exclusive mode EX EXclusive):

The UAP can reference and update files with lock specified. Other transactions
are not permitted to reference or update the files.

(2) Lock units (recoverable DAM files)
Lock can be specified in units of blocks or files when a DAM file is accessed in online
mode as explained below.

(a) Block-based locks
Lock is enabled in blocks. When a block is referenced, the lock of the shared mode is
enabled. When a block is updated or output, the lock of the exclusive mode is enabled.
The specification of lock for reference can be disabled by specifying no lock in the
option (other UAPs allowed to reference/update blocks). The specification of the
acquired lock is reset when the transaction processing that specified processing for the
DAM file terminates normally.

(b) File-based lock
Each logical file can be locked. If locking of a logical file is specified, the entire file
will be locked during the period from the time the file is opened to the time the
transaction process terminates normally.

4. Facilities for User Data

303

File-based lock can be specified in the following condition:

• Locking for each transaction branch is specified and the logical file was opened
within the transaction range.

File-based lock cannot be specified in the following cases. Use block-based lock.

• The logical file was opened outside the transaction range.

• Locking for each global transaction was specified.

(3) Specification of waiting for a resource to be released from lock
• dc_dam_open()

If an attempt is made to input data from or output data to a block which is locked
by another transaction (lock error), the function for this access will return with an
error or wait until the block is unlocked. This can be specified in the argument to
the function dc_dam_open() for opening the DAM file.

If a DAM file is opened under file-based locks, waiting for release from lock (lock
wait type) cannot be specified.

If a lock error occurs when a file is opened by using the function
dc_dam_open(), the function unconditionally returns with the error.

• dc_dam_read() and dc_dam_write()

The functions dc_dam_read() and dc_dam_write() can specify whether,
when a lock error occurs, it will return or wait until the resource is unlocked. If
this specification is omitted, the value specified in the function dc_dam_open()
is assumed.

If wait until unlocking is specified and a deadlock or timeout occurs, deadlock
information will be output after the function waiting for an unlocked resource
returns with an error. If the function returns with a deadlock or timeout error,
acquire the synchronization point of the transaction and free all the acquired
resources.

(4) Lock in online mode and offline mode
A DAM file being used in online mode cannot be accessed in offline mode. To access
a DAM file, being used in online mode, in offline mode, use the damhold and damrm
command to switch the online mode to the offline mode. Then, use the damadd
command to switch the DAM file back into the online mode.

Even in offline mode, different UAPs cannot access one DAM file at the same time.
The UAP process that has opened a DAM file uses it exclusively until it is closed.

4.1.8 Access to unrecoverable DAM files
You can create a DAM file which does not guarantee consistency management or error

4. Facilities for User Data

304

recovery through transactions. This DAM file is called an unrecoverable DAM file.
Unrecoverable DAM file blocks can be updated using the functions
dc_dam_write() and dc_dam_rewrite() instead of transaction processing.

(1) Definition of unrecoverable DAM files
To define an unrecoverable DAM file, specify the definition command damfile with
the -n option in the DAM service definition.

(2) Access to unrecoverable DAM files
Before accessing a file, call the function dc_dam_start() [CBLDCDAM ('STRT')].
When completing the file access, call the function dc_dam_end() [CBLDCDAM ('END
')]. When the function dc_dam_start() is called, the function dc_dam_end()
must be called after the file access is terminated.

An unrecoverable DAM file is accessed using a DAM service function. An
unrecoverable DAM file can be accessed just like a recoverable DAM file.

The file descriptor returned when a file is opened remains valid until one of the
following events occurs:

• Logical file is closed

• Use of an unrecoverable DAM file (a call to the function dc_dam_end()) is
terminated

• UAP process is terminated

(3) Action to be taken in case of file access error
Even if an error occurs during the access to an unrecoverable DAM file, the file data
error cannot be recovered.

The figure below shows the procedure for accessing an unrecoverable DAM file.

4. Facilities for User Data

305

Figure 4-5: Procedure for accessing unrecoverable DAM file

(4) Relationship between functions for accessing unrecoverable DAM files
Depending on the function that accessed the file previously, an access to a block even
from the same UAP process may cause return with an error. The result of access
(normal return or error return) varies depending on whether the function for the access
is called from the same UAP or from a different UAP. Tables 4-3 and 4-4 list functions
which can access DAM file blocks if particular functions were previously called.

Table 4-3: Functions able to access the same block in one UAP (unrecoverable
DAM files)

Previously called function Function to be called Results or error return
value

No function for accessing a
DAM file has been called after
the function dc_dam_start()
was called

c_dam_read (input for reference) Y

dc_dam_read (input for reference, lock
specified)

Y

c_dam_read (input for update) Y

c_dam_rewrite (update) DCDAMER_SEQER (01605)

dc_dam_rewrite (update cancellation) DCDAMER_SEQER (01605)

dc_dam_write (output) Y

4. Facilities for User Data

306

dc_dam_read (input for
reference)

dc_dam_read (input for reference) Y

dc_dam_read (input for reference, lock
specified)

Y

dc_dam_read (input for update) Y

dc_dam_rewrite (update) DCDAMER_SEQER (01605)

dc_dam_rewrite (update cancellation) DCDAMER_SEQER (01605)

dc_dam_write (output) Y

dc_dam_read (input for
reference, lock specified)

dc_dam_read (input for reference) Y

dc_dam_read (input for reference, lock
specified)

Y

dc_dam_read (input for update) Y

dc_dam_rewrite (update) DCDAMER_SEQER (01605)

dc_dam_rewrite (update cancellation) DCDAMER_SEQER (01605)

dc_dam_write (output) Y

dc_dam_read (input for
update)

dc_dam_read (input for reference) Y

dc_dam_read (input for reference, lock
specified)

Y

dc_dam_read (input for update) Y

dc_dam_rewrite (update) Y

dc_dam_rewrite (update cancellation) Y

dc_dam_write (output) Y

dc_dam_rewrite (update) dc_dam_read (input for reference) Y

dc_dam_read (input for reference, lock
specified)

Y

dc_dam_read (input for update) Y

dc_dam_rewrite (update) DCDAMER_SEQER (01605)

dc_dam_rewrite (update cancellation) DCDAMER_SEQER (01605)

dc_dam_write (output) Y

Previously called function Function to be called Results or error return
value

4. Facilities for User Data

307

Legend:

Y: No error

Table 4-4: Functions able to access the same block in different UAP
(unrecoverable DAM files)

dc_dam_rewrite (update
cancellation)

dc_dam_read (input for reference) Y

dc_dam_read (input for reference, lock
specified)

Y

dc_dam_read (input for update) Y

dc_dam_rewrite (update) DCDAMER_SEQER (01605)

dc_dam_rewrite (update cancellation) DCDAMER_SEQER (01605)

dc_dam_write (output) Y

dc_dam_write (output) dc_dam_read (input for reference) Y

dc_dam_read (input for reference, lock
specified)

Y

dc_dam_read (input for update) Y

dc_dam_rewrite (update) DCDAMER_SEQER (01605)

dc_dam_rewrite (update cancellation) DCDAMER_SEQER (01605)

dc_dam_write (output) Y

Previously called function Function to be called Results or error return value

No function for accessing a
DAM file has been called after
the function dc_dam_start()
was called

dc_dam_read (input for reference) Y

dc_dam_read (input for reference, lock
specified)

Y

dc_dam_read (input for update) Y

dc_dam_rewrite (update) DCDAMER_SEQER (01605)

dc_dam_rewrite (update cancellation) DCDAMER_SEQER (01605)

dc_dam_write (output) Y

Previously called function Function to be called Results or error return
value

4. Facilities for User Data

308

dc_dam_read (input for
reference)

dc_dam_read (input for reference) Y

dc_dam_read (input for reference, lock
specified)

Y

dc_dam_read (input for update) Y

dc_dam_rewrite (update) DCDAMER_SEQER (01605)

dc_dam_rewrite (update cancellation) DCDAMER_SEQER (01605)

dc_dam_write (output) Y

dc_dam_read (input for
reference, lock specified)

dc_dam_read (input for reference) Y

dc_dam_read (input for reference, lock
specified)

Y

dc_dam_read (input for update) Y

dc_dam_rewrite (update) DCDAMER_SEQER (01605)

dc_dam_rewrite (update cancellation) DCDAMER_SEQER (01605)

dc_dam_write (output) Y

dc_dam_read (input for
update)

dc_dam_read (input for reference) Y

dc_dam_read (input for reference, lock
specified)

DCDAMER_EXCER (01602)#

dc_dam_read (input for update) DCDAMER_EXCER (01602)#

dc_dam_rewrite (update) DCDAMER_SEQER (01605)

dc_dam_rewrite (update cancellation) DCDAMER_SEQER (01605)

dc_dam_write (output) DCDAMER_EXCER (01602)#

dc_dam_rewrite

(update)
dc_dam_read (input for reference) Y

dc_dam_read (input for reference, lock
specified)

Y

dc_dam_read (input for update) Y

dc_dam_rewrite (update) DCDAMER_SEQER (01605)

dc_dam_rewrite (update cancellation) DCDAMER_SEQER (01605)

dc_dam_write (output) Y

Previously called function Function to be called Results or error return value

4. Facilities for User Data

309

Legend:

Y: No error

#

Waits until released from the lock state if DCDAM_WAIT is set in flags.

(5) Locking unrecoverable DAM files
As in the case of recoverable DAM files, unrecoverable DAM files can also be locked.
The following gives an explanation of locking unrecoverable DAM files. For
comparison between recoverable and unrecoverable DAM files, see Item (6) in 4.1.8
Access to unrecoverable DAM files.

(a) Unrecoverable DAM file locking range
Unrecoverable DAM files can be accessed regardless of the transaction processing
range.

(b) Lock modes
The lock modes for unrecoverable DAM files are the same as for recoverable DAM
files. For details, see (1) in 4.1.7 Locking DAM files.

dc_dam_rewrite (update
cancellation)

dc_dam_read (input for reference) Y

dc_dam_read (input for reference, lock
specified)

Y

dc_dam_read (input for update) Y

dc_dam_rewrite (update) DCDAMER_SEQER (01605)

dc_dam_rewrite (update cancellation) DCDAMER_SEQER (01605)

dc_dam_write (output) Y

dc_dam_write (output) dc_dam_read (input for reference) Y

dc_dam_read (input for reference lock
specified)

Y

dc_dam_read (input for update) Y

dc_dam_rewrite (update) DCDAMER_SEQER (01605)

dc_dam_rewrite (update cancellation) DCDAMER_SEQER (01605)

dc_dam_write (output) Y

Previously called function Function to be called Results or error return value

4. Facilities for User Data

310

(c) Lock units
The lock units for unrecoverable DAM files are the same as for recoverable DAM
files. For details, see (2) in 4.1.7 Locking DAM files.

(d) Specification of waiting for a resource to be released from lock
The specification of waiting for a resource to be released from lock in the case of
unrecoverable DAM files is the same as in the case of recoverable DAM files except
for the following point:

• The lock wait type specified in the function dc_dam_open() includes the
specification of handling this function itself. If a lock error occurs when a
recoverable DAM file is opened by using the function dc_dam_open(), the
function unconditionally returns with an error. In the case of an unrecoverable
DAM file, the function can proceed according to the lock wait type specified in
its argument.

For details, see (3) in 4.1.7 Locking DAM files.

(6) Comparison between recoverable and unrecoverable DAM files
The following explains the comparison between recoverable and unrecoverable DAM
files. Table 4-5 lists the differences in file access. Table 4-6 lists the differences in the
locking range upon file access.

Table 4-5: Differences in access to recoverable and unrecoverable DAM files

DAM service
function

Conditions for calling function DAM file types and access positions

Recoverable DAM file Unrecove
rable

DAM fileOutside
transaction
processing

range

Within
transaction
processing

range

dc_dam_open File-based lock, lock wait N Y Y

File-based lock, immediate return N Y Y

Block-based locks, lock wait Y Y Y

Block-based locks, immediate
return

Y Y Y

dc_dam_close Open a file within the transaction
processing range

Y Y Y

Open a file outside the transaction
processing range

-- N Y

dc_dam_read Input for reference, no lock Y Y Y

4. Facilities for User Data

311

Legend:

Y: Can be used for DAM files.

N: Returns with an error if called for DAM files.

--: Cannot be used for DAM files.

Table 4-6: Differences in locking range upon access to recoverable and
unrecoverable DAM files

Input for reference, lock specified N Y Y

Input for update, lock specified N Y Y

dc_dam_rewri
te

Output for update N Y Y

Update cancellation N Y Y

dc_dam_write No condition N Y Y

Lock unit# and function to be called Lock
mode

Recoverable DAM file Unrecoverable DAM
file

File-based lock dc_dam_open EX • Locked until
termination of
synchronization point
processing

• Locked until
termination of
processing through
dc_dam_close() or
dc_dam_end()

DAM service
function

Conditions for calling function DAM file types and access positions

Recoverable DAM file Unrecove
rable

DAM fileOutside
transaction
processing

range

Within
transaction
processing

range

4. Facilities for User Data

312

#

This lock unit means that specified in the function dc_dam_open(). When
file-based lock is specified in this function, the lock units specified in the
functions dc_dam_read() and dc_dam_write() are invalid.

4.1.9 Interchangeability of DAM and TAM services
DAM file service functions can be used to access TAM file records. See 4.2.9
Interchangeability of TAM and DAM services for details.

Block-based
locks

dc_dam_read
(reference)

PR • Locked until
termination of
synchronization point
processing

• Locked until
termination of
processing through
dc_dam_read()

dc_dam_read (update) EX • Locked until
termination of
synchronization point
processing

• Locked until
termination of
processing through
dc_dam_rewrite()
(cancellation)

• Locked until
termination of
processing through
dc_dam_rewrite()
(update or
cancellation)

dc_dam_write EX • Locked until
termination of
synchronization point
processing

• Locked until
termination of
processing through
dc_dam_write()

Lock unit# and function to be called Lock
mode

Recoverable DAM file Unrecoverable DAM
file

4. Facilities for User Data

313

4.2 TAM file service (TP1/FS/Table Access)

This section explains TAM files which can be used as user files dedicated to OpenTP1.
The use of TAM files allows high-speed access to direct files.

Before TAM files can be used, TP1/FS/Table Access must be installed in the system
and the basic OpenTP1 facility must be TP1/Server Base. The TAM file service is
unavailable with TP1/LiNK.

4.2.1 TAM file configuration
A TAM file comprises data items. Each data item is called a record. The TAM file keys
and records are loaded into the memory. Fast access to a file from a UAP is enabled by
accessing the key in the memory instead of accessing the actual file. The index part
and data part are called a TAM table.

A TAM table consists of the following two parts:

• Index part which contains the keys corresponding to records

• Data part which contains records

(1) Index types of TAM tables
Index types are categorized into a hash format and a tree format. A method of
corresponding keys to records is different between the hash format and the tree format.
When accessing a TAM table, verify the index type of the TAM table, then create a
UAP. If access is made to a TAM table of a different index type, the UAP TAM access
function returns with an error.

(2) Environment for access to TAM tables
TAM tables can be accessed only in online environment. TAM tables cannot be
accessed in offline environment. To access a TAM table from a UAP, use the access
mode specified in the TAM service definition. If another access mode is used, the UAP
TAM access function returns with an error.

The figure below shows the TAM file configuration.

4. Facilities for User Data

314

Figure 4-6: TAM file configuration

4.2.2 Conditions for accessing a TAM table
Only the TAM table of a TAM file which exists at the node (machine) of the
corresponding transaction branch can be accessed. Processing for TAM tables of each
node is done independently of each other. Thus, TAM table names are managed for
each node. When accessing a TAM table in a global transaction, use the table name in
the node.

(1) Access to a TAM table from a UAP and transaction functions
The TAM table open and close functions can be used regardless of whether a
transaction has been started. However, functions other than the TAM file open and
close functions (e.g., table reference and update functions) must be used after a
transaction is started. If a TAM file was opened before a transaction was started,
terminate all the transactions started after the TAM file was opened, then close the
TAM file.

(2) Access to a TAM file and RPC modes
To access a TAM file, all the RPC modes of the global transactions must be of
synchronous response type. Operation is not ensured if a TAM table is accessed from

4. Facilities for User Data

315

an asynchronous-response-type RPC or nonresponse-type RPC.

4.2.3 Name used when a TAM table is accessed
A TAM table is opened with the TAM table name. When a TAM table is opened, the
table descriptor is returned as the name for identifying the table. For processing after
the TAM table is opened, specify the table descriptor in the function to access the table.
The processing includes record input, update, addition, and deletion.

4.2.4 Procedure for accessing a TAM table
(1) Opening TAM tables

When a UAP in C language is used, use the function dc_tam_open() to open a TAM
table.# Call the function dc_tam_open() for each UAP.

A TAM table can be opened both inside and outside the transaction range. However, if
a TAM table is opened before a transaction is started, lock cannot be specified for the
table. See 4.2.6 Lock for TAM tables for details on lock for TAM files.

To close a TAM table, specify the table descriptor in the corresponding function.# Keep
the table descriptor in the UAP because the table descriptor is used for processing after
the table is opened.

#

When the COBOL language is used for UAP coding, there is no need to open and
close the TAM table. The TAM table is opened when it is accessed. The TAM
table is closed when the transaction is completed.

(2) Procedures for record input/update/addition/deletion
To input a TAM table record for reference or update processing, call the function
dc_tam_read() [CBLDCTAM('FxxR')('FxxU')('VxxR')('VxxU')]. At this time,
whether to permit reference or update processing from another global transaction can
be specified.

To update a TAM table record, input the record with the function dc_tam_read(),
then call the function dc_tam_rewrite() [CBLDCTAM('MFY ')('MFYS')('STR
')('WFY ')('WFYS')('YTR ')]. (Update on the assumption of input)

To overwrite an existing record or add a new record instead of inputting a record from
the TAM table, call the function dc_tam_write() [CBLDCTAM('MFY
')('MFYS')('STR ')('WFY ')('WFYS')('YTR ')].

To delete a record from the TAM table, call the function dc_tam_delete()
[CBLDCTAM('ERS ')('ERSR')('BRS ')('BRSR')]. The record to be deleted can be
saved in the buffer of any address. Specify the save destination address in the function
dc_tam_delete().

If beginnings of the buffer area for the function dc_tam_read() or

4. Facilities for User Data

316

dc_tam_delete() and the data area for the function dc_tam_rewrite() or
dc_tam_write() are specified on 4-byte boundaries, higher-speed access can be
achieved than when such specifications are not given.

(3) Inputting/outputting multiple records collectively
Multiple key values (records) can be input/output collectively. When inputting/
outputting a TAM table, specify an access key value as a structure in the corresponding
function. More than one structure can be specified.

(4) Record input according to index types
When a record is input from a TAM table, the retrieval type to be specified depends on
the index type.

With the hash format
First retrieval and NEXT retrieval are available. These retrieval methods enable you to
retrieve all records. Call the first dc_tam_read() (with the first record specified),
then input the first record. The records following the key value are input in the NEXT
retrieval sequence specified in the dc_tam_read().

You can use the all-record retrieval method to delete all records from a TAM table. To
delete all records from a TAM table:

1. Use first retrieval to acquire the first record.

2. Use NEXT retrieval with the first record specified as the key, to acquire the next
record.

3. Delete the first record.

4. Use NEXT retrieval with the currently acquired record specified as the key, to
acquire the next record.

5. Delete the record that you specified as the key in step 4.

6. Repeat steps 4 and 5 until there is no next record.

7. When there is no next record, delete the record that you specified as the key in the
last NEXT retrieval.

This method requires you to specify a key indicating the start position for retrieval.
Thus the system does not search the empty hash area extending from the start to the
position immediately preceding the specified key. This makes for an efficient retrieval
process.

The following method uses a large proportion of the CPU's capacity, so the response
may be delayed.

1. Use first retrieval to acquire the first record.

2. Delete the first record.

4. Facilities for User Data

317

3. Repeat steps 1 and 2 until there are no more records.

First retrieval searches the hash area from the start. Each time you execute retrieval,
this method searches the record from the start, including the hash area that became
empty when you deleted the records in the previous processes. It is therefore an
inefficient method and the response may be delayed.

With the tree format
Retrieval of =, <=, >=, <, and > is available for the specified key value. Input the record
corresponding to the key value. To input the records of multiple keys in a range,
specify =, <=, >=, <, and > so that records satisfying the conditions can be input
subsequently.

(5) Closing TAM tables
Use the function dc_tam_close() to close TAM tables.

If a TAM table was opened in the transaction range, close the TAM table in the
transaction. If the transaction was terminated without the close function called,
OpenTP1 closes the TAM table.

If a TAM table was opened outside the transaction range, close the TAM table outside
the transaction. If the function dc_tam_close() is called in the transaction, the
function returns with an error.

The figure below shows the procedures for accessing TAM tables.

4. Facilities for User Data

318

Figure 4-7: Access to TAM tables

(6) Acquiring TAM table status
Use the function dc_tam_get_inf() [CBLDCTAM('GST ')] to acquire the status of
a TAM table in online mode. The function dc_tam_get_inf() can be called both

4. Facilities for User Data

319

inside and outside the transaction range. The function dc_tam_get_inf() returns
the following statuses of the TAM table:

• Open status

• Close status

• Logical shutdown status

• Shutdown status due to an error

The function dc_tam_get_inf() returns the open status when the UAP that called
the function dc_tam_get_inf() has not opened the TAM table, but another UAP
has opened the specified TAM table.

(7) Acquiring TAM table information
Use the function dc_tam_status() [CBLDCTAM('INFO')] to acquire the
information of a TAM table in online mode. The function dc_tam_status() can be
called both inside and outside the transaction range. The function dc_tam_status()
returns the following information of the TAM table:

• TAM file name

• TAM table status

• Number of records in use

• Maximum number of records

• Index type

• Access type

• Loading opportunity

• TAM record length

• Key length

• Key start position

• Security attribute

4.2.5 Relationship between transactions and TAM access
If a TAM access error occurs in a transaction branch, call the abort() from the UAP
in order to terminate the global transaction process abnormally.

Even if access is made to records in the same global transaction, an error might be
returned upon access to a record. This is caused by the function called for the previous
access. Also, even when access is made to the same record, the access results are
different between when the record belongs to the same global transaction and when the
record belongs to a different global transaction. Tables 4-7 and 4-8 show the

4. Facilities for User Data

320

processing results when a function was called more than once for the same record.

Table 4-7: Processing results when function was called more than once for the
same record (in one global transaction)

Previously called function Function to be called Results or error return value

No function for accessing a
TAM table has been called in
the transaction

dc_tam_read (input for reference) Y

dc_tam_read (input for reference, lock
specified)

Y

dc_tam_read (input for update) Y

dc_tam_read_cancel (input
cancellation)

DCTAMER_SEQENCE (01732)

dc_tam_rewrite (update on the
assumption of input)

DCTAMER_SEQENCE (01732)

dc_tam_write (update) Y

dc_tam_write (addition) Y

dc_tam_delete (deletion) Y

dc_tam_read (input for
reference)

dc_tam_read (input for reference) Y

dc_tam_read (input for reference, lock
specified)

Y

dc_tam_read (input for update) Y

dc_tam_read_cancel (input
cancellation)

DCTAMER_SEQENCE (01732)

dc_tam_rewrite (update on the
assumption of input)

DCTAMER_SEQENCE (01732)

dc_tam_write (update) Y

dc_tam_write (addition) DCTAMER_EXKEY (01735)

dc_tam_delete (deletion) Y

4. Facilities for User Data

321

dc_tam_read (input for
reference, lock specified)

dc_tam_read (input for reference) Y

dc_tam_read (input for reference, lock
specified)

Y

dc_tam_read (input for update) Y

dc_tam_read_cancel (input
cancellation)

Y#1

dc_tam_rewrite (update on the
assumption of input)

DCTAMER_SEQENCE (01732)

dc_tam_write (update) Y

dc_tam_write (addition) DCTAMER_EXKEY (01735)

dc_tam_delete (deletion) Y

dc_tam_read (input for
update)

dc_tam_read (input for reference) Y

dc_tam_read (input for reference, lock
specified)

Y

dc_tam_read (input for update) Y

dc_tam_read_cancel (input
cancellation)

Y

dc_tam_rewrite (update on the
assumption of input)

Y

dc_tam_write (update) Y

dc_tam_write (addition) DCTAMER_EXKEY (01735)

dc_tam_delete (deletion) Y

Previously called function Function to be called Results or error return value

4. Facilities for User Data

322

dc_tam_read_

cancel (input cancellation)
dc_tam_read (input for reference) Y

dc_tam_read (input for reference, lock
specified)

Y

dc_tam_read (input for update) Y

dc_tam_read_cancel (input
cancellation)

DCTAMER_SEQENCE (01732)#2

dc_tam_rewrite (update on the
assumption of input)

DCTAMER_SEQENCE (01732)

dc_tam_write (update) Y

dc_tam_write (addition) DCTAMER_EXKEY (01735)

dc_tam_delete (deletion) Y

dc_tam_rewrite (update on
the assumption of input)

dc_tam_read (input for reference) Y

dc_tam_read (input for reference, lock
specified)

Y

dc_tam_read (input for update) Y

dc_tam_read_cancel (input
cancellation)

DCTAMER_EXREWRT (01734)

dc_tam_rewrite (update on the
assumption of input)

Y

dc_tam_write (update) Y

dc_tam_write (addition) DCTAMER_EXKEY (01735)

dc_tam_delete (deletion) Y

Previously called function Function to be called Results or error return value

4. Facilities for User Data

323

Legend:

Y: No error

DCTAMER_NOREC (01731): The specified record is not found.

DCTAMER_SEQENCE (01732): The function dc_tam_read() has not been
called.

DCTAMER_EXREWRT (01734): The table descriptor was updated by the
dc_tam_rewrite().

DCTAMER_EXKEY (01735): Addition is not permitted because there is the record
of the key value specified in the function.

dc_tam_write (update or
addition)

dc_tam_read (input for reference) Y

dc_tam_read (input for reference, lock
specified)

Y

dc_tam_read (input for update) Y

dc_tam_read_cancel (input
cancellation)

DCTAMER_SEQENCE (01732)

dc_tam_rewrite (update on the
assumption of input)

DCTAMER_SEQENCE (01732)

dc_tam_write (update) Y

dc_tam_write (addition) DCTAMER_EXKEY (01735)

dc_tam_delete (deletion) Y

dc_tam_delete (deletion) dc_tam_read (input for reference) DCTAMER_NOREC (01731)

dc_tam_read (input for reference, lock
specified)

DCTAMER_NOREC (01731)

dc_tam_read (input for update) DCTAMER_NOREC (01731)

dc_tam_read_cancel (input
cancellation)

DCTAMER_NOREC (01731)

dc_tam_rewrite (update on the
assumption of input)

DCTAMER_NOREC (01731)#3

dc_tam_write (update) DCTAMER_NOREC (01731)

dc_tam_write (addition) Y

dc_tam_delete (deletion) DCTAMER_NOREC (01731)

Previously called function Function to be called Results or error return value

4. Facilities for User Data

324

#1

DCTAMER_EXREWRT or DCTAMER_EXWRITE is returned in the following case:

Before the function dc_tam_read() (input for reference, lock specified) is
called, the function dc_tam_rewrite() or the function dc_tam_write() has
been called to update or add a record.

#2

DCTAMER_EXWRITE is returned in the following case:

Before the function dc_tam_read_cancel() (input cancellation) is called, the
function dc_tam_rewrite() or the function dc_tam_write() has been called
to update or add a record.

#3

DCTAMER_SEQENCE is returned in the following case:

Before the function dc_tam_delete() (deletion) is called, the function
dc_tam_write() has been called to add a record.

Table 4-8: Processing results when function was called more than once for the
same record (in a different global transaction)

Previously called function Function to be called Results or error return value

No function for accessing a
TAM table has been called in
the transaction.

dc_tam_read (input for reference) Y

dc_tam_read (input for reference, lock
specified)

Y

dc_tam_read (input for update) Y

dc_tam_read_cancel (input
cancellation)

--#1

dc_tam_rewrite (update on the
assumption of input)

--#1

dc_tam_write (update) Y

dc_tam_write (addition) Y

dc_tam_delete (deletion) Y

4. Facilities for User Data

325

dc_tam_read (input for
reference)

dc_tam_read (input for reference) Y

dc_tam_read (input for reference, lock
specified)

Y#2

dc_tam_read (input for update) Y#2

dc_tam_read_cancel (input
cancellation)

--#1

dc_tam_rewrite (update on the
assumption of input)

--#1

dc_tam_write (update) Y#2

dc_tam_write (addition) DCTAMER_EXKEY (01735)

dc_tam_delete (deletion) Y#2

dc_tam_read (input for
reference, lock specified)

dc_tam_read (input for reference) Y

dc_tam_read (input for reference, lock
specified)

Y#2

dc_tam_read (input for update) DCTAMER_LOCK (01736)#3

dc_tam_read_cancel (input
cancellation)

--#1

dc_tam_rewrite (update on the
assumption of input)

--#1

dc_tam_write (update) DCTAMER_LOCK (01736)#3

dc_tam_write (addition) DCTAMER_LOCK (01736)#3

dc_tam_delete (deletion) DCTAMER_LOCK (01736)#3

Previously called function Function to be called Results or error return value

4. Facilities for User Data

326

dc_tam_read (input for
reference)

dc_tam_read (input for reference) Y

dc_tam_read (input for reference, lock
specified)

DCTAMER_LOCK (01736)#3

dc_tam_read (input for update) DCTAMER_LOCK (01736)#3

dc_tam_read_cancel (input
cancellation)

--#1

dc_tam_rewrite (update on the
assumption of input)

--#1

dc_tam_write (update) DCTAMER_LOCK (01736)#3

dc_tam_write (addition) DCTAMER_LOCK (01736)#3

dc_tam_delete (deletion) DCTAMER_LOCK (01736)#3

dc_tam_read_cancel (input
cancellation)

dc_tam_read (input for reference) Y

dc_tam_read (input for reference, lock
specified)

Y#4, #5

dc_tam_read (input for update) Y#4, #5

dc_tam_read_cancel (input
cancellation)

--#1

dc_tam_rewrite (update on the
assumption of input)

--#1

dc_tam_write (update) Y#4, #5

dc_tam_write (addition) DCTAMER_LOCK (01736)#3

dc_tam_delete (deletion) DCTAMER_LOCK (01736)#3

Previously called function Function to be called Results or error return value

4. Facilities for User Data

327

dc_tam_rewrite (update on
the assumption of input)

dc_tam_read (input for reference) Y

dc_tam_read (input for reference, lock
specified)

DCTAMER_LOCK (01736)#3

dc_tam_read (input for update) DCTAMER_LOCK (01736)#3

dc_tam_read_cancel (input
cancellation)

--#1

dc_tam_rewrite (update on the
assumption of input)

--#1

dc_tam_write (update) DCTAMER_LOCK (01736)#3

dc_tam_write (addition) DCTAMER_LOCK (01736)#3

dc_tam_delete (deletion) DCTAMER_LOCK (01736)#3

dc_tam_write (update, or
addition)

dc_tam_read (input for reference) Y

dc_tam_read (input for reference, lock
specified)

DCTAMER_LOCK(01736)#3

dc_tam_read (input for update) DCTAMER_LOCK (01736)#3

dc_tam_read_cancel (input
cancellation)

--#1

dc_tam_rewrite (update on the
assumption of input)

--#1

dc_tam_write (update) DCTAMER_LOCK (01736)#3

dc_tam_write (addition) DCTAMER_LOCK (01736)#3

dc_tam_delete (deletion) DCTAMER_LOCK (01736)#3

Previously called function Function to be called Results or error return value

4. Facilities for User Data

328

Legend:

Y: No error

--: Not applicable

DCTAMER_EXKEY (01735): Addition is not permitted because there is the record of the
key value specified in the function.

