
OpenTP1 Version 7
Description

3000-3-D50-30(E)

Relevant program product
Note: In the program products listed below, those marked with an asterisk (*) might be released later than the other program
products.
For AIX 5L V5.1, AIX 5L V5.2, AIX 5L V5.3, and AIX V6.1
P-1M64-2131 uCosminexus TP1/Server Base 07-03*
P-1M64-2331 uCosminexus TP1/FS/Direct Access 07-03*
P-1M64-2431 uCosminexus TP1/FS/Table Access 07-03*
P-1M64-2531 uCosminexus TP1/Client/W 07-02
P-1M64-2631 uCosminexus TP1/Offline Tester 07-00
P-1M64-2731 uCosminexus TP1/Online Tester 07-00
P-1M64-2831 uCosminexus TP1/Multi 07-00
P-1M64-2931 uCosminexus TP1/High Availability 07-00
P-1M64-3131 uCosminexus TP1/Message Control 07-03
P-1M64-3231 uCosminexus TP1/NET/Library 07-04
P-1M64-8131 uCosminexus TP1/Shared Table Access 07-00
P-1M64-8331 uCosminexus TP1/Resource Manager Monitor 07-00
P-1M64-8531 uCosminexus TP1/Extension 1 07-00
P-1M64-C371 uCosminexus TP1/Message Queue 07-01
P-1M64-C771 uCosminexus TP1/Message Queue - Access 07-01
P-F1M64-31311 uCosminexus TP1/Message Control/Tester 07-00
P-F1M64-32311 uCosminexus TP1/NET/User Agent 07-00
P-F1M64-32312 uCosminexus TP1/NET/HDLC 07-00
P-F1M64-32313 uCosminexus TP1/NET/X25 07-00
P-F1M64-32314 uCosminexus TP1/NET/OSI-TP 07-00
P-F1M64-32315 uCosminexus TP1/NET/XMAP3 07-01
P-F1M64-32316 uCosminexus TP1/NET/HSC 07-00
P-F1M64-32317 uCosminexus TP1/NET/NCSB 07-00
P-F1M64-32318 uCosminexus TP1/NET/OSAS-NIF 07-01
P-F1M64-3231B uCosminexus TP1/NET/Secondary Logical Unit - TypeP2 07-00
P-F1M64-3231C uCosminexus TP1/NET/TCP/IP 07-02
P-F1M64-3231D uCosminexus TP1/NET/High Availability 07-00
P-F1M64-3231U uCosminexus TP1/NET/User Datagram Protocol 07-00
R-1M45F-31 uCosminexus TP1/Web 07-00
For AIX 5L V5.3 and AIX V6.1
P-1M64-1111 uCosminexus TP1/Server Base(64) 07-03*
P-1M64-1311 uCosminexus TP1/FS/Direct Access(64) 07-03*
P-1M64-1411 uCosminexus TP1/FS/Table Access(64) 07-03*
P-1M64-1911 uCosminexus TP1/High Availability(64) 07-00
P-1M64-1L11 uCosminexus TP1/Extension 1(64) 07-00
For HP-UX 11i V1 (PA-RISC), and HP-UX 11i V2 (PA-RISC)
P-1B64-3F31 uCosminexus TP1/NET/High Availability 07-00
P-1B64-8531 uCosminexus TP1/Extension 1 07-00
P-1B64-8931 uCosminexus TP1/High Availability 07-00
R-18451-41K uCosminexus TP1/Client/W 07-00
R-18452-41K uCosminexus TP1/Server Base 07-00

R-18453-41K uCosminexus TP1/FS/Direct Access 07-00
R-18454-41K uCosminexus TP1/FS/Table Access 07-00
R-18455-41K uCosminexus TP1/Message Control 07-03*
R-18456-41K uCosminexus TP1/NET/Library 07-04*
R-18459-41K uCosminexus TP1/Offline Tester 07-00
R-1845A-41K uCosminexus TP1/Online Tester 07-00
R-1845C-41K uCosminexus TP1/Shared Table Access 07-00
R-1845D-41K uCosminexus TP1/Resource Manager Monitor 07-00
R-1845E-41K uCosminexus TP1/Multi 07-00
R-1845F-41K uCosminexus TP1/Web 07-00
R-F18455-411K uCosminexus TP1/Message Control/Tester 07-00
R-F18456-411K uCosminexus TP1/NET/User Agent 07-00
R-F18456-415K uCosminexus TP1/NET/XMAP3 07-01*
R-F18456-41CK uCosminexus TP1/NET/TCP/IP 07-02*
For HP-UX 11i V2 (IPF) and HP-UX 11i V3 (IPF)
P-1J64-3F21 uCosminexus TP1/NET/High Availability 07-00
P-1J64-4F11 uCosminexus TP1/NET/High Availability(64) 07-00
P-1J64-8521 uCosminexus TP1/Extension 1 07-00
P-1J64-8611 uCosminexus TP1/Extension 1(64) 07-00
P-1J64-8921 uCosminexus TP1/High Availability 07-00
P-1J64-8A11 uCosminexus TP1/High Availability(64) 07-00
P-1J64-C371 uCosminexus TP1/Message Queue 07-01
P-1J64-C571 uCosminexus TP1/Message Queue(64) 07-01
P-1J64-C871 uCosminexus TP1/Message Queue - Access(64) 07-00
R-18451-21J uCosminexus TP1/Client/W 07-02
R-18452-21J uCosminexus TP1/Server Base 07-03*
R-18453-21J uCosminexus TP1/FS/Direct Access 07-03*
R-18454-21J uCosminexus TP1/FS/Table Access 07-03*
R-18455-21J uCosminexus TP1/Message Control 07-03*
R-18456-21J uCosminexus TP1/NET/Library 07-04*
R-18459-21J uCosminexus TP1/Offline Tester 07-00
R-1845A-21J uCosminexus TP1/Online Tester 07-00
R-1845C-21J uCosminexus TP1/Shared Table Access 07-00
R-1845D-21J uCosminexus TP1/Resource Manager Monitor 07-00
R-1845E-21J uCosminexus TP1/Multi 07-00
R-1845F-21J uCosminexus TP1/Web 07-00
R-1B451-11J uCosminexus TP1/Client/W(64) 07-02
R-1B452-11J uCosminexus TP1/Server Base(64) 07-03*
R-1B453-11J uCosminexus TP1/FS/Direct Access(64) 07-03*
R-1B454-11J uCosminexus TP1/FS/Table Access(64) 07-03*
R-1B455-11J uCosminexus TP1/Message Control(64) 07-03*
R-1B456-11J uCosminexus TP1/NET/Library(64) 07-04*
R-F18455-211J uCosminexus TP1/Message Control/Tester 07-00
R-F18456-215J uCosminexus TP1/NET/XMAP3 07-01*

R-F18456-21CJ uCosminexus TP1/NET/TCP/IP 07-02*
R-F1B456-11CJ uCosminexus TP1/NET/TCP/IP(64) 07-02*
For Solaris 8, Solaris 9, and Solaris 10
P-9D64-3F31 uCosminexus TP1/NET/High Availability 07-00
P-9D64-8531 uCosminexus TP1/Extension 1 07-00
P-9D64-8931 uCosminexus TP1/High Availability 07-00
R-19451-216 uCosminexus TP1/Client/W 07-00
R-19452-216 uCosminexus TP1/Server Base 07-00
R-19453-216 uCosminexus TP1/FS/Direct Access 07-00
R-19454-216 uCosminexus TP1/FS/Table Access 07-00
R-19455-216 uCosminexus TP1/Message Control 07-03*
R-19456-216 uCosminexus TP1/NET/Library 07-04*
R-19459-216 uCosminexus TP1/Offline Tester 07-00
R-1945A-216 uCosminexus TP1/Online Tester 07-00
R-1945C-216 uCosminexus TP1/Shared Table Access 07-00
R-1945D-216 uCosminexus TP1/Resource Manager Monitor 07-00
R-1945E-216 uCosminexus TP1/Multi 07-00
R-F19456-2156 uCosminexus TP1/NET/XMAP3 07-01*
R-F19456-21C6 uCosminexus TP1/NET/TCP/IP 07-02*
For Red Hat Enterprise Linux AS 4 (AMD64 & Intel EM64T), Red Hat Enterprise Linux AS 4 (x86), Red Hat Enterprise Linux ES
4 (AMD64 & Intel EM64T), and Red Hat Enterprise Linux ES 4 (x86)
P-9S64-2161 uCosminexus TP1/Server Base 07-00
P-9S64-2351 uCosminexus TP1/FS/Direct Access 07-00
P-9S64-2451 uCosminexus TP1/FS/Table Access 07-00
P-9S64-2551 uCosminexus TP1/Client/W 07-00
P-9S64-3151 uCosminexus TP1/Message Control 07-00
P-9S64-3251 uCosminexus TP1/NET/Library 07-00
P-9S64-C371 uCosminexus TP1/Message Queue 07-01
P-F9S64-3251C uCosminexus TP1/NET/TCP/IP 07-00
P-F9S64-3251U uCosminexus TP1/NET/User Datagram Protocol 07-00
R-1845F-A15 uCosminexus TP1/Web 07-00
For Red Hat Enterprise Linux AS 4 (AMD64 & Intel EM64T), Red Hat Enterprise Linux AS 4 (x86), Red Hat Enterprise Linux ES
4 (AMD64 & Intel EM64T), Red Hat Enterprise Linux ES 4 (x86), Red Hat Enterprise Linux 5 (AMD/Intel 64), Red Hat Enterprise
Linux 5 (x86), Red Hat Enterprise Linux 5 Advanced Platform (AMD/Intel 64), and Red Hat Enterprise Linux 5 Advanced Platform
(x86)
P-9S64-2951 uCosminexus TP1/High Availability 07-00
P-9S64-8551 uCosminexus TP1/Extension 1 07-00
P-9S64-C771 uCosminexus TP1/Message Queue - Access 07-01
P-F9S64-3251D uCosminexus TP1/NET/High Availability 07-00
For Red Hat Enterprise Linux 5 (AMD/Intel 64), Red Hat Enterprise Linux 5 (x86), Red Hat Enterprise Linux 5 Advanced Platform
(AMD/Intel 64), and Red Hat Enterprise Linux 5 Advanced Platform (x86)
P-9S64-2171 uCosminexus TP1/Server Base 07-03
P-9S64-2361 uCosminexus TP1/FS/Direct Access 07-03
P-9S64-2461 uCosminexus TP1/FS/Table Access 07-03
P-9S64-2561 uCosminexus TP1/Client/W 07-02
P-9S64-3161 uCosminexus TP1/Message Control 07-03*

P-9S64-3261 uCosminexus TP1/NET/Library 07-04*
P-9S64-C571 uCosminexus TP1/Message Queue 07-01
P-F9S64-32611 uCosminexus TP1/NET/User Agent 07-00
P-F9S64-3261C uCosminexus TP1/NET/TCP/IP 07-02
P-F9S64-3261U uCosminexus TP1/NET/User Datagram Protocol 07-00
For Red Hat Enterprise Linux 5 (AMD/Intel 64) and Red Hat Enterprise Linux 5 Advanced Platform (AMD/Intel 64)
P-9W64-2111 uCosminexus TP1/Server Base(64) 07-03
P-9W64-2311 uCosminexus TP1/FS/Direct Access(64) 07-03
P-9W64-2411 uCosminexus TP1/FS/Table Access(64) 07-03
P-9W64-2911 uCosminexus TP1/High Availability(64) 07-02
P-9W64-8511 uCosminexus TP1/Extension 1(64) 07-02
For Red Hat Enterprise Linux AS 4 (IPF)
P-9V64-2121 uCosminexus TP1/Server Base 07-00
P-9V64-2321 uCosminexus TP1/FS/Direct Access 07-00
P-9V64-2421 uCosminexus TP1/FS/Table Access 07-00
P-9V64-2521 uCosminexus TP1/Client/W 07-00
P-9V64-3121 uCosminexus TP1/Message Control 07-00
P-9V64-3221 uCosminexus TP1/NET/Library 07-00
P-9V64-C371 uCosminexus TP1/Message Queue(64) 07-01
P-9V64-C771 uCosminexus TP1/Message Queue - Access(64) 07-00
P-F9V64-3221C uCosminexus TP1/NET/TCP/IP 07-00
P-F9V64-3221U uCosminexus TP1/NET/User Datagram Protocol 07-00
For Red Hat Enterprise Linux AS 4 (IPF), Red Hat Enterprise Linux 5 (Intel Itanium), and Red Hat Enterprise Linux 5 Advanced
Platform (Intel Itanium)
P-9V64-2921 uCosminexus TP1/High Availability 07-00
P-9V64-8521 uCosminexus TP1/Extension 1 07-00
P-F9V64-3221D uCosminexus TP1/NET/High Availability 07-00
For Red Hat Enterprise Linux 5 (Intel Itanium) and Red Hat Enterprise Linux 5 Advanced Platform (Intel Itanium)
P-9V64-2131 uCosminexus TP1/Server Base 07-02
P-9V64-2331 uCosminexus TP1/FS/Direct Access 07-02
P-9V64-2431 uCosminexus TP1/FS/Table Access 07-02
P-9V64-2531 uCosminexus TP1/Client/W 07-02
P-9V64-3131 uCosminexus TP1/Message Control 07-03*
P-9V64-3231 uCosminexus TP1/NET/Library 07-04*
P-F9V64-3231C uCosminexus TP1/NET/TCP/IP 07-02*
P-F9V64-3231U uCosminexus TP1/NET/User Datagram Protocol 07-00
For Windows 2000, Windows Server 2003, Windows Server 2003 x64 Editions, Windows Server 2003 R2, Windows Server 2003
R2 x64 Editions, Windows XP, Windows Vista, and Windows Vista x64
P-2464-2144 uCosminexus TP1/Client/P 07-02
For Windows 2000, Windows Server 2003, Windows Server 2003 x64 Editions, Windows Server 2003 R2, Windows Server 2003
R2 x64 Editions, and Windows XP
R-1845F-8134 uCosminexus TP1/Web 07-00
For Windows 2000, Windows Server 2003, Windows Server 2003 x64 Editions, Windows Server 2003 R2, Windows Server 2003
R2 x64 Editions, Windows XP, Windows Vista, Windows Vista x64, Windows Server 2008, and Windows Server 2008 x64
P-2464-7824 uCosminexus TP1/Client for .NET Framework 07-03

R-15451-21 uCosminexus TP1/Connector for .NET Framework 07-03
For Windows Server 2003, Windows Server 2003 x64 Editions, Windows Server 2003 R2, Windows Server 2003 R2 x64 Editions,
Windows XP, Windows Vista, Windows Vista x64, Windows Server 2008, and Windows Server 2008 x64
P-2464-2274 uCosminexus TP1/Server Base 07-03*
P-2464-2374 uCosminexus TP1/FS/Direct Access 07-03*
P-2464-2474 uCosminexus TP1/FS/Table Access 07-03*
P-2464-2544 uCosminexus TP1/Extension 1 07-00
P-2464-3154 uCosminexus TP1/Message Control 07-03*
P-2464-3254 uCosminexus TP1/NET/Library 07-04*
P-2464-3354 uCosminexus TP1/Messaging 07-00
P-2464-C374 uCosminexus TP1/Message Queue 07-01
P-2464-C774 uCosminexus TP1/Message Queue - Access 07-00
P-F2464-3254C uCosminexus TP1/NET/TCP/IP 07-02*
R-15452-21 uCosminexus TP1/Extension for .NET Framework 07-00
R-1945B-24 uCosminexus TP1/LiNK 07-02
For Windows Server 2003, Windows Server 2003 x64 Editions, Windows Server 2003 R2, Windows Server 2003 R2 x64 Editions,
and Windows XP
P-F2464-32545 uCosminexus TP1/NET/XMAP3 07-01*
For Windows Server 2003, Windows Server 2003 x64 Editions, Windows Server 2003 R2, Windows Server 2003 R2 x64 Editions,
Windows Server 2008, and Windows Server 2008 x64
P-2464-2934 uCosminexus TP1/High Availability 07-00
P-F2464-3254D uCosminexus TP1/NET/High Availability 07-00
For Java VM
P-2464-7394 uCosminexus TP1/Client/J 07-02
P-2464-73A4 uCosminexus TP1/Client/J 07-02
This manual can be used for products other than the products shown above. For details, see the Release Notes.
This product was developed under a quality management system that has received ISO9001 and TickIT certification.

Trademarks
AIX is a trademark of International Business Machines Corporation in the United States, other countries, or both.
AIX 5L is a trademark of International Business Machines Corporation in the United States, other countries, or both.
AMD, AMD Opteron, and combinations thereof, are trademarks of Advanced Micro Devices, Inc.
COBOL/2 is a trademark of International Business Machines Corporation in the United States, other countries, or both.
Gauntlet is a registered trademark of Network Associates, Inc. and/or its affiliates in the US and/or other countries.
HP-UX is a product name of Hewlett-Packard Company.
Itanium is a trademark of Intel Corporation in the United States and other countries.
Java is either a registered trademark or a trademark of Oracle and/or its affiliates.
Linux(R) is the registered trademark of Linus Torvalds in the U.S. and other countries.
Microsoft is either a registered trademark or a trademark of Microsoft Corporation in the United States and/or other countries.
MQSeries is a trademark of International Business Machines Corporation in the United States, other countries, or both.
MS-DOS is a registered trademark of Microsoft Corp. in the U.S. and other countries.
ORACLE is either a registered trademark or a trademark of Oracle and/or its affiliates.
Oracle is either a registered trademark or a trademark of Oracle Corporation and/or its affiliates.
Oracle and Oracle 10g are either registered trademarks or trademarks of Oracle and/or its affiliates.
Oracle and Oracle9i are either registered trademarks or trademarks of Oracle and/or its affiliates.
OSF is a trademark of the Open Software Foundation, Inc.

Red Hat is a trademark or a registered trademark of Red Hat Inc. in the United States and other countries.
Solaris is either a registered trademark or a trademark of Oracle and/or its affiliates.
UNIX is a registered trademark of The Open Group in the United States and other countries.
WebSphere is a trademark of International Business Machines Corporation in the United States, other countries, or both.
Windows is either a registered trademark or a trademark of Microsoft Corporation in the United States and/or other countries.
Windows Server is either a registered trademark or a trademark of Microsoft Corporation in the United States and/or other countries.
Windows Vista is either a registered trademark or a trademark of Microsoft Corporation in the United States and/or other countries.
X/Open is a registered trademark of The Open Group in the U.K. and other countries.
Other product and company names mentioned in this document may be the trademarks of their respective owners. Throughout this
document Hitachi has attempted to distinguish trademarks from descriptive terms by writing the name with the capitalization used
by the manufacturer, or by writing the name with initial capital letters. Hitachi cannot attest to the accuracy of this information. Use
of a trademark in this document should not be regarded as affecting the validity of the trademark.
Portions of this document are extracted from X/Open CAE Specification System Interfaces and Headers, Issue 4, (C202 ISBN
1-872630-47-2) Copyright (C) July 1992, X/Open Company Limited with the permission of X/Open; part of which is based on IEEE
Std 1003.1-1990, (C) 1990 Institute of Electrical and Electronics Engineers, Inc., and IEEE Std 1003.2/D12, (C) 1992 Institute of
Electrical and Electronics Engineers, Inc.
Portions of this document are extracted from X/Open Preliminary Specification Distributed Transaction Processing: The TxRPC
Specification (P305 ISBN 1 85912 000 8) Copyright (C) July 1993, X/Open Company Limited with the permission of X/Open.
This documentation and the software described herein are furnished under a license, and may be used and copied only in accordance
with the terms of such license and with the inclusion of the above copyright notice. Title to and ownership of the document and
software remain with OSF or its licensors.
Other product and company names mentioned in this document may be the trademarks of their respective owners. Throughout this
document Hitachi has attempted to distinguish trademarks from descriptive terms by writing the name with the capitalization used
by the manufacturer, or by writing the name with initial capital letters. Hitachi cannot attest to the accuracy of this information. Use
of a trademark in this document should not be regarded as affecting the validity of the trademark.

Restrictions
Information in this document is subject to change without notice and does not represent a commitment on the part of Hitachi. The
software described in this manual is furnished according to a license agreement with Hitachi. The license agreement contains all of
the terms and conditions governing your use of the software and documentation, including all warranty rights, limitations of liability,
and disclaimers of warranty.
Material contained in this document may describe Hitachi products not available or features not available in your country.
No part of this material may be reproduced in any form or by any means without permission in writing from the publisher.
Printed in Japan.

Edition history
Edition 1 (3000-3-D50(E)): June 2006
Edition 3 (3000-3-D50-30(E)): October 2010

Copyright
All Rights Reserved. Copyright (C) 2006, 2010, Hitachi, Ltd.

Summary of amendments
The following table lists changes in this manual (3000-3-D50-30(E)) and product
changes related to this manual for uCosminexus TP1/Server Base 07-03, uCosminexus
TP1/Server Base(64) 07-03, uCosminexus TP1/Message Control 07-03, uCosminexus
TP1/Message Control(64) 07-03, uCosminexus TP1/NET/Library 07-04, and
uCosminexus TP1/NET/Library(64) 07-04.

Changes Location

A performance verification trace (JNL performance verification trace) can now be
output by using the journal service.

1.4.3, 4.1.1(2), 5.3.6 and
5.3.6(6)

A performance verification trace (LCK performance verification trace) for locking
events that use lock services can now be output.

1.4.3, 4.1.1(2), 5.3.6 and
5.3.6(7)

An explanation of global domain has been added. 3.2.1(5)(b)

A function for prioritizing using service information of a specific node (service
information prioritizing function) has been added.

3.2.2, 3.2.2(2), and
Appendix E

An explanation of the causes for the MCF event that reports UAP abnormal
termination and the MCF event that reports discarding of an unprocessed message
has been changed.

3.3.7(3)(a)

An explanation of fall-back operation has been changed. 3.3.8(2)

An explanation regarding cases in which messages cannot be recovered has been
added.

3.3.9(4)(b)

An explanation of the send order of messages has been changed. 3.3.10

An explanation of the function for receiving data that is reported by the
dc_rpc_cltsend function has been changed.

3.5.1(2)

An explanation of the differences between an OpenTP1 file system and an OS file
system has been changed.

4.1.1(1) Table 4-2

An event trace (FIL event trace) can now be output by requesting access to
OpenTP1 files.

4.1.1(2), 5.3.6, and
5.3.6(13)

An explanation of the shared memory size for the DAM service when using a DAM
file that has been specified for cacheless access has been changed.

4.4.1(15)

The number of services for acquisition of performance verification has been
changed. Related definitions have also been changed.

7.1

A description of the system services that can specify port numbers for receiving
data has been added.

7.3.1

The statuses of application timer start requests can now be displayed. Appendix B Table B-2

The prctee process, which redirects OpenTP1 standard output and standard error
output, can now be stopped and restarted.

Appendix B Table B-2

The following table lists changes in this manual (3000-3-D50-30(E)) and product
changes related to this manual for uCosminexus TP1/Message Control 07-02, and
uCosminexus TP1/NET/Library 07-03.

The following table lists changes in this manual (3000-3-D50-30(E)) and product
changes related to this manual for uCosminexus TP1/Message Control 07-01, and
uCosminexus TP1/NET/Library 07-01.

In addition to the above changes, minor editorial corrections have been made.

The statuses of user timer monitoring can now be displayed. Appendix B Table B-2

Changes in the following product versions are listed:
• TP1/Server Base 07-03
• TP1/Message Control 07-03 and TP1/NET/Library 07-04
• TP1/Message Control 07-02 and TP1/NET/Library 07-03
• TP1/Message Control 07-01 and TP1/NET/Library 07-01

Appendix C.1, Appendix
C.2, and Appendix C.3

An overview regarding the processing of remote procedure calls has been added. Appendix D

Changes Location

A function for dynamic loading of service functions can now be used by using
MHP.

2.6.2(3)(b), 3.8, 3.8.1 and
Appendix E

The following operations can now be performed by using library functions:
• Displaying the status of, establishing, and releasing connections
• Displaying the status of requests to establish server connections, and starting or

terminating reception of those requests
• Deletion of application timer start requests
• Displaying the status of a logical terminal, shutting it down, and releasing it

from shutdown, and deleting the output queue
• Displaying the status of the MCF communication service or the application start

service

3.3.7(3)(a), 3.3.9(3) and
Appendix B Table B-1

A message is now output when memory is automatically added from the unused
area if MCF static shared memory is insufficient.

7.2.2(4)

The status of a network that is related to a message exchange with a remote system
can now be displayed.

Appendix B Table B-2

Changes Location

A performance verification trace (MCF performance verification trace) can now be
output by main events during message exchanges.

1.4.3, 4.1.1(2), 5.3.6, and
5.3.6(8)

Reception of requests to establish server connections can now be manually started
and terminated.

Appendix B Table B-2

Changes Location

The following table lists changes in the manual (3000-3-D50-20(E)) and product
changes related to that manual for uCosminexus TP1/Server Base 07-02, uCosminexus
TP1/Message Control 07-01, and uCosminexus TP1/NET/Library 07-01.

The following table lists changes in the manual (3000-3-D50-20(E)) and product
changes related to that manual for uCosminexus TP1/Server Base 07-01.

Changes

A performance verification trace (PRF trace) can now be output by the XA resource service.

A function that enables service functions to be loaded dynamically has been added.

Items that can be monitored by the timer monitoring facility have been added. OpenTP1 definitions related to the
monitored items have been changed accordingly.

The schedule service can now be implemented on a service-by-service basis.

The description of usage of the User Authentication facility in TP1/Client/P for MS-DOS has been deleted.

The description of the remote API facility has been changed.

An audit log output function has been added.

A function that allows parallel access to system journal files has been added.

An event trace can now be output by the name service.

An event trace can now be output by a process service

A function that allows the system to operate without using system journal files (non-journal operation function)
has been added.
With this addition, the valid number of system service processes has been changed.

Changes in the following product versions are described:
• TP1/Server Base 07-02
• TP1/Message Control 07-01 and TP1/NET/Library 07-01

Changes

A function (MSDTC linkage) that enables transactional linkage by means of two-phase commit between OpenTP1
and an application that runs on .NET Framework has been added.

A function has been added for displaying the product name, version number, and other information about products
operating in environments set up in the OpenTP1 directory.
With this addition, the dcpplist command has been added.

Changes to functions, definitions, commands, and defaults when upgrading to a later version are described.

i

Preface

This manual provides a general overview of the OpenTP1 software product.

Products described in this manual, other than those for which the manual is released,
may not work with OpenTP1 Version 7 products. You need to confirm that the products
you want to use work with OpenTP1 Version 7 products.

TP1/Message Queue is implemented based on the specifications of the MQI, MQFAP,
and MQ clusters in WebSphere MQ (formerly MQSeries) under license from
International Business Machines Corporation.

Intended readers
This manual is intended as a general overview that can be used by the following types
of readers:

• General readers who want a non-technical overview of OpenTP1. These persons
should read Chapter 1. Introduction. This chapter assumes a general
understanding of computers and computing systems.

• OpenTP1 administrators who set up and manage OpenTP1 systems.

• Program developers interested in developing programs for OpenTP1 systems.

Organization of this manual
This manual is organized into the following chapters and appendixes:

1. Introduction
This chapter provides a general overview of OpenTP1 and online transaction
processing.

2. Application Processing Modes
This chapter describes the modes of application processing that can be performed
in OpenTP1, related products, and the types of user application programs used in
an OpenTP1 system.

3. Functions
This chapter describes the service functions provided by OpenTP1.

4. File System
This chapter describes the OpenTP1 file system, files (such as OpenTP1 files and
user files), and the IST service.

ii

5. Overview of Setup, Use, and Error Recovery
This chapter describes the actions taken by OpenTP1 or users when setting up or
using OpenTP1, or when recovering from some failure or error.

6. Using Multiple Instances of OpenTP1
This chapter describes the OpenTP1 features that can be used when constructing
systems that require multiple instances of OpenTP1.

7. System Resources
This appendix describes OpenTP1 process structure and memory structure.

A. Communication Protocol Products for Use with TP1/Message Control
This appendix describes the OpenTP1 program products that support specific
communication protocols, required for communication based on message
exchange.

B. Library Functions and Commands
This appendix lists and describes the library functions and commands available in
OpenTP1.

C. Version Changes
This appendix describes the changes in definitions, functions, and commands
between OpenTP1 versions.

D. Overview of Remote Procedure Call Processing
This appendix provides an overview of remote procedure call processing.

E. Glossary
The glossary defines terms and phrases used in this manual.

Related publications
This manual is part of a related set of manuals. The manuals in the set are listed below
(with the manual numbers):
OpenTP1 products

• OpenTP1 Version 7 Description (3000-3-D50(E))

• OpenTP1 Version 7 Programming Guide (3000-3-D51(E))

• OpenTP1 Version 7 System Definition (3000-3-D52(E))

• OpenTP1 Version 7 Operation (3000-3-D53(E))

• OpenTP1 Version 7 Programming Reference C Language (3000-3-D54(E))

• OpenTP1 Version 7 Programming Reference COBOL Language

iii

(3000-3-D55(E))

• OpenTP1 Version 7 Messages (3000-3-D56(E))

• OpenTP1 Version 7 Tester and UAP Trace User's Guide (3000-3-D57(E))

• OpenTP1 Version 7 TP1/Client User's Guide TP1/Client/W, TP1/Client/P
(3000-3-D58(E))

• OpenTP1 Version 7 TP1/Client User's Guide TP1/Client/J (3000-3-D59(E))

• OpenTP1 Version 7 TP1/LiNK User's Guide (3000-3-D60(E))#

• OpenTP1 Version 7 Protocol TP1/NET/TCP/IP (3000-3-D70(E))

• OpenTP1 Version 7 TP1/Message Queue User's Guide (3000-3-D90(E))#

• OpenTP1 Version 7 TP1/Message Queue Messages (3000-3-D91(E))#

• OpenTP1 Version 7 TP1/Message Queue Application Programming Guide
(3000-3-D92(E))#

• OpenTP1 Version 7 TP1/Message Queue Application Programming Reference
(3000-3-D93(E))#

Other OpenTP1 products

• TP1/Web User's Guide and Reference (3000-3-D62(E))#

Other related products

• Indexed Sequential Access Method ISAM (3000-3-046(E))

• XP/W (3000-3-047(E))

• Extended Mapping Service 2/Workstation XMAP2/W DESCRIPTION/USER'S
GUIDE (3000-7-421(E))

• SEWB 3 General Information (3000-7-450(E))

• Job Management Partner 1/Base User's Guide (3020-3-K06(E))

• Job Management Partner 1/Base Messages (3020-3-K07(E))

• Job Management Partner 1/Base Software Developer's Guide (3020-3-K08(E))

For OpenTP1 protocol manuals, please check whether English versions are available.

#

If you want to use this manual, confirm that it has been published. (Some of these
manuals might not have been published yet.)

iv

Conventions: Abbreviations for product names
This manual uses the following abbreviations for product names:

Abbreviation Full name or meaning

AIX AIX 5L V5.1

AIX 5L V5.2

AIX 5L V5.3

AIX V6.1

Client .NET TP1/Client for .NET
Framework

uCosminexus TP1/Client for .NET Framework

Connector .NET TP1/Connector for
.NET Framework

uCosminexus TP1/Connector for .NET Framework

DPM JP1/ServerConductor/Deployment Manager

HI-UX/WE2 HI-UX/workstation Extended Version 2

HP-UX HP-UX (IPF) HP-UX 11i V2 (IPF)

HP-UX 11i V3 (IPF)

HP-UX (PA-RISC) HP-UX 11i V1 (PA-RISC)

HP-UX 11i V2 (PA-RISC)

IPF Itanium(R) Processor Family

Java JavaTM

JP1 JP1/AJS2 JP1/AJS2 - Agent JP1/Automatic Job Management System 2 - Agent

JP1/AJS2 -
Manager

JP1/Automatic Job Management System 2 - Manager

JP1/AJS2 - View JP1/Automatic Job Management System 2 - View

JP1/AJS2 -
Scenario
Operation

JP1/AJS2 - Scenario
Operation Manager

JP1/Automatic Job Management System 2 - Scenario
Operation Manager

JP1/AJS2 - Scenario
Operation View

JP1/Automatic Job Management System 2 - Scenario
Operation View

JP1/NETM/Audit JP1/NETM/Audit - Manager

Linux Linux(R)

Linux (AMD64/Intel EM64T/x86) Red Hat Enterprise Linux AS 4 (AMD64 & Intel EM64T)

v

Red Hat Enterprise Linux AS 4 (x86)

Red Hat Enterprise Linux ES 4 (AMD64 & Intel EM64T)

Red Hat Enterprise Linux ES 4 (x86)

Red Hat Enterprise Linux 5 (AMD/Intel 64)

Red Hat Enterprise Linux 5 (x86)

Red Hat Enterprise Linux 5 Advanced Platform (AMD/Intel
64)

Red Hat Enterprise Linux 5 Advanced Platform (x86)

Linux (IPF) Red Hat Enterprise Linux AS 4 (IPF)

Red Hat Enterprise Linux 5 (Intel Itanium)

Red Hat Enterprise Linux 5 Advanced Platform (Intel
Itanium)

MS-DOS Microsoft(R) MS-DOS(R)

NETM/DM JP1/NETM/DM Client

JP1/NETM/DM Manager

JP1/NETM/DM SubManager

Oracle Oracle 10g

Oracle9i

Solaris Solaris 8

Solaris 9

Solaris 10

TP1/Client TP1/Client/J uCosminexus TP1/Client/J

TP1/Client/P uCosminexus TP1/Client/P

TP1/Client/W uCosminexus TP1/Client/W

uCosminexus TP1/Client/W(64)

TP1/EE uCosminexus TP1/Server Base Enterprise Option

uCosminexus TP1/Server Base Enterprise Option(64)

Abbreviation Full name or meaning

vi

TP1/Extension 1 uCosminexus TP1/Extension 1

uCosminexus TP1/Extension 1(64)

TP1/FS/Direct Access uCosminexus TP1/FS/Direct Access

uCosminexus TP1/FS/Direct Access(64)

TP1/FS/Table Access uCosminexus TP1/FS/Table Access

uCosminexus TP1/FS/Table Access(64)

TP1/High Availability uCosminexus TP1/High Availability

uCosminexus TP1/High Availability(64)

TP1/LiNK uCosminexus TP1/LiNK

TP1/Message Control uCosminexus TP1/Message Control

uCosminexus TP1/Message Control(64)

TP1/Message Control/Tester uCosminexus TP1/Message Control/Tester

TP1/Message Queue uCosminexus TP1/Message Queue

uCosminexus TP1/Message Queue(64)

TP1/Message Queue - Access uCosminexus TP1/Message Queue - Access

uCosminexus TP1/Message Queue - Access(64)

TP1/Messaging uCosminexus TP1/Messaging

TP1/Multi uCosminexus TP1/Multi

TP1/NET/HDLC uCosminexus TP1/NET/HDLC

TP1/NET/High Availability uCosminexus TP1/NET/High Availability

uCosminexus TP1/NET/High Availability(64)

TP1/NET/HSC uCosminexus TP1/NET/HSC

TP1/NET/Library uCosminexus TP1/NET/Library

uCosminexus TP1/NET/Library(64)

TP1/NET/NCSB uCosminexus TP1/NET/NCSB

TP1/NET/OSAS-NIF uCosminexus TP1/NET/OSAS-NIF

TP1/NET/OSI-TP uCosminexus TP1/NET/OSI-TP

Abbreviation Full name or meaning

vii

TP1/NET/SLU -
TypeP2

TP1/NET/
Secondary Logical
Unit - TypeP2

uCosminexus TP1/NET/Secondary Logical Unit - TypeP2

TP1/NET/TCP/IP uCosminexus TP1/NET/TCP/IP

uCosminexus TP1/NET/TCP/IP(64)

TP1/NET/UDP uCosminexus TP1/NET/User Datagram Protocol

TP1/NET/User Agent uCosminexus TP1/NET/User Agent

TP1/NET/X25 uCosminexus TP1/NET/X25

TP1/NET/X25-Extended uCosminexus TP1/NET/X25-Extended

TP1/NET/XMAP3 uCosminexus TP1/NET/XMAP3

TP1/Offline Tester uCosminexus TP1/Offline Tester

TP1/Online Tester uCosminexus TP1/Online Tester

TP1/Resource Manager Monitor uCosminexus TP1/Resource Manager Monitor

TP1/Server Base uCosminexus TP1/Server Base

uCosminexus TP1/Server Base(64)

TP1/Shared Table Access uCosminexus TP1/Shared Table Access

TP1/Web uCosminexus TP1/Web

Windows 2000 Microsoft(R) Windows(R) 2000 Advanced Server Operating
System

Microsoft(R) Windows(R) 2000 Datacenter Server Operating
System

Microsoft(R) Windows(R) 2000 Professional Operating
System

Microsoft(R) Windows(R) 2000 Server Operating System

Windows Server 2003 Microsoft(R) Windows Server(R) 2003, Datacenter Edition

Microsoft(R) Windows Server(R) 2003, Enterprise Edition

Microsoft(R) Windows Server(R) 2003, Standard Edition

Windows Server 2003 R2 Microsoft(R) Windows Server(R) 2003 R2, Enterprise Edition

Abbreviation Full name or meaning

viii

• If there is no difference in OS functionality, the term Windows is used to indicate
Windows 2000, Windows Server 2003, Windows Server 2008, Windows XP, and
Windows Vista.

• The term UNIX is used to indicate AIX, HP-UX, Linux, and Solaris.

Microsoft(R) Windows Server(R) 2003 R2, Standard Edition

Windows Server 2003 x64 Editions Microsoft(R) Windows Server(R) 2003, Datacenter x64 Edition

Microsoft(R) Windows Server(R) 2003, Enterprise x64 Edition

Microsoft(R) Windows Server(R) 2003, Standard x64 Edition

Windows Server 2003 R2 x64 Editions Microsoft(R) Windows Server(R) 2003 R2, Enterprise x64
Edition

Microsoft(R) Windows Server(R) 2003 R2, Standard x64
Edition

Windows Server 2008 Microsoft(R) Windows Server(R) 2008 Datacenter (x86)

Microsoft(R) Windows Server(R) 2008 Enterprise (x86)

Microsoft(R) Windows Server(R) 2008 Standard (x86)

Windows Server 2008 x64 Editions Microsoft(R) Windows Server(R) 2008 Datacenter (x64)

Microsoft(R) Windows Server(R) 2008 Enterprise (x64)

Microsoft(R) Windows Server(R) 2008 Standard (x64)

Windows Vista Microsoft(R) Windows Vista(R) Business (x86)

Microsoft(R) Windows Vista(R) Enterprise (x86)

Microsoft(R) Windows Vista(R) Ultimate (x86)

Windows Vista x64 Editions Microsoft(R) Windows Vista(R) Business (x64)

Microsoft(R) Windows Vista(R) Enterprise (x64)

Microsoft(R) Windows Vista(R) Ultimate (x64)

Windows XP Microsoft(R) Windows(R) XP Professional Operating System

Abbreviation Full name or meaning

ix

Conventions: Acronyms
This manual also uses the following acronyms:

Acronym Full name or meaning

ANSI American National Standards Institute

AP Application Program

API Application Programming Interface

C/S Client/Server

CGI Common Gateway Interface

CPU Central Processing Unit

CRM Communication Resource Manager

CUP Client User Program

DAM Direct Access Method

DB Database

DBMS Database Management System

DCE Distributed Computing Environment

DHCP Dynamic Host Configuration Protocol

DID Distributed Identifier

DML Data Manipulation Language

DNS Domain Name System

DPM ServerConductor/DeploymentManager

DPOS Distributed Data Processing Operating System

DTP Distributed Transaction Processing

EX Exclusive

FDDI Fiber Distributed Data Interface

FEP Front End Processor

FIFO First-In-First-Out

FRC File Recovery

GUI Graphical User Interface

x

HA High Availability

HDLC-NRM HDLC-Normal Response Mode

HTML Hyper Text Markup Language

I/O Input/Output

ID Identifier

IDL Interface Definition Language

IP Internet Protocol

ISAM Indexed Sequential Access Method

IST Internode Shared Table

J2EE Java 2 Enterprise Edition

JCA J2EE Connector Architecture

JDBC Java DataBase Connectivity

LAN Local Area Network

MCF Message Control Facility

MHP Message Handling Program

MIA Multivendor Integration Architecture

MQA Message Queue Access

MQI Message Queue Interface

MSDTC Microsoft Distributed Transaction Coordinator

NIF/HNA Network Interface Feature/Hitachi Network Architecture

NIF/OSI Network Interface Feature/OSI

NIS Network Information Service

OLTP Online Transaction Processing

OS Operating System

OSI Open Systems Interconnection

OSI TP Open Systems Interconnection Transaction Processing

PC Personal Computer

Acronym Full name or meaning

xi

PR Protected Retrieve

PRF Performance

PVC Permanent Virtual Circuit

RI Recovery Information

RM Resource Manager

RPC Remote Procedure Call

RTS Real Time Statistic

SCSI Small Computer Systems Interface

SNA Systems Network Architecture

SPP Service Providing Program

SRF Server Recovery Journal File

STDL Structured Transaction Definition Language

SUP Service Using Program

TAM Table Access Method

TCO Total Cost of Ownership

TCP/IP Transmission Control Protocol/Internet Protocol

TP Transaction Processing

TRF Transaction Recovery journal File

UAP User Application Program

UOC User Own Coding

VM Virtual Machine

WAN Wide Area Network

WS Workstation

WWW World Wide Web

XA Extended Architecture

XAR Extended Architecture Resource

Acronym Full name or meaning

xii

Conventions: Diagrams
This manual uses the following conventions in diagrams:

Conventions: Differences in installation directory paths
This manual uses the notation /BeTRAN to indicate the OpenTP1 installation directory.
The actual installation directory differs depending on the operating system. Use the
following table to determine the actual installation directory for your OS.

As written in
this manual

Actual directory for each OS

AIX, HP-UX, and Solaris Linux Windows

/BeTRAN /BeTRAN /opt/OpenTP1 The directory in which
OpenTP1 was installed

xiii

Conventions: Fonts and symbols
The following table explains the fonts used in this manual:

The following table explains the symbols used in this manual:

Font Convention

Bold Bold type indicates text on a window, other than the window title. Such text includes
menus, menu options, buttons, radio box options, or explanatory labels. For example:
• From the File menu, choose Open.
• Click the Cancel button.
• In the Enter name entry box, type your name.

Italics Italics are used to indicate a placeholder for some actual text to be provided by the user
or system. For example:
• Write the command as follows:

copy source-file target-file
• The following message appears:

A file was not found. (file = file-name)
Italics are also used for emphasis. For example:
• Do not delete the configuration file.

Code font A code font indicates text that the user enters without change, or text (such as
messages) output by the system. For example:
• At the prompt, enter dir.
• Use the send command to send mail.
• The following message is displayed:

The password is incorrect.

Symbol Convention

| In syntax explanations, a vertical bar separates multiple items, and has the
meaning of OR. For example:
A|B|C means A, or B, or C.

{ } In syntax explanations, curly brackets indicate that only one of the enclosed items
is to be selected. For example:
{A|B|C} means only one of A, or B, or C.

[] In syntax explanations, square brackets indicate that the enclosed item or items
are optional. For example:
[A] means that you can specify A or nothing.
[B|C] means that you can specify B, or C, or nothing.

... In coding, an ellipsis (...) indicates that one or more lines of coding are not shown
for purposes of brevity.
In syntax explanations, an ellipsis indicates that the immediately preceding item
can be repeated as many times as necessary. For example:
A, B, B, ... means that, after you specify A, B, you can specify B as many
times as necessary.

xiv

Conventions: KB, MB, GB, and TB
This manual uses the following conventions:

• 1 KB (kilobyte) is 1,024 bytes.

• 1 MB (megabyte) is 1,0242 bytes.

• 1 GB (gigabyte) is 1,0243 bytes.

• 1 TB (terabyte) is 1,0244 bytes.

Conventions: Platform-specific notational differences
For the Windows version of OpenTP1, there are some notational differences from the
description in the manual. The following table describes these differences.

Conventions: Version numbers
The version numbers of Hitachi program products are usually written as two sets of
two digits each, separated by a hyphen. For example:

• Version 1.00 (or 1.0) is written as 01-00.

• Version 2.05 is written as 02-05.

• Version 2.50 (or 2.5) is written as 02-50.

• Version 12.25 is written as 12-25.

The version number might be shown on the spine of a manual as Ver. 2.00, but the same
version number would be written in the program as 02-00.

Item Description in the manual Change to:

Environment variable $aaaaaa
Example: $DCDIR

%aaaaaa%
Example: %DCDIR%

Path name separator Colon (:) Semicolon (;)

Directory name separator Slash (/) Backslash (\)

Absolute path name A path from the root directory
Example: /tmp

A path name from a drive letter and the
root directory
Example: C:\tmp

Executable file name File name only (without an
extension)
Example: mcfmngrd

File name with an extension
Example: mcfmngrd.exe

make command make nmake

xv

Contents

Preface i

Intended readers ...i
Organization of this manual ...i
Related publications ..ii
Conventions: Abbreviations for product names...iv
Conventions: Acronyms...ix
Conventions: Diagrams ...xii
Conventions: Differences in installation directory paths ..xii
Conventions: Fonts and symbols... xiii
Conventions: KB, MB, GB, and TB ..xiv
Conventions: Platform-specific notational differences ..xiv
Conventions: Version numbers...xiv

1. Introduction 1

1.1 Overview of OpenTP1..2
1.1.1 Distributed computing environment for transaction processing3
1.1.2 Flexible system configuration ...4
1.1.3 Achieving a large-scale system linked to a backbone system.........................5
1.1.4 Support for moving to open systems...6
1.1.5 Unrestricted ...7

1.2 Examples of configurations possible with OpenTP1 systems....................................8
1.2.1 OpenTP1 in a LAN that uses client/server processing....................................8
1.2.2 OpenTP1 in front-end processors..9
1.2.3 OpenTP1 connected to a non-OpenTP1 system..10

1.3 OpenTP1 software products ...12
1.3.1 List of OpenTP1 software products ..12
1.3.2 OpenTP1 and the X/Open DTP model..16

1.4 OpenTP1 system services...20
1.4.1 Types of OpenTP1 services...20
1.4.2 OpenTP1 system services..20
1.4.3 OpenTP1 system definitions ...23

2. Application Processing Modes 27

2.1 Overview of OpenTP1 communications ..28
2.2 Processing in a client/server configuration...29

2.2.1 Communication via remote procedure calls..29
2.2.2 Using OpenTP1 client software on workstations and PCs............................32

2.3 Processing in an MCF message-exchange configuration ...34

xvi

2.3.1 Overview of MCF message exchange .. 34
2.3.2 Networks that can use MCF message exchange... 35
2.3.3 MCF message-exchange configuration using the Extended Presentation

facility... 35
2.4 Processing in an MQA message-queuing configuration.. 38

2.4.1 Features of MQA message queuing.. 38
2.4.2 Overview of communication using MQA message queuing........................ 39
2.4.3 Notes on use of the MQA message queuing... 40

2.5 Other Hitachi software products usable with OpenTP1 .. 41
2.5.1 Job Management Partner 1 Integrated System Operation Management

Facilities ... 41
2.5.2 SEWB3 Software Engineering Workbench.. 43

2.6 User application programs in OpenTP1 systems... 45
2.6.1 User application programs and types of processing 45
2.6.2 Overview of user application programs.. 45
2.6.3 Cooperation of user processes with SPPs and MHPs................................... 55
2.6.4 UAP testing and debugging facilities ... 55

2.7 Processing in an Internet-based configuration... 57

3. Functions 59

3.1 Transaction Control.. 60
3.1.1 Distributed transactions .. 60
3.1.2 RPCs, transaction branches, and global transactions 62
3.1.3 Commit and rollback operations... 62
3.1.4 Two-phase commit.. 63
3.1.5 Transactions and UAPs... 67
3.1.6 Transaction control based on the TX interface... 70
3.1.7 Transaction control based on the XA resource service 70
3.1.8 XA interface ... 79

3.2 Processing in an OpenTP1 client/server configuration.. 81
3.2.1 Communication via RPCs that use the OpenTP1 library 81
3.2.2 Optional function for service information searches 90
3.2.3 Node management in OpenTP1.. 105
3.2.4 Communication via RPCs that use the XATMI interface............................113
3.2.5 Communication via RPCs that use the TxRPC interface116

3.3 Message Control .. 120
3.3.1 Overview of sending and receiving messages using MCF......................... 120
3.3.2 Message structure ... 121
3.3.3 Application program structure and application name................................. 121
3.3.4 Synchronous and asynchronous communication functions, and messages 122
3.3.5 Messages independent of the above communication modes 124
3.3.6 Message-control transactions ... 125
3.3.7 Starting user application programs ... 126
3.3.8 MCF message queues and the sending and receiving of messages 134

xvii

3.3.9 Message exchange by user application programs136
3.3.10 Order of sending MCF messages ..143
3.3.11 Partially changing the MCF communication service during operation of

OpenTP1 ...145
3.3.12 MCF capabilities that are not supported in Windows146

3.4 Scheduling ..147
3.4.1 Scheduling requests to service-providing programs147
3.4.2 Scheduling MCF messages to message-handling programs156
3.4.3 Process control and the Multiserver facility..162
3.4.4 Saving shared memory in sharing a buffer area ..177
3.4.5 Example of process control with the Multiserver facility179

3.5 OpenTP1 client facility (TP1/Client) ...182
3.5.1 Remote procedure calls of TP1/Client ..183
3.5.2 MCF message exchange using the TCP/IP protocol187
3.5.3 Communication with XDM/DCCM3..188

3.6 Client/server communications using OSI TP ...189
3.6.1 OpenTP1's remote system ...189
3.6.2 Route used for communication ...190
3.6.3 Application programs used for communication ..191
3.6.4 Overview of environment setup ..195
3.6.5 In the event of a failure ...195

3.7 Remote API facility ..196
3.7.1 Example of using the remote API facility ...199
3.7.2 Permanent connection ...201
3.7.3 Connection mode...202
3.7.4 RAP-processing client manager ..203
3.7.5 Definitions necessary for using the remote API facility203
3.7.6 Prerequisites for using the XA resource service ...204

3.8 Dynamic loading of service functions ..205
3.8.1 Examples of using dynamic loading of service functions...........................205
3.8.2 Preparation required for using dynamic loading of service functions209

3.9 Additional Features ..211
3.9.1 Locking resources ...211
3.9.2 Acquisition of a user journal ...215
3.9.3 Journal maintenance facilities ...216
3.9.4 Obtaining the message log ..217
3.9.5 Reporting a message log ...219
3.9.6 Controlling resource managers not provided by OpenTP1.........................220
3.9.7 Uptime statistics ..222
3.9.8 Real-time statistics service ..224

3.10 System operations using scenario templates ..227
3.11 System monitoring using audit logs ...229

xviii

4. File System 233

4.1 The OpenTP1 file system .. 234
4.1.1 Overview of the OpenTP1 file system ... 234
4.1.2 Creating an OpenTP1 file system... 240
4.1.3 Backing up and restoring OpenTP1 file systems.. 243
4.1.4 Protecting OpenTP1 files.. 243
4.1.5 Assigning an OpenTP1 file system .. 244

4.2 System files.. 246
4.2.1 System files: status files ... 246
4.2.2 System files: system journal files ... 249
4.2.3 System files: checkpoint dump files ... 259
4.2.4 System files: transaction recovery journal file ... 266
4.2.5 System files: server recovery journal file ... 267
4.2.6 System files: archive journal files .. 267

4.3 Queue files ... 273
4.3.1 Queue files: MCF message queue file .. 273
4.3.2 Queue files: MQA message queue file ... 274

4.4 User data files .. 276
4.4.1 User files: DAM files (TP1/FS/Direct Access) .. 276
4.4.2 User files: TAM files (TP1/FS/Table Access) .. 293
4.4.3 IST service (TP1/Shared Table Access) ... 301
4.4.4 User files: ISAM files (ISAM and ISAM/B).. 306
4.4.5 Accessing database management systems.. 307

5. Overview of Setup, Use, and Error Recovery 311

5.1 Setting up an OpenTP1 system.. 312
5.1.1 Overview of environment settings.. 312
5.1.2 Environment setup tasks ... 314

5.2 Operating an OpenTP1 system .. 317
5.3 Failure and error recovery.. 321

5.3.1 Recovering from OpenTP1 system failures.. 321
5.3.2 Recovering from UAP failures ... 324
5.3.3 Recovering from file errors .. 326
5.3.4 Recovering from network errors... 329
5.3.5 OpenTP1 monitoring and trace facilities.. 330
5.3.6 Analyzing the cause of an error .. 332

6. Using Multiple Instances of OpenTP1 349

6.1 The System Switchover facility ... 350
6.1.1 Overview of the System Switchover facility.. 350
6.1.2 OpenTP1 system configuration for using the System Switchover facility. 353
6.1.3 Procedure for system switching.. 354
6.1.4 Operating with the System Switchover facility .. 357

xix

6.2 The Multinode facility ..363
6.2.1 Overview of the Multinode facility ...363
6.2.2 Available operations in the Multinode facility ..366
6.2.3 Global Archive Journal facility ...367

6.3 The MultiOpenTP1...372
6.3.1 MultiOpenTP1 configuration ..372

6.4 Multi-homed host configuration...374

7. System Resources 377

7.1 OpenTP1 process structure...378
7.2 OpenTP1 memory structure ...384

7.2.1 Local memory ...384
7.2.2 Shared memory ...384

7.3 TCP/IP resources that OpenTP1 uses...387
7.3.1 Port numbers used in OpenTP1...387
7.3.2 How RPCs use ports..388
7.3.3 Calculating the number of ports ..389
7.3.4 Restricting the number of ports ...390
7.3.5 Temporary closing and user tasks ...391
7.3.6 Monitoring a temporary closing request ...392
7.3.7 Checking an execution status of temporary closing....................................392
7.3.8 Changes in the size of a resource when the number of sockets increases...394
7.3.9 Tuning the network environment ..394
7.3.10 Cautions required when using DNS and NIS..395

Appendixes 397

A. Communication Protocol Products for Use with TP1/Message Control398
A.1 OpenTP1 communication protocol products...398
A.2 Systems connected to protocol products ...399

B. Library Functions and Commands...401
C. Version Changes ..421

C.1 Changes in 07-03 ...421
C.2 Changes in 07-02 ...424
C.3 Changes in 07-01 ...430
C.4 Changes in 07-00 ...433

D. Overview of Remote Procedure Call Processing...438
D.1 Overview of processing a remote procedure call to the local node...............438
D.2 Overview of processing a remote procedure call to remote nodes................440
D.3 Overview of global search processing...444
D.4 Overview of service information registration and deletion processing.........448
D.5 Overview of node-to-node forwarding processing..451
D.6 Overview of remote procedure call processing using the dcsvgdef definition

command...453
E. Glossary ...456

xx

Index 471

xxi

List of figures

Figure 1-1: Features of OpenTP1 ...2
Figure 1-2: Conventional online transaction processing in a centralized system using a

large-scale computer ...3
Figure 1-3: Online transaction processing in a distributed environment using OpenTP1..........4
Figure 1-4: Flexible system configuration..5
Figure 1-5: Large-scale system incorporating a backbone system ...6
Figure 1-6: OpenTP1 online transaction processing using the client/server model in a LAN ...9
Figure 1-7: Example of an front-end processor (FEP) ...10
Figure 1-8: OpenTP1 online transaction processing in a system using a large-scale host

computer..11
Figure 1-9: OpenTP1 software products...12
Figure 1-10: The X/Open DTP model ..17
Figure 1-11: Relationship between the X/Open DTP model and the OpenTP1 system...........19
Figure 1-12: Organization of OpenTP1 system definitions ..24
Figure 2-1: Overview of communication in a client/server configuration30
Figure 2-2: Overview of communication based on TP1/Client ..33
Figure 2-3: Overview of MCF message-exchange processing ...35
Figure 2-4: An MCF message-exchange configuration that uses the Extended Presentation

facility..36
Figure 2-5: Example of an OpenTP1 system configuration using MQA message queuing.....38
Figure 2-6: Overview of MQA message queuing...39
Figure 2-7: OpenTP1 system configuration using Job Management Partner 142
Figure 2-8: SUPs and SPPs in OpenTP1 systems...47
Figure 2-9: SPP structure (when using a stub) ...49
Figure 2-10: SPP structure (when using dynamic loading of service functions)......................50
Figure 2-11: MHP in an OpenTP1 system..51
Figure 2-12: MHP structure (when using a stub) ...53
Figure 2-13: MHP structure (when performing dynamic loading of service functions)54
Figure 2-14: Configuration with TP1/Web ...57
Figure 3-1: A distributed transaction ..61
Figure 3-2: A global transaction and transaction branches...62
Figure 3-3: Rollback operation on a transaction...63
Figure 3-4: Processing in a two-phase commit...65
Figure 3-5: Processing in a heuristic decision ..67
Figure 3-6: Global transaction for a SUP or SPP ...69
Figure 3-7: Global transaction for an MHP ..70
Figure 3-8: Transaction control when linked with a J2EE application server72
Figure 3-9: Transaction control when linked with a .NET Framework application73
Figure 3-10: Ranges of the timer monitoring facilities...77
Figure 3-11: RPC types...82

xxii

Figure 3-12: Overview of processing for each RPC type .. 83
Figure 3-13: Comparison of a normal RPC and a chained RPC.. 85
Figure 3-14: Overview of domain-based management .. 87
Figure 3-15: System configuration when using the global search facility............................... 92
Figure 3-16: Normal RPC flow.. 95
Figure 3-17: RPC flow when the service information prioritizing function is used 97
Figure 3-18: RPC flow when the server UAP has shut down.. 99
Figure 3-19: RPC flow when the server UAP is sustaining a heavy workload 100
Figure 3-20: RPC flow when a global search relay node is specified as the priority selection

node .. 102
Figure 3-21: RPC flow when no global search relay node is specified as the priority selection

node .. 104
Figure 3-22: Example of using the startup notification facility at system switchover........... 107
Figure 3-23: Monitoring other nodes by using the node monitoring facility......................... 109
Figure 3-24: Overview of communication using the XATMI interface..................................115
Figure 3-25: Overview of TxRPC communication ...118
Figure 3-26: Overview of sending and receiving a message by using MCF 121
Figure 3-27: Segments in a logical message .. 121
Figure 3-28: Relationship between application program structure and application name..... 122
Figure 3-29: Message processing and MHP application type.. 123
Figure 3-30: Overview of send-only messages .. 124
Figure 3-31: Determination of application name ... 126
Figure 3-32: Overview of ERREVT2 report for a COPNEVT error 132
Figure 3-33: Causes of MCF starting a UAP ... 134
Figure 3-34: Message exchange using the input and output queues 135
Figure 3-35: Overview of how a UAP receives messages ... 137
Figure 3-36: Overview of how a UAP sends messages ... 139
Figure 3-37: Message sending unified by the dc_mcf_execap() function 141
Figure 3-38: Order of sending MCF messages to logical terminals 144
Figure 3-39: Sending order based on sending priority combined with FIFO 145
Figure 3-40: Scheduling of service requests for SPP... 147
Figure 3-41: Shutdown of scheduling of service requests to a service group........................ 148
Figure 3-42: Shutting down scheduling and storing service requests in the schedule queue 151
Figure 3-43: Maximum number of server processes that can be executed concurrently for a

specific service ... 153
Figure 3-44: Maximum number of requests for a specific service that can be placed in the

schedule queue.. 154
Figure 3-45: Maximum size of the message-storing buffer pool for a specific service that can be

placed in the schedule queue .. 156
Figure 3-46: Scheduling messages for an MHP... 157
Figure 3-47: Shutting down scheduling by specifying an MCF application name................ 159
Figure 3-48: Overview of Multiserver facility based on resident and non-resident

processes... 164
Figure 3-49: Overview of scheduling priority ... 166

xxiii

Figure 3-50: Overview of Internode Load-Balancing facility ..168
Figure 3-51: Scheduling service requests to LEVEL0 nodes ...173
Figure 3-52: Overview of multi-scheduler facility ...176
Figure 3-53: Sharing a buffer area ..178
Figure 3-54: Communication between TP1/Client/W or TP1/Client/P and OpenTP1...........184
Figure 3-55: Communication between TP1/Client/J and OpenTP1185
Figure 3-56: Communication from a server UAP of OpenTP1 to a CUP of TP1/Client/W or

TP1/Client/P..186
Figure 3-57: TP1/Client communications using MCF message exchange and the TCP/IP

protocol..188
Figure 3-58: Client/server communications mode when OSI TP is used...............................189
Figure 3-59: Application program communication mode (when OpenTP1 is the client and

XDM/DF/TP is the server)..192
Figure 3-60: Application program communication mode (when XDM/DF/TP is the client and

OpenTP1 is the server)..193
Figure 3-61: Overview of a communication event processing SPP194
Figure 3-62: Remote API facility ...197
Figure 3-63: Remote procedure call to a UAP inside a firewall...200
Figure 3-64: Example of a UAP (SPP) that uses dynamic loading of service functions........206
Figure 3-65: Example of a UAP (MHP) that uses dynamic loading of service functions......207
Figure 3-66: Example of a UAP (SPP) that uses dynamic loading of service functions........208
Figure 3-67: Example of a UAP (MHP) that uses dynamic loading of service functions and a

stub ..209
Figure 3-68: Priorities determining sequence in which resources are used............................213
Figure 3-69: Example of a deadlock...214
Figure 3-70: Acquisition of a user journal..215
Figure 3-71: Obtaining a message log ..218
Figure 3-72: Reception of a message log report ...220
Figure 3-73: Overview of resource manager control..221
Figure 3-74: Start of OpenTP1 and the definitions to be referenced......................................222
Figure 3-75: Overview of the facilities for MCF system statistics...223
Figure 3-76: Overview of the real-time statistics service ...225
Figure 3-77: Concept of using scenario templates for a system operation.............................227
Figure 3-78: Audit logging and main categories of information acquired229
Figure 4-1: Possible locations of an OpenTP1 file system...235
Figure 4-2: Selection of files to create the OpenTP1 file system ...238
Figure 4-3: Separating the OpenTP1 file system into OpenTP1 files and user files on character

special files..242
Figure 4-4: OpenTP1 file system backup and restore...243
Figure 4-5: Swapping of status files ...248
Figure 4-6: Permitting and prohibiting operation with only one physical file251
Figure 4-7: Filegroup configuration using the parallel access facility

(jnl_max_file_dispersion=3) ...252
Figure 4-8: Overview of the parallel access facility (jnl_max_file_dispersion=3)253

xxiv

Figure 4-9: Swapping system journal filegroups ... 258
Figure 4-10: Most recent checkpoint dump generation overwrites earlier checkpoint-dump

generation ... 261
Figure 4-11: Guaranteed-valid generations and system journal files..................................... 263
Figure 4-12: Swapping archive journal files .. 272
Figure 4-13: Queue groups and message queue files ... 274
Figure 4-14: DAM file configuration... 277
Figure 4-15: Extending the block length maintaining the original block configuration........ 281
Figure 4-16: Extending the block length without maintaining the original block

configuration... 282
Figure 4-17: Overview of a cache block chain .. 284
Figure 4-18: TAM tables and TAM files.. 294
Figure 4-19: TAM tables that use large and small hash areas.. 297
Figure 4-20: Example of a deadlock .. 300
Figure 4-21: IST service configuration .. 302
Figure 4-22: Example of effective use of the IST service.. 304
Figure 4-23: How IST records are updated.. 305
Figure 5-1: OpenTP1 environment setup... 313
Figure 5-2: Environment setup for the message exchange facility .. 314
Figure 5-3: Environment setup for the message queuing facility .. 314
Figure 5-4: Transactions recovered in a complete recovery .. 323
Figure 5-5: User server status at complete recovery after the OpenTP1 system stops during

termination processing.. 324
Figure 6-1: Overview of the System Switchover facility... 352
Figure 6-2: Configuration when using the System Switchover facility 354
Figure 6-3: Operation in which a standby system performs only the postprocessing of a running

system after a system switchover ... 359
Figure 6-4: Software configuration of OpenTP1 that uses the Multinode facility 363
Figure 6-5: OpenTP1 configurations in a cluster system or parallel-processing system....... 365
Figure 6-6: Overview of Global Archive Journal facility .. 368
Figure 6-7: Relation between the global archive journal service and resource groups 370
Figure 6-8: A MultiOpenTP1 configuration .. 372
Figure 6-9: OpenTP1 instances and IP addresses (host names) in a one-to-one system

switch.. 375
Figure 6-10: OpenTP1 instances and IP addresses (host names) for a double-system

switch.. 376
Figure 7-1: How RPCs use ports.. 389
Figure D-1: Overview of processing a remote procedure call to the local node.................... 439
Figure D-2: Overview of processing a remote procedure call to remote nodes..................... 441
Figure D-3: Overview of global search processing.. 445
Figure D-4: Overview of service information registration processing 449
Figure D-5: Overview of service information deletion processing.. 450
Figure D-6: Overview of node-to-node forwarding processing... 452

xxv

Figure D-7: Overview of remote procedure call processing using the dcsvgdef definition
command ...454

xxvi

List of tables

Table 3-1: List of TP1/Client/J or Client .NET functions supported by the XA resource
service... 75

Table 3-2: Types of timer monitoring and applicable operand .. 78
Table 3-3: XA library subroutines.. 79
Table 3-4: Comparison of node monitoring using the node monitoring facility and the

namalivechk command..111
Table 3-5: List of MCF events ... 129
Table 3-6: Termination modes and processing of messages in input and output queues....... 143
Table 3-7: Message type and sending priority ... 144
Table 3-8: MCF capabilities that are not supported in Windows... 146
Table 3-9: Shutting down scheduling of service requests to MCF-applications.................... 158
Table 3-10: Shutting down scheduling of service requests to MHP services 159
Table 3-11: Shutdown of MHP service group.. 160
Table 3-12: Conditions that determine the load level .. 169
Table 3-13: Operations of the internode load-balancing facility used with other facilities ... 172
Table 3-14: Numbersof remaining service requests and load levels 174
Table 3-15: Values specified in user service definition.. 179
Table 3-16: Flow of process control... 179
Table 3-17: UAPs that can be RAP-processing clients .. 197
Table 3-18: Criteria for relinking UAP objects .. 210
Table 3-19: Lock modes ..211
Table 3-20: Possibility of sharing resources depending on combination of lock modes 212
Table 3-21: Definition of audited events.. 230
Table 4-1: List of OpenTP1 files.. 234
Table 4-2: Differences between the OpenTP1 file system and the OS file system................ 236
Table 4-3: Regular files used in OpenTP1 ... 238
Table 4-4: Example of OpenTP1 file system protection (by owner and access authority) 244
Table 4-5: Synchronization point journals ... 254
Table 4-6: Recovery journals ... 255
Table 4-7: Statistical journals ... 255
Table 4-8: Differences between when one-system operation is available and when

unavailable.. 265
Table 4-9: Special features of DAM files... 277
Table 4-10: Special features of TAM tables and files .. 294
Table 4-11: Processing when a UAP specifies a key value for TAM table access 296
Table 4-12: Loading opportunities and unloading methods for TAM files............................ 298
Table 5-1: Routine operations in an OpenTP1 system... 317
Table 5-2: Operations that modify an OpenTP1 system .. 318
Table 5-3: Other operations in an OpenTP1 system .. 320
Table 5-4: Items monitored by OpenTP1... 330

xxvii

Table 5-5: System definitions related to performance verification trace334
Table 5-6: Relationship between the value specified in the xar_prf_trace_level operand and

acquired XAR performance verification trace information335
Table 5-7: Relationship between the jnl_prf_event_trace_level operand value and the trace

information that is collected..338
Table 5-8: Relationship between the lck_prf_trace_level operand value and the LCK

performance verification trace information that is collected340
Table 5-9: System definitions related to the MCF performance verification trace.................341
Table 5-10: Types of transaction requests and request codes ...342
Table 5-11: Relationship between the trn_prf_event_trace_condition operand value and the

TRN event trace information that is collected ..344
Table 5-12: Relationship between the value specified in the nam_prf_trace_level operand and

acquired NAM event trace information ..346
Table 6-1: Commands for terminating a running OpenTP1 system360
Table 6-2: Commands for terminating a standby OpenTP1 system361
Table 7-1: System service processes...378
Table 7-2: System definition operands that enable you to specify a receive port number388
Table 7-3: Formulas for calculating the number of ports that OpenTP1 uses390
Table 7-4: Information obtainable using the command to check the execution status of

temporary closing..393
Table A-1: Systems that can be connected to OpenTP1 products that correspond to various

communication protocols ..399
Table B-1: OpenTP1 library functions..401
Table B-2: OpenTP1 commands...409
Table C-1: Additions and deletions to functions, definitions, and commands in TP1/Server Base

07-03..421
Table C-2: Additions and deletions to functions, definitions, and commands in TP1/Message

Control 07-03 and TP1/NET/Library 07-04..422
Table C-3: Operational changes in TP1/Server Base 07-03 ...423
Table C-4: Operational changes in TP1/Message Control 07-03 and TP1/NET/Library

07-04..424
Table C-5: Changes to defaults in TP1/Server Base 07-03...424
Table C-6: Additions and deletions to functions, definitions, and commands in TP1/Server Base

07-02..424
Table C-7: Additions and deletions to functions, definitions, and commands in TP1/Message

Control 07-02 and TP1/NET/Library 07-03..426
Table C-8: Operational changes in TP1/Server Base 07-02 ...428
Table C-9: Operational changes in TP1/Message Control 07-02 and TP1/NET/Library

07-03..429
Table C-10: Changes to defaults in TP1/Server Base 07-02...430
Table C-11: Additions and deletions to functions, definitions, and commands in TP1/Server

Base 07-01...430
Table C-12: Additions and deletions to functions, definitions, and commands in TP1/Message

Control 07-01 and TP1/NET/Library 07-01..431

xxviii

Table C-13: Operational changes in TP1/Server Base 07-01... 432
Table C-14: Operational changes in TP1/Message Control 07-01 and TP1/NET/Library

07-01... 433
Table C-15: Additions and deletions to functions, definitions, and commands in TP1/Server

Base 07-00 .. 433
Table C-16: Additions and deletions to functions, definitions, and commands in TP1/Message

Control 07-00 and TP1/NET/Library 07-00... 435
Table C-17: Operational changes in TP1/Server Base 07-00... 435
Table C-18: Operational changes in TP1/Message Control 07-00 and TP1/NET/Library

07-00... 436
Table C-19: Changes to defaults in TP1/Message Control 07-00 and TP1/NET/Library

07-00... 437

1

Chapter

1. Introduction

Chapter 1 provides a general overview of OpenTP1 and transaction processing in
OpenTP1 systems.

This chapter contains the following sections:

1.1 Overview of OpenTP1
1.2 Examples of configurations possible with OpenTP1 systems
1.3 OpenTP1 software products
1.4 OpenTP1 system services

1. Introduction

2

1.1 Overview of OpenTP1

OpenTP1 provides online transaction processing# in a distributed processing
environment.

OpenTP1 supports open systems. It complies with the X/Open Distributed Transaction
Processing model for distributed processing. OpenTP1 systems can communicate with
other open systems.

Organizations can use OpenTP1 to develop and manage online transaction processing
systems. These systems can work in OpenTP1 client/server configurations, and can
communicate with non-OpenTP1 systems.

During online transaction processing, OpenTP1 can prevent, detect, and recover from
errors and failures to a degree that was previously possible on closed mainframe
systems or restricted database management systems only.

Figure 1-1 shows the features of OpenTP1.

Figure 1-1: Features of OpenTP1

#

In data communications, the processing must be divided into individual steps and
the validity of the result clearly determined. Each step at which the result is
judged true or false is known as a transaction.

1. Introduction

3

1.1.1 Distributed computing environment for transaction
processing

In the past, online transaction processing was often controlled by a large-scale
computer that coordinated and performed the processing (Figure 1-2). For example,
most bank systems used mainframes to provide centralized facilities for the organizing
and processing of transactions.

Figure 1-2: Conventional online transaction processing in a centralized system
using a large-scale computer

In contrast to the centralized configuration shown above, OpenTP1 provides online
transaction processing in a distributed environment. Figure 1-3 shows a possible
OpenTP1 configuration.

1. Introduction

4

Figure 1-3: Online transaction processing in a distributed environment using
OpenTP1

1.1.2 Flexible system configuration
To enable online transaction processing in a distributed computing environment, the
OpenTP1 system configuration, including user application programs (UAPs), is based
on the client/server model. This allows software resources such as programs and
databases to be structured independently of the hardware configuration. Also, if the
hardware configuration needs to be expanded to handle increased work loads, there is
almost no effect on software resources.

Figure 1-4 illustrates the flexible system configuration.

1. Introduction

5

Figure 1-4: Flexible system configuration

1.1.3 Achieving a large-scale system linked to a backbone system
An OpenTP1-based system can be connected to a backbone system such as VOS3.
This allows the OpenTP1 distributed computing environment to be integrated with
management of the backbone system's large-capacity database and with network
management.

OpenTP1 therefore supports the construction of a large-scale system, encompassing
the backbone system right down to individual workstations.

Figure 1-5 illustrates a large-scale system incorporating a backbone system.

1. Introduction

6

Figure 1-5: Large-scale system incorporating a backbone system

1.1.4 Support for moving to open systems
OpenTP1 complies with the DTP (Distributed Transaction Processing) model
specified by the standard-setting organization X/Open. This means that you can write
applications to the software interfaces supported by X/Open, and you can use such
applications with any software that supports these open standards.

1. Introduction

7

As an example, if a programmer develops a program using the transaction-processing
functions specified by X/Open, the program can execute in an OpenTP1 system or any
other system that supports the X/Open standards.

1.1.5 Unrestricted
In those cases where online transaction processing was not managed by specialized
mainframe systems, the transaction processing was usually managed by a relational
database manager. Unlike OpenTP1, however, a relational database manager usually
manages only those transactions that affect databases controlled by the database
manager. OpenTP1 manages transactions that might affect a variety of databases or
resources: it is unrestricted in its scope and transaction-processing services.

OpenTP1 is a TP (transaction processing) monitor. In the computing industry, the term
TP monitor has started to be used for software that provides full transaction-processing
services: that is, software that can manage transactions in a wide variety of systems and
is not restricted to managing updates of any single type of database. Unlike the
restricted transaction processing services provided by a relational database manager,
OpenTP1 provides a full suite of services to support online transaction processing. For
example, OpenTP1 provides the means to recover not only from application failures
but also from entire system failures. When linked with a relational database
management system (RDBMS) OpenTP1 provides a high-speed and high volume data
processing server.

OpenTP1 also provides program-development facilities including C, C++, and
COBOL support, scheduling facilities, hot-standby systems, and load-balancing
facilities.

When coding user application programs (UAPs), you can use C, C++, and COBOL,
whichever is convenient for your engineering environment. When coding in C, you
can use either the ANSI C, which predates ANSI, or K&R (B. Kernighan and D.
Ritchie) format. When coding in COBOL, you can use either COBOL/2 or COBOL85.

You can use the data manipulation language (DML) you usually use with the host
computer; so, in OpenTP1 systems you can use a familiar UAP development
environment.

1. Introduction

8

1.2 Examples of configurations possible with OpenTP1 systems

An OpenTP1 system can work in a variety of computing configurations. This
subsection gives examples of three such configurations:

• a LAN using client/server processing

• an OpenTP1 system connected to a non-OpenTP1 system controlled by a
large-scale computer

• a front-end processor

1.2.1 OpenTP1 in a LAN that uses client/server processing
OpenTP1 can be used in LANs in which distributed applications are constructed using
the client/server model. In such a system a server application can be coded so that it
can provide a service to clients located on other workstations. Client application code
contains special OpenTP1 functions that indicate the start and end of a transaction, and
OpenTP1 manages such a transaction even if parts of the transaction are processed on
different machines in the system.

When such a system needs to be expanded to handle increased work loads, the required
hardware can be added while continuing to use the online transaction processing
system and without complicated reorganizations of software resources. In this way you
can flexibly construct systems that are appropriate for the required work situation.

Such LAN systems also enable collaboration between servers, and enable full use of
advanced GUI applications.

Figure 1-6 illustrates an OpenTP1 online transaction processing system in a LAN.
Note that the diagram contains the word node. In this manual, a node is a computer
(machine) on which OpenTP1 operates and which is connected to a network.

1. Introduction

9

Figure 1-6: OpenTP1 online transaction processing using the client/server
model in a LAN

1.2.2 OpenTP1 in front-end processors
OpenTP1 can also be installed on a FEP (front-end processor) connected to a
large-scale computer. A FEP acts as an intermediary between the large-scale computer
and terminals.

Using OpenTP1 on the FEP provides both communication and failure-recovery
benefits. OpenTP1 supports multiple communication protocols, so OpenTP1 enables
the FEP to handle multi-protocol and multi-line connections over a WAN. Also the
error-recovery features of OpenTP1 improve reliability. For example, OpenTP1 can
take over transaction processing in case of a failure in the host computer.

Figure 1-7 shows an example of how an FEP is configured.

1. Introduction

10

Figure 1-7: Example of an front-end processor (FEP)

1.2.3 OpenTP1 connected to a non-OpenTP1 system
OpenTP1 enables transaction processing even in distributed systems where some of
the required data or applications are contained in a non-OpenTP1 system, such as a
large-scale computer. For example, an organization might have a mainframe connected
via a WAN to LANs at work sites and branch offices (Figure 1-8). In this configuration,
a workstation or PC can use messages to exchange data with the host computer. A
message can send data to the large-scale computer for processing, and the results can
be returned by another message. This process can be managed as a transaction

1. Introduction

11

controlled by OpenTP1.

Figure 1-8 shows an example of how a distributed system can be configured.

Figure 1-8: OpenTP1 online transaction processing in a system using a
large-scale host computer

1. Introduction

12

1.3 OpenTP1 software products

This section gives an overview of the various OpenTP1 software products.

Figure 1-9 illustrates how the OpenTP1 software products listed in the previous
section interact.

Figure 1-9: OpenTP1 software products

1.3.1 List of OpenTP1 software products
The OpenTP1 software system is made up of a number of software components or
software products. OpenTP1 administrators and programmers should have a general

1. Introduction

13

understanding of which products are performing which functions in an OpenTP1
system. A system administrator needs such knowledge when deciding which OpenTP1
components should be installed in a node. A programmer needs such knowledge when
deciding what program products must be present in order for his or her program to
work.

The following subsections list and briefly describe the OpenTP1 software products.

(1) Basic components
The following software products provide the basic features of OpenTP1:

TP1/Server Base

Performs fundamental control of distributed transaction processing. This product
provides facilities for controlling transactions and scheduling UAPs

(2) User data management
The following products provide user data management:

TP1/FS/Direct Access

Enables OpenTP1-dedicated user files to be accessed by the direct access method
(DAM): such direct-organization files are called DAM files. The TP1/FS/Direct
Access product manages file status so that DAM file updates can be made part of
an OpenTP1 transaction.

TP1/FS/Table Access

Enables OpenTP1-dedicated user files to be accessed by the table access method
(TAM): such files are loaded into memory in table format and are called TAM
files. OpenTP1 TAM files enable fast access. The TP1/FS/Table Access product
manages table status so that the in-memory information is recoverable and TAM
file updates can be made part of an OpenTP1 transaction.

TP1/Shared Table Access

The IST service allows information from all nodes in a group to be shared among the
nodes and to be accessed from any node in the group. The information is stored in
special tables called internode shared tables (ISTs). The IST service stores internode
shared tables in shared memory, and enables UAPs to reference and update the tables
without knowing the actual physical locations of the information that makes up the
tables.

(3) Message control facilities (MCF)
The following products provide the facilities for sending and receiving messages:

TP1/Message Control

Used when an OpenTP1 system communicates with a non-OpenTP1 system. For
example, the non-OpenTP1 system might be in a non-UNIX network connected

1. Introduction

14

to the OpenTP1 system via a WAN. The TP1/Message Control product uses MCF
message queues to control the sending and receiving of messages.

TP1/NET/Library

Provides a library that contains the facilities for operations required to control
networks, for configuration management, and for scheduling.

TP1/Message Control and TP1/NET/Library make up the message-exchange
configurations.

TP1/NET/xxx
In addition to TP1/Message Control and TP1/NET/Library, a product
corresponding to the communication protocol in the non-OpenTP1 system is also
required to communicate with the non-OpenTP1 system.

(4) Message queue access (MQA)
The following product is necessary for the MQA message queuing of OpenTP1:

TP1/Message Queue

Used when transferring messages asynchronously to a UAP of OpenTP1 or a
UAP of another system (via a network). Messages can be transferred regardless
of the status of the destination UAP without waiting for the response of the
destination UAP.

(5) System switching
The following products provide the System Switchover facility, which enables the
construction of hot-standby systems. The products are usable only when the OS is HI
UX/WE2.

TP1/High Availability

Used in system configurations that provide the System Switchover facility.

TP1/NET/High Availability

Used when the message control facilities (the TP1/Message Control and TP1/
NET/Library products) are used in system configurations that contain the System
Switchover facility. The TP1/NET/High Availability product requires TP1/High
Availability and HAmonitor.

The TP1/NET/High Availability product is also used when changing connections
during message transmission with duplicated systems.

(6) Testing user application programs
The following products are used for testing user-created programs that work in an
OpenTP1 system.

TP1/Offline Tester

1. Introduction

15

Provides the Offline Tester. This Offline Tester makes it possible to test user
applications in environments in which OpenTP1 is not running.

TP1/Online Tester

Provides the Online Tester. This Online Tester makes it possible to test user
applications in OpenTP1 online environments.

TP1/Message Control/Tester

Provides the MCF Online Tester. This MCF Online Tester makes it possible to test
various OpenTP1 message-sending and message-receiving facilities. This
product is usable only when the OS is HI-UX/WE2.

(7) Products for client machines
A UAP can function as a client when the following products are installed on the same
machine as the UAP.

TP1/Client/W and TP1/Client/P

Used when a workstation or PC is used as a client machine and the machine is
used to access a server constructed in an OpenTP1 system.

TP1/Client/J

Used when you use a Java applet, a Java application, or a Java servlet to access a
server constructed in an OpenTP1 system.

For details on TP1/Client/W, TP1/Client/P, and TP1/Client/J, see 2.2.2 Using
OpenTP1 client software on workstations and PCs.

(8) Distributed application server facility
The following product provides the facilities for distributed application servers:

TP1/LiNK

Provides basic control for UAP scheduling in a distributed environment.
Compared to TP1/Server Base, TP1/LiNK is more applicable to small-scale
departments. Operations from installation to setup of TP1/LiNK can easily be
performed interactively.

(9) Cluster system or parallel-processing system
The following product is an operation aid in a cluster system or parallel-processing
system:

TP1/Multi

Aids operations when using OpenTP1 in a cluster system or parallel-processing
system environment. This product makes it possible to manage multiple nodes
from a single node.

1. Introduction

16

(10) Controlling resource managers not provided by OpenTP1
The following product is required for controlling resource managers that are not
provided by OpenTP1.

TP1/Resource Manager Monitor

Enables you to control any resource managers that are not provided by OpenTP1.
TP1/Resource Manager Monitor allows OpenTP1 to control the startup and
termination of resource managers.

(11) Related products
The following Hitachi products work with OpenTP1.

ISAM, ISAM/B (HP-UX only)

Makes it possible to use indexed sequential files that comply with the X/Open
ISAM (indexed sequential access method) model. When ISAM user files are
managed as part of transaction processing, ISAM/B is required in addition to
Hitachi ISAM.

HAmonitor

Used when improving the reliability of OpenTP1 systems. Reliability can be
improved by duplicating OpenTP1 systems and using the System Switchover
facility. For details on OpenTP1 systems using HAmonitor, see 6.1 The System
Switchover facility.

1.3.2 OpenTP1 and the X/Open DTP model
In the X/Open DTP model, transaction processing is an interaction among:

• a UAP (user application program)

• a transaction manager

• a resource manager

• a communication resource manager

• interfaces among the UAP, TM, RM, and CRM

The UAP specifies the contents of the transaction and directs a transaction manager to
start or terminate a transaction. A transaction manager manages the transaction and
coordinates the completion of a transaction across a set of resource managers. A
resource manager manages a particular shared resource. A communication resource
manager manages inter-application components. Figure 1-10 illustrates the relation
among the components of the model and their interfaces.

1. Introduction

17

Figure 1-10: The X/Open DTP model

(1) Configuration of DTP models
The DTP models are composed of the following elements.

AP (Application Program)

An application program created by the system user using a high-level language.
This application program is known as a UAP of OpenTP1.

Transaction Manager

Manages system transactions and supports consistency according to the update
information of resources.

RM (Resource Manager)

Manages system resources such as user data.

CRM (Communication Resource Manager)

Manages resources concerning the communication between the systems.

(2) Interface between elements
Each element that composes a DTP model can be linked with the following interfaces.

TX interface

Instructs the start and end of a transaction from AP to Transaction Manager.

XATMI and TxRPC interfaces

1. Introduction

18

Instruct the communication from AP to CRM.

XA interface

Synchronizes according to the update information of resources with Transaction
Manager and RM.

XA+ interface

Extends the transaction managed by Transaction Manager to other system
processing when communicating with other system using CRM.

Interface provided by RM

Instructs update of resources from AP to RM. The API to RM contains an SQL.

(3) Resource managers provided by OpenTP1
The following shows RMs that can be used in OpenTP1.

• RMs that manage user resources such as files

An RM that conforms to TP1/FS/Direct Access, TP1/FS/Table Access, ISAM
(ISAM/B), and X/Open

• RMs that manage communications by using messages

• TP1/Message Control, TP1/NET/Library, and TP1/Message Queue.

Figure 1-11 shows the relationship between the X/Open DTP model and the OpenTP1
system.

1. Introduction

19

Figure 1-11: Relationship between the X/Open DTP model and the OpenTP1
system

1. Introduction

20

1.4 OpenTP1 system services

1.4.1 Types of OpenTP1 services
Various service functions can be used in an OpenTP1 system to build an online
transaction processing system based on the client/server model. A service is a program
unit that can be called from another process; the process that provides the service is
called a server.

OpenTP1 services are known as system services. The server that provides job
processing as a service, based on a UAP created by the user, is known as a user server.

1.4.2 OpenTP1 system services
The system services provided by OpenTP1 are described below. The three letters in
parentheses are the service identifier.

(1) General system services provided by the OpenTP1 system
Transaction service (trn)

Starts and terminates transaction processing, and manages the processing for
updating resources based on reaching a synchronization point in a transaction.

Name service (nam)

Manages the correspondences between LAN network addresses and user servers
in order to provide inter-UAP communications (remote procedure calls).

Schedule service (scd)

Manages the scheduling for remote procedure calls and for message control
facilities.

Process service (prc)

Manages processes within a node.

Status service (sts)

Mainly stores history information unrelated to transactions into dedicated files,
and manages the information.

Interval service (itv)

Manages the monitoring of internal processing times for each system service
listed here.

Journal service (jnl)

Stores history information (journal) related to transaction processing in system
journal files and checkpoint dump files, and manages the information.

1. Introduction

21

Checkpoint dump service (cpd)

Sets and manages checkpoints in the system journal file to reduce the time for
reading journals.

Lock service (lck)

Manages various locks in accordance with the transaction processing.

Log service (log)

Manages the message log that an OpenTP1 system uses to inform an operator of
internal information.

Time service (tim)

Provides various time-monitoring facilities such as monitoring whether a
transaction is taking too much time.

(2) System services that manage user data
DAM service (dam)

Manages OpenTP1-dedicated user files (DAM access) that are used in application
processing.

TAM service (tam)

Manages OpenTP1-dedicated user files (TAM access) that are used in application
processing.

IST service (ist)

Manages the internode shared tables in memory shared by multiple OpenTP1 systems.

(3) System services related to Message Control facility
MCF service (MCF manager service, MCF communication service, application startup
service)

Provides various message-control facilities for communicating with
non-OpenTP1 systems.

MCF message queue service (que)

Manages the wait queues (input and output queues) that store messages when
using the message control facilities.

Mapping service (map)

Aid for using, in OpenTP1, the Extended Presentation facility for GUIs.

These services require TP1/Message Control, which is the resource manager for
message control.

1. Introduction

22

(4) System services related to Message Queuing facility
MQA service (mqa)

Manages MQA message queuing when transferring messages between UAPs
asynchronously. This service requires TP1/Message Queue, which is the resource
manager for controlling MQA message queuing.

(5) System service that manages resource managers
Resource manager monitor service (rmm)

Controls the start and termination of resource managers via OpenTP1.

(6) System service that manages the processes used by the OpenTP1 client
facility (TP1/Client)

Client service (clt)

Manages the processes that are required for TP1/Server Base when starting a
transaction from an application program (CUP) of TP1/Client.

(7) System service that manages the online tester (TP1/Online Tester)
Tester service (uto)

Manages the execution environment of the online tester.

(8) System service that provides help
Transaction journal service (tjl)

Stores history information (journal) of transaction processing as a dedicated
journal (the transaction recovery journal), and manages the information and
journal. A user might decide to obtain such history information for transactions
that take a long time in order, for example, to reduce recovery time.

Real-time statistics service (rts)

Manages real-time statistics that are required to check the operating status of the
OpenTP1 system in real time.

(9) System service that manages archive journal files in a multinode environment
Global archive journal service (jnl)

Archives and manages the system journal files for each OpenTP1 node in a cluster
system or parallel-processing system.

(10) System service that controls indexed sequential files that comply with the X/
Open ISAM standard

ISAM service (ism)

Manages indexed sequential user files (ISAM) that comply with X/Open ISAM

1. Introduction

23

standards and are used in application processing.

1.4.3 OpenTP1 system definitions
The OpenTP1 operating environment and the resources used by OpenTP1 are
specified in system definitions. The OpenTP1 system definitions are categorized as
follows:

• System service definitions

Defines items relating to the basic facilities of OpenTP1 (TP1/Server Base), file
services, the multi-node facility, and the message queuing facility.

• Network communication definitions

Required when using the message exchange facility (TP1/Message Control).

• Message queue definitions

Required when using the message queuing facility (TP1/Message Queue).

To create these definitions, prepare a file using a text editor. For details about the
system definitions, see the manual OpenTP1 System Definition.

Figure1-12 shows how the OpenTP1 system definitions are organized.

1. Introduction

24

Figure 1-12: Organization of OpenTP1 system definitions

1. Introduction

25

27

Chapter

2. Application Processing Modes

This chapter describes the modes of application processing that can be performed in
OpenTP1, related products, and the types of user application programs used in an
OpenTP1 system.

2.1 Overview of OpenTP1 communications
2.2 Processing in a client/server configuration
2.3 Processing in an MCF message-exchange configuration
2.4 Processing in an MQA message-queuing configuration
2.5 Other Hitachi software products usable with OpenTP1
2.6 User application programs in OpenTP1 systems
2.7 Processing in an Internet-based configuration

2. Application Processing Modes

28

2.1 Overview of OpenTP1 communications

This section gives an overview of the three major types of OpenTP1 computer
configurations:

• client/server configurations that use remote procedure calls for communication

• MCF message-exchange configurations

• MQA message-queuing configurations

Overview of client/server configurations and remote procedure calls

In a client/server configuration, a client application makes a request to a server
application to perform some processing, and the server returns the results of the
processing to the client. In OpenTP1 systems, a client/server configuration is
usually in a LAN in which the UAPs (user application programs) use the TCP/IP
protocol to communicate via remote procedure calls

Overview of MCF message-exchange configurations

An MCF message-exchange configuration enables messages to be exchanged
between OpenTP1 and non-OpenTP1 systems using communication protocols
other than (or including) the TCP/IP communications protocol. For example, a
non-OpenTP1 system might be a network controlled by a large-scale host
computer, and the communications protocol is the protocol used in that network.
A UNIX workstation could use the OpenTP1 message facilities to send data to be
processed on the large-scale host computer, and the host can use messages to send
processed data back to the workstation. OpenTP1 provides compatibility with a
number of communications protocols.

Overview of MQA message-queuing configurations

In communication that uses MQA message queuing, messages can be exchanged
between systems that have queue managers. OpenTP1 uses the TCP/IP protocol
to support the communication using MQA message queuing. OpenTP1, XDM,
and MQSeries all use queue managers. For further details, see 2.4 Processing in
an MQA message-queuing configuration.

2. Application Processing Modes

29

2.2 Processing in a client/server configuration

This section describes communication in a client/server configuration. In this type of
configuration, the protocol used for communicating with another UAP process is
transparent to the UAP.

2.2.1 Communication via remote procedure calls
The UAPs in an OpenTP1 system can communicate with other UAPs using remote
procedure calls (RPCs). A UAP process uses an RPC to request a service from another
UAP process, and the UAP process that received the request uses an RPC to return the
processing result to the requesting UAP.

Figure 2-1 shows how processing is performed in a client/server configuration.

2. Application Processing Modes

30

Figure 2-1: Overview of communication in a client/server configuration

#1

TP1/Client is a client-specific product that requests services from an OpenTP1
server.

For details about TP1/Client, see 2.2.2 Using OpenTP1 client software on
workstations and PCs and 3.5 OpenTP1 client facility (TP1/Client).

#2

With the OpenTP1 interface, RPCs can be used to communicate with a server
UAP behind a firewall. However, when requests cross a firewall, the server UAP
cannot be included in the transaction processing. For details about
communicating with a UAP behind a firewall, see 3.7.1 Example of using the
remote API facility.

2. Application Processing Modes

31

(1) Client UAP and server UAP
The UAPs that request and provide services, respectively, are in a client/server
relationship. The UAP on the requesting side is referred to as a client UAP and the
UAP on the service-providing side is referred to as a server UAP.

For details about UAPs, see 2.6 User application programs in OpenTP1 systems.

(2) Transactional RPCs
OpenTP1 also provides programmers with functions that cause OpenTP1 to treat an
RPC as a transaction. For example, coding dc_trn_begin() before
dc_rpc_call() will cause OpenTP1 to handle the processing following the
dc_rpc_call() call as a transaction. In such a case dc_rpc_call() is said to be a
transactional RPC. The transaction extends over the period from when a service is
requested to when the results are returned. OpenTP1 can handle transactional RPCs
that cause processing over multiple nodes.

(3) Remote procedure calls supported by OpenTP1
The following describes the OpenTP1 interface provided for client/server
communications.

(a) OpenTP1 interface
The OpenTP1 interface is a communication method that enables services to be
requested using OpenTP1 library functions.

(b) Compatibility with the X/Open interface
In addition to the native OpenTP1 functions, OpenTP1 also supports remote procedure
calls and functions compatible with the X/Open interface. Programmers can thus code
OpenTP1 client/server applications by writing applications using the standard X/Open
interface. Communication is possible via the XATMI and TxRPC interfaces.

For details about client/server communications, see 3.2 Processing in an OpenTP1
client/server configuration.

(4) Client/server configuration communication protocols
For the client/server configuration communication protocol of OpenTP1, TCP/IP can
be used. You need not to be aware of the communication protocol in UAP processing.

(5) TCP_NODELAY
TOpenTP1 provides functionality that guarantees no-delay data transmission even
during a wait for a response to data already sent.# This functionality can be enabled by
using the TCP_NODELAY option for the socket (INET domain) that OpenTP1 uses for
inter-node communication.

You can specify whether to use the TCP_NODELAY option for data transmission by
using the ipc_tcpnodelay operand in the schedule service definition, the user

2. Application Processing Modes

32

service definition, or the user service default definition. Note that if this option is used,
the efficiency of sending data in INET domain communication may be degraded and
the network load may increase. Before using the option, carefully consider whether the
option is necessary by taking into account the ipc_sendbuf_size operand, the
ipc_recvbuf_size operand, the network bandwidth, and other factors.

#

This functionality is implemented by disabling the Nagle algorithm in TCP/IP.

2.2.2 Using OpenTP1 client software on workstations and PCs
The following OpenTP1 program product enables UAPs on workstations or PCs to act
as clients and request services from OpenTP1 server systems:

TP1/Client

Enables UAPs on PCs or workstations to request and receive services from
OpenTP1 server UAPs. The UAP of TP1/Client/W and TP1/Client/P are called
CUP.

TP1/Client UAPs (CUPs) can communicate with OpenTP1 server UAPs (SPPs). TP1/
Client actually contains four products:

• TP1/Client/W for workstations

• TP1/Client/P for PCs

• TP1/Client/J for Java-operating environments

• These products enable a system manager to select client hardware and the OS (a
workstation or PC) according to the expected performance, number of
connections, and the OS required for the client.

Figure 2-2 provides an overview of the communication processing that can be
performed with the OpenTP1 client facility.

2. Application Processing Modes

33

Figure 2-2: Overview of communication based on TP1/Client

For details about TP1/Client, see 3.5 OpenTP1 client facility (TP1/Client).

2. Application Processing Modes

34

2.3 Processing in an MCF message-exchange configuration

This section gives a general description of MCF message exchange. MCF message
exchange refers to sending and receiving messages by using some communications
protocol. MCF message exchange is convenient for communicating between OpenTP1
systems and non-OpenTP1 systems.

2.3.1 Overview of MCF message exchange
In MCF message exchange, MCF message queues are used to store messages. In an
OpenTP1 system when an MCF message is received from another system, MCF
temporarily stores the received message in an input queue. MCF then activates a UAP,
called a message-handling program, to process the message. The message-handling
program receives the message (with the dc_mcf_receive() function) and processes
it. After the message is processed, the message-handling program uses the reply
function (dc_mcf_reply()) and MCF temporarily stores the reply message in the
output queue. When the message-handling program terminates normally (e.g., a C
program executes return), MCF sends the messages stored in the output queue to the
other system.

Figure 2-3 gives an overview of the processing in sending and receiving MCF
messages. The large arrow indicates the data flow of messages. The black arrow
indicates how execution of return in a C program causes MCF to send the MCF
message from the output queue to the other system.

2. Application Processing Modes

35

Figure 2-3: Overview of MCF message-exchange processing

2.3.2 Networks that can use MCF message exchange
MCF message exchange is mainly used in a WAN (wide-area network) for
communications between a system that contains OpenTP1 and a system that lacks
OpenTP1. For example, the non-OpenTP1 system might be controlled by a large-scale
host computer. Communications with non-OpenTP1 systems require compatibility
with the communication protocol used in that system. OpenTP1 provides such
compatibility via particular OpenTP1 products: each product provides compatibility
with a different protocol.

Communication via MCF messages rather than RPCs is also possible even in a LAN
environment because the product TP1/NET/TCP/IP is available for the TCP/IP
protocol.

2.3.3 MCF message-exchange configuration using the Extended
Presentation facility

The MCF message-exchange configuration enables communication using the
Extended Presentation facility. Using this facility, operations such as printing forms
and displaying screens on a workstation or PC can be performed by UAP processes in
an OpenTP1 system.

The Extended Presentation facility uses TP1/NET/XMAP3 for communications. As a

2. Application Processing Modes

36

mandatory requirement, the other machine communicating with the OpenTP1 system
node must have the program product XP/W (if a workstation) or XP/P (if a PC) to
provide the required GUI-based presentation functionality. There is no need to create
a special program for the workstation or PC to serve as the client UAP that requests
services in the OpenTP1 system.

Figure 2-4 illustrates the use of the Extended Presentation facility in an MCF
message-exchange configuration.

Figure 2-4: An MCF message-exchange configuration that uses the Extended
Presentation facility

The main features of the Extended Presentation facility are described below.

(1) Screen data operations using message exchange
With the Extended Presentation facility, TP1/NET/XMAP3 links with XMAP2/W to
perform mapping between physical and logical maps.

When you create a UAP, you do not need to be aware of the screen mapping. Nor do
you need to create any special messages to display the data. You can create a
message-exchange UAP in the same manner as when handling logical messages in
ordinary message exchange.

2. Application Processing Modes

37

(2) Data operations in a top-class GUI environment
With XP/W or XP/P, you can perform GUI-based operations that make the most of
your workstation or PC's excellent presentation functionality. A variety of data
operations can be performed from the GUI-based interface.

(3) System configuration matched to the specific processing configuration
XP/W and XP/P both use a client/server system. This means that you can build a
system conforming to the optimal configuration for application processing between
the OpenTP1 system and the workstations or PCs.

For details on TP1/NET/XMAP3 see the manual OpenTP1 Protocol TP1/NET/
XMAP3. For details on the products XP/W, XP/P, and XMAP2/W, see the manual XP/
W and the Extended Mapping Service 2/Workstation XMAP2/W DESCRIPTION/
USER'S GUIDE.

2. Application Processing Modes

38

2.4 Processing in an MQA message-queuing configuration

Queue manager

The queue manager manages MQA message queuing. For message queuing, the
queue manager manages communication between applications. The user does not
have to worry about matching the communication procedures of UAPs.

The queue manager is required for communication using the MQA message queuing.
In the OpenTP1 system, TP1/Message Queue is required as the queue manager. For
details of OpenTP1 MQA message queuing, see the OpenTP1 TP1/Message Queue
User's Guide.

Figure 2-5 shows an example of an OpenTP1 system configuration using MQA
message queuing.

Figure 2-5: Example of an OpenTP1 system configuration using MQA message
queuing

2.4.1 Features of MQA message queuing
When MQA message queuing is used, UAPs exchange messages via a queue manager.
To put a message, set the destination in the message and catalog it to the queue
manager. Then, the queue manager transfers the message to the queue manager of the
recipient side. The user of the recipient side can get the message from the queue
manager of the recipient side whenever the user decides.

Synchronization with the remote UAP is unnecessary when putting or getting
messages. With the MQA message queuing, messages can be used like e-mail because
the UAP can handle messages at any time.

2. Application Processing Modes

39

Access from UAP to a queue uses MQI (Message Queue Interface). All the queue
managers use MQI, so a program the user coded can be used in the system of another
queue manager.

The queue that stores the MQA messages from UAPs is an MQA message queue. An
MQA message queue can contain several queues arranged according to the purpose of
the queue manager. For types of queues, see the OpenTP1 TP1/Message Queue User's
Guide.

Figure 2-6 shows the overview of MQA message queuing.

Figure 2-6: Overview of MQA message queuing

2.4.2 Overview of communication using MQA message queuing
This section gives an overview of communication using MQA message queuing.

(1) Putting messages
A local UAP uses MQPUT to send an MQA message to the queue file in the local
system. When MQPUT terminates normally, the message is placed in the local queue
file, and the UAP performs its next process. The local queue manager containing the
queue file then sends the MQA message to the queue manager in a remote system. The
MQA message is placed in the remote queue file for processing by a remote UAP. If
you want to communicate interactively, you can define MQPUT to wait for the
response from the remote UAP.

2. Application Processing Modes

40

(2) Getting messages
Use MQGET to get MQA messages. The timing for receiving MQA messages depends
upon whether the message-getting UAP is operating, as described below:

• A local UAP when operating can receive messages from the queue manager by
executing MQGET.

• A local UAP that is not operating cannot directly receive messages. The arrival of
a message, however, will activate the trigger facility in the queue manager. The
Trigger facility then sends notification, called a trigger event, to the trigger
monitor application. The trigger monitor application receives the information and
decides when to activate the UAP. The user should make sure that the trigger
monitor application is active whenever OpenTP1 is active. The user can specify
the timing of the activation in the trigger monitor application program.

(3) Transaction processing
OpenTP1 can perform MQA message queuing as a transaction. After the UAP updates
data, sends the MQA message to the queue manager, and the transaction is committed,
the MQA message is placed in the queue file. If the transaction is rolled back, the MQA
message in the queue file can be invalidated. For details of transaction, see 3.1
Transaction Control.

2.4.3 Notes on use of the MQA message queuing
MQA message queuing enables a UAP to get messages at any time, even though the
UAP is not always active. Interactive communication is also available with the MQA
message queuing, but the performance may be lower than using RPC.

2. Application Processing Modes

41

2.5 Other Hitachi software products usable with OpenTP1

The following software products can be used with OpenTP1 to provide further system
development or system management facilities:

• Job Management Partner 1 Integrated System Operation Management Facility

• SEWB3 Software Engineering Workbench

Using these software products with OpenTP1 allows Job Management Partner 1 to
efficiently perform batch job operation, network management, and software
distribution in addition to distributed transaction processing by OpenTP1.

2.5.1 Job Management Partner 1 Integrated System Operation
Management Facilities

The Job Management Partner 1 Integrated System Management Facility
comprehensively supports automatic operations and power-saving for the entire
system and optimizes Enterprise TCO (Total Cost of Ownership) in a network
computing environment. Figure 2-7 shows the OpenTP1 system configuration using
Job Management Partner 1.

2. Application Processing Modes

42

Figure 2-7: OpenTP1 system configuration using Job Management Partner 1

Job management

By using Job Management Partner 1 in the OpenTP1 system, batch processing,
usually performed by a mainframe computer, can be performed on a UNIX
system. Dividing OpenTP1 jobs into online jobs and batch jobs enables more
effective use of the system. In addition, by registering OpenTP1 events such as

2. Application Processing Modes

43

the start and termination of OpenTP1 in JP1 event service functionality (JP1/
System Event Service or JP1/Base), the OpenTP1 system can be automatically
run while linked with JP1 job management functionality (JP1/Automatic
Operation Monitor or JP1/Automatic Job Management System 2).

Distribution and resource management

By using JP1/NETM/DM, programs can be distributed online in a batch.

Network management

JP1/Cm2 manages and operates a large, complicated network. By using JP1/Cm2
in the OpenTP1 system, the system can monitor the entire network system from
a mainframe computer to a server configured using OpenTP1. In addition, by
specifying the log service definition of OpenTP1, JP1/Cm2 enables outputting
OpenTP1 terminal output messages to a JP1/Cm2 operation support terminal.

System operations using scenario templates

JP1/AJS2 - Scenario Operation is a product for managing execution of JP1/AJS2 jobs
and jobnets.

JP1/AJS2 - Scenario Operation lets you create a scenario template, which defines a set
of operations, and modify it after system reconfiguration to adapt it to the new system
configuration. By using JP1/AJS2 - Scenario Operation, you can execute scenarios
appropriate for the operating environment. JP1/AJS2 - Scenario Operation also lets
you create and execute a scenario by combining predefined scenario templates
provided by OpenTP1. You can use scenario templates to automate system operations.

JP1/AJS2 - Scenario Operation consists of the following components:

• JP1/AJS2 - Scenario Operation Manager

With this component, you can define and save scenario templates, and can
manage the execution of scenario templates. You can also register the saved
scenario templates as JP1/AJS2 jobnets by connecting to JP1/AJS2 - Manager.

• JP1/AJS2 - Scenario Operation View

With this component, you can operate or monitor JP1/AJS2 - Scenario Operation
via a graphical user interface (GUI).

For details on applying scenario templates to system operations by using JP1/AJS2 -
Scenario Operation, see 3.10 System operations using scenario templates or the
manual OpenTP1 Operation.

For details on using the JP1 product for a specific system operation facility, see the
applicable JP1 product documentation.

2.5.2 SEWB3 Software Engineering Workbench
The SEWB3 Software Engineering Workbench is a Hitachi system development

2. Application Processing Modes

44

support tool that aids programming on workstations. SEWB3 has the following
features.

• Integrates and manages information required for program development

• Enables the efficient development of programs by using graphics to express
design specifications and program logical structures.

By using SEWB3 in the OpenTP1 system, UAPs and user exit routines can be
developed efficiently. In addition, you can use the fourth generation language SEWB3/
4GL as well as C, C++, and COBOL85.

For details about the products related to SEWB3, see the manual SEWB3 General
Information.

2. Application Processing Modes

45

2.6 User application programs in OpenTP1 systems

This section describes UAPs (user application programs) used in OpenTP1 systems.

2.6.1 User application programs and types of processing
OpenTP1 uses the following types of UAPs:

(1) UAPs for client
• Service-using program (SUP)

Requests services from service-providing programs. SUPs are used exclusively as
client UAPs and cannot provide any services to another UAP. SUPs are used in
the TP1/Server Base product.

• Client user program (CUP)

A UAP exclusively used by clients when they use the OpenTP1 client software
(TP1/Client/W or TP1/Client/P).

(2) UAPs for server
• Message-handling program (MHP)

Used in a message-exchange configuration. An MHP works with MCF and
receives and processes a message sent from a non-OpenTP1 system.

(3) UAP for offline work
• UAP that handles offline work

Uses an OpenTP1 function while offline (e.g., initialize a user file for use as a
DAM file). This type of UAP performs user-determined processing.

(4) UAP used by the OpenTP1 client facility (TP1/Client)
• Client user program (CUP)

A client-specific UAP that uses the OpenTP1 client facility (TP1/Client/W or
TP1/Client/P).

With TP1/Client/J, you can create Java applets, Java applications, and Java
servlets that request SPP services.

2.6.2 Overview of user application programs
The following sections provide overviews of the following types of UAPs:

• service-using programs

• service-providing programs

2. Application Processing Modes

46

• message-handling programs

• UAPs that handle offline work

For more details of UAPs used in OpenTP1 systems, see the OpenTP1 Programming
Guide.

(1) SUP: service-using program
A SUP is an OpenTP1 client UAP that starts the application processing in client/server
communications. A SUP can control the start and finish of a transaction, and request a
service from a server UAP. A SUP is used as a client only and cannot also function as
a server UAP to provide a service to another UAP.

A SUP can be started at a user-determined time: at the same time as OpenTP1 starts,
or online with the OpenTP1 command dcsvstart. In a user service configuration
definition, you can specify whether a SUP is to start at the same time as OpenTP1.

OpenTP1 does not control the termination of a SUP so the programmer must code the
SUP so that it terminates at the end of application processing.

(2) SPP: service-providing program
An SPP provides a service as a user server in client/server communications. An SPP
processes requests for a service: the requests are sent by client programs such as a SUP
or CUP. An SPP can also start a transaction or send messages.

An SPP can be started at a user-determined time: either started online with the
OpenTP1 command dcsvstart, or started at the same time that OpenTP1 starts. In
the latter case, when OpenTP1 starts, the SPP is made ready to receive requests. In a
user service configuration definition, you can specify whether an SPP is to start at the
same time as OpenTP1.

SPPs can be created for each work process, and provide required processing as
services. Required services can be added as a system expands. This makes such
services easy to maintain and easy to expand.

An SPP can request a service from another SPP, so processing can be nested. Figure
2-8 illustrates such a situation and the relation between SUPs and SPPs.

2. Application Processing Modes

47

Figure 2-8: SUPs and SPPs in OpenTP1 systems

(a) SPP structure
When writing an SPP in C, C++, or COBOL, the programmer codes SPP services as
functions. An individual function is called a service function in C or a service program
in COBOL. The function that organizes the component functions is called the main
function in C or the main program in COBOL.

(b) Compilation and linkage
To create an SPP executable file, the SPP source program is compiled and linked. At
linkage, the stubs that define the entry point for each service function are linked. A stub
is a code module that provides an interface for RPCs between a client and server.

A stub is unnecessary when service functions are created in a UAP shared library# and
loaded dynamically. For details about dynamic loading, see 3.8 Dynamic loading of
service functions.

2. Application Processing Modes

48

#

This involves compiling the UAP source files and linking the created UAP object
files into a shared library.

The two figures below show the SPP structure when a stub is used and when dynamic
loading of service functions is used. Figure 2-9 shows the structure of an SPP (when
using a stub). Figure 2-10 shows the structure of an SPP (when using dynamic loading
of service functions). For details about creating a UAP, see the OpenTP1 Programming
Guide.

2. Application Processing Modes

49

Figure 2-9: SPP structure (when using a stub)

2. Application Processing Modes

50

Figure 2-10: SPP structure (when using dynamic loading of service functions)

(c) Relationship between SPPs and RPCs
In a user service definition, you can specify an SPP executable file as a service-group
name, and specify each service function as a service name. Such service names
correspond to entry points specified in RPC interface definitions. When writing code
for a client UAP to request a service, the programmer must specify the SPP service
group name and service name in the RPC function parameters.

2. Application Processing Modes

51

(3) MHP: message-handling program
An MHP is used in message-exchange configurations and is used exclusively for
processing messages. An MHP receives messages from other systems and processes
the messages. An MHP can use the various MCF services that, for example, enable the
sending or receiving of messages. A node on which an MHP runs requires TP1/
Message Control. An MHP can also request a service from an SPP.

An MHP starts application processing when a message is received. In the user service
configuration definition, you can specify whether an MHP is to start at the same time
as OpenTP1. If an MHP starts when OpenTP1 starts, messages can be received from
the start of online processing. If an MHP does not start when OpenTP1 starts, the MHP
can be started at a user-determined time using the OpenTP1 command dcsvstart.

Figure 2-11 shows how MHP functions in an OpenTP1 system.

Figure 2-11: MHP in an OpenTP1 system

(a) MHP structure
The unit or part of a UAP that processes a message during message-exchange
processing is called an MCF application. The programmer codes the processing of an
MHP that corresponds to an MCF application as a function. An individual function is
called a service function in C or a service program in COBOL. The function that
organizes the created service functions is called the main function in C or the main
program in COBOL.

2. Application Processing Modes

52

(b) Compilation and linkage
To create an MHP executable file, the MHP source program is compiled and linked.
At linkage, the stubs that define the entry point for each service function are linked. A
stub is created after creating the RPC interface definition and then executing the
stbmake command.

Note that stubs are not needed if you create all service functions as a shared UAP
library# and then perform dynamic loading of service functions. For details about
dynamic loading of service functions, see 3.8 Dynamic loading of service functions.

#

A shared UAP library is a shared library that contains UAPs created by compiling
the UAPs' source files and then linking the resulting UAP object files.

The two figures below show the MHP structure when a stub is used and when dynamic
loading of service functions is performed. For details on writing MHPs, see the
OpenTP1 Programming Guide.

2. Application Processing Modes

53

Figure 2-12: MHP structure (when using a stub)

2. Application Processing Modes

54

Figure 2-13: MHP structure (when performing dynamic loading of service
functions)

(4) Relationship between an MHP service name and an application
In a user service definition, you can specify an MHP executable file as a service-group
name, and specify each service function as a service name. Such service names
correspond to entry points specified in RPC interface definitions. The service-group
name and service name are specified in the RPC function parameters.

2. Application Processing Modes

55

A service name specified in a user service definition corresponds to an application
name in an MCF application definition. OpenTP1 uses this application name as the
basis for processing.

(a) Types of MHP applications
MHP services (applications) can be classified according to the kind of message
processing, which is specified in the application attribute part of the MCF application
definition. The kinds of MHPs are:

ans

An MHP that returns an answer (reply) to the other system.

noans

An MHP that does not return an answer (reply) to the other system.

cont

An MHP that continues sending or receiving messages with the other system.

(5) UAP that handles offline work
Programmers can write a UAP that can access a DAM file offline. In a UAP that
handles offline work, the programmer must ensure that the DAM file is initialized for
use as a DAM file before OpenTP1 starts. A UAP that handles offline work can use
the OpenTP1 facilities for initializing DAM files but cannot use the OpenTP1 facilities
for RPCs or message-processing.

A user controls the starting and terminating of a UAP that handles offline work, and
starts the UAP from the UNIX prompt.

2.6.3 Cooperation of user processes with SPPs and MHPs
To share and thereby reduce processing loads, OpenTP1 can distribute the processing
of a service group across multiple processors. This feature is called the Multiserver
facility and is described in more detail in 3.4.3 Process control and the Multiserver
facility. The Multiserver facility equalizes loads on various processors by passing a
service request to any waiting process that can process the same service group.

In OpenTP1, you can define the maximum number of processes that can be executed
for each service group.

2.6.4 UAP testing and debugging facilities
Before using a created UAP in an OpenTP1 system, you can test whether the UAP
processing works. OpenTP1 provides an Offline Tester, Online Tester, and MCF
Online Tester. For details, see the OpenTP1 Tester and UAP Trace User's Guide.

(1) Offline Tester
The Offline Tester is used for offline testing of UAPs that will be used for online

2. Application Processing Modes

56

processing. The Offline Tester is used before a UAP is used in an OpenTP1 system.

The Offline Tester can test the behavior of an SPP or MHP. Workstations on which the
Offline Tester is executed require the product TP1/Offline Tester.

(2) Online Tester
The Online Tester works with OpenTP1 to test UAPs in an online environment. Before
using the UAP in actual processing, you can test its behavior with OpenTP1 services.
The Online Tester can test the behavior of an SUP or SPP. You can also test an MHP
as an SPP. Workstations on which the Online Tester is executed require the product
TP1/Online Tester.

(3) MCF Online Tester
The MCF Online Tester works with TP1/Message Control to test MHPs in an online
environment. As with the Online Tester, the behavior of MHPs can be tested while
using OpenTP1 services online.

Workstations on which the MCF Online Tester is executed require the product TP1/
Message Control/Tester.

2. Application Processing Modes

57

2.7 Processing in an Internet-based configuration

TP1/Web converts Internet-based information exchange between a browser and a Web
server into OpenTP1 remote procedure calls, and executes UAPs on an OpenTP1
server. Using this functionality, you can build a processing system that uses a Web
browser as a terminal.

When linked with OpenTP1, TP1/Web can be used in the following types of
processing systems:

• Online marketing and shopping

• Internet-based travel or event booking system, or hotel room booking system

• Corporate online systems that can be accessed via the Internet from domestic or
overseas company sites or from another location during a business trip

TP1/Web can be used not only when connected to the Internet but also via an enterprise
LAN. Figure 2-14 shows a system configuration using TP1/Web.

Figure 2-14: Configuration with TP1/Web

59

Chapter

3. Functions

This chapter describes the service functions provided by OpenTP1.

3.1 Transaction Control
3.2 Processing in an OpenTP1 client/server configuration
3.3 Message Control
3.4 Scheduling
3.5 OpenTP1 client facility (TP1/Client)
3.6 Client/server communications using OSI TP
3.7 Remote API facility
3.8 Dynamic loading of service functions
3.9 Additional Features
3.10 System operations using scenario templates
3.11 System monitoring using audit logs

3. Functions

60

3.1 Transaction Control

The application processing programs used in a distributed computer environment need
to be highly reliable. OpenTP1 delivers a variety of transaction control functions for
such programs. Using these functions when running OpenTP1 reduces the overhead of
dealing with the problems peculiar to a distributed system.

3.1.1 Distributed transactions
In OpenTP1 systems a transaction is a logical unit of work in which a group of related
task steps is handled as a single unit. When the transaction is successful, a commit
operation is performed so that all the steps that make up a transaction have their
desired effects. When the transaction is not successful, a rollback operation is
performed so that none of the steps that make up a transaction have an effect. By such
operations OpenTP1 ensures that at the end of a transaction the resources are in a
consistent state: either all the steps in a transaction have the desired effects, or none of
the steps in a transaction have an effect.

Previous online transaction processing systems were either controlled by a single
large-scale computer (in which case the consistency of a transaction could be
guaranteed only within that one computer) or by a specialized DBMS (in which case
only specialized database operations could be treated as transactions). OpenTP1,
however, provides general online transaction processing in which parts of a transaction
are processed at different locations and on different machines. This type of transaction
processing is called distributed transaction processing.

In online distributed transaction processing, OpenTP1 manages distributed resources
so that they are maintained in a consistent state. Transactions can be executed
concurrently without adversely affecting each other: for example, OpenTP1 ensures
that more than one transaction never updates the same resource at the same time.

OpenTP1 maintains the consistency of resources even when some mechanical or
communication failure prevents immediate updating of resources. By automatically
collecting information relating to transactions and the resources, OpenTP1 can ensure
that failure recovery is possible even in the face of significant mechanical or
communication failure.

Figure 3-1 shows a distributed transaction.

3. Functions

61

Figure 3-1: A distributed transaction

3. Functions

62

3.1.2 RPCs, transaction branches, and global transactions
A UAP process for processing a transaction is called a transaction branch. You can use
an RPC to process a transaction that consists of multiple UAP processes. A set of
transaction branches that consists of multiple UAP processes is called a global
transaction. The process that starts the transaction is called the root transaction
branch. Figure 3-2 shows an example of a global transaction.

Figure 3-2: A global transaction and transaction branches

3.1.3 Commit and rollback operations
A transaction ends with success (with a commit operation performed on the
transaction) or failure (with a rollback operation performed on the transaction). The
decision of whether a transaction is to end in success or failure (i.e., whether to perform
a commit or rollback operation) is called a transaction determination. OpenTP1
performs a transaction determination at a synchronization point. This point is at the
boundary of two transactions: at the end of one and at the beginning of the next.
Resources are updated at a synchronization point.

In a commit operation on a transaction, the transaction ends successfully with affected
resources updated consistently. During the commit operation, the affected resources
for all the transaction branches in a global transaction are updated.

In a rollback operation on a transaction, the transaction ends in failure with those
resources that should have been updated by the transaction returned to the same status
as at the beginning of the transaction. If a UAP detects data inconsistency or a failure

3. Functions

63

before a synchronization point, rollback functions (e.g., dc_trn_unchained_
rollback() or dc_trn_chained_rollback()) can be issued to rollback the
transaction and preserve the integrity of the data.

OpenTP1 can log the reason why the transaction rolled back. The operand
trn_rollback_information_put in the transaction service definition allows you
to specify whether or not to log the causes of transaction rollback.

OpenTP1 monitors the times for each transaction branch. If a transaction branch does
not end in the allotted time, OpenTP1 rolls back the transaction. For details of time
monitoring, see the manual OpenTP1 System Definition.

Figure 3-3 shows a rollback operation (indicated by the gray line) on a transaction.