DCTAMER_LOCK (01736): An lock error occurred.

#1: Another processing is executed in a different transaction.

#2: If another global transaction has added a record to or deleted a record from the
same TAM table, DCTAMER_LOCK (01736) is returned. If DCTAM_WAIT is specified as
the lock wait type, the wait-for release mode goes into effect.

#3: When DCTAM_WAIT is specified for the lock wait type, the function waits until the
record is released from lock.

#4: DCTAMER_LOCK (01736) is returned if a record has been added to or deleted from
the same TAM table in another transaction. However, when DCTAM_WAIT is specified
for the lock wait type, the function waits until the record is released from lock.

#5: DCTAMER_LOCK (01736) is returned in the following case:

• Before the function dc_tam_read_cancel() is called, the function
dc_tam_rewrite() or the function dc_tam_write() has been called to
update or add a record in another global transaction. However, when
DCTAM_WAIT is specified for the lock wait type, the function waits until the
record is released from lock.

dc_tam_delete (deletion) dc_tam_read (input for reference) Y

dc_tam_read (input for reference, lock
specified)

DCTAMER_LOCK (01736)#3

dc_tam_read (input for update) DCTAMER_LOCK (01736)#3

dc_tam_read_cancel (input
cancellation)

--#1

dc_tam_rewrite (update on the
assumption of input)

--#1

dc_tam_write (update) DCTAMER_LOCK (01736)#3

dc_tam_write (addition) DCTAMER_LOCK (01736)#3

dc_tam_delete (deletion) DCTAMER_LOCK (01736)#3

Previously called function Function to be called Results or error return value

4. Facilities for User Data

329

4.2.6 Lock for TAM tables
If another UAP starts TAM table update processing while a TAM file is being updated,
the results of both update processing are concurrently reflected into one record.
Consequently, the table contents include conflicting information. To prevent this
problem, specify lock in the function to access the TAM file. Specifying lock ensures
that the data items accessed from UAPs match each other.

Lock for DAM files is managed in global transactions.

(1) Lock modes
Lock conditions for accessing TAM tables are called lock modes. The following lock
modes are available:

Lock for reference (shared mode PR Protected Retrieve):

Only records with lock specified can be referenced. Only reference from another
global transaction is permitted.

Lock for update (exclusive mode EX EXclusive):

Records or tables with lock specified can be referenced and updated. Reference
or update processing from another global transaction is not permitted.

(2) Lock units
Lock can be specified in units of records or tables when a TAM table is accessed in
online mode as explained below.

(a) Record-based lock
Lock is enabled in records. When a record is input for reference processing, specify
whether to enable lock for reference or not (other UAPs allowed to do update
processing). When a record is input or updated for update processing, specify lock for
update. The acquired lock is reset when the transaction that specified processing for
the TAM table terminates normally.

(b) Table-based lock
Lock is enabled in tables. When a TAM table is opened under tables-based lock or
when a record is added/deleted, specify lock for update for the entire TAM table. The
acquired lock is reset when the transaction that specified processing for the TAM table
terminates normally. If tables are opened before a transaction is started, tables-based
lock cannot be specified for the tables.

(3) Specification for awaiting unlocking of resources
If an attempt is made to access a TAM table which is locked by another UAP (lock
error), the function for this access will return with an error or wait until the TAM table
is unlocked. This can be specified in the argument to the function.

4. Facilities for User Data

330

If wait until unlocking is specified and a deadlock or timeout occurs, deadlock
information will be output after the function waiting for an unlocked TAM table
returns with an error. If the function returns with a deadlock or timeout error, acquire
the synchronization point of the transaction and free all the acquired resources.

For UAPs written in COBOL, use either of the following methods to specify whether
the function for access will wait until the TAM table is unlocked:

• Operand tam_cbl_level in the TAM service definition

• Setting of data-name-I for the CBLDCTAM

See the manuals OpenTP1 System Definition and OpenTP1 Programming Reference
COBOL Language on how to specify for COBOL UAPs whether the function for
access will wait until the resource is unlocked.

The table below indicates how lock specifications in TAM service functions are related
to actual lock statuses. UAPs written in COBOL lock or unlock resources by using API
functions for record access.

Table 4-9: Lock specifications in TAM service functions and actual lock statuses

Legend:

--: Not applicable

Value assigned to flags on TAM service function TAM table lock TAM record lock

dc_tam_open Table-based lock Update lock --#1

Record-based lock A record is locked using a function for
access to the record.

dc_tam_read For referencing No lock -- --

Lock possible Lock for
referencing#2

Lock for
referencing

For update Lock for
referencing#2

Update lock

dc_tam_rewrite Lock for
referencing#3

Update lock#3

dc_tam_write For update Lock for
referencing#2

Update lock

Either for update or addition or for addition Update lock --#1

dc_dam_delete Update lock --#1

4. Facilities for User Data

331

#1

Since the entire table is locked for updating, it is inaccessible to other
transactions.

#2

A table of the reference type or the update type without permission for addition
or deletion cannot be locked in this mode if "unlocked" is specified as the table
lock mode in the TAM service definition.

#3

The resource is already made available by the function dc_tam_read() for
update.

4.2.7 TAM table access facility without table-based lock
TP1/FS/Table Access 05-00 or earlier locks the appropriate individual tables when it
adds or deletes records. This facility is referred to as the TAM table access facility with
table-based lock. For information about the locking of individual tables, see 4.2.6 Lock
for TAM tables.

TP1/FS/Table Access 05-01 or later allows access to TAM table records while locking
the appropriate records without locking entire tables. This facility is referred to as the
TAM table access facility without table-based lock.

(1) How to use the TAM table access facility without table-based lock
To use the TAM table access facility without table-based lock, specify the update type
that allows addition and deletion without locking tables in the TAM table access mode.
The access mode must be specified in the tamtable command definition clause for
the TAM service definition or the tamadd command. For information about the
tamtable command definition clause, see the manual OpenTP1 System Definition.
For information about the tamadd command, see the manual OpenTP1 Operation.

The same OpenTP1 system can include both TAM tables that are accessed using the
TAM table access facility without table-based lock and TAM tables that are accessed
using the TAM table access facility with table-based lock.

You do not need to recreate existing TAM files using the tamcre command before
using the TAM table access facility without table-based lock.

(2) Lock
(a) Locking and unlocking resources

The dc_tam_open function and record access functions (dc_tam_read,
dc_tam_write, and dc_tam_delete) lock resources. Similarly, UAPs written in
COBOL and used to access records also lock resources.

Resources that have been locked are unlocked when the TAM table access transaction

4. Facilities for User Data

332

ends.

(b) The lock setting of the TAM service function used to activate the TAM
table access facility without table-based lock versus the actual lock
status
The table below indicates the actual lock status, as compared to the lock setting of the
TAM service function used to activate the TAM table access facility without
table-based lock.

Table 4-10: Actual lock status, as compared to the lock setting of the TAM
service function used to activate the TAM table access facility without
table-based lock

Legend:

--: No lock is applied.

#1

A dc_tam_open function in which table-based lock is specified waits to lock the
appropriate table if the table is already locked by another transaction's
dc_tam_open function in which table-based lock is specified. However it does
not wait for the completion of any function that accesses records rather than
tables. For further information, see (3) in 4.2.7 TAM table access facility without
table-based lock.

#2

The dc_tam_rewrite function does not lock resources, but the resources
involved in this function have already been locked by the dc_tam_read function
that was issued in update mode.

Value assigned to the TAM service function and flag Table-based
lock

Record-based
lock

dc_tam_open Table-based lock Update lock#1 --

Record-based lock -- --

dc_tam_read Reference No lock -- --

Lock applied -- Reference lock

Updating -- Update lock

dc_tam_rewrite -- Update lock#2

dc_tam_write -- Update lock

dc_tam_delete -- Update lock

4. Facilities for User Data

333

(c) Lock application processing
The figure below shows processing that is used to lock resources when updating
records using the TAM table access facility with table-based lock and the TAM table
access facility without table-based lock.

Figure 4-8: Locking resources when updating records

1. When dc_tam_write is issued, the TAM table access facility with table-based
lock locks the table that is accessed for reference and locks the record to be
updated. It then updates the record as shown in steps (1) to (3) in Figure 4-8.

2. When dc_tam_write is issued, the TAM table access facility without
table-based lock locks the record to be updated, and then updates the record as
shown in steps (4) and (5) in Figure 4-8.

The figure below shows processing that is used to lock resources when adding records
using the TAM table access facility with table-based lock and the TAM table access
facility without table-based lock.

4. Facilities for User Data

334

Figure 4-9: Locking resources when adding records

1. When dc_tam_write is issued, the TAM table access facility with table-based
lock locks the table that is accessed for updating, and then adds a record as shown
in steps (1) and (2) in Figure 4-9.

2. When dc_tam_write is issued, the TAM table access facility without
table-based lock locks the record to be updated, and then adds the record as shown
in steps (3) and (4) in Figure 4-9.

As explained above, the TAM table access facility with table-based lock and the TAM
table access facility without table-based lock are different in the way they lock
resources. For this reason, they are also different in the operation they will perform
when two or more transactions compete for access to the same TAM table. If another
transaction that is adding or deleting a record in the same table exists, the TAM table
access facility with table-based lock cannot access the table to update, add, delete or
reference the target record (if the table is locked by the function in the other
transaction). The TAM table access facility without table-based lock can access the
same TAM table if it does not compete with the facility in the other transaction for the
record being accessed.

The figure below shows processing that is performed by the TAM table access facility
with table-based lock when competition for access to the same record occurs.

4. Facilities for User Data

335

Figure 4-10: Processing that is performed by the TAM table access facility with
table-based lock when competition for access to the same record occurs

1. UAP1 is going to add record 1. As shown in steps (1) and (2) in Figure 4-10, it
locks the table to be updated, and then adds the record.

2. UAP2 cannot update record 3 because it cannot lock the table to be referenced, as
shown at step (3) in Figure 4-10.

3. UAP3 cannot add record 5 because it cannot lock the table to be updated, as
shown at step (4) in Figure 4-10.

4. Therefore, UAP2 and UAP3 will wait until UAP1 ends the transaction and
unlocks the resource or UAP2 and UAP3 will abort with a DCTAMER_LOCK error.

The figure below shows processing that is performed by the TAM table access facility
without table-based lock when competition for access to the same record occurs.

4. Facilities for User Data

336

Figure 4-11: Processing that is performed by the TAM table access facility
without table-based lock when competition for access to the same record occurs

1. UAP1 is going to add record 1. As shown in steps (1) and (2) in Figure 4-11, it
locks record 1, and then adds the record.

2. UAP2 locks record 3 to be updated and then updates the record as shown at step
(3) in Figure 4-11.

3. UAP3 locks record 5 to be added, and then adds the record as shown at step (4)
in Figure 4-11.

4. In this way, UAP2 and UAP3 can access the same TAM table before UAP1 begins
the transaction because UAP1 does not lock the table.

(3) Notes
Note the following when using the TAM table access facility without table-based lock.

(a) Table-based lock applied by the dc_tam_open function
When the dc_tam_open function is issued with table-based lock specified
(DCTAM_TBL_EXCLUSIVE flags is set to), it locks the table. However, it does not
lock records that are included in the locked table and which may be accessed by
record-access functions (dc_tam_read, dc_tam_write, and dc_tam_delete).
This means that, once a dc_tam_open function that locks a table is issued, another
dc_tam_open function that locks the same table must wait until the first function
ends, but the record-access function does not need to wait.

The figure below shows how the dc_tam_open function locks resources.

4. Facilities for User Data

337

Figure 4-12: How the dc_tam_open function locks resources

1. UAP1 issues a dc_tam_open function in which flags is set to
DCTAM_TBL_EXCLUSIVE, in order to lock the table to allow updating as shown
at step (1) in Figure 4-12.

2. UAP2 issues a dc_tam_open function in which table-based lock is specified.
However, since it cannot lock the table to be updated as shown at step (2) in
Figure 4-12, it will either wait until UAP1's transaction ends or abort with a
DCTAMER_LOCK error.

3. UAP3 issues a dc_tam_open function in which record-based lock is specified
(flags is set to DCTAM_REC_EXCLUSIVE). Therefore, the dc_tam_open
function will end normally. UAP3 locks record 3 to be updated, and then updates
the record as shown at step (3) in Figure 4-12.

(b) Allocating empty records when adding records
When a record is deleted, the record will not become empty until the transaction that
has deleted the record is committed. This means that until the transaction is committed,
the area reserved for the deleted record will not be allocated to records being added.
However, when a record with the same key value as that of the deleted record is to be
added within the same transaction that has deleted the record, the area for the deleted
record is allocated for the record to be added.

Suppose that, in attempt to add records (even though there is not an equal number of
empty records) you delete records with different key values within the same
transaction that will add records. When you attempt to add records, you will encounter
a DCTAMER_NOAREA error return.

The figure below shows how an attempt to add records causes a DCTAMER_NOAREA

4. Facilities for User Data

338

error.

Figure 4-13: An example of a DCTAMER_NOAREA error caused by an
attempt to add records

1. Assume that records with key values 1, 2, and 3 are stored in a TAM table that can
contain up to 3 records. UAP1 deletes key values 1, 2, and 3 and adds key value 4.

2. As shown at step (1) in Figure 4-13, the deletion of key value 1 causes record 1
to be put into the deleted state, but does not cause it to become empty.

3. As shown at step (2) in Figure 4-13, the deletion of key value 2 causes record 2
to be put into the deleted state, but does not cause it to become empty.

4. As shown at step (3) in Figure 4-13, the deletion of key value 3 causes record 3
to be put into the deleted state, but does not cause it to become empty.

5. As shown at step (4) in Figure 4-13, an attempt to add key value 4 causes a
DCTAMER_NOAREA error return because no empty record exists.

To prevent an attempt to add records from causing a DCTAMER_NOAREA error, you
need to obtain a number of empty records equal to the number of records you want to
add or wait until the transaction that deletes records is committed, and then add
records.

The figure below shows processing that is performed to obtain a number of empty
records equal to the number of records to be added.

4. Facilities for User Data

339

Figure 4-14: Processing that is performed to obtain a number of empty records
equal to the number of records to be added

1. Increase the maximum number of records that can be stored in the TAM table, to
4. Assume that the TAM table contains records with key values 1, 2, and 3. UAP1
deletes key values 1, 2, and 3 and adds key value 4.

2. As shown at step (1) in Figure 4-14, the deletion of key value 1 causes record 1
to be put into the deleted state, but does not cause it to become empty.

3. As shown at step (2) in Figure 4-14, the deletion of key value 2 causes record 2
to be put into the deleted state, but does not cause it to become empty.

4. As shown at step (3) in Figure 4-14, the deletion of key value 3 causes record 3
to be put into the deleted state, but does not cause it to become empty.

5. As shown at step (4) in Figure 4-14, the addition of key value 4 allows an empty
record 4 to be added.

The figure below shows processing that is performed to add records after the record
deletion transaction is committed.

4. Facilities for User Data

340

Figure 4-15: Processing that is performed to add records after the record
deletion transaction is committed

1. Assume that records with key values 1, 2, and 3 are stored in a TAM table that can
contain up to 3 records. UAP1 deletes key values 1, 2, and 3, commits the
transaction, and then adds key value 4 during the next transaction.

2. As shown at step (1) in Figure 4-15, the deletion of key value 1 causes record 1
to be put into the deleted state, but does not cause it to become empty.

3. As shown at step (2) in Figure 4-15, the deletion of key value 2 causes record 2
to be put into the deleted state, but does not cause it to become empty.

4. As shown at step (3) in Figure 4-15, the deletion of key value 3 causes record 3
to be put into the deleted state, but does not cause it to become empty.

4. Facilities for User Data

341

5. As shown at step (4) in Figure 4-15, the commitment of the transaction causes
records 1, 2, and 3 being deleted to become empty.

6. As shown at step (5) in Figure 4-15, the addition of key value 4 allows an empty
record 4 to be added.

(c) Access mode change
You cannot use the tamadd command to change a TAM table that uses the TAM table
access facility with table-based lock to a TAM table that uses the TAM table access
facility without table-based lock or vice versa. If you attempt to use the tamadd
command in order to make such a change, the tamadd command ends abnormally.

If you want to switch the TAM table access facility with or without table-based lock to
the other facility, change the tamtable command definition clause in the TAM
service definition, and then start the OpenTP1 system as usual. Alternatively, start the
OpenTP1 system, with no additional definition registered in the TAM service
definition, and then use the tamadd command to add a new definition in the TAM
service definition.

(d) Deadlock
A deadlock can occur when a TAM table using the TAM table access facility with
table-based lock is changed to a TAM table that uses the TAM table access facility
without table-based lock. For further information, see (1) (b) in 4.2.11 Notes on adding
and deleting TAM records.

(4) Programming interface
Except for the dc_tam_status function and CBLDCTAM('INFO'), TAM tables can
be accessed via the same programming interface as for the TAM table access facility
with table-based lock.

However, it may be necessary to recompile or relink UAPs. Table 4-11 lists conditions
that require program recompilation. Table 4-12 lists conditions that require program
relinkage.

Table 4-11: Conditions that require program recompilation

Condition Work required

dc_tam_status used Yes st_acs_type
referenced

Yes A new constant DCTAM_STS_RECLCK is
returned as access mode information.
Therefore, you need to modify and
recompile your UAPs.

No You do not need to recompile your
UAPs.

No You do not need to recompile your
UAPs.

4. Facilities for User Data

342

Table 4-12: Conditions that require program relinkage

The dc_tam_status function returns access mode information to st_acs_type in
the DC_TAMSTAT structure. Add DCTAM_STS_RECLCK as a value to be returned to
st_acs_type. This value indicates an access mode in which records can be added or
deleted without locking the table. A TAM table in this access mode uses the TAM table
access facility without table-based lock.

For further information about the dc_tam_status function, its return values, and its
usage, see the manual OpenTP1 Programming Reference C Language.

CBLDCTAM('INFO') returns access mode information to data name K. Add VALUE
'L' as a value to be returned to data name K. This value indicates an access mode in
which records can be added or deleted without locking the table. A TAM table in this
access mode uses the TAM table access facility without table-based lock. For further
information about CBLDCTAM('INFO'), its return values, and its usage, see the manual
OpenTP1 Programming Reference COBOL Language.

(5) Definition interface
In the tamtable command expression of the TAM service definition, the access type
can be set using the -a option. When using the access facility for TAM tables without
table-based locking, be sure to specify reclck as the -a option parameter. By setting
this parameter to reclck, the "non-locking add/delete update type" access format is
shown, which means that the TAM table is using the access facility for TAM tables
without table-based locking.

For more detail on how to use other options of the tamtable command expression,
see the manual OpenTP1 System Definition.

4.2.8 Creating TAM files
After allocating a direct file to the OpenTP1 file system, use the tamcre command of
the commands to create a TAM file. At this time, specify an index type, a key area, and
record data.

4.2.9 Interchangeability of TAM and DAM services
(1) DAM service functions able to access TAM tables

DAM file service functions (dc_dam_~) can be used to access TAM file records. In
this case, a logical file name used for a DAM file is regarded as a TAM table name. A
relative block number used for a DAM file is regarded as a TAM table key value. The
following DAM service functions can be used to access TAM files:

Condition Work required

Libraries used by application
programs

Archive libraries You need to relink your UAPs

Shared libraries You do not need to relink your UAPs.

4. Facilities for User Data

343

• dc_dam_open() (Opens logical files.)

• dc_dam_close() (Closes logical files.)

• dc_dam_read() (Inputs logical file blocks.)

• dc_dam_rewrite() (Updates logical file blocks.)

• dc_dam_write() (Outputs logical file blocks.)

When the function dc_dam_hold() (which shuts down logical files) or the function
dc_dam_release() (which releases logical files from the shutdown state) is issued
for a TAM file, the function returns normally. However, the TAM file is not actually
shut down or released from the shutdown state.

The following DAM service functions cannot be used to access TAM file records:

• All functions used for any job in offline mode

• dc_dam_start() (Start using an unrecoverable DAM file)

• dc_dam_end() (Terminate using an unrecoverable DAM file)

• dc_dam_status() (Reference the status of a logical file)

(2) TAM access by reading DAM file data
To enable TAM access for a DAM file, change the file as explained below:

1. Enter the DAM file data with the function dc_dam_get(), give a key value to
each data item, then store the data times in any file.

2. Enter the file in 1, and execute the tamcre command to create a TAM file.

4.2.10 TAM service statistical information
Transaction statistical information which occurs when the TAM service is in use is
acquired for individual transactions. Whether to output statistical information is
determined by the value specified in the user service definition of the root transaction
branch.

4.2.11 Notes on adding and deleting TAM records
To avoid deadlocks which occur as a result of attempts by UAPs to lock resources, you
must regulate the type of lock and the lock sequence that each UAP implements for
locking resources. This section explains how a deadlock occurs when UAPs lock
resources for adding or deleting TAM records. It also gives advice for avoiding
deadlocks.

(1) Cause of deadlock during a transaction
(a) When using the TAM table access facility with table-based lock

A TAM table which has not been locked for update may be updated or accessed more

4. Facilities for User Data

344

than once during a single transaction. This type of transaction can cause a deadlock. A
deadlock will occur in the following cases.

A table is updated (records are added or deleted) or accessed (with lock specified)
more than once during a single transaction.

The access sequence for updating and accessing a TAM table is as follows:

Access, then update.

A TAM table is opened outside the transaction range or is opened inside the
transaction range with record lock specified (this type of transaction is used in
COBOL).

Another transaction which needs to lock resources accesses the same table at the
same time as the transaction described above.

(b) When using the TAM table access facility without table-based lock
A deadlock may occur if you change a TAM table in which records were updated,
added, or deleted using the TAM table access facility with table-based lock to a TAM
table that uses the TAM table access facility without table-based lock.

When records are updated, added, or deleted using the TAM table access facility with
table-based lock, the table is locked for table updating. Therefore, if two or more
transactions are set to access the same records to be added or deleted, but in different
sequences, no deadlock will occur because the transactions (except the one that is
currently accessing records) wait because of table-based lock. However, a deadlock
may occur if the records of the TAM table to be accessed are updated, added, or deleted
using the TAM table access facility without table-based lock. Therefore, if you change
a TAM table in which records were updated, added, or deleted using the TAM table
access facility with table-based lock to a TAM table that uses the TAM table access
facility without table-based lock, make the sequence in which the UAPs will access the
records the same.

The figure below shows an example in which a deadlock occurs after change from a
TAM table that uses the TAM table access facility with table-based lock to a TAM table
that uses the TAM table access facility without table-based lock.

4. Facilities for User Data

345

Figure 4-16: Example in which a deadlock occurs after change from a TAM
table that uses the TAM table access facility with table-based lock to a TAM table
that uses the TAM table access facility without table-based lock

Assume that UAP1 deletes records 1 and 3 in that order and that UAP2 updates records
3 and 1 in that order. Additionally, assume that the TAM table access facility with
table-based lock and the TAM table access facility without table-based lock are
performed in the sequence of (1) to (4) in the figure.

The TAM table access facility with table-based lock is performed in the following
sequence:

4. Facilities for User Data

346

1. To delete record 1, UAP1 locks the table for updating.

2. When UAP2 attempts to lock the table in order to update record 3, it encounters
competition with the table lock at step 1. In order to lock the record for reference,
it must wait until the table is unlocked.

3. When deleting record 3, UAP1 does not lock any resources.

4. When UAP1's transaction is committed, the table that was locked at step 1 is
unlocked. UAP2 can now perform its processing.

After UAP1's transaction is committed, UAP2 locks the reference table and locks
the record to be updated, at step 2. At step 4, UAP2 locks record 1 to be updated.

The TAM table access facility without table-based lock is performed in the following
sequence:

1. To delete record 1, UAP1 locks the record for updating.

2. To update record 3, UAP2 locks the record for updating.

3. When attempting to delete record 3, UAP1 encounters competition with the lock
that was applied at step 2. Before locking the record to be updated, UAP1 must
wait until the record is unlocked.

4. When attempting to update record 1, UAP2 encounters competition with the lock
that was applied at step 1. Before locking the record to be updated, UAP2 must
wait until the record is unlocked. A deadlock thus occurs.

To avoid this deadlock, exchange steps 1 and 3 of UAP1 or exchange steps 2 and 4 of
UAP2.

(2) Locking resources
The procedure by which resources are locked is explained below, accompanied by an
example in which a resource is updated and added to. For information on locking a
TAM table or record, see 4.2.6 Lock for TAM tables.

The figure below shows an example of locking the resource to be updated and added
to.

4. Facilities for User Data

347

Figure 4-17: Example of update and addition

1. When the function dc_tam_write() is called for updating a resource, the
resource is locked as shown in Figure 4-17.

• Table reference lock (PR)

• Record update lock (EX)

The record to be updated is in a TAM table which has not been locked for update.
The entire table is locked for reference to prevent another transaction from
changing the record configuration within the table before the first transaction has
ended.

2. When the function dc_tam_write() is called for adding to a resource, the
resource is locked as shown in Figure 4-17.

• Table update lock (EX)

Since this function changes the configuration within the table, the entire table is
locked for update (EX) to prevent another transaction from referencing the table
before the first transaction has ended.

3. Processing in steps 1 and 2 changes the lock on the table from a lock for reference
(PR) to a lock for update (EX).

The figure below shows how a deadlock occurs.

4. Facilities for User Data

348

Figure 4-18: Occurrence of a deadlock

As shown at (2)-1 in Figure 4-18, another transaction can lock the table for
reference (PR) after processing for step 1 has been completed but before
processing for step 2 has started. This other transaction then attempts to lock a
record updated by the first transaction. It waits for the lock on the record to be
released while maintaining the lock for reference (PR) which it specified for the
table ((2)-2 in Figure 4-18).

In processing for step 2, the first transaction cannot lock the table for update (EX)
because the other transaction has locked the table for reference (PR). The first
transaction waits for the lock to be released.

4. In step 3, both transactions wait for each other's resource to be freed. This
situation is a deadlock.

In Figure 4-18, a deadlock occurred because the local transaction continued
processing (to the end of step 1) without specifying a lock for update (EX) for the
resource (table) it required for addition processing. As a result, it allowed another
transaction to lock the table. If the local transaction had specified a lock for update
(EX) for the table in advance, the other transaction would not have been able to
lock the table.

4. Facilities for User Data

349

Make sure that transactions do not create a situation such as those described in (1)
(a) above. For example, a table should not be updated or accessed more than once
within a single transaction.

(3) Advice for avoiding deadlocks
If a TAM table must be updated or accessed more than once within a single transaction
and a deadlock such as that described above is likely to occur, make sure that the
transaction locks the table for update (EX) before it continues processing.

To lock a table for update, update (add or delete) the records first. Alternatively, if your
program is in C, open the file so that it is locked within the transaction.

4. Facilities for User Data

350

4.3 IST service (TP1/Shared Table Access)

The IST service is a facility which allows multiple OpenTP1 systems to share one or
more tables across nodes. A table available with the IST service is called an internode
shared table. An internode shared table can be used to reference or update its data from
a UAP without recognizing the node at which the entity of the table exists. It can also
be used as mail for managing the status of any job at each node. However, when data
is distributed across multiple nodes, the IST service should not be used for the
following jobs:

• Job that require immediate distribution of data

• Job that handles large amounts of data

• Job that updates data frequently

Before internode shared tables can be used, TP1/Shared Table Access must be installed
in the system at each node. The IST service is available only when the basic OpenTP1
facilities are provided by TP1/Server Base. It is unavailable with TP1/LiNK.

4.3.1 System configuration of IST service
To use the IST service, for all nodes specify the same value in the internode shared
table definition. If you do not specify the same value in the internode shared table
definition for all nodes, the KFCA25533-W message will be output. The figure below
shows an example when the same value is not specified in the internode shared table
definition for all nodes.