Figure 3-3: Rollback operation on a transaction

3.1.4 Two-phase commit
(1) Two-phase commit

When multiple resources are to be updated, at a synchronization point OpenTP1

3. Functions

64

determines whether or not to update the resources in a procedure called a two-phase
commit. The two-phase commit separates a commit operation into two phases:

• prepare processing

• commit processing

The prepare processing is preparing to update resources. The commit processing is
actually updating the resources. Separating the commit operation into two phases
enables multiple resources to be updated without contradiction.

As illustrated in Figure 3-4, in the first phase, at a synchronization point the root
transaction branch requests all the transaction branches in the global transaction to
prepare for a commit operation. Each transaction branch then notifies the root
transaction branch whether it completed preparation for the commit operation or
whether it performed a rollback operation.

In the second phase, at the synchronization point OpenTP1 performs a transaction
determination to decide whether a commit operation or a rollback operation should be
executed on the global transaction:

• If all the transaction branches completed their preparations for the commit
operation, the root transaction branch orders a commit operation on the entire
global transaction.

• If one or more transaction branches performed rollback operations during the first
phase, the root transaction branch orders a rollback operation on the entire global
transaction.

All the transaction branches in the global transaction follow the decision of the root
transaction branch.

If a system failure occurs after the transaction determination, the history information
for the transaction during phase 2 processing is collected into a system journal: the TJ
transaction journal.

Figure 3-4 shows the processing for a two-phase commit operation.

3. Functions

65

Figure 3-4: Processing in a two-phase commit

(2) Heuristic decisions
If a communication error occurs after the root transaction branch instructs the
transaction branches to prepare for a commit operation, the root transaction branch's
decision of whether to perform a commit or rollback operation might not be sent to the
transaction branches. This is called a heuristic hazard.

If a heuristic hazard occurs, the OpenTP1 administrator can use a command (e.g.,
trncmt, trnrbk, or trnfgt) to forcibly apply the results of a transaction
determination to each transaction branch. In a heuristic decision, the results of a
transaction determination are applied to an individual transaction branch regardless of

3. Functions

66

the decision of the root transaction branch. In a heuristic commit operation the commit
operation is executed for an individual transaction branch. In a heuristic rollback
operation the rollback operation is executed for an individual transaction branch.

The OpenTP1 administrator must avoid conflicts between the transaction
determination of the root transaction branch and the individual determinations at each
transaction branch. To avoid such conflict the user should:

• use the status display command trnls to check whether the transaction
determination at the root transaction branch resulted in a decision to perform a
commit operation or a rollback operation

• force the transaction branch to perform the same operation (either commit or
rollback) that was performed at the root transaction branch.

The user is responsible for any forced determination of a transaction caused by a
command such as trncmt, trnrbk, or trnfgt. If a user uses a command to perform
a forced determination at a transaction branch, OpenTP1 does not assure the
consistency of resources. A conflict between the transaction determination of the root
transaction branch and the action at a transaction branch is called a heuristic mix. Users
must take care to avoid causing heuristic mixes when using a command to perform a
forced determination. Figure 3-5 shows the processing for a heuristic decision.

3. Functions

67

Figure 3-5: Processing in a heuristic decision

3.1.5 Transactions and UAPs
In the user service definition, a program developer should specify the UAPs to be

3. Functions

68

included in a global transaction. Note that the user service definition must be specified
such that MHPs are included in global transactions. A UAP defined to be included in
a global transaction is called a UAP that has the transaction attribute.

(1) Transactions and SUPs and SPPs
For SUPs and SPPs, a function (e.g., dc_trn_begin()) declares the start of a
transaction. Another function (e.g., dc_trn_chained_commit() or
dc_trn_chained_rollback()) sets a synchronization point. Whenever a function
that sets a synchronization point is issued, OpenTP1 performs a transaction
determination for the global transaction of the SUP or SPP. Only an SUP or SPP that
has the root transaction branch can issue a function to perform a transaction
determination.

Only an SUP or SPP with the transaction attribute can issue a function that starts a
transaction or sets a synchronization point. You can reduce the overhead required for
transaction processing by using the user server definition to specify that the UAPs that
access resources are included in a global transaction and that no other UAPs are
included in the global transaction. To access resources, an SUP or SPP must be defined
in the user service definition as being included in a global transaction.

Figure 3-6 shows a global transaction for an SUP or SPP.

3. Functions

69

Figure 3-6: Global transaction for a SUP or SPP

(2) Transactions and MHPs
When an MHP service is called, transaction processing starts. An MHP cannot issue a
function (e.g., dc_trn_begin()) that starts a transaction. In cases where the MHP
requests a service from an SPP, the MHP becomes the root transaction branch. Also,
the SPP from which a service is requested cannot start a transaction.

Figure 3-7 shows a global transaction for an MHP.

3. Functions

70

Figure 3-7: Global transaction for an MHP

3.1.6 Transaction control based on the TX interface
OpenTP1 supports transaction control functions (TX functions) that conform to the
DTP model defined in X/Open. For details about using these functions, see the
OpenTP1 Programming Guide.

3.1.7 Transaction control based on the XA resource service
The XA resource service coordinates transactions between OpenTP1 and the
following resource, using a two-phase commit:

• An application server running on the J2EE platform

• A .NET Framework application (application running on .NET Framework)

The functionality that links OpenTP1 with a .NET Framework application is known as

3. Functions

71

MSDTC linkage. MSDTC linkage enables transactions to be linked between an
OpenTP1 resource and an MSDTC resource. To use MSDTC linkage, Y must be
specified in the xar_msdtc_use operand in the XA resource service definition.

This section provides an outline of transaction control based on the XA resource
service. For details about operation, see the description of the XA resource service in
the manual OpenTP1 Operation. For details about trace information related to the XA
resource service, see 5.3.6(5) XAR performance verification trace and 5.3.6(9) XAR
event trace.

In this manual, where there is no functional difference between an application server
running on J2EE and a .NET Framework application, the term application server
linked by the XA resource service is used.

(1) Overview of the XA resource service
The main purpose of the XA resource service is to manage the status of transaction
identifiers (XIDs) passed by an application server linked by the XA resource service,
and to map them with OpenTP1's XIDs. When MSDTC linkage is used, the XA
resource service also manages transaction recovery information (RI). RI is information
created by MSDTC during transaction determination so that the transaction can be
recovered if an error occurs in the processing. The transaction status is recorded in the
OpenTP1 file system as required.

Note:

The XA in XA resource service has a different meaning from the XA of the XA
linkage function used by OpenTP1 to instruct the DBMS to perform a transaction
determination.

(a) Linkage with a J2EE application server
An application server that runs on J2EE controls transactions via the uCosminexus
TP1 Connector or Cosminexus TP1 Connector, which complies with J2EE Connector
Architecture. OpenTP1 receives transaction requests from the J2EE application server
on a RAP-processing server, and processes transactions using the XA resource service.

Figure 3-8 shows the flow of transaction control when OpenTP1 is linked with an
application server that runs on J2EE.

3. Functions

72

Figure 3-8: Transaction control when linked with a J2EE application server

(b) Linkage with a .NET Framework application
A .NET Framework application uses MSDTC to control transactions, and sends
instructions to OpenTP1 via Connector .NET. OpenTP1 receives transaction requests
from the .NET Framework application on the RAP-processing server, and processes
transactions using the XA resource service

Figure 3-9 shows the flow of transaction control when OpenTP1 is linked with a .NET
Framework application.

3. Functions

73

Figure 3-9: Transaction control when linked with a .NET Framework
application

(2) XA resource interface and J2EE Connector Architecture
Control of OpenTP1 transactions from a J2EE application server conforms to J2EE
Connector Architecture. J2EE Connector Architecture is the standard specifications
for connecting an application server and a resource adapter.

By conforming to J2EE Connector Architecture, the application server can control the
OpenTP1 transactions in the same manner it handles a DBMS and other resource
adapters. OpenTP1 can function as a standard resource adapter on different types of
application servers.

There are two transaction control interfaces conforming to J2EE Connector
Architecture:

• XA resource interface

3. Functions

74

• Local transaction interface

For details about each interface, see the J2EE Connector Architecture documentation.

The XA resource service is used to accept transaction control using the XA resource
interface on OpenTP1.

(3) Prerequisite facilities for using the XA resource service
To use the XA resource service, you must use the remote API facility and the following
products:

When linking with a J2EE application server

• TP1/Client/J

• uCosminexus TP1 Connector or Cosminexus TP1 Connector

When linking with a .NET Framework application

• Client .NET

• Connector .NET

When linking with a .NET Framework application, we recommend that you specify
00000001 in the value attribute of the <extendLevel> element in the TP1/Client
for .NET Framework configuration definition. By specifying 00000001, the IP
address of the node requesting the transaction will be shown in message
KFCA32045-E, which appears when transaction determination fails because the XAR
file has insufficient record length.

(a) Remote API facility
The remote API facility is the process by which an API issued by the client side is
forwarded by OpenTP1 to the server, and server processes are used to execute the API
instead of the client. The server that executes API calls for the client is called the
RAP-processing server.

The XA resource service runs on the RAP-processing server that uses the remote API
facility. The RAP-processing server manages all transaction requests from an
application server linked by the XA resource service. Therefore, to use the XA
resource service, the RAP-processing server must be started beforehand. If the
RAP-processing server is not running, all transaction requests from the application
server linked by the XA resource service will result in an error.

OpenTP1 sets up a logical communication path called a permanent connection
between the UAP that requests remote API calls and the RAP-processing server. There
are two scheduling methods for the permanent connection: static connection schedule
mode and dynamic connection schedule mode. The XA resource service can use either
mode.

For details about the remote API facility, see 3.7 Remote API facility.

3. Functions

75

(b) TP1/Client/J or Client .NET
TP1/Client/J is a software product that acts as the intermediary when a transaction
request is transferred from a J2EE application server to OpenTP1.

Client .NET is a software product that acts as the intermediary when a transaction
request is transferred from a .NET Framework application to OpenTP1.

The XA resource service requires the remote API facility. For this reason, service
requests by RPCs from TP1/Client/J or Client .NET must be implemented using the
remote API facility. Also note that the available connect mode is limited to the auto
connect mode when the remote API facility is used.

TP1/Client/J and Client .NET use four types of remote procedure service calls:
Synchronous response, non-response, chained, and not inheriting transactions. The
XA resource service can use any of the four.

In a normal RPC, multiple host names can be specified as OpenTP1 nodes receiving
the transaction request. When using the XA resource service, however, only one
OpenTP1 host name can be specified to receive the transaction request from the
application server linked by the XA resource service.

Table 3-1 lists the TP1/Client/J or Client .NET functions that can be used with the XA
resource service.

Table 3-1: List of TP1/Client/J or Client .NET functions supported by the XA
resource service

TP1/Client/J or Client .NET function Existing option Availability

RPC service request method Remote API facility Yes

Scheduler direct facility No

Name service facility No

Connect mode Auto connect mode Yes

Non-auto connect mode No

RPC service call type Synchronous response Yes

Non-response Yes

Chained Yes

Not inheriting transactions Yes

Specification of OpenTP1 host name as the
receiver (specified in the dchost operand)

One name only Yes

User data compression Data compression Yes

3. Functions

76

Legend:

Yes: Available

No: Not available

For details about TP1/Client/J functions, see the manual OpenTP1 TP1/Client User's
Guide TP1/Client/J.

For details about Client.NET functions, see the OpenTP1 TP1/Client for .NET
Framework User's Guide.

(c) uCosminexus TP1 Connector or Cosminexus TP1 Connector
uCosminexus TP1 Connector or Cosminexus TP1 Connector is a software product for
controlling OpenTP1 communication and transactions, acting as a resource adapter
compliant with J2EE Connector Architecture. An application server running on J2EE
can instruct OpenTP1 to perform a two-phase commit by controlling transactions to
uCosminexus TP1 Connector or Cosminexus TP1 Connector.

For precautions when linking OpenTP1 with a J2EE application server using the XA
resource service, see the uCosminexus TP1 Connector or Cosminexus TP1 Connector
documentation.

(d) Connector .NET
Connector .NET is a software product for controlling communication and transactions
from a .NET Framework environment to OpenTP1. In MSDTC linkage, Connector
.NET works as a resource manager participating in the MSDTC transaction. MSDTC
can instruct OpenTP1 to perform a two-phase commit by controlling transactions to
Connector .NET.

For precautions when linking OpenTP1 with a .NET Framework application using the
XA resource service, see the OpenTP1 TP1/Connector for .NET Framework User's
Guide.

(4) Timer monitoring facility
Various timer monitoring facilities are available for canceling transaction processing
when a request from an application server linked by the XA resource service stops, or
when processing of a user application program is held up.

Figure 3-10 describes the range of timer monitoring facilities that apply to an
application server linked by the XA resource service, an RAP-processing server, and
an SPP.

3. Functions

77

Figure 3-10: Ranges of the timer monitoring facilities

Table 3-2 lists the types of monitoring performed, and the required operand, for timer

3. Functions

78

monitoring periods t1 to t7 in the figure.

Table 3-2: Types of timer monitoring and applicable operand

Period Monitored
item

J2EE application
server#

.NET Framework
application

OpenTP1

t1 Inquiry interval TP1/Client/J
environment definition:
dccltinquiretime
operand

TP1/Client for .NET
Framework
configuration definition:
inquireTime attribute
of the <rapService>
element

RAP-processing listener
service definition:
rap_inquire_time
operand

t2 Message
exchange

TP1/Client/J
environment definition:
dcwatchtim operand

TP1/Client for .NET
Framework
configuration definition:
watchTime attribute of
the <rpc> element

RAP-processing listener
service definition, user
service default
definition, or system
common definition:
watch_time operand

t3 Transaction
branch
processing

TP1/Client/J
environment definition:
dcclttrexptm operand

TP1/Client for .NET
Framework
configuration definition:
expireTime attribute of
the <xarTransaction>
element

RAP-processing listener
service definition, user
service default
definition, or transaction
service definition:
trn_expiration_tim
e operand

t4 Transaction
branch in idle
state

-- -- XA resource service
definition:
xar_session_time
operand

t5 Completion of
transaction
branch
processing

-- -- RAP-processing listener
service definition, user
service default
definition, or transaction
service definition:
trn_completion_lim
it_time operand

t6 Transaction
branch
processing

-- -- User service definition,
user service default
definition, or transaction
service definition:
trn_expiration_tim
e operand

3. Functions

79

Legend:

--: Not applicable.

#

For details about the definition, see the manual OpenTP1 TP1/Client User's
Guide TP1/Client/J.

3.1.8 XA interface
The XA interface is a part of a DTP model defined by X/Open.

The XA interface defines how the transaction manager and resource manager
communicate with each other. UAPs do not use the XA interface directly. The
following table lists the XA library subroutines used by OpenTP1 and the resource
manager.

Table 3-3: XA library subroutines

Processing of a
service function

-- -- User service definition,
user service default
definition:
service_expiration
_time operand

t7 Completion of
transaction
branch
processing

-- -- User service definition,
user service default
definition, or transaction
service definition:
trn_completion_lim
it_time operand

No. Function name Description

1 ax_reg Registers the resource manager in the transaction manager.

2 ax_unreg Unregisters the resource manager from the transaction manager.

3 xa_close Closes the resource manager.

4 xa_commit This function notifies the resource manager that all the resource managers will be
committed after they are found to be committable (in the prepare status).

5 xa_end Notifies the resource manager that the transaction has ended.

6 xa_forget Notifies the resource manager that the information about the ended transaction
can be discarded at the discretion of the resource manager.

7 xa_open Opens the resource manager.

Period Monitored
item

J2EE application
server#

.NET Framework
application

OpenTP1

3. Functions

80

8 xa_prepare Notifies the resource manager that the transaction is being committed.

9 xa_recover Obtains a list of undetermined transactions in the resource manager.

10 xa_rollback Notifies the resource manager that the transaction is to be rolled back.

11 xa_start Notifies the resource manager that the transaction was started or restarted

No. Function name Description

3. Functions

81

3.2 Processing in an OpenTP1 client/server configuration

OpenTP1 supports three different kinds of client/server communications that:

• use OpenTP1's remote procedure calls (RPCs)

This is a communication between UAP processes that uses OpenTP1's library
functions. A UAP uses functions to issue service requests to a remote UAP.
Normal RPC communication uses service information for the server UAPs that
are managed by the name service at each node. The name service at each node
manages the nodes in the network containing the target server UAP by
exchanging service information. The optional function for service information
searches enables you to choose a service request method that is appropriate to the
communication mode in use. If OpenTP1-to-OpenTP1 communication is
disabled by a network failure, you can prevent the subsequent RPC from resulting
in an error by using node management.
For details, see the following:

• Overview of RPCs: 3.2.1 Communication via RPCs that use the OpenTP1
library

• Optional function for service information searches: 3.2.2 Optional function
for service information searches

• Node management: 3.2.3 Node management in OpenTP1
• Flow of RPC processing: D. Overview of Remote Procedure Call Processing

• use the X/Open XATMI interface

This communication method complies with the DTP model stipulated by X/Open.

• use the X/Open TxRPC interface

This communication method supports DCE RPC with a transaction facility that is
stipulated by X-Open. TxRPC communications directly call user-created
functions.

If TCP/IP is used as a communication protocol, all of the above client/server
configuration communications can be performed. If OSI TP is used as a
communication protocol, communications use the XATMI interface. To perform OSI
TP communications, you need TP1/NET/OSI-TP-Extended in your OpenTP1 system.
For details about the OSI TP communications, see .3.6 Client/server communications
using OSI TP.

3.2.1 Communication via RPCs that use the OpenTP1 library
This subsection describes client/server communications via RPCs that use OpenTP1

3. Functions

82

library functions.

(1) How RPCs are used to request a service
A service is a unit of processing called by an RPC and is the facility that a server UAP
provides to a client UAP. A server UAP can execute more than one service. The group
of services provided by one server UAP is called a service group.

When a programmer codes a client UAP so that it can make a request for a service from
a service-providing program, the programmer must specify in the RPC function
parameters (e.g., dc_rpc_call() parameters) the various RPC items required for the
service request. Among these items are the service-group name and the service name.
The programmer, however, does not need to code server network addresses into the
parameters because the OpenTP1 name service manages the service names and
network addresses of nodes containing server UAPs.

(2) Response RPCs and no-response RPCs
RPCs are categorized as either a response-type RPC or a non-response RPC, according
to whether a response is received. Figure 3-11 illustrates RPC types.

Figure 3-11: RPC types

Figure 3-12 summarizes the processing for each RPC type.

3. Functions

83

Figure 3-12: Overview of processing for each RPC type

(a) Synchronous-response RPCs
Response RPCs, which consist of synchronous-response RPCs (simple RPCs) and

3. Functions

84

asynchronous-response RPCs (no-wait RPCs)

(b) Asynchronous-response RPCs
After making a service request, an asynchronous-response RPC continues processing
without waiting for a response. A function (dc_rpc_poll_any_replies) must be
issued to receive a response. This function waits for a response, and returns an error if
the response wait time set in the function is exceeded.

Asynchronous-response RPCs are also known as no-wait RPCs.

(c) Non-response RPCs
A non-response RPC is an RPC to which no processing result is returned. No response
is received when a service request is made using a non-response RPC. The UAP that
made the request continues processing.

Further services can be requested of a server UAP after it has received one service
request (thus creating an RPC nest).

(3) Chaining RPCs
The OpenTP1 Multiserver facility can reduce the time it takes to process multiple
requests for a service. The Multiserver facility enables the same server UAP to start
multiple processes at the same time.

A possible drawback to this facility is that a process is started for each service of a
server UAP that uses the Multiserver facility; thus, when a client UAP calls the same
service group two or more times, the server UAP of that service group might not be
executed in the same process as previously. OpenTP1, however, can handle this
problem by preventing an unnecessary increase in the number of processes, and
thereby reduce the load required for processing a transaction. OpenTP1 does this by
using chained RPCs, which are a group of RPCs using the same process. Chaining is
specified in the dc_rpc_call() parameters. A programmer can use chained RPCs
so that when a synchronous-response RPC requests the services belonging to the same
service group two or more times, OpenTP1 executes the service by the same process.

Figure 3-13 compares a normal RPC with a chained RPC.

3. Functions

85

Figure 3-13: Comparison of a normal RPC and a chained RPC

The use of chained RPCs can reduce the number of user processes required for
processing one transaction and can reduce the load required for transaction processing.
When executing chained RPCs as a transaction, operate the chained RPCs in one
transaction branch. (Global transactions are described in 3.1 Transaction Control.)
Chained RPCs are guaranteed for each UAP process. Even in the same global
transaction, if the client UAPs are different, it can not be guaranteed that a service that
is called multiple times will be started in the same process.

(a) Time monitoring of chained RPCs
In a UAP from which a service is requested, OpenTP1 can monitor chained RPCs from
the time a response is returned to the client UAP, until the time the next service request
comes or until the time that transaction synchronization point processing occurs. In the
user service definition, you can specify a limit for this monitoring time. If the
monitored time exceeds the limit or if the next request for a service or for
synchronization point processing does not come, OpenTP1 assumes that an error

3. Functions

86

occurred in the client UAP and the server UAP abnormally terminates.

(4) Compressing the send data for remote procedure calls
To reduce the LAN network load, RPC can compress the send and receive data. For
compressing data, specify the following values in the system definitions.

TP1/Server Base

Specify a Y for the rpc_datacomp operand in the system common definition.

TP1/Client

Specify data compression for the client environment definition.

If the system at the client specifies the data compression, OpenTP1 of the server
automatically restores the compressed data to process regardless of the
rpc_datacomp operand specification. After that, OpenTP1 re-compresses the data
and returns a response to the client.

Even if the network load is reduced by the send data compression, the communication
time may be lengthy because of compression and decompression of data in a node.
Determine whether data compression is specified or not, according to the job types and
the communication configurations.

(5) Service request method in a large-scale distributed system
(a) Overview of the domain name system

In a network system via a WAN or an inter-department system of a company, searching
for a name or managing the system names is time-consuming work. When using
remote procedure calls in such a large-scale distributed system, the user can solve these
problems by configuring a domain name system (DNS).

In a domain name system, the user does not have to manage the entire system and can
manage it in groups as domains. Systems of departments are domains. Service names
and other names are managed within each domain individually. Therefore, the user
does not have to manage the names in the entire system. Figure 3-14 shows an
overview of domain-based management.

3. Functions

87

Figure 3-14: Overview of domain-based management

(b) Service request method
The following describes how to request a service.

Specifying a service group name and service name

Normally, to request a service, specify a service group name and service name in
the dc_rpc_call() function.

For a large-scale distributed system, you cannot use a service across domains by
specifying a service group name and service name in the dc_rpc_call()
function.

Specifying a service group name + domain name and service name

To use a service across domains in a large-scale distributed system, specify
service group name + domain name and service name in the dc_rpc_call()

3. Functions

88

function.

When the domain name is added to the service group name in this function, the
service request is passed to a domain-alternate schedule service that has access to
the requested domain. The domain-alternate schedule service allocates a request
to a server UAP among the servers of the domain.

The request is allocated to a server UAP of the specified domain and is not
allocated to a server UAP of another domain. When the domain-alternate
schedule service is used, the name service does not need to manage the network
addresses of all the nodes.

When the server UAP is a server that receives requests from the socket, you
cannot add the domain name to the service group name in the dc_rpc_call()
function. For details of the server that receives requests from the socket, see
3.4.1(1) Schedule queues for SPPs.

Specifying the destination of a service request

While the dc_rpc_call() function does not recognize a location, a user can
identify the location of a desired server for requesting a service, and then use the
service with the dc_rpc_call_to() function. The following describes how to
specify the destination to issue a service request.

• Specifying the host name

This method specifies the machine where the desired service exists by
specifying the host name that is specified in /etc/hosts for network
management. To use this method, the specification of name_port of the
system common definition must be the same for the OpenTP1 system in the
specified host and for the OpenTP1 system that issued the
dc_rpc_call_to() function.

• Specifying the node identifier

This method specifies the OpenTP1 system by specifying the node identifier
that is specified in node_id of the system common definition.

To use this method, the global domain# must contain the host name of the
OpenTP1 node to which the service is requested, with the node identifier
specified.

#

The global domain means a set of the following node names:

• When N is specified in the name_domain_file_use operand of the
system common definition

The global domain is the set of node names specified in the all_node
and all_node_ex operands in the system common definition.

3. Functions

89

• When Y is specified in the name_domain_file_use operand of the
system common definition

The global domain is the set of node names specified in the domain
definition files. The domain definition files are stored at the following
locations:

Domain definition file for all_node:

- Under the $DCCONFPATH/dcnamnd directory

Domain definition file for all_node_ex:

- Under the $DCCONFPATH/dcnamndex directory

• Specifying the host name + port number

This method specifies the service request destination by specifying:

- The host name that is specified in /etc/hosts.

- Port number of the name service that is specified in name_port of the
system common definition for the OpenTP1 system contained in the host
specified above.

The specification of the name_port operand of the system to which the
service is requested may differ from the specification of the name_port
operand for the system that issued the service request.

This facility requires TP1/Extension 1 installed. If TP1/Extension 1 is not
installed, the operation is not guaranteed.

(c) Setting up the environment of a large-scale distributed system
The nodes that make up a domain must be specified by all_node in the system
common definition.

To specify the domain-alternate schedule service, specify, in the namdomainsetup
command, the name of the host where the domain-alternate schedule service exists.
Then, specify, in /etc/services, the port number of the domain-alternate schedule
service and a service name OpenTP1scd.

When using a domain name system, more time may be needed to complete the system
startup because each node address is inquired during startup of the server system. In
this case, specify a domain name and host name beforehand in the
domain_masters_addr operand and specify a port number of the domain-alternate
schedule service to the domain_masters_port operand in the system common
definition. Specifying these operands reduces the time it takes to inquire about each
node address while starting a service.

(6) How to request a service without using a name service
The normal RPC uses the service information of the server UAP managed by the name

3. Functions

90

service of each node to perform communication. The name services of nodes exchange
service information to manage at which node of the network the target server UAP
exists. In a large-scale system connecting many nodes, the exchange of service
information by name services may tax the network.

When you have defined service information in a definition file, you can execute an
RPC without using a name service. This method does not require querying the name
service for service information to reduce the load on the network.

Define the service group name and service information (host name and port number)
in the user service network definition file. Specify whether to use the name service or
the service information in the definition file with the rpc_destination_mode
operand of the user service definition at issuance of the function dc_rpc_call().
When the function dc_rpc_call() is called from a UAP for which the user service
definition specifies using the service information in the definition file, OpenTP1
references the user service network definition file. When the server UAP information
is defined, OpenTP1 calls the server UAP by using the definition. When the server
UAP information is not defined, OpenTP1 calls the server UAP by using the name
service. Note that the server UAP in the user service network definition must be a UAP
the user service definition specifies receive_from=queue (server that receives
requests from the queue).

If you specify multiple service information items (host names) in the user service
network definition file, the service request destination is selected at random from the
specified hosts, and a service request is sent to the selected host. Once sending of a
service request is successful, the subsequent dc_rpc_call invocations made in the
UAP to the same service group continue to send service requests to the same host.

Note that a destination host is randomly selected again if the destination reselection
interval is specified in the -t option of the dcsvgdef definition command and the
following time exceeds the specified interval:

• Time since selection of the current service-request destination host used by
multiple dc_rpc_call invocations made in the UAP to the same service group

3.2.2 Optional function for service information searches
The optional function for service information searches consists of the global search
facility and the service information prioritizing function. You can use these functions
in the OpenTP1 system to issue service requests that use horizontal distribution and to
preferentially use service information for a specific node.

(1) Global search facility
Using the global search facility, you can obtain the following service information:

1. Information about services that run on the nodes specified in the all_node
operand

3. Functions

91

2. Information about services that run on the nodes specified in each of the
all_node operands managed by the name service of the nodes referred to in 1.
above.

The figure below shows an example of a system configuration using the global search
facility. Specify the name_global_lookup operand in the name service definition
for each OpenTP1 node as shown in the figure. For details about specifying this
operand, see the manual OpenTP1 System Definition.

3. Functions

92

Figure 3-15: System configuration when using the global search facility

The search range from OpenTP1-A encompasses the OpenTP1 nodes specified in the
all_node operands for OpenTP1-B and C. That is, OpenTP1-A can communicate
with services in OpenTP1 systems 2 and 3 as well as those in OpenTP1 system 1. The
nodes specified in the all_node operands for OpenTP1-D, E, F and G are not
included in the search range from OpenTP1-A.

3. Functions

93

When the global search facility is enabled, the dc_rpc_call_to function cannot be
used with the port number of the name service specified in the portno argument of
the DCRPC_BINDTBL_SET function.

To use the dc_rpc_call_to function with a node ID specified in the nid argument
of the DCRPC_BINDTBL_SET function, you must define the same node ID for all
OpenTP1 nodes in the search range of the global search facility (OpenTP1 systems 1
to 3 in Figure 3-15).

Because service information (shutdown status, load status, and so on) is not reported
to the OpenTP1 instance that requested the search (OpenTP1-A in Figure 3-15), we
recommend that service requests be handled in a parallel distribution, by ensuring that
the all_node operand for each node in the same system defines the other nodes in
that system. Thus, in the figure, OpenTP1-D and E are reciprocally defined in
OpenTP1 system 2, as are OpenTP1-F and G in OpenTP1 system 3.

When calculating the value to set in the name_cache_size operand in the name
service definition, as well as the number of service information items contained in
searches requested from the local node, you must also count the number of service
information items cached on the nodes specified in the all_node operand.

When a service request is sent from TP1/Client/P, TP1/Client/W or TP1/Client/J to an
OpenTP1 instance that uses the global search facility (OpenTP1-A in Figure 3-15),
information can be collected not only from OpenTP1 system 1 but also from OpenTP1
systems 2 and 3.

(2) Service information prioritizing function
The service information prioritizing function prioritizes the service information for a
specific node when the name service returns service information to a client UAP that
requested services. The node whose service information is returned preferentially is
called the priority selection node.

Normally, when an RPC is executed (except under special circumstances, such as
when there is a high workload) while there are multiple server UAPs that can process
a client UAP's service request, those server UAPs are all treated with the same priority.
Therefore, a service information search request is sent to the name services at all nodes
specified in the all_node operand in the system common definition and then all the
service information acquired from the responses is returned to the client UAP. The
client UAP then selects from the returned service information the server UAP that is
to be the target of the RPC, and then executes the RPC.

On the other hand, when the service information prioritizing function is used when
there are multiple server UAPs that can process a client UAP's service request, this
function returns to the client UAP the service information for the priority selection
node. The client UAP then executes the RPC on the server UAP at the priority
selection node. In the event of a failure (such as UAP shutdown) at the priority
selection node, the function returns to the client UAP the service information for a

3. Functions

94

node other than the priority selection node. The service information prioritizing
function enables you to use the server UAP at the priority selection node normally and
to use another node in the event of a failure. In this way, you can treat one server UAP
as the running system and another as the standby system.

You use the all_node operand in the system common definition to specify the
priority selection node. The method for specifying the priority selection node
definition file is the same as for the domain definition file. For details about how to
specify the priority selection node, see the manual OpenTP1 System Definition.

The following subsections describe a normal RPC flow and an RPC flow when the
service information prioritizing function is used. In the descriptions below, the term
global cache refers to an area used by the name service to manage service information
for the servers that are running at other nodes.

Normal RPC flow

The following figure shows the normal RPC flow.

3. Functions

95

Figure 3-16: Normal RPC flow

The following describes the RPC flow shown in the figure. The numbers below
correspond to the circled numbers in the figure.

1. A client UAP that is ready to execute an RPC issues a service information
search request to the name service at TP1-A.

2. The name service sends the service information search request to the name
services at TP1-B and TP1-C, which are specified in the all_node operand
in the system common definition.

3. The name services at TP1-B and TP1-C that receive the search request send
the service information for SPP-A running at the local node to the TP1-A that
issued the request.

3. Functions

96

4. The name service at TP1-A registers the received service information in the
global cache.

5. The name service returns to the client UAP all service information registered
in the global cache.

The client UAP randomly selects the target of the RPC. This example
assumes that TP1-B is selected as the target of the RPC.

6. The client UAP executes the RPC on TP1-B.

RPC flow when the service information prioritizing function is used

The following figure shows the RPC flow when the service information
prioritizing function is used. In this example, TP1-C and TP1-D have been
specified as priority selection nodes.

3. Functions

97

Figure 3-17: RPC flow when the service information prioritizing function is
used

The following describes the RPC flow shown in the figure. The numbers below
correspond to the circled numbers in the figure.

1. A client UAP that is ready to execute an RPC issues a service information
search request to the name service at TP1-A.

3. Functions

98

2. The name service sends the service information search request to the name
services at TP1-B, TP1-C, and TP1-D, which are specified in the all_node
operand in the system common definition.

3. The name services at TP1-B, TP1-C, and TP1-D that received the search
request send the service information for SPP-A running at the local node to
the TP1-A that issued the request.

4. The name service at TP1-A registers the received service information in the
global cache.

5. The name service returns to the client UAP the service information for
TP1-C and TP1-D only because they have been specified as the priority
selection nodes.

This example assumes that from the returned service information, the client
UAP selects TP1-C as the target of the RPC.

6. The client UAP executes the RPC on TP1-C.

If the server UAP has shut down at the priority selection node or the global search
facility is used, the RPC flow differs from the flow shown in the figure above where
the service information prioritizing function is used. Such cases are described in (a)
through (c) below. Note that name service processing is omitted in the descriptions in
the following subsections.

(a) RPC flow when the server UAP has shut down
The following figure shows an RPC flow when the server UAP at the priority selection
node has shut down.

3. Functions

99

Figure 3-18: RPC flow when the server UAP has shut down

TP1-C has been specified as the priority selection node for TP1-A, but the server UAP
at TP1-C has shut down. When the server UAP's shutdown status at TP1-C is sent to
TP1-A, TP1-A removes TP1-C as an RPC target candidate. Therefore, TP1-A
executes the RPC on the server UAP at TP1-B, even though it is not a priority selection
node.

Note:

While TP1-A is waiting to be notified of the server UAP's shutdown status at
TP1-C, TP1-A executes the RPC on the server UAP at TP1-C. If TP1-B is
specified in the all_node operand in the system common definition at TP1-C,
the RPC might be forwarded from TP1-C to TP1-B. If TP1-B is not specified
in the all_node operand in the system common definition at TP1-C, the RPC
returns an error.

The shutdown information is reported for each server. Therefore, if the server
UAP at TP1-C is shut down on a service-by-service basis, the shutdown
information is not sent to TP1-A. As a result, TP1-A executes the RPC on the
server UAP at TP1-C. If the target service is down, the RPC returns an error.

3. Functions

100

(b) RPC flow when there is a heavy workload at the server UAP
The following figure shows an RPC flow when the server UAP at the priority selection
node is sustaining a heavy workload.

Figure 3-19: RPC flow when the server UAP is sustaining a heavy workload

Because TP1-C is specified as the priority selection node at TP1-A, the server UAP
running at TP1-C becomes the RPC target candidate. However, the RPC is forwarded
to the server UAP at a node specified in the all_node operand of the system common
definition at TP1-C because the server UAP at TP1-C is sustaining a heavy workload.
This example forwards the RPC from TP1-C to the server UAP at TP1-B. The server
UAP at TP1-B then executes the RPC for TP1-A.

(c) RPC flow when the global search facility and the service information
prioritizing function are both used
You can use the global search facility together with the service information prioritizing
function. When both functions are used, the RPC depends on whether a global search

3. Functions

101

relay node has been specified as the priority selection node.

If a global search relay node has been specified as the priority selection node, the
priority selection node specified in the search range of the global search facility
becomes the target of the RPC. If no global search relay node is specified as the priority
selection node, the priority selection node specified at the requesting node becomes the
target of the RPC. Both these cases are described below.

RPC flow when a global search relay node is specified as the priority selection
node

The following figure shows the RPC flow when a global search relay node is
specified as the priority selection node.

3. Functions

102

Figure 3-20: RPC flow when a global search relay node is specified as the
priority selection node

Because this example uses the global search facility, TP1-A acquires via TP1-B
the service information of TP1-C, which is specified in the all_node operand of
the system common definition at TP1-B.

Because TP1-B is specified at TP1-A as the priority selection node, the service

3. Functions

103

information of TP1-C specified in the all_node operand at TP1-B is treated as
running at the priority selection node. As a result, TP1-A preferentially selects the
service information of TP1-C.

In other words, the service information (service information of TP1-C) that has
been acquired via the global search relay node (TP1-B) specified as the priority
selection node is selected because it is treated as running at the priority selection
node, regardless of the priority at the service requesting node (TP1-A).

RPC flow when no global search relay node is specified as the priority selection
node

The following figure shows the RPC flow when no global search relay node is
specified as the priority selection node.

3. Functions

104

Figure 3-21: RPC flow when no global search relay node is specified as the
priority selection node

Because this example uses the global search facility, TP1-A attempts to acquire

3. Functions

105

via TP1-B the service information of TP1-C and TP1-D, which have been
specified in the all_node operand of the system common definition at TP1-B.
TP1-B selects the service information running at TP1-D, which is a priority
selection node at TP1-B, and then returns it to TP1-A.

As a result, TP1-A selects the priority selection node TP1-E.

In other words, the priority at the service requesting node (TP1-A) takes effect.
The service information (of TP1-D) acquired via a global search relay node
(TP1-B), which is not a priority selection node, is not selected, regardless of the
priority at the global search relay node (TP1-B).

(d) Notes about using the service information prioritizing function
The following should be noted about using the service information prioritizing
function.

• If one or more priority selection nodes are specified and the target server UAP is
running at the node where an RPC is to be executed, the node where the RPC is
to be executed also becomes a priority selection node.

• The service information prioritizing function is disabled if the dc_rpc_call_to
function is executed. In such a case, the RPC is executed on the server UAP that
is running at the node specified by the host name.

• If all the server UAPs running at the priority selection nodes are shut down, those
nodes are removed as priority selection nodes. In such a case, the RPC is executed
on the server UAP running at a node that is not specified as a priority selection
node.

• If the server UAP running at the priority selection node is sustaining a heavy
workload, the RPC is forwarded to the same service group running at a
non-priority selection node. Therefore, the RPC might be executed on a server
UAP that is running at a non-priority selection node.

For details about handling heavy workloads, see 3.4.3(5) Balancing loads among
nodes.

3.2.3 Node management in OpenTP1
Multiple instances of OpenTP1 communicate with one another using RPCs
implemented through TCP/IP. TCP/IP establishes a connection between the servers,
enabling them to communicate.

If communication fails due to a network error, OpenTP1 instances cannot detect the
loss of connection. For this reason, any RPCs issued after a network error may fail. The
following describes OpenTP1 facilities for preventing RPC errors after a connection
failure.

3. Functions

106

(1) Startup notification facility
When OpenTP1 starts, startup on the local node is reported to the name service of the
OpenTP1 instances running on another node, and the connection already established
is forcibly closed. This functionality can be used at system switchover, for example.

To enable OpenTP1 startup to be notified to another node, specify Y in the
name_notify operand in the system common definition on both the sending and
receiving nodes.

OpenTP1 on both nodes must be version 05-02 or later to use this functionality.

Figure 3-22 shows an example of a system configuration when using the startup
notification facility at system switchover.

3. Functions

107

Figure 3-22: Example of using the startup notification facility at system
switchover

1. OpenTP1-B goes down due to a server failure or other error, and a system
switchover occurs. OpenTP1-A cannot detect the failure in OpenTP1-B, so the
connection remains open.

2. The systems are switched, and OpenTP1-C starts on the standby node.

3. If the startup notification facility is enabled, notification that OpenTP1-C has
started is sent to OpenTP1-A.

4. OpenTP1-A forcibly closes its connection to OpenTP1-B.

Because communication among OpenTP1-A, OpenTP1-B, and OpenTP1-C resumes
in this way from the establishment of a new connection, processing continues without

3. Functions

108

any communication errors.

If startup fails to be notified to OpenTP1-A for any reason, message KFCA00642-W
is output on OpenTP1-C. In this case, you must execute the namunavl command on
OpenTP1-A. By specifying the -l option in the namunavl command, you can find out
which nodes could not be notified that OpenTP1-C had started.

Note

The startup notification facility cannot be used when multiple instances of
OpenTP1 are running on a monitored host, or when multiple instances of
OpenTP1 run with the same IP address after a system switchover (an environment
with only one LAN board).

(2) Node monitoring facility
The node monitoring facility polls nodes at regular intervals and detects
communication failures.

Using the node monitoring facility, you can monitor the status of OpenTP1 on nodes
specified in the all_node operand and all_node_ex operand in the system
common definition. If an OpenTP1 node cannot be detected as active, this facility
deletes all cached service information relating to the node and closes the connection.

Node monitoring minimizes errors because failures are detected and failed nodes are
forcibly disconnected.

Figure 3-23 shows an example of monitoring other nodes by using the node monitoring
facility.

3. Functions

109

Figure 3-23: Monitoring other nodes by using the node monitoring facility

The node monitoring facility at OpenTP1-A periodically polls OpenTP1-B,
OpenTP1-C, and OpenTP1-D.

1. If the OpenTP1-C node goes down, the node monitoring facility detects that
OpenTP1-C cannot be reached.

2. OpenTP1-C is disconnected and message KFCA00650-I is output.

3. The failed node is registered in the RPC suppression list#. Service information
about the node is deleted from the cached service information.

3. Functions

110

#

An RPC suppression list contains information about nodes on which the
OpenTP1 system is inactive.

The node monitoring facility checks whether nodes are active at the intervals specified
in the name_audit_interval operand of the name service definition. To use the
node monitoring facility, specify 1 or 2 in the name_audit_conf operand of the
name service definition.

The node monitoring facility behaves as follows according to the value specified in the
name_audit_conf operand:

1 specified in name_audit_conf

Send-only nodes are monitored. When send processing ends, the node monitoring
facility behaves as follows:

• If send processing by a previously active node fails

The monitored node is judged to be in the stopped state. Message
KFCA00650-I is output to the standard output, and information about the
node is entered in the RPC suppression list.

• If send processing by a previously stopped node succeeds

The previously stopped node is judged to be in an active state. Message
KFCA00651-I is output to the standard output, and information about the
node is deleted from the RPC suppression list.

2 specified in name_audit_conf

Send/receive nodes are monitored. When send/receive processing ends, the node
monitoring facility behaves as follows:

• If send or receive processing by a previously active node fails#

The monitored node is judged to be in the stopped state. Message
KFCA00650-I is output to the standard output, and information about the
node is entered in the RPC suppression list.

• If send or receive processing by a previously stopped node succeeds

The previously stopped node is judged to be in an active state. Message
KFCA00651-I is output to the standard output, and information about the
node is deleted from the RPC suppression list.

#

If a timeout occurs, receive processing is assumed to have failed. The
timeout value is the value specified in the name_audit_watch_time
operand of the name service definition.

3. Functions

111

While the node monitoring facility is enabled, the following action occurs according
to the status of the monitored node.

• If communication with a previously active node fails

The node with which communication failed is judged to be in the stopped state.
Message KFCA00650-I is output to the standard output, and information about
the node is entered in the RPC suppression list.

• If communication with a previously stopped node succeeds

The previously stopped node is judged to be in an active state. Message
KFCA00651-I is output to the standard output, and information about the node is
deleted from the RPC suppression list.

The namalivechk command is another way of checking whether nodes are active.
Table 3-4 describes the differences between using the node monitoring facility and the
namalivechk command.

Table 3-4: Comparison of node monitoring using the node monitoring facility
and the namalivechk command

Note

• The node monitoring facility cannot be used when multiple instances of
OpenTP1 are running on a monitored host, or when multiple instances of
OpenTP1 run with the same IP address after a system switchover (an

Item Node monitoring facility namalivechk command

Monitored nodes • All nodes specified in the all_node
operand of the system common
definition (whether active or not)

• All nodes specified in the all_node_ex
operand of the system common
definition (whether active or not)

• Nodes specified in the all_node
operand of the system common
definition, on which OpenTP1 has not
been detected as inactive

• All nodes specified in the all_node_ex
operand of the system common
definition (whether active or not)

Operation when
an inactive node
is detected

• If the node is specified in the all_node
operand, information about the node is
entered in the RPC suppression list if not
already entered. If the node has already
been entered, no action is taken.

• The connection with the inactive node is
closed.

• Cached service information about the
inactive node is deleted.

• Information about any node specified in
the all_node operand that is found to
be inactive is entered in the RPC
suppression list.

• The connection with the inactive node is
closed.

• Cached service information about the
inactive node is deleted.

Operation when
an active node is
detected

If the node is specified in the all_node
operand and has been entered in the RPC
suppression list, information about the node
is deleted from the list.

No action

3. Functions

112

environment with only one LAN board).

• Change the following operands to tune the sensitivity with which a
node-down condition is detected by the node monitoring facility:

If 1 is specified in the name_audit_conf operand:

Change the ipc_conn_interval operand in the system common
definition.

If 2 is specified in the name_audit_conf operand:

Change the name_audit_watch_timeg

• A maximum of 60 nodes can be monitored concurrently by the node
monitoring facility. If more than 60 nodes are specified in the all_node and
all_node_ex operands in the system common definition, monitoring is
performed for each group of 60 or less in turn.

• If a large number of nodes are specified in the all_node and all_node_ex
operands in the system common definition, use of the node monitoring
facility may affect the RPCs issued by UAPs. In this case, the value specified
in the name_audit_interval operand should not be too small. Also, do
not use the namalivechk command too soon after the previous execution.

(3) Facility for monitoring nodes registered in the RPC suppression list
The name service can check at 180-second intervals whether nodes registered in the
RPC suppression list are active again. This facility is separate from the node
monitoring facility. Specify whether to use this facility in the
name_rpc_control_list operand of the name service definition.

Decide whether to use the facility for monitoring nodes registered in the RPC
suppression list according to the setting for the node monitoring facility. For example,
monitoring of nodes registered in the RPC suppression list should be disabled if either
of the following occur:

• A node that has been restored after a failure may be deleted from the RPC
suppression list, even though the time specified in the name_audit_interval
operand has not yet elapsed. If this occurs, message KFCA00651-I will not be
output.

• If 2 is specified in the name_audit_conf operand, message KFCA00650-I may
be output periodically.

If the facility for monitoring nodes registered in the RPC suppression list is disabled
and a value of 180 seconds or longer is specified in the name_audit_interval
operand, it takes longer than usual for a recovered node to be deleted from the RPC
suppression list.

We recommend that you set the node monitoring facility and the facility for monitoring

3. Functions

113

nodes registered in the RPC suppression list as follows:

If the name_audit_conf operand is set to 1 or 2, and a value of less than 180 is
specified in the name_audit_interval operand

We recommend that you specify N in the name_rpc_control_list operand.

If the name_audit_conf operand is set to 0 or omitted

We recommend that you specify Y or omit the name_rpc_control_list
operand.

Specifying 0 or omitting the name_audit_conf operand, and specifying N in the
name_rpc_control_list operand, disables both the node monitoring facility
and the facility for monitoring nodes registered in the RPC suppression list. This
results in the following situation:

• A registered node cannot be deleted from the RPC suppression list unless
there is communication between that node and the local node.

• If the local node is not specified in the all_node operand of a node
registered in the RPC suppression list, that node cannot be deleted from the
RPC suppression list unless OpenTP1 is restarted on the local node.

(4) Node information display
By executing the namsvinf command, you can view the IP address, activity status,
and the port number of the name service for OpenTP1 nodes. This information can be
displayed for OpenTP1 nodes specified in the all_node operand and all_node_ex
operand in the system common definition.

3.2.4 Communication via RPCs that use the XATMI interface
The XATMI interface is an application programming interface (API) that uses client/
server communication and conforms to the DTP model defined in X/Open. UAP
processes in an OpenTP1 system can communicate with each other using this
interface.

Either TCP/IP or OSI TP can be used as the communication protocol with the XATMI
interface.

An SUP and SPP can use the XATMI interface to communicate with each other. A stub
created from the XATMI interface definition file must be linked to both the SUP and
SPP.

XATMI interface functions cannot be used when creating an MHP.

For details about communication using the XATMI interface, see the OpenTP1
Programming Guide.

3. Functions

114

(1) XATMI communication modes
The XATMI interface provides the following modes of communication:

• Request/response service paradigm

Communication in which a request is sent to a service function and a response is
received. This mode of communication requests a service and receives the result,
in the same manner as remote procedure calls in OpenTP1.

• Conversational service paradigm

Communication in which data is exchanged via a connection established with a
service function started on another node. Interactive services cannot be used when
the communication protocol is OSI TP.

Figure 3-24 provides an overview of communication using the XATMI interface.

3. Functions

115

Figure 3-24: Overview of communication using the XATMI interface

3. Functions

116

(2) Method of requesting a service
To request a service, call the required service function in the server UAP, specifying as
the argument a name (service name) that identifies the function.

(3) Data used in communication via the XATMI interface
When using the XATMI interface, you must set the data type for inter-process
communication. The buffer that stores typed data used in communication via the
XATMI interface is known as typed buffer or typed record.

3.2.5 Communication via RPCs that use the TxRPC interface
The TxRPC interface is a client/server communication method defined in X/Open.
UAP processes in an OpenTP1 system can communicate with each other using this
interface.

In TxRPC communication, unlike other client/server modes of communication, the
client calls a user-created function to communicate with another UAP.

A UAP that uses the TxRPC interface can also communicate with another UAP by
using OpenTP1 remote procedure calls (dc_rpc_call function).

(1) TxRPC communication modes
There are two modes of TxRPC communication: using DCE RPCs or not using DCE
RPCs.

• IDL-only TxRPC

A method of creating UAPs using only the files that are created from the IDL
compiler. DCE is not a prerequisite for IDL-only TxRPC.

• RPC TxRPC

A method of using a DCE RPC as the communication protocol. This version does
not support RPC TxRPC.

For details about the TxRPC communication, see the OpenTP1 Programming Guide.

(2) Application types that can communicate via TxRPC
The following UAPs can be set up so they communicate using TxRPC:

• Client UAP (SUP)

• Server UAP (SPP)

For TxRPC communication, the library requirements differ depending on the type of
UAP that is created.

(a) Creating an SUP or SPP
The following product must be included in the system:

3. Functions

117

• TP1/Server Base

(3) Creating a UAP for the TxRPC communication
Figure 3-25 illustrates how to create a UAP that communicates using TxRPC.

3. Functions

118

Figure 3-25: Overview of TxRPC communication

For details about how to write a UAP that communicates using TxRPC, see the
manuals OpenTP1 Programming Guide and OpenTP1 Programming Reference C

3. Functions

119

Language.

3. Functions

120

3.3 Message Control

An OpenTP1 system can communicate with a non-OpenTP1 system by using message
control facilities (MCF) that comply with a variety of communication protocols. Using
MCF, you can configure a parallel or vertically distributed network system that
includes non-OpenTP1 systems.

The following software products are prerequisites for using the OpenTP1 message
control facilities:

• TP1/Message Control (for managing message control)

• TP1/NET/Library (for controlling the network)

• TP1/NET/xxxx (for controlling the interface of a specific communication
protocol)

UAPs that use message control are known as message-handling programs (MHPs). In
addition, some messages can be sent and received using an SPP.

3.3.1 Overview of sending and receiving messages using MCF
Messages are commonly used for communicating between an OpenTP1 and a
non-OpenTP1 system. An OpenTP1 system that can send or receive messages in real
time is said to have an MCF message-exchange configuration. The message control
facilities, which are usually abbreviated to MCF, manage an MCF message-exchange
system. The message control facilities are provided by the software products TP1/
Message Control, TP1/NET/Library, and the products that correspond to the relevant
communication protocol.

Figure 3-26 illustrates the above example of MCF message exchange.

3. Functions

121

Figure 3-26: Overview of sending and receiving a message by using MCF

3.3.2 Message structure
A meaningful unit of communication is known as a logical message. A message unit
handled by a UAP function is known as a segment. A logical message can consist of
one or more segments.

Figure 3-27 shows the relationship between a logical message and its segments.

Figure 3-27: Segments in a logical message

3.3.3 Application program structure and application name
An MHP consists of a main function and service functions. To register an MHP
executable file with TP1/Server Base, you must create a user service definition. You
must also specify the MHP in an MCF application definition so that the MHP can be
managed by MCF. These definition procedures associate the MHP service functions

3. Functions

122

with an application name, enabling the service functions to be used as an MCF
application.

Figure 3-28 shows the relationship between the application program structure and
application name.

Figure 3-28: Relationship between application program structure and
application name

3.3.4 Synchronous and asynchronous communication functions,
and messages

The following describes the message communication process when using an MHP.
The process differs according to the communication protocol.

The message processing described below applies only to an MHP.

Figure 3-29 shows message processes and the type of MHP application.

3. Functions

123

Figure 3-29: Message processing and MHP application type

(1) Inquiry-response communication
In inquiry-response communication, a message is received from another system, and a
response message is sent back. The dc_mcf_receive function is used to receive a
message, and the dc_mcf_reply function is used to send the response.

An MHP that performs communication in inquiry-response mode is specified as a
response-type (ans-type) application. If a response-type MHP ends without calling the
dc_mcf_reply function, an error is assumed and the MHP ends abnormally.

(2) Non-inquiry-response communication (receive-only mode)
In non-inquiry-response communication, a message is received from another system,
but no response is returned. The dc_mcf_receive function is used to receive the
message.

3. Functions

124

An MHP that performs non-inquiry-response processing (receive-only mode) is
specified as a non-response (noans-type) application.

(3) Continuous inquiry-response communication
Continuous inquiry-response communication consists of a series of inquiry-response
messages. The dc_mcf_receive function is used to receive a message from another
system, and the dc_mcf_reply function is used to send the response. Subsequent
messages are received after each response, either by the same MHP or by a different
MHP. Continuous inquiry-response communication is ended by issuing the
dc_mcf_contend function.

An MHP that performs continuous inquiry-response processing is specified as a
continuous inquiry response type (cont-type) application.

3.3.5 Messages independent of the above communication modes
The following describes the types of messages that can be sent and received by an
MHP or SPP.

(1) Send-only messages
Messages that are sent by an OpenTP1 UAP. The dc_mcf_send function is used to
transmit a send-only message. The message is sent to the other system when the UAP
transaction that called the dc_mcf_send function has been committed.

Figure 3-30 illustrates send-only messages.

Figure 3-30: Overview of send-only messages

3. Functions

125

(2) Resending messages
A message already sent from an OpenTP1 UAP can be resent. The dc_mcf_resend
function is used to resend a message.

(3) Synchronous communication functions and messages
In addition to asynchronous communication functions, OpenTP1 supplies
synchronous communication functions that are executed regardless of the transaction
determination. Issuing a synchronous communication function from a UAP allows the
UAP to communicate with another system without waiting for a transaction
determination. In such a case communication resembles interactive processing.

(a) dc_mcf_sendsync (synchronous send function)
The dc_mcf_sendsync function is used to send a message synchronously. When the
function is called from a UAP, the UAP processing stops while the message is written
to the output queue. Once the message has been sent to the other system, the function
returns.

(b) dc_mcf_recvsync (synchronous receive function)
The dc_mcf_recvsync function is used to receive a message synchronously. When
the function is called from a UAP, the UAP processing stops while a message directed
to the application specified in the function is located in the input queue. If such a
message is found, the segment is received and the function returns. If no such message
is found, the UAP waits for one to arrive.

(c) dc_mcf_sendrecv (synchronous send/receive function)
The dc_mcf_sendrecv function is used to send and receive messages
synchronously. When the function is called from a UAP, the UAP processing stops
while the message is written to the output queue. The message is sent to the other
system, a reply is received, and then the function returns.

3.3.6 Message-control transactions
The following describes the processing of message-control transactions.

(1) MCF message processed as an MHP transaction
On receipt of an MCF message from another system, the MHP service is called and an
MHP transaction begins. If the MHP that processed the message ends normally, the
transaction is committed and the MHP process takes effect.

An MHP can either commit or roll back a transaction. To commit an MHP transaction,
use the dc_mcf_commit function. To roll back an MHP transaction, use the
dc_mcf_rollback function.

(2) MCF message not processed as an MHP transaction
You can choose not to handle a received MCF message as an MHP transaction. This

3. Functions

126

makes processing more efficient, although the message cannot be recovered if an error
occurs in the UAP. An MHP that does not process MCF messages as transactions is
known as non-transaction attribute MHP. To use this type of MHP, specify nontrn in
the trnmode operand of the application attribute definition.

3.3.7 Starting user application programs
Programs in a system that sends and receives MCF messages do not need to be
constantly running. For example, MCF can start an MHP whenever a message is
received that needs to be processed by that MHP; or a programmer can write a program
that starts whenever an MCF error event occurs. This section describes how programs
can be started in a MCF message-exchange system. An MHP or SPP can be started:

• by MCF when MCF receives a message from another system

• by the occurrence of an MCF communication event or MCF error event

• by another UAP issuing a function (dc_mcf_execap()) to start the MHP or SPP

• by executing the UAP start command mcfuevt

(1) Starting a user application program on receipt of a message
MCF can determine the application name (that is, what MHP or SPP should be started)
from an input message.

Figure 3-31 shows how the application name is determined.

Figure 3-31: Determination of application name

The application name can be determined by including a user exit routine for
determining the application name. Alternatively, you can choose not to include such
an exit routine.

3. Functions

127

(a) When not using an exit routine for determining the application name
MCF regards the string of eight or fewer characters before the first space in an input
message as the application name. OpenTP1 converts the application name into the
MHP or SPP service group name and service names, and then starts the MHP or SPP.
If the first nine characters are all spaces, the application name is regarded as invalid
and an error occurs.

Specify the correspondence between the application name and the service group name
and service names in the application attribute definition of the MCF application
definition.

(b) When using an exit routine for determining the application name
MCF calls the exit routine and regards the name set in the routine as the application
name. OpenTP1 converts the application name into the MHP or SPP service group
name and service names, and then starts the MHP or SPP.

Specify the correspondence between the application name and the service group name
and service names in the application attribute definition of the MCF application
definition. Note that even when an exit routine is included in the OpenTP1 system, if
the application name is not set in the routine, the string of eight or fewer characters
before the first space in the message will be regarded as the application name. If the
first nine characters are all spaces, the application name is regarded as invalid and an
error occurs.

(2) Starting a UAP (MHP or SPP) by issuing a function from a UAP
An MHP or SPP can issue a function (dc_mcf_execap()) to start another MHP or
SPP. This ability of an MHP or SPP to start another UAP is called the Application
Activate facility.

Immediately after a normal termination of the MHP or SPP that requested the start or
after a specified time has elapsed, the application startup process starts the specified
MHP or SPP.

If an MHP issues the function dc_mcf_rollback() to roll back a transaction and
retry is specified in the function parameters, the rolled-back MHP can be restarted
and processing can be re-executed.

For a UAP to issue the function dc_mcf_execap() or dc_mcf_rollback() and
start or restart an application as described above, the application startup process must
be started. To enable this, create the MCF communication configuration definition for
the application startup process. By creating this definition, you can reduce the load on
the MCF communication process because the application startup process performs
processing that does not depend on the protocol.

The inter-OpenTP1 logical channel that the MHP or SPP uses to pass data to MCF
when requesting the start of another UAP is called the internal channel. The internal
channel is defined in the application startup environment definition. MCF also uses

3. Functions

128

the internal channel to pass data to the application program that is to be started.

(3) Starting a UAP (MHP) by an MCF event
OpenTP1 administrators should be aware of certain events, such as failures or
establishing or releasing a connection, that sometimes occur during online processing.
OpenTP1 reports such events in messages produced by MCF events. A programmer
can create an MHP that is started by such an MCF event.

(a) MCF events
• MCF error events

• MCF communication events

MCF error events are events such as errors or failures. MCF communication events are
events such as the establishing or releasing of connections.

The two types of events are identified by MCF event codes. In the MCF application
definition, you can specify the correspondence between MCF event codes and MCF
applications.

The application startup process or the MCF communication process starts the service
of the MHP that corresponds to the MCF event code. The application startup process
or MCF communication process starts the MHP for an MCF error event. The MCF
communication process starts the MHP that processes an MCF communication event.
When a programmer develops an MHP that processes an MCF error event, the
programmer must also write an MCF communication configuration definition for the
application startup process.

You can issue an error event to report an error in a communication event. Use the
errevt operand of the application attribute definition to specify whether or not to
enable this report. However, you cannot issue an error event to report an error in an
error event.

The following subsections list the MCF error events, their causes, and some examples
of what kind of actions a program should take when the event occurs. In addition to
these error events, there are also communication events for individual protocols: for
events such as establishing or releasing connections. For details on MCF events, see
the applicable OpenTP1 Protocol manual.

3. Functions

129

Table 3-5: List of MCF events

MCF event name MCF event
code

Reason for the MCF event
notification

Example of
processing

executed by an
MHP started by an

MCF event

MCF event that reports
detection of an invalid
application name

ERREVT1 This MCF event occurs when the
MCF application definition does not
contain the MCF-application name of
the message.

A programmer could
write an MHP for this
MCF event so that the
MHP notifies the user
that the appropriate
MCF-application name
was absent, and outputs
the corresponding
response message for
inquiry messages.

MCF event that reports
discarding of a message

ERREVT2 This MCF event occurs when the
message that MCF received from the
input queue or the message placed in
the input queue by the facility for
immediately starting the application is
discarded because:
• An error occurred in the input

queue.
• The service, service group, and

MCF-application of the MHP are
shut down.

• The service, service group, and
MCF-application of the MHP
have secure status.

• The MHP terminated abnormally
before the segment was passed to
the MHP segment-receiving
function.

• There was no MHP service
corresponding to the
MCF-application name.

• MCF cannot start the SPP.
• The MHP is not started.

A programmer could
write an MHP for this
MCF event so that the
MHP notifies the user
that the message was
discarded, and outputs
the corresponding
response message for
inquiry messages.

3. Functions

130

MCF event that reports
UAP abnormal
termination

ERREVT3 This event occurs when an MHP
terminates abnormally after the
segment has been passed to the
dc_mcf_receive function that is
called in the MHP, or when the MHP
rolls back.#

A programmer could
write an MHP for this
MCF event so that the
MHP notifies the user
that the UAP
terminated abnormally
or rolled back.
If the message received
is an inquiry message, a
response message can
be sent.

MCF event that reports
discarding of a timer-start
message

ERREVT4 This event occurs when the message
is discarded that was placed in the
input queue by the facility for starting
the application with the timer because
of the reason indicated by ERREVT2.

A programmer could
write an MHP for this
MCF event so that the
MHP notifies the user
that a message to
request the timer start
was discarded, and
outputs the
corresponding response
message for inquiry
messages.

MCF event that reports
discarding of an
unprocessed message

ERREVTA This MCF event occurs when an
unprocessed message to be sent to a
remote system is discarded because:
• Excessive time (a timeout) is

taken to process the message
during normal termination of an
MCF.

• The output queue was deleted by
the mcftdqle command or the
dc_mcf_tdlqle function.

• The dcstop command was
executed while there was an
unprocessed timer start request.

A programmer could
write an MHP for this
MCF event so that the
MHP notifies the user
that an unprocessed
send message was
discarded.

MCF event that reports a
send error

SERREVT This MCF event occurs when a
protocol error occurs during message
transmission.

A programmer could
write an MHP for this
MCF event so that the
MHP notifies the user
that the message could
not be sent due to a
protocol error.

MCF event name MCF event
code

Reason for the MCF event
notification

Example of
processing

executed by an
MHP started by an

MCF event

3. Functions

131

Note

ERREVT1, ERREVT2, ERREVT3, ERREVT4, and ERREVTA indicate error
events.

SERREVT, SCMPEVT, CERREVT, COPNEVT, and CCLSEVT indicate
communication events.

#

Exceptions are when r is specified in the recvmsg operand of the MCF
application definition (mcfaalcap -g) and when DCMCFRTRY or DCMCFRRTN is
specified in action of dc_mcf_rollback.

MCF event that reports
completion of send
processing

SCMPEVT This MCF event occurs when a
message is successfully sent to the
other system.

A programmer could
write an MHP for this
MCF event so that the
MHP notifies the user
that the message was
successfully sent to the
other system.

MCF event that reports an
error

CERREVT(V
ERREVT)

This MCF event occurs when a
connection error or logical terminal
error occurs in the communication
management program. No error is
reported when a connection retry is
defined in the program.

A programmer could
write an MHP for this
MCF event so that the
MHP notifies the user
that an error occurred in
the connection or
logical terminal.

MCF event that reports the
connection status

COPNEVT(V
OPNEVT)

This MCF event occurs when a
connection is established.

A programmer could
write an MHP for this
MCF event so that the
MHP notifies the user
that messages can be
sent and received.

CCLSEVT(V
CLSEVT)

This MCF event occurs when a
connection is successfully released.

A programmer could
write an MHP for this
MCF event so that the
MHP notifies the user
that messages can no
longer be sent and
received.

MCF event name MCF event
code

Reason for the MCF event
notification

Example of
processing

executed by an
MHP started by an

MCF event

3. Functions

132

(b) Reporting a communication event error
The facility for reporting a communication event error to the user by an error event is
available. This facility allows the user to use an MHP for an MCF event to recover the
failed communication event. A communication event message can be received at the
second segment.

To use the facility for reporting a communication event error, specify yes in the
errevt operand of the -n option in the application attribute definition.

Figure 3-32 shows an overview of ERREVT2 report for a COPNEVT error.

Figure 3-32: Overview of ERREVT2 report for a COPNEVT error

3. Functions

133

1. COPNEVT is discarded due to an error in the input queue.

2. Control returns to the MCF. ERREVT2 is reported, and an MHP started by an
MCF event is scheduled for ERREVT2.

3. MCF event information for ERREVT2 can be received in the first segment. MCF
event information for the discarded COPNEVT can be received in the second
segment. The user can deal with the discarded message by referencing the
received MCF event information and executing the processing that should have
been executed in the MHP for event COPNEVT in the MHP for event ERREVT2.

(4) Starting a UAP by using a command
A user can use the command mcfuevt to start an MHP or SPP. Even for MHPs that
start when a message is received, using mcfuevt immediately to start an MHP enables
a message to be sent to another system.

Only noans MHPs can be started with mcfuevt, so specify noans in the MCF
application definition of the MHP that is to be started by mcfuevt.

(a) Defining a UAP started by a command
For a program to be started by mcfuevt, you must specify various operands in the
MCF application definition mcfaalcap. In the -n operand of mcfaalcap, specify:

name=UCMDEVT

kind=user (or omit)

type=noans (or omit)

(b) Starting a UAP
Execute the command mcfuevt to start an MHP or SPP. As parameters of the
mcfuevt command, specify the MCF communications process identifier, and the
input message to be passed to the MHP or SPP.

If UCMDEVT is not defined and the mcfuevt command is executed, the mcfuevt
command returns an error. In such a case ERREVT1 does not occur.

An MHP or SPP that is started by a command does not depend on a communications
protocol, so it is recommended that you specify the application startup process in the
MCF communication process that is specified in the mcfuevt command.

(5) Causes of MCF starting a UAP
Figure 3-33 shows the causes of MCF starting a UAP.

3. Functions

134

Figure 3-33: Causes of MCF starting a UAP

3.3.8 MCF message queues and the sending and receiving of
messages
(1) Input and output queues

OpenTP1 uses queues to store messages that have been received or are to be sent.

An input queue manages the input messages as processing requests. An output queue
manages the output messages as processing results.

In the MCF application definition for each application, you can specify whether a disk
queue or a memory queue is to be used for the input queue. In the logical terminal
definition for each logical terminal, you can specify whether both a disk queue and a
memory queue are to be used or only a memory queue is to be used. If you specify use
of both queues, send-only messages always use the disk queue. If an inquiry message
uses a disk queue, the corresponding response message also uses a disk queue; if an
inquiry message uses a memory queue, the corresponding response message also uses
a memory queue.

If a disk queue is used, the messages in it can be reused at recovery restart after
abnormal termination of the online system. The messages that do not need to be reused
at recovery restart should be placed in a memory queue, which provides high-speed
processing.

3. Functions

135

OpenTP1 uses a message queue file as a disk queue. If an OpenTP1 administrator
specifies that the disk queue is to be used, the administrator should create an MCF
message queue file.

You can place the MCF message queue on hold status by using the mcfthldiq or
mcfthldoq command. The hold status is also inherited at restart after abnormal
termination of an online system. When the hold status need not be inherited (for
example, if an error occurs while replacing a user server using the input queue), the
inheritance can be suppressed using an option. When the status inheritance is
suppressed it is unnecessary to release the hold status using the mcftrlsiq command
at restart. For details of the message queue file, see 4.3.1 Queue files: MCF message
queue file.

Figure 3-34 illustrates message exchange using the input and output queues.

Figure 3-34: Message exchange using the input and output queues

3. Functions

136

(2) Fallback operation using the memory queue instead of the disk queue
If the disk queue is disabled for some reason at the start of OpenTP1, instead of the
disk queue the memory queue can be used to start OpenTP1. This is called a fallback
operation using the memory queue. In the extended reservation definition for each
input queue and output queue, you can specify whether to perform the fallback
operation. If you do not perform the fallback operation using the memory queue, the
messages to be stored in the disk queue are discarded. In such a case, an MHP designed
to process the MCF event that reports discarding of messages (ERREVT2) is started, if
it exists.

If the fallback operation using the memory queue is performed, a message
(KFCA11065-W or KFCA11066-W) is displayed.

Note that when starting OpenTP1 by the fallback operation using the memory queue,
the messages cannot be recovered during complete recovery after shutdown of online
processing.

If the disk queue is disabled during online processing, a fallback operation using the
memory queue cannot be performed.

For details about the causes and recovery methods for the fallback operation, see the
manual OpenTP1 Operation.

(3) Holding messages in the disk queue
A disk queue can hold messages even after they are read so that they can be reread. A
message held for a possible reread is called a hold message. In the MCF
message-queue service definition, you can specify the number of messages to be held.

A memory queue cannot hold messages.

For each disk queue, if the ratio of the number of messages waiting to be de-queued
and the number of hold messages exceeds a user-defined percentage, a message
warning about the usage percentage of the disk queue can be output. In the MCF
message-queue service definition, you can specify the disk-queue usage percentage for
which a warning message is to be output.

(4) Processing when the disk queue is full
If the disk input queue becomes full, new received messages are discarded. In such a
case, if an MHP for ERREVT2 (the MCF event that reports discarding of a message)
exists, this MHP is started. If the disk output queue becomes full, the communication
functions (dc_mcf_send(), dc_mcf_reply(), dc_mcf_sendrecv(),
dc_mcf_sendsync(), dc_mcf_resend(), dc_mcf_execap()) return an error.

3.3.9 Message exchange by user application programs
(1) Receiving messages

OpenTP1 receives messages from another system through a connection. A connection

3. Functions

137

is a logical channel between OpenTP1 and the other system. As described in 3.3.7
Starting user application programs, a message received by OpenTP1 is managed by
an MCF communication process.

After determining the required SPP or MHP, MCF writes the received message to the
input queue for the service group that will process the message. The input queue
manages the inputs as service requests. In a disk queue, the part allocated to a service
group is called a MCF message queue file and the name of the corresponding service
group is used as the MCF message queue file name.

In the same way as messages for a disk queue, each service group has a separate queue
for messages written to a memory queue.

After MCF writes the last segment of a received message to the input queue, MCF
records the service request in the schedule queue for the requested MHP. Following the
scheduling and starting of an MHP, the MHP uses the segment-receive function
dc_mcf_receive() to receive the received message in segments.

Figure 3-35 gives an overview of how a UAP receives messages. In the diagram, note
that TP1/NET/xxx indicates the product required for the protocol being used.

Figure 3-35: Overview of how a UAP receives messages

3. Functions

138

(2) Sending messages
MCF writes send messages to the output queue according to the logical terminal name
written in the send function (dc_mcf_send()) parameter. A logical terminal name is
a user-specified name assigned to a terminal entity: such as a window of a
multi-window workstation, or a printer. OpenTP1 can define either actual terminals or
hardware components as logical terminals that have logical terminal names. In the
logical terminal definition, you can specify logical terminal names.

When the messages to be sent use a disk queue, a disk queue is allocated to each logical
terminal. Each of the distributed queues is called an MCF message queue file and the
name of the corresponding logical terminal is used as the MCF message queue file
name.

In the same way as messages for a disk queue, each logical terminal has a separate
memory queue for messages to be sent.

The MCF communication process created for the protocol sends the message to the
other system in segments.

Figure 3-36 gives an overview of how a UAP sends messages. In the diagram, note that
TP1/NET/xxx indicates the product required for the protocol being used.

3. Functions

139

Figure 3-36: Overview of how a UAP sends messages

(a) Sending a send-only message
The dc_mcf_send function can be used in an MHP or SPP to send a send-only
message to another system. Specify the logical terminal name as the send destination.

When an MHP or SPP requests that a send-only message be sent, a message sequential
number is attached according to the message type, and the message is sent to the
logical terminal. When sending the first segment, OpenTP1 passes control to the user
exit routine for editing message sequential numbers. This exit routine can edit and set
message numbers anywhere in the first segment.

(b) Sending a response to an inquiry
On receipt of an inquiry message from another system by the dc_mcf_receive
function, an MHP can send a response message using the dc_mcf_reply function to
the logical terminal that made the inquiry.

3. Functions

140

(c) Sending an inquiry message
An MHP or SPP can send an inquiry message to another system using the
dc_mcf_send function.

(d) Sending a synchronous message
An MHP or SPP can send a synchronous message to another system using the
dc_mcf_sendsync function or dc_mcf_sendrecv function.

The dc_mcf_sendsync function stops UAP processing until the message has been
sent to the other system, thus synchronizing with UAP processing by the other system.

The dc_mcf_sendrecv function stops UAP processing until a response is received
to the message it sent to the other system, thus synchronizing with UAP processing by
the other system.

(3) Starting applications from a UAP
If you use the Application Activate facility, you can simplify and unify the sending of
messages by writing a single MHP that edits and sends messages from several logical
terminals.

If you write an MHP that edits and sends a response message, you can use that MHP
to respond to the requesting logical terminal instead of using the MHP that received
the inquiry message. If you write an MHP that edits and sends a send-only message,
you can use that MHP to send a message by starting the MHP from another MHP or
SPP.

In both the above cases, message sending can be unified by issuing the
dc_mcf_execap() function from the UAP that requested message sending.

The dc_mcf_execap() function is an asynchronous communication function. MCF
starts an MHP that edits and sends messages immediately after the normal termination
of the service of the MHP or SPP that issued the dc_mcf_execap() function, or
when a specified time has expired (timer start). Therefore, the MHP or SPP that
requested the message sending and the MHP that edits and sends messages are
executed in different global transactions. The MHP or SPP that requested message
sending uses MCF to pass necessary data (such as the name of the target logical
terminal) to the MHP that edits and sends messages. In the case of a timer start, you
can use the mcfadltap command or the dc_mcf_adltap function to cancel the start
request.

Figure 3-37 explains how to unify the sending of messages. In the diagram, note that
TP1/NET/xxx indicates the product required for the protocol being used.

3. Functions

141

Figure 3-37: Message sending unified by the dc_mcf_execap() function

(4) Handling MCF messages when OpenTP1 terminates
(a) Monitoring of unprocessed messages

MCF monitors the output queue from the start of termination processing till the last
message in the output queue is processed. This monitoring prevents the termination
processing from taking too much time because of unprocessed messages left in the
output queue. The period for monitoring the output queue during OpenTP1 processing
is called the lifetime for unprocessed send messages. If messages remain in the output
queue after the lifetime expires, OpenTP1 discards them and the MCF event that
reports discarding of an unprocessed send message (ERREVTA) occurs. If there is an
MHP for this MCF event, MCF starts that MHP. Response messages, however, are not

3. Functions

142

included in the lifetime for unprocessed send messages. If response messages remain
when the system terminates, such response messages are unconditionally deleted and
ERREVTA does not occur.

MCF also monitors the period from the time OpenTP1 starts termination processing to
the time that all the messages in the input queue are processed. This monitoring
prevents the termination processing from not ending in situations where an error in the
MHP results in the messages in the input queue not being processed. When the system
terminates normally, OpenTP1 discards messages that remain due to the shutdown of
a service group, and then ERREVT2 occurs. The period for monitoring the input queue
during OpenTP1 termination processing is called the lifetime for unprocessed received
messages. If messages remain in the input queue after the lifetime expires, OpenTP1
assumes that the MHP has some abnormality and MCF terminates in an abnormal
termination mode.

In the MCF communication configuration definition, you can specify the lifetimes for
unprocessed send messages and unprocessed received messages.

(b) OpenTP1 termination modes and unprocessed messages
OpenTP1 has five termination modes:

• normal termination

• forced normal termination

• planned termination A

• planned termination B

• forced termination

When OpenTP1 terminates in the normal termination mode or in the forced normal
termination mode, OpenTP1 refuses to accept new messages and continues processing
until all the messages in the input and output queues are processed. OpenTP1 also
monitors the lifetimes of unprocessed received messages and unprocessed send
messages.

When OpenTP1 terminates in the planned termination A mode, OpenTP1 refuses to
accept new messages and continues processing until all the messages in the input
queue have gone. OpenTP1 terminates even if messages remain in the output queue,
but the unprocessed messages are processed the next time OpenTP1 starts. Note that
when reruntm=no is specified in the -o option of the mcftpsvr command in the
MCF communication configuration definition, messages in a memory output queue
and messages for timer start requests cannot be restored. In this mode, OpenTP1
monitors the lifetime for unprocessed received messages only.

When OpenTP1 terminates in the planned termination B mode, OpenTP1 completes
the currently executing service, then terminates. Since the messages in the input and
output queues are left unprocessed, the lifetime of unprocessed messages is not

3. Functions

143

monitored. The messages left in the input and output queues are processed the next
time OpenTP1 starts. Note that when reruntm=no is specified in the -o option of the
mcftpsvr command in the MCF communication configuration definition, messages
in a memory queue and messages for timer start requests cannot be restored.

When OpenTP1 terminates in the forced termination mode, OpenTP1 terminates
without waiting for the end of the currently executing service. The lifetime of the
unprocessed messages is not monitored. The messages left in the input and output
queues are processed the next time OpenTP1 starts. Note that when reruntm=no is
specified in the -o option of the mcftpsvr command in the MCF communication
configuration definition, messages in a memory queue and messages for timer start
requests cannot be restored.

Table 3-6 summarizes how each termination mode processes the messages in the input
and output queues.

Table 3-6: Termination modes and processing of messages in input and output
queues

3.3.10 Order of sending MCF messages
OpenTP1 schedules message transmission to a remote system as described below.

(1) Order of sending MCF messages to logical terminals
The order in which OpenTP1 sends messages to connected logical terminals is based
on a combination of first-in first-out (FIFO) and message priority.

The segments in a message are sent continuously. After one message has been sent, the
next message is sent to a logical terminal. You use the order operand of the -c option
in the UAP common definition (mcfmuap) to specify the order in which transmission
requests from multiple UAPs are to be processed. Figure 3-38 illustrates the sending
order.

Termination mode Messages in the input queue Messages in the output
queue

Normal termination OpenTP1 processes all the
messages.

OpenTP1 processes all the
messages.

Forced normal termination OpenTP1 processes all the
messages.

OpenTP1 processes all the
messages.

Planned termination A OpenTP1 processes all the
messages.

OpenTP1 leaves messages in the
queue.

Planned termination B OpenTP1 leaves messages in the
queue.

OpenTP1 leaves messages in the
queue.

3. Functions

144

Figure 3-38: Order of sending MCF messages to logical terminals

(2) Relationship between message type and sending priority
The type of message to be sent by the UAP determines its priority. When different
types of messages are waiting to be sent to the same logical terminal, the message with
the highest priority is sent first. When the same type of messages are waiting, they are
sent in FIFO order.

Table 3-7 lists the sending priority of the different types of messages.

Table 3-7: Message type and sending priority

Figure 3-39 illustrates the order in which OpenTP1 sends messages to another system.

Message type Sending priority

Response message High

Send-only message (with priority) Medium

Send-only message (normal) or inquiry message Low

3. Functions

145

In the diagram, messages are written to the output queues in the order of A-B-C;
however, the messages are sent to the logical terminals in the order of B-C-A. B and C
are sent before A because they have higher sending priorities. B is sent before C based
on the FIFO method: that is, B was written to the output queue before C.

Figure 3-39: Sending order based on sending priority combined with FIFO

3.3.11 Partially changing the MCF communication service during
operation of OpenTP1

You can change the main() function, user exit routines, and libraries for the MCF
communication service without stopping OpenTP1 when you use any of the following
products that are for supporting a communication protocol:

• TP1/NET/TCP/IP

• TP1/NET/Secondary Logical Unit - TypeP2

3. Functions

146

• TP1/NET/OSAS-NIF

You can change the main() function, user exit routines, and libraries, without
stopping OpenTP1, by stopping only the desired part of the MCF communication
service to replace the desired files. Since this method allows the other parts of the MCF
communication service to run without interruption, the OpenTP1 system can continue
to operate. You can replace the following files:

• The load module (main() function) of the MCF communication service

• User-created libraries (user exit routines) used by the MCF communication
service

• The library provided by the used communication protocol product

To partially change the MCF communication service, you must use the operation
commands (the mcftlscom command, the mcftstart command, and the mcftstop
command) for managing the MCF communication service. For details about these
commands, see the manual OpenTP1 Operation.

When the OpenTP1 system uses an MCF independent restart or remote MCF service,
you cannot partially change the MCF communication service.

3.3.12 MCF capabilities that are not supported in Windows
In Windows, the MCF capabilities listed in the following table are not supported.

Table 3-8: MCF capabilities that are not supported in Windows

Legend:

--: Not applicable

Capability Description

User exit routine that determines inheritance
of timer-start messages

--

MCF on-line tester --

Specification of whether to acquire OJ
statistics for an SPP

The mcf_spp_oj operand in the user service definition cannot
be specified.

Statistics acquisition mcfmcomn -w stat in the MCF manager definition cannot be
specified. The mcfreport command cannot be used.

Speeding up MCF start processing when a
memory queue is used as the input queue

mcftenv -q diskitq in the MCF communication configuration
definition cannot be specified.

3. Functions

147

3.4 Scheduling

The scheduling facility provided by OpenTP1 controls schedules and processes to
efficiently process service requests to an SPP or MHP.

3.4.1 Scheduling requests to service-providing programs
(1) Schedule queues for SPPs

OpenTP1 uses schedule queues, which are created for each service group of an SPP, to
schedule service requests to an SPP. When a UAP requests a service from an SPP,
OpenTP1 catalogs the service request in the proper schedule queue by using the
service group name and service name specified in the client UAP's RPC. Scheduling
of service requests is possible even if a service group of the SPP specified by the client
UAP is located on another node in the network.

Service requests can be assigned scheduling priorities. Service requests with higher
scheduling priorities are taken out from the schedule queue first; service requests with
the same scheduling priorities are taken out with the FIFO method.

Figure 3-40 illustrates scheduling of service requests for SPPs.

Figure 3-40: Scheduling of service requests for SPP

(2) Setting scheduling priorities for service requests
The programmer can assign a scheduling priority to a service request issued from a
client UAP. The scheduling priority for a service request is declared by writing the
dc_rpc_set_service_prio() function immediately before the dc_rpc_call()

3. Functions

148

function for the RPC that a client UAP issues. Based on the scheduling priority
declared here, the schedule service at the server UAP schedules the service requests.

In the user service definition for the server UAP (the SPP), you can specify whether or
not scheduling is to follow the scheduling priorities of the client UAPs.

(3) Shutting down scheduling for an SPP
In the user service definition, you can specify whether scheduling of service requests
for an SPP should be blocked when the SPP abnormally terminates while executing a
service. In OpenTP1 this is called shutting down scheduling of service requests to an
SPP.

Figure 3-41 illustrates shutting down scheduling of service requests to a service group.

Figure 3-41: Shutdown of scheduling of service requests to a service group

(a) Specifiable target when shutting down scheduling
You can specify whether OpenTP1 is to shut down scheduling of service requests to
service groups or to services. When an SPP service abnormally terminates:

• if you have specified shutdown of scheduling for service groups, OpenTP1
immediately shuts down scheduling of all requests to the SPP.

• if you have specified shutdown of scheduling for services, OpenTP1 shuts down
scheduling of requests to the affected service only but does not shut down

3. Functions

149

scheduling of requests to other services in the same service group.

(b) Processing when an SPP terminates abnormally
If you have specified shutdown of scheduling for service groups and a UAP process in
an SPP abnormally terminates, OpenTP1 shuts down scheduling of requests to all
services in that service group. After scheduling of requests to a service group is shut
down and a request for a service arrives, an error is returned to the client UAP that
issued the request. If a service request is already in the schedule queue when
scheduling of service requests to a service group is shut down, an error is also returned
to the client UAP that issued the request.

When no scheduling shutdown is specified for when a UAP process in an SPP
abnormally terminates, scheduling proceeds without shutdown. However, if there are
three or more abnormal terminations within the period specified in the user service
definition, then scheduling is shut down for the service group of the SPP.

(c) Using a command to release SPP shutdown
You can use the command scdrles to release the scheduling shutdown for an SPP and
restart the SPP.

(d) How scheduling-shutdown status is handled at restart
In the user service definition for each SPP, you can specify whether an SPP is to inherit
the SPP scheduling-shutdown status when a complete recovery is performed following
a stoppage of the online system. Among those SPPs for which scheduling was shut
down when online processing stopped, the SPPs for which inheritance of
scheduling-shutdown status was specified are restarted with the same
scheduling-shutdown status even after a complete recovery. An error is returned to the
source of a request for a service of an SPP for which scheduling has been shut down.

For those SPPs for which no inheritance of scheduling-shutdown status is specified,
the SPP is restarted with the status at the release of the shutdown, and the requested
service is executed.

(e) Using commands to shut down scheduling
You can use the command scdhold to shut down scheduling and use the command
scdrles to release scheduling shutdown, thereby enabling SPPs to be modified
online.

The command scdhold can shut down scheduling of service requests to service
groups or to services. To replace an SPP online, the OpenTP1 administrator should
shut down scheduling to service groups of the SPP, replace the SPP with a new SPP,
and then use the scdrles command to release the scheduling shutdown and execute
the new SPP.

If you specify the -p option with the server name in the scdhold command (scdhold
-s server-name -p), even after scheduling for an SPP has been shut down, service

3. Functions

150

requests for the SPP can still be received. The received requests are stored in the
schedule queue. When the SPP is again in a condition to process services, OpenTP1
restarts scheduling for the stored service requests.

Storage of service requests is only possible for shutting down scheduling of service
requests to service groups. When scheduling of service requests to services is shut
down, you cannot use the scdhold command to store service requests.

Figure 3-42 illustrates service requests stored in the schedule queue when scheduling
is shut down.

3. Functions

151

Figure 3-42: Shutting down scheduling and storing service requests in the
schedule queue

(4) Server that receives requests from a socket
In order to improve scheduling efficiency, you can specify an SPP that is to receive
services without going through the schedule queue. This kind of UAP (a user server)
is called a server that receives requests from a socket. Service requests are passed
directly to a server (SPP) that receives requests from a socket; the requests are not
passed through a schedule queue.

3. Functions

152

In cases where the server that receives requests from a socket cannot receive service
requests, such as when waiting for a transaction synchronous point, OpenTP1
temporarily stores the service requests. When the server that receives requests from a
socket can once again receive service requests, OpenTP1 passes the service requests
to the server. When the area used for temporary storage is full, errors are returned to
the source of the service requests.

In the user service definition, you can specify whether an SPP is to receive requests
from a socket.

Compared to a server (SPP) that receives requests from the queue, the following
restrictions apply to a server that receives requests from a socket:

• Operation commands cannot be used to shutdown scheduling.

• The Multiserver facility (described in 3.4.3 Process control and the Multiserver
facility) cannot be used. In the user service definition, you can specify one
resident process only for the number of usable processes.

You can activate more than one server that receive requests from the socket only by
changing the user server name (file name of the user service definition). In this case,
specify the same service group name, server name, and executable program name.

When more than one server that receive requests from the socket are activated, service
requests can be distributed as with a Multiserver facility.

Note that a server that receives requests from the socket and a server that receives
requests from the queue cannot be activated concurrently if their service group names
are the same. If a server that receives requests from the queue of the same service group
has already been activated, terminate it before activating the server that receives
requests from the socket.

For details of the Multiserver facility, see 3.4.3(1) Multiserver facility.

(5) Scheduling control of services
By specifying the scdsvcdef definition command in the user service definition or
user service default definition, you can specify the following scheduling controls for a
specific service requested via the schedule queue for an SPP. For details about the
scdsvcdef definition command, see the manual OpenTP1 System Definition.

• Maximum number of server processes that can be executed concurrently for a
specific service

• Maximum number of requests for a specific service that can be placed in the
schedule queue

• Maximum size of the message-storing buffer pool for a specific service that can
be placed in the schedule queue

3. Functions

153

(a) Maximum number of server processes that can be executed concurrently
for a specific service
If the number of server processes that are processing a particular service reaches the
maximum number of concurrent executions specified in the scdsvcdef definition
command, requests for those services whose set number of concurrently executable
processes has not yet been reached are kept scheduled, regardless of their order of
placement in the queue and their scheduling priority.

If the queued service requests are all for services whose maximum number of
concurrently executable processes has already been reached, the pending requests wait
for completion of the service processing currently being executed. Figure 3-43
illustrates the maximum number of server processes that can be executed concurrently.

Figure 3-43: Maximum number of server processes that can be executed
concurrently for a specific service

1. Specify the -c and -p options of the scdsvcdef definition command as follows.
This sets the maximum number of server processes that can be executed

3. Functions

154

concurrently for services SV1 and SV2 as 1 in each case.
scdsvcdef -c SV1 -p 1
scdsvcdef -c SV2 -p 1

2. Service requests in excess of the limit placed on the number of concurrently
executable server processes are left in the schedule queue.

(b) Maximum number of requests for a specific service that can be placed in
the schedule queue
If the number of service requests for a particular service reaches the maximum number
of queued requests specified in the scdsvcdef definition command, subsequent
requests for that service are re-directed to another OpenTP1 node instead of the local
schedule queue.

If the subsequent requests cannot be rescheduled on the other OpenTP1 node, an error
is returned to the client UAP, indicating that the message-storing buffer is full. Figure
3-44 illustrates the maximum number of queued requests for a specific service.

Figure 3-44: Maximum number of requests for a specific service that can be
placed in the schedule queue

3. Functions

155

1. Specify the -c and -n options of the scdsvcdef definition command as follows.
This sets the maximum number of requests that can be queued as 2 for SV1 and
as 1 for SV2.
scdsvcdef -c SV1 -n 2
scdsvcdef -c SV2 -n 1

2. Service requests in excess of the limit placed on the number of queued requests
cannot be scheduled.

(c) Maximum size of the message-storing buffer pool for a specific service
that can be placed in the schedule queue
If the length of the message-storing buffer pool containing service requests for a
particular service reaches the maximum length specified in the scdsvcdef definition
command, subsequent requests for that service are re-directed to another OpenTP1
node instead of the local schedule queue.

If the subsequent requests cannot be rescheduled on the other OpenTP1 node, an error
is returned to the client UAP, indicating that the message-storing buffer is full. Figure
3-45 illustrates the maximum size of the queued message-storing buffer pool for a
specific service.

3. Functions

156

Figure 3-45: Maximum size of the message-storing buffer pool for a specific
service that can be placed in the schedule queue

1. Specify the -c and -l options of the scdsvcdef definition command as follows.
This sets the maximum size of the queued message-storing buffer pool as 2048
for SV1 and as 1024 for SV2.
scdsvcdef -c SV1 -l 2048
scdsvcdef -c SV2 -l 1024

2. Service requests in excess of the limit placed on the size of the queued
message-storing buffer pool cannot be scheduled.

3.4.2 Scheduling MCF messages to message-handling programs
(1) Schedule queues for MHPs

OAs with SPPs, OpenTP1 schedules messages to MHPs by creating a schedule queue

3. Functions

157

for each MHP service group.

First MCF converts the MCF-application name included in the message into the
service group name and the service names, and then catalogs the received message into
the input queue. When the last segment of a received message is stored in the input
queue, MCF catalogs the messages into the proper schedule queue depending on the
correspondence between the MCF application and the service group name and service
names defined in the application attribute definition. Scheduling fails unless the MHP
service group and the MCF that received the message are located on the same node.

Messages to an MHP are taken out from the schedule queue by the FIFO method.

Figure 3-46 shows MHP scheduling.

Figure 3-46: Scheduling messages for an MHP

(2) Shutting down scheduling using commands
(a) Shutting down scheduling using OpenTP1 commands

An OpenTP1 administrator can use commands to shut down scheduling of service
requests to an MHP, and to release such scheduling shutdowns. As shown in the
following table, these commands can apply to the scheduling of service requests to
MCF applications, services, or service groups.

Commands for shutting down scheduling

mcfadctap: Shut down scheduling of service requests to a specific MCF
application

mcftdctsg: Shut down scheduling of service requests to a specific service group

mcftdctsv: Shut down scheduling of service requests to a specific service

3. Functions

158

Commands for releasing scheduling-shutdown status

mcfaactap: Release the scheduling-shutdown status of a specific MCF
application

mcftactsg: Release the scheduling-shutdown status of a specific service group

mcftactsv: Release the scheduling-shutdown status of a specific service

The user can specify whether the service group will become active or remain shut
down after complete recovery from an abnormal termination. The user can make this
decision either when the user uses the mcftdctsg command to shut down the service
group, or when using the status inheritance definition to create the system.

• Using mcfadctap to shut down scheduling for MCF application

The scheduling-shutdown status of an MHP shut down with mcfadctap can be
reproduced at a full recovery after a stoppage of the online system. In the status
inheritance definition, you can specify whether the scheduling-shutdown status is
to be inherited.

Table 3-9 shows the two types of scheduling shutdown possible by specifying an
MCF-application name.

Table 3-9: Shutting down scheduling of service requests to MCF-applications

For each communication protocol, you can assign a different MCF-application
name for a service name. By the use of different MCF-application names in
different protocols, you can ensure that when an MCF-application name is used
for a shutdown, only the service requests from one specific protocol will be
refused. Figure 3-47 illustrates scheduling shutdown by specifying the
MCF-application name.

Type of scheduling shutdown Processing of messages that
arrived after the shutdown

Processing of messages
already cataloged in the input
queue before the shutdown

Preventing both entry to input queue
and output from schedule queue

The message is cataloged in the
input queue for the MHP for
ERREVT2 (an MCF event).

The message is recataloged in the
input queue for the MHP for
ERREVT2 (an MCF event).

Preventing entry to input queue only The message is cataloged in the
input queue for the MHP for
ERREVT2 (an MCF event).

The relevant MHP is started
normally.

Preventing only scheduling The message is cataloged in the
input queue for the MHP for
ERREVT2 (an MCF event).

The message is recataloged in the
input queue for the MHP for
ERREVT2 (an MCF event).

3. Functions

159

Figure 3-47: Shutting down scheduling by specifying an MCF application name

• Using mcftdctsv to shut down scheduling for services

The two types of scheduling shutdown (i.e., preventing entry to the input queue
or output from the schedule queue) are also possible when shutting down
scheduling of service requests to services. Table 3-10 shows the methods for
shutting down scheduling of service requests to MHP services.

Even if an MHP service is shut down, other services in the service group are still
usable.

Table 3-10: Shutting down scheduling of service requests to MHP services

Type of scheduling shutdown Processing for messages
that arrived after the

shutdown

Processing for messages
already cataloged in the input
queue before the shutdown

Preventing both entry to input queue
and output from schedule queue

The message is cataloged in the
input queue for the MHP for
ERREVT2 (an MCF event).

The message is recataloged in the
input queue for the MHP for
ERREVT2 (an MCF event).

Preventing entry to input queue only The message is cataloged in the
input queue for the MHP for
ERREVT2 (an MCF event).

The MHP is started normally.

3. Functions

160

• Using mcftdctsg to shut down scheduling for service groups

The shutting down of scheduling of service requests to a service group can be
classified into two types depending on whether the input queue is a disk queue or
a memory queue. Each of these two types of scheduling shutdown can be further
classified into three subtypes. Table 3-11 shows the scheduling shutdown of
service requests to MHP service groups.

Table 3-11: Shutdown of MHP service group

Preventing only scheduling The message is cataloged in the
input queue for the MHP for
ERREVT2 (an MCF event).

The message is recataloged in the
input queue for the MHP for
ERREVT2 (an MCF event).

Type of scheduling shutdown Processing for
messages that

arrived after the
shutdown

Processing for
messages already

cataloged in the input
queue before the

shutdown

Input queue is disk
queue

Preventing both entry to
input queue and output from
schedule queue

The message is cataloged
in the input queue for the
MHP for ERREVT2 (an
MCF event).

The message is placed in
the schedule wait state.
After the scheduling
shutdown is released, the
MHP is started normally.

Preventing entry to input
queue only

The message is cataloged
in the input queue for the
MHP for ERREVT2 (an
MCF event).

The MHP is started
normally.

Preventing output from
schedule queue only

The message is cataloged
in the input queue and the
message is placed in the
schedule wait state.#

The message is placed in
the schedule wait state.
After the scheduling
shutdown is released, the
MHP is started normally.

Input queue is memory
queue

Preventing both entry to
input queue and output from
schedule queue

The message is cataloged
in the input queue for the
MHP for ERREVT2 (an
MCF event).

The message is cataloged
in the input queue for the
MHP for ERREVT2 (an
MCF event).

Preventing entry to input
queue only

The message is cataloged
in the input queue for the
MHP for ERREVT2 (an
MCF event).

The MHP is started
normally.

Type of scheduling shutdown Processing for messages
that arrived after the

shutdown

Processing for messages
already cataloged in the input
queue before the shutdown

3. Functions

161

#

If the number of messages cataloged in the disk input queue exceeds the
maximum, the messages that could not be stored are cataloged in the input queue
for the MHP for ERREVT2 (an MCF event).

(b) Shutting down scheduling automatically
In the application attribute definition, you can define whether or not scheduling for an
MCF application or service should be shut down if an MHP terminates abnormally
while executing a service. Also, in the application attribute definition, you can define
that scheduling for an MCF application or service should be shut down after a specified
number of abnormal terminations of the MHP. You can specify whether the number of
abnormal terminations refers to the number of consecutive MHP abnormal
terminations, or the number of MHP abnormal terminations in total.

To shut down in units of applications, use the aplihold command in the application
attribute definition. To shut down in units of services, use the servhold command in
the application attribute definition. To shut down in units of service groups, use the
srvghold command in the application attribute definition.

Note that an abnormal termination includes the situation in which an MHP is rolled
back by the rollback function dc_mcf_rollback() that has no-return specified in a
parameter. For details of the rollback function, see the OpenTP1 Programming Guide.

When shutting down only the scheduling in units of service groups, you can choose
how to handle the received messages if MHP terminates abnormally while executing
a service. You can:

• Replace received messages with an error event

• Reschedule received messages at the beginning of the schedule queue. To
reschedule, assign r to recvmsg in the application attribute definition.

For automatic shutdown due to abnormal termination, the shutdown status of MHP is
not inherited at a full recovery operation after a stoppage of the online system.

When the specification that prevents shutdown at abnormal termination is specified by

Preventing output from
schedule queue only

The message is cataloged
in the input queue for the
MHP for ERREVT2 (an
MCF event).

The message is
recataloged in the input
queue for the MHP for
ERREVT2 (an MCF
event).

Type of scheduling shutdown Processing for
messages that

arrived after the
shutdown

Processing for
messages already

cataloged in the input
queue before the

shutdown

3. Functions

162

aplihold, servhold, or srvghold in the application attribute definition, the
application, service, or service group will not be shut down. If frequent abnormal
terminations occur with this specification, use a command to shut down the
application, service, or service group.

(c) Automatic scheduling shutdown caused by inconsistency between the
defined MCF-application name and the MHP
When MCF schedules an MHP, it checks for a service group that corresponds to the
application name specified in the application attribute definitions. If no such service
group exists, OpenTP1 shuts down scheduling for that service group only, and outputs
a message to the message log to report that there is no corresponding service group.
See Table 3-11 for differences between situations where the input queue is a disk queue
and where the input queue is a memory queue.

The MHP scheduling-shutdown status, when scheduling for the MHP was
automatically shut down because of an inconsistency between the MCF-application
name and the MHP, is not inherited during a full recovery operation after a stoppage
of the online system.

3.4.3 Process control and the Multiserver facility
OpenTP1 provides various facilities for controlling processes. Processes occur in
memory that is used when OpenTP1 system services or user servers (UAPs) are
executed. A process that is generated by executing a user server is sometimes called a
user server process, a UAP process or simply a process.

In the process service definition, you can specify the total number of processes so that
the number of system service processes and user server processes is neither more nor
less than the number required.

You must start the user server before attempting to control user server processes. The
user server can be started:

• automatically, at the same time as OpenTP1 starts; or

• manually, by the dcsvstart -u command.

The main facilities for controlling processes are:

• the Multiserver facility

• the Internode Load-Balancing facility

The following sections describe the above facilities in more detail.

(1) Multiserver facility
OpenTP1 provides the Multiserver facility to enable multiple instances of a service to
be executed in parallel and in different processes, in response to multiple requests for
the service. When a new service request comes to an already executing user server, a

3. Functions

163

new user server process can be executed for the request.

Not all SPPs can use the Multiserver facility. SPPs that use schedule queues (i.e.,
servers that receive requests from queues) and MHPs can use the Multiserver facility,
but servers that receive requests from a socket cannot use the Multiserver facility. In
the user service definition (in the parallel_count operand) specify that a server that
receives requests from a socket should use one process only.

(2) Resident processes and non-resident processes
A process of a UAP that uses the Multiserver facility can be reserved during OpenTP1
operations or can be reserved dynamically. Processes that are always reserved are
called resident processes. Processes that are started when necessary are called
non-resident processes.

An advantage of non-resident processes is that they enable efficient use of the memory
area in the OpenTP1 system. An advantage of resident processes is that the processing
for a user server is performed more quickly than for non-resident processes.

When using the Multiserver facility, in a user service definition you can specify the
maximum number of processes to be used. If you specify more than one resident
process, only that number of processes will be started and executed in parallel. If you
specify more than one non-resident process, only that number of processes will be
started dynamically.

If there is no spare system memory, a non-resident process is executed after the finish
of any currently executing non-resident process.

Set the number of resident and non-resident processes in the parallel_count
operand of the user service definition before starting the user server.

(3) Balancing loads in the Multiserver facility
The Multiserver facility can increase or decrease the number of non-resident processes
according to the number of service requests in the schedule queue.

The startup timing of non-resident processes depends upon the values specified in the
balance_count operand in the user service definition. If there are remaining service
requests that exceed (the values specified to the balance_count operand x processes
being started), OpenTP1 starts the non-resident processes. If the number of service
requests remaining in a schedule queue is less than (the values specified to the
balance_count operand x processes being started), OpenTP1 will terminate the
non-resident processes.

Figure 3-48 gives an overview of the Multiserver facility based on resident and
non-resident processes.

3. Functions

164

Figure 3-48: Overview of Multiserver facility based on resident and
non-resident processes

3. Functions

165

(4) Scheduling priority for user servers
In the user service definition, you can assign a scheduling priority to each user server.
Non-resident processes in a user server that has high scheduling priority are
preferentially scheduled compared to non-resident processes in a user server that has
low scheduling priority.

Figure 3-49 provides an overview of scheduling priority.

3. Functions

166

Figure 3-49: Overview of scheduling priority

(5) Balancing loads among nodes
OpenTP1 can process a heavily-used service on multiple nodes. When many processes
are required for processing a service requested from an SPP, OpenTP1 can distribute

3. Functions

167

the processing to SPPs with the same service group name on other nodes. To use this
facility for balancing loads among nodes, the following conditions must be satisfied:

• A user server providing the same service to multiple nodes in the same LAN must
be operating.

• In the all_node operand in the system common definition, each OpenTP1 node
must define the other nodes. This definition must allow the OpenTP1 nodes to
exchange the information (name information) of the user servers operating on the
nodes.

Service requests are passed to the user server on a randomly selected node. OpenTP1
references the server information of the node and avoids selecting it if it is hard to
schedule. Therefore, even when a schedulable user server exists on the local node, the
request is not always passed to that user server. To select the user server on the local
node first, specify scd_this_node_first=Y in the schedule service definition.
With Y specified, OpenTP1 selects a user server on another node only when it is hard
for the user server on the local node to accept the request.

The internode load-balancing facility requires that the operation conditions of the user
servers on nodes are the same. If the following conditions differ greatly from node to
node that is selected, such an environment is unsuitable for the internode
load-balancing facility. In this case, do not place the service groups with the same
name in multiple nodes. The conditions that should not differ greatly are:

• Operation cost such as the connection fees of the public line

• Line speed

• Line quality

• Performance of individual nodes

Each node reports server information to be referenced when allocating a request to the
user server. For a system in which SPPs of the same service group are not distributed
among multiple nodes, the server information need not be reported. Especially when a
public line is used, charges for unnecessary connections will occur. In such a system,
specify scd_announce_server_status=N in the schedule service definitions of all
the nodes to suppress reporting of server information.

OpenTP1 can distribute loads for SPPs (servers) that receive requests either from a
queue or from a socket. When such an SPP is busy, OpenTP1 passes the service
requests for the SPP to another user server in another node. The selection of the other
node is almost random, except that for servers that receive requests from a queue,
OpenTP1 checks the status of the node to be scheduled and controls selection so that
it is difficult to select a node that has a low scheduling efficiency. For a server that
receives requests from a socket, however, OpenTP1 neither checks the node status nor
controls selection.

Figure 3-50 gives an overview of the Internode Load-Balancing facility.

3. Functions

168

Figure 3-50: Overview of Internode Load-Balancing facility

Service requests are scheduled according to the load level of each node. The following
load levels are used:

LEVEL0

A light load. Service requests are usually scheduled to nodes with LEVEL0 or
LEVEL1.

LEVEL1

A medium load. At rescheduling due to an error, service requests may not be
scheduled to nodes with LEVEL1. However, if there are only nodes with
LEVEL1 or LEVEL2 at rescheduling, service requests are scheduled to those
nodes.

LEVEL2

A heavy load. Service requests are usually not scheduled to nodes with LEVEL2.
However, if there are only LEVEL2 nodes, service requests are scheduled to
LEVEL2 nodes.

The load level of each node is checked at each load check interval. At that time, the

3. Functions

169

current load level is determined according to the previous load level, the number of
queued service requests, the number of remaining service requests, and the server
processing rate.

Table 3-12 shows the conditions that determine the load level.

Table 3-12: Conditions that determine the load level

Legend

--: Ignored.

Number of queued service requests

Number of service requests that are queued into the schedule queue during a load
check interval

Number of remaining service requests

Number of service requests that are remaining in the schedule queue when the
load is checked

Server processing rate

Processing rate calculated from the following formula:

Server processing rate = (Number of processed services / (Number of queued
service requests + Number of remaining service requests)) 100

The number of processed services is the number of service requests that are
processed during a load check interval.

If the load level is changed, the server information is reported to the name service of
each node and the server information is updated. By using the loadlevel_message
operand in the user service definition, a message reporting the change of the load level
can be output.

Previous load
level

Number of
queued service

requests: Q

Number of
remaining

service requests:
q

Server
processing rate:

X

Current load
level

LEVEL0 Q 1 -- X < 50 LEVEL1

LEVEL1 Q 1 -- 75 X LEVEL0

50 X < 75 LEVEL1

X < 50 LEVEL2

LEVEL2 -- q = 0 -- LEVEL0

q 1 LEVEL2

3. Functions

170

(6) Definitions when using internode load-balancing facility
This section describes the definitions and processing on the TP1/Server Base and TP1/
Client sides and RPC processing when using the internode load-balancing facility.

(a) When the server side determines how to perform load-balancing
The schedule service of TP1/Server Base distributes loads to nodes that can efficiently
process the loads according to the schedule status of each node.

Definition on the server (TP1/Server Base) side

In the definition on the TP1/Server Base side, either:

• include the following settings for the operands in the schedule service definition

set scd_this_node_first = N (default)

set scd_announce_server_status = Y (default)

or

• omit the schedule service definition

Definition on the client (TP1/Client) side

Define dcscddirect=Y (for TP1/Client/P) in the client environment definition
so that TP1/Client makes a request to the schedule service of TP1/Server Base for
load balancing. In the definition on the TP1/Client side, specify where to issue a
request for load-balancing for the OpenTP1 node's schedule service TP1/Client.

In this case, OpenTP1 nodes are selected to determine scheduling in the order
specified in the dchost operand. To select OpenTP1 nodes randomly and not in
the order specified in the dchost operand, you must add dchostselect=Y (for
TP1/Client/P) to the definition.

(b) When the client side determines how to perform load-balancing
according to the load information from the server
When the client is TP1/Client
Definition on the server (TP1/Server Base) side

In the definition on the TP1/Server Base side, either:

• include the following settings for the operands in the schedule service
definition

set scd_this_node_first = N (default)

set scd_announce_server_status = Y (default)

or

• omit the schedule service definition

3. Functions

171

Definition on the client (TP1/Client) side

Define dccltloadbalance=Y (for TP1/Client/P) in the client environment
definition. By this definition, TP1/Client first determines the OpenTP1 node to
which a service request should be issued based on the load level information of
each server acquired from TP1/Server Base. Then it performs an RPC. In this
case, the information including the load level of each server is retained
temporarily. This load level is retained in the area where size is specified in the
dccache operand (which previously was specified in the dccltcachetim
operand). That is, the shorter the value in the dccltcachetime operand
becomes, the newer is the load level of each server that is used to determine the
request destination to which an RPC should be issued. At the same time, it must
be taken into account that accesses to the name service of TP1/Server Base occur
more frequently to acquire the load level information.

When the server and client are TP1/Server Base
In the definitions on both server and client sides, either:

• include the following settings for the operands in the schedule service definition

set scd_this_node_first = N (default)

set scd_announce_server_status = Y (default)

or

• omit the schedule service definition

In this configuration, TP1/Server Base already has the load level set for the server
depending on when it is going to issue a request. Therefore it performs an RPC
for a node with a lower load level. At the time when this request is received, the
schedule service does not transfer the request according to the verification of load
level but processes it within the local node if possible. The schedule service
transfers the request to another node only if the server is blocked or only if the
load level of the server in the local node is LEVEL2 and some other node has a
server with a lower load level.

(c) Operations when internode load-balancing facility is used with other
facilities
Table 3-13 shows the operations when the internode load-balancing facility is used
with other facilities.

3. Functions

172

Table 3-13: Operations of the internode load-balancing facility used with other
facilities

(7) Extended internode load-balancing facility
The user can specify the following items:

Rate of schedules made to the LEVEL0 nodes

By specifying the schedule_rate operand in the schedule service definition,
you can specify the rate of schedules (%) made to the LEVEL0 nodes.

The schedule_rate operand is valid only when you specify Y for the
DCSCDDIRECT operand in the client environment definition of TP1/Client to
make service requests.

Note that if Y is specified for scd_this_node_first in the schedule service
definition, service requests are scheduled to the local node with priority.

The following example shows how service requests are scheduled when you
specify 80 in the schedule_rate operand. The number of service requests is 10.

1. The scheduler obtains the load information of all the nodes from the name
service and then counts the number of LEVEL0 nodes and the number of
LEVEL1 nodes.

2. The scheduler uses the value specified in the schedule_rate operand to
assign a weight to each number of nodes calculated in step 1. Then the
scheduler determines the rate of schedules to be made to the LEVEL0 nodes.

LEVEL0:LEVEL1 = 80 3:20 2 85:15

3. The scheduler selects a LEVEL0 node using the rate calculated in step 2 and
schedules service requests.

When using Operation

Permanent connection by TP1/Client The CUP execution process of TP1/Server Base performs an
RPC in the node that established the permanent connection.
This is the same operation as in the case when the server and
client are TP1/Server Base.

Transaction control API by TP1/Client The transaction delegated execution process of TP1/Server
Base performs an RPC.
This is the same operation as in the case when the server and
client are TP1/Server Base.

Remote API facility The RAP-processing server of TP1/Server Base performs an
RPC.
This is the same operation as in the case when the server and
client are TP1/Server Base.

3. Functions

173

Figure 3-51 shows how service requests are scheduled to LEVEL0 nodes.

Figure 3-51: Scheduling service requests to LEVEL0 nodes

Load check interval

By specifying the loadcheck_interval operand in the user service definition
and the user service default definition, you can specify the load check interval for
each service group. If the load level is changed when the load is checked, the
server information is reported to the name service of each node. Therefore, the
server information may be sent out to the network at each load check interval. To
prevent this, do not specify a short interval unless it is necessary.

If you do not specify the loadcheck_interval operand, the load check interval
will be 30 seconds. Whether to check the load is determined every 10 seconds. In
other words, a load check is executed on every third check.

When you specify the loadcheck_interval operand, the value specified in
this operand is the load check interval. This value determines whether the check
of the load are executed at the interval that is calculated from the greatest common
measure of 10 and the value specified in the loadcheck_interval operand for
each user server. For example, when you specify 3 for the
loadcheck_interval operand of SPP1 and 5 for the loadcheck_interval
operand of SPP2, the interval of the checks is 1 (second) since it is the greatest
common measure of 10, 3, and 5. The load check of SPP1 is executed on every
third check. The load check of SPP2 is executed on every fifth check.

Therefore, to keep the influence to the system to the minimum, specify a multiple
of 5 as the value to be specified for the loadcheck_interval operand.

When you specify 0 for the loadcheck_interval operand, you can suppress
the load check in each service group.

Thresholds of load levels

By specifying the levelup_queue_count operand and the
leveldown_queue_count operand in the user service definition and the user
service default definition, you can use the numbers of remaining service requests
to specify the thresholds that determine the load levels for each service group.

Specify the thresholds as follows:
set levelup_queue_count = U1,U2

3. Functions

174

set leveldown_queue_count = D0,D1

U1: Number of remaining service requests, which determines that the server's
load level is upgraded to LEVEL1

U2: Number of remaining service requests, which determines that the server's
load level is upgraded to LEVEL2

D0: Number of remaining service requests, which determines that the server's
load level is downgraded to LEVEL0

D1: Number of remaining service requests, which determines that the server's
load level is downgraded to LEVEL1

The current load level will be determined by the previous load level and the
number of remaining service requests.

Table 3-14 shows the correspondence between the number of remaining service
requests and the load level.

Table 3-14: Numbersof remaining service requests and load levels

Number of retries to be made if a communication error occurs

If a communication error occurs while service requests are scheduled, the service
requests are not usually rescheduled and an error is returned.

However, by specifying the scd_retry_of_comm_error operand in the
schedule service definition, you can specify the number of schedule retries to be
made to nodes other than the failed node.

Note that if the value specified in the scd_retry_of_comm_error operand

Previous load level Number of remaining service
requests: q

Current load level

LEVEL0 q < U1 LEVEL0

U1 q < U2 LEVEL1

U2 q LEVEL2

LEVEL1 q D0 LEVEL0

D0 < q < U2 LEVEL1

U2 q LEVEL2

LEVEL2 q D0 LEVEL0

D0 < q D1 LEVEL1

D1 < q LEVEL2

3. Functions

175

exceeds the number of nodes with active service groups which are the target of
the service requests, the number of nodes with active service groups which are the
target of the service requests is the upper limit of retries.

When you specify 0, no retry is made.

To use this function, TP1/Extension 1 must be installed beforehand. If TP1/
Extension 1 is not installed, the operation is not guaranteed.

(8) Multi-scheduler facility
In addition to the regular scheduler daemon (called the master scheduler daemon
hereafter), you can start multiple daemon processes specialized to receive service
requests (called the multi-scheduler daemon hereafter) to receive several service
request messages concurrently. This way, you can avoid the scheduling delay due to
reception contention. This solution is called the multi-scheduler facility.

To use the multi-scheduler facility, you must specify:

• scdmulti in the schedule service definition and scdmulti in the user service
definition on the RPC receiving side.

• multi_schedule in the user service definition on the RPC sending side.

It is also possible to group multi-scheduler daemons by servers that receive requests
from a queue. This grouping prevents servers from contending for receiving of service
request messages. When multi-scheduler daemons are grouped, you must specify
scdmulti in the schedule service definition on the server side.

This facility requires TP1/Extension 1 installed. If TP1/Extension 1 is not installed, the
operation is not guaranteed.

Figure 3-52 gives an overview of the multi-scheduler facility.

3. Functions

176

Figure 3-52: Overview of multi-scheduler facility

3. Functions

177

3.4.4 Saving shared memory in sharing a buffer area
An area called a message-storing buffer pool saves service requests on the shared
memory and is secured for each user server. When this area is shared among multiple
user servers, the shared memory used by a user server schedule can be saved. If the
message-storing buffer tool is shared, specify the following definitions in the
concerned nodes.

• Specify a user server group name (schedule buffer group name) that shares a
buffer area in the scdbufgrp operand in the schedule service definition.

• Specify a schedule buffer group name using the scdbufgrp operand in the user
service definitions for every user server to be shared.

If there is no schedule buffer group name specified in the user service definitions, an
error will occur when starting the user server.

Figure 3-53 illustrates the shared buffer area.

3. Functions

178

Figure 3-53: Sharing a buffer area

3. Functions

179

(1) User servers that specify sharing buffer areas
Specifying the sharing of a buffer area is only valid for a server that receives requests
from the queue. Even if the sharing of a buffer area is specified for a server that
receives requests from the socket, the specification will be ignored and be executed
without sharing the buffer area.

(2) Notes for sharing a buffer area
When the processes of the user servers that have sharing specified are started
simultaneously, a conflict occurs in the buffer area and schedule performance may
decrease. Share the buffer area only if the user servers use non-resident processes, or
when it is obvious that the user servers share the buffer simultaneously.

3.4.5 Example of process control with the Multiserver facility
This subsection gives an example of how the Multiserver facility controls UAP (SPP
or MHP) processes.

For example, suppose that:

• up to six processes can be executed concurrently for the SPP or MHP is six.

• the user service definition has been defined as shown in Table 3-15.

Table 3-15: Values specified in user service definition

The total of the resident processes for service groups G1, G2, and G3 is four, so two
more processes can be activated dynamically before the maximum number (6) of
concurrently executable processes is reached. Service groups G1, G2, and G3 use these
two processes according to their scheduling priorities. Table 3-16 summarizes what
happens, and a more detailed explanation of each step follows the table.

Table 3-16: Flow of process control

Items specified in
user service

definition

Service group
G1

Service group
G2

Service group
G3

Total

Number of resident
processes

2 1 1 4

Maximum number of
processes in a service
group

4 2 2 8

Schedule priority 1 2 3 -

Steps in procedure Service group G1 Service group G2 Service group G3

1. Online processing starts. rr r r

3. Functions

180

Legend

r: Resident process standing by (active)

R: Resident process executing a service

: Non-resident process executing a service

1. Online processing starts.

The resident processes for service groups G1, G2, and G3 are made ready at the
start of the online processing. If necessary, two more processes can be started
dynamically because the maximum number of executable processes is six but
there are only four resident processes.

2. G1 and G3 are requested to provide a service.

The service is executed by the resident processes of G1 and G3.

3. Service requests for G1 and G3 increase.

To handle the service requests, non-resident processes are started for G1 and G3.
The services are executed. The number of started processes can be up to the
maximum permitted. In this case, since the total number of processes becomes 6,
no more processes can be added dynamically.

4. Service requests for G1 increase further.

Because the number of processes has reached the maximum, no more processes
can be added dynamically to handle the extra requests for G1.

G1 is provided with another process, however, because G1 has a higher schedule
priority than G3. The non-resident process for G3 is terminated when the

2. G1 and G3 are requested
to provide a service.

RR r R

3. Service requests for G1
and G3 increase.

RR r R

4. Service requests for G1
increase further.

RR r R

5. G2 is requested to
provide a service.

RR R R

6. Service requests for G2
increase.

RR R R

7. Service requests for G1
decrease.

RR R R

Steps in procedure Service group G1 Service group G2 Service group G3

3. Functions

181

currently executing service finishes and a non-resident process for G1 is started.

5. G2 is requested to provide a service.

When a service request is sent to G2, the standing-by service is executed by the
resident process of G2.

6. Service requests for G2 increase.

Because the number of processes has reached the maximum, no more processes
can be added dynamically to handle the extra requests for G2.

G1 has a higher schedule priority than G2, so the non-resident processes for G1
are not terminated and a non-resident process for G2 is not started.

7. Service requests for G1 decrease.

Decreasing the number of service requests for G1 results in termination of a
non-resident process for G1. When the currently executing service is completed
for G1, the available non-resident process is started for G2.

Using procedures such as those described above, OpenTP1 can control processes and
thereby efficiently process service requests for SPPs and MHPs.

3. Functions

182

3.5 OpenTP1 client facility (TP1/Client)

This section describes the OpenTP1 client facility (TP1/Client) used by a client WS or
PC for requesting services from a server system configured using OpenTP1.

For details about TP1/Client/W and TP1/Client/P, see the manual OpenTP1 TP1/Client
User's Guide TP1/Client/W, TP1/Client/P. For details about TP1/Client/J, see the
manual OpenTP1 TP1/Client User's Guide TP1/Client/J.

TP1/Client communications

TP1/Client can perform the following:

• Remote procedure calls of TP1/Client

A UAP of TP1/Client (CUP), a Java applet, a Java application, or a Java
servlet can request a service from an SPP of OpenTP1. When you use TP1/
Client/W or TP1/Client/P, you can start a transaction from a CUP and request
a service from an SPP.

• Message transmission using the TCP/IP protocol (supported by TP1/Client/
W and TP1/Client/P)

Messages can be sent and received between a CUP and an MHP of OpenTP1.