4. Facilities for User Data

351

Figure 4-19: When the same value is not specified in the internode shared table
definition for all nodes

In Figure 4-19, the table names specified in the internode shared table definition for
node A, node B, and node C are not the same. The system therefore considers that
unexpected table information was received and it continues to periodically output the
KFCA25533-W message on node A and node B until OpenTP1 terminates.

4.3.2 Outline of internode shared tables
This subsection outlines internode shared tables.

4. Facilities for User Data

352

(1) Environment for access to internode shared tables
Internode shared tables reside in shared memory at each node. There is no file
equivalent to the entity of each table. Therefore, internode shared tables can be
accessed from a UAP in online environment only. They cannot be accessed in offline
environment.

When the IST service is used across multiple nodes, the time must match among these
nodes. If not, data updates at one node may not be reflected at another node.

The figure below shows the processing flow when the IST service updates an internode
shared table record (a record contained within an internode shared table) on multiple
nodes.

Figure 4-20: Updating an internode shared table record

1. The IST service creates record update data for updating an internode shared table
record (record number 1) of the internode shared table A at node A.

2. It acquires the current time (machine time, in microseconds) and confers it as a
time stamp on the record update data.

4. Facilities for User Data

353

3. The IST service compares the time stamp set in the relevant internode shared table
record in shared memory at node A and the time stamp given to the record update
data.

If the record update data is more recent, the IST service updates the internode
shared table record in shared memory. If the record update data is older, the IST
service does not update the internode shared table record in shared memory. Even
when the IST service does not update the internode shared table record, the
function dc_ist_write() returns normally.

4. When the IST service has updated the internode shared table record in shared
memory, it notifies the IST service at node B that it has updated an internode
shared table record at node A. At this time, it also reports the internode shared
table record and the time stamp given to the internode shared table record.

5. The IST service at node B which received the updated internode shared table
record compares the time stamp set in the relevant internode shared table record
within the node and the time stamp of the internode shared table record that it
received.

6. Only if the IST service determines as the result of step 5 that the time stamp of the
internode shared table record that was received is more recent does it update the
relevant internode shared table record at node B to the information provided in the
internode shared table record that was received.

As explained above, the IST service determines whether to update an internode shared
table record or leaves it as it is based on the time stamp. In the following cases, the
latest update data may not be reflected in the internode shared table record.

When the machine time at node A is later than the machine time at node B

Sometimes after the IST service has updated an internode shared table record at
node A, node B notifies the IST service that it has updated the same internode
shared table record. Even in this case, the IST service regards the time stamp set
in the internode shared table record at node A as being more recent. Therefore,
the information in the updated internode shared table record at node B is not
applied in the internode shared table record at node A.

In addition, when the internode shared table record updated at node A is reported
to node B, the IST service regards the time stamp of the reported internode shared
table record as being more recent. Therefore, even if the corresponding internode
shared table record at node B actually contains the latest information, it is updated
to reflect the information contained in the reported internode shared table record.

When the machine time at node A is earlier than the machine time at node B

• When node B has updated an internode shared table record and the
information in that internode shared table record has already been reported
to node A

4. Facilities for User Data

354

After an internode shared table record has been updated at node B, even if
the IST service attempts to update the same internode shared table record at
node A, the function dc_ist_write() returns normally without updating
the record.

• When node B has updated an internode shared table record but the
information in that internode shared table record has not yet been reported to
node A

After an internode shared table record has been updated at node B, when the
IST service updates the same internode shared table record at node A, it
updates the internode shared table record with the update information at node
A. However, the IST service then regards the time stamp of the internode
shared table record reported by node B to be more recent. This means that it
reflects the information contained in the internode shared table record
reported by node B in the internode shared table record at node A.

(2) Internode shared table structure
References and updates of an internode shared table from a UAP are done in units of
records. An internode shared table consists of multiple records. A UAP process can
access one record or access two or more records collectively.

4.3.3 Procedure for accessing an internode shared table
This subsection explains the procedure for accessing an internode shared table from a
UAP. Access to an internode shared table cannot be committed or rolled back by using
a transaction function.

(1) Opening internode shared tables
Before accessing an internode shared table from a UAP, the table must be opened first.
To open the table, call the function dc_ist_open() [CBLDCIST('OPEN')]. When
the table is opened, the table descriptor is returned. For processing after the table is
opened, specify this table descriptor in the function to access the table. Keep the table
descriptor in the UAP even for processing after the table is opened.

(2) Procedure for referencing/updating records
To input an internode shared table record, call the function dc_ist_read()
[CBLDCIST('READ')]. To output data to an internode shared table record, call the
function dc_ist_write() [CBLDCIST('WRIT')]. To call each of these functions,
specify in its argument the table descriptor returned by the function dc_ist_open().

To input or output a record, the key values of more than one record can be specified
collectively. A key value should be specified as a structure in the corresponding
function. More than one structure can be specified.

4. Facilities for User Data

355

(3) Closing internode shared tables
To close an internode shared table, call the function dc_ist_close()
[CBLDCIST('CLOS')]. To call this function, specify in its argument the table
descriptor returned by the function dc_ist_open().

The figure below shows the procedures for accessing internode shared tables.

Figure 4-21: Procedures for accessing internode shared tables

4.3.4 Lock for internode shared tables
Internode shared tables are locked for each function called from a UAP. This lock
control does not cause them to be occupied for the entire time after the data is entered
and before it is updated. Therefore, even when one table is accessed from multiple
UAPs, no deadlock occurs.

4. Facilities for User Data

356

4.4 ISAM file service (ISAM, ISAM/B)

This section explains the ISAM file service for managing indexed sequential files. For
details on this service, see the manual Indexed Sequential Access Method ISAM.

4.4.1 Outline of ISAM files
An indexed sequential file is composed of an index part for key management and a data
file part for data storage. The use of the key allows sequential access and random
access processing.

To manipulate ISAM files, library functions are called from UAPs or utility commands
for ISAM file management are executed.

4.4.2 Types of ISAM service
OpenTP1 UAPs can use the following ISAM file services:

• ISAM

• ISAM/B

ISAM can be used in UAPs of both TP1/Server Base and TP1/LiNK. ISAM/B can be
used only in UAPs of TP1/Server Base. ISAM/B cannot be used when the basic
OpenTP1 facility is TP1/LiNK.

(1) ISAM
ISAM files are used as ordinary files. They are not synchronized with OpenTP1
transaction processing.

(2) ISAM/B
This facility allows the use of ISAM files in synchronization with transaction
processing. If ISAM is used with ISAM/B, file integrity will be assured through
transaction commitment/rollback.

(a) Products prerequisite to ISAM/B
Before ISAM files can be used with ISAM/B, the ISAM transaction facility (ISAM/B)
must be available in addition to ISAM.

(b) Area for file creation
ISAM files to be used with ISAM/B must be created in the area allocated for the
OpenTP1 file system.

(c) Difference from OpenTP1 file service (TP1/FS/xxx)
ISAM/B does not use the lock service. Therefore, even when a deadlock occurs, the
OpenTP1 lock service facility (such as lock scope reduction based on priority and

4. Facilities for User Data

357

deadlock information output) is not available.

The figure below shows the form of ISAM file services.

Figure 4-22: Form of ISAM file services

4. Facilities for User Data

358

4.5 Accessing database management systems

This section explains how database management systems (DBMSs) can be used in
OpenTP1 UAPs.

4.5.1 Relation to OpenTP1 transaction processing
The usage of DBMSs depends on whether the DBMS supports the XA interface in the
X/Open DTP model, and whether the DBMS can work with OpenTP1 transactions.

(1) DBMSs that support the XA interface
Only DBMSs that support the XA interface, for example ORACLE, can be controlled
by OpenTP1 transaction processing. When a DBMS supports the XA interface,
updates are possible using the commit and rollback operations of OpenTP1 transaction
processing. In such transaction processing, you can use the functions that control
OpenTP1 synchronization points (such as the functions dc_trn_begin(),
dc_trn_unchained_commit(), tx_begin(), or tx_commit()). Facilities
provided by a DBMS for controlling transactions cannot be used.

DBMSs that can be controlled through OpenTP1 transaction processing are limited to
products supporting the XA interface.

In UAPs that access multiple databases, OpenTP1 allows updates while protecting the
consistency of the multiple databases. The following OpenTP1 resource managers
support the XA interface:

• TP1/FS/Direct Access (DAM file service)

• TP1/FS/Table Access (TAM file service)

• ISAM, ISAM/B (ISAM file service)

• TP1/Message Control (Message exchange facility (MCF))

• TP1/Message Queue (Message Queuing)

Thus, a UAP can process OpenTP1 transactions when accessing DBMSs that conform
to the XA interface in the same way it does when it accesses the OpenTP1 resource
manager. Even when some failure cause an abnormal termination of a UAP or when
OpenTP1 is restarted, OpenTP1 performs a transaction determination (i.e., decides
whether to perform a commit or rollback) for both the DBMS and the OpenTP1
resource manager.

(2) DBMSs that do not support the XA interface, or DBMSs that do not work with
OpenTP1 via the XA interface

A DBMS that does not support the XA interface can be accessed, but cannot be
synchronized with OpenTP1 transactions.

4. Facilities for User Data

359

When a DBMS does not work with OpenTP1 via the XA interface, OpenTP1 cannot
order a transaction determination to the DBMS in certain situations: such as when a
UAP abnormally terminates during access to a database, or when OpenTP1 requires a
rerun during access to a database. In such situations, you must recover the transactions
using the DBMS facilities.

4.5.2 Preparation for using other vendors' DBMS in cooperation with
OpenTP1 through XA interface

The following preparation is needed before another vendors' DBMS supporting the
XA interface can be used in cooperation with OpenTP1 through the XA interface.

(1) Registration with OpenTP1
Register the names of various resource managers which are not provided by the
OpenTP1. Use either methods to register them in OpenTP1:

• Use the dcsetup command to set up the OpenTP1, then execute the trnlnkrm
command.

• Create an extended RM registration definition.

Once you create an extended RM registration definition, you need not execute the
trnlnkrm command after setting up the OpenTP1 with the dcsetup command. For
details on how to use the trnlnkrm command, see the manual OpenTP1 Operation.
For details on how to specify extended RM registration definitions, see the manual
OpenTP1 System Definition.

(2) UAP linkage
To create executable files for a UAP, you must link the object files used for transaction
control with the DBMS libraries and object modules.

Use the trnmkobj command to make object files used for transaction control. For
details on the trnmkobj command, see the manual OpenTP1 Operation.

(3) System definition
To use DBMSs, you must use trnstring in the transaction service definition and, if
necessary, use trnrmid in the user service definition or user service default definition.
Specified contents include the items for DBMSs. For details on such items, see the
appropriate manuals for the database you use.

For details on definitions using trnstring and trnrmid, see the manual OpenTP1 System
Definition.

When a non-OpenTP1 resource manager is used, you must define the set format in the
transaction service definition and extend the size of the thread stack area.

For details on the set format definition, see the manual OpenTP1 System Definition.

4. Facilities for User Data

360

(4) Environment variables
Some DBMS may require special environment variables for use with OpenTP1 UAPs.
If they are necessary, you must use putenv in the transaction service definition, user
service definition, or user service default definition.

For details on definitions using putenv, see the manual OpenTP1 System Definition.

4. Facilities for User Data

361

4.6 Lock for resources

This section explains the method for allowing OpenTP1 UAPs to control locks of any
user resources. To acquire a resource, it is necessary to call the function
dc_lck_get() [CBLDCLCK('GET')] from the OpenTP1 UAP.

The facility for locking any resources is available only when the basic OpenTP1
facility is TP1/Server Base. It is unavailable with TP1/LiNK.

Locking of resources is used by processes which are being run as transactions. Since
locks are specified for individual transactions, resources are correctly updated so that
a particular UAP transaction process can exclusively update a resource at a given time.

For locking of DAM files, see 4.1 DAM file service (TP1/FS/Direct Access). For
locking of TAM files, see 4.2 TAM file service (TP1/FS/Table Access).

4.6.1 Resources which can be put under lock
Resources (e.g., files) whose specific names have been defined in the operating system
can be put under lock. Give a unique name in the node to a user-specific resource.
OpenTP1 cannot judge if the name of the resource to be put under lock is correct.
Specify the correct resource name in the UAP.

Lock can be specified in only the same node in an OpenTP1 system. Lock with a UAP
in another OpenTP1 system cannot be specified.

4.6.2 Types of lock
To enable lock, specify a lock type (lock mode) and the resource-specific name in the
OpenTP1 system. The following two lock modes are available:

Lock for reference (shared mode PR Protected Retrieve):

The UAP can only reference resources with lock specified. Other UAPs are
permitted only to reference the resources.

Lock for update (exclusive mode EX EXclusive):

The UAP can reference and update resources with lock specified. Other UAPs are
not permitted to reference or update the resources.

A resource cannot/can be shared depending on the contents of the lock modes in the
following case:

• When an attempt is made to specify lock for the resource, lock has been specified
for the resource by another UAP.

The table below shows whether a resource can be shared if lock has been specified for
the resource by more than one UAP. If the resource cannot be shared, the following can
be specified in the UAP:

4. Facilities for User Data

362

• An error is returned, or the function waits until the resource is released.

Table 4-13: Combinations of lock modes and resource sharing enabled/disabled

4.6.3 Specifying the maximum lock wait time
If a UAP uses a lock request to the resource for which lock has been specified by
another UAP, the UAP can wait until the resource is released. If more UAPs are
waiting for the resource to be released, the order in which the UAPs will wait for the
resource is decided according to the priority specified in the user service definition.

When the maximum lock wait time is specified in the lock service definition, and if a
UAP waiting for the resource to be released waits for longer than the specified time,
the UAP returns with an error.

The lckls command is provided for you to check the maximum lock wait time and
the resource for which the UAP is waiting to be released.

4.6.4 Insufficient table pool for lock
Lock is managed in the table pool of the shared memory. If this table pool is full, an
error is returned to the function that issued a resource lock request. In this case, use
abort() with the service function in order to cancel lock processing.

4.6.5 Releasing a resource from lock
There are the following two methods for releasing a resource with lock specified:

• A resource is released from lock by the UAP shutting down the resource. To
release a resource from lock by specifying the name of the resource, call the
function dc_lck_release_byname() [CBLDCLCK('RELNAME ')]. To release
all the resources shut down by the UAP at a time, call the function
dc_lck_release_all() [CBLDCLCK('RELALL ')].

The lock release functions can be called only from the UAP that specified lock for the
resource. OpenTP1 allocates the resource released from lock to a UAP waiting for the
resource.

• After the synchronization point processing of the UAP that shuts down the
resource, OpenTP1 deallocates all the resources being shut down by the UAP.
OpenTP1 automatically deallocates the resources regardless of whether the UAP
terminates normally or abnormally.

Lock mode of UAP shutting
down the resource

Lock mode of UAP requesting lock

Lock for reference (PR) Lock for update (EX)

Lock for reference (PR) Can be shared. Cannot be shared.

Lock for update (EX) Cannot be shared. Cannot be shared.

4. Facilities for User Data

363

4.6.6 Lock migration
If lock is specified for a resource by using the function dc_lck_get(), the resource
lock right is transferred sequentially from one transaction branch to another in a global
transaction. This facility is called lock migration. Lock migration prevents a deadlock
or lock wait between transaction branches. Therefore, once lock is specified for a
resource in a global transaction, the resource can be accessed from any transaction
branch in the global transaction as long as the specification is in effect.

Lock migration is ensured in the following cases:

• The global transaction is in one node. (The global transaction does not comprise
the services of multiple nodes.)

(1) Lock migration and lock modes
With lock migration, if the EX mode is specified in another transaction branch after
lock has been specified in PR mode, all the subsequent lock is in EX mode. In a global
transaction, once resources are put under lock in EX mode, the resource cannot be put
under lock in PR mode. All resources are under lock in EX mode.

(2) Releasing resources with lock migration specified
If resources are under lock with lock migration specified, they are automatically
released when the global transaction terminates. If the resources can be released before
the termination of the global transaction, take the following procedures:

• Releasing resources with the function dc_lck_release_byname()

To release a resource from lock with lock migration specified before commit/
rollback processing is executed, specify the resource name, and call the function
dc_lck_release_byname() (which releases resources from lock). The
resource can be released from lock in any transaction branch. In this case, the
resource cannot be released until the function dc_lck_release_byname() is
called as many times as the lock count specified for the resource in the global
transaction.

• Releasing resources with the function dc_lck_release_all()

If the function dc_lck_release_all() (which releases all resources from
lock) is called to a transaction branch, all the resources are released no matter how
many times lock has been specified in any transaction.

(3) Notes on lock migration
Do not access a resource for which lock has been specified (access to an already
allocated resource or a new lock request) in the following case:

• After lock migration occurred with the function dc_rpc_call() of a
synchronous-response-type RPC, the function dc_rpc_call() returned with an
error (e.g., timeout).

4. Facilities for User Data

364

Operation is not ensured if access is made to the resource.

The figure below shows lock migration.

Figure 4-23: Outline of lock migration

4.6.7 Lock test
A lock test (DC_LCK_TEST set in flags) is executed to decide whether lock can be
specified for a resource by using the function dc_lck_get() (which puts resources
under lock). In this case, the function dc_lck_get() terminates normally without
putting the resource under lock (even when the resource can be put under lock). If the
specified resource cannot be shared because it is lockly used by another UAP, the
function dc_lck_get() returns with an error (DCLCKER_WAIT (00450)) regardless
of whether waiting for release from lock is specified. Other return values for lock tests
are listed below. Errors such as a deadlock, timeout, and insufficient memory are not
returned. Lock migration is not generated.

• DCLCKER_PARAM (00401): The specified argument is invalid.

• DCLCKER_OUTOFTRN (00455): The function was called from a UAP outside the
transaction processing range.

• DCLCKER_VERSION (00457): The OpenTP1 library version does not match the

4. Facilities for User Data

365

lock service version.

(1) Notes on executing lock tests
Execute a lock test to check whether the resource can be put under lock. Even if a lock
test terminates normally, this normal termination does not ensure that the subsequent
lock requests will terminate normally. Also, even is a lock test terminates normally, the
resource is not actually shut down. Thus, if the dc_lck_release_all() or
dc_lck_release_byname() (which releases resources from lock) is called after the
normal termination of a lock test, the function returns with an error.

4. Facilities for User Data

366

4.7 Responses to the occurrence of deadlocks

OpenTP1 UAPs run in parallel while sharing resources with other UAPs. Each UAP
locks resources so that there will be inconsistencies in changes to resources. However,
if two or more UAPs attempt to acquire two or more resources in different sequences,
they could stay inactive while waiting until each other's resource is freed. This
condition is referred to as a deadlock.

In addition, if two or more UAPs attempt to access different resource managers (RMs),
a deadlock could occur because file service lock control and TAM file service lock
control influence each other. This section explains what is to be noted for avoiding
deadlocks and also discusses OpenTP1 responses to deadlocks.

4.7.1 Notes for avoiding deadlocks
To avoid deadlocks, UAPs should access resources with the following considerations:

• If the UAP keeps a resource until the end of the transaction, it should acquire the
resource as late as possible.

• A resource that can be freed during processing should be freed as soon as
possible.

• If multiple resources are to be in use, the resource access sequences of UAPs
should be standardized. In addition, the resource access sequences should be
standardized within one system.

• The priorities for servicing UAPs which have encountered a deadlock should be
predetermined.

4.7.2 OpenTP1 responses to deadlocks
If a deadlock occurs, OpenTP1 checks lock requests in terms of UAP lock wait
priorities, selects those executed by UAP processes with lower priorities, and make the
selected lock requests return with an error. The lock wait priority of a UAP is specified
with deadlock_priority in the user service definition.

(1) UAP responses to deadlocks
If a function called in an attempt to acquire a resource returns with an error because of
a deadlock, the UAP must do the following:

(a) Responses to deadlocks encountered during SUP or SPP processing
If a deadlock occurs during SUP or SPP processing, roll back the transaction using a
rollback function (dc_trn_unchained_rollback(),
dc_trn_chained_rollback(), or tx_rollback()). The SUP or SPP which is
rolled back because of a deadlock is not retried. Reissue the request for the service
from the client UAP.

4. Facilities for User Data

367

(b) Responses to deadlocks encountered during MHP processing
If a deadlock occurs during MHP processing, call the function dc_mcf_rollback()
to roll back the transaction. Whether to retry the MHP can be specified in the argument
to the function dc_mcf_rollback().

(2) Output of deadlock information and timeout information
If a deadlock occurs, detailed information about the UAP which caused the deadlock
is output to the directory for the node containing the lock service. This information is
called deadlock information.

Suppose that a UAP is waiting for the release of a resource. If the waiting interval
exceeds the time specified for lck_wait_timeout in the lock service definition, the
function called from the UAP returns with an error. Detailed information about the
resource which was about to be acquired can be output to the directory of the node
containing the lock service. This information is called timeout information.

Whether to output deadlock information and timeout information can be specified for
lck_deadlock_info in the lock service definition.

For details on the output formats of deadlock information and timeout information, see
B. Output Format of Deadlock Information.

(a) Deletion of deadlock information and timeout information
Deadlock information and timeout information can be deleted by either of the
following methods:

• Delete the information using command

Execute the lckrminf command.

• Delete the information which has been created in online mode when starting
OpenTP1

Specify the deletion conditions in the operands lck_deadlock_info_remove
and lck_deadlock_info_ remove_level in the lock service definition.

(3) OpenTP1 responses to deadlocks involving multiple resource managers
If UAPs which are accessing multiple resource managers encounter a deadlock,
OpenTP1 performs the following processing:

(a) Deadlock between RMs (DAM, TAM) which are lock-controlled by
OpenTP1
The UAP lock wait priorities specified for deadlock_priority in the user service
definition are observed when handling this type of deadlock.

4. Facilities for User Data

368

(b) Deadlock between RM (DAM, TAM) which is lock-controlled by OpenTP1
and other vendors' RM
The lock waiting interval limit specified for lck_wait_timeout in the lock service
definition is used for monitoring. Since RM-specific waiting interval limits are not
referenced, do not forget to specify a lock waiting interval limit in the lock service
definition.

(c) Deadlock between other vendors' RMs
Neither RM-specific waiting interval limits nor lock waiting interval limits as
specified in the lock service definition are referenced. Instead, the transaction interval
limit is used for monitoring UAPs. If the value given to trn_expiration_time in
the user service definition, user service default definition, or transaction service
definition is exceeded, the corresponding UAP process is terminated abnormally.

369

Chapter

5. X/Open-compliant Application
Programming Interface

This chapter explains what facilities are available when the X/Open-compliant
application programming interface (XATMI or TX) is used with OpenTP1 application
programs.

The facilities are explained using C-language function names. For each function, the
name of the equivalent COBOL-language API function is indicated in brackets []
when the function appears first in this chapter. After that, only the C-language function
name is written. If the C-language function has no COBOL counterpart API function,
brackets are not written.

This chapter contains the following sections:

5.1 XATMI interface (client/server-mode communication)
5.2 TX interface (transaction control)

5. X/Open-compliant Application Programming Interface

370

5.1 XATMI interface (client/server-mode communication)

The XATMI interface is an application programming interface (API) which serves for
client/server mode communication and conforms to the DTP model specified by X/
Open, an open system standardization institute. OpenTP1 can use the XATMI interface
for communication between UAP processes.

Relationship between OpenTP1 UAP types and XATMI interface

SUPs and SPPs can use the XATMI interface for communication. MHPs cannot
use XATMI interface functions. To both the SUP and SPP, link stubs created from
the XATMI interface definition file.

As far as UAP process environments, methods for starting and termination, and
OpenTP1 UAP operations are concerned, client/server mode communication
through the XATMI interface is similar to client/server mode communication
using OpenTP1 RPCs (dc_rpc_call()) unless otherwise specified.

5.1.1 Communication paradigms available with XATMI interface
This subsection explains communication paradigms available with the XATMI
interface.

XATMI-interfaced communication uses TCP/IP as the communication protocol. Also,
even if OSI TP is in use as the communication protocol, the XATMI interface can be
used. For the relationship between communication protocols and XATMI interface
functions, see 5.1.2 XATMI interface functions.

OSI TP communication requires the TP1/NET/OSI-TP-Extended in the OpenTP1
system.

(1) Communication paradigms
The XATMI interface provides the following communication paradigms:

• Request/response service paradigm

Communication based on this paradigm consists of sending one request to a
service function and receiving one response. Like OpenTP1 remote procedure
calls, communication is used to request services and receive results.

• Conversational service paradigm

Communication based on this paradigm consists of activating the service function
as the destination party and exchanging data to/from the service function via the
connection established when the service function was activated.

The conversational service paradigm is available only when TCP/IP is used as the
communication protocol. If OSI TP is used as the communication protocol, the

5. X/Open-compliant Application Programming Interface

371

conversational service paradigm is not available.

(2) Service request method
To request a service, use a function whose argument specifies a name (service name)
that identifies a service function in the server UAP.

(3) Data that can be sent and received with XATMI-interfaced communication
When XATMI-interfaced communication is in use, structures in C or records in
COBOL can be transmitted and received. This means that a chunk of data of some size
can be sent with a single service request. Such a chunk of data is referred to as a typed
buffer in C or a typed record in COBOL. For typed data used in communication, see
5.1.6 Communication data types.

5.1.2 XATMI interface functions
This subsection explains the XATMI interface facilities which are available with each
application programming interface under each communication protocol.

(1) XATMI interface library functions
Table 5-1 lists the XATMI interface library functions.

Table 5-1: XATMI interface library functions

XATMI interface facilities Library function name

C language library COBOL language
library

Request/
response service
paradigm

Send a service request and synchronously
await its reply

tpcall() TPCALL

Send a service request tpacall() TPACALL

Get a reply from a previous service request tpgetrply() TPGETRPLY

Cancel a call descriptor for an outstanding
reply

tpcancel() TPCANCEL

Conversational
service paradigm

Establish a conversational service
connection

tpconnect() TPCONNECT

Terminate a conversational service
connection abortively

tpdiscon() TPDISCON

Receive a message in a conversational
connection

tprecv() TPRECV

Send a message in a conversational
connection

tpsend() TPSEND

5. X/Open-compliant Application Programming Interface

372

Legend:

--: There is no counterpart API function.

#

Since the method for declaring the start of a service is different between C and
COBOL, separate API components are provided in these languages. The function
tpservice() denotes the entity of the service in C.

Table 5-2 gives the relationship between XATMI interface functions and OpenTP1
UAPs.

Table 5-2: Relationship between XATMI interface functions and OpenTP1
UAPs

Manipulation of
communication
data types

Allocate a typed buffer tpalloc() --

Free a typed buffer tpfree() --

Change the size of a typed buffer tprealloc() --

Determine information about a typed buffer tptypes() --

Dynamic
management of
service names

Advertise a service name tpadvertise() TPADVERTISE

Unadvertise a service name tpunadvertise() TPUNADVERTISE

Functions used
by server

Template for (entity of) service routines# tpservice() --

Start a service routine# -- TPSVCSTART

Return from a service routine tpreturn() TPRETURN

XATMI interface
function

SUP SPP MHP Off-
line

Outside Inside Outside Transaction
processing

range

Outside Inside

Root Not
root

tpacall() Y Y Y Y Y -- -- --

tpadvertise() -- -- Y#1 Y#1 Y#1 -- -- --

XATMI interface facilities Library function name

C language library COBOL language
library

5. X/Open-compliant Application Programming Interface

373

Legend:

Outside: Outside transaction range

Inside: Inside transaction range (root)

Off-line: UAP that handles offline work

Y: The function can be used with UAPs.

--: The function cannot be used with UAPs.

Note
The outside the transaction range for MHP means the range of MHPs with the
nontransaction attribute or the main function of MHPs.

tpalloc() Y Y Y Y Y -- -- --

tpcall() Y Y Y Y Y -- -- --

tpcancel() Y Y Y Y Y -- -- --

tpconnect() Y Y Y Y Y -- -- --

tpdiscon() Y Y Y Y Y -- -- --

tpgetrply() Y Y Y Y Y -- -- --

tpfree() Y Y Y Y Y -- -- --

tprecv() Y Y Y Y Y -- -- --

tprealloc() Y Y Y Y Y -- -- --

tpreturn() -- -- Y#2 Y#2 Y#2 -- -- --

tpsend() Y Y Y Y Y -- -- --

tpservice()#3 -- -- -- -- -- -- -- --

tptypes() Y Y Y Y Y -- -- --

tpunadvertise() -- -- Y#1 Y#1 Y#1 -- -- --

XATMI interface
function

SUP SPP MHP Off-
line

Outside Inside Outside Transaction
processing

range

Outside Inside

Root Not
root

5. X/Open-compliant Application Programming Interface

374

#1

Can be called only within service functions.

#2

Used only to make XATMI-interfaced service functions return.

#3

tpservice() is the entity of the service function.

(2) Relationship between XATMI interface facilities and communication
protocols

The XATMI interface can be used for both TCP/IP communication and OSI TP
communication. However, there may be restriction on some facilities depending on the
communication protocol. Table 5-3 gives the relationship between XATMI interface
facilities and communication protocols.

Table 5-3: Relationship between XATMI interface facilities and communication
protocol

Legend:

Y: Can be used under this communication protocol.

--: Cannot be used under this communication protocol.

#

When OSI TP is used for client/server mode communication with non-OpenTP1
system, data can be transmitted if its type is appropriately converted. For the
communication data types that can be specified, see 5.1.6 Communication data
types.

XATMI interface facility Communication protocols

TCP/IP OSI TP

Request/response service paradigm Y Y

Conversational service paradigm Y --

Typed data transmission Y Y#

Client/server mode communication
between OpenTP1 systems

Y Y

Transaction extension to other TP
monitors

-- Y

5. X/Open-compliant Application Programming Interface

375

5.1.3 Request/response service paradigm
XATMI-interfaced communication based on the request/response service paradigm is
explained below.

(1) Types of request/response service
The following types of request/response service based communication are available:

(a) Communication with synchronous response reception
A request for a service is issued, then a response is awaited. The function tpcall()
[TPCALL] is used to request a service.

Time monitoring:

Communication with synchronous response reception involves monitoring of
times taken before a response returns. The maximum response waiting interval is
specified in the OpenTP1 definition. For details on the definition, see the manual
OpenTP1 System Definition.

If the process which calls the function tpcall() is under a transaction, the
maximum response waiting interval is the value assigned to
trn_expiration_time in the definition. In this case, the process terminates
abnormally when the maximum response waiting interval expires (tpcall()
does not return with an error).

If the process which calls the function tpcall() is not under a transaction, the
maximum response waiting interval is the value assigned to watch_time in the
definition. In this case, the function tpcall() returns with an error when the
maximum response waiting interval expires.

The figure below shows the communication with synchronous response reception
based on the request/response service paradigm.

5. X/Open-compliant Application Programming Interface

376

Figure 5-1: Communication with synchronous response reception based on
request/response service paradigm

(b) Communication with asynchronous response reception
A service is requested, then processing continues without waiting for a response. Then,
a function is issued to receive a response. The function tpacall() [TPCALL] is used
to request service and the function tpgetrply() [TPGETRPLY] is used to receive a
response.

Time monitoring:

Communication with asynchronous response reception involves a process in
which the communication party waits until the function tpgetrply() receives
a response. The maximum response waiting interval is specified in the OpenTP1
definition. For details on the definition, see the manual OpenTP1 System
Definition.

If the process which calls the function tpacall() or tpgetrply() is under a
transaction, the maximum response waiting interval is the value assigned to
trn_expiration_time in the definition. In this case, the process terminates
abnormally when the maximum response waiting interval expires
(tpgetrply() does not return with an error).

If the process which calls the function tpacall() or tpgetrply() is not under
a transaction, the maximum response waiting interval is the value assigned to
watch_time in the definition. In this case, the function tpgetrply() returns
with an error when the maximum response waiting interval expires.

The figure below shows the communication with asynchronous response reception
based on the request/response service paradigm.

5. X/Open-compliant Application Programming Interface

377

Figure 5-2: Communication with asynchronous response reception based on
request/response service paradigm

(c) Communication without response reception
The result of the service request is not returned. With this type of communication,
TPNOREPLY is specified for flags of the function tpacall(). Note that TPNOTRAN
must also be specified for flags of the function tpacall().

When a service request is used through this type of communication, no response is
returned. The UAP which requested that service continues processing.

The figure below shows the communication without response reception based on the
request/response service paradigm.

5. X/Open-compliant Application Programming Interface

378

Figure 5-3: Communication without response reception based on request/
response service paradigm

(2) Time monitoring involved in communication based on request/response
service paradigm

In communication based on the request/response service paradigm, time monitoring is
always performed according to the values specified in the OpenTP1 definition. For
details on the definition, see the manual OpenTP1 System Definition.

There are two types of timeout: transaction timeout and blocking timeout. The
transaction timeout is a timeout that is encountered during the transaction process,
whereas the blocking timeout is caused by a wait in blocking status. If a transaction
timeout occurs, the process terminates abnormally.

The process may wait beyond the specified timeout value (because the OpenTP1
monitoring timer is reset even if a response other than the appropriate data is returned).
If TPNOTIME is specified for flags, the timeout value is infinite. Note that the
transaction timeout occurs regardless of whether this flag is set.

(3) Relationship between communication based on request/response service
paradigm and transaction

The transaction is controlled by a transaction control function available with OpenTP1
(function dc_trn_~ or tx_~). Whether a transaction under OpenTP1 is settled or is
in rollback_only status is determined from the result of the service function or the
transaction control function. In communication based on the request/response service
paradigm, however, the transaction branch concerned enters rollback_only status
if one of the following errors occurs:

• Transaction timeout (the process terminates abnormally)

• typed buffer reception error (an illegal type was received)

5. X/Open-compliant Application Programming Interface

379

• TPESVCERR or TPESVCFAIL error (this error is reported by the function
tpreturn() or by user with the function tpreturn())

• TPESYSTEM error (the transaction may not enter rollback_only status even if
TPESYSTEM returns)

(a) Transaction control involved in communication with synchronous
response reception
If the caller process is under a transaction, whether the called service is treated as a
transaction is determined by the parameter set in the flags argument to the function
tpcall(). Set TPNOTRAN only when the called service is not to be treated as a
transaction. A transaction timeout may occur even if TPNOTRAN is set.

(b) Transaction control involved in communication with asynchronous
response reception
If the caller process is under a transaction, whether the called service is treated as a
transaction is determined by the parameter set in the flags argument to the function
tpacall(). Set TPNOTRAN only when the called service is not to be treated as a
transaction. A transaction timeout may occur even if TPNOTRAN is set.

(c) Transaction control involved in communication without response
reception
In communication without response reception, no service can be treated as a
transaction. TPNOTRAN must always be specified for the flags argument to the
function tpacall().

(4) Responses to blocking
Functions for communication based on the request/response service paradigm have the
TPNOBLOCK flag that indicates the necessary action against blocking. The function
tpgetrply() with this flag returns with an error if it detects blocking. If this flag is
not set, the function waits until blocking is removed or a blocking timeout occurs (if
TPNOTIME is set, however, no blocking timeout error occurs). Under OpenTP1, this
flag has effect only on the function tpgetrply(). Even if this flag is set for the
function tpcall() or tpacall(), it is ignored.

5.1.4 Conversational service paradigm
This subsection explains the conversational service paradigm available with the
XATMI interface. Communication based on this paradigm is possible only when the
communication protocol is TCP/IP. If OSI TP is used as the communication protocol,
the conversational service paradigm is not available.

(1) Procedure for communication based on conversational service paradigm
Communication based on this paradigm is started after a connection is established with
the destination party through the issuance of a function. The procedure for requesting

5. X/Open-compliant Application Programming Interface

380

service is as follows:

(a) Connection establishment
The client UAP establishes a connection with the service function by the function
tpconnect() [TPCONNECT]. The UAP process that established the connection by
using the function tpconnect() is referred to as the originator and the remote UAP
process is referred to as the subordinator.

When the function tpconnect() returns normally, a positive descriptor that
identifies the established connection is returned. This descriptor is assigned to the
communication function and communication starts.

When the function tpreturn() is called by the service function to terminate the
process, the connection is terminated.

Connection control authority:

Either TPSENDONLY or TPRECVONLY that indicates whether the process has
control authority should be specified for the flags argument to the function
tpconnect(). If TPSENDONLY is specified, the process acquires control
authority so that it can call the data sending function tpsend(). In contrast, if
TPRECVONLY is set, control authority is passed to the remote process so that the
caller process of the function tpconnect() can call the data reception function
tprecv().

(b) Data sending (tpsend())
To send data, call the function tpsend() [TPSEND]. Set the descriptor returned by
the function tpconnect() for the argument to the function tpsend() so that the
connection to be used can be identified.

No communication party can call the function tpsend() if it has not connection
control authority. Even if called, the function tpsend() returns with an error.

To pass connection control authority to the remote process, specify TPRECVONLY for
flags of the function tpsend(). By using the function tpsend() with this flag
specified, control authority is passed to the remote process.

To send data from the subordinator with the function tpsend(), use the descriptor
obtained from the received TPSVCINFO structure.

(c) Data receiving (tprecv())
To receive data, call the function tprecv() [TPRECV]. Data is received
asynchronously. The function tprecv() can be issued from processes that have no
control authority.

Time monitoring:

If TPNOBLOCK is not specified for flags, the function tprecv() waits until data
is received. The maximum response waiting interval is specified in the OpenTP1

5. X/Open-compliant Application Programming Interface

381

definition. For details of the definition, see the manual OpenTP1 System
Definition.

If the process which calls the function tprecv() is under a transaction, the
maximum response waiting interval is the value assigned to
trn_expiration_time in the OpenTP1 system definition. In this case, the
process terminates abnormally when the maximum response waiting interval
expires (tprecv() does not return with an error).

If the process which calls the function tprecv() is not under a transaction, the
maximum response waiting interval is the value assigned to watch_time in the
OpenTP1 system definition. In this case, the function tprecv() returns with an
error when the maximum response waiting interval expires.

(d) Disconnection
A connection is terminated normally when processing of the service function is
completed and the function tpreturn() [TPRETURN] is called with appropriate
control authority. A connection may also be terminated due to a communication error.

(e) Forced disconnection (tpdiscon())
To forcibly terminate a connection for some reason, call the function tpdiscon()
[TPDISCON]. The descriptor specified in the function tpdiscon() has no effect on
the subsequent processes. For transaction processing, the transaction branch on the
subordinator enters rollback_only status.

The figure below shows the communication based on the conversational service
paradigm.

5. X/Open-compliant Application Programming Interface

382

Figure 5-4: Communication based on conversational service paradigm

(2) Time monitoring involved in communication based on conversational service
paradigm

In communication based on the conversational service paradigm, time monitoring is
always performed according to the values specified in the OpenTP1 definition. For
details on the definition, see the manual OpenTP1 System Definition.

There are two types of timeout: transaction timeout and blocking timeout. The
transaction timeout is a timeout that is encountered during the transaction process,
whereas the blocking timeout is caused by a wait in blocking status. If a transaction
timeout occurs, the process terminates abnormally.

The process may wait beyond the specified timeout value (because the OpenTP1
monitoring timer is reset even if a response other than the appropriate data is returned).
If TPNOTIME is specified for flags, the timeout value is infinite. Note that the
transaction timeout occurs regardless of whether this flag is set.

(3) Relationship between communication based on conversational service
paradigm and transaction

The transaction is controlled by a transaction control function available with OpenTP1
(function dc_trn_~ or tx_~). Whether the transaction under OpenTP1 is settled or in
rollback_only status is determined from the result of the service function or the
transaction control function. In communication based on the conversational service
paradigm, however, the transaction branch concerned enters rollback_only status

5. X/Open-compliant Application Programming Interface

383

if one of the following errors occurs:

• Transaction timeout (the process terminates abnormally)

• typed buffer reception error (an illegal type was received)

• TPESYSTEM error (the transaction may not enter rollback_only status even if
TPESYSTEM returns)

• Calling of tpdiscon()

• Error code TPEEVENT returned by the function tpsend() (event code is
TPEV_SVCERR or TPEV_SVCFAIL)

• Error code TPEEVENT returned by the function tprecv() (event code is
TPEV_DISCONIMM, TPEV_SVCERR, or TPEV_SVCFAIL)

If the caller process is under a transaction, whether the called service is treated as a
transaction is determined by the parameter set in the flags argument to the function
tpconnect(). Set TPNOTRAN only when the called service is not to be treated as a
transaction. A transaction timeout may occur even if TPNOTRAN is set.

(4) Responses to blocking
Functions for communication based on the conversational service paradigm have the
TPNOBLOCK flag that indicates the necessary action against blocking. The function
tprecv() with this flag returns with an error if it detects blocking. If this flag is not
set, the function waits until blocking is removed or a timeout occurs (if TPNOTIME is
set, however, no blocking timeout error occurs). With OpenTP1, this flag has effect
only on the function tprecv(). Even if this flag is set for the function tpconnect()
or tpsend(), it is ignored.

(5) Event reception
If an event exists in the descriptor cd that identifies the connection, it can be received
by the function (tpsend() or tprecv()) for communication based on the
conversational service paradigm. The event provides communication-related
information. For details, see the applicable OpenTP1 Programming Reference manual.

5.1.5 Notes on using xatmi interface for communication under
OpenTP1

When using the XATMI interface for communication under OpenTP1, note the
following:

• The following value must be specified in the user service definition of the user
server which uses the XATMI interface.
server_type = "xatmi"

• The XATMI interface does not have the concept of service groups. To use the
XATMI interface for communication under OpenTP1, however, a service group

5. X/Open-compliant Application Programming Interface

384

should be specified in the UAP user service definition.

• The following values must be specified in the user service definition or user
service default definition when the XATMI interface is to be used under a
transaction:
trn_expiration_time = non-zero value
trn_expiration_time_suspend = Y

• If blocking occurs when the function tpcall(), tpacall(), tpconnect(), or
tpsend() sends data and is not removed within the specified period,
TPESYSTEM is returned regardless of whether the TPENOBLOCK flag is set. The
period until the function returns with a TPESYSTEM error is determined by the
service request retry count and interval specified in the definition.

• If a transaction timeout occurs, the process terminates abnormally without
returning TPETIME.

• When a UAP calls an XATMI interface function (e.g., tpcall()) after the UAP
has been called by the function dc_rpc_call(), the UAP should be linked to a
stub created by specifying client definitions both in the RPC interface definition
and the XATMI interface definition. See the applicable OpenTP1 Programming
Reference manual.

• If the transaction is settled by the function tx_commit() or other similar means,
all data yet to be received becomes invalid.

• Before the internode load-balancing facility and the extended internode
load-balancing facility can be used, as in the case of the function
dc_rpc_call(), multiple SPP service group names must match in the user
service definition. For this purpose, specify the service names and executable file
names in the user service definition so that they match. If service names do not
match, the function tpcall(), tpacall(), or tpconnect() may fail. If
executable file names do not match, the result varies depending on which server
UAP is scheduled.

• The maximum data length that can be transferred via the XATMI interface API is
500 Kbytes.

5.1.6 Communication data types
XATMI-interfaced communication allows structures in C or records in COBOL to be
sent and received so that a chunk of data of some size can be transmitted with a single
service request. Such a chunk of data is referred to as a typed buffer in C or a typed
record in COBOL.

(1) Types and subtypes
Communication data belongs to a type and a subtype. The type and subtype of
communication data to be used by a UAP are specified in the stub source file (XATMI

5. X/Open-compliant Application Programming Interface

385

interface definition) which is used for creating the UAP. For XATMI interface
definitions, see the applicable OpenTP1 Programming Reference manual.

(a) Type
A type identifies a kind of communication data as defined in the XATMI interface.
Each type is characterized by the following:

• X_OCTET

Data of this type is an octet array (byte string). The X_OCTET type has no subtype.

• X_COMMON

Data of this type is a structure or record that is not nested. A subtype identifies the
construction.

• X_C_TYPE

Data of this type is a structure or record that is not nested. A subtype identifies the
construction.

(b) Subtype
A subtype identifies a structure or record whose elements are populated with data in a
range compatible with the type.

For the data types that can be used as communication data types, see (3) in 5.1.6
Communication data types.

(2) How to use communication data types
The use of typed buffers or typed records allows structures in C or records in COBOL
to be transferred. If function flags are specified appropriately, it is possible to receive
data of a type or subtype of a different data type or of a different size from that
specified for reception. However, before a communication data type can be handled by
a UAP, it must match the value specified for the UAP in advance in the XATMI
interface definition.

(3) List of data types that can be used with each communication data type
If you want to use a typed buffer, define its type, subtype, and data type in the XATMI
interface definition (for the server UAP). When a stub is created from the XATMI
interface definition file and the stub object file is linked to the server UAP, the typed
buffer can be used. For XATMI interface definitions, see the applicable OpenTP1
Programming Reference manual.

Even when OSI TP is used as the protocol for communication with a non-OpenTP1
system, a typed buffer or type record can be sent to the remote system after it is
converted so that it will be recognized by the remote system.

The table below lists the data types that can be used with each communication data
type. The identifier indicates the data type that must be specified in the XATMI

5. X/Open-compliant Application Programming Interface

386

interface definition. The data type in C and the data in COBOL indicates the typed
buffer or typed record that is actually defined in the stub. To convert a data type as
preparation for communication with a non-OpenTP1 system, specify the identifier
requiring conversion in the XATMI interface definition.

Table 5-4: Data types that can be used with each communication data type

Type Identifier Data type in
C

Data in COBOL Communication
protocol

Remarks

TCP/IP OSI TP

X_OCTET --#1 --#1 --#1 Y Y None

X_COMMON short a short a PIC S9(9)
COMP-5

Y Y None

short
a[n]

short a[n] PIC S9(9)
COMP-5

OCCURS n TIMES

Y Y None

long a long a PIC S9(9)
COMP-5

Y Y None

long a[n] long a[n] PIC S9(9)
COMP-5

OCCURS n TIMES

Y Y None

char a#2 char a PIC X Y Y Array not to
be converted

octet a char a PIC X Y Y Array not to
be converted

tchar a char a PIC X - Y Array to be
converted

char

a[n]#2
char a[n] PIC X(n) Y Y Array not to

be converted

octet
a[n]

char a[n] PIC X(n) Y Y Array not to
be converted

tchar
a[n]

char a[n] PIC X(n) - Y Array to be
converted

X_C_TYPE short a short a -- Y N None

short
a[n]

short a[n] -- Y N None

long a DCLONG a -- Y N None

5. X/Open-compliant Application Programming Interface

387

Legend:

long a[n] DCLONG a[n] -- Y N None

int4 a DCLONG a -- Y N None

int4 a[n] DCLONG a[n] -- Y N None

char a#2 char a -- Y N None

octet a char a -- Y N None

tchar a char a -- Y N None

char

a[n]#2
char a[n] -- Y N None

octet
a[n]

char a [n] -- Y N None

tchar
a[n]

char a[n] -- Y N None

float a float a -- Y N None

float
a[n]

float a[n] -- Y N None

double a double a -- Y N None

double
a[n]

double a[n] -- Y N None

octet
a[n][n]

char
a[n][n]

-- Y N None

tchar
a[n][n]

char
a[n][n]

-- Y N None

str a[n] char a[n] -- Y N None

str
a[n][n]

char
a[n][n]

-- Y N None

tstr a[n] char a[n] -- Y N None

tstr
a[n][n]

char
a[n][n]

-- Y N None

Type Identifier Data type in
C

Data in COBOL Communication
protocol

Remarks

TCP/IP OSI TP

5. X/Open-compliant Application Programming Interface

388

Y: Can be used under this communication protocol.

N: Cannot be used under this communication protocol.

--: Always treated as an identifier not to be converted.

#1

X_OCTET will always be recognized, regardless of whether it is defined. If
X_OCTET is specified in the XATMI interface definition, the execution of a stub
creation command will encounter an error.

#2

This identifier can be used, but the following identifier should be used if you are
in process of creation.

octet or tchar for X_COMMON

str or tstr for X_C_TYPE

(4) How to use functions which manipulate typed buffers
Explained below is how to use XATMI interface functions for manipulating
communication data. The API that can manipulate communication data can be used
only via the C language. There is no COBOL API for manipulating communication
data.

(a) Allocation of typed buffer
To allocate a typed buffer, issue the function tpalloc() with a type and a subtype
values from the UAP. The area allocated by the function tpalloc() is cleared to
NULL.

(b) Reallocation of typed buffer
To expand a typed buffer, use the function tprealloc(). The typed buffer available
with the function tprealloc() is only X_OCTET. If another typed buffer is specified,
the function returns with an error. If the new buffer length is shorter than the data, the
data is truncated. If the new buffer length is longer than the data, the extra area is
cleared to NULL.

If reallocation fails, the old typed buffer is also invalidated.

(c) Deallocation of typed buffer
To deallocate the allocated area, call the function tpfree() having a pointer to the
typed buffer as its argument. A value which is not a typed buffer pointer is ignored
even if it is specified.

(d) Acquisition of typed buffer information
To acquire the type or other information about a buffer, call the function tptypes().

5. X/Open-compliant Application Programming Interface

389

(e) Notes on typed buffer operation
Do not use functions for typed buffer operation in combination with the functions
malloc(), realloc(), or free() in the C library. For example, the buffer allocated
by the function tpalloc() cannot be deallocated by the function free(). If the
function free() is called for the allocated typed buffer, the result is unpredictable.

(5) Notes on using the X_OCTET type
The typed buffer of the X_OCTET type is partially different from other typed buffers.
Notes on using the typed buffer of the X_OCTET type are given below.

1. The typed buffer of the X_OCTET type has no subtype (structure) (no
subtype-specific information is needed).

2. Data is send without conversion (data is treated only as a bit array).

3. A parameter indicating the length must be specified.

5.1.7 How to create server UAP
This subsection explains how to use a function from the service function (server UAP)
for XATMI-interfaced communication. The creation method of server UAPs is
different from that of the OpenTP1 service functions.

(1) Coding service functions provided by server UAP
When writing code in C for service functions, follow the format given for
tpservice(). This format is a standard coding format.

If you are writing code in COBOL, invoke TPSVCSTART before using an
XATMI-interfaced API for service program processing.

(a) How to terminate a service function
A service function terminates when the function tpreturn() [TPRETURN] is called.
For XATMI-interfaced communication under OpenTP1, the function tpreturn()
must be called immediately before the service function is terminated by return().
The result of any process performed after call of the function tpreturn() is
unpredictable.

(b) Advertisement of a service name
The server UAP can declare that its own service name is ready to offer service
(advertisement of a service name). To advertise a service name, call the function
tpadvertise() [TPADVERTISE].

When the server UAP is activated, the service specified in the user service definition
becomes advertised service. It is unnecessary to call the function tpadvertise()
with the service name specified in the user service definition.

To unadvertise a service name, call the function tpunadvertise()

5. X/Open-compliant Application Programming Interface

390

[TPUNADVERTISE]. When the function tpunadvertise() is called, the service
request for the service name returns with an error. A service name that once
unadvertised by the function tpunadvertise() can accept a service request again if
the function tpadvertise() is called.

The functions tpadvertise() and tpunadvertise() can be called only from
SPPs. They cannot be called before the function dc_rpc_mainloop().

The function tpadvertise() has the function address to be advertised as its
argument. This argument is used to check whether the service name can be advertised.
Under OpenTP1, if the server using the function tpadvertise() has the same
service group as the server advertising its service name, it is regarded as advertised and
the function returns normally. If the service groups are different, the function
tpadvertise() returns with an error.

(2) Relationship between load-balancing types (on one node or multiple nodes)
and tpunadvertise()

(a) Load balancing at only one node (multiserver facility)
If the function tpunadvertise() is called from a process when load balancing is
effective at one node (multiserver facility), all processes on which load is distributed
become unable to receive service. Then, the function tpadvertise() is called to
advertise the service, the processes become ready to accept a service request.

The multiserver facility is available only for queue-receiving servers (SPPs scheduled
by schedule service). Servers that receive requests from socket cannot use the
multiserver facility.

(b) Load balancing at multiple nodes (internode load-balancing facility and
extended internode load-balancing facility)
Suppose that load balancing (internode load-balancing facility and extended internode
load-balancing facility) is effective at multiple nodes and the function
tpunadvertise() is called from a process. At the node of the process that called the
function tpunadvertise(), service stops. However, the service request can be
accepted by a server at another node. Under this environment, the function
tpadvertise() is called to advertise the service, the process becomes ready for
accepting service request.

The internode load-balancing facility can be used by either the queue or server that
receives requests from socket. The extended internode load-balancing facility can only
be used for queue-receiving servers.

5.1.8 Relationship between OpenTP1 facility and XATMI interface
(1) UAP trace

The UAP trace is also obtained for XATMI-interfaced communication. For details on
the UAP trace, see the OpenTP1 Tester and UAP Trace User's Guide.

5. X/Open-compliant Application Programming Interface

391

(2) Statistical information
The obtained operation statistical information is added to RPC information. Under
OpenTP1 of this version, however, a part of fault information (such as XATMI
interface specific faults) is not acquired. In particular, since the conversational service
is specific to XATMI-interfaced communication, statistical information about the
functions tpsend() and tprecv() cannot be acquired.

(3) RPC trace
The RPC trace can also be acquired. Under OpenTP1 of this version, however, a part
of fault information (such as XATMI interface specific faults) is not acquired. In
particular, since the conversational service is specific to XATMI-interfaced
communication, RPC traces about the functions tpsend() and tprecv() cannot be
acquired.

(4) Online tester
When you test UAPs using the XATMI interface, you cannot use some online tester
facilities. Table 5-5 indicates the relationship between online tester facilities and the
XATMI interface.

Table 5-5: Relationship between online tester facilities and XATMI interface

Legend:

Y: Can be used under the communication protocol.

Online tester facility Communication protocol used on XATMI
interface

TCP/IP OSI TP

Client UAP simulation Y N

Server UAP simulation Y N

MCF simulation -- --

Resource update annulling Y Y

Command simulation -- --

Tester file creation and editing Y N

UAP trace information acquisition Y Y

UAP trace information merge and editing output Y Y

Send message editing -- --

Debugger connecting Y N

5. X/Open-compliant Application Programming Interface

392

N: Cannot be used under the communication protocol.

--: Irrelevant to XATMI-interfaced communication

5. X/Open-compliant Application Programming Interface

393

5.2 TX interface (transaction control)

5.2.1 TX interfaces usable with OpenTP1
The API (TX_ functions) complying with X/Open can be used with UAPs of OpenTP1.
UAPs which perform transaction control with TX_ functions can use other vendors'
RM having the specifications conforming to X/Open.

(1) Relationship between OpenTP1 UAPs and TX_ functions
Table 5-6 lists the TX_ functions that can be used with UAPs of OpenTP1. Table 5-7
shows the relationship between OpenTP1 UAPs and TX_ functions.

Table 5-6: TX_ functions available with OpenTP1 UAPs

TX_ function name Facility

C language COBOL language

tx_begin TXBEGIN Begin a global transaction

tx_close TXCLOSE Close a set of resource managers

tx_commit TXCOMMIT Commit a global transaction
Chained mode (TX_CHAINED specified)
Unchained mode (TX_UNCHAINED specified)

tx_info TXINFORM Return global transaction information

tx_open TXOPEN Open a set of resource managers

tx_rollback TXROLLBACK Roll back a global transaction
Chained mode (TX_CHAINED specified)
Unchained mode (TX_UNCHAINED specified)

tx_set_commit_return TXSETCOMMITRET Set commit_return characteristics

tx_set_transaction_c
ontrol

TXSETTRANCTL Set transaction_control characteristics

tx_set_transaction_t
imeout

TXSETTIMEOUT Set transaction_timeout characteristics

5. X/Open-compliant Application Programming Interface

394

Table 5-7: Relationship between OpenTP1 UAPs and TX_ functions

Legend:

Y: Can be used with relevant UAP.

--: Cannot be used with relevant UAP.

5.2.2 How to use TX_ functions
(1) Starting a transaction

To start a transaction by TX_ functions, call the functions from UAP as shown below.
To call the functions in this order, the transaction can be started regardless of the

TX_ function name SUP SPP MHP UAP
that

hand
les

offlin
e

work

Not
within
trans
actio

n
proce
ssing
range

Withi
n

trans
actio

n
proce
ssing
range
(root)

Not
within
trans
actio

n
proce
ssing
range

Transacti
on range

Not
withi

n
trans
actio

n
proc
essin

g
rang

e

Withi
n

trans
actio

n
proc
essin

g
rang

e
(root

)

Ro
ot

Not
roo

t

tx_begin Y -- Y -- -- -- -- --

tx_close Y -- Y -- -- -- -- --

x_commit (TX_CHAINED specified) -- Y -- Y -- -- -- --

tx_commit (TX_UNCHAINED
specified)

-- Y -- Y -- -- -- --

tx_info Y Y Y Y Y -- -- --

tx_open Y Y -- -- -- --

tx_rollback (TX_CHAINED
specified)

-- Y -- Y -- -- -- --

tx_rollback (TX_UNCHAINED
specified)

-- Y -- Y Y -- -- --

tx_set_commit_return Y Y Y Y Y -- -- --

tx_set_transaction_control Y Y Y Y Y -- -- --

tx_set_transaction_timeout Y Y Y Y Y -- -- --

5. X/Open-compliant Application Programming Interface

395

atomic_update specification in the user service definition. If atomic_update = Y
is specified in the user service definition, transaction processing start can be called
unless tx_open() [TXOPEN] and tx_close() [TXCLOSE] are called.

Starting a transaction by SUP

Starting a transaction by SPP (starting by service functions)

When starting a transaction within the service functions of SPP, call tx_open()
before the function dc_rpc_mainloop().

(2) Obtaining synchronization point
Transaction processing started by tx_begin() [TXBEGIN] must always be completed
by the function that obtains synchronization point (tx_commit() [TXCOMMIT] or
tx_rollback() [TXROLLBACK]).

The chained mode (TX_CHAINED) and unchained mode (TX_UNCHAINED) are
provided for tx_commit() and tx_rollback(). When starting a new global
transaction after obtaining synchronization point, set the chained mode. When
terminating transaction processing without starting a new transaction, set the
unchained mode. The chained or unchained mode is set as a transaction_control
characteristic by tx_set_transaction_control() [TXSETTRANCTL].

(3) Setting transaction characteristics
Characteristics of transaction processing can be set by TX_ functions.

dc_rpc_open()
tx_open()
tx_begin()
 :
 :
tx_commit() (synchronization point processing)
tx_close()
 : tx_open() and tx_close() can be reissued in this section.
dc_rpc_close()

dc_rpc_open()
tx_open()
dc_rpc_mainloop()
 :
(Service function processing)
tx_begin()
 :
 :
tx_commit() (synchronization point processing)
 :
(Main function dc_rpc_mainloop() returns.)
tx_close()
 :
dc_rpc_close()

5. X/Open-compliant Application Programming Interface

396

(a) commit_return characteristic
When a transaction is committed in two phases, you can set whether control returns
upon completion of the first or second phase. With the corresponding version of
OpenTP1, return before completion of the second phase cannot be set. If such return
is set, control returns with error. commit_return characteristic is set by
tx_set_commit_return() [TXSETCOMMITRET].

(b) transaction_control characteristic
Sets whether a new transaction is to be started (chained mode or unchained mode) after
the synchronization point (tx_commit() or tx_rollback()). For
transaction_control characteristic, set either TX_CHAINED or TX_UNCHAINED
by tx_set_transaction_control() [TXSETTRANCTL].

(c) transaction_timeout characteristic
Monitoring time for transactions can be set. The transaction_timeout
characteristic is set by tx_set_transaction_timeout() [TXSETTIMEOUT]. The
transaction_timeout characteristic set by tx_set_transaction_timeout()
has priority over the value of trn_expiration_time defined by the system.