• Communication with XDM/DCCM3

TP1/Client can communicate with old systems such as XDM using the same
method used for issuing remote procedure calls from a CUP, a Java applet, a
Java application, or a Java servlet to OpenTP1.

Preparing to request a service from TP1/Client to OpenTP1

When TP1/Client requests a service of OpenTP1, the facility to determine
whether or not to accept the request is known as the User Authentication facility.

Whether or not the service request is accepted can be set by registering log-in
names and passwords for TP1/Client or CUP in the /etc/passwd directory of
OpenTP1.

The use of the User Authentication facility varies depending on the products.

• For TP1/Client/W and TP1/Client/P for Windows, call the start and end that
indicate a function (dc_clt_cltin_s() and dc_clt_cltout_s()
functions) while coding CUP.

• For TP1/Client/P for MS-DOS, executes the TP1/Client commands (CLTIN
and CLTOUT commands) and manages the start and end of the User
Authentication facility.

The above preparations are not required when you use TP1/Client/J.

3. Functions

183

3.5.1 Remote procedure calls of TP1/Client
This method allows a CPU to request a service from a server UAP (SPP) of OpenTP1
using library functions of TP1/Client/W or TP1/Client/P.

When you use TP1/Client/W or TP1/Client/P, you can start a transaction from a CUP
also.

Figure 3-54 shows the communication between TP1/Client/W or TP1/Client/P and
OpenTP1.

3. Functions

184

Figure 3-54: Communication between TP1/Client/W or TP1/Client/P and
OpenTP1

From a Java applet, a Java application, or a Java servlet, you use the class library of
TP1/Client/J to request a service from a server UAP (SPP) of OpenTP1.

Figure 3-55 shows the communication between TP1/Client/J and OpenTP1.

3. Functions

185

Figure 3-55: Communication between TP1/Client/J and OpenTP1

(1) TP1/Client facilities that need to be defined by OpenTP1
If the following facilities are used in TP1/Client/W or TP1/Client/P, a client service
definition will be required for an OpenTP1 server.

• Starting a transaction from a CUP

In OpenTP1 that has created the client service definition, a system service is
started to manage the transactions started from TP1/Client/W or TP1/Client/P.
This system service is called a client service. The started client service manages
the transactions started by a CUP of TP1/Client.

• Using a permanent connection

In OpenTP1 that has created the client service definition, a system service is
started to enable a permanent connection with TP1/Client/W or TP1/Client/P.
This system service is called a client extended service. The started client extended
service establishes a permanent connection with a CUP of TP1/Client.

To use the remote API facility in TP1/Client/W or TP1/Client/P or to have TP1/Client/
J request services from an SPP of OpenTP1, OpenTP1 must have the RAP-processing
listener service definition.

(2) Reporting server startup to TP1/Client
Startup of UAP can be reported from the UAP server of OpenTP1 to the application
program (CUP) of TP1/Client/W or TP1/Client/P. The startup of UAP server is

3. Functions

186

reported by sending data with the dc_rpc_cltsend() function to CUP. Using this
function can simultaneously report the completion of server startup to the clients.

The data reported by the dc_rpc_cltsend function is received by the
dc_clt_chained_accept_notification or dc_clt_accept_notification
function of CUP. TP1/ClientW or TP1/Client/P acknowledges that the server is being
operated by receiving the data by CUP. After that, a service is requested from CUP to
the server. For details about the dc_clt_chained_accept_notification and
dc_clt_accept_notification functions, see the manual OpenTP1 TP1/Client
User's Guide TP1/Client/W, TP1/Client/P.

Figure 3-56 illustrates communication from a server UAP of OpenTP1 to a CUP of
TP1/Client/W or TP1/Client/P.

Figure 3-56: Communication from a server UAP of OpenTP1 to a CUP of TP1/
Client/W or TP1/Client/P

(3) Equation for estimating the number of file descriptors used for sockets
The maximum number of file descriptors used for the sockets in the transactional RPC
execution process (clttrnd) is specified in the max_socket_descriptors

3. Functions

187

operand of the user service default definition.

Use the following equation to specify the maximum number of file descriptors used
for sockets:

(number-of-UAP-processes-that-involve-communication-by-transactional-RPC-exec
ution-processes + 1 + number-of-system-service-processes) / 0.8

Legend:

 : Rounded up to the nearest whole number.

Note that the value you specify here will apply to all UAPs and to some system servers.

3.5.2 MCF message exchange using the TCP/IP protocol
In this method, communication with an OpenTP1 UAP is achieved using a message
exchange configuration that uses LANs connected with the TCP/IP protocol.
Messages can be sent from a CUP of TP1/Client, and messages sent from an OpenTP1
UAP (MHP) can be received via TP1/Client.

When communication is via TCP/IP, the OpenTP1 system from which a service is
requested must use TP1/Message Control, TP1/NET/Library, and the TP1/NET/TCP/
IP product that corresponds to the TCP/IP protocol. Figure 3-57 illustrates TP1/Client
communications using MCF message exchange and the TCP/IP protocol.

3. Functions

188

Figure 3-57: TP1/Client communications using MCF message exchange and
the TCP/IP protocol

3.5.3 Communication with XDM/DCCM3
In this method, XDM/DCCM3 can communicate with conventional systems such as
XDM in the same way as the issuance of remote procedure calls from CUP to
OpenTP1. This section describes how to communicate with the servers other than the
OpenTP1 server using a LAN connected by a TCP/IP protocol. You can communicate
with XDM/DCCM3 in the same way as for service requests to OpenTP1.

If TP1/Client/W, TP1/Client/P or TP1/Client/J communicates with the XDM/DCCM3,
DCCM3/SERVER/TP1 must be installed in the XDM/DCCM3 host.

3. Functions

189

3.6 Client/server communications using OSI TP

OpenTP1 supports the TCP/IP and OSI TP communication protocols for client/server
communications. This section provides an overview of use of OSI TP as the
communication protocol. To use the OSI TP communication protocol, you must have
TP1/NET/Library, TP1/NET/OSI-TP-Extended, and an OSI TP communication
management product. An OpenTP1 system service (XATMI communication service) is
also required.

The following figure shows the client/server communications mode when OSI TP is
used.

Figure 3-58: Client/server communications mode when OSI TP is used

3.6.1 OpenTP1's remote system
OpenTP1's remote system can be an OpenTP1 system or an XDM (XDM/DF/TP)
system. When OSI TP communication is used, a transaction started at the local
system's OpenTP1 can be extended to the remote system even if the remote system is

3. Functions

190

not an OpenTP1 system.

APIs with the XATMI interface are used for client/server communication under OSI
TP. For details about the XATMI interface, see 3.2.4 Communication via RPCs that use
the XATMI interface.

3.6.2 Route used for communication
A logical channel is established between the local system's OpenTP1 and the remote
system. This channel is called an association.# Once an association is established,
client/server communications become available.

An association is established between the addresses (PSAP addresses) that represent
the contact between the systems.

#

In this manual, a logical channel is referred to as an association only when client/
server communication is performed using the OSI TP communication protocol.

(1) Calling and called systems
In OSI TP communications, the attributes of an association are determined by the
system that requested establishment of the association. Calling refers to issuing an
association establishment request, and called refers to receiving such a request. The
system that issues an association establishment request is the calling system, and the
system that receives such a request is the called system.

To request a service from OpenTP1 for a remote system, an association established by
a calling OpenTP1 system is used. Associations established by a called OpenTP1
system are used principally for error recovery communications.

(2) Establishing association
If you specify in the TP1/NET/OSI-TP-Extended definitions a request for
establishment of an association during system startup, an association is established
when the system starts. Whether the local system is to be the calling system or the
called system depends on the specification of the nettalccn protocol-specific
definition in the TP1/NET/OSI-TP-Extended definitions.

Make sure that you specify a request to establish association during system startup in
the TP1/NET/OSI-TP-Extended definitions.

(3) Releasing association
When the OpenTP1 system terminates normally, the association is released
successfully. If the OpenTP1 system or the remote system terminates abnormally,
abnormal release of the association results.

(4) Specifying the system definitions
The following OpenTP1 definitions are required in order to perform client/server

3. Functions

191

communications using OSI TP:

• XATMI communication service definition

• Network library definitions (TP1/NET/Library and TP1/NET/OSI-TP-Extended
definitions)

OSI TP communications are enabled when correspondence between the XATMI
communication service and TP1/NET/OSI-TP-Extended is established by the above
definitions.

3.6.3 Application programs used for communication
UAPs on OpenTP1 use the XATMI interface for communication with remote systems.
Transaction processing can be extended to a remote system. For client/server
communications using OSI TP, SUPs and SPPs are supported as UAPs on OpenTP1.
Other UAPs on OpenTP1 (such as MHPs) are not supported.

The following describes the XATMI interface communication modes that are
supported for client/server communications using OSI TP.

• Request/response service paradigm (mode in which responses are received
synchronously, mode in which responses are received asynchronously, and mode
in which no responses are sent)

Interactive service communications are not supported in client/server communications
using OSI TP.

The following figure shows an application program communication mode when
OpenTP1 is the client and XDM/DF/TP is the server.

3. Functions

192

Figure 3-59: Application program communication mode (when OpenTP1 is the
client and XDM/DF/TP is the server)

The following figure shows an application program communication mode when
XDM/DF/TP is the client and OpenTP1 is the server.

3. Functions

193

Figure 3-60: Application program communication mode (when XDM/DF/TP is
the client and OpenTP1 is the server)

(1) Relationship with transaction processing
If communication is to be established between two OpenTP1 systems, you can extend
transaction processing between the systems. If communication is to be established
between an OpenTP1 system and a non-OpenTP1 system, you can extend transaction
processing between the systems by using OSI TP.

3. Functions

194

(2) SPP for recognizing the association status (communication event processing
SPP)

To perform client/server communications using OSI TP, you must create an SPP for
identifying association establishment and release. This is called a communication
event processing SPP. By creating a communication event processing SPP, you can
receive an association release notification event by the SPP. By receiving such a
communication event, you can determine the timing of association re-establishment.
You use the dc_xat_connect function to re-establish association.

Communication events are always reported, regardless of whether the local system is
the calling system or the called system. The communication event processing SPP
enables you to determine from the details of a notification event the association's
attributes and status.

You must specify in advance in the XATMI communication service definition the
service group name and service name of the communication event processing SPP.
Communication events are reported on the basis of these specifications.

For details about the communication event processing SPP and the events that can be
received, see the OpenTP1 Programming Guide and the applicable OpenTP1
Programming Reference manual.

The following figure provides an overview of a communication event processing SPP.

Figure 3-61: Overview of a communication event processing SPP

3. Functions

195

3.6.4 Overview of environment setup
This subsection describes how to set up an environment for an OpenTP1 system when
OSI TP is used as the client/server communication protocol. The procedures describes
in (2) and (3) are the same as for the normal OpenTP1 procedures.

(1) Installing the OpenTP1 products
Install the following products, which are required for OSI TP communication:

TP1/Server Base, TP1/NET/Library, and TP1/NET/OSI-TP-Extended

(2) Creating the definitions for TP1/Server Base
After the superuser has chosen the OpenTP1 system administrator, the OpenTP1
system administrator creates the definitions for TP1/Server Base.

(3) Registering OpenTP1
Execute the dcsetup command to register OpenTP1 in the OS.

(4) Creating the definitions for TP1/NET/OSI-TP-Extended
Create the definitions for TP1/NET/OSI-TP-Extended. Use a utility to analyze the
definitions and create the object file, and then store it with the following file name
under the directory for storing the OpenTP1 system definitions:

• $DCCONFPATH/xatcex

When you use TP1/NET/OSI-TP-Extended in an OpenTP1 system, there is no need to
execute the command for registering TP1/NET/Library (netsetup command).

For details about how to set up an OpenTP1 system, see 5.1 Setting up an OpenTP1
system. For details about the prerequisite programs other than OpenTP1, see the
manual OpenTP1 Protocol TP1/NET/OSI-TP-Extended.

3.6.5 In the event of a failure
In the event of a failure in client/server communication using OSI TP, the XATMI
interface function that requested the service returns an error. For details about the
actual return values, see the notes for the individual functions of the XATMI interface
in the applicable OpenTP1 Programming Reference manual.

For details about handling communication protocol failures, see the description of
error handling procedures in the manual OpenTP1 Protocol TP1/NET/
OSI-TP-Extended.

3. Functions

196

3.7 Remote API facility

The remote API facility is the processing in which OpenTP1 transfers an API issued
by the UAP at a client node to the server, and server processes are used to perform the
delegated execution of the API. The UAP at the client node that requests the remote
API facility is called a RAP-processing client. The RAP-processing listener of
OpenTP1 receives the API issued by the RAP-processing client and the
RAP-processing server executes the API on the server node. The RAP-processing
listener and RAP-processing server operate as user services of OpenTP1.

Figure 3-62 shows an overview of the remote API facility.

3. Functions

197

Figure 3-62: Remote API facility

Table 3-17 shows the UAPs that can be a RAP-processing client.

Table 3-17: UAPs that can be RAP-processing clients

Program Product UAPs that can be a RAP-processing client

TP1/Server Base SUP, SPP, MHP

3. Functions

198

The APIs that can be executed remotely for each type of RAP-processing client are
listed below.

TP1/Server Base and TP1/LiNK acting as the RAP-processing client

TP1/Client/P and TP1/Client/W acting as the RAP-processing client

TP1/Client/J acting as the RAP-processing client

TP1/Client for .NET Framework acting as the RAP-processing client

TP1/Client CUP

C library function Program for creating a COBOL-UAP

dc_rpc_call CBLDCRPC ('CALL ')

C library function Program for creating a COBOL-UAP

dc_rpc_call_s CBLDCRPS ('CALL ')

dc_trn_begin_s CBLDCTRS ('BEGIN ')

dc_trn_chained_commit_s CBLDCTRS ('C-COMMIT')

dc_trn_chained_rollback_s CBLDCTRS ('C-ROLL ')

dc_trn_unchained_commit_s CBLDCTRS ('U-COMMIT')

dc_trn_unchained_rollback_s CBLDCTRS ('U-ROLL ')

Method

rpcCall

trnBegin

trnChainedCommit

trnChainedRollback

TrnUnchainedCommit

trnUnchainedRollback

Method

Call

Program Product UAPs that can be a RAP-processing client

3. Functions

199

3.7.1 Example of using the remote API facility
The remote API facility allows requesting a UAP to execute a service even if the UAP
is inside a firewall. Figure 3-63 illustrates a remote procedure call to inside of a
firewall. If you use TP1/Client, see the manual OpenTP1 TP1/Client User's Guide
TP1/Client/W, TP1/Client/P.

Begin

CommitChained

RollbackChained

Commit

Rollback

Method

3. Functions

200

Figure 3-63: Remote procedure call to a UAP inside a firewall

3. Functions

201

3.7.2 Permanent connection
OpenTP1 establishes a logical communication path (permanent connection) between
the UAP that requested a remote API (RAP-processing client) and the RAP-processing
server.

Two modes (static connection schedule mode and dynamic connection schedule mode)
are available to schedule a permanent connection. You can specify either mode using
the rap_connection_assign_type operand in the RAP-processing listener
service definition.

(1) Static connection schedule mode
To use the static connection schedule mode, specify static in the
rap_connection_assign_type operand or omit the specification.

The static connection schedule mode allows you to schedule a permanent connection
between a RAP-processing client and a RAP-processing server (one to one) by
allocating a RAP-processing server when a RAP-processing client requests
establishment of a connection. This mode is suitable when the number of
RAP-processing clients to be used simultaneously is less than the number of
RAP-processing servers to be started (the maximum number of RAP-processing
servers is 128 due to an OpenTP1 limit).

When you use the static connection schedule mode, the maximum number of
permanent connections that a RAP-processing listener can manage is 256. The
maximum number of RAP-processing clients that can be executed with simultaneous
permanent connections is the number of RAP-processing servers. Remaining
permanent connections cannot be established unless currently executing
RAP-processing clients release the permanent connections. Therefore, if the number
of RAP-processing clients is greater than the number of RAP-processing servers,
perform either of the following:

• Establish permanent connections from RAP-processing clients before you request
delegated execution of an API and release the permanent connections from
RAP-processing clients after you request delegated execution of an API.

• Start multiple RAP-processing listeners and increase the number of
RAP-processing servers that RAP-processing clients establish permanent
connections with.

(2) Dynamic connection schedule mode
To use the dynamic connection schedule mode, specify dynamic in the
rap_connection_assign_type operand.

The dynamic connection schedule mode allows you to dynamically allocate an unused
RAP-processing server when a request for delegated execution of an API is issued.
This mode does not allocate a RAP-processing server when a RAP-processing client

3. Functions

202

requests establishment of a connection. This mode is suitable when the number of
RAP-processing clients to be used simultaneously is greater than the number of
RAP-processing servers but you do not want to increase the number of resources
required for RAP-processing servers.

When you use the dynamic connection schedule mode, the maximum number of
permanent connections that a RAP-processing listener can manage is 1024. You can
specify the maximum number of clients that simultaneously connect to a
RAP-processing listener in the rap_max_client operand in the RAP-processing
listener service definition.

In the dynamic connection schedule mode, a RAP-processing server is allocated only
when a request for delegated execution of an API is received from a RAP-processing
client and the RAP-processing server is released when the delegated execution of an
API is terminated. Therefore, you do not need to establish and release a permanent
connection each time you request delegated execution of an API like you do in the
static connection schedule mode. Since you do not need to start multiple
RAP-processing listeners, you do not need to increase the communication ports for
letting packages pass through the firewall. However, note that the response
performance might degrade in the dynamic connection schedule mode compared to the
static connection schedule mode when the load on the RAP-processing listeners
becomes too great.

3.7.3 Connection mode
There are two permanent connection management modes (automatic connection mode
and non-automatic connection mode). These modes differ in the method of
establishing and releasing the connection. In the automatic connection mode,
OpenTP1 manages establishing and releasing a connection. In the non-automatic
connection mode, the user manages establishing and releasing a connection. You can
specify the connection mode in the user service definition of the RAP-processing
client.

(1) Automatic connection mode
In this mode, OpenTP1 manages establishing and releasing a permanent connection.
A permanent connection is automatically established when the RAP-processing client
issues dc_rpc_call, specifying a service group name that is defined with the -w
option in the user service network definition.

A permanent connection starts at issuance of dc_rpc_call to a service group in the
user service network definition and ends at issuance of dc_rpc_close for
terminating the remote procedure call.

(2) Non-automatic connection mode
In this mode, the user manages establishing and releasing a permanent connection. The
user issues the API (dc_rap_connect or dc_rap_disconnect) for establishing or

3. Functions

203

releasing a connection at a RAP-processing client. If the user has not established a
permanent connection when the RAP-processing client issues dc_rpc_call with a
service group name defined with the -w option in the user service network definition,
the dc_rpc_call fails.

3.7.4 RAP-processing client manager
Even when a RAP-processing client recognizes that a permanent connection has been
established, the connection may be invalid (such as when the machine on the
RAP-processing server side is powered off). In this case, the RAP-processing client
may issue dc_rpc_call to send a service request to the RAP-processing server. This
can happen even though the service request cannot reach the RAP-processing server,
and no reply to the dc_rpc_call returns to the RAP-processing client until a timeout
occurs.

To prevent this problem, define the RAP-processing client manager service definition
and start up the RAP-processing client manager. The RAP-processing client manager
determines whether the current connection is valid before the RAP-processing client
issues dc_rpc_call.

When the RAP-processing client manager determines that the current connection is
invalid, it releases the unnecessary connection if it is in the automatic connection
mode. Then it establishes a connection again, and issues dc_rpc_call to send a
service request. If in the non-automatic connection mode, the dc_rpc_call returns
an error due to DCRPCER_NET_DOWN.

To set the operating environment of the RAP-processing client manager, execute the
rapsetup command. To start up the RAP-processing client manager, execute the
rapdfgen command and create a user service definition for the RAP-processing
client manager.

Note:

When the RAP-processing client manager is restarted after abnormal termination
or when the RAP-processing client manager has terminated normally, a
RAP-processing client may forcibly close the current connection, assuming the
connection to be invalid. If the forcibly closed connection was valid, OpenTP1
outputs message KFCA26965-E (when the static connection schedule facility is
used) or message KFCA26956-W (when the dynamic connection schedule
facility is used).

For details on messages KFCA26965-E and KFCA26956-W, see the manual
OpenTP1 Messages.

3.7.5 Definitions necessary for using the remote API facility
The following definitions need to be set to use the remote API facility between TP1/
Server Bases.

3. Functions

204

On a RAP-processing client side

User service definition

User service network definition

RAP-processing client manager service definition(optional)

On a RAP-processing server side

RAP-processing listener service definition

3.7.6 Prerequisites for using the XA resource service
To use the XA resource service, the remote API facility and the following program
products are required:

When linking with a J2EE application server

• TP1/Client/J

• uCosminexus TP1 Connector or Cosminexus TP1 Connector

When linking with a .NET Framework application

• Client .NET

• Connector .NET

XA resource service can use either of two methods of scheduling a permanent
connection: static connection schedule mode or dynamic connection schedule mode.

For details about the XA resource service, see 3.1.7 Transaction control based on the
XA resource service.

3. Functions

205

3.8 Dynamic loading of service functions

The service functions in the UAP shared library can be loaded (read) dynamically.
Service functions can be added or deleted from an SPP simply by changing the
definition. The UAP shared library is created by linking the set of UAP object files
generated by compiling the UAP source files.

When you load service functions dynamically, you can add or delete service functions
simply by changing the service operand of the user service definition without having
to change the stub or re-create the UAP's executable file. Because the service functions
are loaded when the UAP starts, no stub or service functions are needed in order to
create the UAP's executable file. Also, because no RPC interface definition is required,
there is no need to re-create the UAP's executable file when adding a new service to or
deleting a service from an existing UAP.

Because dynamic loading of service functions saves work, it is particularly useful in a
system where services are frequently added or deleted.

Note

Dynamic loading of service functions is applicable only to SPPs and MHPs,
except in the following cases:

• The user server uses the XATMI interface.

• The TP1/Offline Tester is being used.

3.8.1 Examples of using dynamic loading of service functions
Dynamic loading of service functions can be used on its own, or in combination with
a stub.

(1) Examples of using dynamic loading of service functions on its own
On receipt of a service request from a client UAP, the server acquires the service
functions from the UAP shared library and executes them.

The following figures show examples of UAPs (SPP and MHP) that use dynamic
loading of service functions.

3. Functions

206

Figure 3-64: Example of a UAP (SPP) that uses dynamic loading of service
functions

3. Functions

207

Figure 3-65: Example of a UAP (MHP) that uses dynamic loading of service
functions

(2) Examples of using dynamic loading of service functions with a stub
Dynamic loading of service functions can be used in combination with an SPP that
uses a stub and service functions. When they are used together and services are added
or deleted, there is no need to re-create the executable file for the UAP that uses a stub
and service functions.

The following figures show examples of UAPs (SPP and MHP) that use dynamic
loading of service functions in combination with a stub.

3. Functions

208

Figure 3-66: Example of a UAP (SPP) that uses dynamic loading of service
functions

3. Functions

209

Figure 3-67: Example of a UAP (MHP) that uses dynamic loading of service
functions and a stub

3.8.2 Preparation required for using dynamic loading of service
functions

The following describes the preparation required for using dynamic loading of service
functions.

(1) Setting procedure
To set up dynamic loading of service functions:

1. Create a UAP shared library from the service functions.

2. In the service operand of the user service definition, specify the service names,
entry point names, and UAP shared library name.

3. Functions

210

For details about the service operand, see the manual OpenTP1 System Definition.

(2) Criteria for relinking a UAP object
Table 3-18 describes whether the UAP object needs to be relinked after a service
function is added.

Table 3-18: Criteria for relinking UAP objects

Legend:

Yes: The UAP object must be relinked.

No: The UAP object does not need to be relinked.

No. UAP object in which a service is added or
deleted

Service added by Relink

1 UAP object that uses only the RPC interface
definition

Using the RPC interface
definition

Yes

Using dynamic loading of
service functions

No

2 UAP object that uses only dynamic loading of
service functions

Using the RPC interface
definition

Yes

Using dynamic loading of
service functions

No

3 UAP object that uses both the RPC interface
definition and dynamic loading of service functions

Using the RPC interface
definition

Yes

Using dynamic loading of
service functions

No

3. Functions

211

3.9 Additional Features

In addition to the system services described previously in the manual, OpenTP1
provides several other service facilities.

To use the resource manager, install the TP1/Resource Manager Monitor in the
OpenTP1 system. Otherwise, use the standard facilities provided by TP1/Server Base.

3.9.1 Locking resources
OpenTP1 provides locking facilities via a resource manager that maintains the
consistency of each resource so that more than one user can share not only DAM and
TAM files but also other resources.

(1) Management units and scope of a lock
OpenTP1 manages a lock from the time a lock request is issued until the time the lock
is released. A lock is usually managed for each global transaction; however, the
DAM-service locks are managed for each transaction branch.

The scope of a lock is within one OpenTP1 system. A UAP on one OpenTP1 system
cannot lock a resource on another OpenTP1 system. Even in one OpenTP1 system that
is composed of multiple nodes, a lock between nodes is not possible.

(2) Requesting a resource lock with the PR or EX lock mode
The dc_lck_get function can be called from a UAP to lock a resource. In the
arguments, specify the resource name and lock mode (method of preventing other
UAPs from accessing the resource).

Two lock modes are available: PR mode excludes only UAPs that update the resource,
allowing access by other UAPs that only reference the resource. EX mode grants
exclusive use of the resource, prohibiting access by all other UAPs.

The following table lists and describes the lock modes.

Table 3-19: Lock modes

Note

PR: Protected Retrieve

Lock mode Type Description

PR Reference While a UAP is using the resource, OpenTP1 permits other UAPs
to access the resource for reference only, and prohibits other UAPs
from updating the resource.

EX Update While a UAP is using the resource, OpenTP1 prohibits all kinds of
access from other UAPs.

3. Functions

212

EX: EXclusive

The following table lists and describes when resources can be shared depending on the
combination of lock modes.

Table 3-20: Possibility of sharing resources depending on combination of lock
modes

(3) Releasing a lock
A lock on a resource can be released by a UAP issuing:

• a lock-release request for each resource (e.g., by issuing the function
dc_lck_release_byname())

• a global lock-release request (e.g., by issuing the function
dc_lck_release_all())

OpenTP1 automatically releases all the resources from locks at the termination of a
transaction. This ensures that resources are never left monopolized even if the user
omits issuing the release request or the UAP terminates abnormally.

(4) Waiting to use a resource
In a parameter of the lock-request function dc_lck_get(), you can specify whether
or not the UAP should wait if it cannot immediately use a resource. A UAP cannot use
a resource when:

• another UAP is already using the resource and has locked the resource in the EX
mode

• the UAP attempts to use the resource with a lock in the EX mode while another
UAP is already using the resource and has locked the resource with the PR mode

If the parameter specifies that a UAP is to wait until a resource can be locked,
OpenTP1 makes the UAP that wants to use a resource wait until the lock on the
resource is released.

If the parameter specifies that a UAP is not to wait until a resource can be locked, an
error is immediately returned.

When several UAPs want to use a resource, the lock-wait priority determines which
UAP is to next use the resource. The lock-wait priority for a UAP is specified in the
user service definition for each UAP service group. A UAP with a higher priority
might be able to use a resource earlier than a UAP with a lower priority. The fact that

Lock mode of UAP currently
using the resource

UAP that requests access
with PR mode

UAP that requests access
with EX mode

PR mode Can share Cannot share

EX mode Cannot share Cannot share

3. Functions

213

a UAP with a low priority might access a resource after UAPs with higher priorities
needs to be kept in mind when assigning priorities.

In the lck_wait_timeout operand in the lock service definition, you can specify
how long a UAP should wait for a resource lock to be released. If a lock is not released
before this time expires, a lock-request error is returned.

Figure 3-68 illustrates how lock-wait priority affects the sequence in which UAPs can
use a resource.

Figure 3-68: Priorities determining sequence in which resources are used

3. Functions

214

(5) Deadlocks in TAM and DAM files
This section describes how TAM and DAM lock functions are affected by deadlocks.

When two or more UAPs lock multiple resources in different sequences, an
undesirable situation called a deadlock might occur. For example, in one form of
deadlock, one UAP might lock resource A and wait for resource B to be released while
another UAP might be locking resource B and waiting for resource A to be released.
Figure 3-69 illustrates a deadlock.

Figure 3-69: Example of a deadlock

OpenTP1 detects deadlocks differently depending on whether the UAPs are on the
same or different nodes. When UAPs are running on the same node, OpenTP1
automatically checks at regular intervals to detect deadlocks. When UAPs are running
on different nodes, however, OpenTP1 cannot directly detect a deadlock so OpenTP1
checks whether any UAP has exceeded the specified time-limit for waiting for a
resource. In the lck_wait_timeout operand in the lock service definition, you can
specify the time-limit for waiting for a resource.

(a) Handling deadlocks
When a deadlock occurs, OpenTP1 returns an error to the lock request from the UAP
process that has the lowest lock-wait priority. You can specify a UAP lock-wait priority
with the deadlock_priority operand in the user service definition.

When a deadlock causes an error to be returned by the function that attempted to
reserve the resource, you should do the following in the UAPs:

• For SUPs or SPPs

When a deadlock occurs during SUP or SPP processing, you should roll back the
transaction by using a rollback function (e.g.,
dc_trn_unchained_rollback()). SUPs or SPPs that have been rolled back
because of a deadlock are not re-executed. You should ensure that the client UAP
re-requests the relevant service.

3. Functions

215

• For MHPs

When a deadlock occurs during MHP processing, issue the
dc_mcf_rollback() function to roll back. In this function you can specify
whether to re-execute the rolled back application.

(b) Output of deadlock information and timeout information
When a deadlock occurs, detailed deadlock information about the UAPs that caused
the deadlock can be output to a directory in a node that contains the lock service.

When a UAP waiting for the release of a resource exceeds the time specified in the
lck_wait_timeout operand in the lock service definition, the function issued by the
UAP returns an error. In such a case, detailed timeout information about the resource
that the UAP wanted to reserve is output to a directory in the node that contains the
lock service.

In the lck_deadlock_info operand in the lock service definition, you can specify
whether to output deadlock information and timeout information. For details about the
format of deadlock and timeout information, see the OpenTP1 Programming Guide.

There are two ways to delete the acquired deadlock information:

• By executing the lckrminf command.

By deleting, at the start of OpenTP1, information that was created up to the
previous online processing: Specify the delete conditions in the
lck_deadlock_info_remove_level operand of the lock service definition.

3.9.2 Acquisition of a user journal
Using the functionality for collecting historical information during UAP processing,
you can acquire selected information into a system journal file. Figure 3-70 illustrates
how a user journal (UJ) is acquired.

Figure 3-70: Acquisition of a user journal

3. Functions

216

For details about how to collect a UJ, see the OpenTP1 Programming Guide.

3.9.3 Journal maintenance facilities
The journal maintenance facilities are for editing the journal data copied to an unload
journal file. For example, you can merge multiple unload journal files into one. The
commands are:

jnlcopy

For duplicating journals.

jnlcolc

For integrating file recovery journals.

jnledit

For editing journals.

jnlrput

For outputting unloaded-journals file records.

This section explains these commands.

(1) Duplicating journals
You can use the jnlcopy command to duplicate journals. The command provides a
record duplicating facility and a merge facility.

The record duplicating facility outputs a specified range of unloaded-journals file
information to the standard output. Information is output in units of records and the
output range is specified in jnlcopy as the date the journal was obtained.

Also, an unloaded-journals file for each type of journal can be copied by specifying the
journal type (e.g., AJ or BJ) in the jnlcopy command.

The merge facility merges multiple unloaded-journals files into one file. Only those
unloaded-journals files that are output to the same online system and have consecutive
generation numbers can be merged.

The facilities provided by the jnlcopy command are referred to as the journal
duplicating facilities

(2) Integrating file recovery journals
You can use the jnlcolc command to extract only the data necessary for DAM FRC
or TAM FRC from the unloaded-journals files, and output the data to the standard
output. The data necessary for file recovery in the unloaded-journals files are
integrated into a file at one time. This file is called an integrated journal file.

A DAM or TAM file in which an error occurred is recovered from the backup file and
unloaded-journals files. OpenTP1 itself integrates the unloaded-journals files and

3. Functions

217

performs the recovery. At file recovery, if the newest integrated journal file created by
the user is available, the recovery time can be reduced.

An unloaded-journals file includes history information that is used to recover
undetermined transactions. This history information is stored in an inheritance file
different from the integrated journal so that the information can be inherited at the next
journal integration. The data necessary for file recovery is integrated at the next journal
integration from the inheritance file and unloaded-journals files.

The facilities provided by the jnlcolc command are referred to as the file recovery
journal integrating facilities.

(3) Editing journals
You can use the jnledit command to output the contents of unloaded-journals files
to the standard output in a listing for each file. Information about attributes of one
specified journal can also be output.

You can extract required data from all the journals by specifying, in the jnledit
command, the range of data in journal records or journal blocks. Journal records can
be checked as hexadecimal numbers or as hexadecimal numbers and characters.

You can output unedited user journal records contained in an unloaded-journals file to
the standard output.

The facilities provided by the jnledit command are referred to as the journal editing
facilities.

For details about the journal editing facilities, see the manual OpenTP1 Operation.

(4) Outputting unloaded-journals file records
You can use the jnlrput command to output unloaded-journals file records. The
records can be output to the standard output as they are without editing the user journal
record information or CPU use time information of the transaction branch in the
unloaded-journals file.

The information to be output can be selected by specifying the items such as the range,
journal type, and journal collection mode.

3.9.4 Obtaining the message log
OpenTP1 enables the editing and storing of system messages, and thereby enables the
monitoring of online systems.

Figure 3-71 gives an overview of how the message log is obtained.

3. Functions

218

Figure 3-71: Obtaining a message log

For details about message-log operations, see the manual OpenTP1 Operation.

(1) The OpenTP1 log service and message log files
The OpenTP1 log service manages system messages. For example, the log service:

• receives message-output requests from each system service, MCF, and from
UAPs

• edits the messages

• outputs the messages to a message log file
The log service outputs a message to one of two message log files: dclog1 or dclog2.
Using round-robin scheduling, the log service outputs messages to one of the files and
when this file is full, the log service reports this fact and proceeds to output messages
to the other file. The previous generation of the message log is preserved. When the
second message log file is full, the log service reports this fact and proceeds to
overwrite the messages in the first file. Messages that the log service outputs to a
message log file are simultaneously output to the console.

You can use the command logcat to output system messages from a message log file
to the standard output. OpenTP1 compares the last update times of dclog1 and
dclog2 and then outputs the information in both message log files in chronological

3. Functions

219

order.

(2) Requesting numbered messages
You can request that OpenTP1 assign message sequence numbers to each message in
the message log files and this information can be obtained as additional message-log
information. Even if an error removes a message, the missing sequence number
indicates that the message is missing.

You can use options of the command logcat to specify how the message log is to be
formatted.

(3) Suppressing the message log
If a lock error occurs, OpenTP1 outputs the message log. Repeated attempts to
re-execute a UAP that returned an error results in increasing the size of the message
log. For the DAM files, you can specify in the dam_message_level operand in the
DAM service definition whether to output the messages returned by lock error. If you
omit this specification, no message is output.

(4) Specifying the language for the output message log
You can choose whether to output the message log in English or in Japanese. Specify
the required language in the LANG environment variable in putenv format in the
system common definition. If you omit this specification, the message log is output in
English.

3.9.5 Reporting a message log
The OpenTP1 message log can be reported to an exclusively created application
program in a system. The application program that receives a report can report the
OpenTP1 status to other vendors' application programs.

To report a message log, specify Y in the log_notify_out operand in the log service
definition of OpenTP1.

(1) Application programs that can receive a message log report
Only application programs created for reception can receive a message log report. The
UAPs (SUP, SPP, or MHP) of OpenTP1 cannot receive this report.

Set the environment variable DCDIR that indicates the OpenTP1 home directory for the
application programs that receive a report. This value must be the same as for the
OpenTP1 that reports a message log.

If the online jobs of OpenTP1 obtain all the message logs at start or later, the
application programs that receive a report must be started before OpenTP1.

(2) Receiving a message log report
The application programs that receive a message log report contend for the start of
reception using the dc_log_notify_open() function. Then, they receive a message

3. Functions

220

log with the dc_log_notify_receive() function. Only one message log can be
received by the dc_log_notify_receive() function. To receive multiple message
logs, call the dc_log_notify_receive() function repeatedly.

To terminate message log report reception, call the dc_log_notify_close()
function. When calling the dc_log_notify_open() function after calling the
dc_log_notify_close() function, the message log report can be re-received.

The application programs that receive a report continue to wait until the
dc_log_notify_close() function is called after OpenTP1 has terminated. If the
termination of reception is reported to the application programs, send data using the
dc_log_notify_send() function from other application programs. In the
application programs that report a reception termination, the
dc_log_notify_open() function cannot be called before calling the
dc_log_notify_send() function.

Figure 3-72 shows reception of a message log report.

Figure 3-72: Reception of a message log report

3.9.6 Controlling resource managers not provided by OpenTP1
You can use the TP1/Resource Manager Monitor to control the start and termination
of resource managers not provided by OpenTP1.

3. Functions

221

Figure 3-73 gives an overview of resource manager control.

Figure 3-73: Overview of resource manager control

(1) Preparing to monitor a resource manager
In the rmm_check_services operand of the RMM service definition, the user
identifies the resource managers he or she wants to monitor. The user creates
commands in the shell file to manipulate resource managers monitored by the RMM
service. The user then specifies the file names of the created commands (listed below)
in the monitored RM definition.

• Monitored RM start command (rmm_start_command operand)

• Monitored RM termination command (rmm_stop_command operand)

• Monitored RM forced termination command (rmm_abort_command operand)

• Monitored process ID acquisition command (rmm_get_pid_command operand)

Samples for the above commands are provided. Modify the samples according to your
job so you do not need to create commands from scratch. Samples are stored in the
$DCDIR/etc/RMmonitor/ directory.

For details about creating commands, see the manual OpenTP1 Operation. For details
about definitions, see the manual OpenTP1 System Definition.

(2) Time to start monitoring
You can create a definition for monitoring a resource manager so that resource
manager operation starts automatically when OpenTP1 starts.

Figure 3-74 shows how the start of OpenTP1 is related to the RMM service definition

3. Functions

222

and the monitored RM definition.

Figure 3-74: Start of OpenTP1 and the definitions to be referenced

3.9.7 Uptime statistics
System statistics let you view the operation status of OpenTP1.

(1) Outputting statistics
You can use the jnlstts and jnlmcst commands to extract statistical journal (SJ)
information from an unloaded-journals file, edit it to help check the OpenTP1
operation status, and output the edited data in a listing to the standard output. An
OpenTP1 administrator can examine the output statistics to check the operating status
of OpenTP1.

You can use jnlstts to output statistics about system services, UAP operation status,
or transaction processing; or you can use jnlmcst to output MCF statistics about the
sending or receiving of messages. For details about the statistics, see the manual
OpenTP1 Operation.

The facilities provided by the jnlstts and jnlmcst commands are referred to as the
statistics output facilities.

(2) MCF system statistics
You can collect MCF statistics into shared memory, and then output them to a UNIX
file as statistical data. You can also edit and output the statistics from the UNIX file to
the standard output.

3. Functions

223

Use MCF system statistics to check the operating status of MCF.

The MCF system statistics described here are independent of the jnlmcst command,
which acquires MCF system statistics based on journal files. The command provides
information such as the number of messages processed within a specified period of
time. The MCF system statistics provide information such as the number of messages
waiting to be processed.

The following facilities are available for handling MCF system statistics. Facility
numbers correspond to those in the Figure 3-75.

1. Facility for acquiring MCF statistics (the facility enabled by specifying yes in the
stats operand of the -w option in the mcfmcomn definition command in the
MCF manager definition)

2. Facility for outputting MCF statistics (mcfstats command)

3. Facility for editing MCF statistics (mcfreport command)

Figure 3-75 provides an overview of the facilities for MCF system statistics.

Figure 3-75: Overview of the facilities for MCF system statistics

(3) Outputting system statistics in real time (dcreport command)
The dcreport command lets you output system statistics to the standard output in
real time, and also allows for output of system statistics to the message log. System
statistics can also be output to the standard output in CSV format. This command can
be used when the statistics operand is set to Y in the system common definition,
or when the dcstats command is used to make a request for outputting system
statistics to journal files.

When you acquire system statistics by using the dcreport command, you can view

3. Functions

224

the service execution status, the resource load status, the error status, as well as other
information, in real time.

3.9.8 Real-time statistics service
The real-time statistics service acquires statistics for the entire system, for each server,
and for each service. By outputting the acquired real-time statistics to the standard
output or log files, you can check the operating status of the OpenTP1 system in real
time, and can perform system operation management and error recovery more quickly.

This subsection provides an overview of the real-time statistics service. For details
about operation using the real-time statistics service and the real-time statistics that can
be acquired, see the manual OpenTP1 Operation.

The real-time statistics service uses the following UAPs:

RTSSUP

RTSSUP is the UAP to be activated when the real-time statistics service is used.
RTSSUP can acquire and output real-time statistics.

RTSSPP

RTSSPP is the UAP to be activated when the extended facility of the real-time
statistics service is used. The extended facility allows the user to change the
settings for the information to be acquired while the real-time statistics service is
running.

The following figure shows an overview of the real-time statistics service.

3. Functions

225

Figure 3-76: Overview of the real-time statistics service

The functionality of the real-time statistics service is described below. The paragraph
numbers correspond to the numbers in the figure above.

1. The predefined real-time statistics items are acquired for the entire system, for
each server, and for each service.

Acquired real-time statistics are stored in the shared memory for the RTS service.
For details about the shared memory used by the real-time statistics service, see
7.2.2(5) Shared memory used by real-time statistics service.

The execution time of a specific section in a UAP can also be acquired as
real-time statistics. For details about acquiring real-time statistics for a specific
section in a UAP, see the OpenTP1 Programming Guide.

2. The real-time statistics stored in the shared memory for the RTS service are
output.

• The real-time statistics can be output to the standard output in real time.

• The real-time statistics can be output to RTS log files.

• The real-time statistics output to RTS log files can be edited and the editing
results can be output as a CSV-format file.

3. The settings for the information to be acquired can be changed while the real-time

3. Functions

226

statistics service is running.

3. Functions

227

3.10 System operations using scenario templates

Users can prepare scenario templates that define OpenTP1 operations. Scenario
templates are managed by JP1/AJS2 - Scenario Operation, and can be used to automate
system operations. JP1/AJS2 - Scenario Operation executes scenario templates via
JP1/AJS2 - Manager. OpenTP1 provides standard scenario templates in which basic
operations are defined. These standard scenario templates make it easier for you to
automate a system operation.

For details on JP1/AJS2 - Scenario Operation, see the manual Job Management
Partner 1/Automatic Job Management System 2 - Scenario Operation.

The following figure shows the concept of using scenario templates for an operation.

Figure 3-77: Concept of using scenario templates for a system operation

Note:

Scenarios can be executed in different OpenTP1 environments by changing input
scenario variables of the scenario templates.

Explanation:

1. Register scenario templates provided by OpenTP1 or created by users in JP1/
AJS2 - Scenario Operation.

2. JP1/AJS2 - Scenario Operation registers a scenario in JP1/AJS2.

3. JP1/AJS2 lets OpenTP1 execute the scenario.

OpenTP1 provides scenario templates for the following scenarios:

• Scale Out

This scenario creates a new OpenTP1 node, and adds the node to the domain
configuration of the OpenTP1 system.

• Scale In

3. Functions

228

This scenario releases resources of the least heavily loaded nodes on a task or
node basis, and allocates the resources to other systems.

• Rolling Update

This scenario applies security-enhancing patches to the OS or UAPs without
interrupting the system operation.

For details on scenario templates, see the manual OpenTP1 Operation.

3. Functions

229

3.11 System monitoring using audit logs

An audit log is a file containing historical information about the operations performed
on OpenTP1 programs by system developers, operators, and users, together with the
program behavior triggered by those operations. By examining an audit log, the
auditor can find out what was done, when, and by whom. Thus, audit logs can be used
as records for investigating system usage and unauthorized access.

The entries in an audit log include information about the user who executed a
command or performed an operation, information about audited events such as
whether the processing resulting from an operation succeeded or failed, and
information about the object of an operation or process. This information is useful for
monitoring the system.

When OpenTP1 is linked with JP1/NETM/Audit, audit logs can be automatically
collected and centrally managed.

Figure 3-78 shows the flow of audit logging and the main types of information
acquired.

Figure 3-78: Audit logging and main categories of information acquired

3. Functions

230

Information is output to an audit log when an operation is performed in an OpenTP1
program, such as execution of a command. Logged operations may be executed by a
system administrator or operator, according to the task being performed. An entry is
also logged when an audited event occurs in a process. Audited events are OpenTP1
program operations and resultant processing that need to be recorded to examine the
adequacy of the system configuration, operation, and usage. Audited events are
categorized and defined in OpenTP1 as shown in Table 3-21.

Table 3-21: Definition of audited events

Event category Event description Output information

StartStop Event indicating that
software was started or
stopped
• OpenTP1 started or

stopped
• User server startup or

termination

Start Software started

Stop Software stopped

Authentication Event indicating whether
attempted authentication
by a client user succeeded
or failed

Login User logged in

Logout User logged out

Logon User logged on

Logoff User logged off

Disable Account disabled

AccessControl Event indicating whether
attempted access by an
administrator or user to a
controlled resource
succeeded or failed

Enforce Access controlled

ConfigurationAccess Event indicating whether
an operation by an
administrator or user to
change or otherwise
manipulate setting
information succeeded or
failed

Refer Information referenced

Add Information added

Update Information updated

3. Functions

231

Delete Information deleted

Failure Event indicating a
software error

Occur Error occurred

LinkStatus Event indicating whether
equipment is linked

Up Link active

Down Link inactive

ExternalService Event indicating the result
of communication
between the software and
an external service

Request Request

Response Response

Send Send

Receive Receive

ContentAccess Event indicating whether
attempted access to
critical data succeeded or
failed

Refer Information referenced

Add Information added

Update Information updated

Delete Information deleted

Maintenance Event indicating whether
a maintenance operation
by an administrator or
technician succeeded or
failed

Install Software installed

Uninstall Software uninstalled

Update Software updated

Backup Data backup

Maintain Maintenance task

AnomalyEvent Event indicating a
communication error

Occur Error occurred

Event category Event description Output information

3. Functions

232

Events are defined for each audit event category. For a detailed list of audit events, see
the description of logged event information in the manual OpenTP1 Operation.

OpenTP1 provides an API (dc_log_audit_print function) that outputs specified
audit log data from a UAP. Using this API, you can output audit log entries when a
UAP operation is performed or processing is performed by the UAP, as well as when
an audit event occurs.

For details about logging selected audit information, see the OpenTP1 Programming
Guide.

ManagementAction Event indicating a critical
action in a program, or an
action triggered by a
different category of
audited event

Invoke Administrator called a
function

Notify Administrator was
notified

Event category Event description Output information

233

Chapter

4. File System

This chapter provides an overview of the OpenTP1 file system and describes OpenTP1
files (system files, queue files, and user data files) and the IST service.

4.1 The OpenTP1 file system
4.2 System files
4.3 Queue files
4.4 User data files

4. File System

234

4.1 The OpenTP1 file system

The OpenTP1 uses both the file system provided by the OS (operating system) and the
file system provided by OpenTP1. The OpenTP1 file system provides high reliability
with extensive features for duplicating information in important files.

4.1.1 Overview of the OpenTP1 file system
The OpenTP1 file system is specific to OpenTP1 and is distinct from the OS file
system. An OpenTP1 administrator must decide where to create the OpenTP1 file
system. The file system can be created on ordinary-file directories in the operating
system or on character special files. If the OpenTP1 administrator wishes to separate
the OpenTP1 file system from the OS system, he or she can install the two file systems
in separate disk partitions or on different disks.

(1) The OpenTP1 file system and OpenTP1 files
The OpenTP1 file system is specific to OpenTP1 and is distinct from the OS file
system. It can consist of character special files or regular files. User data files, journals
needed for OpenTP1 system recovery, and files of critical information related to
system reliability can be created in the OpenTP1 file system. They are referred to as
OpenTP1 files.

OpenTP1 files are listed in Table 4-1.

Table 4-1: List of OpenTP1 files

File type Purpose

Status files Store information about system service activities and the system
configuration. This information is used for OpenTP1 recovery when a
failure occurs.

System journal files Store history information about transaction processing. This
information is used for OpenTP1 recovery when a failure occurs. Also
store information about UAP processing.

Checkpoint dump file Stores status-table information needed for recovery. This information
is used for OpenTP1 recovery when a failure occurs.

Archive journal file Stores collected node journals in a cluster system or parallel
processing system configured using TP1/Multi.

Message queue file Stores messages waiting to be sent or received using the message
exchange facility. TP1/Message Control must be installed in the
system.

MQA message queue file Stores a waiting queue for messages used by MQA message queuing.
TP1/Message Queue must be installed in the system.

4. File System

235

Note

The following files can also be created to assist in OpenTP1 file management:

• Transaction recovery journal file

Used to reduce the size of journals for user-specified transactions.

• Server recovery journal file

Stores information about services. This information reduces recovery time at
a complete-recovery restart.

Figure 4-1 shows the relationship between the OpenTP1 file system and the OS file
system. Table 4-2 describes the differences between the two file systems. Figure 4-2
shows how to select files to create an OpenTP1 file system.

Figure 4-1: Possible locations of an OpenTP1 file system

DAM files Used as user files. TP1/FS/Direct Access must be installed in the
system.

TAM files Used as user files. TP1/FS/Table Access must be installed in the
system.

File type Purpose

4. File System

236

Table 4-2: Differences between the OpenTP1 file system and the OS file system

Comparison point OpenTP1 file system OS file system

Character special file Ordinary file

(Reliability) What happens
to data specified by a write
request that normally
terminates immediately
before OpenTP1
abnormally terminates?

The data is written. Same. Undefined.

(Reliability) What happens
to data specified by a write
request that normally
terminates immediately
before a process
abnormally terminates?

The data is written. Same. Undefined.

(Reliability) Security of
disk files in the event of
system shutdown for a
reason such as a power
outage

Security is high in terms
of maintaining file
integrity because
management information
is not stored in a separate
area on the disk.

Security is lower than for
character special file
because management
information is stored in a
separate area on the disk.

Security is low in terms
of file integrity because
management information
is stored in a separate
area on the disk.

(Reliability) How is a file
area allocated?

A shortage of space never occurs during online
operation because a file area is allocated beforehand
when the file system is created.

A shortage of space
might occur in an
extension of write
operation because a
block is allocated when a
file is added.

(Performance) How
efficient is usage of disk
area?

If an area has been allocated to a file, it cannot be
allocated to another file even if there are no OpenTP1
file records written in the area.

Because the disk area is
allocated dynamically
block by block as the file
size increases, the
efficiency of disk area
usage is higher than for
an OpenTP1 file system.

(Performance) How fast is
read time (time until the
function is returned)?

There is no buffer cache
advantage because buffer
cache is not used.

Read time is generally
fast because if the target
data is found in the buffer
cache, the system does
not have to search the
disk. However, if a
process uses the buffer
for control at a higher
level, overhead might
increase due to double
buffering.

Read time is generally
fast because if the target
data is found in the buffer
cache, the system does
not have to search the
disk.

4. File System

237

(Performance) How fast is
write time: the time until
the function is returned?

Write time is generally
slower than for an OS file
system because I/O
operations are performed
synchronously, but the
overhead for write
processing is low
because the buffer cache
is not used.

Write time is generally
slower than for an OS file
system because I/O
operations are performed
synchronously.

Write time is generally
fast because I/O
operations are performed
asynchronously.

(Performance) How even
is access time?

Access time is close to
even because a
contiguous area is
allocated.

Access time is uneven
because areas are not
always contiguous.

Access time is uneven.

(Operations) Does file size
need to be estimated?

Size must be specified during file creation. Size does not need to be
specified when creating
the file.

(Operations) Is a dynamic
secondary allocation of file
size possible?

Not possible. Possible.

(Operations) Can files be
sorted according to
directory?

Not possible. Possible.

Comparison point OpenTP1 file system OS file system

Character special file Ordinary file

4. File System

238

Figure 4-2: Selection of files to create the OpenTP1 file system

(2) Regular files
The advantage of regular files is that they are flexible and efficient to use. This is why
they are used for OpenTP1 definition files and so on.

Table 4-3 describes the regular files used in OpenTP1.

Table 4-3: Regular files used in OpenTP1

File type Purpose Remarks

User program file Stores a UAP executable program. Created by the
user.

Definition file Stores OpenTP1 system definitions. A definition file
can be created as a text file, using a text editor
provided by the OS.

Map file Used by the mapping service. Stores physical maps
and pre-loaded maps.

4. File System

239

OpenTP1 program file Store an OpenTP1 program, including the executable
file and files used to create the UAP.

Created
automatically
when the
program is
installed.

Definition analysis file Used internally in OpenTP1 to analyze definitions.

Message object file Stores a message text.

Command log file Stores an OpenTP1 command log.

Message log file Stores system messages output by OpenTP1. Created at
OpenTP1
execution.

MCF trace file Stores MCF trace information.

Schedule queue information file Stores schedule queue information internally in
OpenTP1.

RPC trace file Stores an RPC trace.

Trace information dump file Stores internal OpenTP1 trace information.

Shared memory dump file Stores a shared memory dump output by OpenTP1.

Core file Stores the core of an abnormally ended process.

Deadlock and timeout information
file

Stores deadlock and timeout information.

MCF dump file Stores a MCF dump.

MCF shared memory dump file Stores dump information, output when an error
occurs, about the shared memory area allocated to the
MCF.

Undetermined-transaction
information file

Stores information about an undetermined
transaction, output when an error occurs.

Invalid journal information file Stores invalid journal information detected when a
journal is read.

Copy file of input/output queue
contents

Stores the queue contents when the command to copy
the contents of the input/output queue is executed.

Trace information collection file for
verification

Stores trace information for performance verification.

XAR performance verification
trace information file

Stores trace information for events generated during
transactional linkage using the XA resource service.

File type Purpose Remarks

4. File System

240

4.1.2 Creating an OpenTP1 file system
In general, to create the OpenTP1 file system, an OpenTP1 administrator:

1. Uses the filmkfs command to create the OpenTP1 file system on a character
special file or ordinary files.

2. Uses the following commands to allocate physical files for each file type:

Status file: stsinit command

System journal file and checkpoint dump file: jnlinit command

MCF message queue file: queinit command

MQA message queue file: mqainit command

JNL performance verification trace
information file

Stores trace information for the journal service.

LCK performance verification trace
information file

Stores trace information for events generated during
locking using the lock service.

MCF performance verification
trace information file

Stores trace information for events generated during
message transmission using MCF.

TRN event trace information file Stores trace information for events generated by the
transaction service and the XA function called at a
transaction branch.

NAM event trace information file Stores trace information for events relating to the
name service, including communication invoked by
the name service and the registration and deletion of
service information from the cache.

Process service event trace
information file

Stores trace information for a process service.

FIL event trace information file Stores event information if the time required to
process an OpenTP1 file access request is equal to or
greater than the value specified in the
fil_prf_trace_delay_time operand in the
system common definition.

RTS log file Stores real-time statistics.

UAP trace edit/output file Stores a UAP trace that is edited and output
automatically when a UAP terminates abnormally.

OpenTP1 debugging information
file

Stores OpenTP1 information when a UAP terminates
abnormally.

File type Purpose Remarks

4. File System

241

DAM file: damload command

TAM file: tamcre command

3. Uses system service definitions to make the physical files, which are the actual
files used for input or output, usable as an OpenTP1 file. For example, in the
status service definition you can define which physical files make up the logical
filegroup that is the OpenTP1 status file.

The following figure shows an example of the complete pathname of a physical file
created in the OpenTP1 file system on a character special file.

Figure 4-3 shows an example of an OpenTP1 file system. In this example the OpenTP1
file system has separated the OpenTP1 system files from the user files. Separating the
OpenTP1 file system into subsystems for system files and user files enhances system
reliability and performance.

4. File System

242

Figure 4-3: Separating the OpenTP1 file system into OpenTP1 files and user
files on character special files

4. File System

243

4.1.3 Backing up and restoring OpenTP1 file systems
OpenTP1 files contain important information that is used in situations such as recovery
of an OpenTP1 process. To prevent OpenTP1 files from being irrecoverably corrupted,
the user should periodically backup each OpenTP1 file system or each OpenTP1 file.
For example, the backups can be made whenever OpenTP1 starts. After a backup has
been made, even if OpenTP1 files are destroyed or corrupted, the user can use the
backups to restore the files.

The following figure illustrates the process of backing up and restoring an OpenTP1
file system.

Figure 4-4: OpenTP1 file system backup and restore

User files contain data important for applications. OpenTP1 provides the DAM FRC
facility and related commands to guarantee such individual items of data. Using this
facility and related commands you can:

• Back up or restore user-dedicated files.

• Restore a user file, based on a backup or based on a file copied from a system
journal file.

For details about backing up and restoring or about the procedure for restoring user
files, see the manual OpenTP1 Operation.

4.1.4 Protecting OpenTP1 files
User's mistakes must be prevented from corrupting files. In particular, the OpenTP1
system administrator must protect files containing important data: for example, data
such as control information required to continue online processing or information
critical to company functioning.

(1) Protection for each OpenTP1 file system
An OpenTP1 administrator can use OS commands to manage the file owners and file
access authorizations for each file system, which helps prevent unintentional
corruption of files. An OpenTP1 administrator can:

• classify file owners as the OpenTP1 administrator or an OpenTP1 group

4. File System

244

• provide users with restricted file access authorization: either READ-WRITE or
READ

These features are made more effective and the OpenTP1 file system is easier to
manage if the OpenTP1 administrator separates the OpenTP1 file system into two
subsystems:

• a subsystem in which the files contain OpenTP1 system-related items

• a subsystem in which the files are user files

For safety and convenience, access to system files can be restricted to the OpenTP1
administrator and the users of the OpenTP1 group. This subsystem should contain files
used by OpenTP1 to provide uninterrupted online processing: for example, the system
journal file, checkpoint dump file, and status file.

For convenience to end-users, user files should be created in another subsystem of the
OpenTP1 file system.

Table 4-4 shows an example of using owner and access authority to protect files when
the OpenTP1 file system separates system and user files.

Table 4-4: Example of OpenTP1 file system protection (by owner and access
authority)

(2) Protection for individual OpenTP1 files
An OpenTP1 administrator can use the commands filchown and filchmod during
online processing to dynamically change the owner of, and access authority for, an
OpenTP1 file. This enables specific users to be validated to use an OpenTP1 file
during online processing. For details about protecting OpenTP1 files, see the manual
OpenTP1 Operation.

4.1.5 Assigning an OpenTP1 file system
You can improve efficiency and reliability by creating OpenTP1 file systems with a
disk assigned to each type of file.

If you create each type of file on a different disk, the cost (for the disks) increases, but

OpenTP1
file system

Owner Access authority

User ID Group ID Owner User in the group Other user

For system OpenTP1
administrator

OpenTP1
group

rw

(permitted to
read and write)

r-

(permitted to read)
r-

(permitted to
read)

For user OpenTP1
administrator

OpenTP1
group

rw

(permitted to
read and write)

rw

(permitted to read
and write)

r-

(permitted to
read)

4. File System

245

efficiency and reliability also increase. If you create the entire file system on one disk,
the cost decreases, but reliability also decreases because if the disk become unusable,
all the files become unusable.

To create the most appropriate file system, the OpenTP1 administrator needs to decide
on the basis of a variety of factors including cost, operability, efficiency, and reliability.

The following are typical factors to consider when deciding how to organize files:

Hardware configuration

When creating an OpenTP1 file on a character special file and when the disk
configuration is determined, the OpenTP1 administrator must know the number
and sizes of the partitions that can be allocated for an OpenTP1 file system.

System configuration

The OpenTP1 administrator must:

• Determine what types of files are necessary by considering the functions of
the system to be configured. For example, the message queue file is
unnecessary if messages need not be exchanged with the host computer.

• Determine the sizes of files such as the system journal file and checkpoint
dump file by considering such factors as how many transactions are
processed in one day. Also, determine the size of the message queue file by
considering the number of exchanged messages and the length of each
message.

Reliability

More than one subsystem of the OpenTP1 file system should be created according
to the importance of the files. For example, you can create one subsystem for use
by the OpenTP1 system and another for use by users. The file subsystem for use
by OpenTP1 could include the system journal file, checkpoint dump file, and
status file. The file subsystem for use by users could include the message queue
file and user files.

Performance

If frequently accessed files are all on the same disk, data I/O performance will
deteriorate. To prevent this, place frequently accessed files on different disks.

The OpenTP1 administrator needs to consider the above factors, and decide the most
appropriate file system on the basis of performance, reliability, cost, and operability
considered as a whole.