(4) Obtaining transaction information
tx_info() [TXINFORM] enables the structures containing transaction branch IDs or
transaction characteristics to be referenced.

The following shows the formats of the structures that can be referenced.

(5) Relation to user service definition
By using tx_open() and tx_close(), processing after tx_begin() can be
processed as a transaction, regardless of the value of atomic_update in the user
service definition.

When a service is called by the UAP which called tx_begin(), processing of the
service is included in the global transaction, regardless of the specification of
atomic_update in the server UAP.

5.2.3 Restrictions on using TX_ functions
(1) Use of OpenTP1 functions when using TX_ functions

OpenTP1 functions can be used along with TX_ functions. However, do not use TX_
functions together with the transaction control functions (dc_trn_ ~) of OpenTP1.
Transaction control cannot be performed with mixed use of both facilities.

XID xid;
COMMIT_RETURN when_return;
TRANSACTION_CONTROL transaction_control;
TRANSACTION_TIMEOUT transaction_timeout;
TRANSACTION_STATE transaction_state;

5. X/Open-compliant Application Programming Interface

397

(2) Relationship between dc_rpc_open() and tx_open()
Call the function dc_rpc_open() before tx_open(). If tx_open() is called
without the function dc_rpc_open(), error is returned with TX_ERROR.

(3) Difference between dc_rpc_close() and tx_close()
The function dc_rpc_open() cannot be called after the function dc_rpc_close()
is called. However, tx_open() can be called after tx_close() is called. When the
UAP is to be placed in dormant state due to traffic, call tx_close(), then recall
tx_open().

(4) Relationship between tx_open()/tx_close() and open/close functions specific
to RM

tx_open() and tx_close() are the functions which inform each RM that access
was requested by UAP or it ended. By using tx_open() or tx_close(), processing
requests from UAP are posted to each RM.

The open and close functions specific to RM (e.g., dc_dam_open(),
dc_dam_close()) indicate the start and end of actual processing. If tx_open() or
tx_close() is called, the open and close functions specific to RM do not become
unnecessary.

5.2.4 Comparison with transaction control functions of OpenTP1
(dc_trn_ ~)
(1) Correspondence between TX_ functions and transaction control functions of
OpenTP1 (dc_trn_ ~)

The table below shows the relationship between TX_ functions and transaction control
functions of OpenTP1 (dc_trn_ ~).

Table 5-8: Relationship between TX_ functions and transaction control
functions of OpenTP1 (dc_trn_ ~)

TX_ function name OpenTP1 transaction control function
(dc_trn_ ~)

tx_begin() dc_trn_begin()

tx_close() No corresponding function

tx_commit() (TX_CHAINED specified) dc_trn_chained_commit()

tx_commit()

(TX_UNCHAINED specified)
dc_trn_unchained_commit()

tx_info() dc_trn_info()

tx_open() No corresponding function

5. X/Open-compliant Application Programming Interface

398

(2) Time monitoring with TX_ function
Elapsed time of a transaction can be monitored with
tx_set_transaction_timeout(). In this case, the transaction_timeout
characteristic set by tx_set_transaction_timeout() has priority over the value
of trn_expiration_time defined by the system.

(a) Range of time monitoring
For time monitoring from tx_begin() to the synchronization point (tx_commit()
or tx_rollback()), the following can be selected:

Whether or not the time until the function dc_rpc_call() called in the transaction
returns is to be included. The range of transaction monitoring time can be specified by
trn_expiration_time_suspend in the user service definition, user service default
definition, or transaction service definition. For details on the value to be assigned to
trn_expiration_time_suspend and transaction time monitoring, see the manual
OpenTP1 System Definition.

tx_rollback()

(TX_CHAINED specified)
dc_trn_chained_rollback()

tx_rollback()

(TX_UNCHAINED specified)
dc_trn_unchained_rollback()

tx_set_commit_return() No corresponding function

tx_set_transaction_control() No corresponding function

tx_set_transaction_timeout() No corresponding function

TX_ function name OpenTP1 transaction control function
(dc_trn_ ~)

399

Chapter

6. X/Open-compliant
Inter-application Communication
(TxRPC)

This chapter explains what facilities are available when the X/Open-compliant
inter-application communication method (TxRPC interface) is used with OpenTP1
application programs.

This chapter contains the following sections:

6.1 Communication through TxRPC interface
6.2 Communication allowed with application programs
6.3 Procedures for creating application programs for TxRPC communication

6. X/Open-compliant Inter-application Communication (TxRPC)

400

6.1 Communication through TxRPC interface

The TxRPC interface provides an X/Open-compliant client/server-mode
communication method. The TxRPC interface can be used for communication
between UAP processes under OpenTP1. Unlike other types of client/server-mode
communication, TxRPC communication is performed by calling a user-created
function from the client. The user can create a function without consideration of the
lower layers of communication protocol.

The figure below shows the outline of communication through the TxRPC interface.

Figure 6-1: Outline of communication through TxRPC interface

6.1.1 Types of TxRPC communication
The TxRPC communication method is classified into the following two types
depending on whether DCE RPC is used:

• IDL-only TxRPC

• RPC TxRPC

(1) IDL-only TxRPC
With this method, a UAP is created using only files generated by the IDL compiler.
DCE need not be set up with this method.

(2) RPC TxRPC
With this method, a DCE RPC is used for the communication protocol. This version
does not support RPC TxRPC.

6. X/Open-compliant Inter-application Communication (TxRPC)

401

6.1.2 Application programs that can be created
The following application programs can be created as UAPs used for TxRPC
communication:

• Client UAP (SUP)

• Server UAP (SPP)

(1) Process type
One of the following options is given to the txidl command to specify the type of a
UAP process to be created. This is called a process type.

• ndce:

Indicates a process which does not use DCE. This option is specified for a SUP
or a SPP.

For the syntax of the txidl command, see the manual OpenTP1 Programming
Reference C Language.

6.1.3 Necessary libraries
The prerequisite library for TxRPC communication is as follows.

When SUP or SPP is created

The following product must be installed in the system:

• TP1/Server Base

6. X/Open-compliant Inter-application Communication (TxRPC)

402

6.2 Communication allowed with application programs

TxRPC allows the following types of communication:

• Synchronous-response-type transactional RPC

• Synchronous-response-type nontransactional RPC

6.2.1 TxRPC remote procedure calls
With a TxRPC remote procedure call (RPC), a user-created function is called. The only
available RPC mode is synchronous-response-type RPC. The other RPC modes
(asynchronous-response-type RPC, nonresponse-type RPC, and conversational RPCs)
are unavailable.

For TxRPC communication, a function to be called is called a manager.

The OpenTP1 RPC (the function dc_rpc_call()) can also be used with any type of
TxRPC communication.

6.2.2 TxRPC transaction processing
A TxRPC UAP allows transaction processing. To control transactions by a UAP
process, use a TX_ function (e.g., tx_begin() or tx_rollback()). For details on
transaction control using the TX_ functions, see 5.2 TX interface (transaction control).

(1) Scope of transaction processing
With OpenTP1 TxRPC, transaction processing is permitted for IDL-only TxRPC.

(2) Transaction attributes
A transaction attribute must be specified for a TxRPC UAP process which performs
transaction processing. TxRPC has the following transaction attributes:

• transaction_mandatory

This attribute always indicates transaction extension. If a UAP with this attribute
is called from a non-transaction process, an error occurs.

• transaction_optional

When a UAP with this attribute is called from a transaction process, a UAP
process is treated as a transaction. When a UAP with this attribute is called from
a non-transaction process, a UAP process is treated as a non-transaction process.

A transaction attribute of a UAP is specified in the interface definition file (IDL file).
Either transaction_mandatory or transaction_optional may be specified.

The figure below shows communication by using application programs.

6. X/Open-compliant Inter-application Communication (TxRPC)

403

Figure 6-2: Communication by using application programs

6.2.3 Relation between application programs using OpenTP1
facilities and TxRPC application programs

Communication between an SUP/SPP which uses the OpenTP1 remote procedure call
(the function dc_rpc_call()) and a server UAP which uses TxRPC is performed as
follows:

• An SPP called using the function dc_rpc_call() can call another SPP using
TxRPC.

• A TxRPC server UAP can request an SPP for service using the function
dc_rpc_call(). However, any server UAP with process type nbet cannot use
this function.

6. X/Open-compliant Inter-application Communication (TxRPC)

404

6.3 Procedures for creating application programs for TxRPC
communication

This section explains the procedures for creating UAPs which use the TxRPC
communication methods.

6.3.1 Procedure for creating UAP for IDL-only TxRPC
communication

To create a UAP for IDL-only TxRPC communication:

1. Create an Interface Definition Language (IDL) file.

2. Compile the IDL file using the IDL compiler (txidl command).

3. Based on the template of a server UAP generated using the txidl command,
code necessary programs along with the client UAP.

4. Use the C compiler to compile and link stubs generated using the txidl
command and the coded programs.

For the procedure for creating a UAP for TxRPC communication, see the manual
OpenTP1 Programming Reference C Language.

The figure below shows the procedure for creating a UAP for IDL-only TxRPC
communication.

6. X/Open-compliant Inter-application Communication (TxRPC)

405

Figure 6-3: Procedure for creating UAP for IDL-only TxRPC communication

407

Chapter

7. Facilities Provided by TP1/Multi

This chapter explains the facilities available with TP1/Multi in cluster/parallel mode.

This chapter contains the following sections:

7.1 Application programs in cluster/parallel mode
7.2 Facilities available with the use of application programs
7.3 Conditions for using multinode facility functions

7. Facilities Provided by TP1/Multi

408

7.1 Application programs in cluster/parallel mode

This section explains the UAPs for OpenTP1 installed in the cluster system or parallel
processing system.

7.1.1 Node on which application programs can be executed
In an environment using the multinode facility, UAPs (user servers) can be used on
only archived journal nodes. They cannot be used on archiving journal nodes.

7.1.2 Prerequisites to application program execution
The following prerequisites should be satisfied by OpenTP1 nodes containing UAPs
which execute the facilities for cluster system or parallel processing system:

• TP1/Multi must be installed.

• Y must be assigned to multi_node_option in the system common definition.

However, none of the above prerequisites must be satisfied when:

• The user server status acquisition function (the function
dc_adm_get_sv_status()) is used to acquire the status of the user server at
the own node.

• The node identifier of the own OpenTP1 node acquisition function (the function
dc_adm_get_node_id()) is used.

The figure below shows the outline of the application programs in cluster/parallel
mode.

7. Facilities Provided by TP1/Multi

409

Figure 7-1: Outline of application programs in cluster/parallel mode

7. Facilities Provided by TP1/Multi

410

7.2 Facilities available with the use of application programs

This section explains the facilities which can be used by calling a function from the
UAP in a cluster/parallel mode OpenTP1 system.

7.2.1 Acquisition of OpenTP1 node status
By using a function from a UAP, the status of an OpenTP1 node contained in a cluster/
parallel mode system can be acquired. Through the acquisition of OpenTP1 node
statuses, the multinode area or subarea can be monitored by the UAP.

The statuses that can be acquired are:

• The OpenTP1 node has not started.

• The OpenTP1 node is halted or is being terminated abnormally.

• The OpenTP1 node is normally being started.

• The OpenTP1 node is normally being restarted.

• The OpenTP1 node is online.

• The OpenTP1 node is normally being terminated.

• The OpenTP1 node is being terminated according to plan A.

• The OpenTP1 node is being terminated according to plan B.

Whether to acquire the statuses of multiple OpenTP1 nodes in succession or to acquire
the status of only the specified OpenTP1 node can be specified.

(1) How to acquire the statuses of OpenTP1 nodes in succession
The statuses of all OpenTP1 nodes in each multinode area or subarea are acquired.

To acquire the statuses of all nodes in succession, call the function
dc_adm_get_nd_status_begin() with the multinode area or subarea identifier
specified. This function returns the number of OpenTP1 nodes in the specified area.
Then, call the function dc_adm_get_nd_status_next() to acquire OpenTP1 node
statuses. Continue calling the function dc_adm_get_nd_status_next() until the
statuses of the last candidate node is acquired. Finally, call the function
dc_adm_get_nd_status_done() to terminate status acquisition.

Once the function dc_adm_get_nd_status_begin() is called, it cannot be called
(that is, the function dc_adm_get_nd_status_begin() cannot be nested).

The figure below shows the procedure for acquiring OpenTP1 node statuses in
succession.

7. Facilities Provided by TP1/Multi

411

Figure 7-2: Procedure for acquiring OpenTP1 nodes in succession

(2) How to acquire the status of only the specified OpenTP1 node
To acquire the status of only the specified OpenTP1 node, call the function
dc_adm_get_nd_status(). This function returns the status concerning the node
identifier of the OpenTP1 node specified in the function.

7.2.2 Acquisition of user server status
By calling a function from a UAP, the statuses of user servers at OpenTP1 nodes
making up a cluster/parallel mode system can be acquired. Through the acquisition of
user server statuses, the user servers in the multinode subarea can be monitored.

The statuses that can be acquired are:

• The user server is halted or is being terminated abnormally.

• The user server is normally being started.

• The user server is normally being restarted.

7. Facilities Provided by TP1/Multi

412

• The user server is online.

• The user server is normally being terminated.

Whether to acquire the statuses of multiple user servers in succession or to acquire the
status of only the specified user server can be specified.

(1) How to acquire the statuses of user servers in succession
The statuses of all user servers at the node identified by the OpenTP1 node identifier
are acquired.

To acquire the statuses of all user servers in succession, call the function
dc_adm_get_sv_status_begin() with the node identifier specified. This function
returns the number of user servers at the specified OpenTP1 node. Then, call the
function dc_adm_get_sv_status_next() to acquire the user server statuses.
Continue issuing the function dc_adm_get_sv_status_next() until the status of
the last candidate user server is acquired. Finally, call the function
dc_adm_get_sv_status_done() to terminate status acquisition.

Once the function dc_adm_get_sv_status_begin() is called, it cannot be called
(that is, the function dc_adm_get_sv_status_begin() cannot be nested).

The figure below shows the procedure for acquiring user server statuses in succession.

7. Facilities Provided by TP1/Multi

413

Figure 7-3: Procedure for acquiring user server statuses in succession

(2) How to acquire the status of only the specified user server
To acquire the status of only the specified user server, call the function
dc_adm_get_sv_status(). This function returns the status of the user server
identified by the node identifier specified in the function.

7.2.3 Acquisition of OpenTP1 node identifier
By calling a function from a UAP, all node identifiers in the multinode area or subarea
can be acquired. Through the acquisition of node identifiers, the UAP can recognizes
which OpenTP1 nodes are contained in the multinode area or subarea.

Whether to acquire all node identifiers in succession or to acquire the node identifier
of only the specified OpenTP1 node can be specified.

(1) How to acquire node identifiers of all OpenTP1 nodes in succession
The node identifiers of all OpenTP1 nodes in each multinode area or subarea are

7. Facilities Provided by TP1/Multi

414

acquired. To acquire node identifiers in succession, call the function
dc_adm_get_nodeconf_begin() with the area specified. This function returns the
number of OpenTP1 nodes in the specified area. Then, call the function
dc_adm_get_nodeconf_next() to acquire the OpenTP1 node identifiers.
Continue using the function dc_adm_get_nodeconf_next() until the node
identifier of the last candidate OpenTP1 node is acquired. Finally, issue the function
dc_adm_get_nodeconf_done() to terminate status acquisition.

Once the function dc_adm_get_nodeconf_begin() is called, it cannot be called
(that is, the function dc_adm_get_nodeconf_begin() cannot be nested).

The figure below shows the procedure for acquiring OpenTP1 node identifiers in
succession.

Figure 7-4: Procedure for acquiring OpenTP1 node identifiers in succession

(2) How to acquire the node identifier of only the local OpenTP1 node
To acquire the node identifier of only the OpenTP1 node running the UAP, call the
function dc_adm_get_node_id(). This function returns the node identifier of the

7. Facilities Provided by TP1/Multi

415

local OpenTP1 node.

7. Facilities Provided by TP1/Multi

416

7.3 Conditions for using multinode facility functions

The table below lists the conditions for using multinode facility functions.

Table 7-1: Conditions for using multinode facility functions

Multinode function name and specification of
argument node_id

TP1/Multi installed TP1/Multi not
installed

Specification of
multi_node_option

Specification of
multi_node_option

Y N Y N

dc_adm_get_nd_status_be
gin

Any Y N -- N

dc_adm_get_nd_status_ne
xt

Any Y N -- N

dc_adm_get_nd_status_do
ne

Any Y N -- N

dc_adm_get_nd_status '*' specified Y N -- N

Local node_id
specified

Y N -- N

Another node_id
specified

Y N -- N

dc_adm_get_sv_status_be
gin

'*' specified Y Y -- Y

Local node_id
specified

Y Y -- Y

Another node_id
specified

Y N -- N

dc_adm_get_sv_status_ne
xt

'*' specified Y Y -- Y

Local node_id
specified

Y Y -- Y

Another node_id
specified

Y N -- N

7. Facilities Provided by TP1/Multi

417

Legend:

Y: The function can be used under this condition.

N: The function cannot be used under this condition.

--: If the function is called under this condition, OpenTP1 terminates abnormally.

dc_adm_get_sv_status_do
ne

*' specified Y Y -- Y

Local node_id
specified

Y Y -- Y

Another node_id
specified

Y N -- N

dc_adm_get_sv_status *' specified Y Y -- Y

Local node_id
specified

Y Y -- Y

Another node_id
specified

Y N -- N

dc_adm_get_nodeconf_beg
in

Any Y N -- N

dc_adm_get_nodeconf_nex
t

Any Y N -- N

dc_adm_get_nodeconf_don
e

Any Y N -- N

dc_adm_get_node_id Any Y N -- N

Multinode function name and specification of
argument node_id

TP1/Multi installed TP1/Multi not
installed

Specification of
multi_node_option

Specification of
multi_node_option

Y N Y N

419

Chapter

8. OpenTP1 Samples

This chapter explains how to use samples given by OpenTP1.

This chapter contains the following sections:

8.1 Outline of samples
8.2 How to use Base sample
8.3 How to use DAM sample
8.4 How to use TAM sample
8.5 Specifications of sample programs
8.6 How to use MCF sample
8.7 Samples to be used to dispatch multi OpenTP1 command
8.8 COBOL language templates
8.9 How to use sample scenario template
8.10 How to use real-time acquisition item definition templates

8. OpenTP1 Samples

420

8.1 Outline of samples

OpenTP1 provides samples to support the system setup. Using samples gives the
following advantages:

• Workload from installation to setup of OpenTP1 is reduced.

• Tools for supporting system operation can be used.

• Templates can be used when a UAP is written in COBOL.

8.1.1 Types of sample programs
OpenTP1 samples are as follows:

Base sample

Comes with TP1/Server Base.

DAM sample

Comes with TP1/FS/Direct Access.

TAM sample

Comes with TP1/FS/Table Access.

MCF sample

Comes with the message control facility (TP1/Message Control, TP1/NET/
Library, and communication protocol supporting product).

delvcmd command

Dispatches commands for MultiOpenTP1.

COBOL language templates

Are DATA DIVISION templates used when a UAP is written in COBOL.

Sample scenario templates

Is the sample scenario template used when the system is operated using a scenario
template. To use this template, you must have a JP1 product (JP1/AJS2, JP1/AJS2
- Scenario Operation, or JP1/Base) that is a prerequisite for systems that use a
scenario template.

Real-time acquisition item definition templates

Templates used for the real-time statistical information service.

These samples are independent of each other and stored in separate directories. They
can be used by themselves.

8. OpenTP1 Samples

421

(1) Files accessed from application programs
Base sample, DAM sample, and TAM sample can use sample programs (UAPs) and
the OpenTP1 file system. UAPs in each sample use programs of the same format.
However, the location for storing databases used by the UAPs varies depending on the
sample as follows:

• Database for Base sample: On memory table

• Database for DAM sample: DAM file

• Database for TAM sample: TAM table

UAPs in each sample reference or update data in the database. The access procedure
helps the user understand how to use the OpenTP1 API.

8.1.2 Sample program directory configuration
This section explains the files that are used with OpenTP1 samples. The figure below
shows the directories containing OpenTP1 samples. $DCDIR is the OpenTP1 home
directory.

8. OpenTP1 Samples

422

Figure 8-1: Configuration of directories for storing samples

#1

$DCDIR is an environment variable indicating the OpenTP1 home directory. If

8. OpenTP1 Samples

423

you have copied the OpenTP1 samples to a directory other than the default
OpenTP1 home directory, $DCDIR is the name of that directory. If not, the
examples/ directory is placed under $DCDIR.

#2

betranfile is created when a sample command for tools is executed.
betranfile does not exist at initial time.

#3

The directory for installation of OpenTP1 depends on the OS.

(1) Contents of examples/ directory under $DCDIR
The examples/ directory under $DCDIR contains the directory used with the sample.
Files in the examples/ directory are listed below with a brief explanation.

base/

Directory that contains files for the Base sample

dam/

Directory that contains files for the DAM sample

tam/

Directory that contains files for the TAM sample

tools/

Directory that contains tools commonly used by all samples (tool directory)

mcf/

Directory that contains files for the message control facility (MCF) sample

COBOL/

Directory that contains COBOL language templates

(a) Contents of base/, dam/, and tam/ directories
Directories and files in the base/, dam/, and tam/ directories are listed below with a
brief explanation.

aplib/

Directory that contains sample UAPs

c/

Directory that contains source files (in the C language) of UAPs in the sample

cobol/

8. OpenTP1 Samples

424

Directory that contains source files (in the COBOL language) of UAPs in the
sample

conf/

Directory that contains definition files of the sample

betranfile

OpenTP1 file system for the sample (the contents of this file are created by the
tools in the tools/ directory)

(b) Contents of tools/ directory
Files in the tools/ directory are listed below with a brief explanation.

base_mkfs

Shell file that creates an OpenTP1 file system for the Base sample

dam_mkfs

Shell file that creates an OpenTP1 file system for the DAM sample

apbat

File that creates a DAM file for the DAM sample (used by dam_mkfs). This file
is created when a UAP executable file is created using the make command. For
details on how to create an executable file, see 8.3.2(1)(b) Create a UAP
executable file.

tam_mkfs

Shell file that creates an OpenTP1 file system for the TAM sample

tamdata

Data file used to create a TAM table for dam_mkfs

chconf

Command that modifies a definition file (used to change $DCDIR to the actual
OpenTP1 home directory)

bkconf

Command that restores a definition file modified by chconf to its original state

delvcmd

Command that delivers a command to nodes in Multi-OpenTP1 mode. For details
on the delvcmd command, see 8.7 Samples to be used to dispatch multi OpenTP1
command.

8. OpenTP1 Samples

425

(c) Contents of mcf/ directory
For details on the configuration of the mcf/ directory, see 8.6 How to use MCF sample.

(d) Contents of COBOL/ directory
For details on the configuration of the COBOL/ directory, see 8.8 COBOL language
templates.

(2) Contents of rts_template/ directory under $DCDIR
The rts_template/ directory under $DCDIR directory contains the directory used
with the real-time statistical information service. Files in the rts_template/
directory are listed below with a brief explanation.

(a) Contents of examples/ directory
Directories in the examples/ directory are listed below with a brief explanation.

conf/

Directory that contains the real-time acquisition item definition files for the
real-time statistical information service

• base_itm

Real-time acquisition item definition file for BASE

• dam_itm

Real-time acquisition item definition file for DAM

• tam_itm

Real-time acquisition item definition file for TAM

• all_itm

Real-time acquisition item definition file for all statistical information

• none_itm

Real-time acquisition item definition file for no statistical information

• mcfs_itm

Real-time acquisition item definition file for the MCF (acquired for the
entire system or for each server or service)

• mcfl_itm

Real-time acquisition item definition file for the MCF (acquired for each
logical terminal)

• mcfg_itm

Real-time acquisition item definition file for the MCF (acquired for each

8. OpenTP1 Samples

426

service group)

(3) Contents of jp1_template/ directory under the installation directory
The jp1_template/ directory under the installation directory contains the directory
used with the sample scenario template. Files in the jp1_template/ directory are
listed below with a brief explanation.

examples/

Directory that contains the files used with the scale-out sample scenario template

(a) Contents of examples/ directory
Directories in the examples/ directory are listed below with a brief explanation.

aplib/

Directory that contains the load module (load module for the source file under the
source/ directory) for the sample program of the scenario template

conf/

Directory that contains the definition file for the sample scenario template

tools/

Directory that contains the shell file used for the sample scenario template

dcjset_conf

Shell file that sets the OpenTP1 environment for the sample scenario
template

dcj_mkfs

Shell file that creates an OpenTP1 file system for the sample scenario
template

dcjmk_dcdir

Shell file that creates an OpenTP1 directory for the sample scenario template

source/

Directory that contains the sample program (UAP) of the scenario template. The
sample scenario template uses the Base sample as the sample program. For details
on the specifications of the Base sample, see 8.5 Specifications of sample
programs.

8.1.3 Explanation format of samples
This section explains how to use OpenTP1 samples.

In this section, a command input example is written in the following format:

8. OpenTP1 Samples

427

Commands that should be typed by the user are underlined.

The above example means that "after confirming the prompt displayed on the screen,
type the command (dcstart) and press the Return key".

8. OpenTP1 Samples

428

8.2 How to use Base sample

This section explains how to use the Base sample. The figure below shows the
procedure for using samples.

Figure 8-2: Outline of procedure for using samples (Base sample when using a
stub)

8. OpenTP1 Samples

429

Figure 8-3: Outline of procedure for using samples (Base sample when using
dynamic loading of service functions)

8.2.1 Procedure common to all samples (Base sample)
This subsection explains the preparation procedure common to three OpenTP1
samples (Base, DAM, and TAM samples).

Install OpenTP1 products (TP1/Server Base, TP1/FS/Direct Access, and TP1/FS/

8. OpenTP1 Samples

430

Table Access) before using these samples. The OpenTP1 administrator is responsible
for this work. The procedure so far is the same as the ordinary OpenTP1 setup
procedure.

(1) Specifying an OpenTP1 home directory in environment variable DCDIR
Specify an OpenTP1 home directory in the environment variable DCDIR.

Example
Change the OpenTP1 home directory to /usr/betran:

(2) Adding directories to the OpenTP1 administrator's command search path
Add a search path for OpenTP1 commands and a search path for sample-serving tools
to be used with samples to the OpenTP1 administrator's command search path.

• $DCDIR/bin: Search path for OpenTP1 commands

• $DCDIR/examples/tools: Search path for sample-serving tools

(3) Copying a set of OpenTP1 samples
If the OpenTP1 home directory was changed to a directory other than /BeTRAN in step
(1), copy a set of OpenTP1 samples into the environment of the OpenTP1 home
directory. If the OpenTP1 home directory is unchanged, copying is not needed. For
copying, use the cp, tar, or other similar command.

Before copying, make sure that the OpenTP1 home directory is configured as shown
in 8.1.2 Sample program directory configuration. Otherwise, the operation is
unpredictable.

Example
Copy the samples from the /BeTRAN directory where OpenTP1 was installed to
the OpenTP1 home directory (using the cp command):

An environment that allows the OpenTP1 samples to be used is now established.

8.2.2 Tasks specific to the Base sample (when using a stub)
This subsection explains how to use the Base sample. It assumes that the sample is
used under the following conditions:

Shell to be used: C shell

OpenTP1 home directory: /usr/betran

% setenv DCDIR /usr/betran <CR>

% cp -R /BeTRAN/examples $DCDIR <CR>

8. OpenTP1 Samples

431

(1) Creating application programs
Given below is the procedure for creating UAPs of the Base sample. To create UAPs
of the Base sample, use the make command, a UNIX tool. A makefile dedicated to
the sample is provided in the directory for the TP1/Server Base sample.

The make command should be executed on the assumption that the c/ or cobol/
directory in the aplib/ directory is the current directory.

For example, to create a UAP in the C language, enter the commands as follows:

When these commands are executed, executable UAP files (in C) with the names
basespp and basesup are created in the aplib/ directory.

(2) Modifying the system definition
The sample provides a system definition sample so that the user need not specify a
system definition. For some definition files, however, the actual OpenTP1 home
directory must be specified with the full pathname.

(a) Procedure for modifying the definition of the OpenTP1 home directory
The chconf command, a tool for modification, is used to change the OpenTP1 home
directory from $DCDIR to the actual home directory. By executing this command, the
specifications of the OpenTP1 home directory in the definition file can be changed
from $DCDIR to the actual OpenTP1 home directory (/usr/betran, for example).

Before the chconf command can be executed, the user must go to the $DCDIR/
example/base/conf/ directory of the sample. A command input example is given
below.

When the chconf command is executed, the contents of the following definition files
are modified. The characters in bold represent the actual OpenTP1 home directory.

Table 8-1: Definition files and content to be modified (Base sample)

% chdir $DCDIR/examples/base/aplib/c <CR>
% make <CR>

% chdir $DCDIR/examples/base/conf <CR>
% chconf <CR>

Definition file to be modified Modification

env putenv DCCONFPATH $DCDIR/examples/base/conf

prc putenv prcsvpath $DCDIR/examples/base/aplib

sts Physical file name: $DCDIR/examples/base/betranfile/xxx

sysjnl Physical file name: $DCDIR/examples/base/betranfile/xxx

8. OpenTP1 Samples

432

Before this tool (chconf command) can be executed, the OpenTP1 home directory
must be defined in the environment variable DCDIR. Otherwise, the result is
unpredictable.

(b) How to restore the modified OpenTP1 home directory
To restore the modified OpenTP1 home directory to its original state, execute the
bkconf command provided by the sample. This command restores the portion in the
definition file that was modified by the chconf command to its initial state.

If the chconf command fails to modify the system definition, execute the bkconf
command at once.

A command input example is given below.

(3) Setting environment variables and definition files
Given below is the procedure for starting the OpenTP1 system with the created sample
UAPs and sample system definition.

(a) Set the environment variable DCCONFPATH
Set the directory containing the definition files in the environment variable
DCCONFPATH. After this setting, OpenTP1 can recognize the contents of the definition
files.

A command input example is given below:

(b) Copy the definition file env
Of definition files, only the env file must be read from $DCDIR/conf into OpenTP1.
Therefore, the env definition file created as a sample must be moved to $DCDIR/
conf.

If an env definition file is already in $DCDIR/conf/ directory, it is overwritten.

Save it if necessary.

A command input example is given below:

cdtrn Physical file name: $DCDIR/examples/base/betranfile/xxx

% chdir $DCDIR/examples/base/conf <CR>
% bkconf <CR>

% setenv DCCONFPATH $DCDIR/examples/base/conf <CR>

% cp $DCDIR/examples/base/conf/env $DCDIR/conf <CR>

Definition file to be modified Modification

8. OpenTP1 Samples

433

(c) Initialize the OpenTP1 file system
Initialize the OpenTP1 file system for Base sample using the shell file base_mkfs.

A command input example is given below:

After this shell file is executed, a file named betranfile is created under the
$DCDIR/examples/base/ directory and the OpenTP1 file system is established
under that file.

8.2.3 Tasks for using OpenTP1 (when using a stub)
After modifying the system definition, start with the work for using OpenTP1.

(1) Setting up OpenTP1
Setup an OpenTP1 using the dcsetup command. The dcsetup command is placed
in the /BeTRAN/bin/ directory.

A command input example is given below:

The OpenTP1 administrator is responsible for this work. Specify the full pathname
with the dcsetup command only when using the sample for the first time. It is
unnecessary to execute the dcsetup command specifying the full pathname to setup
the sample again. For details on the dcsetup command, see the manual OpenTP1
Operation.

(2) Activating the OpenTP1 system and user server
The procedure for activating the OpenTP1 system and user server is given below.

(a) Start the OpenTP1 system
Start the OpenTP1 system using the dcstart command.

A command input example is given below:

(b) Start user servers (UAPs)
Start the created UAPs using the dcsvstart command. First start the server UAP
(SPP), then start the client UAP (SUP).

A command input example is given below:

% base_mkfs <CR>

% /BeTRAN/bin/dcsetup OpenTP1-home-directory-name <CR>

% dcstart <CR>

% dcsvstart -u basespp <CR>

8. OpenTP1 Samples

434

A message log is output to indicate that basespp becomes online.

A message log is output to indicate that basesup becomes online.

How the user server process proceeds is indicated by the message log.

The server UAP (SPP) can also be started automatically when the OpenTP1 system
starts if so specified in the user service configuration definition.

(3) List of files in OpenTP1 file system
After the base_mkfs command, an OpenTP1 file system creation tool, is executed, an
OpenTP1 file system is created under the $DCDIR/examples/base/betranfile
file. The table below lists the files contained in the created OpenTP1 file system.

Table 8-2: List of files in OpenTP1 file system (Base sample)

#

This record length is a default value.

(4) Exchanging a sample UAP
To exchange a sample UAP:

1. Terminate the OpenTP1 system.

2. Execute the dcsetup command with -d option to remove the OpenTP1 from the
OS temporarily.

% dcsvstart -u basesup <CR>

File name Purpose Record length# Number of records

jn101 System journal file 4096 bytes 50

jn102 System journal file 4096 bytes 50

jn103 System journal file 4096 bytes 50

stsfi101 Status file 4608 bytes 50

stsfi102 Status file 4608 bytes 50

stsfi103 Status file 4608 bytes 50

stsfi104 Status file 4608 bytes 50

cpdf01 Checkpoint dump file 4096 bytes 256

cpdf02 Checkpoint dump file 4096 bytes 256

cpdf03 Checkpoint dump file 4096 bytes 256

8. OpenTP1 Samples

435

3. Specify the desired sample UAP by following the procedure in 8.2 How to use
Base sample.

4. Execute the UAP.

8.2.4 Tasks specific to the Base sample (when using dynamic
loading of service functions)

This subsection describes the preparation procedure specific to the Base sample when
using dynamic loading of service functions. The description assumes that the sample
is used under the following conditions:

Shell to be used: C shell

OpenTP1 home directory: /usr/betran

(1) Creating application programs
The procedure for creating UAPs from the Base sample when using dynamic loading
of service functions is given below. To create a sample program, use the UNIX make
command. A makefile for the sample is provided in the directory for the Base
sample.

The make command should be executed with the current directory set to the c/ or
cobol/ directory in the aplib/ directory.

For example, to create a UAP in C language, enter the commands as follows:

% chdir $DCDIR/examples/base/aplib/c <CR>
% make -f make_svdl <CR>

When these commands are executed, executable UAP files (in C) with the names
basespp2 and basesup2 are created in the aplib/ directory.

(2) Modifying the system definition
A sample definition file is provided with the sample, to save the user the trouble of
modifying the system definition. However, for some definition files, the actual
OpenTP1 home directory must be specified as an absolute path.

(a) Procedure for modifying the definition of the OpenTP1 home directory
The chconf command, a configuration tool, is used to change the OpenTP1 home
directory from $DCDIR to the actual home directory. By executing this command, the
references to the OpenTP1 home directory in the definition file can be changed from
the placeholder $DCDIR to the actual OpenTP1 home directory (/usr/betran, for
example).

Before executing the chconf command, navigate to the $DCDIR/examples/base/
conf/ directory. A command input example is given below:

8. OpenTP1 Samples

436

% chdir $DCDIR/examples/base/conf <CR>
% chconf <CR>

When the chconf command is executed, the contents of the following definition files
are modified. The portion in bold is changed to the actual OpenTP1 home directory.

Table 8-3: Definition files and content to be modified (Base sample)

Before this tool (chconf command) can be executed, the OpenTP1 home directory
must be defined in the DCDIR environment variable. Otherwise, the files are not
modified correctly.

Because the UAP shared library name (containing $DCDIR) specified in the service
operand of basespp2 and BASESPP2 is specified using an environment variable,
executing the chconf command will not change references to this file in the definition
files.

(b) Restoring the modified OpenTP1 home directory
To restore the modified OpenTP1 home directory to its original state, execute the
bkconf command provided to undo the change. This command restores the parts of
the definition files modified by the chconf command to their initial state.

If the chconf command fails to modify the system definition in the manner expected,
immediately execute the bkconf command.

A command input example is given below:

% chdir $DCDIR/examples/base/conf <CR>
% bkconf <CR>

(3) Setting environment variables and definition files
The procedure for starting the OpenTP1 system with the created sample UAPs and
sample system definition is given below.

Definition file to be
modified

Modification

env putenv DCCONFPATH $DCDIR/examples/base/conf

prc putenv prcsvpath $DCDIR/examples/base/aplib

sts Physical file name: $DCDIR/examples/base/betranfile/xxx

sysjnl Physical file name: $DCDIR/examples/base/betranfile/xxx

cdtrn Physical file name: $DCDIR/examples/base/betranfile/xxx

8. OpenTP1 Samples

437

(a) Set the environment variable DCCONFPATH
Set the directory containing the definition files as the value of the environment variable
DCCONFPATH. This allows OpenTP1 to recognize the contents of the definition files.

A command input example is given below:

% setenv DCCONFPATH $DCDIR/examples/base/conf <CR>

(b) Copy the definition file env
Of the definition files, only the env file must be read from $DCDIR/conf into
OpenTP1. Therefore, the env definition file created as a sample must be moved to
$DCDIR/conf.

If an env definition file has already been created in the $DCDIR/conf/ directory, it
will be overwritten. Back up the existing file if necessary.

A command input example is given below:

% cp $DCDIR/examples/base/conf/env $DCDIR/conf <CR>

(c) Initialize the OpenTP1 file system
Initialize the OpenTP1 file system for the Base sample by executing the shell file
base_mkfs.

A command input example is given below:

% base_mkfs <CR>

When this shell file is executed, a file named betranfile is created under the
$DCDIR/examples/base/ directory and the OpenTP1 file system is established
under that file.

8.2.5 Tasks for using OpenTP1 (when using dynamic loading of
service functions)

After modifying the system definition, begin the tasks required for using OpenTP1.

(1) Setting up OpenTP1
Set up OpenTP1 by executing the dcsetup command. The dcsetup command is
located in the /BeTRAN/bin/ directory.

A command input example is given below:

% /BeTRAN/bin/dcsetup OpenTP1-home-directory-name <CR>

8. OpenTP1 Samples

438

The setup task must be performed by an OpenTP1 system administrator. Specify the
dcsetup command as an absolute path only when using the sample for the first time.
You do not need to specify the absolute path for the dcsetup command the next time
you set up the sample. For details on the dcsetup command, see the manual OpenTP1
Operation.

(2) Activating the OpenTP1 system and user servers
The procedure for activating the OpenTP1 system and user servers is given below.

(a) Start the OpenTP1 system
Start the OpenTP1 system by using the dcstart command.

A command input example is given below:

% dcstart <CR>

(b) Start user servers (UAPs)
Start the created UAPs using the dcsvstart command. Start the server UAP (SPP)
first, and then the client UAP (SUP).

A command input example is given below:
% dcsvstart -u basespp2 <CR>

A message log is output to indicate that basespp2 is online.
% dcsvstart -u basesup2 <CR>

A message log is output to indicate that basesup2 is online.

The processing activity of the user servers (UAPs) is output to the message log.

The server UAP (SPP) can also be set to start automatically when the OpenTP1 system
starts by making the appropriate setting in the user service configuration definition.

(3) List of files in the OpenTP1 file system
When you execute the base_mkfs command to create the OpenTP1 file system, the
file system is created under the $DCDIR/examples/base/betranfile file. The
table below lists the files contained in the created OpenTP1 file system.

Table 8-4: List of files in the OpenTP1 file system (Base sample)

File name Purpose Record length# Number of
records

jnl01 System journal file 4096 bytes 50

8. OpenTP1 Samples

439

#

These record lengths are default values.

(4) Replacing a sample UAP
To replace a sample UAP:

1. Shut down the OpenTP1 system.

2. Execute the dcsetup command with the -d option specified to temporarily
remove OpenTP1 from the OS.

3. Specify the new sample UAP that you want to use by following the procedure in
8.2 How to use Base sample.

4. Execute the UAP.

jnl02 System journal file 4096 bytes 50

jnl03 System journal file 4096 bytes 50

stsfil01 Status file 4608 bytes 50

stsfil02 Status file 4608 bytes 50

stsfil03 Status file 4608 bytes 50

stsfil04 Status file 4608 bytes 50

cpdf01 Checkpoint dump file 4096 bytes 256

cpdf02 Checkpoint dump file 4096 bytes 256

cpdf03 Checkpoint dump file 4096 bytes 256

File name Purpose Record length# Number of
records

8. OpenTP1 Samples

440

8.3 How to use DAM sample

This section explains how to use the DAM sample. The figure below shows the outline
of the procedure for using samples.

8. OpenTP1 Samples

441

Figure 8-4: Outline of procedure for using samples (DAM sample)

8. OpenTP1 Samples

442

8.3.1 Procedure common to all samples (DAM sample)
The following preparation procedure common to three OpenTP1 samples is required:

1. Specifying an OpenTP1 home directory in environment variable DCDIR

2. Adding directories to the OpenTP1 administrator's command search path

3. Copying a set of OpenTP1 samples

For details on the above procedure, see 8.2.1 Procedure common to all samples (Base
sample).

8.3.2 DAM sample specific work
This subsection explains how to use the DAM sample. It assumes that the sample is
used under the following conditions:

Shell to be used: C shell

OpenTP1 home directory: /usr/betran

(1) Creating application programs
Given below is the procedure for creating UAPs of the DAM sample. To create UAPs
of the DAM sample, use the make command, a UNIX tool. A makefile dedicated to
the sample is provided in the directory for the DAM sample.

(a) Create an object file for transaction control
The OpenTP1 command trnmkobj is used to create an object file for transaction
control.

The makefile used with the sample specifies that the object file for transaction
control be created under the name dam_sw.o. Therefore, execute the trnmkobj
command to create an object file so that the created object file is named dam_sw.o.

The object file is created under the $DCDIR/spool/trnrmcmd/userobj/ directory.
If an object file of the same name already exists in this directory, save it in advance.

A command input example is given below:

(b) Create a UAP executable file
Execute the make command on the assumption that the c/ or cobol/ directory in the
aplib/ directory is the current directory.

For example, to create a UAP in C, enter the commands as follows:

% trnmkobj -o dam_sw -R OpenTP1_DAM <CR>

% chdir $DCDIR/examples/dam/aplib/c <CR>
% make <CR>

8. OpenTP1 Samples

443

When these commands are executed, a UAP executable file (in C) is created in the
aplib/ directory.

(2) Modifying the system definition
The sample provides a system definition sample so that the user need not specify a
system definition. For some definition files, however, the actual OpenTP1 home
directory must be specified with the full pathname.

(a) Procedure for modifying the definition of the OpenTP1 home directory
The chconf command, a tool for modification, is used to change the OpenTP1 home
directory from $DCDIR to the actual home directory. By executing this command, the
specifications of the OpenTP1 home directory in the definition file can be changed
from $DCDIR to the actual OpenTP1 home directory (/usr/betran, for example).

Before the chconf command can be executed, the user must go to the conf/ directory
of the sample.

A command input example is given below:

When the chconf command is executed, the contents of the following definition files
are modified. The characters in bold represent the portion to be modified.

Table 8-5: Definition files and content to be modified (DAM sample)

Before this tool (chconf command) can be executed, the OpenTP1 home directory
must be defined in the environment variable DCDIR. Otherwise, the result is
unpredictable.

(b) How to restore the modified OpenTP1 home directory to its original state
To restore the modified OpenTP1 home directory to its original state, execute the
bkconf command provided by the sample. This command restores the portion in the
definition file that was modified by the chconf command to its initial state.

% chdir $DCDIR/examples/dam/conf <CR>
% chconf <CR>

Definition file to be
modified

Modification

env putenv DCCONFPATH $DCDIR/examples/dam/conf

prc putenv prcsvpath $DCDIR/examples/dam/aplib

sts Physical file name: $DCDIR/examples/dam/betranfile/xxx

sysjnl Physical file name: $DCDIR/examples/dam/betranfile/xxx

cdtrn Physical file name: $DCDIR/examples/dam/betranfile/xxx

8. OpenTP1 Samples

444

If the chconf command fails to modify the system definition, execute the bkconf
command at once.

A command input example is given below:

(3) Setting environment variables and definition files
Given below is the procedure for starting the OpenTP1 system with the created sample
UAPs and sample system definition.

(a) Set the environment variable DCCONFPATH
Set the directory containing the definition files in the environment variable
DCCONFPATH. After this setting, OpenTP1 can recognize the contents of the definition
files.

A command input example is given below:

(b) Copy the definition file env
Of definition files, only the env file must be read from $DCDIR/conf into OpenTP1.
Therefore, the env definition file created as a sample must be moved to $DCDIR/
conf.

If an env definition file is already in $DCDIR/conf/ directory, it is overwritten. Save
it if necessary.

A command input example is given below:

(c) Initialize the OpenTP1 file system
Initialize the OpenTP1 file system for DAM sample using the shell file dam_mkfs.

A command input example is given below:

After this shell file is executed, a file named betranfile is created under the
$DCDIR/examples/dam/ directory and the OpenTP1 file system is established
under that file.

8.3.3 Work for using OpenTP1
After modifying the system definition, start with the work for using OpenTP1.

% chdir $DCDIR/examples/dam/conf <CR>
% bkconf <CR>

% setenv DCCONFPATH $DCDIR/examples/dam/conf <CR>

% cp $DCDIR/examples/dam/conf/env $DCDIR/conf <CR>

% dam_mkfs <CR>

8. OpenTP1 Samples

445

(1) Setting up OpenTP1
Setup an OpenTP1 using the dcsetup command. The dcsetup command is placed
in the /BeTRAN/bin/ directory.

A command input example is given below:

The OpenTP1 administrator is responsible for this work. Specify the full path name
with the dcsetup command only when using the sample for the first time. It is
unnecessary to execute the dcsetup command specifying the full pathname to setup
the sample again. For details on the dcsetup command, see the manual OpenTP1
Operation.

(2) Activating the OpenTP1 system and user server
The procedure for activating the OpenTP1 system by using the created sample UAP
and system definition for the sample is given below.

(a) Start the OpenTP1 system
Start the OpenTP1 system using the dcstart command.

A command input example is given below:

(b) Start user servers (UAPs)
Start the created UAPs using the dcsvstart command. First start the server UAP
(SPP), then start the client UAP (SUP).

A command input example is given below:

A message log is output to indicate that damspp becomes online.

A message log is output to indicate that damsup becomes online.

How the user server process proceeds is indicated by the message log.

The server UAP (SPP) can also be activated automatically when the OpenTP1 system
starts if so specified in the user service configuration definition.

(3) List of files in OpenTP1 file system
After the dam_mkfs command, an OpenTP1 file system creation tool, is executed, an
OpenTP1 file system is created under the $DCDIR/examples/dam/betranfile/

% /BeTRAN/bin/dcsetup OpenTP1-home-directory-name <CR>

% dcstart <CR>

% dcsvstart -u damspp <CR>

% dcsvstart -u damsup <CR>

8. OpenTP1 Samples

446

directory. The table below lists the files contained in the created OpenTP1 file system.

Table 8-6: List of files in OpenTP1 file system (DAM sample)

#

This value indicates the DAM file block length.

(4) Exchanging a sample UAP
To exchange a sample UAP:

1. Terminate the OpenTP1 system.

2. Execute the dcsetup command with -d option to remove the OpenTP1 from the
OS temporarily.

3. Specify the desired sample UAP following the procedure in 8.3 How to use DAM
sample.

4. Execute the UAP.

File name Purpose Record length# Number of records

jn1f01 System journal file 4096 bytes 100

jn1f02 System journal file 4096 bytes 100

jn1f03 System journal file 4096 bytes 100

stsfi101 Status file 4608 bytes 64

stsfi102 Status file 4608 bytes 64

stsfi103 Status file 4608 bytes 64

stsfi104 Status file 4608 bytes 64

cpdf01 Checkpoint dump file 4096 bytes 100

cpdf02 Checkpoint dump file 4096 bytes 100

cpdf03 Checkpoint dump file 4096 bytes 100

smplfile DAM file 512 bytes# 11 blocks

8. OpenTP1 Samples

447

8.4 How to use TAM sample

This section explains how to use the TAM sample. The figure below shows the outline
of the procedure for using samples.

8. OpenTP1 Samples

448

Figure 8-5: Outline of procedure for using samples (TAM sample)

8. OpenTP1 Samples

449

8.4.1 Procedure common to all samples (TAM sample)
The following preparation procedure common to three OpenTP1 samples is required:

1. Specifying an OpenTP1 home directory in environment variable DCDIR

2. Adding directories to the OpenTP1 administrator's command search path

3. Copying a set of OpenTP1 samples

For details on the above procedure, see 8.2.1 Procedure common to all samples (Base
sample).

8.4.2 TAM sample specific work
This subsection explains how to use the TAM sample. It assumes that the sample is
used under the following conditions:

Shell to be used: C shell

OpenTP1 home directory: /usr/betran

(1) Creating application programs
Given below is the procedure for creating UAPs of the TAM sample. To create UAPs
of the TAM sample, use the make command, a UNIX tool. A makefile dedicated to
the sample is provided in the directory for the TAM sample.

(a) Create an object file for transaction control
The OpenTP1 command trnmkobj is used to create an object file for transaction
control.

The makefile used with the sample specifies that the object file for transaction
control be created under the name tam_sw.o. Therefore, execute the trnmkobj
command to create an object file so that the created object file is named tam_sw.o.

The object file is created under the $DCDIR/spool/trnrmcmd/userobj/ directory.
If an object file of the same name already exists in this directory, save it in advance.

A command input example is given below:

(b) Create a UAP executable file
Execute the make command on the assumption that the c/ or cobol/ directory in the
aplib/ directory is the current directory. For example, to create a UAP in C, enter the
commands as follows:

% trnmkobj -o tam_sw -R OpenTP1_TAM <CR>

% chdir $DCDIR/examples/tam/aplib/c <CR>
% make <CR>

8. OpenTP1 Samples

450

When these commands are executed, a UAP executable file (in C) is created in the
aplib/ directory.

(2) Modifying the system definition
The sample provides a system definition initial values to help the user specify a system
definition. For some definition files, however, the actual OpenTP1 home directory
must be specified with the full pathname.

(a) Procedure for modifying the definition of the OpenTP1 home directory
The chconf command, a tool for modification, is used to change the OpenTP1 home
directory from $DCDIR to the actual home directory. By executing this command, the
specifications of the OpenTP1 home directory in the definition file can be changed
from $DCDIR to the actual OpenTP1 home directory (/usr/betran, for example).

Before the chconf command can be executed, the user must go to the conf/ directory
of the sample. A command input example is given below:

When the chconf command is executed, the contents of the following definition files
are modified. The characters in bold represent the portion to be modified.

Table 8-7: Definition files and content to be modified (TAM sample)

Before this tool (chconf command) can be executed, the OpenTP1 home directory
must be defined in the environment variable DCDIR. Otherwise, the result is
unpredictable.

(b) How to restore the modified OpenTP1 home directory to its original state
To restore the modified OpenTP1 home directory to its original state, execute the
bkconf command provided by the sample. This command restores the portion in the
definition file that was modified by the chconf command to its initial state.

If the chconf command fails to modify the system definition, execute the bkconf
command at once.

% chdir $DCDIR/examples/tam/conf <CR>
% chconf <CR>

Definition file to be modified Modification

env putenv DCCONFPATH $DCDIR/examples/tam/conf

prc putenv prcsvpath $DCDIR/examples/tam/aplic

sts Physical file name: $DCDIR/examples/tam/betranfile/xxx

sysjnl Physical file name: $DCDIR/examples/tam/betranfile/xxx

cdtrn Physical file name: $DCDIR/examples/tam/betranfile/xxx

8. OpenTP1 Samples

451

A command input example is given below:

(3) Setting environment variables and definition files
Given below is the procedure for starting the OpenTP1 system with the created sample
UAPs and sample system definition.

(a) Set the environment variable DCCONFPATH
Set the directory containing the definition files in the environment variable
DCCONFPATH. After this setting, OpenTP1 can recognize the contents of the definition
files.

A command input example is given below:

(b) Copy the definition file env
Of definition files, only the env file must be read from $DCDIR/conf into OpenTP1.
Therefore, the env definition file created as a sample must be moved to $DCDIR/
conf.

If an env definition file is already in the $DCDIR/conf/ directory, it is overwritten.
Save it if necessary.

A command input example is given below:

(c) Initialize the OpenTP1 file system
Initialize the OpenTP1 file system for TAM sample using the shell file tam_mkfs.

A command input example is given below:

After this shell file is executed, a file named betranfile is created under the
$DCDIR/examples/tam/ directory and the OpenTP1 file system is established
under that file.

8.4.3 Work for using OpenTP1
After modifying the system definition, start with the work for using OpenTP1.

(1) Setting up OpenTP1
Setup an OpenTP1 using the dcsetup command. The dcsetup command is placed

% chdir $DCDIR/examples/tam/conf <CR>
% bkconf <CR>

% setenv DCCONFPATH $DCDIR/examples/tam/conf <CR>

% cp $DCDIR/examples/tam/conf/env $DCDIR/conf <CR>

% tam_mkfs <CR>

8. OpenTP1 Samples

452

in the /BeTRAN/bin/ directory.

A command input example is given below:

The OpenTP1 administrator is responsible for this work. Specify the full pathname
with the dcsetup command only when using the sample for the first time. It is
unnecessary to execute the dcsetup command specifying the full pathname to setup
the sample again. For details on the dcsetup command, see the manual OpenTP1
Operation.

(2) Activating the OpenTP1 system and user server
The procedure for activating the OpenTP1 system by using the created sample UAP
and system definition for the sample is given below.

(a) Start the OpenTP1 system
Start the OpenTP1 system using the dcstart command. A command input example
is given below:

(b) Start user servers (UAPs)
Start the created UAPs using the dcsvstart command. First start the server UAP
(SPP), then start the client UAP (SUP). A command input example is given below:

A message log is output to indicate that tamspp becomes online.

A message log is output to indicate that tamsup becomes online.

How the user server process proceeds is indicated by the message log.

The server UAP (SPP) can also be activated automatically when the OpenTP1 system
starts if so specified in the user service configuration definition.

(3) List of files in OpenTP1 file system
After the tam_mkfs command, an OpenTP1 file system creation tool, is executed, an
OpenTP1 file system is created under the $DCDIR/examples/tam/betranfile
directory. The table below lists the files contained in the created OpenTP1 file system.

% /BeTRAN/bin/dcsetup OpenTP1-home-directory-name <CR>

% dcstart <CR>

% dcsvstart -u tamspp <CR>

% dcsvstart -u tamsup <CR>

8. OpenTP1 Samples

453

Table 8-8: List of files in OpenTP1 file system (TAM sample)

The table below lists the specifications of the created TAM file.

Table 8-9: Specifications of the TAM sample file

(4) Exchanging a sample UAP
To exchange a sample UAP:

1. Terminate the OpenTP1 system.

2. Execute the dcsetup command with -d option to remove the OpenTP1 from the
OS temporarily.

3. Specify the desired sample UAP following the procedure in 8.4 How to use TAM

File name Purpose Record length Number of records

jnf101 System journal file 4096 bytes 50

jnf102 System journal file 4096 bytes 50

jnf103 System journal file 4096 bytes 50

stsfi101 Status file 4608 bytes 256

stsfi102 Status file 4608 bytes 256

stsfi103 Status file 4608 bytes 256

stsfi104 Status file 4608 bytes 256

cpdf01 Checkpoint dump file 4096 bytes 100

cpdf02 Checkpoint dump file 4096 bytes 100

cpdf03 Checkpoint dump file 4096 bytes 100

File name tamexam1

Purpose TAM file

Record length 40 bytes (including the key length)

Key area length 20 bytes

Key start position 0th byte (beginning of the record)

Maximum number of records 10

Table format Tree

TAM data file name $DCDIR/examples/tools/tamdata

8. OpenTP1 Samples

454

sample.

4. Execute the UAP.

8. OpenTP1 Samples

455

8.5 Specifications of sample programs

This section explains the specifications of the following three OpenTP1 samples:

• Base sample

• DAM sample

• TAM sample

The specifications are common to the above samples.

8.5.1 Contents of database used by samples
The UAP references private information in the established customer information
database using names as the key or updates sales amounts. The table below indicates
the format of the customer information database.

Table 8-10: Format of customer information database

8.5.2 Outline of sample program processing
An outline of sample program processing is given below. For details, see the source
file of the sample program.

The client UAP retrieves private information about one person by sending a reference
request to the server. Then, it sends an update request to the server to update sales
amounts. Finally, it sends a reference request to confirm that sales amounts have been
updated.

When the client UAP requests the server UAP for service, operation can be checked
through message log output. The message log is output after a reference if the request
is a reference request or before a update if the request is an update request.

When a reference or update process is completed, a message log is also output to the
server UAP to indicate whether the process was successful.

Messages output from the client UAP are given a character string client and

Name Sex Age Sales amount

Tanaka Male 25 200,000

Saitoh Female 22 1,200,000

Nakamura Male 30 500,000

Miyamoto Male 19 800,000

Suzuki Female 20 950,000

8. OpenTP1 Samples

456

messages output from the server UAP are given a character string server. This helps
identify which UAP issued the message. The figures below show the relationship
between client and server UAP calls, for C and COBOL, respectively.

Figure 8-6: Relationship between client and server UAP calls (C language)

8. OpenTP1 Samples

457

Figure 8-7: Relationship between client and server UAP calls (COBOL
language)

8.5.3 Structure of sample programs
The client UAP consists of a single program, whereas the server UAP consists of
multiple programs. Some program names are different depending on whether the
sample UAP is written in C or COBOL.

(1) Structure of programs written in C
The figure below shows the program structure of the client and server UAPs written in
C.

8. OpenTP1 Samples

458

Figure 8-8: Program structure of client and server UAPs (C language)

(2) Structure of programs written in COBOL
The program structure of the server UAP written in COBOL contains an extra
program. The figure below shows the program structure of the Base sample UAPs
written in COBOL.

8. OpenTP1 Samples

459

Figure 8-9: Program structure of client and server UAPs (COBOL language)

8.5.4 Details of programs specific to each sample
This subsection explains the specifications specific to each sample.

(1) Programs of Base sample
With the Base sample, the database (DataBase) is created inside the user server process
and retained while the process is resident. Transaction start processing and
synchronization point processing are performed on the server UAP during the update
process.

(2) Programs of DAM sample
The programs of DAM sample are the same as the programs of Base sample except the
following three points:

1. The program structure of the server UAP written in COBOL is different from the
Base sample. The figure below shows the program structure of the DAM sample
UAPs written in COBOL.

8. OpenTP1 Samples

460

Figure 8-10: Program structure of client and server UAPs (DAM sample written
in COBOL language)

2. Since the DAM sample creates a database (DataBase) using an offline program
(dam_mkfs), the database is retained even after the user server process
terminates.

3. Transaction start processing and synchronization point processing are performed
on the server UAP during the process (reference or update).

(3) Programs of TAM sample
The programs of TAM sample are the same as the programs of Base sample except the
following three points:

1. The program structure of the server UAP written in COBOL is different from the
Base sample. For the program structure of the TAM sample UAPs written in
COBOL, see Figure 8-10.

2. Since the TAM sample creates a database(DataBase) using an offline program
(tam_mkfs), the database is retained even after the user server process
terminates.

3. Transaction start processing and synchronization point processing are performed

8. OpenTP1 Samples

461

on the server UAP during the process (reference or update).