4. File System

246

4.2 System files

OpenTP1 collects internal information in the following types of system files in case an
error occurs:

• Status files

• System journal files

• Checkpoint dump files

• Transaction recovery journal file(TRF)

• Server recovery journal file(SRF)

• Archive journal files

4.2.1 System files: status files
(1) Purpose of status files

A status file stores information about OpenTP1 service activities and the OpenTP1
system configuration. This information is used for recovering OpenTP1 if a failure
occurs. A status file stores data about system operations (such as what commands were
entered and what effects the commands produced); so examining status files can help
the OpenTP1 administrator or programmer to find out the cause of some abnormal
termination. Status files also store the data necessary for automatically restarting
OpenTP1.

The data that must be retained to restart OpenTP1 is called system control information.
A status file stores system control information each time the status changes. Some
items of system control information are:

• termination status of OpenTP1

• operation status for OpenTP1 services or UAPs: such as whether a service or UAP
is starting, executing, or terminating

• whether each system file and user file is open or closed

• connection status for devices connected with MCF

(2) Structure of status files
The information in a status file is critical for restarting OpenTP1 so OpenTP1
duplicates this information within the status file. A status file is thus actually a logical
filegroup, consisting of a pair of files: physical file A and physical file B. Even if an
error occurs in one of the physical files, OpenTP1 can still be restarted by using the
information in the other physical file.

To avoid both physical files being corrupted at the same time, place physical file A and

4. File System

247

physical file B on different disks if possible. Note that for the same status file, physical
file A and physical file B must have the same size and record length.

(a) Operating with only one physical file in a status file
Usually, if a failure occurs in one physical file of a status file during online operation
and no standby logical filegroup is found, OpenTP1 terminates abnormally. In the
status service definition, however, you can specify whether to permit OpenTP1 to
continue operation using the one normal physical file (either physical file A or B) only.
In some manual versions, this operating with only one physical file in a status file is
called one-system operation of a status file.

There is a serious drawback to operating with only one physical file in a status file: if
another failure occurs, the restart information in the single physical file is lost, making
a restart impossible. Thus when an OpenTP1 message in the message log reports that
the system is operating with only one physical file in a status file, the OpenTP1
administrator should quickly prepare a usable standby logical filegroup and resume
normal operation.

(3) Status of status files
The status of an OpenTP1 status file can be:

• Current

The current status file is a logical filegroup that is open and currently assigned to
store system control information. A file entity is required.

• Standby

A standby status file is a logical filegroup that is open but is not currently assigned
to store system control information; the file is standing by as a substitute in case
an I/O error occurs in the current status file. A file entity is required.

• Invalid

A reserved status file is a logical filegroup that is closed but defined in the status
service definition. A file that has been deleted and has no entity is called an
invalid file without a file entity. OpenTP1 cannot start if there is an invalid file
without a file entity.

• Shutdown

A shutdown status file is a logical filegroup that is closed and cannot be opened
because an error occurred during online processing.

When OpenTP1 starts, it opens all the files defined in a status service definition as
being part of a logical filegroup: i.e., part of a status file. Of the opened status files, the
files assigned to store the status information are the current files and the others are
standby files.

Status information is always stored in the same status file as long as no errors occur in

4. File System

248

it. In the current status file, OpenTP1 first writes system control information to
physical file A and then to B. Therefore, even if an abnormal termination of OpenTP1
causes corruption of A files during a new write, OpenTP1 can be restarted in its former
status by reading the uncorrupted B file in a complete recovery.

(4) Swapping status files
When status files are swapped, a standby file replaces the current status file. If an I/O
error occurs in either physical file A or B, OpenTP1 copies the system control
information from the undamaged file (either A or B) to the standby logical filegroup.
In the standby logical filegroup, the system control information is first copied to
physical file A and then to B. After the information is copied, the standby logical
filegroup becomes the current logical filegroup.

If there is no standby logical file, OpenTP1 terminates abnormally. For the processing
in this case, see 5.3 Failure and error recovery. However, if operation with only one
physical file in a status file is specified, OpenTP1 continues operation using the single
operable status file.

You can use commands to delete, resize, and re-create a status file that has been shut
down because of a failure. The command used for deletion (stsrm), however, can
delete only files that have an invalid or shutdown status; you cannot use it to delete the
current or standby files.

The system control information in a status file is re-edited from the beginning of files
A and B when status files are swapped. OpenTP1 automatically swaps status files as
required to remove data fragmentation that might be caused by repeatedly starting and
terminating OpenTP1.

Figure 4-5 illustrates how status files are swapped. For the processing if an error occurs
in a status file, see 5.3 Failure and error recovery.

Figure 4-5: Swapping of status files

4. File System

249

4.2.2 System files: system journal files
(1) Purpose of system journal files

System journal files are used primarily for:

• system recovery (recovery journals and synchronization point journals)

• system tuning (statistical journals)

• providing information about UAPs (user journals)

The recovery and synchronization point journals store system-history information
necessary either for a complete recovery when the online system stops, or for a partial
recovery when a UAP transaction terminates because of an error. A complete recovery
requires both of the following:

• checkpoint dump of the latest generation (described in 4.2.3 System files:
checkpoint dump files)

• recovery journals that were obtained after collecting the checkpoint dump of the
latest generation

Partial recovery of a UAP transaction requires only the recovery journals and does not
require the checkpoint dump.

In addition to the journals used for recovery, the system collects various system
statistics (the statistical journals), which can be used for checking and tuning the online
system; and user journals, which consist of information concerning a specific UAP.

(2) Structure of system journal files
As with the status files, the information in a system journal can be duplicated within a
system journal. A system journal file is thus a logical filegroup, consisting of a pair of
physical files: physical file A and physical file B. In such a case, OpenTP1 obtains the
same journal information for physical file A and physical file B. This increases
reliability because when a journal must be read because of some abnormality, even if
one of the physical files is corrupted, the journal can be read from the other physical
file.

To avoid the possibility that both physical files in a system journal file could be
corrupted at the same time, place physical file A and physical file B on different disks
if possible. It is preferable, but not necessary, for physical file A and physical file B to
be the same size. It is preferable because a larger physical file cannot store a journal
that exceeds the size of the smaller file.

In the system journal service definition, you must specify at least two logical
filegroups (Figure 4-6). When defining a logical filegroup, you also define which
physical files make up the logical filegroup. You can assign any name to a logical
filegroup. Specifying a name for the logical filegroup enables you to manipulate both
physical files in the logical file as a group: for example, both physical file A and

4. File System

250

physical file B can be opened or closed at the same time.

(3) Operating with only one physical file in a system journal file
Usually, if a failure occurs in one physical file of a system journal file during online
operation and no standby logical filegroup is found, OpenTP1 terminates abnormally.
In the system journal service definition, however, you can specify whether to permit
OpenTP1 to continue operation using the one normal physical file (either physical file
A or B) only. When operating with only one physical file in a system journal file is
permitted, a logical filegroup can be used as long as at least one of the two physical
files that make up the filegroup is active. When operating with only one physical file
is prohibited, a logical filegroup can be used only when both physical files are active.

For example, suppose there are two filegroups fg1 and fg2, consisting of the physical
files fg1a, fg1b, fg2a, and fg2b. An error in a physical file is often caused by a failure
in the disk device itself, and often all the physical files on the disk are damaged as a
result. When operation with only one physical file is prohibited, if both physical files
fg1a and fg2a in system A are damaged, there is no available filegroup and OpenTP1
terminates abnormally. After the problem is remedied, a complete system recovery
will be required. When operation with only one physical file is permitted, as long as
physical files fg1b and fg2b in system B are still operable, the filegroup will be
available and OpenTP1 can continue operation.

As this example illustrates, when operation with only one physical file is permitted, if
one system fails, operation can continue on the other system until the problem is
remedied. Note, however, that the temporary loss of redundancy between system
journal files impacts on the system's reliability. Specify in the system journal service
definition whether to permit or prohibit operation with only one physical file. Whether
operation with only one physical file is permitted is specified in the system journal
service definition.

The following figure shows the difference between the two options.

4. File System

251

Figure 4-6: Permitting and prohibiting operation with only one physical file

(4) Parallel access facility for system journal files
A system journal file can be configured as a filegroup containing two or more element
files. This facility is known as the parallel access facility for system journal files. The
following figure illustrates two filegroups configured redundantly using the parallel
access facility.

4. File System

252

Figure 4-7: Filegroup configuration using the parallel access facility
(jnl_max_file_dispersion=3)

The following figure provides an overview of the parallel access facility.

4. File System

253

Figure 4-8: Overview of the parallel access facility
(jnl_max_file_dispersion=3)

With constant input and output to a system journal file, the disk load increases and I/
O performance can deteriorate. In this situation, configuring a number of element files
in a filegroup allows the system journal file to be accessed in parallel, raising the
journal I/O performance.

The physical files that make up a filegroup can use the same SCSI interface and hard
disk. However, this means that the files cannot be accessed in parallel, and the parallel
access facility cannot be used to best effect. Therefore, a different SCSI interface and
hard disk should be used for each physical file. The files do not need to be the same
size, but if they are different, OpenTP1 regards the size of the smallest physical file as
the size of all the element files. To use resources effectively, we recommend that you
use physical files of the same size if at all possible.

4. File System

254

When using the parallel access facility for system journal files, the number of element
files that can be accessed in parallel (hereafter referred to as the number of parallel
accesses) decreases if, for example, an error occurs in the system journal file. To
prevent journal I/O performance from declining as a result of having too few element
files, you can specify a minimum guaranteed number of parallel access files. This is
known as the minimum dispersed files for parallel access. You can also specify the
maximum dispersed files for parallel access, which indicates the maximum number of
element files that can be accessed in parallel.

Specify the element file names when specifying a filegroup in the system journal
service definition. Specify the maximum dispersed files for parallel access in the
jnl_max_file_dispersion operand and the minimum dispersed files for parallel
access in the jnl_min_file_dispersion operand.

(5) Types of journals acquired
(a) Contents of synchronization point journals

At a complete recovery or UAP partial recovery, the consistency of resources must be
assured by performing commit or rollback operations for any undetermined
transactions. For such commit or rollback operations, OpenTP1 obtains information
about whether a transaction determination is completed or how far the processing at a
synchronization point had proceeded. This history information is called a
synchronization point journal and is used to decide whether OpenTP1 must perform
recovery operations for the resource.The synchronization point journals are named BJ,
DJ, HJ, PJ, and TJ. They are described in the following table.

Table 4-5: Synchronization point journals

(b) Contents of recovery journals
In a complete recovery or partial recovery, OpenTP1 first examines the
synchronization point journal to determine whether any resources must be recovered.
If resources must be recovered, OpenTP1 first recovers databases and system and other

Type Description

PJ A journal output when the root transaction branch or a transaction branch starts commit processing.

HJ A journal output when a transaction branch becomes ready to start commit processing. This journal is
not output for the root transaction branch.

BJ A journal output when a transaction is rolled back. This journal is output for the root transaction branch
and transaction branches.

TJ A journal output when synchronization point processing of a transaction is terminated. This journal is
output for the root transaction branch and transaction branches.

DJ A journal output when the heuristic decision of a transaction is performed. This journal is output for
the root transaction branch and transaction branches.

4. File System

255

tables. OpenTP1 obtains the necessary update information for the resources from the
recovery journals. The recovery journals are named CJ and FJ. They are described in
the following table.

Table 4-6: Recovery journals

(c) Contents of statistical journals
Statistical journals contain information for tuning the system. Statistical journals (AJ,
GJ, IJ, OJ, MJ, and SJ) are necessary to tune the system.

Of the statistical journals, information for AJ, GJ, IJ, MJ, and OJ is obtained only when
OpenTP1 uses MCF to exchange messages with another system. You can use
commands to start (mcftactmj command) and end (mcftdctmj command)
obtaining information for MJ. In the application attribute definition for each
application of an MHP, you can define whether or not to obtain information for GJ, IJ,
and OJ. In the logical terminal definition for each logical terminal, you can specify
whether to obtain information for AJ.

SJ contains statistics for the entire OpenTP1 system: these statistics include system
statistics and transaction statistics. The system statistics are obtained at a
user-specified interval after entering the command dcstats. In the transaction service
definition, you can define whether to obtain the transaction statistics. Statistical
journals are listed in the following table.

Table 4-7: Statistical journals

Type Description

FJ Consists of update information for DAM files. DAM files are recovered using this FJ recovery journal
during a complete recovery or partial recovery.

CJ Consist of update information for recovery target tables managed by the MCF and TAM services. The
CJ recovery journal is obtained, for example, at a synchronization point. The complete recovery of a
table uses this CJ recovery journal.

Consist of update information for recovery target tables managed by the transaction management
service. The CJ recovery journal is obtained, for example, at a synchronization point. Entire recovery
of a table during a complete recovery uses this CJ recovery journal.

Type Description

MJ Message input information before editing the input, and message output information after editing the
output.

IJ Message input information obtained immediately before a received message is stored in the input
queue.

GJ MHP receive information obtained immediately before MHP receives a message with the
segment-receiving function (i.e., with the dc_mcf_receive() C function or the equivalent COBOL
subprogram).

4. File System

256

(d) Contents of user journals
OpenTP1 provides the dc_jnl_ujput() function to enable a user journal to be
stored in a system journal file. The user journal (UJ) is used for system tuning or for
collecting information about the user's application. The user journal can be output
inside or outside a transaction.

For details about how to obtain a user journal, see the OpenTP1 Programming Guide.

(6) Status of system journal files
The filegroup of system journal files is either available or unavailable for journal
output:

Available

The number of opened physical files in a filegroup is greater than the required
number. The required number of physical files is determined according to the
value specified in the system journal service definition. Available filegroups are
current or standby.

Unavailable

The number of opened physical files in a filegroup is less than the required
number. Unavailable filegroups are also called reserved.

Filegroups are managed as having current or standby status if available for journal
output, or in reserved status if unavailable for journal output. The required number of
element files is determined by the value specified in the system journal service
definition.

• Current

An available filegroup which is the current destination of journals to be output.
There is always only one current filegroup.

• Standby

An available filegroup which is not currently the destination of journals to be

OJ Message output information obtained immediately after a send message is placed in the output queue.

AJ Transmission-completion information obtained immediately after a transmission-completed message
is received from another system in response to a message sent earlier to that other system.

SJ Statistics of OpenTP1 activities allowing the user to examine the OpenTP1 operation status. The SJ
journal contains both system statistics and transaction statistics. The system statistics cover the system
service and UAPs. The status of OpenTP1 can be obtained at set intervals. The transaction statistics
cover the processing over transactions. The transaction statistics are obtained when synchronization
point processing is completed for each transaction branch.

Type Description

4. File System

257

output but is waiting to be switched to become current. The two standby statuses
are:

• Ready to be the next swap destination:
A standby filegroup that can be overwritten (there is no journal that is
required for system recovery) and is already unloaded.

• Not ready to be the next swap destination:
A standby filegroup that cannot be overwritten or is waiting to be unloaded.

• Reserved

An unavailable filegroup.

A system journal file requires at least two filegroups other than the reserved filegroups.

When OpenTP1 starts normally, all the filegroups specified as ONL, among the
filegroups specified in the system journal file service definition, are opened. Among
the opened filegroups, the first filegroup that is specified becomes the current
filegroup; other filegroups become the standby filegroups. A filegroup that has fewer
physical files than the required number or a filegroup that is not specified as ONL
becomes a reserved filegroup.

In a system journal file, journals are always output to the current filegroup. If the
current filegroup becomes full, one of the standby filegroups becomes the current
filegroup. The previous current filegroup becomes one of the standby filegroups. If all
the available filegroups become full, journals are again output to the first filegroup.

(7) Unloading system journals to a file
The journals in a standby system journal file must be copied to another file. This
copying is called unloading. To unload a system journal file, use the jnlunlfg
command. Alternatively, specify Y in the jnl_auto_unload operand of the system
journal service definition to enable automatic unloading. The file to which a standby
system journal file is unloaded is called an unloaded-journals file (or, in some manual
versions, an unload journal file).

In an unload check, OpenTP1 checks whether or not the journals in a logical filegroup
have been unloaded. If the journals have not been unloaded yet, OpenTP1 does not
swap the filegroup with the current filegroup. If there is no swappable standby system
file, OpenTP1 terminates abnormally. For the processing in this case, see 5.3 Failure
and error recovery.

(a) Restraining an unload check
The standby filegroup, which is usually in the unload wait status, can be specified to
be used as is. This is called an unload check restraint. When restraining an unload
check, specify N in the jnl_unload_check operand in the system journal service
definition.

4. File System

258

If the unload check is restrained, do not unload the journal files using a command
during the operation of OpenTP1. If an unload is performed by specifying an unload
check restraint, unload the file after the concerned files are once closed by the
jnlclsfg command.

When the unload check is restrained, neither journal edit command jnlcolc
command nor jnlstts command can be executed as input of an unload journal file,
because the unload journal file cannot be created.

If an unload check is restrained, the unload wait status may be output when confirming
the filegroup status using the jnlls command. Even if the unload wait status is output,
the current filegroups are actually used.

(8) Swapping system journal files
In a system journal swap the current logical filegroup becomes a standby logical
filegroup, and a standby logical filegroup becomes the current logical filegroup. Not
all standby logical filegroups are eligible to be swapped in as the current filegroup. A
standby filegroup whose journals have not been unloaded yet or a standby filegroup
that contains a journal necessary for recovery cannot be swapped with the current
filegroup. See 4.2.3(4) Multigeneration Guarantee facility for details about checking
whether a system journal filegroup contains a journal necessary for recovery.

If there are no swappable files, OpenTP1 terminates abnormally. For the processing in
this case, see 5.3 Failure and error recovery.

Figure 4-9 shows the conditions on swapping system journal filegroups.

Figure 4-9: Swapping system journal filegroups

(9) Opening reserved filegroups at complete recovery
When performing a complete recovery after an error occurs during online processing,
OpenTP1 outputs journals that are used for transaction determinations. In such a case,
if the opened system journal filegroups cannot store more journal information,
OpenTP1 terminates abnormally again.

4. File System

259

If there are too few journal filegroups opened at complete recovery, reserved
filegroups can be opened to store the journals. In the system journal service definition
you can define whether or not reserved filegroups are to be opened. If there is a
swappable system journal filegroup that can be overwritten after its contents are
unloaded, reserved filegroups are not opened. Unload the journal by the command
jnlunlfg.

4.2.3 System files: checkpoint dump files
(1) Purpose of checkpoint dump files

Using only the recovery journals to recover the online system from a stoppage would
require all the journals from the start of the online processing, and using all these
journals might take a lot of time. This recovery time can be reduced by requesting
OpenTP1 to periodically save the status of system tables needed in recovery. OpenTP1
then saves this information at various checkpoints.

The table information obtained at a checkpoint is called a checkpoint dump. In a
complete recovery of an online system OpenTP1 does not need to use all the recovery
journals from the beginning of processing: OpenTP1 can use checkpoint dumps and
only those recovery journals obtained from the time the last checkpoint dump was
obtained until the time the online system stopped.

Since OpenTP1 performs recovery for each system service, it obtains a checkpoint
dump for each system service for which tables in memory need to be recovered: the
transaction service and MCF service. A file is allocated to each system service to store
the checkpoint dumps. This file is called a checkpoint dump file.

If you have specified that checkpoint dumps are to be taken, the dumps are obtained at
these checkpoints:

• when a system journal file is swapped

• when all the journals specified in the system journal service definition are stored
in the system journal file

• when OpenTP1 starts or terminates (for the transaction service only)

• when MCF starts or terminates (for the MCF service only)

(2) Structure of checkpoint dump files
A checkpoint dump file is a logical filegroup, and the actual file entity that obtains a
checkpoint dump is called a physical file. A filegroup consists of one or two physical
files. A filegroup that consists of two physical files is called a duplicated checkpoint
dump file. When a checkpoint dump file is duplicated, one physical file is called system
A and the other physical file is called system B.

A filegroup that consists of two physical files is called a duplicated checkpoint dump
file. When a checkpoint dump file is duplicated, one physical file is called system A

4. File System

260

and the other physical file is called system B.

For each of the system services that require checkpoint dump files, you must prepare
a checkpoint dump service definition, specifying the system service name, filegroup,
and physical file relationships.

The filegroup defined in the checkpoint dump service definition can be given any
name, which will be used when working with the checkpoint dump file.

The filegroup in a checkpoint dump file has one of the following statuses:

• Overwrite-permitted, or being written

The filegroup does not contain a checkpoint that would be needed for a complete
recovery of the OpenTP1 system. It is therefore open and can be overwritten, or
is currently being used to collect a checkpoint dump.

• Overwrite-prohibited

The filegroup contains a checkpoint that would be needed for a complete recovery
of the OpenTP1 system. It is therefore open, but overwriting is prohibited.

• Reserved

The filegroup is closed and cannot be used online unless opened. This status also
applies when the filegroup is defined but has no physical files.

In the checkpoint dump service definition, define the filegroup that is to be open when
OpenTP1 starts. Filegroups not defined to be open are placed in reserved status when
OpenTP1 starts.

A checkpoint dump taken at one point in time is called a generation. Because one
generation is stored in one checkpoint dump filegroup, a different filegroup needs to
be swapped in for each generation. When checkpoint dumps have been output to all
the available filegroups, the data in the first filegroup is overwritten. This method of
storing data in multiple filegroups, overwriting each in turn, is called the round-robin
method. Normally, the filegroup with the most recent generation has
overwrite-prohibited status, while the other filegroups are placed in
overwrite-permitted status. However, when using the multi-generation guarantee
facility, the filegroups for the two most recent generations are both placed in
overwrite-prohibited status.

Figure 4-10 shows how checkpoint dumps are assigned to filegroups by round-robin
scheduling.

4. File System

261

Figure 4-10: Most recent checkpoint dump generation overwrites earlier
checkpoint-dump generation

(3) Adding physical files for checkpoint dump files
If an error occurs in a checkpoint dump file during online processing or if there are
insufficient files for operations, physical files can be added dynamically. The method
to dynamically add such physical files differs according to whether a reserved file has
been defined.

(a) Method for adding undefined physical files during online processing
Even with physical files that have not been defined in the checkpoint dump service
definition, you can use commands to add, during online processing, the physical files
to the files used for checkpoint processing.

(b) Method for adding standby files
When a standby file has been previously defined in the checkpoint dump service
definition, files can be assigned by opening the file with the jnlopnfg command or
opening the file automatically whenever OpenTP1 starts.

Using the automatic open facility enables automatic allocation of the standby file for
the current file when the number of online physical files decreases to the number of
guaranteed-valid generations (described below). You can specify automatic opening in
the checkpoint dump service definition.

(c) Method for deleting physical files for checkpoint dump files
Physical files that are added dynamically to a reserved filegroup can be deleted using
the jnldelpf command.

4. File System

262

(4) Multigeneration Guarantee facility
The Multigeneration Guarantee facility improves OpenTP1 reliability by enabling
OpenTP1 to recover in situations where the filegroup storing the most recent
checkpoint-dump generation cannot be read for some reason. In such a case, OpenTP1
can recover by reading the filegroup that contains the generation preceding the most
recent one. The Multigeneration Guarantee facility thus prevents the filegroups
containing the last two checkpoint-dump generations from being overwritten. The
overwrite-prohibited generations are called guaranteed-valid generations (or, in some
manual versions, valid guarantee generations). The number of guaranteed-valid
generations is 2 when the Multigeneration Guarantee facility is used and 1 when not
used.

OpenTP1 suppresses the overwriting of the system journal filegroups used to store the
guaranteed-valid generation of checkpoint dumps that are required for recovery. In an
overwrite check, OpenTP1 checks whether the system journal file for the
guaranteed-valid generation can be overwritten.

(a) Recovery when using the Multigeneration Guarantee facility
When the multi-generation guarantee facility is enabled, the filegroup containing the
most recent checkpoint generation is read first. Recovery processing is then
performed, based on all journals collected since the most recent generation. If an error
occurs for any reason and the filegroup containing the most recent generation cannot
be read, the checkpoint dump file for the preceding generation is read. Recovery
processing in this case is based on all journals collected since the preceding generation.
If neither of the filegroups storing guaranteed-valid generations can be read, the next
most recent generation is used, although journals earlier than the guaranteed-valid
generations may have been overwritten and cannot be recovered. The required number
of checkpoint dump filegroups that are online and in a status other than reserved is the
number of guaranteed-valid generations + 1. The following figure shows the
relationships between guaranteed-valid generations and system journal files.

4. File System

263

Figure 4-11: Guaranteed-valid generations and system journal files

(b) Guaranteed-valid generations when using the fallback facility
Even when the number of filegroups required for online operations or for restarting
processing falls below one plus the number of guaranteed-valid generations,
processing can still continue if a minimum of 2 filegroups are usable. This feature is
called the fallback facility for checkpoint dumps. In the checkpoint dump service

4. File System

264

definition you can specify whether to use the fallback facility.

Note that there is a drawback to using this fallback facility. When an error occurs in an
OpenTP1 system during fallback operations, information for restart is guaranteed for
only one filegroup. If that filegroup should fail, recovery is not possible.

When fallback operation occurs, a message informs the user that OpenTP1 has
changed from ordinary operation to fallback operation. When such a message is
output, the OpenTP1 administrator should quickly prepare a filegroup usable for a
guaranteed-valid generation. After the filegroup is prepared, another message informs
the administrator that fallback operation has switched to ordinary operation.

(5) Guaranteed-valid generations and journal sizes
The required size of a system journal file increases in proportion to the number of
guaranteed-valid generations for checkpoint dump files. You can estimate the required
size (that is, the required number of blocks) of the system journal file as follows:

Number of journal blocks used to store journal information between checkpoints (1
+ number of guaranteed-valid generations)

(6) Operation when a checkpoint dump file is duplicated
When a filegroup is operated with a duplicated checkpoint dump file, OpenTP1
outputs the same checkpoint dump to both systems A and B. If a failure occurs in one
system while reading the checkpoint dump, the same data can be read from the other
system. In this way, duplicating a checkpoint dump file increases reliability.

(a) Specification in the checkpoint dump service definition
To duplicate a checkpoint dump file, specify Y in the jnl_dual option of the
checkpoint dump service definition. At this time, specify two physical files (system A
and system B) in a filegroup.

You should store the physical file of system A and the physical file of system B on
separate disks to prevent a failure in both physical files at the same time. The size of
the physical file of system A and that of system B need not be the same. If the sizes are
different, however, OpenTP1 considers the smaller file to be the size of the checkpoint
dump. To use resources efficiently, match the sizes whenever possible.

OpenTP1 manages the generations of each filegroup. When you use OpenTP1
commands to open and close files, the operation is executed in units of filegroups;
therefore, it is impossible to open or close only system A or B during online
processing.

When a checkpoint dump file is duplicated, one filegroup requires two physical files.
If a failure occurs either in system A or B, the filegroup becomes reserved.

(b) One-system operation of the checkpoint dump file
You can select whether to enable or disable one-system operation if an error occurs on

4. File System

265

either physical file of a checkpoint duplicated dump file.

• When one-system operation is available

As long as the physical file of either system A or system B is open, the file group
remains open. If an error occurs on the physical file of either system, the
processing is continued with a normal system. This operation can validate the
checkpoint dump of the normal system.

• When one-system operation is unavailable

Unless the physical files of both systems A and B are open, the file group is placed
in the reserved status. If an error occurs on either physical file, the file group is
also placed in the reserved status. If an error occurs when reading data from
system A, the file group is placed in reserved status after reading data from system
B.

(c) Notes on dual-system operation
When one-system operation is unavailable, it is impossible to open or close only either
system.

When one-system operation is available, it is possible to open or close only either
system. However, an overwrite-prohibited file group cannot be closed, whether
one-system operation is available or not.

Table 4-8 shows the differences between when one-system operation is available and
when unavailable.

Table 4-8: Differences between when one-system operation is available and
when unavailable

Operation Mode

One-system operation
available

One-system operation
unavailable

Allocating only one system while
online

Possible Possible

Disconnecting only one system
while online

Possible Possible

Opening only one system Possible when both systems are
allocated.

Impossible

Closing only one system (when
overwrite-prohibited)

Impossible Impossible

Closing only one system (when
overwrite-permitted)

Possible Impossible

4. File System

266

4.2.4 System files: transaction recovery journal file
(1) Purpose of the transaction recovery journal file

The transaction recovery journal file is separate from the system journal files and
acquires various types of information about transactions at each transaction branch
(that is, each UAP process). A transaction recovery journal file is created as a UNIX
file with the name of trfxxxxxxxx (where x indicates an integer) in the $DCDIR/
spool/dctjlinf/ directory. Therefore, no transaction recovery journal file can be
used in a System Switchover configuration.

In the user service definition for each service group, you can define whether to obtain
a transaction recovery journal file. This file overcomes problems such as the
following:

• In transaction processing that spans multiple UAP processes, one process taking
a long time might cause multiple system journal files to obtain journal
information for the resources updated in a transaction. If online processing stops
during transaction processing, all those system journal files must be read to
recover the resources. If all such files must be read, recovery will take a long time.

• A system journal file that is being used cannot be swapped so it is possible that,
depending on the size and number of the system journal files, before the end of a
transaction's processing there might be no system journal files that can be
swapped. If no system journal files can be swapped, OpenTP1 terminates
abnormally.

To avoid the above problems, you can use the user service definition to specify a
special file in which OpenTP1 stores the journal (i.e., information) about a transaction
that takes a long time. This special file is a transaction recovery journal file which is
separate from the system journal files. By creating a transaction recovery journal file,
you can reduce the number of journals that are read at recovery. Also, even when
processing of a transaction takes a long time, system journal files can be swapped and
checkpoint dumps can be effective. These results can reduce the time required for
recovery at a restart.

Using a separate transaction recovery journal file also helps to prevent those
OpenTP1-system abnormal terminations caused by long transaction processing times
producing overflows of journal information. We recommend that you use a transaction
recovery journal file for UAPs that have long processing times. When you use a
transaction recovery journal file, however, the same journal is collected in both the
system journal file and the transaction recovery journal file. This might slow down
transaction processing.

(2) Recovering from an error in a transaction recovery journal file
When an error occurs in a transaction recovery journal file during restart processing,
OpenTP1 outputs a message to report this situation. When this message is output, use

4. File System

267

the command jnlmkrf to recover the transaction recovery journal file. Use the
unloaded-journals file to recover the transaction recovery journal file.

4.2.5 System files: server recovery journal file
(1) Purpose of the server recovery journal file

The server recovery journal file is separate from the system journal files and collects
various types of journal information about each system service. Using the server
recovery journal file enables each system service to read journals independently,
reducing recovery time at a complete-recovery restart.

(2) Creating the server recovery journal file
OpenTP1 automatically obtains information for the server recovery journal file, which
has the filename xxx_nn (where xxx is the name of the system service and nn is an
integer) in the directory $DCDIR/spool/dcsjl/.

(3) Recovering from an error in a server recovery journal file
When an error occurs in the server recovery journal file during restart processing,
OpenTP1 outputs a message to report this situation. When this message is output, use
the command jnlmkrf to recover the server recovery journal file. Use the
unloaded-journals file to recover the server recovery journal file.

4.2.6 System files: archive journal files
(1) Purpose of archive journal files

When using OpenTP1 in a cluster system or parallel-processing system, OpenTP1
provides the Global Archive Journal facility to simplify the unloading of system
journal files from multiple nodes. Rather than having to unload the standby system
journal file for each individual node, a user can:

Use the OpenTP1 Global Archive Journal facility to automatically copy the standby
system journal files from a number of nodes into an archive journal file on a single
dedicated node.

(For details on the Global Archive Journal facility, see 6.2.3 Global Archive Journal
facility.)

1. Use the command jnlunlfg to unload the contents of the archive journal file to
a file called the global archive unloaded-journals file.

For global archive journals, you can select the kind of the journal to be archived.
Specify the kind of the journal record by the jnl_arc_rec_kind operand in the
system journal definition. For details of the kinds of journals, see 4.2.2 System files:
system journal files.

(2) Structure of archive journal files
Up to 16 types of archive journal files can be created. The created archive journal files

4. File System

268

are within the archive-journal target node, which is the node used for archiving. As
with system journal files, individual archive journal files are logical filegroups
containing physical files.

Before using an archive journal file, you must specify whether the file is to be opened
when OpenTP1 starts. By specifying the filegroup name in a command parameter
(e.g., in jnlopnfg or jnlls) an archive journal file can be operated on in logical
filegroup units.

Archive journal files can be grouped into resource groups. A resource group is a group
of archive journal files that are separated by intended use. The global archive journal
service uses the names of resource groups to manage archive journal files. Up to 20
nodes can be archived in one resource group.

(3) Creating archive journal files
To create an archive journal file, create a physical file in the OpenTP1 file system using
the jnlinit command, and specify the archive journal file in the archive journal
service definition.

In the archive journal service definition where the resource group is to be defined,
specify the filegroup name, physical file name, and element file name.

• Physical file name

Pathname that indicates the real OpenTP1 file.

• Element file name

A name given to the element file when using the parallel access facility for
archive journal files.

An element file can be duplicated. A filegroup name is a name given to a group of one
or more element files. When not using the parallel access facility for archive journal
files (when there is only one element file in the filegroup), the element file name can
be omitted. Up to 8 element files can be contained in a filegroup.

Before using an archive journal file, specify, for each filegroup, whether to open the
archive journal file at the same time OpenTP1 starts. By specifying a filegroup name
in a command argument, the archive journal file can be operated in logical filegroup
units. Note that one resource group requires two or more filegroups.

(4) Parallel access facility for archive journal files
An archive journal file can be used by configuring a filegroup using multiple element
files. This facility is called the parallel access facility for archive journal files.

In an archive journal file, the journals for multiple nodes are constantly input and
output. Sometimes the input and output operations for the archive journal file cannot
keep up with the journals that need to be archived. In this situation, configure a
filegroup using more than one element file to access the archive journal file in parallel.

4. File System

269

This increases the performance of the archive.

Physical files that make up a filegroup can use the same SCSI interface and hard disk;
however, when they do, the SCSI interface and the hard disk cannot be accessed in
parallel, nor can they provide the full parallel access facility. Try to use different SCSI
interfaces and hard disks. The sizes of physical files need not be the same. If the sizes
are different, however, OpenTP1 considers the smaller file to be the size of the
filegroup. To use resources effectively, match the sizes of physical files whenever
possible.

When using the parallel access facility for archive journal files, the number of element
files that can access in parallel (number of parallel accesses) decreases if an error
occurs in the archive journal file. To make sure the input and output operations of the
archive journal file keep up with the journals that need to be archived, you can specify
the minimum number of parallel accesses to be guaranteed. This minimum number of
parallel accesses to be guaranteed is the minimum number of distributions. The
maximum number of distributions is the maximum number of parallel accesses.

When specifying a filegroup in the archive journal service definition, use the element
file name. Specify the maximum number of distributions in the
jnl_max_file_dispersion operand and the minimum number of distributions in
the jnl_min_file_dispersion operand in the archive journal service definition.

(5) Duplicating an archive journal file
An archive journal file can be duplicated by configuring an element file using two
physical files. If a filegroup is operated with the duplicated archive journal file,
OpenTP1 outputs the same journal in system A and in system B.

If a failure occurs in one system while reading the checkpoint dump, the same data can
be read from the other system. In this way, duplicating a checkpoint dump file
increases reliability.

(a) Specifying the archive journal file definition
To duplicate an archive journal file, specify Y in the jnl_dual operand in the archive
journal file definition. At this time, specify two physical files (system A and system B)
in one filegroup. You should store the physical file of system A and the physical file
of system B on separate disks to prevent a failure in both physical files at the same
time. The size of the physical file of system A and that of system B need not be the
same. If the sizes are different, however, OpenTP1 considers the smaller file to be the
size of the journal. To use resources efficiently, match the sizes whenever possible.

(b) Single-system operation and non-single-system operation
When an archive journal file is duplicated, single-system operation or
non-single-system operation can be selected.

• Single-system operation

4. File System

270

If either of the two physical files in an element file can be used, the element file
can be used.

• Non-single-system operation

The element file can be used only when both physical files in the element file can
be used.

The archive journal service definition allows or disallows single-system operation.
When single-system operation is permitted, even if an error occurs in one physical file,
the system continues operating with the remaining physical file until the error is
corrected. During single-system operation, the archive journal file is not duplicated,
decreasing reliability.

(6) Status of archive journal files
An archive journal file can have two statuses, the same as a system journal file.

Available

The number of usable element files among the element files in a filegroup is
greater than the required number.

Unavailable

The number of usable element files among the element files in a filegroup is less
than the required number.

An available element file implies that the required number of physical files is opened
in that element file. An element file is unavailable if the required number of physical
files are not opened in the element file. The required number of element files and the
required number of physical files are determined according to the values specified in
the archive journal service definition.

Filegroups are managed as having current or standby status if available for journal
output, or in reserved status if unavailable for journal output. The required number of
element files and physical files are determined by the values specified in the archive
journal service definition.

• Current

An available filegroup which is the current destination of journals to be output.
There is always only one current filegroup.

• Standby

An available filegroup which is not currently the destination of journals to be
output but is waiting to be switched to become current. The two standby statuses
are:

• Ready to be the next swap destination:
A standby filegroup that can be overwritten (there is no journal that is

4. File System

271

required for recovery) and is already unloaded.

• Not ready to be the next swap destination:
A standby filegroup that cannot be overwritten or is waiting to be unloaded.

• Reserved

An unavailable filegroup.

An archive journal file requires at least two filegroups other than the reserved
filegroups.

(7) Unloading archive journal files
When an archive journal file is waiting for an unload, you should use the command
jnlunlfg to unload. A filegroup of an archive journal file which has not been
unloaded might cause a complete lack of swappable files, which would cause an
abnormal termination of the global archive journal service.

As with a system journal file, an unloaded ordinary file allows DAM file recovery and
editing of files containing operation statistics. Also, a user journal can be inherited by
an offline program.

A global archive unloaded-journals file contains system journal information about
multiple OpenTP1 nodes. You can edit this journal: for example, by editing merged
operation statistics or by sorting multiple OpenTP1 node journals by time.

(a) Restraining an unload check
The standby filegroup which is usually in the unload wait status can be specified to use
as it is. This is called a unload check restraint. When restraining an unload check,
specify N to the jnl_unload_check operand in the system journal service definition.
To restrain an unload check, specify N in the jnl_unload_check operand in the
archive journal service definition.

If the unload check is restrained, do not unload the journal files using a command
during the operation of OpenTP1. If an unload is performed by specifying an unload
check restraint, unload the file after the files are once closed by the jnlclsfg
command.

When the unload check is restrained, the journal edit commands (jnlcolc command,
jnlstts command) cannot be executed as input for a global archive unload journal
file because the global archive unload journal file cannot be created.

If an unload check is restrained, the unload wait status may be output when confirming
the filegroup status using the jnlls command. Even if the unload wait status is output,
the current filegroups are actually used.

(8) Status of system journal files
In the system journal services related to the Global Archive Journal facility, you can

4. File System

272

add the following journal file statuses: archived or not archived. These indicate
whether or not a system journal filegroup has been archived. You can display this
status of a system journal file with the jnlls command.

After a system journal filegroup is copied to an archive journal file, the system journal
filegroup is eligible to be swapped even if the archive journal file has not yet been
unloaded.

(9) Swapping archive journal files
Some standby archive journal filegroups can become swap destinations while others
cannot. Those that can become swap destinations are filegroups that are already
unloaded. Filegroups that are not unloaded cannot be swap destinations. If there is no
swap destination for the archive journal file, OpenTP1 terminates abnormally: see
5.3.3(1)(d) Recovering from system-file errors: archive journal files.

Figure 4-12 shows the swapping of archive journal files.

Figure 4-12: Swapping archive journal files

4. File System

273

4.3 Queue files

The following OpenTP1 files are used by the message exchange and message queuing
facilities:

• Queue files: MCF message queue file

Used for message exchange (communication using TP1/Message Control).

• Queue files: MQA message queue file

Used for message queuing (communication using TP1/Message Queue).

4.3.1 Queue files: MCF message queue file
(1) Purpose of the MCF message queue file

The MCF message queue file is a file in the OpenTP1 file system and is used when
MCF exchanges messages with another system. The MCF message queue file is used
as a disk queue for I/O messages: i.e., messages received or messages to be sent. The
input queue is used for managing received messages such as requests, and the output
queue is used for managing messages to be sent such as processing request results.

(2) Structure of the MCF message queue file
OpenTP1 handles MCF message queue files in a logical unit called a queue group,
while the actual file that obtains I/O messages is called a physical file. A queue group
always consists of one physical file. For each queue, you must create an MCF message
queue service definition in which the correspondence between a queue group and a
physical file is defined. In the MCF message queue service definition, you can assign
any name (ID) to a queue group. Using the queue group ID allows MCF message
queue file operation in units of queue groups: for example, you can monitor the
percentage of physical files that are used.

In the message queue service definition, you can assign any name (ID) to a queue
group. Using the queue group ID, message queue files can be operated as a queue
group, when monitoring the usage of physical files, for example.

A queue group can be divided into a number of service groups or logical terminals.
Each service group or logical terminal is known as a queue file. The name of the
service group or logical terminal is called the queue file name.

Input and output messages are scheduled on the basis of a particular service group or
logical terminal, respectively. Dividing a queue group into separate service groups and
logical terminals enhances performance when the same resource is being accessed.

Figure 4-13 shows the relationship between queue groups and MCF message queue
files.

4. File System

274

Figure 4-13: Queue groups and message queue files

4.3.2 Queue files: MQA message queue file
(1) Purpose of the MQA message queue file

An MQA message queue file registers the messages in a queue from UAPs. The queue
manager (TP1/Message Queue for OpenTP1) sends each message to the appropriate
destination. Desired messages can be retrieved regardless of the registration order by

4. File System

275

the MQA service definition and the specification of MQI.

For the MQA message queue file configuration, types of queues, and operation
procedures, see the OpenTP1 TP1/Message Queue User's Guide.

4. File System

276

4.4 User data files

This section describes the user data files (user files) used in OpenTP1 application
processing. Three types of user files are used in OpenTP1:

• DAM files

Used as OpenTP1-specific direct access files.

• TAM files

Used as OpenTP1-specific direct access files that can be rapidly accessed using
the table access method.

• ISAM files

Used as indexed sequential access files that conform to the X/Open ISAM model.
For details about ISAM files, see the manual Indexed Sequential Access Method
ISAM.

All OpenTP1 user files are created on an OpenTP1 file.

In addition to these three file types, user files managed by the IST service (which
accesses tables in shared memory) or by a database management system (DBMS) can
be used in OpenTP1.

4.4.1 User files: DAM files (TP1/FS/Direct Access)
This section describes DAM (direct access method) files, which are one of three types
of user files used in OpenTP1 application processing. The three types of user files are
DAM, TAM, and ISAM. DAM files are created as OpenTP1 files.

The OpenTP1 DAM file service enables OpenTP1 files in an OpenTP1 file system to
be accessed as direct-organization files, enables OpenTP1 to manage the access as part
of a transaction, and enables OpenTP1 to manage the file status. To use the DAM files
in OpenTP1, TP1/FS/Direct Access is needed.

You use the DAM service definition when creating a DAM file. In the definition you
must specify the name of a physical file and the name of a logical file for the DAM file.
The name of the physical file, which is the complete pathname for an OpenTP1 file
entity, is made up of the directory names and the filename. Each name of a logical file
matches the name of a corresponding physical file; the name of the logical file is for
the convenience of the user and is assigned by the user. Using the logical file name
allows the user to use the DAM file without knowledge of the structure of the physical
file.

Figure 4-14 shows the configuration of the DAM file.

4. File System

277

Figure 4-14: DAM file configuration

(1) Features of a DAM file
Table 4-9 lists the special features of DAM files.

Table 4-9: Special features of DAM files

Item Special feature

File structure Direct organization file (an OpenTP1 file).

Record format Fixed length, non-blocked format.

File access File can be referenced and updated by the direct access method using the
relative block number. Consecutive blocks can be input or output all together.

Relation to transaction The contents of a block that was updated during transaction processing are
updated in the file when a commit operation is performed on a transaction or
when the maximum number of blocks specified in the DAM service definition
is reached. If the transaction is rolled back, the status before the start of
transaction is restored.

File backup and restore The DAM file management command dambkup can backup a DAM file to
another file. Also, the most recent contents of a DAM file can be recovered by
using the backup file and the recovery journals after the backup was obtained.
Recovery of a DAM file uses the DAM FRC facility.

File addition The DAM file management command damadd can add DAM files into an
online system during OpenTP1 operation.

File separation The DAM file management command damrm can separate the DAM file used
in online processing from the operating OpenTP1.

File deletion The DAM file management command damdel can delete a DAM file
separated from OpenTP1.

4. File System

278

(2) Creating a DAM file
OpenTP1 files allocated to the OpenTP1 file system are called physical files. Offline
DAM files are accessed via physical files. Online DAM files are accessed via a logical
file that corresponds to a physical file. In the DAM service definition, you specify
which physical file corresponds to which logical file in a DAM file.

DAM files should be created after creating an OpenTP1 file system. There are two
ways to create DAM files:

• use a command

With this method, you use the DAM management command damload to allocate
physical files, then output initial data to the physical file.

• use UAPs

With this method, a UAP issues a DAM access function dc_dam_create() or
dc_dam_put() (for file allocation, and outputting initial data) in an offline
environment to create the DAM file.

(3) I/O functions for a DAM file
OpenTP1 UAPs can use functions to access DAM files. For details on the DAM file
service that can be used by UAPs see the OpenTP1 Programming Guide.

(4) Locks on a DAM file
(a) Lock granularity

A lock on a DAM file takes effect within a transaction branch or within a global
transaction. In the DAM service definition, you can change whether the lock applies
to a transaction branch or to a global transaction.

When a lock applies to a global transaction, an error is not returned even if multiple
transaction branches in the same global transaction access the same block or the same
file.

For parallel processing of access to DAM files in each transaction branch, you should
specify locks that apply to transaction branches because specifying locks that apply to
a global transaction can reduce transaction efficiency. When a lock applies to a global
transaction, even if DAM files are accessed for each transaction branch, parallel access
is not possible and access is by sequential access.

For details on locking, see the OpenTP1 Programming Guide.

(b) Transactions and lock granularity
A lock on a DAM file takes effect within a transaction branch or within a global
transaction. In the DAM service definition, you can change whether the lock applies
to a transaction branch or to a global transaction.

When a lock applies to a global transaction, an error is not returned even if multiple

4. File System

279

transaction branches in the same global transaction access the same block or the same
file.

For parallel processing of access to DAM files in each transaction branch, you should
specify locks that apply to transaction branches because specifying locks that apply to
a global transaction can reduce transaction efficiency. When a lock applies to a global
transaction, even if DAM files are accessed for each transaction branch, parallel access
is not possible and access is by sequential access.

For details on locking, see the OpenTP1 Programming Guide.

(c) Setting lock release for resources
When an attempt is made to update, or to reference for an update, a block of an opened
DAM file and that block is already locked, you can use a function parameter (e.g., in
dc_dam_open(), dc_dam_read(), and dc_dam_write()) to specify whether to
wait for the release of the lock. In the lock service definition you can specify how long
to wait for the release of the lock. If the lock is not released within this specified period,
an error is returned.

(5) Deferred update of a DAM file
In an OpenTP1 deferred update, a block of a DAM file that is updated by a transaction
is not updated when the synchronization point is reached; the DAM file is updated
asynchronously (though note the exception in the next paragraph). A DAM file with a
deferred update specification is actually updated from a process used exclusively for
output and which is started after some specified period. Specifying a deferred update
for a DAM file can reduce the number of I/O operations, which can improve
throughput of transactions per unit of time.

Note, however, that when one transaction outputs updates for both a DAM file that has
a deferred update specification and a DAM file that receives an ordinary update, both
DAM files are updated at a synchronization point.

(a) How to specify deferred update for a DAM file
In the DAM service definition for each DAM file, you can specify whether or not a
DAM file is to have a deferred update.

Before the execution of the process used exclusively for output, in the DAM service
definition you must specify the buffer area for storing the block and the period for
executing the update from the process used exclusively for output. If this execution
period is too long or the value for the buffer area is too small, a buffer area overflow
might occur or the system might be forced to wait for free area.

When using the DAM service definition to specify a deferred update, you should take
care when calculating the values for the buffer area and the time period.

4. File System

280

(b) Caution required when using DAM files that have deferred update
specified
When OpenTP1 abnormally terminates because of a system failure, a DAM file that
has a deferred update specified might not contain the results of a transaction that
completed before the failure. To guarantee the results of the transaction update of the
DAM file, you must always normally terminate OpenTP1 after OpenTP1 is restarted
in a complete recovery.

Even for transactions that were completed before the failure, if the processing of the
process used exclusively for output was not completed before the failure, a rollback
might occur after a complete recovery. If you do not want to rollback a transaction that
was completed before the failure, do not specify a deferred update for the DAM file to
be accessed.

When a disk error occurs in a DAM file that has a deferred update specification, you
should always execute the DAM FRC (file recovery).

(6) Online backup of a DAM file
DAM files can be backed up during OpenTP1 online operations. To allow online
backups of DAM files, execute the dambkup command with the -o option. If you do
not specify the -o option, backup is done offline.

To perform an offline backup of a DAM file:

1. Execute the damhold command.

The logical file is logically shut down.

2. Execute the damrm command.

The logically shutdown logical file is separated from online processing.

3. Execute the dambkup command without the -o option.

The DAM file is backed up.

Recovery of a DAM file by a file that has been backed up online requires the use of
fewer unloaded-journals files. This results in shorter recovery processing times for
DAM files when compared to recovering a DAM file that uses backup files for which
the -o options was not specified.

(7) Extraction of user data
You can extract user data from a DAM file without the management information. You
can use the damload command to allocate the extracted user data as the initial data for
a DAM file. However, you cannot use the damrstr command to restore the extracted
user data. To extract user data, execute the dambkup command with the -d option.

(8) Block length extension facility
When you restore a file that was backed up using the dambkup command, you can

4. File System

281

extend the block length. This feature is called the block length extension facility. By
using this facility, you can move data between DAM files with different block lengths.

There are two modes for the block length extension facility: a mode that maintains the
block configuration of the backup DAM file and a mode that does not maintain the
block configuration of the backup DAM file. See below for details.

• Maintaining the original block configuration

You can maintain the block configuration of the backup DAM file in the restored
DAM file. You can specify the new block length using the -e option in the
damrstr command.

Figure 4-15 shows an example of restoring a DAM file with a block length of 504
bytes to a DAM file with a block length of 1016 bytes.

Figure 4-15: Extending the block length maintaining the original block
configuration

• Not maintaining the original block configuration

You can store the data from the backup DAM file in the restored DAM file from
the first block without entering any space. You can specify the new block length
using the -p option of the damrstr command.

Figure 4-16 shows an example of restoring a DAM file with a block length of 504

4. File System

282

bytes to a DAM file with a block length of 1016 bytes.

Figure 4-16: Extending the block length without maintaining the original block
configuration

Note the following when using the block length extension facility.

• You cannot specify a DAM file with an extended block length as a recoverable
definition file in the damfrc command.

• You cannot extend the block length by using a backup file that is acquired online.

(9) Backing up and restoring DAM files using standard input/output
You can use standard output to the backup destination of a DAM file and standard
input to the input file to be restored. Using standard input/output can redirect a
command. If you use standard input/output, specify the -s option in the dambkup and
damrstr commands, then execute them.

(10) Access to unrecoverable DAM files
DAM files can be created without guaranteeing their consistency and error recovery in
a transaction. These DAM files are called unrecoverable DAM files. Processing not
included in transactions can update and output blocks into the unrecoverable DAM
files.

4. File System

283

Specify the -n option in damfile, which is a definition command of the DAM service
definition, for an unrecoverable DAM file. If an error occurs while accessing an
unrecoverable DAM file, the file data error cannot be recovered.

(11) Using cache blocks
The DAM service stores the block data in the DAM file it reads in the DAM
service-exclusive shared memory. When there are multiple reference requests for the
same block, the DAM service returns the block data in the DAM service-exclusive
shared memory to the UAP to reduce the number of file I/O operations.

In the DAM service-exclusive shared memory, several pieces of block data are chained
and managed for each DAM file. An area in the DAM service-exclusive shared
memory storing block data is called a cache block.

When a UAP accesses a DAM file, the DAM service secures cache blocks according
to the following procedure. This processing is called cache block securing.

The procedure for cache block securing is as follows:

1. The DAM service checks if the cache block corresponding to the required block
is connected to the cache block chain for the accessed DAM file. If it is connected,
the DAM service returns the data in that cache block to the UAP.

2. If the target cache block is not connected to the cache block chain, the DAM
service secures a cache block from the cache block area.

3. If there is no free space in the cache block area, the DAM service reuses a cache
block in the cache block chain for the accessed DAM file. In this case, the cache
block should not be currently referenced by the transaction being executed. Cache
blocks are reused from the oldest cache block in the cache block chain (the last
cache block in the cache block chain). The cache blocks to be reused are
determined by the value specified in the dam_cache_reuse_from operand in
the DAM service definition. By default, cache blocks are used from the last cache
block.

4. If the DAM service cannot secure a cache block in steps 2 and 3, the DAM service
releases all the cache blocks, which are not used by the transaction being
executed, in the cache block chain for another DAM file. Then the DAM service
secures a cache block from the cache block area. This method of releasing cache
blocks is called clean-up processing.

5. The DAM service copies the block data of the DAM file to the secured cache
block and connects the cache block to the beginning of the cache block chain.

To acquire the number of cache blocks connected to a cache block chain and the total
use percentage of the DAM service-exclusive shared memory, use the damchinf
command.

Figure 4-17 gives an overview of a cache block chain.

4. File System

284

Numbers in the figure correspond to the above step numbers.

Figure 4-17: Overview of a cache block chain

(12) Specifying the threshold for the number of cache blocks
If a specific DAM file is heavily accessed, the number of cache blocks managed by the

4. File System

285

DAM file increases. As a result, searching for and releasing the target cache blocks
takes time, resulting in decreased transaction performance.

By specifying the damchlmt definition command in the DAM service definition, you
can set a limit for the maximum number of cache blocks that can be managed by a
single DAM file. This limit is called a threshold. Cache blocks are secured up to the
threshold. When the threshold is reached, unused cache blocks for the corresponding
DAM file are reused and new cache blocks are not secured. If you do not specify a
threshold, cache blocks are secured until the shared memory resource is used up.

During online operation you can use damchdef command to dynamically change the
value to be specified for the damchlmt definition command in the DAM service
definition.

(a) Calculations for cache blocks
You can calculate the size of the area used for cache blocks as follows:

Cache block area size = M - (M/576) 34 (bytes)

You can calculate the size of each cache block as follows:

Cache block size = (Ab + 8) + 64 (bytes)

M: Size of the DAM service-exclusive shared memory

Ab: Length of a block in the DAM file to be accessed

(b) Examples
Specifying a threshold is effective when a specific DAM file is heavily accessed. The
following conditions must be satisfied to specify a threshold:

• The cache memory secured by the DAM service can store 100,000 cache blocks.

• Only damfileA is heavily accessed during online operation.

• The number of blocks in damfileA is 100,000.

• The search time for a single cache block is 0.1 milliseconds.#

• The file I/O time for a single block is 500 milliseconds.#

#: Depends on the status of the hardware or the process.

A simple value is used for the purpose of explanation.

Example 1:

When you do not specify a threshold for the number of cache blocks

If you do not specify a threshold for the number of cache blocks, cache blocks are
connected to the cache block chain for damfileA as long as the cache block area
has free space. In this example, 100,000 cache blocks are connected to the cache

4. File System

286

block chain for damfileA.

In this case, the chain scan time required for detecting the block data at the end of
the cache block chain is 0.1 milliseconds 100,000 blocks = 10 seconds. The
relative transaction performance is better if direct file I/O is performed. Since
damfileA is using all the cache blocks that can be secured in the cache memory,
clean-up processing will be executed for damfileA if you access another DAM
file. When clean-up processing is performed, 100,000 cache blocks need to be
released, decreasing the transaction performance even more.

Example 2:

When you specify 4000 as the threshold for the number of cache blocks

When you specify 4,000 as the threshold for the number of cache blocks, up to
4,000 cache blocks are connected to the cache block chain for damfileA. (More
than 4,000 cache blocks may be connected depending on the values specified in
the DAM service definition.)

In this case, the chain scan time required for detecting the block data at the end of
the cache block chain is 0.1 milliseconds 4000 blocks = 400 milliseconds. The
transaction performance is better than directly performing a file I/O. Since the
cache block chain contains only 4000 cache blocks, the remaining 96000 cache
blocks are not secured. Therefore, clean-up processing is not performed even if
you access another DAM file.

However, since the number of cache blocks connected to the cache block chain
for each DAM file is limited, the number of cache blocks in the cache block area
decreases, causing some part of the DAM service-exclusive shared memory to be
unused.

Example 3:

When you specify 0 as the threshold for the number of cache blocks

When you specify 0 as the threshold for the number of cache blocks, the number
of cache blocks connected to the cache block chain for damfileA depends on the
number of blocks that are accessed in the transaction branch and the values set in
the DAM service definition.

This example assumes that the following values are set in the DAM service
definition:

set dam_update_block = 10
set dam_tran_process_count = 5

• When all the transaction branches access only damfileA:

If the accessed blocks do not overlap, 10 5 = 50 cache blocks are

4. File System

287

connected to the cache block chain for damfileA. This is because data is
stacked in the cache memory to prevent another process from referencing the
latest block data and the updated data before the transaction determination
while the transaction is being executed.

• When only one transaction branch accesses damfileA:

If the accessed blocks do not overlap, data is stacked in the cache memory as
in the above case and 10 cache blocks are connected to the cache block chain
for damfileA.

As described above, when you specify 0 as the threshold for the number of cache
blocks, the number of cache blocks connected to the cache block chain depends on the
type of access made by the UAP and the values set in the DAM service definition. The
same phenomenon occurs when you specify a small value as the threshold for the
number of cache blocks. A small value refers to a number smaller than the number of
blocks that are accessed in a transaction executed by a UAP.

In Example 3, part of the DAM service-exclusive shared memory is not used as in
Example 2.

(c) Settings according to the type of access made by UAPs
Imagine that the following information is output after you execute the damchinf
command:

CleanUP Count:1 Next CleanUP FILE-No:1 Using Rate:80%
FileNo FileName BlkLen BlkNum CchBlkNum PreservNum LimitNum
ReUse
 1 damfile1 504 10000 7900 0 -1 Exist
 0 damfile0 504 10000 100 0 -1 Exist
 2 damfile2 504 10000 0 0 -1 None

This section explains the suitable threshold for the number of cache blocks for each
type of access made by a UAP.

If the UAP hardly accesses damfile1 any more:

Since Using Rate:80% is output, only 20% of the cache block area can be
allocated to damfile0 and damfile2. From now on the UAP will hardly access
damfile1 at all, so the cache block area for 7,900 cache blocks that are
connected to the cache block chain for damfile1 remains secured. You can
specify a small value as the threshold for damfile1 to decrease the secured cache
block area and increase the cache block area to be allocated to damfile0 and
damfile2.

Since many cache blocks are connected to the cache block chain for damfile1,
clean-up processing will be performed if the cache block area becomes

4. File System

288

insufficient. Since Next CleanUP FILE-No:1 is output, you can tell that the
cache block chain for damfile1 is the target of clean-up. When 7,900 cache
blocks are released, the performance degrades rapidly. To prevent this
degradation, you should specify a threshold for damfile1.

When the UAP accesses damfile1 frequently:

When the UAP accesses damfile1 frequently, the cache block chain for
damfile1 is frequently searched. By specifying a threshold, you can shorten the
cache block chain, reducing the chain search time. However, if the threshold is too
small, the cache efficiency decreases, degrading the performance. Determine an
optimum value by testing several thresholds.

When the UAP accesses all the DAM files uniformly:

When the UAP accesses all the DAM files uniformly, the cache block area
allocated to each DAM file should be uniform. By setting the same value as the
threshold for each DAM file, the cache block area used by each DAM file
becomes uniform.

(d) Notes
Note the following:

• If you do not specify a threshold for the number of cache blocks, cache blocks will
be secured until the DAM service-exclusive shared memory becomes full. If you
specify a threshold for the number of cache blocks, cache block securing will be
suppressed in the middle, causing some part of the shared memory area to be
unused.

• The number of cache blocks connected to the cache block chain for each DAM
file may exceed the value set for the threshold.

• If you specify an unspecifiable threshold in the damchlmt definition command
in the DAM service definition, the part with the invalid specification is shown in
the KFCA00219-E message. The KFCA01644-I message indicates that the
default is used. In this case, the threshold managed by the corresponding DAM
file is not set and cache blocks are secured until the shared memory resource is
used up.

(13) Specifying the search sequence when reusing cache blocks
In the dam_cache_reuse_from operand in the DAM service definition, you can
specify the first cache block you want to reuse in the cache block chain when a
transaction that accesses a DAM file requires a new cache block.

When you specify last, cache blocks are reused from the oldest cache block
connected to the cache block chain.

When you specify first, cache blocks are reused from the latest cache block
connected to the cache block chain.

4. File System

289

The default is last.

(14) Specifying the boundary for reusing cache blocks
In the damcache definition command in the DAM service definition, you can specify
the boundary for reusing cache blocks. If you have specified a boundary, when
securing new cache blocks, the reuse of cache blocks for another DAM file takes
priority over reuse of cache blocks for the accessed DAM file. This applies if the
number of cache blocks has not reached the boundary for reusing cache blocks.

If the number of cache blocks exceeds the boundary for reusing cache blocks, the
cache blocks for the accessed DAM file are reused. Therefore, when you specify 0 for
the boundary for reusing cache blocks, cache blocks for the accessed DAM file are
reused as in the usual processing.

In the dam_default_cache_num operand in the DAM service definition, you can
specify the boundary for reusing cache blocks in a logical file without the damcache
definition command specified.

Specifying a boundary is effective when you want to heavily access many blocks in a
DAM file and then frequently access another DAM file, which means that a small
number of DAM files occupy cache blocks and only a few cache blocks are allocated
to a different DAM file that is accessed frequently.

When you access multiple DAM files at random, which means that cache blocks are
allocated to each DAM file uniformly, specifying a small value for the boundary for
reusing cache blocks releases cache blocks frequently, increasing memory securing
and data read processing. This may degrade the performance.

(a) Example that improves the performance
For the purpose of explanation, two DAM files are used here and the block lengths are
all the same. The maximum number of cache blocks that can be secured in the entire
system is 100. A UAP references 98 blocks of DAM file A and then starts to access
DAM file B.

When the UAP accesses DAM file B, the number of blocks it references increases by
one in each access. The UAP will reference up to 50 blocks.

1st access: Blocks 1 and 2 are referenced.

2nd access: Blocks 1, 2, and 3 are referenced.

3rd access: Blocks 1, 2, 3, and 4 are referenced.

 :

49th access: Blocks 1, 2, 3, ... and 50 are referenced.

Under these conditions, the difference between specifying and not specifying the
damcache definition command is described below.

4. File System

290

When you do not specify the damcache definition command:

1. When the UAP accesses DAM file B for the first time, the DAM service secures
the cache block area from the shared memory. At this time, 98 cache blocks are
already secured for DAM file A. Therefore, the DAM service can secure only two
cache blocks. The DAM service reads the data of blocks 1 and 2 into the cache
blocks and connects the cache blocks to the cache block chain for DAM file B.

2. When the UAP references blocks 1, 2, and 3, file I/O operations are not performed
for blocks 1 and 2 since their data exists in the cache. The UAP accesses block 3
for the first time. Therefore, the DAM service attempts to secure a cache block for
block 3 to read data. However, since free space runs out in the shared memory in
step 1, cache blocks for DAM file B are reused. For reuse processing, the DAM
service disconnects the cache block containing the data of block 1 from the cache
block chain, reads the data of block 3 into the cache block, and then connects the
cache block to the beginning of the cache block chain.

3. When the UAP references blocks 1, 2, 3, and 4, cache blocks are reused as in step
2. The DAM service releases the cache block for block 2, reads block 1 into the
cache block, and connects the cache block to the beginning of the cache block
chain. Then to read the data of block 2, the DAM service reuses the cache block
of block 3 and reads block 2. This processing is repeated for blocks 3 and 4.

4. When step 3 is repeated, the DAM service reuses cache blocks for DAM file B,
which means that the DAM service frequently releases cache blocks from the
cache block chain and frequently executes file I/O operations to read data. About
1275 release operations are performed and about 1,275 file I/O operations are
performed.

When you specify the damcache definition command:

You specify 50 as the boundary for reusing cache blocks for DAM file A and specify
90 as the boundary for reusing cache blocks for DAM file B.

1. The DAM service secures two unused cache blocks as in step 1 when you do not
specify the damcache definition command, reads the data of blocks 1 and 2 into
the cache blocks, and connects the cache blocks to the cache block chain.

2. When the UAP references blocks 1, 2, and 3, file I/O operations are not performed
for blocks 1 and 2 since their data exists in the cache. For the cache block for
reading the data of block 3, the DAM service releases and secures a cache block
for a DAM file whose number of cache blocks exceeded the boundary for reusing
cache blocks (DAM file A in this case). This release and securing of a cache block
is performed because since the number of cache blocks for DAM file B does not
exceed the boundary for reusing cache blocks. The DAM service reads the data
of block 3 into the secured cache block and connects the cache block to the cache
block chain. Three cache blocks are now connected to the cache block chain for
DAM file B.

4. File System

291

3. When the UAP references blocks 1, 2, 3, and 4, file I/O operations are not
performed for blocks 1, 2, and 3 since their data exists in the cache. When the
DAM service reads the data of block 4, a single file I/O operation is executed to
reuse the unused cache block for DAM file A.

4. Step 3 is repeated until the number of cache blocks for DAM file A exceeds the
boundary for reusing cache blocks. The release from the cache block chain is
executed approximately 50 times and file I/O is also executed about 50 times,
improving the performance.

(b) Example that degrades the performance
The conditions, such as the block lengths in DAM files, are the same as the previous
example. DAM files are accessed as follows:

1st access: Blocks 1 to 50 of DAM file A are referenced.

2nd access: Blocks 1 to 50 of DAM file B are referenced.

3rd access: Blocks 51 to 100 of DAM file A are referenced.

4th access: Blocks 1 to 50 of DAM file B are referenced.

 :

The UAP references DAM files A and B alternately. The UAP references the next 50
blocks of DAM file A for each access.

Since the maximum number of cache blocks is 100, 50 cache blocks of DAM file A
and 50 blocks of DAM file B are connected by the second access. For the third and
later accesses, the processing differs depending on whether you specify the damcache
definition command.

When you do not specify the damcache definition command:

During the third access, the DAM service releases the cache blocks for blocks 1
to 50, replaces the old data with the data of blocks 51 to 100, and connects the
cache blocks to the cache block chain.

For the fourth access, all the blocks are found in the cache. Therefore, the DAM
service does not release cache blocks and file I/O operations are not performed.

During the later access, for DAM file A, the DAM service releases all the cache
blocks and file I/O operations are performed like the third access. However, for
DAM file B, the DAM service does not release cache blocks and file I/O
operations are not performed. When the number of blocks that can be referenced
in DAM file A is 1,000, cache blocks are released 950 times and file I/O is
performed 1,050 times for both DAM files A and B.

When you specify the damcache definition command:

You specify 100 as the boundary for reusing cache blocks for DAM file A and

4. File System

292

specify 50 as the boundary for reusing cache blocks for DAM file B.

During the third access, when the UAP references blocks 51 to 100 in DAM file
A, 50 cache blocks need to be secured. At this time, since the number of cache
blocks for DAM file A does not exceed the boundary for reusing cache blocks,
the DAM service uses the cache blocks for a different DAM file. The DAM
service forcibly reuses the cache blocks for DAM file B since there is no free
space in the shared memory even if the number of cache blocks for DAM file B
does not exceed the boundary for reusing cache blocks. Therefore, the DAM
service releases the cache blocks containing the data of blocks 1 to 50 in DAM
file B, replaces the old data with the data of blocks 51 to 100 of DAM file A, and
connects the cache blocks to the beginning of the cache block chain for DAM file
A. At the end of the third access, the cache blocks for blocks 1 to 100 are
connected to the cache block chain for DAM file A and there is no cache block
for DAM file B.

For the fourth access, when the UAP references blocks 1 to 50 in DAM file B, 50
cache blocks need to be secured. Like the third access, the DAM service forcibly
reuses the cache blocks for DAM file A, releases the cache blocks containing the
data of blocks 1 to 50 of DAM file A, stores the data of blocks 1 to 50 of DAM
file B, and connects the cache blocks to the cache block chain for DAM file B.

The same processing is repeated for the third and fourth access. When the number
of blocks that can be referenced in DAM file A is 1,000, cache blocks are released
1,900 times and file I/O is performed 2,000 times for both DAM files A and B,
degrading the performance compared to not specifying the damcache definition
command.

(c) Notes
Note the following:

When the number of cache blocks for the accessed DAM file does not exceed the
boundary for reusing cache blocks, cache blocks for a different DAM file are
reused. If all the cache blocks for the target DAM file are being accessed, cache
blocks for the accessed DAM file are reused. Therefore, cache blocks may be
reused even if the boundary for reusing cache blocks is not exceeded.

If you execute the damadd command without specifying the -l option, the
boundary for reusing cache blocks for that particular DAM file is 0 and the
boundary does not depend on the value specified in the
dam_default_cache_num operand in the DAM service definition.

When you specify an unspecifiable value for each boundary for reusing cache
blocks in the DAM service definition, the following occurs:

• When you specify an unspecifiable value for the
dam_default_cache_num operand:

4. File System

293

The system outputs the KFCA00216-E message to indicate the invalid
specification. The system also outputs the KFCA01644-I message to show
that the default is used. In this case, 0 is used as the boundary for reusing
cache blocks for the DAM file for which the boundary is not specified using
the damcache definition command.

• When you specify an unspecifiable value for the damcache definition
command:

The system outputs the KFCA02529-E message to indicate the invalid
specification. The system also outputs the KFCA01644-I message to show
that the default is used. In this case, the value specified for the
dam_default_cache_num operand is used as the boundary for reusing
cache blocks for the applicable DAM file. If the
dam_default_cache_num operand is not specified or if an unspecifiable
value is specified, 0 is assumed.

(15) Cacheless access for unrecoverable DAM files
As described in 4.4.1(11) Using cache blocks, the DAM service stores the block data
in the DAM files that are once read in the DAM service-exclusive shared memory to
reduce the number of file I/O operations.

However, for the unrecoverable DAM files only, you can directly perform file I/O
operations and return the block data in the disk to UAPs. This is called cacheless
access. To enable cacheless access for the unrecoverable DAM files, specify the -f
option of the damfile definition command in the DAM service definition.

When you specify cacheless access, file I/O operations are performed for each
reference and update, and performance may degrade.

When you use DAM files with cacheless access specified, you can reduce the amount
of memory required by obtaining the appropriate size of DAM service-exclusive
shared memory and then specifying that value in the dam_cache_size_fix operand
in the DAM service definition. For details, see the description of the
dam_cache_size_fix operand in the DAM service definition in the manual
OpenTP1 System Definition.

4.4.2 User files: TAM files (TP1/FS/Table Access)
The TAM file service provides faster access to user data because it accesses user data
in memory. The user data is loaded from a user file. TAM files are managed by part of
OpenTP1 called the TAM file service.

The TAM file service uses:

• TAM files

• TAM tables

4. File System

294

A TAM file is made by the OpenTP1 administrator with the command tamcre. A TAM
file consists of pairs of values: a data field to contain the record, and another field to
contain an associated key value. When the TAM file is created, the actual records and
key values can be input automatically from another file.

The TAM file is loaded into memory as a TAM table, which is a simple structure table.
To load the table, the OpenTP1 administrator defines the TAM service definition,
which associates TAM tables and TAM files and specifies a time when the TAM file
is to be loaded. At the specified time, the TAM file is loaded into memory as a TAM
table.

TAM tables are in a one-to-one correspondence with TAM files, as shown in Figure
4-18.

Figure 4-18: TAM tables and TAM files

(1) Comparing TAM and DAM files
Like DAM files, TAM files store user data in direct-organization files. The table access
method, however, provides high-speed access to TAM files. A drawback is that such
tables require more memory than required for DAM files.

When memory is abundant, you can configure a high-performance OpenTP1 file
system using more TAM files. When memory is scarce, use DAM files. The same
functions used for DAM file I/O can be used for TAM files also. So when memory is
added, user data can be moved from DAM files to TAM files without changing the
UAPs that have been used. Using the same functions also enables moving part of the
user data to TAM files and leaving the rest of the user data in DAM files. For details
about tree format and hash format, see 4.4.2(2) Internal functioning of a TAM table.

Table 4-10 lists some special features of TAM tables and files.

Table 4-10: Special features of TAM tables and files

Item Feature

File structure Direct organization file (an OpenTP1 file).

4. File System

295

If plenty of memory is available, you can configure a high-performance system using
TAM files. If memory is limited, use DAM files instead.

The functions used for DAM file I/O can also access TAM tables. So when more
memory is added, you can move user data from the DAM files to TAM files without
needing to change your existing UAPs. Alternatively, you can move some user data to
TAM files, and leave some in DAM files.

(2) Internal functioning of a TAM table
This subsection describes the internal working of tree-format and hash-format TAM
tables in OpenTP1. This subsection is not necessary for understanding the benefits of
TAM tables, and readers can skip this material unless they have a particular interest in
it.

In a tree-format TAM file, records are managed in a tree structure according to whether
the value of each record is larger or smaller than the intermediate key value of the tree
root. Because records are located and accessed by comparing the key values in the tree
one-by-one, record retrieval takes longer than with hash-format TAM files.

Record format Fixed length, non-blocked format.

File access A block of data can be referenced and updated by the table access methods using key
values. There are three types of files: reference-only files, updatable files that
prohibit addition and deletion, and updatable files that allow addition and deletion.

Relation to transaction A record tentatively updated during transaction processing is actually updated in
memory at the commit operation on a transaction. If the transaction is rolled back,
the tentatively updated contents of the record are discarded. The record actually
updated in memory is passed to a TAM file. OpenTP1 regularly writes only the
records that were actually updated in memory to TAM files.

File backup and restore The TAM file management command tambkup can backup a TAM file to another
file, and the command tamrstr can restore the file. Also, the most recent contents
of a TAM file can be recovered by using the backup file and the recovery journals
after the backup was obtained. Recovery of a TAM file uses the TAM FRC facility.

Table addition The TAM file management command tamadd can add a TAM table into an online
system during OpenTP1 operation. The physical file for the TAM table must be
made before executing tamadd.
An added TAM table has an initial shutdown status. Use the command tamrles to
release the shutdown.

File deletion The TAM file management command tamhold can logically shut down a TAM
table during system operation. You can then use the command tamrm to take the
shutdown TAM table off the system without stopping the system.
You can use the command tamdel to delete a TAM file, corresponding to a TAM
table, from OpenTP1.

Item Feature

4. File System

296

In a hash-format TAM file, OpenTP1 locates and accesses a record via a number called
the hash value. OpenTP1 uses an internal hash function to generate a hash value (a
random number) from a key value.

The manner in which a key value is specified in a UAP when accessing a TAM table
differs for tree format and hash format.

Table 4-11 shows the differences.

Table 4-11: Processing when a UAP specifies a key value for TAM table access

#

For a TAM table made from a hash file, all the records in a TAM table can be
searched by the combination of the first record retrieval and the NEXT retrieval;
however, this all-record search can be performed only when the records contain
key values. If the key values are removed from the records, the user cannot know
the key value to be specified for the NEXT retrieval. For further details, see the
manual OpenTP1 Operation.

For a hash-format TAM table, you can specify how much of the total record space to
use as the hash area as an argument of the tamcre command when creating the TAM
file. With a larger hash area, record retrieval is faster because there is less duplication
of hash values and the list needs to be searched less often. However, when the list area
decreases and the list gets full, any further duplication of hash values will prevent
further records from being added even if the hash area has free space, resulting in poor

Specification in UAP TAM table made from
tree-format TAM file

TAM table made from
hash-format TAM file

To retrieve one record:
key-value = n

The record with the specified key
value is retrieved. If such a record
is not found, an error is returned.

Same as tree-format

To retrieve more than one record in a
TAM table made from a tree-format
TAM file:

key-value < n
key-value > n
key-value n
key-value n

The first record with the nearest
key value to the specified key value
is retrieved.

An error is returned.

To retrieve the first record in a TAM
table made from a hash-format TAM
file#

An error is returned. The first record of the TAM table is
retrieved ignoring the key value.

To retrieve the next (NEXT
specification) record in a TAM table
made from a hash-format TAM
table#

An error is returned. The record next to the one with the
specified key value is retrieved.

4. File System

297

memory efficiency. With a smaller hash area, duplication of hash values increases and
the list has to be searched more often. This makes record retrieval slower, although
memory usage is more efficient.

Figure 4-19 compares TAM tables that use large or small hash areas.

Figure 4-19: TAM tables that use large and small hash areas

(3) Creating a TAM file
To create a TAM file:

1. Create the OpenTP1 file system.

2. Use the TAM file management command tamcre to create the new TAM file.

If you want to store initial data in a TAM file at the time the TAM file is created, first
store the initial data in a file, then specify the filename in the argument of tamcre.
OpenTP1 will copy the initial data from the file to the TAM file. The file to store the
initial data of a TAM file is called a TAM data file.

(4) Access modes for a TAM table
An access mode is the TAM table attribute that restricts UAP access to a record. By
setting the appropriate access mode, you can differentiate use of TAM files according

4. File System

298

to their purposes, and enable record management of TAM tables.

In the TAM service definition, you can specify the access mode for a TAM table that
is to be installed in an online system at the same time that OpenTP1 starts. For a TAM
table that is to be added online during OpenTP1 operation, you can specify the access
mode in the -a option of the TAM file management command tamadd that adds the
TAM table.

Depending on how a UAP accesses the TAM table records, TAM tables can be
classified into three types. A reference-only TAM table allows records to be referenced
only: no record can be added, deleted, or updated during online processing. A TAM
table that is updatable but prohibits addition and deletion allows updating of records
during online processing but prohibits adding and deleting of records. A TAM table
that is updatable but permits addition and deletion permits adding, deleting, and
updating records during online processing.

(5) Loading and unloading a TAM table
OpenTP1 loads the TAM table stored in the TAM file into memory at a user-specified
time called the loading opportunity. For a TAM table that is to be installed in the online
system when OpenTP1 starts, you must define the loading opportunity in the TAM
service definition. For a TAM table that is to be added to an online system during
OpenTP1 operation, you must specify the loading opportunity in a parameter of the
command tamadd that adds the TAM table.

A TAM table loaded by the command tamload is unloaded by the command
tamunload. The TAM file loaded when OpenTP1 started or when it was added to the
online system is automatically unloaded at the termination of OpenTP1. Also, a TAM
file loaded by a function (dc_tam_read()) issued from a UAP is automatically
unloaded when the function dc_tam_close() is issued to close the TAM file. Table
4-12 shows the loading opportunities and unloading methods for TAM tables.

Table 4-12: Loading opportunities and unloading methods for TAM files

Time TAM table is installed in
an online system

Loading opportunity (one of
the three opportunities is

selected)

Unloading method#3

At the start of OpenTP1#1 When the TAM file service starts
with OpenTP1

Automatically at TAM termination

When the tamload command to
load the table is entered

By command

At the start of OpenTP1#1 When the TAM table is opened by
the dc_tam_open() function
issued from a UAP

Automatically at the close of table

During OpenTP1 operation#2 When the TAM table is cataloged
in the online system

Automatically at TAM termination

4. File System

299

#1

The loading opportunity is specified in the TAM service definition.

#2

The loading opportunity is specified in an option of the command tamadd, which
adds a TAM table.

#3

The TAM table is unloaded at the termination of the TAM file service regardless
of the loading opportunity.

(6) Locks on a TAM table
OpenTP1 can lock TAM tables with table-based locks or record-based locks. When a
TAM table or record has already been locked by another UAP, you can use a parameter
of a function (dc_tam_open() or dc_tam_read()) to specify whether or not to wait
until the lock is released. In the lock service definition, you can specify how long to
wait for the lock release; this time is called the lock monitoring time. If the lock is not
released before the lock monitoring time expires, an error is returned. For TAM tables,
a lock takes effect only within each global transaction.

When more than one UAP can access both a TAM table and a DAM file, a deadlock
might occur among the UAPs. If a deadlock occurs, OpenTP1 uses the UAP priority
specified in the user service definition to recover from the deadlock. See 3.9.1(5)
Deadlocks in TAM and DAM files for details about deadlocks.

(7) Deadlocks in TAM and DAM files
This section describes how TAM and DAM lock functions are affected by deadlocks.

When two or more UAPs lock multiple resources in different sequences, an
undesirable situation called a deadlock might occur. For example, in one form of
deadlock, one UAP might lock resource A and wait for resource B to be released while
another UAP might be locking resource B and waiting for resource A to be released.
Figure 4-20 illustrates a deadlock.

When the tamload command to
load the table is entered

By command

When the TAM table is opened by
the dc_tam_open() function
issued from a UAP

Automatically at the close of table

Time TAM table is installed in
an online system

Loading opportunity (one of
the three opportunities is

selected)

Unloading method#3

4. File System

300

Figure 4-20: Example of a deadlock

OpenTP1 detects deadlocks differently depending on whether the UAPs are on the
same or different nodes. When UAPs are running on the same node, OpenTP1
automatically checks at regular intervals to detect deadlocks. When UAPs are running
on different nodes, however, OpenTP1 cannot directly detect a deadlock so OpenTP1
checks whether any UAP has exceeded the specified time-limit for waiting for a
resource. In the lck_wait_timeout operand in the lock service definition, you can
specify the time-limit for waiting for a resource.

(8) Online backup for a TAM file
You can back up a TAM file during an OpenTP1 job. This is an online backup. Execute
the tambkup command with the -o option to back up a TAM file during online
processing. Without the -o option specified, a TAM file is backed up offline. This is
how you back up offline:

1. Execute the tamhold command.

The logical file is logically shut down.

2. Execute the tamrm command.

The logically shut down logical file is separated from online processing.

3. Execute the tambkup command without the -o option.

The TAM file is backed up.

1. Recovering a TAM file using files that were backed up online reduces the number
of unload journal files to be used for recovery. This reduces the time required for
recovering a TAM file compared to the time it takes using files that were backed
up offline.

(9) Backing up and restoring TAM files using standard input/output
You can use standard output to the backup destination of a TAM file and standard input

4. File System

301

to the input file to be restored. Using standard input/output can redirect a command. If
you use standard input/output, specify the -s option in the tambkup and tamrstr
commands, then execute them.

4.4.3 IST service (TP1/Shared Table Access)
The IST service allows information from all nodes in a group to be shared among the
nodes and to be accessed from any node in the group. The information is stored in
special tables called internode shared tables (ISTs). The IST service stores internode
shared tables in shared memory, and enables UAPs to reference and update the tables
without knowing the actual physical locations of the information that makes up the
tables.

To use internode shared tables, TP1/Shared Table Access must be installed on each
node.

As an example of how internode shared tables can be used, you could place job-status
information from various nodes into internode shared tables. This would allow you to
check the job status of all nodes from any node. This shared access to job-status
information simplifies the management of jobs.

Figure 4-21 illustrates the configuration of the IST service.

4. File System

302

Figure 4-21: IST service configuration

To use the IST service, make sure that all the nodes have the same IST table definition.

In Figure 4-21, different table names are specified in the IST table definitions of nodes
A, B, and C. Thus, nodes A and B continue to output the KFCA25533-W message
periodically until OpenTP1 terminates. This message notifies you that invalid table
information was received.

The IST service is not recommended, however, for the following cases when
distributing data to multiple nodes:

4. File System

303

• Processing that requires the immediate distribution of data

• Processing that handles large quantities of data

• Processing that updates data frequently

(1) Access environment for internode shared tables
Internode shared tables exist in memory shared by each node. No actual file, such as
TAM, DAM, or ISAM, stores an internode shared table. UAPs can access internode
shared tables during online processing only; the tables cannot be accessed offline.

(2) Structure of an internode shared table
An internode shared table consists of multiple records. When a UAP references or
updates an internode shared table, the table data is accessed in units of records, and one
request from a UAP can access one record or access multiple records.

(3) Accessing an internode shared table
For details on how to access an internode shared table from a UAP, see the OpenTP1
Programming Guide. Transaction functions cannot be used for commit or rollback
operations when accessing an internode shared table.

An internode shared table is locked for each function called from the UAP. Access to
an internode shared table is not monopolized during the period from input to changing
of data, so no deadlock will occur even if multiple UAPs access one table.

(4) Example of using the IST service
Figure 4-22 shows an example of effective use of the IST service.

4. File System

304

Figure 4-22: Example of effective use of the IST service

In Figure 4-22, only node A updates IST table A, and only node B updates IST table
B. When data is updated at any node, the IST service reports and applies the change to
other nodes. Thus, any node can reference up-to-date IST tables. This configuration is
effective in that only one specific node can update a specific IST table.

For example, suppose that node A writes its status information to IST table A, and
node B writes its status information to IST table B. In this case, if you create IST table
C in which node C can write and update its status information, each node can reference
the other nodes' status information. Note that there is a delay due to communication
with other nodes for applying the change to their IST tables. Before the change is
applied, other nodes reference the old information.

4. File System

305

(5) Notes about using the IST service
When multiple nodes use the IST service, make sure that there is no time difference
among the nodes. If there is a time difference, updates at a node might not be correctly
applied to other nodes. The following figure illustrates how the IST service updates
IST records (records in the IST tables) on multiple nodes.

Figure 4-23: How IST records are updated

1. A user application program (UAP) creates an update of IST record 1, in IST table
A on node A.

2. The UAP acquires the current machine time at microsecond accuracy, and assigns
the time to the record's update as a timestamp.

3. OpenTP1 compares the assigned timestamp with the timestamp of the
corresponding IST record in the shared memory on node A.

If the timestamp of the record's update is newer, OpenTP1 updates the IST record
in the shared memory. If the timestamp of the record's update is older, OpenTP1
does not update the IST record in the shared memory. The dc_ist_write
function returns normally even when it does not update any IST records.

4. File System

306

4. If an IST record in the shared memory is updated, the IST service on node A
notifies the IST service on node B that an IST record was updated on node A. At
this time, the updated IST record and its timestamp are also reported.

5. Upon reception of the updated IST record and its timestamp, the IST service on
node B compares the timestamp of the received IST record with the timestamp of
the corresponding IST record on node B.

6. If the timestamp of the received IST record is newer, the corresponding IST
record on node B is replaced with the received one.

As described above, the IST service uses the timestamp to decide whether to update
the IST record. Note, however, the IST service may be unable to apply the latest data
in the following cases:

When node A's machine time is ahead of node B's

If an IST record is updated on node A and then the same IST record is updated on
node B, the timestamp assigned on node A may be newer. In this case, if the
timestamp assigned on node A is newer, the record updated on node B is not
applied to node A.

Also, when the IST record updated on node A is reported to node B, the IST
service assumes that the reported IST record is the latest one. In this case, the
reported IST record replaces the one that was actually updated later.

When node A's machine time is behind node B's

• When an IST record was updated on node B and the updated IST record has
already been reported to node A

After the IST record update on node B, even if the same IST record is
updated on node A, the dc_ist_write function returns normally without
updating the record.

• When an IST record was updated on node B but the updated IST record has
not yet been reported to node A

After an IST record is updated on node B, if the same IST record is updated
on node A, the IST record updated on node A is at first applied to node B.
However, because the IST service assumes that the timestamp of the IST
record reported by node B is newer, the IST service then applies the older
reported update to node A.

4.4.4 User files: ISAM files (ISAM and ISAM/B)
ISAM (indexed sequential access method) files are one of the three types of user files
used in OpenTP1 application processing. For details about the ISAM file service, see
the manual Indexed Sequential Access Method ISAM.

4. File System

307

(1) Overview of ISAM files
An indexed sequential access file consists of an index part for key management and a
data file part for data storage. The use of keys allows sequential access and random
access processing.

An ISAM file can be manipulated by calling a library function from a UAP or by
executing a utility command for ISAM file management.

(2) Types of ISAM services
The following ISAM file services can be accessed from an OpenTP1 UAP.

(a) ISAM service
ISAM files are handled as regular files. Processing is not synchronized with OpenTP1
transaction processing.

(b) ISAM/B service
ISAM files are handled in synchronization with OpenTP1 transaction processing. Use
of the ISAM/B service ensures file integrity when a transaction is committed or rolled
back.

• Prerequisite products for ISAM/B

To use the ISAM/B service, the ISAM transaction facility (ISAM/B) must be
available in addition to ISAM.

• Area for file creation

ISAM files handled by ISAM/B are created in the area allocated to the OpenTP1
file system.

• Difference from OpenTP1 file service (TP1/FS/xxx)

ISAM/B does not use the lock service. Therefore, if a deadlock occurs, the
OpenTP1 lock service facility (lock scope reduction based on priority and
deadlock information output) is not available.

4.4.5 Accessing database management systems
This section describes how database management systems (DBMSs) can be used in
OpenTP1 UAP.

(1) Relation to OpenTP1 transaction processing
The usage of DBMSs depends on whether the DBMS supports the XA interface in the
X/Open DTP model, and whether the DBMS can work with OpenTP1 transactions.

(a) DBMSs that support the XA interface
Only DBMSs that support the XA interface, for example ORACLE, can be controlled
by OpenTP1 transaction processing. When a DBMS supports the XA interface,

4. File System

308

updates are possible using the commit and rollback operations of OpenTP1 transaction
processing. In such transaction processing, you can use the functions that control
OpenTP1 synchronization points (such as the functions dc_trn_begin(),
dc_trn_unchained_commit(), tx_begin(), or tx_commit()).

Facilities provided by a DBMS for controlling transactions cannot be used.

In UAPs that access multiple databases, OpenTP1 allows updates while protecting the
consistency of the multiple databases. The OpenTP1 resource managers (provided by
the products TP1/FS/Direct Access, TP1/FS/Table Access, TP1/Message Control,
TP1/Message Queue, and Hitachi ISAM and ISAM/B) support the XA interface. Thus,
a UAP can process OpenTP1 transactions when accessing DBMSs that conform to the
XA interface in the same way it does when it accesses the OpenTP1 resource manager.
Even when some failure cause an abnormal termination of a UAP or when OpenTP1
is restarted, OpenTP1 performs a transaction determination (i.e., decides whether to
perform a commit or rollback) for both the DBMS and the OpenTP1 resource manager.

(b) DBMSs that do not support the XA interface, or DBMSs that do not work
with OpenTP1 via the XA interface
A DBMS that does not support the XA interface can be accessed, but cannot be
synchronized with OpenTP1 transactions.

When a DBMS does not work with OpenTP1 via the XA interface, OpenTP1 cannot
order a transaction determination to the DBMS in certain situations: such as when a
UAP abnormally terminates during access to a database, or when OpenTP1 requires a
complete-recovery restart during access to a database. In such situations, you must
recover the transactions using the DBMS facilities.

(2) Preparing to use XA-compliant databases
The following tasks are required when DBMSs that support the XA interface cooperate
with OpenTP1 via the XA interface:

• registering the DBMS in OpenTP1

• linking

• writing system definitions

• setting environment variables

(a) Registering the DBMS in OpenTP1
Register several names for resource managers other than those provided by OpenTP1.
Use either of these methods to register them in OpenTP1:

• After setting up OpenTP1 using the dcsetup command, execute the trnlnkrm
command.

• Create an extended RM registration definition.

4. File System

309

When an extended RM registration definition is created, the trnlnkrm command does
not need to be executed after setting up OpenTP1 with the dcsetup command. For
details on how to use the trnlnkrm command, see the manual OpenTP1 Operation.
For details on how to specify the extended RM registration definition, see the manual
OpenTP1 System Definition.

(b) Linking
To create executable files for a UAP, you must link the object files used for transaction
control with the DBMS libraries and object modules.

Use the trnmkobj command to make object files used for transaction control. For
details on the trnmkobj command, see the manual OpenTP1 Operation.

(c) Writing system definitions
To use DBMSs, you must use trnstring in the transaction service definition and, if
necessary, use trnrmid in the user service definition or user service default definition.
Specified contents include the items for DBMSs. For details on such items, see the
appropriate manuals for the database you use.

For details on definitions using trnstring and trnrmid, see the manual OpenTP1
System Definition.

(d) Setting environment variables
Some DBMS may require special environment variables for use with OpenTP1 UAPs.
If they are necessary, you must use putenv in the transaction service definition, user
service definition, or user service default definition.

For details on definitions using putenv, see the manual Open TP1 System Definition.

(e) Extending the OpenTP1 internal thread stack area
To use DBMSs, in the thread_stack_size operand in the transaction service
definition, you must specify the size of the thread stack area to be used by OpenTP1
internally.

For details on definitions, see the manual OpenTP1 System Definition.

311

Chapter

5. Overview of Setup, Use, and Error
Recovery

This chapter gives an overview of the actions taken when setting up or using OpenTP1,
and also describes some OpenTP1 features concerning error detection and recovery.

5.1 Setting up an OpenTP1 system
5.2 Operating an OpenTP1 system
5.3 Failure and error recovery

5. Overview of Setup, Use, and Error Recovery

312

5.1 Setting up an OpenTP1 system

Setting up the OpenTP1 system environment requires that someone be assigned to be
the OpenTP1 administrator. The OpenTP1 administrator is a user who can configure
and manage an OpenTP1 system, and is assigned by a superuser. The set-up procedure
is carried out by this superuser and the OpenTP1 administrator. If for some reason an
OpenTP1 administrator is unavailable, the superuser can also act as the OpenTP1
administrator, and he or she can carry out the whole procedure by first logging into the
environment as the superuser, and later as the OpenTP1 administrator. This section
describes the environment setting procedures needed before starting OpenTP1. For
further details, see the manual OpenTP1 Operation and the manual OpenTP1 System
Definition.

In addition to the basic environment setting procedures, facility-specific procedures
are needed when:

• Using the Security facility

• Using the MCF Message Exchange facility

• Using the MQA Message Queuing facility

5.1.1 Overview of environment settings
(1) OpenTP1 environment setup

The following figure shows the procedure for setting up OpenTP1.

5. Overview of Setup, Use, and Error Recovery

313

Figure 5-1: OpenTP1 environment setup

Part of OpenTP1 environment setup can be automated by using Scale Out scenario
templates in collaboration with JP1/Base, JP1/AJS2, and JP1/AJS2 - Scenario
Operation. For details about OpenTP1 environment setup using scenario templates,
see the description of Scale Out scenario templates in the manual OpenTP1 Operation.

(2) Environment setup for the message exchange facility
The following figure shows the environment setup for the message exchange facility.

5. Overview of Setup, Use, and Error Recovery

314

Figure 5-2: Environment setup for the message exchange facility

(3) Environment setup for the message control facility
For the environment setup for TP1/Messaging, see TP1/Messaging documentation.

(4) Environment setup for the message queuing facility
The following figure shows the environment setup for the message queuing facility.

Figure 5-3: Environment setup for the message queuing facility

5.1.2 Environment setup tasks
This section describes the tasks performed when setting up the OpenTP1 environment.
For details, see the manual OpenTP1 Operation.

(1) Environment setup tasks performed by the superuser
(a) Register the OpenTP1 administrator

Set a user ID and associated password for the OpenTP1 administrator. Note that the
OpenTP1 system does not support large user IDs. Do not use a large user ID to register
the OpenTP1 administrator.

(b) Define the OpenTP1 group
In the group ID for OpenTP1 administrators, define which members are to belong to
the OpenTP1 administrator group.

(c) Install OpenTP1
Install the OpenTP1 products required for the system.

5. Overview of Setup, Use, and Error Recovery

315

(d) Create the OpenTP1 directory
Define directories for installing OpenTP1 products. Set the OpenTP1 administrator as
the owner of the directories, and set OpenTP1 administrator group members as the
owner group of the directories.

(e) Register OpenTP1 with the OS
Use the OpenTP1 command dcsetup to register OpenTP1 products with the OS.

(f) Assign a disk partition for the OpenTP1 file system
Assign disk or disk partitions to build an OpenTP1 file system on a character special
file. If you build the OpenTP1 system file on ordinary files, this assignment is not
required.

(2) Environment setup tasks performed by the OpenTP1 administrator
(a) Create the OpenTP1 system definitions

Create the files for the definitions used to define OpenTP1 system services, and write
these system definitions. You can check the created definitions by executing the
dcdefchk command.

(b) Set the OpenTP1 administrator environment
Set environment variables for the OpenTP1 administrator's login environment. Specify
a directory name consisting of 50 bytes or less for the DCDIR environment variable.

(c) Allocate resources for OpenTP1 internal control
Reserve the resources to be used for OpenTP1. To reserve resources, execute the
dcmakeup command. The amount of resources to be reserved by the dcmakeup
command is automatically resolved according to the system service definition.

(d) Initialize the OpenTP1 file system
Use the OpenTP1 command filmkfs to initialize the area for the OpenTP1 file
system. At this time, specify the OpenTP1 file system area name, using 49 or fewer
characters.

(e) Create OpenTP1 files
Use OpenTP1 file commands, such as jnlinit or stsinit, to format the area for the
OpenTP1 file system.

(f) Create non-OpenTP1 files
Create required ordinary files, such as executable files for UAPs or OpenTP1
definition files.

(g) Register the resource manager
If a resource manager other than the OpenTP1 resource manager is required, use the

5. Overview of Setup, Use, and Error Recovery

316

command trnlnkrm to register the resource manager in the system. If an extended
RM registration definition is created, the trnlnkrm command does not need to be
executed.

(h) Create transaction control object files
Use the command trnmkobj to create transaction-control object files which control
transactional UAPs.

(i) Create UAPs to use with OpenTP1
Create UAPs to use with OpenTP1 after you finish setting up the environment for TP1/
Message Control if using the message exchange facility, and for TP1/Message Queue
if using the message queuing facility.

(3) Using the MCF Message Exchange facility
The OpenTP1 administrator carries out the following tasks:

1. The OpenTP1 administrator writes the MCF main function and places it in a
directory.

2. The OpenTP1 administrator registers MCF service names.

3. The OpenTP1 administrator creates system service information definition files.

4. The OpenTP1 administrator creates definition object files.

(4) Using the MQA Message Queuing facility
The OpenTP1 administrator carries out the following tasks:

1. The OpenTP1 administrator creates definition object files.

2. The OpenTP1 administrator or programmers create UAPs used in OpenTP1.

5. Overview of Setup, Use, and Error Recovery

317

5.2 Operating an OpenTP1 system

OpenTP1 operations can be classified into:

• necessary routine operations

• operations that modify the OpenTP1 system

• other operations

This section describes these operations. For further details, see the manual OpenTP1
Operation.

Table 5-1 describes routine operations, Table 5-2 describes operations that modify the
OpenTP1 system, and Table 5-3 describes other operations.

Table 5-1: Routine operations in an OpenTP1 system

Operation Purpose Procedure

Starting OpenTP1 To start operation.
OpenTP1 can be started from the
initial state, or restarted from its state
at the previous termination.

In the system environment definition,
specify whether the OpenTP1 system is to
be started manually with the command
dcstart, or started automatically
whenever the OS starts.

Normal termination To terminate operation normally. You use the command dcstop to terminate
OpenTP1.

Forced normal
termination

Terminating OpenTP1 in a forced
normal termination terminates an
online system normally even if a UAP
has terminated abnormally during
online processing.

Use the dcstop -n command.

Planned termination
(mode A)

Terminating OpenTP1 in a planned
termination (mode A) halts the online
system temporarily. For example,
when an error occurs on a terminal
managed by MCF, OpenTP1
terminates and leaves messages in the
output queue.

Use the dcstop -a command.

Planned termination
(mode B)

Terminating OpenTP1 in a planned
termination (mode B) quickly
terminates the online system.
OpenTP1 terminates immediately
after completion of the currently
executing service.

Use the dcstop -b command.

5. Overview of Setup, Use, and Error Recovery

318

Table 5-2: Operations that modify an OpenTP1 system

Forced termination Terminating OpenTP1 in a forced
termination immediately terminates
the online system. OpenTP1
terminates immediately without
waiting for the completion of the
currently executing service.

Use the dcstop -f command.

Starting a UAP To start running a UAP. Define UAPs that are to start automatically
with OpenTP1 in the user service structure
definition.

Terminating a UAP To stop running a UAP.
The UAP can be terminated normally
or forcibly.

The UAP terminates automatically when
OpenTP1 terminates. You can also use the
command dcsvstop to terminate a UAP
online.

Unloading a journal Journals are unloaded when using the
journal maintenance facility and to
prepare against an error on a DAM or
TAM file.

To unload a journal, use the command
jnlunlfg to copy the system journal file to
a file.

Backing up DAM and
TAM files

DAM and TAM files should be
backed up in case of an error in the
files.

To back up DAM and TAM files, use
commands to copy the DAM and TAM files.

Outputting the message
log to a file

To use the messages output from
OpenTP1 or UAPs.

You can output the messages stored in the
message log file to the standard output.

OpenTP1

Operation Purpose Procedure Stopped Running

Modifying a
definition

To modify the
configuration or
execution
environment of an
OpenTP1 system.

Change the contents of a definition file.
• If the superuser changes the definition

Delete OpenTP1 from the operating
system using the dcsetup -d
command after changing the
definition and terminating OpenTP1
normally. Then, execute the dcsetup
command to re-register OpenTP1 in
the operating system.

• If the OpenTP1 administrator changes
the definition
Execute the dcreset command after
changing the definition and
terminating OpenTP1 normally. Note
that the dcreset command cannot be
executed while operating OpenTP1.

Y N

Operation Purpose Procedure

5. Overview of Setup, Use, and Error Recovery

319

Replacing a
UAP while
OpenTP1 is
running

To replace a UAP
while OpenTP1 is
running. (The new
UAP will start when
OpenTP1 restarts.)

Terminate the active UAP and then
replace it. If necessary, the user service
definition can also be replaced after the
active UAP terminates normally. Then
start the new UAP.
If you replace the definitions without first
terminating the active UAP, operation of
the UAP is not guaranteed.

-- Y

Replacing a
UAP while
OpenTP1 is
running
(changing to a
UAP in
another
directory)

To temporarily
replace a UAP while
OpenTP1 is running.
(The UAP in the
specified directory
takes effect when
OpenTP1 is restarted
after termination.)

Terminate the active UAP and then change
the search path using an operation
command. After changing the search path,
start the new UAP.

-- Y

Changing file
capacity

To change the size of a
file.
(OpenTP1 must be
stopped except when
changing the size of a
status file.)

1. Allocate a physical file with an
increased capacity.

2. Redefine the file.
or
1. Create a new file with a sufficient

capacity.
2. Define the file.
The size of a status file can be changed
using an operation command.

Y Y*

Changing the
network
configuration
while online

You can add or delete
nodes in the network
of the OpenTP1
system while online.

Online reconfiguration can be achieved in
either of the following ways.
Method 1 (Reconfiguration using the
system common definition):
1. Change the specification of the

all_node operand in the system
common definition.

2. Execute the namndchg command.
When the namndchg command is
executed with the -l option, the
specification of the current all_node
operand can be output to the standard
output.
Method 2 (Reconfiguration using domain
definition files):
1. Create the all_node and

all_node_ex domain definition
files.

2. Execute the namndchg command.

N Y

OpenTP1

Operation Purpose Procedure Stopped Running

5. Overview of Setup, Use, and Error Recovery

320

Legend:

Y: The task can be performed.

N: The task cannot be performed.

Y*: The task can be performed in part.

--: Not applicable.

Table 5-3: Other operations in an OpenTP1 system

Changing the
main()
function,
UOCs, and
libraries of the
MCF
communicatio
n service
while
OpenTP1 is
running

You can reconfigure
the MCF
communication
service without
stopping OpenTP1.

To reconfigure the MCF communication
service, use an operation command to
partially stop the MCF communication
service, and then change the main()
function, UOCs, and libraries as you want.

N Y

Operation Purpose Procedure

Monitoring status To monitor the status of OpenTP1. Use the relevant command to output the
OpenTP1 status information to the standard
output.

Using the
MultiOpenTP1

MultiOpenTP1 is useful when testing
OpenTP1 with a UAP. Two OpenTP1
instances are activated on the same
processor: one OpenTP1 instance is
for the test and the other is for
practical use.

To distinguish between the two OpenTP1
instances, assign each instance a name (an
OpenTP1 identifier).

OpenTP1

Operation Purpose Procedure Stopped Running

5. Overview of Setup, Use, and Error Recovery

321

5.3 Failure and error recovery

OpenTP1 recovery can be classified into:

• partial recovery

• complete recovery

In partial recovery, OpenTP1 recovers a UAP by performing a commit or rollback
operation (usually a rollback) on incomplete transactions. Partial recovery localizes
the effects of the UAP failure to the single UAP, and preserves the integrity of the
resources used by that UAP.

In complete recovery, OpenTP1 recovers from a complete system failure. This requires
a partial recovery for every UAP executing when the system went down, as well as
recovery of the various OpenTP1 system statuses.

For further details, see the manual OpenTP1 Operation.

5.3.1 Recovering from OpenTP1 system failures
In the event of a system failure, the OpenTP1 system can be restored from historical
information to its state immediately before the failure, preserving its previous online
status. This start mode is known as a restart. OpenTP1 collects historical information
in journal files in case a restart is needed.

(1) Restart at complete recovery
In the event of an OpenTP1 system failure, a complete recovery can restart OpenTP1
and return the whole system to the state immediately before the failure. A complete
recovery uses the history information stored by OpenTP1. This history information
records the previous online state before the failure occurred. As described in 4. File
System, an OpenTP1 system preserves its history information in journal files in
preparation for a complete-recovery restart. During such a restart, OpenTP1 recovers
components of the system in the following order:

1. System recovery

2. Service recovery

3. Transaction recovery

Online processing can be restarted after OpenTP1 completes system recovery and
service recovery.

1. System recovery

During this initial stage of a complete recovery, OpenTP1 uses the information in
status files. Status files contain system control information: such as information
about the configuration of system services and UAPs, and system file

5. Overview of Setup, Use, and Error Recovery

322

information. Using this system control information, OpenTP1 first performs a
system recovery to recover those system statuses that do not depend on
synchronization point processing of a transaction. OpenTP1 uses the system
control information to determine which checkpoint dump or which system journal
should be used for recovery.

2. Service recovery

After using the system control information to recover the status of the system,
OpenTP1 starts recovering system services. System services are recovered using
the data stored in checkpoint dump files and system journal files. To recover
system services, OpenTP1 attempts to use the checkpoint dump of the most recent
generation and all the recovery journals obtained after that checkpoint dump. If
the checkpoint dump of the most recent generation is unavailable, OpenTP1 uses
the next most recent generation for the recovery and all the recovery journals
obtained after that checkpoint dump. Only the most recent and the next most
recent generations are guaranteed.

3. Transaction recovery

Along with the new online processing, OpenTP1 also recovers the transactions of
the UAPs that were executing when OpenTP1 terminated. In this recovery,
OpenTP1 performs a commit operation or rollback operation on every unfinished
transaction. In effect, during this transaction recovery stage of a complete
recovery, OpenTP1 recovers each UAP (that is, performs a partial recovery for
each UAP) by recovering each unfinished transaction affected by the system
shutdown.

Whether a commit or a rollback operation is performed on the transaction depends
on how far the transaction processing proceeded. If the transaction is still before
or at the first phase at a synchronization point, OpenTP1 rolls back the global
transaction. If the transaction is already at the second phase or later, the commit
or rollback operation depends on the determination of the root transaction
branches.

OpenTP1 uses the synchronization point journal in the system journal files to
determine how far transaction processing had proceeded when the OpenTP1
system shutdown.

5. Overview of Setup, Use, and Error Recovery

323

Figure 5-4: Transactions recovered in a complete recovery

(2) User server status at complete recovery after the OpenTP1 system stops
during termination processing

If the system stops while terminating the OpenTP1 system by entering the dcstop
command, the user service definition and user service default definition allow you to
select whether to recover the status when you input the dcstop command without
applying the change of the user server status during the termination processing or to
recover the status when the error occurred, applying the change of the status. The user
server with Y specified by the status_change_when_terming operand in the user
service definition applies the final status change and recovers the status when the
system terminated. When specifying N with this operand, the user server does not
apply the final status change and recovers the status when the dcstop command was
input.

The following figure shows the status of the user servers during a complete recovery
when the OpenTP1 system has stopped while in the process of terminating.

5. Overview of Setup, Use, and Error Recovery

324

Figure 5-5: User server status at complete recovery after the OpenTP1 system
stops during termination processing

5.3.2 Recovering from UAP failures
When a failure occurs in a UAP, OpenTP1 performs a partial recovery of the affected
UAP, preventing the problem from impacting on the whole system. This section
describes the processing when a failure occurs in a UAP.

(1) Recovering from an inability to start a UAP
Two common causes of being unable to start a UAP are an incorrect system definition
or insufficient memory.

To recover from an incorrect system definition, the OpenTP1 administrator must
correct the definitions and then restart the UAP.

To recover from insufficient memory, the OpenTP1 administrator must terminate
unnecessary processes or delete unnecessary files, and then restart the UAP.

(2) Recovering from infinite loops in which a UAP cannot terminate
The OpenTP1 recovery procedure for an infinite loop partly depends on how OpenTP1
detected the loop. To detect a program loop, OpenTP1 monitors:

• elapsed transaction time

5. Overview of Setup, Use, and Error Recovery

325

• RPC response time

• CPU time

OpenTP1 monitors the elapsed transaction time: from the start to the end of a
transaction. In the user service definition, user service default definition, or transaction
service definition, you can specify a limit for this time period. If this specified period
is exceeded, OpenTP1 forcibly terminates the program and rolls back the transaction.
This is possible for transaction processing only. If 0 is specified as the monitoring
period, OpenTP1 does not monitor the elapsed time.

OpenTP1 monitors the RPC response time: the time elapsed from the call of the server
UAP to return of control. In the system common definition or individual service
definitions, you can specify a limit for this time period. If this specified period is
exceeded, OpenTP1 returns an error to the source of the call. A transaction is rolled
back at the synchronization point. If 0 is specified as the RPC response time, the source
of the call continues to wait until it receives a response.

OpenTP1 monitors the CPU time in which a transaction branch can complete a
transaction. In the user service definition, user service default definition, or transaction
service definition, you can specify a limit for this time period. If this specified period
is exceeded (i.e., the transaction branch cannot complete the whole operation within
the specified period), the OpenTP1 system terminates the branch's transaction
processes and executes a rollback operation.

(3) Abnormal termination with UAP linkage errors
If the operating system is HP-UX, always specify immediate in the bind mode during
linkage. If the UAP is created in a mode other than the bind mode, the UAP may
terminate abnormally. Use the operating system's chatr command to check if the bind
mode of the created UAP is immediate.

(4) Recovering from UAP abnormal terminations
If a UAP terminates abnormally, OpenTP1 detects the abnormal termination of
processing and begins partial recovery. In this partial recovery of a UAP transaction,
OpenTP1

• restarts the UAP processing, and closes the service groups or services

• recovers the relevant transactions

(a) Restarts the UAP processing, and closes the service groups or services
What happens while restarting UAP processing and closing service groups or services
depends on whether the UAP is an SPP (service-providing program), MHP
(message-handling program), or SUP (service-using program).

• If an SPP terminates abnormally, OpenTP1 shuts down service groups or restarts
a process depending on what is defined in the user service definition. If, however,
the SPP terminates abnormally three times within the period specified for

5. Overview of Setup, Use, and Error Recovery

326

monitoring repeated abnormal terminations, OpenTP1 shuts down the service
group. An error is returned for an RPC issued to a shutdown service group.

• If an MHP terminates abnormally, OpenTP1 shuts down an MCF application or
service, or restarts a process, depending on what is defined in the application
attribute definition. OpenTP1 discards the message for the shutdown MHP
service and issues the MCF event that reports UAP abnormal termination.

• If a SUP terminates abnormally, OpenTP1 restarts the process.

(b) Recovers the relevant transactions
If the UAP that terminated abnormally was executing a transaction, OpenTP1
performs a transaction partial recovery. If an error occurred in the UAP, OpenTP1
detects the abnormal termination of the UAP processing the transaction and requests
the transaction recovery service to perform a partial recovery on the transaction. The
transaction recovery service performs a transaction determination and recovers the
transaction.

During transaction partial recovery, the transaction recovery requests are queued using
the scheduling facility and the recovery is performed concurrently by multiple
transaction-recovery service processes, which improves the efficiency of transaction
recovery. In the transaction service definition, you can specify the number of recovery
processes.

When recovery requests are queued, a transaction recovery might fail because of an
OpenTP1 system area error or because of insufficient memory in the schedule queue.
To successfully recover the transaction in such a case, OpenTP1 regularly checks
whether an unrecovered transaction exists, and re-issues a recovery request if
OpenTP1 detects an unrecovered transaction.

The preceding method is also used to perform a transaction determination that has been
temporarily suppressed because a file was held by a resource manager or by a
transaction service at recovery.

(5) Recovering from a deadlock
When two or more UAPs share a resource, a deadlock might occur. If it detects a
deadlock, OpenTP1 compares the deadlock priorities of the UAPs and returns a lock
error to the function issued from the UAP with the lowest priority.

For the OpenTP1 processing when a deadlock occurs, see 3.9.1(5) Deadlocks in TAM
and DAM files.

5.3.3 Recovering from file errors
This section describes the procedure when an error occurs in one of the following
OpenTP1 files:

• System file

5. Overview of Setup, Use, and Error Recovery

327

• Queue file

• User data file

For details about recovering from file errors, see the manual OpenTP1 Operation.

(1) Recovering from system file errors
The following describes the procedure when an error occurs in a system file.

(a) Recovering from system-file errors: status files
OpenTP1 can detect a status file error when the status information is written or read,
or when the status service is started. When an error is detected while attempting to read
to or write from a status file, the procedure for recovering from such an error depends
on:

• whether a reserved status file exists

• whether only one or both the physical files in the current filegroup are unreadable

When an error is detected when attempting to start the status service, the system and
user actions depend on which of the following is specified in the status service
definition:

• OpenTP1 termination

• start of status service

(b) Recovering from system-file errors: system journal files
System journal file errors can be generally classified into write errors and read errors.
In a write error, the journal to be obtained cannot be written to during online
processing. In a read error, the journal cannot be read from during a complete recovery
or a UAP transaction partial recovery.

The procedure for recovering from such an error depends on:

• whether the error occurred during a read or write

• whether a swappable standby filegroup exists

Note, however, that when a system journal file is duplicated, the journal is input first
from physical file A. If an error occurs during the write, the journal can be input from
physical file B, which increases reliability at system recovery.

When a system journal file is duplicated, even if only one of the files can be used as a
swap destination, you can specify whether to use it as the swap destination in the
system journal service definition.

(c) Recovering from system-file errors: checkpoint dump files
As with system journal file errors, checkpoint dump file errors can be roughly
classified into write errors and read errors. In a write error, the checkpoint dump cannot

5. Overview of Setup, Use, and Error Recovery

328

be written to during online processing. In a read error, the checkpoint file cannot be
read from during a complete recovery.

If a checkpoint dump is duplicated, errors can be recovered starting from either system
A or B at system recovery.

The procedure for recovering from such an error depends on:

• whether the error occurred during a read or write

• whether overwritable filegroups exist

(d) Recovering from system-file errors: archive journal files
Archive journal file errors can be classified into write errors and read errors. In a write
error you cannot write journal information you are attempting to acquire during online
processing. In a read error you cannot read journals during complete recovery.

If an archive journal file is duplicated, data is input from system A. If a write error
occurs, input can be switched from system A to system B, increasing the reliability
during system recovery.

When a file is duplicated, you can specify in the archive journal service definition
whether to allocate the archive journal file as the swap destination even if only one
standby physical file can be used.

(e) Recovering from system-file errors: transaction recovery journal files
and server recovery journal files
If a failure occurs in a transaction recovery journal file or in a server recovery journal
file, a message about the failure is output. In accordance with this message:

1. Execute the jnlmkrf command to restore the target recovery journal file.

If the recovery journal files are not recovered despite executing the jnlmkrf
command:

1. Restore the resource manager using commands (damfrc or tamfrc)

2. Forcibly restart the OpenTP1 system.

(f) Recovering from system-file errors: message log files
For a message log file, two files are used with round-robin scheduling. If an error
occurs in either of the two files, OpenTP1 uses the normal file only, isolating the
erroneous file. If errors occur in both files, OpenTP1 continues processing without
outputting a message log.

The procedure for recovering from such an error depends on whether OpenTP1 can
detect the error:

• If a message log file error can be detected, OpenTP1 outputs error messages to the
standard error output and the OpenTP1 administrator must take the required

5. Overview of Setup, Use, and Error Recovery

329

recovery measures.

• If OpenTP1 cannot detect a message log file error, no recovery measures can be
taken.

(2) Recovering from queue file errors
The following describes the procedure when an error occurs in a queue file.

(a) Recovering from queue-file errors: MCF message queue file
OpenTP1 cannot recover from a read or write error to an MCF message queue file. If
an MCF message queue file cannot be opened, OpenTP1 outputs a message and the
OpenTP1 administrator must allocate another MCF message queue file.

(b) Recovering from queue-file errors: MQA message queue file
For an action taken if an error occurs on a queue file of TP1/Message Queue, see the
error recovery section in the OpenTP1 TP1/Message Queue User's Guide.

(3) Recovering from user file errors
The following describes the procedure when an error occurs in a user data file.

(a) Recovering from user-file errors: DAM files
If a read or write error occurs in a DAM file, the DAM service returns an error to the
UAP. When the transaction is completed, the DAM file is shutdown (i.e., access to the
DAM file is prevented) because of the error.

(b) Recovering from user-file errors: TAM files
When OpenTP1 detects a read or write error in a TAM file, the TAM file is shutdown:
i.e., access to the TAM file is prevented.

(c) Recovering from user-file errors: ISAM files
For an action taken if an error occurs on a Hitachi ISAM file, see the error recovery
section in the manual Indexed Sequential Access Method ISAM.

5.3.4 Recovering from network errors
(1) Error in a communication control unit, terminal, or line

If an error occurs in a connection, OpenTP1 outputs an error message. Referring to the
error message, take appropriate action to resolve the problem. Then execute the
command to re-establish the connection.

The troubleshooting procedure depends on the communication protocol being used.
For details on the required action, see the applicable OpenTP1 Protocol manual.

(2) LAN error
If an error occurs on the LAN, remote procedure calls to a function on another node

5. Overview of Setup, Use, and Error Recovery

330

will return an error to the client UAP. Restart the system after the administrator
responsible for each system has taken appropriate action to recover the OS and
hardware.

(3) Communication error in the multi-node structure
If an error occurs between the global archive journal service and the journal service on
the archive-journal source node, OpenTP1 outputs an error message. Referring to the
error message, take appropriate action to resolve the problem.

No journals are archived with this type of communication error. If the error cannot be
resolved and you need to unload the journals, do so separately on each archive-journal
source node.

5.3.5 OpenTP1 monitoring and trace facilities
To detect errors in the system, OpenTP1 monitors the items listed in the table below.

Table 5-4: Items monitored by OpenTP1

Monitored item Monitoring performed by OpenTP1 Relevant system
definition

System initialization time OpenTP1 monitors the time from the dcstart
command entry until the termination of system
initialization. If the system initialization does not
terminate after the specified time is passed,
OpenTP1 assumes a user_command error or
another error and aborts the system startup.

System environment
definition

RPC response time OpenTP1 monitors the time elapsed from the
time a service request was issued until the time a
response is returned. If no response is returned
within a specified period, an error is returned to
the source of the request. The error is a sending/
receiving timeout caused, for example, by a
server UAP loop.

System common definition

Chained RPCs OpenTP1 monitors the time elapsed from the
time the server UAP returns control to a service
request until the time the next RPC or request to
perform a transaction determination is received.
If neither the next RPC nor a transaction
determination instruction is received within a
specified period, OpenTP1 assumes that an error
occurred at the source of the service request and
abnormally terminates the server UAP process.

User service definition
User service default
definition.

5. Overview of Setup, Use, and Error Recovery

331

Deadlocks OpenTP1 monitors the time elapsed from the
time a lock request is forced to wait until the
waiting ends. If the waiting period does not end
within a specified period, OpenTP1 assumes that
a deadlock occurred and returns an error to the
source of the request.

Lock service definition

Transaction branches OpenTP1 monitors the processing time of a
transaction branch. If the processing is not
completed within a specified period, OpenTP1
assumes that an error occurred in the UAP,
abnormally terminates the transaction branch
process, and rolls back the transaction.

User service definition
User service default
definition
Transaction service
definition.

CPU time OpenTP1 monitors the CPU time in which a
transaction branch can complete a transaction. If
the transaction branch cannot complete the
whole operation within a specified period,
OpenTP1 abnormally terminates the branch's
transaction processes and executes a rollback
operation.

User service definition
User service default
definition
Transaction service
definition.

UAP repeated abnormal
terminations

OpenTP1 monitors the time during which a UAP
repeatedly abnormally terminates. If a UAP
abnormally terminates three times within a
specified period, OpenTP1 shuts down
scheduling for the service group or service
regardless of the shutdown specification in the
user service definition.

User service definition
User service default
definition

Remaining service requests OpenTP1 monitors the number of service
requests staying in the schedule queue. If the
number exceeds (the value specified
balance_count operand number of actual
processes), OpenTP1 activates a non-resident
process to execute the service.

User service definition
User service default
definition

I/O queue usage rate physical files for each queue group of the I/O
queue. If the rate exceeds a specified percentage,
OpenTP1 outputs a warning message.