(4) Notes on using sample programs
• When OpenTP1 is activated using sample programs, the KFCA00901-W message

may appear. Ignore the message if it is about resource managers that are not used.

• The sample program makefile explicitly specifies /bin/cc as the C compiler.
If /bin/cc does not exist or if a C compiler other than /bin/cc is used, specify
the absolute path of the C compiler to be used on makefile before using the
program.

8. OpenTP1 Samples

462

8.6 How to use MCF sample

This section explains the sample of the message control facility (MCF) called MCF
sample. The MCF sample enables the following examples on the manual to be used as
UNIX text files:

• Example of system definition

• Coding example of MHP program (in C, COBOL, and COBOL with DML)

• Example of MCF main function (in ANSI C, C++, and K&R C style)

8.6.1 MCF sample directory configuration
The MCF sample is divided into an MCF basic section and a communication protocol
section. The figure below shows the directories containing the MCF sample.

8. OpenTP1 Samples

463

Figure 8-11: Configuration of directories for MCF sample

Directories subordinate to the $DCDIR/examples/mcf/ directory are listed below

8. OpenTP1 Samples

464

with a brief explanation.

aplib/

Directory that contains MHP sample

conf/

Directory that contains system definition sample

psv/cmlib/

Directory that contains MCF main function sample

protocol/
Directory that contains sample specific to the communication protocol supporting
product

The following directories are placed under the protocol/ directory:

• Directory that contains MHP and SPP samples

• Directory that contains the system definition

• Directory that contains the MCF main function

(1) Contents of mcf/aplib/ directory
Files in the mcf/aplib directory are listed below with a brief explanation.

c/

Directory that contains MHP source files (in the C language). MHP main function
(mhp.c) and MHP service function (apl.c) are stored here.

cobol/

Directory that contains MHP source files (in the COBOL language). MHP main
function (mhp.cbl) and MHP service function (ap.cbl) are stored here.

dml/

Directory that contains MHP source files (in the COBOL language with DML).
MHP service function (ap.cbl) is stored here.

For the contents of the above programs, see the coding example shown in the
applicable OpenTP1 Programming Reference manual.

(2) Contents of conf/ directory
Files in the mcf/conf/ directory are listed below with a brief explanation.

abc_mngr

Sample MCF manager definition

8. OpenTP1 Samples

465

abc_ua_c

Sample common definition of MCF communication configuration definition.
This definition is for OSAS/UA protocol.

abc_ua_d

Sample protocol-specific definition of MCF communication configuration
definition. This definition is for OSAS/UA protocol.

psvr_psvr_cmn

Sample common definition of MCF communication configuration definition.
This definition is for application starting definition.

psvr_psvr_dta

Sample application starting definition of MCF communication configuration
definition.

abc_apli

Sample MCF application definition

mcfu01

Sample MCF system service information definition. This definition is the
contents of the MCF communication process (for OSAS/UA).

mcfu02

Sample MCF system service information definition. This definition is the
contents of the application communication process.

For the contents of the above definitions, see the definition sample shown in the
manual OpenTP1 System Definition.

(3) Contents of psv/cmlib/ directory
Directories subordinate to the mcf/psv/cmlib/ directory are listed below with a
brief explanation.

ansi/

Sample MCF main function for application starting process (in ANSI C and C++
style)

c/

Sample MCF main function for application starting process (in K&R C style)

For the contents of the above MCF main functions, see the definition sample shown in
the manual OpenTP1 Operation. For the MCF main function for MCF communication
service, see the files in the mcf/protocol/cmlib/ directory.

8. OpenTP1 Samples

466

(4) Contents of protocol/ directory
Samples for each communication protocol supporting product are stored in the
protocol/ directory. The name of the protocol/ directory depends on the
communication protocol supporting product. The correspondence between the
protocol/ directory names and the product names is as follows:

HDLC: TP1/NET/HDLC

HNANIF: TP1/NET/HNA-NIF

OSITP: TP1/NET/OSI-TP

TCPIP: TP1/NET/TCP/IP

XMAP3: TP1/NET/XMAP3

X25: TP1/NET/X25

For the contents of each directory, see the applicable OpenTP1 Protocol manual.

8.6.2 Notes on using MCF sample
Notes on using the MCF sample are as follows:

1. When the definition relating to MCF (network communication definition) is used,
the definition should be consistent in the MCF sample. Since the contents of
system definition are exactly as in the manual, some modification may be
required. The definition of TP1/Server Base (system service definition) should be
modified according to the network communication definition of the MCF sample.
This is the same when using the Base sample.

2. When the sample UAP (MHP or SPP) in the protocol/ directory is used, a main
function (main program) is required at compilation and link-edit. For MHPs,
modify and use the main function in the mcf/aplib/ directory. For SPPs, create
a main function.

The MCF application definition (abc_apli) in the mcf/conf/ directory should
be modified according to an MHP to be created. The system service definition
(such as user service definition) should be created.

3. Use the following samples as an MHP main function:

• For MCF main function for MCF communication service:

File in the /mcf/protocol/cmlib/ directory

• For MCF main function for application starting service:

File in the /mcf/psv/cmlib/ directory

8. OpenTP1 Samples

467

8.7 Samples to be used to dispatch multi OpenTP1 command

When a command is executed at a multi OpenTP1 node from another node using rsh
or something similar, it cannot be determined which OpenTP1 system the command is
executed in. In this case, a command must be executed by specifying the node name.
A sample includes a command that executes a certain command specifying a node
name (shell file). This command named delvcmd is stored in the tools/ directory of
Base sample.

(1) How to use delvcmd command
The delvcmd command is executed with the following syntax:

The node-name fields specify the identifiers of nodes within the same machine.

More than one node name can be specified. When multiple node names are specified,
use a comma (,) to separate them.

Command input examples are given below. Each example assumes that the prcls
command is executed at nodes nd01 and nd02. Either of the following syntaxes may
be used.

Before using this command, specify in it the full pathnames of $DCDIR,
$DCCONFPATH, $SHLIB_PATH, or $PATH for each node.

Place either an apostrophe (') or quotation mark (") before and after any command to
be specified as an argument. The following restrictions apply:

• Apostrophes (') should be used for MCF commands.

• Quotation marks (") should be used for TP1/Multi commands.

(2) Limitation on the value to be specified as command argument
An asterisk (*) cannot be used for the arguments of the delvcmd command. If an
asterisk is used to specify multiple command arguments collectively, the delvcmd
command may not execute normally.

Piping and redirecting are not allowed for a command name to be specified in the
delvcmd command. However, the execution results of the delvcmd command can be
piped or redirected. A command input example is given below.

delvcmd -w node-name [, node-name] ... command-name

% delvcmd "prcls" -w nd01, nd02 <CR>
% delvcmd -w nd01, nd02 "prcls" <CR>

% delvcmd "prcls" -w nd01, nd02 > file <CR>

8. OpenTP1 Samples

468

(3) Commands which cannot be executed with the delvcmd command
Some commands cannot be executed with the delvcmd command due to the access
permission set in the OpenTP1 system. In this case, the name of the user who executes
the delvcmd command must be the same as that of the OpenTP1 administrator for the
target node.

8. OpenTP1 Samples

469

8.8 COBOL language templates

When writing a UAP in COBOL, the COBOL language templates can be used for easy
coding of DATA DIVISION.

The COBOL language templates are stored in the /BeTRAN/examples/COBOL/
directory.

8.8.1 Files of COBOL language templates
The COBOL language template is prepared for each OpenTP1 system service. The
template file name is DCxxx.cbl (xxx is the last three characters of the COBOL-UAP
creation program name.) The COBOL language template files are shown below.

DCADM.cbl: System operation management (CBLDCADM)

DCDAM.cbl: DAM file service (CBLDCDAM)

DCDMB.cbl: DAM file service (CBLDCDMB)

DCIST.cbl: IST service (CBLDCIST)

DCJNL.cbl: User journal output (CBLDCJNL)

DCJUP.cbl: User journal editing (CBLDCJUP)

DCLCK.cbl: Lock for resources (CBLDCLCK)

DCLOG.cbl: Message log output (CBLDCLOG)

DCMCF.cbl: Message exchange (CBLDCMCF)

DCPRF.cbl: Performance verification trace (CBLDCPRF)

DCRAP.cbl: Remote API facility (CBLDCRAP)

DCRPC.cbl: Remote procedure call (CBLDCRPC)

DCRSV.cbl: Remote procedure call (CBLDCRSV)

DCTAM.cbl: TAM file service (CBLDCTAM)

DCTRN.cbl: Transaction control (CBLDCTRN)

DCUTO.cbl: Online tester management (CBLDCUTO)

DCXAT.cbl: Association operating (CBLDCXAT)

8.8.2 How to use the cobol language templates
When using the COBOL language templates, modify the following values so that they
can be suitable for processing of the UAP to be coded:

• Data area length (specific data only)

8. OpenTP1 Samples

470

• Values substituted into each data area

For the values set into data area, see the syntax for each facility shown in the manual
OpenTP1 Programming Reference COBOL Language.

There are two ways to use the COBOL language templates:

• Using the text editor calling facility

• Using the COPY statement of COBOL language

(1) How to use the text editor calling facility
To use a template:

1. Select a template for the desired facility from the /BeTRAN/examples/COBOL/
directory.

2. Cut and paste the DATA DIVISION section to the source program of the UAP
using the text editor calling facility.

3. Modify the pasted section so that it can be a data area suitable for the coding.

(2) How to use the COPY statement of COBOL language
To use a template:

1. Select a template for the desired facility from the /BeTRAN/examples/COBOL/
directory.

2. Declare COPY with the file name of the template from the source program of the
UAP. The file name to be specified with the COPY statement should be the file
name of the template excluding the suffix .cbl.

3. Enter the file of the template in a directory which can be referenced with the COPY
statement. This procedure depends on the processor of the COBOL language in
use (such as file copy, setting environment variables).

4. Modify the file of the template so that it can be a data area suitable for the coding.

(3) Notes on using the COBOL language templates
1. The length of the PICTURE clause is declared as (n) in the data area to be modified

according to the UAP processing. Modify the declaration before using it.
Compilation without modification will result in error.

2. The following files of the COBOL language templates assume that the
corresponding product has been installed:

DCDAM.cbl, DCDMB.cbl: DAM file service (CBLDCDAM, CBLDCDMB)

DCTAM.cbl: TAM file service (CBLDCTAM)

DCMCF.cbl: Message exchange (CBLDCMCF)

8. OpenTP1 Samples

471

DCUTO.cbl: Online tester management (CBLDCUTO)

DCIST.cbl: IST service (CBLDCIST)

3. The template for message exchange (DCMCF.cbl) contains all MCF-related
information usable for OpenTP1. Therefore, some templates of the COBOL-UAP
creation program cannot be used with some communication protocol supporting
products. Values to be set in a data area also depend on the communication
protocol supporting product. Change the format of DCMCF.cbl before using it,
consulting the syntax of COBOL language shown in the applicable OpenTP1
Protocol manual.

4. It is recommended to copy a template from the original directory and then modify
the copy according to the UAP processing.

8. OpenTP1 Samples

472

8.9 How to use sample scenario template

OpenTP1 provides a scale-out scenario template. This sample enables you to use an
OpenTP1 setup script file to be used in the scale-out scenario. To use this sample, you
must have a JP1 product (JP1/AJS2, JP1/AJS2 - Scenario Operation, or JP1/Base) that
is a prerequisite for JP1 scenario linkage. For details on the sample scenario template,
see the description given in the manual OpenTP1 Operation.

8. OpenTP1 Samples

473

8.10 How to use real-time acquisition item definition templates

OpenTP1 provides various real-time acquisition item definition files as templates that
can be used with the real-time statistical information service. All of these files are
contained in /rts_template/examples/conf/ under the installation directory. To
use a real-time acquisition item definition file, copy and place it immediately under
$DCCONFPATH/.

The table below provides the file name and content of each real-time acquisition item
definition file.

Table 8-11: File name and content of each real-time acquisition item definition
file

For details on how to specify real-time acquisition item definitions, see the manual
OpenTP1 System Definition.

File name Contents

base_itm Real-time acquisition item definition file for BASE

dam_itm Real-time acquisition item definition file for DAM

tam_itm Real-time acquisition item definition file for TAM

all_itm Real-time acquisition item definition file for all statistical information

none_itm Real-time acquisition item definition file for no statistical information

mcfs_itm Real-time acquisition item definition file for the MCF (acquired for the
entire system or for each server or service)

mcfl_itm Real-time acquisition item definition file for the MCF (acquired for each
logical terminal)

mcfg_itm Real-time acquisition item definition file for the MCF (acquired for each
service group)

475

Appendixes

A. Output Format of Undecided Transaction Information
B. Output Format of Deadlock Information
C. Examples of System Configurations Requiring Consideration of the

Multi-Scheduler Facility

A. Output Format of Undecided Transaction Information

476

A. Output Format of Undecided Transaction Information

If trn_tran_recovery_list = Y is defined in the OpenTP1 transaction service
definition at full recovery of OpenTP1, undecided transaction information can be
output to the directory of the node of the transaction service.

(1) Names of directory and file to which undecided transaction information is
output

The names of the directory and file to which undecided transaction information is
output are as follows.

• Undecided transaction information is output to the directory $DCDIR/spool/
dctrninf/ of the node in which the transaction service exists.

• Every time full recovery of transaction service occurs, undecided transaction
information is output as one file. The filename is r1 + transaction service starting
time (unique 8-digit hexadecimal number).

This file name is displayed in the message log which indicates that undecided
transaction information was output. Delete files which are no longer necessary.

Delete unnecessary files containing undecided transaction information following the
procedure shown below:

• When deleting a file with a command:

Execute the trndlinf command.

• When deleting information created previously in online mode at OpenTP1
activation:

Specify the delete condition in the trn_recovery_list_remove and
trn_recovery_list_remove_level operands of the transaction service
definition.

(2) Output contents of undecided transaction information
The following items are output as undecided transaction information.

1. OpenTP1 system node ID

System node ID of OpenTP1

2. Global transaction number

Unique number for managing global transaction set by the system

3. Transaction branch number

Unique number for managing transaction branch set by the system

A. Output Format of Undecided Transaction Information

477

4. Transaction's first status

Processing status of transaction branch

5. Transaction's second status

Status of transaction branch process

6. Transaction's third status

Communication status of transaction branch

7. Process ID

ID of the process operating the transaction branch

8. Server name

Name of the server which started the transaction branch

9. Service name

Name of the service which started the transaction branch

10. Transaction descriptor

Index number to make distinction between transaction branches having the same
transaction global ID

11. Branch descriptor

Index number to make distinction between transaction branches that branched
from one transaction branch. For root transaction branch, ********** is
displayed.

12. Parent transaction descriptor

Transaction identifier of the transaction which generated the corresponding
transaction branch. For root transaction branch, ********** is displayed.

(3) Output format of undecided transaction information
Figure A-1 shows the output format of undecided transaction information. Figure A-2
gives an output example.

Figure A-1: Output format of undecided transaction information

Explanation:

A. Output Format of Undecided Transaction Information

478

(1) Time at which full recovery was started

mmm: Month (lowercase letters)

dd: Day

HH: Hours

MM: Minutes

SS: Seconds

yyyy: Year (d, H, M, S, and y are digits.)

(2) Transaction information

aaaaaaaa:

OpenTP1 system node ID (8 characters)

bbbbbbbb:

Global transaction number (hexadecimal character string)

cccccccc:

Transaction branch number (hexadecimal character string)

dd...dd:

Transaction's first status (20 or less characters)

BEGINNING: Transaction branch start processing is underway.

ACTIVE: Executing

SUSPENDED: Suspended

IDLE: Changing to synchronization point processing

PREPARE: Under commit (phase 1) processing

READY: Waiting for commit (phase 2) processing

HEURISTIC_COMMIT: Heuristic decision commit processing is underway.

HEURISTIC_ROLLBACK: Heuristic decision rollback processing is
underway.

COMMIT: Commit processing is underway.

ROLLBACK_ACTIVE: Waiting for rollback processing

ROLLBACK: Rollback processing is underway.

HEURISTIC_FORGETTING: Transaction branch termination processing after
heuristic decision is underway.

A. Output Format of Undecided Transaction Information

479

FORGETTING: Transaction branch termination processing is underway

e:

Transaction's second status (1 character)

u: User server executing a user server process

r: Transaction branch recovery processing in a transaction recovery process

p: Waiting for completion of recovery other transaction branch processing in
a transaction recovery process

When the first state is READY and the root transaction branch is not in the
same node, direction by the user is awaited.

f:
Transaction's third status (1 character)

s: In sending

r: In receiving

n: Not in sending or receiving

"In sending or receiving" means that the transaction manager is in progress
of communication for synchronization between the transaction branches.

gg...gg:

Process ID (decimal number)

hh...hh:

Server name (8 or less characters)

ii...ii:
Service name (32 or less characters) (For SUP, spaces are set.)

jjjjjjjjjj:
Transaction identifier (decimal number)

kkkkkkkkkk:

Branch identifier (decimal number)#

llllllllll:

Originating transaction identifier (decimal number)#

#

For root transaction branch, ********** is displayed.

A. Output Format of Undecided Transaction Information

480

Figure A-2: Output example of undecided transaction information

B. Output Format of Deadlock Information

481

B. Output Format of Deadlock Information

Assume that a deadlock occurs between two or more UAPs. In this case, if
lck_deadlock_info = Y is defined in the OpenTP1 lock service definition,
deadlock information is output to the directory in the node of the lock service. This
information is output in the following cases:

• The lock service detects a deadlock (deadlock information)

• A timeout occurs when waiting for lock to be released (timeout information)

(1) Names of directory and file to which deadlock information is output
Deadlock information is output as follows.

• Deadlock information is output to the directory $DCDIR/spool/dclckinf/ of
the node containing the lock service which detected the deadlock or timeout.

• Every time deadlock information occurs, it is output as one file. The date and time
at which the deadlock or timeout occurred are used as the file name. The file name
length differs depending on whether the date is one or two digits.

Example

This file name is displayed in the message log which indicates that a deadlock
occurred. Delete files which are no longer necessary.

(2) Output format of deadlock information
Figure B-1 shows the output format of deadlock information displayed when a
deadlock is detected. Figure B-2 gives an output example.

Oct. 3, 7 h. 41 m. 00 s. : Oct3074100
Oct. 10, 15 h. 5 m. 27 s. : Oct10150527

B. Output Format of Deadlock Information

482

Figure B-1: Output format of deadlock information

Explanation:

(1) Time at which the deadlock was detected

(2) Server name and process ID of the access requester

(3) Transaction global identifier of the access requester

(4) Transaction branch identifier of the access requester

(5) Information on the server acquiring the resources

• Name of the server requesting lock

• Lock mode (PR or EX)

• Name of the occupied resource

• MIGRATE/BRANCH request type

(6) Information on the server waiting for resource unlocking

• Name of the server requesting lock

• Lock mode (PR or EX)

• Name of the resource to be unlocked

B. Output Format of Deadlock Information

483

• MIGRATE/BRANCH request type

(7) Time at which resource unlock wait occurred

Note
Items (2) to (7) are output for each UAP (server process) involved in the deadlock.

Figure B-2: Output example of deadlock information

#

When there is no occupied resource, this field is displayed as blank.

(3) Output format of timeout information
Figure B-3 shows the output format of timeout information displayed when a timeout
is detected. Figure B-4 gives an output example.

B. Output Format of Deadlock Information

484

Figure B-3: Output format of timeout information

Explanation:

(1) Time at which the timeout was detected

(2) Server name and process ID related to the timeout

(3) Transaction global identifier related to the timeout

(4) Transaction branch identifier related to the timeout

(5) Information that was exclusively used by the server having caused the timeout.

B. Output Format of Deadlock Information

485

This information is output for all resources that were occupied by the server having
caused the timeout.

• Name of the server requesting lock

• Lock mode (PR or EX)

• Name of the occupied resource

• MIGRATE/BRANCH request type

(6) Wait information on the server having caused the timeout

• Name of the server requesting lock

• Lock mode (PR or EX)

• Name of the resource to be unlocked

• MIGRATE/BRANCH request type

(7) Name and process ID of the server constituting the factors of the timeout

(8) Transaction global identifier constituting the factors of the timeout

(9) Transaction branch identifier constituting the factors of the timeout

(10) Information that was exclusively used by the server constituting the factors of the
timeout. This information is output for all servers constituting the factors of the
timeout.

• Name of the server requesting lock

• Lock mode (PR or EX)

• Name of the occupied resource

• MIGRATE/BRANCH request type

Note
Items (7) to (10) (concerning a server waiting for resource acquisition or
unlocking) are output for each resource which was about to be occupied by the
server having caused the timeout when the timeout occurred.

B. Output Format of Deadlock Information

486

Figure B-4: Output example of timeout information

#

When there are no occupied resources, this information is not output.

(4) Output format used with TP1/FS/Table Access
If the TP1/FS/Table Access is in use and use of its resource encounters deadlock
time-out, the output information will contain the table name, key values, among others.

The figure below shows the format of information which will be output when a
deadlock is detected.

B. Output Format of Deadlock Information

487

Figure B-5: Output format of TAM resource deadlock information

Explanation:

(1) TAM table name indicated by the resource name

If the resource name begins with T, the TAM table indicated by (1) is the resource;
lines (2) and (3) are not output.

If the resource name begins with R, the TAM record is the resource; it is on the
TAM table indicated by (1). In this case, lines (2) and (3) are output.

(2) Key length of the TAM record indicated by the resource name

(3) Key value of the TAM record indicated by the resource name

The key value is given in [] in hexadecimal.

If the key value is printable, the printable characters are output to the right of [];
if it is not, '.' is output to the right of []. If the key value is less than a multiple of
16, the remaining area is padded with 00s.

C. Examples of System Configurations Requiring Consideration of the Multi-Scheduler Facility

488

C. Examples of System Configurations Requiring Consideration of
the Multi-Scheduler Facility

As systems become larger and machines and networks boast increasingly better
performances, conventional schedulers may experience difficulty scheduling
messages efficiently. This appendix gives examples of system configurations for
which you should consider the multi-scheduler facility and examples of resolutions.

This appendix contains the following sections:

C.1 Overview of processing by the scheduler facility
C.2 Examples of system configurations in which the scheduler is likely to be the cause
of error
C.3 Example of a system configuration using the multi-scheduler facility
C.4 Notes

C.1 Overview of processing by the scheduler facility
When a client UAP requests a service from a queue-receiving server (SPP that uses a
schedule) on a remote node, the scheduler daemon of the node that contains the
requested server receives the service request message and stores it in the schedule
queue on the queue-receiving server.

The scheduler daemon consists of a receive thread (one thread) which receives service
request messages from client UAPs and processing threads (maximum of 64 threads)
which store service requests in a schedule.

The figure below shows an overview of processing by the scheduler facility.

C. Examples of System Configurations Requiring Consideration of the Multi-Scheduler Facility

489

Figure C-1: Overview of processing by the scheduler facility

The receive thread of the scheduler daemon will receive up to 32 kilobytes of a service
request message at one time from a client UAP. If a service request message exceeds
32 kilobytes, the system splits the message when it is sent and received. This prevents
the scheduler daemon from being exclusively occupied for receiving a message from
a single client UAP.

The figure below shows an overview of processing service request messages.

C. Examples of System Configurations Requiring Consideration of the Multi-Scheduler Facility

490

Figure C-2: Overview of processing service request messages

As illustrated in Figure C-2, the scheduler schedules service request messages received

C. Examples of System Configurations Requiring Consideration of the Multi-Scheduler Facility

491

from client UAPs.

C.2 Examples of system configurations in which the scheduler is
likely to be the cause of error

As systems become larger and machines and networks boast increasingly better
performances, conventional scheduler daemons may experience difficulty scheduling
messages efficiently. This section gives examples of system configurations in which
the scheduler is likely to be the cause of error.

(1) System with insufficient socket descriptors
When the number of client UAPs to be connected to a single scheduler daemon
increases, you may not be able to specify a sufficient number of socket descriptors to
be used by the scheduler daemon. If there are insufficient socket descriptors for the
scheduler daemon, the system requests disconnection and then ends a connection in
order to reserve new socket descriptors. Depending on the load exerted on the system
by this disconnection processing, the scheduling performance of the scheduler daemon
may drop.

The figure below shows an example of a system that has insufficient socket
descriptors.

C. Examples of System Configurations Requiring Consideration of the Multi-Scheduler Facility

492

Figure C-3: Example of a system that has insufficient socket descriptors

(2) System in which the connect system call encounters an error
OpenTP1 uses TCP/IP as its communication protocol. Therefore, a connection
establishment request (connect system call) from a client UAP is held in a wait queue
of the listen system call until it is fetched by the accept system call.

The number of connection establishment requests that can be held in the wait queue
depends on the operating system. However, if client UAPs send numerous requests at
one time, the number of generated connection establishment requests may exceed the
number of requests that can be held in the queue.

If client UAPs generate more connection establishment requests than can be held in the
wait queue, CUP (TP1/Client) outputs the message KFCA02449-E, and SUP and SPP
(TP1/Server Base) output the message KFCA00327-W. The system may consider that
the service requests failed due to a communication error or because OpenTP1 was not
started.

The figure below shows an example of a system in which the connect system call
encountered an error.

C. Examples of System Configurations Requiring Consideration of the Multi-Scheduler Facility

493

Figure C-4: Example of a system in which the connect system call encountered
an error

(3) System using networks that have different line speeds
While the receive thread of the scheduler daemon is receiving a service request
message from a particular client UAP, it cannot receive a service request message from
another client UAP. (However, if a service request message exceeds 32 kilobytes, it is
split before being sent.)

Therefore, processing for receiving a message from a client UAP connected to a
network that has a low line speed delays processing for receiving a message from a
client UAP connected to a network that has a high line speed. The performance of the
network that has a high line speed may thus be compromised.

The figure below shows an example of a system that uses networks with different line
speeds. This example compares the two lines having different speeds. A comparison
of lines where one line is twice as fast as the other line shows that receive processing
for the slow line takes twice as long as that for the fast line. This difference in the
processing time corresponds exactly to the difference in the line speed.

C. Examples of System Configurations Requiring Consideration of the Multi-Scheduler Facility

494

Figure C-5: Example of a system using networks that have different line speeds

(4) System in which service request messages are interrupted
Assume that processing for sending a service request message to the scheduler daemon
is interrupted because, for instance, the client UAP was forcibly terminated. In this
case, scheduling may be delayed until message receive processing by the receive
thread reaches a time-out.

The figure below shows an example of a system in which service request messages are
interrupted.

C. Examples of System Configurations Requiring Consideration of the Multi-Scheduler Facility

495

Figure C-6: Example of a system in which service request messages are
interrupted

(5) System in which the processing threads are temporarily deficient
If the scheduler daemon receives a very large number of service request messages at
one time from client UAPs and does not have the capacity to process them, there may
be a temporary deficiency of processing threads.

If a deficiency of processing threads occurs, the system outputs the message
KFCA00356-W and may temporarily consider that the service requests failed due to a
communication error or time-out.

Specify the timing for outputting the message KFCA00356-W in
rpc_server_busy_count in the system common definition. For details, see the
manual OpenTP1 System Definition.

C. Examples of System Configurations Requiring Consideration of the Multi-Scheduler Facility

496

The figure below shows an example of a system in which the processing threads are
temporarily deficient.

Figure C-7: Example of a system in which the processing threads are
temporarily deficient

C.3 Example of a system configuration using the multi-scheduler
facility

By using the multi-scheduler facility, you can resolve problems that are likely to be
caused by the scheduler. The following describes system configurations that use the
multi-scheduler facility.

(1) System configuration for solving the deficiency of socket descriptors
You can reduce the number of socket descriptors to be used by a single scheduler
daemon by distributing the client UAPs to be connected to scheduler daemons.

The figure below shows an example of a system configuration that solves the
deficiency of socket descriptors.

C. Examples of System Configurations Requiring Consideration of the Multi-Scheduler Facility

497

Figure C-8: Example of a system configuration that solves the deficiency of
socket descriptors

(2) System configuration for solving errors with the connect system call
You can reduce the number of connection establishment requests to be held in the wait
queue for the listen system call by distributing the client UAPs to be connected to
scheduler daemons.

The figure below shows an example of a system configuration that solves errors with
the connect system call.

C. Examples of System Configurations Requiring Consideration of the Multi-Scheduler Facility

498

Figure C-9: Example of a system configuration that solves errors with the
connect system call

C. Examples of System Configurations Requiring Consideration of the Multi-Scheduler Facility

499

(3) System that can effectively use a network having a high line speed (when the
system uses networks having different line speeds)

You can effectively use a network having a high line speed by separating the scheduler
daemon for processing client UAPs on a network having a high line speed from the
scheduler daemon for processing client UAPs on a network having a low line speed.

The figure below shows an example of a system that effectively uses a network having
a high line speed.

C. Examples of System Configurations Requiring Consideration of the Multi-Scheduler Facility

500

Figure C-10: Example of a system that effectively uses a network having a high
line speed

C. Examples of System Configurations Requiring Consideration of the Multi-Scheduler Facility

501

(4) System in which service request messages are not interrupted
By using the multi-scheduler facility and localizing scheduler daemons whose
message receive processing is interrupted, you can schedule messages without
delaying other service request messages.

The figure below shows an example of a system in which service request messages are
not interrupted.

C. Examples of System Configurations Requiring Consideration of the Multi-Scheduler Facility

502

Figure C-11: Example of a system in which service request messages are not
interrupted

C. Examples of System Configurations Requiring Consideration of the Multi-Scheduler Facility

503

(5) System with an increased number of simultaneously executable processing
threads

You can use the multi-scheduler facility to increase the number of processing threads
that can be executed at one time. This prevents temporary communication errors and
time-out caused by a deficiency of processing threads.

The figure below shows an example of a system with an increased number of
simultaneously executable processing threads.

Figure C-12: Example of a system with an increased number of simultaneously
executable processing threads

C. Examples of System Configurations Requiring Consideration of the Multi-Scheduler Facility

504

C.4 Notes
1. Installation of TP1/Extension 1 is a prerequisite for using the multi-scheduler

facility. If you have not installed TP1/Extension 1, operation is not guaranteed.
For details on the multi-scheduler facility, see the manual OpenTP1 System
Definition or OpenTP1 TP1/Client User's Guide TP1/Client/W, TP1/Client/P.

2. When applying the multi-scheduler facility, you have to change the system
definitions. You may also have to change the kernel parameters if you increase the
number of scheduler daemons.

3. If a service group within the OpenTP1 system contains both a user server that uses
the multi-scheduler facility and a user server that does not, note the following:

• All service requests issued using the multi-scheduler facility will initially be
allocated to the user server that uses the multi-scheduler facility for load
distribution.

• Service requests issued using the multi-scheduler facility will not be
allocated to the unequipped user server, even in situations when the
multi-scheduler facility equipped user server is heavily loaded. To distribute
the load from a heavily-loaded user server equipped with the multi-scheduler
facility to an unequipped user server, specify the -t option to the scdmulti
definition command for schedule service definition. For details on the
scdmulti definition command, see the description of the schedule service
definition in the manual OpenTP1 System Definition.

505

Index

Symbols
$DCDIR/aplib/ directory 36

A
abbreviations for products iv
accessing

from transaction process to DAM file
block 291
notes on, from UAP 287
TAM table 314
to DAM file in offline mode 297
to DAM file in online mode 288
to DAM files 287
to unrecoverable DAM file 303

acquiring
node address of client UAP 83
OpenTP1 node identifier 413
OpenTP1 node status 410
performance verification trace 186
synchronization point 122
TAM table information 319
TAM table status 318
user server status 411

acronyms ix
ans 209
ANSI C 28
application attribute 256

MHP for MCF event 255
application name 19, 37, 216
application program 1, 2, 8

creating 26
setting up environment 36
starting 233

application startup process 255, 279, 281
application timer start requests, deleting 199
asynchronous message reception 216
asynchronous message send processing 217
asynchronous prepare optimization 141

asynchronous-response-type RPC 76
receiving response of 76
rejection of receiving processing results 80
time monitoring of 77

atomic_update 127
audit log, outputting 173
auto_restart 11
automatic connection mode 116
automatic startup 73

B
balance_count 38, 90
Base sample 420, 428
basic OpenTP1 facility 71
bind mode 35, 36
bind mode for linkage 35, 36
block 286
block-based lock 302
blocking timeout 378, 382
branch send mode 208
buffer format 1 215
buffer format 2 215

C
C language 28
C or C++ 28
C++ language 28
CBLDCADM('COMMAND ') 155
CBLDCADM('COMPLETE') 12, 164
CBLDCADM('STATUS ') 165
CBLDCDAM('CLOS') 288
CBLDCDAM('END ') 304
CBLDCDAM('HOLD') 289
CBLDCDAM('OPEN') 288
CBLDCDAM('READ') 289
CBLDCDAM('REWT') 289
CBLDCDAM('RLES') 289
CBLDCDAM('STAT') 296

Index

506

CBLDCDAM('STRT') 304
CBLDCDAM('WRIT') 289
CBLDCDMB('BSEK') 298
CBLDCDMB('CLOSE') 297
CBLDCDMB('CRAT') 300
CBLDCDMB('DGET') 298
CBLDCDMB('DPUT') 298
CBLDCDMB('GET ') 297
CBLDCDMB('OPEN') 297
CBLDCDMB('PUT ') 298
CBLDCIST('CLOS') 355
CBLDCIST('OPEN') 354
CBLDCIST('READ') 354
CBLDCIST('WRIT') 354
CBLDCJNL('UJPUT ') 176
CBLDCJUP('CLOSERPT') 178
CBLDCJUP('OPENRPT') 178
CBLDCJUP('RDGETRPT') 178
CBLDCLCK('GET') 361
CBLDCLCK('RELALL ') 362
CBLDCLCK('RELNAME ') 362
CBLDCLOG('PRINT ') 169
CBLDCMCF('ADLTAP ') 199
CBLDCMCF('APINFO ') 51
CBLDCMCF('CLOSE ') 18, 23
CBLDCMCF('COMMIT ') 228
CBLDCMCF('CONTEND ') 207, 223
CBLDCMCF('EXECAP ') 233
CBLDCMCF('MAINLOOP') 23, 32
CBLDCMCF('OPEN ') 18, 23
CBLDCMCF('RECEIVE ') 207, 216
CBLDCMCF('RECVSYNC') 208, 219
CBLDCMCF('REPLY ') 207, 217
CBLDCMCF('RESEND ') 226
CBLDCMCF('ROLLBACK') 229
CBLDCMCF('SEND ') 208, 217
CBLDCMCF('SENDRECV') 208, 219
CBLDCMCF('SENDSYNC') 208, 219
CBLDCMCF('TACTCN ') 191
CBLDCMCF('TACTLE ') 200
CBLDCMCF('TDCTCN ') 191
CBLDCMCF('TDCTLE ') 200
CBLDCMCF('TDLQLE ') 200
CBLDCMCF('TEMPGET') 222

CBLDCMCF('TEMPPUT') 223
CBLDCMCF('TIMERCAN') 244
CBLDCMCF('TIMERSET') 244
CBLDCMCF('TLSCN ') 191
CBLDCMCF('TLSCOM ') 190
CBLDCMCF('TLSLE ') 200
CBLDCMCF('TLSLN ') 198
CBLDCMCF('TOFLN ') 198
CBLDCMCF('TONLN ') 198
CBLDCPRF('PRFGETN ') 186
CBLDCPRF('PRFPUT ') 186
CBLDCRAP('CONNECT') 117
CBLDCRAP('DISCNCT') 117
CBLDCRPC('CALL ') 72
CBLDCRPC('CLTSEND') 84
CBLDCRPC('DISCARDF') 78
CBLDCRPC('DISCARDS') 79
CBLDCRPC('GETCLADR') 83
CBLDCRPC('GETERDES') 84
CBLDCRPC('GETGWADR') 48
CBLDCRPC('GETSVPRI') 83
CBLDCRPC('GETWATCH') 83
CBLDCRPC('OPEN ') 12, 17, 23
CBLDCRPC('POLLANYR') 76
CBLDCRPC('SETSVPRI') 82
CBLDCRPC('SETWATCH') 83
CBLDCRPC('SVRETRY ') 91
CBLDCRSV('MAINLOOP') 17, 32
CBLDCTAM('ERS ')('ERSR')('BRS ')('BRSR') 315
CBLDCTAM('FxxR')('FxxU')('VxxR')('VxxU') 315
CBLDCTAM('GST ') 318
CBLDCTAM('INFO') 319
CBLDCTAM('MFY ')('MFYS')('STR ')('WFY
')('WFYS')('YTR ') 315
CBLDCTRN('BEGIN ') 121
CBLDCTRN('C-COMMIT') 121
CBLDCTRN('C-ROLL ') 121
CBLDCTRN('INFO ') 153
CBLDCTRN('U-COMMIT') 121
CBLDCTRN('U-ROLL ') 121
CBLDCUTO('T-STATUS') 70
CBLDCXAT('CONNECT') 184
CCLSEVT 255, 275
CERREVT 255, 272

Index

507

chained mode 122
chained RPC 135

on permanent connection 118
starting 87
terminating 87
time monitoring 88
to servers that receive requests from
socket 88
using remote API facility 118

client UAP 3
acquiring node address of 83

client user program 8
client/server mode communication using OSI TP 182
closing TAM table 317
cluster/parallel mode 408
COBOL

coding 30
language 28

COBOL language template 420, 469
COBOL-UAP creation program 30
COBOL/2 30
COBOL85 30
coding 28

C or C++ 28
COBOL 30

command 156
commit optimization 136
commit processing 135
commitment 7, 122
communication data type 384
communication destination specified, RPC with 96
communication event 253
communication paradigm 370
communication through TxRPC interface 400
compilation 34, 35
conditions for

accessing TAM table 314
resending message 226
using multinode facility function 416

configuration
DAM file 286
MHP 19
SPP 14
TAM file 313

connection
coding examples for re-establishing or forcibly
releasing 194
establishing 191
establishing and releasing 191
releasing 192

connection mode 116
cont 209
continuous-inquiry-response mode 207
continuous-inquiry-response processing 222

terminating 223
continuous-inquiry-response type 208, 222
conventions

abbreviations for products iv
acronyms ix
diagrams xi
fonts and symbols xiii
KB, MB, GB, and TB xiv
version numbers xv

conversational service paradigm 370, 379
COPNEVT 255, 273
creating

application program 26
physical file 300
stub 31, 33
TAM file 342

CUP 8

D
DAM file 286

configuration of 286
locking 301
logical shutdown and release of 289
referencing status of 296

DAM file service 46, 286
DAM sample 420, 440
damload command 286
data compression facility 92
data file part 356
data part 313
data transfer 74
database management system, accessing 358
dc_adm_call_command() 155
dc_adm_complete() 12, 164

Index

508

dc_adm_get_nd_status() 411
dc_adm_get_nd_status_begin() 410
dc_adm_get_nd_status_done() 410
dc_adm_get_nd_status_next() 410
dc_adm_get_node_id() 414
dc_adm_get_nodeconf_begin() 414
dc_adm_get_nodeconf_done() 414
dc_adm_get_nodeconf_next() 414
dc_adm_get_sv_status() 413
dc_adm_get_sv_status_begin() 412
dc_adm_get_sv_status_done() 412
dc_adm_get_sv_status_next() 412
dc_adm_status() 165
dc_clt_accept_notification() 84
dc_clt_chained_accept_notification() 84
dc_dam_bseek() 298, 301
dc_dam_close() 288
dc_dam_create() 300
dc_dam_dget() 298, 301
dc_dam_dput() 298
dc_dam_end() 304
dc_dam_get() 297, 301
dc_dam_hold() 289
dc_dam_iclose() 297, 301
dc_dam_iopen() 297
dc_dam_open() 288
dc_dam_put() 298, 301
dc_dam_read() 289, 303
dc_dam_release() 289
dc_dam_rewrite() 289
dc_dam_start() 304
dc_dam_status() 296
dc_dam_write() 289, 303
dc_gwf_mainloop() 32
dc_ist_close() 355
dc_ist_open() 354
dc_ist_read() 354
dc_ist_write() 354
dc_jnl_ujput() 176
dc_lck_get() 361, 364
dc_lck_release_all() 362, 363
dc_lck_release_byname() 362, 363
dc_log_notify_close() 180
dc_log_notify_open() 180

dc_log_notify_receive() 180
dc_log_notify_send() 180
dc_logprint() 169
dc_mcf_adltap() 199
dc_mcf_ap_info() 51
dc_mcf_ap_info_uoc() 51
dc_mcf_close() 23
dc_mcf_commit() 228
dc_mcf_contend() 207, 223
dc_mcf_execap() 233
dc_mcf_mainloop() 23, 32
dc_mcf_open() 23
dc_mcf_receive() 206, 207, 216, 233, 276
dc_mcf_recvsync() 208, 219
dc_mcf_reply() 207, 217
dc_mcf_resend() 226
dc_mcf_rollback() 229
dc_mcf_send() 208, 217
dc_mcf_sendrecv() 208, 219
dc_mcf_sendsync() 208, 219
dc_mcf_tactcn() 191
dc_mcf_tactle() 200
dc_mcf_tdctcn() 191
dc_mcf_tdctle() 200
dc_mcf_tdlqle() 200
dc_mcf_tempget() 222
dc_mcf_tempput() 223
dc_mcf_timer_cancel() 244
dc_mcf_timer_set() 244
dc_mcf_tlscn() 191
dc_mcf_tlscom() 190
dc_mcf_tlsle() 200
dc_mcf_tlsln() 198
dc_mcf_tofln() 198
dc_mcf_tonln() 198
dc_prf_get_trace_num() 186
dc_prf_get_utrace_put() 186
dc_prf_utrace_put() 186
dc_rap_connect() 117
dc_rap_disconnect() 117
dc_rpc_call() 72
dc_rpc_call_to() 96
dc_rpc_cltsend() 84
dc_rpc_discard_further_replies() 78

Index

509

dc_rpc_discard_specific_reply() 79
dc_rpc_get_callers_address() 83
dc_rpc_get_error_descriptor() 84
dc_rpc_get_gateway_address 59
dc_rpc_get_service_prio() 83
dc_rpc_get_watch_time() 83
dc_rpc_mainloop() 17, 32
dc_rpc_open() 12, 17, 23
dc_rpc_poll_any_replies() 76
dc_rpc_service_retry() 91
dc_rpc_set_service_prio() 82
dc_rpc_set_watch_time() 83
dc_rts_utrace_put() 187
dc_tam_close() 317
dc_tam_delete() 315
dc_tam_get_inf() 318
dc_tam_open() 315
dc_tam_read() 315
dc_tam_rewrite() 315
dc_tam_status() 319
dc_tam_write() 315
dc_trn_begin() 121, 232
dc_trn_chained_commit() 121, 122
dc_trn_chained_rollback() 121, 123
dc_trn_info() 153
dc_trn_unchained_commit() 121, 122
dc_trn_unchained_rollback() 121, 123
dc_uto_test_status() 70
dc_xat_connect() 184
DCADM.cbl 469
DCDAM.cbl 469
DCDMB.cbl 469
DCIST.cbl 469
DCJNL.cbl 469
DCJUP.cbl 469
DCLCK.cbl 469
DCLOG.cbl 469
DCMCF.cbl 469
DCPRF.cbl 469
DCRAP.cbl 469
DCRPC.cbl 469
DCRSV.cbl 469
dcsvstart command 12, 17, 22
dcsvstop command 12, 17, 23

DCTAM.cbl 469
DCTRN.cbl 469
DCUTO.cbl 469
DCXAT.cbl 469
deadlock

notes on avoiding 366
UAP response to 366

deadlock information 303, 367, 481
output format of 481

delvcmd command 420, 467
descriptor 77
detecting user server status 165
diagram conventions xi
directory containing UAP 36
disposal in case of heuristic situation 153
DNS domain name 98
domain qualification, service request with 98
during operation

MHP 22
SPP 17
SUP 11

E
entry point 101, 105
environment 36

setting up 36
ERREVT1 253, 261
ERREVT2 229, 235, 244, 254, 262
ERREVT3 229, 244, 254, 263
ERREVT4 235, 254, 265
ERREVTA 254, 266
error event 253
event reception 383
event that reports

detection of invalid application name 253
discarding of message 254
discarding of timer-start message 254
discarding of unprocessed send message 254
error 255
send completion 255
send error 254
status 255
UAP abnormal termination 254

EX 302, 329, 361

Index

510

exclusive mode 302, 329, 361
executing operation command 155
exit routines for determining timer start
inheritance 242
extended internode load-balancing facility 42
extended RM registration definition 359

F
facilities

TP1/Message Control 189
TP1/Multi 407
user data 285

facility for user timer monitoring 244
file descriptor 288, 297, 301
file-based lock 302
first retrieval 316
first segment 216
font conventions xiii
functional differences between APIs and operation
commands

application-related operations 199
connection establishment and release 193
MCF communication service operations 190
shutdown and release of logical terminals 201
start and terminate acceptance of connection
establishment requests 198

functions
available in communication modes 209
available in operations 202
list of 47

G
GB meaning xiv

H
hash format 313
header area 215
heuristic decision 153

I
IDL compiler 404
IDL file 404
IDL-only TxRPC 400

immediate start 234
index part 313, 356
initializing/recreating block 298
input parameter 74
input parameter length 74
input source logical terminal name 237
inputting/outputting

arbitrary block 298
multiple blocks collectively 289, 298
multiple records collectively 316

inquiry-response mode 206
insufficient table pool 362
interchangeability of DAM and TAM services 312,
342
Interface Definition Language 404
intermediate segment 216
internode load-balancing facility 7, 40
internode shared table 350, 351

accessing 354
closing 355
environment for access to 352
lock for 355
opening 354
structure of 354

interval timer start 234
ISAM 356
ISAM file service 47, 356
ISAM/B 356
IST service 47, 350

J
jnlrput command 178
journal data editing 46, 178

K
K&R format 28
KB meaning xiv

L
last segment 216
lckrminf command 367
length of response acceptance area 74
library function 29

Index

511

XATMI interface 371
library functions, list of 47
linkage 34, 35
load balancing 6
load balancing and scheduling 37
lock 329, 361

for internode shared table 355
for reference 302, 329, 361
for resource 47
for update 302, 329, 361
in online mode and offline mode 303
resource 361
TAM table 329

lock migration 363
lock mode 302, 329, 361
lock test 364
lock unit 302, 329
locking 301, 309

DAM file 301
unrecoverable DAM file 309

log service definition 169
logcat command 169
logical file 287
logical file name 287
logical message 215
logical messages and segments 215
logical terminal

deleting output queue of 200
displaying status of 200
shutting down or releasing 200

M
main function 14, 19
main program 14
mainframe 2
management

online tester 47
system operation 155

manager 402
manual startup 73
master scheduler daemon 44
maximum lock wait time, specifying 362
MB meaning xiv
MCF 5

MCF application definition 22
MCF communication process 233, 279, 281
MCF communication process identifier 242
MCF communication service operations 190
MCF event 22, 253
MCF event information 276
MCF event that reports

detection of invalid application name 261
discarding of message 262
discarding of timer-start message 265
discarding of unprocessed send message 266
error 272
establishing connection 273
releasing connection 275
send completion 271
send error 269
UAP abnormal termination 263

MCF online tester 69
MCF process 281
MCF sample 420, 462
MCF service 5
MCF transaction control 228
mcftendct command 223
mcfuevt command 242
message

resending 226
structure of 215

message communication mode 206
message exchange mode

transaction processing 7
UAP used for communication in 8

message exchange processing 205
message exchanging 46
message format 276
message handling program 8, 18
message log

outputting 169
outputting, from application program 169

message log file 169
message log notification, receiving 180
message log output 46
message processing, synchronous 218
message queue 5
message queue interface 6

Index

512

message queuing mode 5
MHP 8, 18, 205

configuration 19
during operation 22
nontransaction attribute 243
rollback processing 229
starting 21
starting, using command 242
terminating 23
transaction control 228

MHP for MCF event 253
MHP processing, outline of 23
monitoring service function execution time 93
MQI 6
multi-scheduler daemon 44
multi-scheduler facility 43

examples of system configurations requiring
consideration of 488
RPC 94

multinode area 410
multinode facility 47, 408

conditions for using functions of 416
multinode subarea 410
multiserver 7, 37
multiserver load balance 38

N
namdomainsetup command 99
name used when DAM file is accessed 288, 297
name used when TAM table is accessed 315
nesting service 81
NETM 172
NEXT retrieval 316
no-access optimization 146
noans 209, 256
node 3
node identifier 413
non-automatic connection mode 117
noninquiry-response mode 207
nonresident process 17, 22, 38
nonresponse type 208
nonresponse-type RPC 75, 81
nontransaction attribute 127

MHP 243

nontransactional RPC 82
using, from transaction process 82, 129

notes
access from UAP 287
adding and deleting TAM records 343
avoiding deadlock 366
transaction processing 153

O
offline tester 69
offline work, UAP that handles 8
one-phase optimization 142
online tester 69, 391

management 47
online transaction processing 2
opening TAM table 315
OpenTP1 2

samples 419
OpenTP1 client facility 8
OpenTP1 node identifier, acquiring 413
OpenTP1 node status, acquiring 410
OpenTP1 response to deadlock 366
operation command, executing 155
optimization using chained RPC 151
originator 380
OSI TP 4, 370

client/server mode communication using 182
outline

MHP processing 23
of access to DAM files 287
remote procedure call mode 74
SPP processing 17
SUP processing 12

output format
deadlock information 481
timeout information 483
undecided transaction information 476
used with TP1/FS/Table Access 486

output message, user exit routine that edits 252

P
parallel processing 76
parallel_count 38
PC 2

Index

513

performance verification trace, acquiring 186
permanent connection 116
personal computer 2
physical file 286

creating 300
physical file name 286
point of entry 101, 105
position in network 3
posting information about current transaction 153
PR 302, 329, 361
prepare optimization 139
prepare processing 135
prf trace 186
process 37
process load balancing 39
process multiserver 86
process setup method 38
process type 401
processing, continuous-inquiry-response 222
program, application 8
putenv PATH 155

Q
queue-receiving server 38

R
random access 356
RAP-processing client 111
RAP-processing listener 111
RAP-processing server 111
read-only optimization 144
real-time acquisition item definition template 420
real-time statistical information acquisition 46, 187
receive-only mode 207
receiving

asynchronous-response-type RPC
response 76
message 216
message log notification 180
of processing result, rejecting 78
temporary-stored data 222

record 313, 371
record input/update/addition/deletion, procedure
for 315

record-based lock 329
recursive call 90
reference response waiting interval 83
referencing/updating block, procedure for 289
registering UAP excutable file 36
rejecting receiving of processing result 78
relationship between application programs and
communication mode 2
relationship between asynchronous-response-type
RPC and synchronization point 130
relationship between chained RPC and
synchronization point 132
relationship between nonresponse-type RPC and
synchronization point 132
relationship between remote procedure call and
process for executing service 86
relationship between remote procedure call mode and
synchronization point 129
relationship between RPC and process 86
relationship between RPC and transaction
attribute 128
relationship between synchronous-response-type RPC
and synchronization point 129
relationship between transaction and TAM
access 319
relative block number 289
releasing resource from lock 362
remote API facility 111

chained RPC 118
remote procedure call 3, 46, 72, 402

transferring data through 73
remote procedure call mode, outline of 74
report data to CUP unidirectionally 84
report error event at communication event
failure 262, 263
request/response service paradigm 370, 375
resending

message 226
message, condition for 226

resident process 17, 22, 38
resource 361

lock 361
resource manager 358
resources which can be put under lock 361

Index

514

response length 74
response storage area 74
response type 208
response waiting interval of service request,
referencing and changing 83
response-type RPC 74
responses to occurrence of deadlock 366
restriction on using TX_ function 396
retrieve all record 316
retry 91
return value 29
rollback 7, 123

in chained mode 123
in unchained mode 123
optimization 148
processing 229

rollback_only status 124
rolled back 220, 229
RPC 3, 72

communication destination specified 96
multi-scheduler facility 94

RPC interface definition file 33
RPC modes 74
RPC trace 391
rpc_service_retry_count 91

S
sample scenario template 420
samples 420

OpenTP1 419
schedule priority 39

setting 82
SCMPEVT 255, 271
sector length 286
segment 215

structure 215
send message, user exit routine that edits sequential
number of 251
sending message 217
sequential access 356
SERREVT 254, 269
server 3
server UAP 3

creating 389

servers that receive request from socket 38, 83
service 3
service function 14, 19

relationship to stub 100
service function execution time, monitoring 93
service group name 37, 72
service name 37, 72
service program 14
service providing program 8, 13
service request

referencing and changing response waiting
interval of 83
with domain qualification 98

service request method 371
service using program 8, 10
service_priority_control 83
setting

environment 36
schedule priority 82

shared mode 302, 329, 361
source file 33, 34, 35
specification

for awaiting unlocking 329
for message to be resent 226
of maximum lock wait time 362
of sample program 455
of transaction attribute 228
of waiting to be released from lock 303, 310

specification of sample program 455
SPP 8, 13

configuration 14
during operation 17
for communication event 183
starting 16
terminating 17

SPP processing, outline of 17
SQL statements 13
starting

application programs 233
chained RPC 87
MHP 21
MHP for MCF event 22
MHP using command 242
SPP 16

Index

515

SUP 11
statistical information 343, 391

when TAM service is used 343
status code 30
stbmake command 33
structure 371

internode shared table 354
message 215
segment 215

structured query language 28
stub 32, 101, 105

creating 31, 33
relationship to service function 100
type 32
using, to acquire service functions (SPP) 102

subordinator 380
subtype 384
SUP 8, 10

during operation 11
starting 11
terminating 12

SUP processing, outline of 12
symbol conventions xiii
synchronization point 7, 122

acquiring 122
synchronization point acquisition 121
synchronous exchange mode 208
synchronous message exchange processing 219
synchronous message processing 218

rollback 220
time monitoring of 219

synchronous message receive processing 219
synchronous message send processing 219
synchronous receive mode 208
synchronous send mode 208
synchronous-response-type RPC 75

time monitoring of 75
system configurations that requires consideration of
multi-scheduler facility 488
system journal file 176
system operation management 46, 155

T
table descriptor 315, 354

table-based lock 329
TAM file 313

configuration of 313
creating 342

TAM file service 46, 313
TAM record, notes on adding and deleting 343
TAM sample 420, 447
TAM table 313

accessing 315
closing 317
lock 329
opening 315

TAM table access facility without table-based
lock 331
TAM table information, acquiring 319
TAM table name 315
TAM table status, acquiring 318
tamcre command 342
TB meaning xiv
TCP/IP 4, 370
template 31, 469
temporary-stored data 222

receiving 222
updating 223

terminating
chained RPC 87
continuous-inquiry-response processing 223
MHP 23
SPP 17
SUP 12

test status off user server 70
tester 69
time monitoring 244

asynchronous-response-type RPC 77
chained RPC 88
of nontransaction attribute MHP 244
synchronous message processing 219
synchronous-response-type RPC 75
transaction processing 154
TX_ function 398

time point timer start 234
timeout information 367, 481

output format of 483
timer start 234

Index

516

timer start inheritance, definition of 241
TP1/Client 8
TP1/FS/Direct Access 286
TP1/FS/Table Access 313

output format used with 486
TP1/LiNK 2, 71
TP1/Message Control 5, 205

facility 189
TP1/Message Control/Tester 69
TP1/Message Queue 6
TP1/Multi

facility 407
TP1/Multi facility 407
TP1/NET/HNA-NIF 233
TP1/NET/Library 5, 182
TP1/NET/OSI-TP-Extended 182, 370
TP1/Offline Tester 69
TP1/Online Tester 69
TP1/Server Base 2, 71
TP1/Shared Table Access 350
tpacall() 376
TPADVERTISE 389
tpadvertise() 389
tpalloc() 388
TPCALL 376
tpcall() 375
TPCONNECT 380
tpconnect() 380
TPDISCON 381
tpdiscon() 381
tpfree() 388
TPGETRPLY 376
tpgetrply() 376
tprealloc() 388
TPRECV 380
tprecv() 380
TPRETURN 381, 389
tpreturn() 381, 389
TPSEND 380
tpsend() 380
tpservice() 389
tpstbmk command 33
TPSVCSTART 389
tptypes() 388

TPUNADVERTISE 390
tpunadvertise() 389
transaction 7
transaction attribute 82, 127, 402

specification of 228
transaction control 46, 121, 393, 402

MHP 228
transaction optimization 129, 135
transaction processing 7

in message exchange mode 7
notes on 153
relationship with 183
time monitoring 154
with UAP in client/server mode 7

transaction start 121
transaction statistical information 343
transaction timeout 378, 382
transaction_mandatory 402
transaction_optional 402
transferring data though remote procedure call 73
transition of user server status

server that receive request from socket
(SPP) 168
SPP, MHP 167
SUP 166

tree format 313
trnlnkrm command 359
trnmkobj command 359
two-phase commit 135
TX interface 47, 393
TX_ function 394, 402

restriction on using 396
time monitoring with 398

tx_begin() 395
tx_close() 395
tx_commit() 395
tx_info() 396
tx_open() 395
tx_rollback() 395
tx_set_commit_return() 396
tx_set_transaction_control() 396
tx_set_transaction_timeout() 396
TXBEGIN 395
TXCLOSE 395

Index

517

TXCOMMIT 395
txidl command 404
TXINFORM 396
TXOPEN 395
TXROLLBACK 395
TxRPC interface, communication through 400
TXSETCOMMITRET 396
TXSETTIMEOUT 396
TXSETTRANCTL 396
type 384

stub 32
type of application 208
typed buffer 371, 384
typed record 371, 384

U
UAP 2

in client/server mode 3
in client/server mode, transaction processing
with 7
in message exchange mode 4
registering 36
that can be tested 70
that can call transaction control function 122
that handles offline work 8, 24
that initializes user file 8
used for communication in message exchange
mode 8

UAP executable file name 37
UAP name 37
UAP process 37
UAP requiring stub 33
UAP shared library 14

creating 36
UAP tester facility 69
UAP trace 390
UAP with transaction attribute 127
UCMDEVT 242
UJ 176
UJ record 176
unchained mode 122
undecided transaction information 476

output format of 476
unprocessed message 276

unrecoverable DAM file 287
unrecoverable DAM file locking range 309
updating temporary-stored data 223
user data facility 285
user exit routine 248

that determines application name 250
that determines inheriting timer-start
message 251
that edits input message 250
that edits output message 252
that edits sequential number of send
message 251

user file, UAP that initializes 8
user journal acquisition 46, 176
user server 3, 36
user server name 36, 37
user server process 37
user server status

acquiring 411
detecting 165

V
VCLSEVT 255, 275
VERREVT 255, 272
version number conventions xv
VOPNEVT 255, 273

W
WAN 5
workstation 2
WS 2

X
X/Open

compliant API 369
inter-application communication 399

X_C_TYPE 385
X_COMMON 385
X_OCTET 385
XA interface 358
XATMI communication service 182
XATMI interface 47, 183, 370

library function 371

Index

518

XATMI interface definition 385
XATMI interface definition file 33

Reader’s Comment Form

We would appreciate your comments and suggestions on this manual. We will use
these comments to improve our manuals. When you send a comment or suggestion,
please include the manual name and manual number. You can send your comments
by any of the following methods:

• Send email to your local Hitachi representative.
• Send email to the following address:

 WWW-mk@itg.hitachi.co.jp
• If you do not have access to email, please fill out the following information

and submit this form to your Hitachi representative:

Manual name:

Manual number:

Your name:

Company or
organization:

Street address:

Comment:

(For Hitachi use)