Message queue service
definition

Number of times
communication function is
issued

OpenTP1 checks the number of times
communication functions are issued in a
transaction. This monitoring can detect endless
loops in a UAP. If the number of issued functions
exceeds a specified number, OpenTP1
abnormally terminates the UAP and starts a
rollback.

MCF manager definition

Monitored item Monitoring performed by OpenTP1 Relevant system
definition

5. Overview of Setup, Use, and Error Recovery

332

5.3.6 Analyzing the cause of an error
This subsection describes the functions for analyzing the causes of errors in the
OpenTP1 system.

Note that the functions listed below assume that TP1/Extension 1 has been installed.
If TP1/Extension 1 has not been installed, the operation of these functions cannot be
guaranteed.

• Performance verification trace

• XAR performance verification trace

• JNL performance verification trace

• LCK performance verification trace

• MCF performance verification trace

• TRN event trace

• NAM event trace

• Process service event trace

• FIL event trace

(1) MCF trace
With the MCF trace facility, MCF obtains information, such as events and data sent or
received, for each process. The MCF trace information is output to the trace area (trace
buffer) in the shared memory. If the MCF trace disk output facility is specified in the
MCF communication configuration definition and the trace area becomes full, the
MCF trace information is output to an MCF trace file.

You might temporarily require the MCF trace information while the disk output
facility is disabled. In this case, you can output the MCF trace information to an MCF
trace file by using the MCF-trace-information acquisition start command
(mcftstrtr) and the MCF-trace-information acquisition stop command

Lifetimes of unprocessed
send messages

OpenTP1 monitors how long unprocessed
messages that are to be sent can stay in the output
queue. This monitoring prevents normal
termination processing from taking a long time.
If unprocessed messages that are to be sent are
left after a specified period elapses, OpenTP1
discards them (after reporting the MCF event
ERREVTA) and continues normal termination
processing.

MCF configuration
definition

Monitored item Monitoring performed by OpenTP1 Relevant system
definition

5. Overview of Setup, Use, and Error Recovery

333

(mcftstptr). For details about the commands, see the manual OpenTP1 Operation.

The MCF trace facility collects information about the functioning, before an error
occurred, of control functions within a process and the control flow for each event.

(2) UAP trace
When an OpenTP1 UAP (SUP, SPP, or MHP) terminates abnormally, trace
information is output from the API called by the UAP. This is called a UAP trace, and
the acquired information is referred to as UAP trace information. OpenTP1 acquires
UAP trace information separately for each UAP process.

UAP trace information is stored as files named server-nameN.uat (where N
represents a serial number appended to the core file of the UAP process) under the
$DCDIR/spool/save/ directory. These files are known as UAP trace edit/output
files.

UAP trace information can be output from a core file generated at abnormal
termination of the UAP. To obtain the trace information, execute the uatdump
command, specifying the required core file. The UAP trace information can be output
to a specified file by redirecting the uatdump command's output destination.

The value specified in the uap_trace_max operand of the user service definition
determines the maximum size of UAP trace information that can be stored in a file.
When this value is reached, subsequent trace information is wrapped around to the start
of the file.

UAP trace information is acquired separately for each abnormally terminated UAP
process. When transaction processing called by an RPC on another node terminates
abnormally, UAP trace information is acquired for each of the UAP processes
executed on the two nodes.

For details about UAP traces, see description in the OpenTP1 Tester and UAP Trace
User's Guide.

(3) RPC trace
OpenTP1 has an RPC trace facility to obtain information about RPC service requests;
this information is collected into a file. You can use an RPC management command
rpcdump to dump the RPC trace information. Some of the uses of the RPC trace
facility are:

to find out which client UAP performed inter-process communication with which
server UAP

to find out the order in which a specified UAP executed services

to analyze the flow of service requests up to the time an RPC error occurred

You can use the rpcdump command to edit the contents of an RPC trace file.

You can obtain an RPC trace file for each system service. To obtain the file, in the

5. Overview of Setup, Use, and Error Recovery

334

system service definition for each service specify that the trace is to be obtained. You
can use the rpcmrg command to merge and print, in chronological order, the RPC
trace files from several system services.

(4) Performance verification trace
OpenTP1 has a performance verification trace to acquire trace information, such as an
OpenTP1 identifier, for major events of services running in OpenTP1.

The advantages of conducting a performance verification trace are:

tracing events across nodes and processes

acquiring a trace for an internal event, rather than for an API, to verify which
process causes a bottleneck in the performance

The following table lists and describes the system definitions that are related to
performance verification trace.

Table 5-5: System definitions related to performance verification trace

For details about the definitions, see the manual OpenTP1 System Definition.

You can use the prfget command to retrieve a performance verification trace in
binary format and then use the prfed command to output it in character format.

You can also use the dc_prf_utrace_put function to collect user-specific trace
information in a trace file and the dc_prf_get_trace_num function to obtain the
sequential number of the most recent trace acquired in the process.

Notes:

• When OpenTP1 is restarted in the normal way or by a hot standby method,
no trace information is carried over.

• Trace acquisition performed by the performance verification trace facility is
not subject to control by locks so that performance of online processing will
not be affected. For this reason, if contention occurs during trace acquisition
in a multiprocessor environment, some trace information may be missing or
invalid trace information may be acquired. When trace information is edited

Definition name Format Operand Description

System common
definition

set prf_trace Specifies whether performance
verification trace information is to be
acquired.

set trn_prf_trace_level Sets the trace acquisition level

Performance
verification trace
definition

set prf_file_size Sets the size of trace file

5. Overview of Setup, Use, and Error Recovery

335

using the prfed command, invalid information is displayed as error records.

(5) XAR performance verification trace
OpenTP1 collects trace information about all events involving transactional linkage
using the XA resource service, such as transaction requests from an application server
and OpenTP1 transaction processing. This information is known as an XAR
performance verification trace.

XAR performance verification traces are stored as files with the file name _xr_001,
_xr_002, _xr_003, and so on, under the $DCDIR/spool/dcxarinf/ directory.
These files are known as XAR trace information files for verification. The output
directory and file names cannot be changed for the XAR performance verification
trace information files. You can change the size and number of trace information files
that can be acquired.

For details, see the description of the XAR performance verification trace definition in
the manual OpenTP1 System Definition.

To collect XAR performance verification trace information:

1. Set Y in the prf_trace operand in the system common definition.

2. Specify the level of XAR performance trace information to acquire in the
xar_prf_trace_level operand in the XA resource service definition.

The following table describes the XAR performance verification trace information that
is collected depending on the value of the xar_prf_trace_level operand.

Table 5-6: Relationship between the value specified in the xar_prf_trace_level
operand and acquired XAR performance verification trace information

Value of
xar_prf_trace_l
evel operand

Type of XAR
trace

information
collected

Event ID Trace
data
size

(bytes)

Collection timing

00000001 Transaction request
from an application
server

0x4a00 128 Request to start a
transaction branch

Immediately
after call

0x4a01 128 Immediately
before return

0x4a02 128 RPC execution
request from within
a transaction branch

Immediately
after call

0x4a03 128 Immediately
before return

5. Overview of Setup, Use, and Error Recovery

336

0x4a04 128 Request to
terminate a
transaction branch

Immediately
after call

0x4a05 128 Immediately
before return

0x4a06 128 Request to prepare a
transaction branch
for commit

Immediately
after call

0x4a07 128 Immediately
before return

0x4a08 128 Request to commit a
transaction branch

Immediately
after call

0x4a09 128 Immediately
before return

0x4a0a 128 Request to roll back
a transaction branch

Immediately
after call

0x4a0b 128 Immediately
before return

0x4a0c 64 Request to report a
transaction branch
in Prepared or
Heuristically
Completed status

Immediately
after call

0x4a0d 64 Immediately
before return

0x4a0e 128 Request to discard a
Heuristically
Completed
transaction branch

Immediately
after call

0x4a0f 128 Immediately
before return

00000002 OpenTP1
transaction process

0x4b00 64 Start a transaction
branch

Immediately
before

0x4b01 64 Immediately
after

0x4b02 64 Execute an RPC
from within a
transaction branch

Immediately
before

0x4b03 64 Immediately
after

Value of
xar_prf_trace_l
evel operand

Type of XAR
trace

information
collected

Event ID Trace
data
size

(bytes)

Collection timing

5. Overview of Setup, Use, and Error Recovery

337

For details about the xar_prf_trace_level operand, see the description of the XA
resource service definition in the manual OpenTP1 System Definition.

To collect XAR trace information files and output edited trace information, use the
prfget and prfed commands. The acquisition and edit/output procedures are as
follows.

Collecting XAR trace information for verification

To collect only the trace information that has not been acquired with the latest run
ID, execute the following commands:

$DCDIR/bin/prfget -f _xr | $DCDIR/bin/prfed -d

0x4b04 64 Terminate a
transaction branch

Immediately
before

0x4b05 64 Immediately
after

0x4b06 64 Prepare a
transaction branch
for commit

Immediately
before

0x4b07 64 Immediately
after

0x4b08 64 Commit a
transaction branch

Immediately
before

0x4b09 64 Immediately
after

0x4b0a 64 Roll back a
transaction branch

Immediately
before

0x4b0b 64 Immediately
after

0x4b0c 64 Report a transaction
branch in Prepared
or Heuristically
Completed status

Immediately
before

0x4b0d 64 Immediately
after

0x4b0e 64 Discard a
Heuristically
Completed
transaction branch

Immediately
before

0x4b0f 64 Immediately
after

Value of
xar_prf_trace_l
evel operand

Type of XAR
trace

information
collected

Event ID Trace
data
size

(bytes)

Collection timing

5. Overview of Setup, Use, and Error Recovery

338

To collect all trace information, execute the following commands:
$DCDIR/bin/prfget -a -f _xr | $DCDIR/bin/prfed -d

Editing and outputting XAR trace information for verification

To edit and output trace information from XAR trace information files for
verification, execute the prfed command. Specify the options as required.

XAR trace information for verification is output in the same format as the
performance verification trace. For details about the output format, see the
description of the prfed command in the manual OpenTP1 Operation.

(6) JNL performance verification trace
OpenTP1 collects trace information about various events related to journal buffering
and journal output performed by the journal service. This information is called JNL
performance verification trace.

JNL performance verification traces are stored as files with the file name _jl_001,
_jl_002, _jl_003, etc., under the $DCDIR/spool/dcjnlinf/prfinf directory.
These files are called JNL performance verification trace information files. The output
destination and names of the JNL performance verification trace information files
cannot be changed.

To collect JNL performance verification trace information:

1. Specify Y in the prf_trace operand in the system common definition.

2. Also specify in the system common definition the level of JNL performance
verification trace information to be acquired. Make this specification in the
jnl_prf_event_trace_level operand.

The table below shows the trace information that is collected depending on the
specification of the jnl_prf_event_trace_level operand. For details about the
timing of acquiring each event, see the description of the acquisition of performance
verification trace information in the manual OpenTP1 Operation.

Table 5-7: Relationship between the jnl_prf_event_trace_level operand value
and the trace information that is collected

jnl_prf_event_trace
_level operand

value

Event IDs of trace information

0xc202, 0xc203, 0xc401, 0xc402 0xc001 to 0xc201, 0xc204 to 0xc400

00000000 N N

00000001 Y N

00000002 Y Y

Other Y Y

5. Overview of Setup, Use, and Error Recovery

339

Legend:

Y: Trace information is acquired.

N: Trace information is not acquired.

You use the prfget command to collect JNL performance verification trace
information files and the prfed command to edit and output the files. The following
describes how to collect the files.

How to collect JNL performance verification trace information files:

To collect only the trace information that has not been acquired with the most
recent run ID, execute the following commands:

$DCDIR/bin/prfget -f _jl | $DCDIR/bin/prfed -d

To collect all trace information, execute the following commands:
$DCDIR/bin/prfget -a -f _jl | $DCDIR/bin/prfed -d

(7) LCK performance verification trace
OpenTP1 collects trace information about locking involved in transaction processing.
This information is called LCK performance verification trace.

LCK performance verification traces are stored as files with the file name _lk_001,
_lk_002, _lk_003, etc., under the $DCDIR/spool/dclckinf/prf directory.
These files are called LCK performance verification trace information files. The
output destination and names of the LCK performance verification trace information
files cannot be changed, but you can change the size and number of LCK performance
verification trace information files that can be acquired. For details, see the description
of the LCK performance verification trace definition in the manual OpenTP1 System
Definition.

To collect LCK performance verification trace information:

1. Specify Y in the prf_trace operand in the system common definition.

2. In the lck_prf_trace_level operand in the lock service definition, specify
the level of LCK performance verification trace information to acquire.

The table below shows the LCK performance verification trace information that is
collected depending on the specification of the lck_prf_trace_level operand.

5. Overview of Setup, Use, and Error Recovery

340

Table 5-8: Relationship between the lck_prf_trace_level operand value and the
LCK performance verification trace information that is collected

For details about the lck_prf_trace_level operand, see the description of the lock
service definition in the manual OpenTP1 System Definition.

You use the prfget command to collect LCK performance verification trace
information files and the prfed command to edit and output the files. The following
describes how to collect and how to edit and output the files.

How to collect LCK performance verification trace information files:

To collect only the trace information that has not been acquired with the most
recent run ID, execute the following commands:

$DCDIR/bin/prfget -f _lk | $DCDIR/bin/prfed -d

To collect all trace information, execute the following commands:

lck_prf_trace_level
operand value

LCK
performance

verification trace
information

Event ID Trace
data size
(bytes)

Collection timing

00000000 Trace information
about locking is not
acquired.

-- -- --

00000001 Trace information
about locking is
acquired.

0x6400 128 Locking of
resources

Immediately
after call

0x6401 128 Immediately
before return

0x6410 128 Lock release
wait

Immediately
before start

0x6411 128 Immediately
after
termination

0x6420 128 Unlocking of
all resources

Immediately
after call

0x6421 128 Immediately
before return

0x6430 128 Unlocking
with a
resource name
specified

Immediately
after call

0x6431 128 Immediately
before return

5. Overview of Setup, Use, and Error Recovery

341

$DCDIR/bin/prfget -a -f _lk | $DCDIR/bin/prfed -d

How to edit and output LCK performance verification trace information files:

To edit and output trace information in LCK performance verification trace
information files, execute the prfed command with options specified, as
necessary.

The output format of LCK performance verification trace information is the same
as for the performance verification trace. For details about the output format, see
the prfed command in the manual OpenTP1 Operation.

(8) MCF performance verification trace
OpenTP1 collects trace information (such as the MCF identifier) about the main events
involving message transmission using TP1/Message Control. This information is
called MCF performance verification trace.

The MCF performance verification trace provides the following advantages:

You can output MCF-specific details, such as thread ID, logical terminal name,
and API name.

If you analyze the MCF performance verification trace by using the detailed
information that was output as the key, you can verify the performance of a series
of message transmission processing transactions and UAP.

The following table lists and describes the system definitions that are related to the
MCF performance verification trace.

Table 5-9: System definitions related to the MCF performance verification trace

Definition name Format Operand Description

User service
definition

set mcf_prf_trace Specifies whether MCF performance
verification trace information is acquired for
each user server

MCF performance
verification trace
definition

set prf_file_size Size of a trace file for the MCF performance
verification trace information

set prf_file_count Number of trace file generations for the
MCF performance verification trace
information

Definition of system
service information

set mcf_prf_trace Specifies whether MCF performance
verification trace information is acquired for
each MCF communication service

System service
common information
definition

set mcf_prf_trace_level Acquisition level of MCF performance
verification trace information

5. Overview of Setup, Use, and Error Recovery

342

For details about the definitions, see the manual OpenTP1 System Definition.

You can use the prfget command to retrieve an MCF performance verification trace
in binary format and then use the prfed command to output it in character format.

Notes

• The default is that the MCF performance verification trace is not collected.
To collect it, you must specify Y in the prf_trace operand or omit this
operand in the system common definition and also specify 00000001 in the
mcf_prf_trace_level operand in the system service common
information definition.

• You can collect the MCF performance verification trace during message
transmission (event IDs 0xa000 and 0xa001) only when you use one of the
following protocol products:

 TP1/NET/TCP/IP

 TP1/NET/XMAP3

 TP1/NET/OSAS-NIF

For events other than message transmission (event IDs other than 0xa000
and 0xa001), you can collect the MCF performance verification trace
regardless of the type of communication protocol.

(9) XAR event trace
The XAR event trace acquires the type of the transaction request sent from an
application server using the XA resource service as event trace information. The
acquired information is called the XAR event trace information.

The following table lists the types of transaction requests sent from an application
server, request codes, and their meaning.

Table 5-10: Types of transaction requests and request codes

Request type# Request code Meaning of request code

Start() xar_start Starts a transaction branch.

Call() xar_call Executes an RPC from within a transaction branch.

End() xar_end Ends a transaction branch.

Prepare() xar_prepare Prepares the commit for a transaction branch (first
phase of a two-phase commit).

Commit() xar_commit Commits a transaction branch (second phase of a
two-phase commit).

Rollback() xar_rollback Rolls back a transaction branch.

5. Overview of Setup, Use, and Error Recovery

343

#

Transaction request types are internal functions of OpenTP1.

The XAR event trace information is acquired in the xarevtr1 or xarevtr2 file
under the $DCDIR/spool/dcxarinf/trace/ directory. These files are called the
XAR event trace information files. You cannot change the output destinations and files
names of XAR event trace information files.

If there is an existing XAR event trace information file when you start the XA resource
service, a backup file is created for the existing file and another, unused XAR event
trace information file is prepared as the output destination. For example, if the
xarevtr1 XAR event trace information file exists, the file is renamed to
xarevtr1.bk1. Because this renaming causes the file name xarevtr1 to become
available, a new XAR event trace information file is then created with the name of
xarevtr1. Up to three generations of backup files are created. Backup files are
created only when there is already an XAR event trace information file at the start of
the XA resource service. During online processing, if the number of records written to
one file exceeds the value of the maximum number of records that can be output to an
XAR event trace information file, then no backup file is created. This maximum
number is specified in the xar_eventtrace_record operand in the XA resource
service definition. If one output file becomes full, the next file is used. If all the files
have become full, the oldest one is overwritten with new records. Do not delete the
XAR event trace information files while the system is online.

You can specify the output level of the XAR event trace information by using the
xar_eventtrace_level operand in the XA resource service definition. By default,
the output level is specified to acquire the XAR event trace only if an error occurs. You
can acquire all the XAR event trace information if you want to. However, in that case,
the online performance is affected. We recommend that you use the default output
level except for debugging.

You can use the xarevtr command to edit and display the XAR event trace
information acquired in the output file.

For details on how to specify the output level of the XAR event trace information and
the number of output records, see the manual OpenTP1 System Definition. For details
on how to edit and display the XAR event trace information, see the manual OpenTP1
Operation.

Recover() xar_recover Notifies a transaction branch in the Prepared status
or the Heuristically Completed status.

Forget() xar_forget Discards a transaction branch in the Heuristically
Completed status.

Request type# Request code Meaning of request code

5. Overview of Setup, Use, and Error Recovery

344

(10) TRN event trace
The TRN event trace is historical information about the XA functions issued in
transaction branches, and about the events of transaction services (transaction
management service, transaction recovery service, and resource manager monitoring
service).

The TRN event trace is stored as files named _tr_nnn (nnn: 3-digit number starting
at 001) in the $DCDIR/spool/dctrninf/trace/prf directory. These files are
called TRN event trace information files. You cannot rename or move these files.

You can change the size of each TRN event trace information file and the maximum
number of TRN event trace information files that can be stored. For details, see the
TRN event trace definition in the manual OpenTP1 System Definition.

To collect the TRN event trace information:

1. Set Y in the prf_trace operand in the system common definition.

2. Use the trn_prf_event_trace_level operand in the transaction service
definition to specify the level for collecting the TRN event trace information.

3. Use the trn_prf_event_trace_condition operand in the transaction
service definition to specify the type of TRN event trace collection.

The following table lists the values that can be specified in the
trn_prf_event_trace_condition operand and the types of TRN event trace
collection specified by the values.

The table below shows the TRN event trace information that is collected depending on
specification of the trn_prf_event_trace_condition operand.

Table 5-11: Relationship between the trn_prf_event_trace_condition operand
value and the TRN event trace information that is collected

Value of
trn_prf_event_trace_condition

TRN event
trace

information
that is

collected

Event ID Trace data
size (bytes)

Collection
timing

xafunc Trace information
about XA
functions

0x4500 320 (192 for the
xa_open and
xa_close
functions)

During
transaction
processing#

trnservice Trace information
about the
operating status of
the transaction
service

0x4501 192 When the
transaction
service starts,
ends, or is
recovered

5. Overview of Setup, Use, and Error Recovery

345

#

For a transaction committed in two phases, the trace amount collected per
transaction branch is 12 number of resource managers. However, the trace
amount varies depending on the conditions, such as the XA interface object files
linked to the user server and the transaction optimization settings.

For details about this operand, see the manual OpenTP1 System Definition.

To collect TRN event trace information files and output edited trace information, use
the prfget and prfed commands. The acquisition and edit/output procedures are as
follows.

Collecting TRN event trace information

To collect only the trace information that has not been acquired with the latest run
ID, execute the following commands:

$DCDIR/bin/prfget -f _tr | $DCDIR/bin/prfed -d

To collect all the trace information, execute the following commands:
$DCDIR/bin/prfget -a -f _tr | $DCDIR/bin/prfed -d

Outputting TRN event trace information

To output TRN event trace information, execute the prfed command with the -d
option specified. Specify other options as required.

TRN event trace information is output in the same format as the performance
verification trace. For details about the output format, see the description of the
prfed command in the manual OpenTP1 Operation.

The following shows an example of TRN event trace information output when
xafunc is specified in the trn_prf_event_trace_condition operand.
PRF: Rec Node: trn1 Run-ID: 0x4046b806 Process: 26264
Trace: 10
Event: 0x4500 Time: 2004/01/01 12:34:56 678.123.000
Server-name: Sup
Rc: 0 Client: **** - ********** Server: **** Root:
trn1 - ********
Svc-Grp: *************************** Svc:

Trn: 78d0trn100000001trn1trn100000001
 xa_commit (IN) OpenTP1_TAM
 axid:010000000000000c00000010

3738643074726e330000000174726e3374726e330000000100000000
 Internal code1:0x2007 Internal code2: 0
 Internal code3:0

5. Overview of Setup, Use, and Error Recovery

346

(11) NAM event trace
OpenTP1 collects trace information about the various events generated by the name
service, including communication invoked by the name service and the registration
and deletion of service information from the cache. This information is known as an
NAM event trace.

NAM event traces are stored as files with the file name _nm_001, _nm_002,
_nm_003, and so on, under the $DCDIR/spool/dcnaminf/ directory. These files are
known as NAM event trace information files. The output directory and file names
cannot be changed.

To collect NAM event trace information:

1. Set Y in the prf_trace operand in the system common definition.

2. Specify the level of NAM event trace information to acquire in the
nam_prf_trace_level operand in the system common definition.

The following table lists the values that can be specified in the
nam_prf_trace_level operand and the types of NAM event trace information
acquired for each level. For the collection timing for each event, see the description of
collecting performance verification trace information in the manual OpenTP1
Operation.

Table 5-12: Relationship between the value specified in the
nam_prf_trace_level operand and acquired NAM event trace information

Legend:

Value of nam_prf_trace_level
operand

Event ID of trace information

0xf000 to 0xf029 0xf100 to 0xf109 0xf200 to 0xf218

00000000 N N N

00000001 N Y N

00000002 Y N N

00000003 Y Y N

00000004 N N Y

00000005 N Y Y

00000006 Y N Y

00000007 Y Y Y

Other value Y Y N

5. Overview of Setup, Use, and Error Recovery

347

Y: Trace information is acquired.

N: Trace information is not acquired.

To collect NAM event trace information files and output edited trace information, use
the prfget and prfed commands. The acquisition and edit/output procedures are as
follows.

To collect NAM event trace information, execute the following commands:
$DCDIR/bin/prfget -a -f _nm | $DCDIR/bin/prfed -d

(12) Process service event trace
OpenTP1 collects information about process events such as process creation,
destruction, activation, and termination. This information is known as a process
service event trace.

Process service event traces are stored as files with the file name _pr_001, _pr_002,
_pr_003, and so on, under the $DCDIR/spool/dcprcinf/ directory. These files are
known as process service event trace information files. The output directory and file
names cannot be changed.

To collect process service event traces, set Y in the prc_prf_trace operand in the
process service definition.

For the collection timing for each event, see the description of collecting performance
verification trace information in the manual OpenTP1 Operation.

To collect process service event trace information files and output edited trace
information, use the prfget and prfed commands. The acquisition and edit/output
procedures are as follows.

To collect process service event trace information, execute the following commands:
$DCDIR/bin/prfget -a -f _pr | $DCDIR/bin/prfed -d

(13) FIL event trace
OpenTP1 collects event information when the amount of time it takes to process an
OpenTP1 file access request issued internally from a process under OpenTP1 control
exceeds the value specified in the fil_prf_trace_delay_time operand in the
system common definition. This is called a FIL event trace.

By analyzing the FIL event trace, you can check the delay status of processing related
to OpenTP1 file access.

FIL event traces are stored as files with the file name _fl_001, _fl_002, _fl_003,
etc., under the $DCDIR/spool/dcfilinf/ directory. These files are called FIL event
trace information files. The output destination and names of the FIL event trace
information files cannot be changed.

You use the prfget command to collect FIL event trace information files and the

5. Overview of Setup, Use, and Error Recovery

348

prfed command to edit and output the files. The following describes how to collect
the files.

How to collect FIL event trace information files:
$DCDIR/bin/prfget -a -f _fl | $DCDIR/bin/prfed -d

(14) Command logs
Every time an OpenTP1 operation command is executed, information such as the
command start time and command termination time is output to cmdlog1 and
cmdlog2 in $DCDIR/spool/cmdlog.

You can open cmdlog1 and cmdlog2 with a text editor such as vi. From the logged
command start time and command termination time, you can obtain, for example, the
time required to execute the command (response time).

349

Chapter

6. Using Multiple Instances of
OpenTP1

This chapter describes the facilities for implementing OpenTP1 in a large-scale system
(the System Switchover facility and multi-node facility) and the support available
when using a multiOpenTP1 configuration or multi-homed host configuration.

6.1 The System Switchover facility
6.2 The Multinode facility
6.3 The MultiOpenTP1
6.4 Multi-homed host configuration

6. Using Multiple Instances of OpenTP1

350

6.1 The System Switchover facility

You can duplicate an OpenTP1 system to improve reliability. This type of duplicated
system is sometimes called a hot-standby system or a system-switch system.
Duplicating an OpenTP1 system requires the product HAmonitor. For further details
on HAmonitor, see the relevant HAmonitor manuals.

6.1.1 Overview of the System Switchover facility
OpenTP1 enables an OpenTP1 administrator to construct an OpenTP1 system
consisting of two duplicated server systems. Each server system consists of OpenTP1,
a CPU, and a kernel. When one of the system fails, OpenTP1 can automatically switch
to the duplicated system. The parts of OpenTP1 that enable this switching are
collectively called the System Switchover facility.

After the system switches, you can automatically or manually restart the OpenTP1
system in which an error occurred and prepare for another system switch.

The system which handles work processing online is called the running system, and
the other system is called the standby system. Whenever a System Switchover occurs
during online processing, the standby system becomes the new running system, and
the old running system becomes the new standby system.

The system can be switched even if the Message Control facility (MCF) or the
Message Queuing facility (TP1/Message Queue) is installed in the OpenTP1 system.

(1) Types of system switching
There are two types of system switching:

• automatic system switchover

• planned system switchover

In an automatic system switchover, the running system that has an error is
automatically switched to the standby system. In a planned system switch, the running
system that has an error is switched using an HAmonitor command.

In both types of switchover, you can treat several products as a group for switching.
This is called grouped system switchover. In this type of switchover, when an error
occurs in one of the products in a group of a running system, all the products in the
group are switched to the standby system. In this operation, you can always use a group
of products in the same running system together.

In a grouped system switchover, the timing of system switching may differ from the
timing when the products are not grouped depending on the definition of HAmonitor.
For details of the grouped system switchover, see the relevant HAmonitor manuals.

6. Using Multiple Instances of OpenTP1

351

(2) Identifying the primary and secondary systems
During the setup of HAmonitor, you need to decide which system starts as the running
system in an online start. You must define the system which starts first as the primary
system, and define the standby system ready for an error of the running system as the
secondary system. The systems keep these names even after a system switch.

The following figure provides an overview of the System Switchover facility.

6. Using Multiple Instances of OpenTP1

352

Figure 6-1: Overview of the System Switchover facility

6. Using Multiple Instances of OpenTP1

353

6.1.2 OpenTP1 system configuration for using the System
Switchover facility

The following software products are required on both the primary and secondary
OpenTP1 systems (TP1/Server Base) when using the System Switchover facility:

• HAmonitor, TP1/High Availability

These are required whenever the System Switchover facility is used.

• TP1/NET/High Availability

This is required for using the System Switchover facility and the message control
facilities (TP1/Message Control and TP1/NET/Library).

The following hardware is used in common by the primary and secondary systems:

• Shared disk device

Shared disk device

• LAN

Used for the name service of OpenTP1. The LAN is used for OpenTP1
communication. An additional LAN (called a maintenance LAN) is necessary for
maintaining multiple systems. The maintenance LAN is not used for OpenTP1
communication; it is mainly used for remote access to the standby system.

• Monitoring path

An interface for communicating the status of each system. The monitoring path is
used by HAmonitor. The monitoring path can be either the monitoring link or the
monitoring LAN.

The figure below shows the configuration when using the System Switchover facility.
For the primary and secondary systems to monitor each other, hardware and software
additional to that shown in the figure are required. For details about the required
resources, see the relevant HAmonitor manuals.

6. Using Multiple Instances of OpenTP1

354

Figure 6-2: Configuration when using the System Switchover facility

6.1.3 Procedure for system switching
(1) Preparation for system switching

(a) Allocate shared disk devices
Specify a character special file to be used for OpenTP1 files. Specify the file to be
shared so that both OpenTP1 systems can reference it with the same pathname. Only
files created on a character special file can be shared. Contents of ordinary files (e.g.,

6. Using Multiple Instances of OpenTP1

355

files in the directories $DCDIR/spool/ or $DCDIR/tmp/) cannot be inherited.

(b) Set the IP addresses
In the my_host operand of the system common definition, specify the shared IP
address. The same IP address must be specified for both OpenTP1 systems.

(c) Set the HAmonitor environment
Set the HAmonitor definitions. For the HAmonitor environment settings, see the
relevant HAmonitor manuals.

(2) HAmonitor definition contents
In the server statement of HAmonitor, specify the environment for OpenTP1
operations. In the name operand of the server statement, you must specify the full-
pathname of the OpenTP1 home directory. For details on other environment settings,
see the relevant HAmonitor manuals.

(3) Ensure that required OpenTP1 definitions match
The following definitions of the primary system and the secondary system must match:

• OpenTP1 system definitions

• executable files of a user server (UAP)

• executable files of the transaction service (if you re-create the file with the
trnlnkrm command)#

• versions of program products in the OpenTP1 system

• environment (user ID, group ID, and environment variables) for the OpenTP1
administrator

• absolute pathname of the OpenTP1 home directory

• setting of OpenTP1 files (character special files)

#

You must also execute the trnlnkrm command to make sure that the order
of resource managers registered in OpenTP1 on the primary system is the
same as the order on the secondary system.

OpenTP1 does not check for differences in the definitions of two systems, so if
definitions do not match, OpenTP1 operation cannot be guaranteed.

(a) Set the system definitions
To use the System Switchover facility:

• Specify Y in ha_conf in the system configuration definition. If this is not
specified, a system switch is not possible.

6. Using Multiple Instances of OpenTP1

356

• The specification of the system startup method in the system environment
definition (mode_conf operand) differs depending on the reason for starting the
standby system, as described below.

When starting the standby system to replace the running system:

Specify AUTO or MANUAL1.

If MANUAL2 is specified, an OpenTP1 system which ends abnormally cannot
start automatically. To prepare for another system switch, you must use a
command to restart the OpenTP1 system.

When starting the standby system just to complete the postprocessing of the
running system:

To start the standby system just to complete the postprocessing of the
running system, such as deciding undecided transactions and ensuring
database integrity, specify MANUAL2. This method assumes that, at a
minimum, the standby system can perform fall-back operations without any
problems. For details about how to have the standby system perform only the
postprocessing of the running system, see 6.1.4(1) Starting and terminating
OpenTP1.

• To reduce the restart time of the standby system after a system switch, user servers
can be specified to be started before OpenTP1 is started. Specify Y in the
user_server_ha operand in the system environment definition.

(4) Notes on using the System Switchover facility
(a) LAN components to be used

When the System Switchover facility is used, the LAN components and
communication lines used by OpenTP1 are online in the running system, and offline
in the standby system. Whenever the running system switches, the LAN components
and communication lines in that system automatically go offline.

If you want to perform maintenance on an offline standby system, you should not use
the LAN components and communication lines that are used by OpenTP1. This is
because both the running system and the standby system share the same IP address, so
there is a possibility of confusion when both systems are performing network-related
activities. To perform such maintenance tasks, use a console or prepare a maintenance
LAN, one not used in usual system switching.

(b) File system to be used
When using the System Switchover facility, use the OpenTP1 file system. If an
ordinary UNIX file system is used, OpenTP1 might not start.

(c) Using mirrored disks
Whether the information on a shared disk device can be duplicated using mirrored

6. Using Multiple Instances of OpenTP1

357

disks depends on the operating system and hardware that you use. Use mirrored disks
based on the specifications such as those for the mirrored disks and cluster facility of
the operating system and hardware.

If a system switchover occurs while writing to two disks using a mirrored disk,
inconsistency may occur between the two disks due to a delay in writing. If the written
data is not correct in the disk of the system to which the operation should be switched
over, OpenTP1 cannot operate normally after a system switchover.

The following OpenTP1 files are essential to operate OpenTP1:

• Status files

• System journal files

• Checkpoint dump files

To use mirrored disks for these OpenTP1 files, make sure that the operating system and
hardware allow using mirrored disks for shared disk devices and that the data in the
disk devices is correct even when the System Switchover facility is used.

To improve the reliability of files that cannot be written to mirrored disks:

• duplicate the status files and system journal files.

• duplicate the checkpoint dump files or use the multi-generation guarantee facility
for checkpoint dump files.

6.1.4 Operating with the System Switchover facility
This subsection describes how to operate OpenTP1 when using the System Switchover
facility.

(1) Starting and terminating OpenTP1
(a) Starting OpenTP1

By using the OpenTP1 start command dcstart, you can start two OpenTP1 systems
that use the System Switchover facility. If OpenTP1 is set to start automatically, you
do not need to use dcstart.

• The system environment definition (i.e., whether or not manual is specified) and
the type of recent termination determines whether OpenTP1 is started
automatically or manually.

• The running or standby system can be specified in the server statement that sets
the HAmonitor environment.

A system for which online is specified in the initial operand or for which the
initial operand is omitted becomes the running system when online operation
starts.

A system for which standby is specified in the initial operand becomes the

6. Using Multiple Instances of OpenTP1

358

standby system when online operation starts.

• Whether OpenTP1 is started normally or restarted is decided in the same way as
when the System Switchover facility is not used.

Having the standby system perform the postprocessing of the running system after a
system switchover

To have the standby system perform the postprocessing of the running system
after a system switchover, execute dcstart -U to start the standby system.

When dcstart -U is used to start the standby system, the user server does not
start at a system switchover. The standby system started in this way can be used
for only the postprocessing of the running system, such as deciding undecided
transactions and ensuring database integrity. The machine for operating the
standby system in this case does not require resources equivalent to those for the
running system.

Because the dcstart command needs to be executed, the standby system when
used for postprocessing must be in a state in which it can be started manually.

The following describes an operation when one node is used as a standby system
to perform only the postprocessing of multiple OpenTP1 systems.

In this configuration, a standby OpenTP1 system must be set up for each running
OpenTP1 system.

6. Using Multiple Instances of OpenTP1

359

Figure 6-3: Operation in which a standby system performs only the
postprocessing of a running system after a system switchover

6. Using Multiple Instances of OpenTP1

360

Explanation:

1. An error occurs in the OpenTP1 D running system.

2. The OpenTP1 D' standby system starts.

OpenTP1 D' performs postprocessing, such as deciding undecided
transactions and ensuring database integrity. Meanwhile, OpenTP1 A,
OpenTP1 B, and OpenTP1 C continue online processing in fall-back
mode. Because the number of running systems is reduced from 4 to 3,
the system performance is degraded by 25%.

Notes:

In the following cases, a standby system does not start for the sole purpose
of postprocessing:

• When the mode_conf operand (system startup method specification) in
the system environment definition has been set to AUTO, and OpenTP1
terminates abnormally or the OS is started in a situation in which the
previous OS termination was not abnormal

• When the mode_conf operand (system startup method specification) in
the system environment definition has been set to MANUAL1, and
OpenTP1 terminates abnormally

Even when the operation has been set so that the standby system will perform
only the postprocessing of the running system at a system switchover, if one
of the conditions above is satisfied, the dcstart command is automatically
executed. The standby system started by the dcstart command without an
option waits to take over from the running system.

If you want to start the standby system again for the sole purpose of
postprocessing, stop OpenTP1 and then restart it by using the dcstart -U
command.

(b) Terminating OpenTP1
Tables 6-1 and 6-2 describe how to terminate an OpenTP1 system that uses the System
Switchover facility.

Table 6-1: Commands for terminating a running OpenTP1 system

Termination commands Execution results for a running OpenTP1 system

dcstop (with no option) Terminates the running system normally. The standby system also
terminates.

dcstop (with -n option) Forces the running system to terminate normally. The standby
system also terminates.

6. Using Multiple Instances of OpenTP1

361

Table 6-2: Commands for terminating a standby OpenTP1 system

(2) Limitations on executing commands
(a) Note on commands executed offline

When you execute commands offline, you must first terminate both OpenTP1 systems
in a system switch configuration, and then execute the commands. You can execute the
dcstart command if an OpenTP1 system which you want to start is not started. The
other OpenTP1 system need not be terminated. A standby system ignores the dcstart
-n command.

(b) Note on commands executed online
In a running OpenTP1 system, you can execute commands online. In a standby
OpenTP1 system, you cannot execute any commands online except for the dcstop
-f command (for a forced termination).

dcstop (with -a option) Terminates the running system in the planned termination A mode.
The standby system also terminates.

dcstop (with -b option) Terminates the running system in the planned termination B mode.
The standby system also terminates.

dcstop (with -f option) Terminates the running system forcibly. The standby system also
terminates.

monswap (HAmonitor command for a
planned system switch)

The systems switch after the running server terminates.

monsbystp (HAmonitor command for
terminating the standby system)

Cannot be executed.

Termination commands Execution results for a standby OpenTP1 system

dcstop (with no option) Cannot be executed.

dcstop (with -n option) Cannot be executed.

dcstop (with -a option) Cannot be executed.

dcstop (with -b option) Cannot be executed.

dcstop (with -f option) Terminates the standby system forcibly.

monswap (HAmonitor command for a
planned system switch)

Cannot be executed.

monsbystp (HAmonitor command for
terminating the standby system)

Terminates the standby system.

Termination commands Execution results for a running OpenTP1 system

6. Using Multiple Instances of OpenTP1

362

To reduce the burden of unloading the running system, system journal files for the
standby system can be unloaded. Be careful, however, when executing the jnlunlfg
command for an unload. For details of unloading the standby system, see the
description of the jnlunlfg command in the manual OpenTP1 Operation.

(c) Accessing a shared disk device
Even if you execute a command to perform an operation on a shared file on a shared
disk device, OpenTP1 does not write to the file so the file will not be destroyed. Note,
however, that if you execute the current system only (with the secondary system usable
but not yet activated as an OpenTP1 component), you can write to a shared file from
the secondary system and using a command in this case might destroy files. You must
terminate both systems before using a command to perform operations on a character
special file of OpenTP1.

6. Using Multiple Instances of OpenTP1

363

6.2 The Multinode facility

The Multinode facility enables efficient management of OpenTP1 systems when
OpenTP1 is used in a cluster system or parallel-processing system.

6.2.1 Overview of the Multinode facility
In a cluster system or parallel-processing system, multiple server machines connected
in a LAN build one large-scale system and operate in parallel. The Multinode facility
enables all OpenTP1 systems in a cluster system or parallel-processing system to be
operated from one node, thereby decreasing the amount of work required to manage
each node in the system.

When using the Multinode facilities, TP1/Multi is needed for all the OpenTP1 systems.

The following figure shows the software configuration of an OpenTP1 system that
uses the multi-node facility.

Figure 6-4: Software configuration of OpenTP1 that uses the Multinode facility

6. Using Multiple Instances of OpenTP1

364

(1) Prerequisites for the Multinode facility
When the Multinode facility is used, the following items are required:

• The TP1/Multi product must be installed on every OpenTP1 node that is to be
managed by the Multinode facility.

• In every OpenTP1 node to be managed by the Multinode facility,
multi_node_option=Y must be specified in the system common definition,
and the multinode configuration definition and the multinode physical definition
must have been created.

(2) Relation between the Multinode facility and other OpenTP1 facilities
The following facilities are available when OpenTP1 is used in a cluster system or
parallel-processing system configuration.

(a) Single OpenTP1 configuration
In a single OpenTP1 configuration, you can operate ordinary OpenTP1 facilities.
UAPs can start in environments set in their OpenTP1 node. Both the following
OpenTP1 facilities are available: the Multiserver facility, which starts more than one
UAP server process at one time; and the Internode Load-Balancing facility, which
assigns processing for a service group to more than one node.

(b) Double OpenTP1 configuration using the System Switchover facility
In a double OpenTP1 configuration constructed with the System Switchover facility,
the set of OpenTP1 instances in a System Switchover configuration is regarded as one
node. If the systems switch, the node is considered the same as the former node. Some
TP1/Multi facilities (commands, APIs) are unavailable for OpenTP1 instances using
the System Switchover facility.

When using the System Switchover facility, a maintenance LAN, one not used for
OpenTP1 communication or usual system switching, is required. Specify the host
name of the maintenance LAN as the host name in the multinode physical definition.

(3) Cluster system or parallel-processing system components
When OpenTP1 is used in a cluster system or parallel-processing system, the areas that
contain multiple systems are managed as described below so that the individual nodes
can be managed.

The following figure shows how OpenTP1 is configured when used in a cluster system
or parallel-processing system.

6. Using Multiple Instances of OpenTP1

365

Figure 6-5: OpenTP1 configurations in a cluster system or parallel-processing
system

(a) Multinode area
The set of OpenTP1 instances in a cluster system or parallel-processing system
constitute a multi-node area. All OpenTP1 nodes to be centrally managed within the
system are contained in the multi-node area.

6. Using Multiple Instances of OpenTP1

366

Such a system can have only one multi-node area.

(b) Multinode subareas
The multi-node area is logically divided into a set of multi-node subareas. OpenTP1
nodes in the multi-node area that perform the same type of processing are grouped into
the same subarea. For example, the multi-node area may be divided into the following
subareas:

• Subarea for application processing

A set of OpenTP1 nodes that manage user files (e.g., DAM and TAM files).

• Subarea for WAN communications

A set of OpenTP1 nodes that communicate in a WAN via TP1/Message Control.

• Subarea for journal operations

A set of OpenTP1 nodes that use the Global Archive Journal facility to store
system journal files from each node into an archive journal file. (For details, see
6.2.3 Global Archive Journal facility.)

(c) OpenTP1 nodes
OpenTP1 systems that constitute a multinode area or a multinode subarea are called
OpenTP1 nodes. Each OpenTP1 node is distinguished by a node identifier specified in
the OpenTP1 system common definition.

(d) System definitions
In the multinode configuration definition, you can specify which OpenTP1 nodes
belong to each area. As an OpenTP1 node identifier, specify the node identifier you
specified in the system common definition.

6.2.2 Available operations in the Multinode facility
The following operations can be performed when using the multi-node facility in a
cluster system or parallel-processing system configuration. For details on commands,
see the manual OpenTP1 Operation. For details on functions, see the OpenTP1
Programming Guide.

(1) Starting and terminating OpenTP1 instances in a cluster system or
parallel-processing system

You can enter commands from one OpenTP1 node to start or terminate OpenTP1
instances in a multinode subarea. Use the dcmstart command to start OpenTP1
instances in a multinode subarea, and the dcmstop command to terminate.

(2) Collecting status of OpenTP1 nodes
From one OpenTP1 node you can use the dcndls command to monitor the status of
OpenTP1 nodes in the multinode area. The status of OpenTP1 nodes can be received

6. Using Multiple Instances of OpenTP1

367

also by issuing the dc_adm_get_nd_status_xxx() functions from a UAP.

(3) Collecting status of user servers in OpenTP1 nodes
You can receive the status of user servers in OpenTP1 nodes from one node by issuing
the dc_adm_get_sv_status_xxx() functions from a UAP.

(4) Collecting configuration information of the multinode area
You can receive information about the system configuration (e.g., all OpenTP1 node
identifiers in the multinode area or specified multinode subareas) by issuing the
dc_adm_get_nodeconf_xxx() functions or the dc_adm_get_node_id_xxx()
functions from a UAP.

6.2.3 Global Archive Journal facility
As with ordinary OpenTP1 configurations, when OpenTP1 is used in a cluster system
or parallel-processing system, you need to unload the system journal file for each
OpenTP1 node. Since unloading system journal files from every node can take a lot of
time, the OpenTP1 Multinode facility provides the Global Archive Journal facility to
simplify this procedure. For global archive journals, you can select the kind of journal
to be archived by using the jnl_arc_rec_kind operand in the system journal
definition. For details of the kinds of journals, see 4.2.2 System files: system journal
files.

Archive system journals from each OpenTP1 node into an archive journal file on a
specific OpenTP1 node. For details on archive journal files, see 4.2.6 System files:
archive journal files.

As with ordinary OpenTP1 configurations, when the Global Archive Journal facility
is used, OpenTP1 uses the system journal files for recovering an OpenTP1 node. So
using the Global Archive Journal facility does not affect OpenTP1 recovery
performance. For details on file operations and error countermeasures, see the manual
OpenTP1 Operation.

(1) Type of nodes that use the Global Archive Journal facility
In the multinode area, you can make an optional node dedicated to archive journals.
Each OpenTP1 node sends system journals to that node in order to archive the journals.
A node from which journals are sent to be archived is called an archive-journal source
node. The node on which the journals are archived is called the archive-journal target
node.

The archive-journal target node is different from other OpenTP1 nodes
(archive-journal source node or a node which does not use the Global Archive Journal
facility) in the following points:

• user servers cannot be activated on an archive-journal target node

• the archive-journal target node must be first started before any other OpenTP1

6. Using Multiple Instances of OpenTP1

368

node in the multinode area

The following figure illustrates the global archive journal service.

Figure 6-6: Overview of Global Archive Journal facility

6. Using Multiple Instances of OpenTP1

369

(2) Resource groups
You can make from 1 to 16 resource groups in an archive-journal target node. A
resource group is a set of archive journal files classified for the same purpose. For
example, you can specify a resource group A that collects journals from one part of the
multinode area, and you can specify another resource group B that collects journals
from another part of the multinode area.

The global archive journal service uses resource group names to manage archive
journal files.

Up to 20 archive journal source nodes can belong to one resource group.

A resource group name is defined in the archive journal service definition as a file
name. In the global archive journal service definition, you can specify the number of
resource groups to be used in a node on which a journal is archived.

(3) Definitions in OpenTP1 nodes using the Global Archive Journal facility
To connect the global archive journal service to a journal service in each node, the
following definitions must be specified in nodes that use the Global Archive Journal
facility:

• Archive-journal target node

Create the global archive journal service definition and the archive journal service
definition.

• Archive-journal source node

In the jnl_arc_name operand of the system journal service definition, specify
the node identifier of the archive-journal target node and resource group names of
archive journal files.

You must unload every OpenTP1 node which does not use the Global Archive Journal
facility.

The following figure shows the relationship between the global archive journal service
and resource groups.

6. Using Multiple Instances of OpenTP1

370

Figure 6-7: Relation between the global archive journal service and resource
groups

(4) Unloading archive journal files
A filegroup that is waiting to be unloaded needs to be copied (unloaded) to a regular
file, using an OpenTP1 command. An unloaded archive journal file is called a global
archive unloaded-journals file.

6. Using Multiple Instances of OpenTP1

371

When one or more archive journal filegroups are not yet unloaded, but no swap
destinations are available, the global archive journal service terminates abnormally.

(a) Journal maintenance of a global archive unloaded-journals file
As with a system journal file, an unloaded ordinary file can be used for recovering
DAM files and editing uptime statistics. Also a user journal can be inherited by an
offline program.

A global archive unloaded-journals file contains system journal information about
OpenTP1 nodes. You can edit this journal: for example, by editing merged uptime
statistics or sorting OpenTP1 node journals by time.

(5) Status of system journal files
In an OpenTP1 archive-journal source node, the following statuses of system journal
files are added:

• archived/not archived

Indicate whether or not the filegroup has already been sent to and stored in an
archive journal file.

If a standby system journal filegroup has been sent to an archive journal file and the
filegroup has overwrite-permitted status, the standby system journal filegroup can be
swapped in to become the current system journal filegroup regardless of whether or not
the archive journal file has been unloaded.

6. Using Multiple Instances of OpenTP1

372

6.3 The MultiOpenTP1

The MultiOpenTP1 enables one node to contain two OpenTP1 instances. This
configuration is useful when you want to use one OpenTP1 instance for processing and
the other for testing applications.

Each OpenTP1 instance can operate independently. In a MultiOpenTP1 configuration,
two OpenTP1 instances can share a single node address or use different addresses.

6.3.1 MultiOpenTP1 configuration
The two OpenTP1 instances are installed in different OpenTP1 home directories. An
OpenTP1 administrator is required for each OpenTP1 instance, although the same
person can perform both sets of administration tasks.

In a MultiOpenTP1 configuration, each OpenTP1 instance is identified by an
OpenTP1 identifier. The port number for the name service and process service must be
unique for each OpenTP1 instance. The OpenTP1 identifier and the port number are
specified in the system common definition. For details on setting up a MultiOpenTP1
environment, see the manual OpenTP1 Operation.

The following figure illustrates a multiOpenTP1 configuration.

Figure 6-8: A MultiOpenTP1 configuration

(1) A sample for distributing MultiOpenTP1 commands
When a command such as rsh (a remote shell command) is used to execute a
command on another node in a MultiOpenTP1 configuration, OpenTP1 instances on
the remote node do not know where the command should be executed. Therefore, a

6. Using Multiple Instances of OpenTP1

373

node name must be specified when a command is executed.

The delvcmd command simplifies the way node names are specified in the process
described above. The delvcmd command is installed in the TP1/Server Base shell file.
For details about how to use the delvcmd command, see the description about the
sample program in the OpenTP1 Programming Guide.

6. Using Multiple Instances of OpenTP1

374

6.4 Multi-homed host configuration

A host connecting two or more physical networks with the TCP/IP protocol is called a
multi-homed host. To communicate with OpenTP1 that runs in such a host, use the IP
address of a LAN connected to the host. For normal communication, users need not be
aware of the IP address (host name) for that OpenTP1 instance.

If a multi-homed host runs two OpenTP1 instances and uses either of them with the
System Switchover facility, a system switch may prevent communication with an
OpenTP1 instance on the host. To avoid blocked communication with the OpenTP1
instances on the host, the correspondence between the IP addresses (host names) and
OpenTP1 instances must be defined.

(1) Defining the multi-homed host with system switching
To use either of the OpenTP1 instances in a host with the System Switchover facility,
specify the host name in the my_host operand in the system common definition and
specify the following in the dcbindht definition command:

• Name of the host to be used (host name that can be mapped with an IP address in
the /etc/hosts file or using DNS)

• Name of the network to be used (network name that can be mapped with a
network number in the /etc/networks file or using NIS)

(2) Example of OpenTP1 instance and IP address correspondence
The following explains a configuration example that requires correspondence between
OpenTP1 instances and IP addresses (host names). If one host uses the System
Switchover facility in which two OpenTP1 instances run, the dcbindht definition
command must always be specified.

(a) Example of one-to-one system switch configuration
The following figure shows an example of a one-to-one system switch configuration
in which two OpenTP1 instances must be associated with a specific IP address (host
name).

6. Using Multiple Instances of OpenTP1

375

Figure 6-9: OpenTP1 instances and IP addresses (host names) in a one-to-one
system switch

(b) Example of double-system switch
The following figure shows an example of a double-system switch configuration in
which two OpenTP1 instances must be associated with a specific IP address (host
name).

6. Using Multiple Instances of OpenTP1

376

Figure 6-10: OpenTP1 instances and IP addresses (host names) for a
double-system switch

377

Chapter

7. System Resources

Some knowledge of OpenTP1 process structure and memory structure is necessary to
design or manage an online transaction processing system using OpenTP1.

This chapter describes the system resources used by OpenTP1.

7.1 OpenTP1 process structure
7.2 OpenTP1 memory structure
7.3 TCP/IP resources that OpenTP1 uses

7. System Resources

378

7.1 OpenTP1 process structure

Table 7-1 lists system service processes.

Table 7-1: System service processes

Name of
executable

file

Valid
number of
processes

Service Relevant service
definition

I/O file

prcd 1#1 Process service (superuser
process)

Process service definition None

namd 1 Name service Name service definition None

namaudtd 1 Name service Name service definition None

scdd 1 Scheduler Schedule service definition None

scdmltd 0 or more Scheduler Schedule service definition None

trnd 1 Transaction management
service

Transaction service
definition

None

trnrvd 1 or more Transaction recovery
service

Transaction service
definition

None

trnrmd 1 Resource manager
monitoring service

Transaction service
definition

None

itvd 1 Interval timer service Interval service definition None

stsd 1 Status service Status service definition Status file

cpdd 1 or more#2 Checkpoint dump service Journal service definition Checkpoint
dump file

tjld 0 or #2 Transaction journal service None Transaction
recovery
journal file

jnld 1 Journal management
service

Journal service definition None

jnlswd 0 or 1#2 Journal file management
service

System journal service
definition

None

jnliod 0 to 16#2, #3 Journal file I/O service None System journal
file

1 to 256#4, #5 Journal file I/O service None Archive
journal file

7. System Resources

379

jnlutld 0 or 1#6 Journal utility service System journal service
definition

System journal
file

jnlsdd 0 or 1 Journal data transmitting
service

None None

jard 1#5 Global archive journal
service

Global archive journal
service definition

None

jarswd 1 - 16#5 Archive journal file
management service

Archive journal service
definition

None

jarrvd 1 to 320#5, #7 Journal data archive
service

None None

itvd 1 Interval timer service Interval timer service
definition

None

stsd 1 Status service Status service definition Status file

cpdd 0#2 Checkpoint dump service Journal service definition
Checkpoint dump service
definition

Checkpoint
dump file

tjld 0 or 1#2 Transaction journal service None Transaction
recovery
journal file

qued 0 or 1 Message queue service Message queue service
definition

Message
queue file

damd 0 or 1 DAM service DAM service definition
Checkpoint dump service
definition

DAM file

tamd 0 or 1 TAM service TAM service definition TAM file

tamiod 0 or 1 TAM file I/O service TAM service definition TAM file

ismbd 0 or 1 ISAM service ISAM service definition ISAM file

istd 0 or 1 IST service IST service definition None

logd 1 Log service Log service definition Message log
file

prfiop#8 0, 8, or 9#9 Trace acquisition service
for performance
verification

System common definition Trace file

Name of
executable

file

Valid
number of
processes

Service Relevant service
definition

I/O file

7. System Resources

380

cltcond 0 or more CUP execution service Client service definition None

cltd 0 or 1 Client extended service Client service definition None

clttrnd 0 or more Client execution process Client service definition None

xatd 0 or 1 XATMI communication
service

None None

xatcd 0 or 1 XATMI service XATMI communication
service definition

None

rmmd 0 or 1 RMM service RMM service definition None

admrsvre 1 or more Partial recovery Process service definition None

mcfmngrd 0 or 1 MCF manager MCF manager definition Trace file

rmmd 0 or 1 RMM service RMM service definition None

mqad 0 or 1 MQA message queuing
service (TP1/Message
Queue)

MQA service definition MQA queue
file
MQ
management
information
file

mapsmgrd 0 or 1 Mapping service Mapping service definition
Mapping service attribute
definition

None

mcfcmdsv 0 or 1 MCF online command
service

None None

user-specified-
name#10

0 MCF communication
service

MCF communication
configuration definition
MCF application definition

None

mqaiod 0 or more Queue file input/output
service in message queuing
(TP1/Message Queue)

MQA service definition MQA message
queue file

mqcdtcp 0 or 1 MQC message queuing
service (TP1/Message
Queue)

MQA service definition
MQC service definition

Trace file

mqacmd 0 or 1 On-line command service
for message queuing (TP1/
Message Queue)

MQA service definition MQA queue
file

Name of
executable

file

Valid
number of
processes

Service Relevant service
definition

I/O file

7. System Resources

381

Note

Valid number of processes is the number of system service processes per node
when one OpenTP1 instance is operating within a node.

#1

Although there is usually only one process during operation, it might seem that

mqamnd 0 or 1 Completion message
monitoring service for
message queuing (TP1/
Message Queue)

MQA service definition None

mqtdtcp 0 or more MQT communication
service for message
queuing (TP1/Message
Queue)

MQT communication
configuration definition
MQT service definition

MQA queue
file
Channel
management
information
file
Trace file
User definition
file
MQ
management
information
file

mqtmngd 0 or 1 MQT communication
manager service for
message queuing (TP1/
Message Queue)

MQA service definition Channel
management
information
file

rapclman 1 Remote API facility RAP-processing client
manager service definition

None

raplisnr 1 to 1024 Remote API facility RAP-processing listener
service definition

Trace file

rapservr 1 to 1024 Remote API facility RAP-processing listener
service definition

Trace file

rtsspp 0 Real-time statistics service Real-time acquisition item
definition

RTS log file

rtssup 0 Real-time statistics service Real-time acquisition item
definition

RTS log file

utod 1 Offline tester Tester service definition Trace file

Name of
executable

file

Valid
number of
processes

Service Relevant service
definition

I/O file

7. System Resources

382

multiple processes temporarily exist in the following cases. This is because the
process starts the OpenTP1 process.

- When OpenTP1 is started by using the dcstart command

- When the user server is started by using the dcsvstart command

- When the process of a non-resident server is started

#2

The valid number of processes is 0 when Y is specified in the
jnl_fileless_option operand in the system common definition.

#3

The value is determined using the following equation:

a x b
a: 2 when journals are duplicated; 1 when journals are not duplicated.

b: Maximum dispersed files for parallel access when using the parallel access
facility for system journal files.

#4

This number is obtained from the following formula:

a b c

a: 2 if a journal is duplicated; 1 if a journal is not duplicated.

b: Maximum number of distributions in the parallel access facility for archive
journal files.

c: Number of resources specified in the global archive journal service definition.

#5

The process runs in a node which has a global archive journal service.

#6

The valid number of processes is 1 when Y is specified in the jnl_auto_unload
operand in the system journal service definition.

#7

Same as the number of archive-journal source nodes that are being transferred to
the archive-journal target node.

#8

This file is a process for obtaining the trace. Although this process is created in
extension with prcd, the information obtained by this process cannot be

7. System Resources

383

displayed by OpenTP1 prcls command. To display the details, execute the
operating system's ps command.

#9

The valid number of processes is as follows:

 When N is specified in the prf_trace operand in the system common
definition

- The valid number of processes is 0.

 When Y is specified in the prf_trace operand in the system common
definition

- When MCF is not used, the valid number of processes is 8.

- When MCF is used, the valid number of processes is 9.

#10

When TP1/Messaging is used, the file name is fixed to mcfutcpd or mcfupsvd.

7. System Resources

384

7.2 OpenTP1 memory structure

OpenTP1 uses two types of memory: local memory and shared memory.

7.2.1 Local memory
Local memory is a virtual storage area that can be accessed by one process only. This
area is allocated for OpenTP1 process information and buffers. Most of this area is
allocated dynamically when a UAP issues an RPC to request a service; however, part
of this area is included in the data section for library objects.

7.2.2 Shared memory
Shared memory can be shared by more than one process and can be referenced and
updated by them. Most of this area is allocated for OpenTP1 control tables and shared
buffers. Shared memory is made available via the shared memory function of the
operating system and is used to reduce the overhead for communicating between
processes.

(1) Shared memory reserved by OpenTP1
The shared memory used by OpenTP1 is specified in two operands in the system
environment definition: Specify the static shared memory size in the
static_shmpool_size operand, and the dynamic shared memory size in the
dynamic_shmpool_size operand. OpenTP1 uses the combined total of these two
sizes as shared memory. The data to be used during OpenTP1 operation is generally
stored in static shared memory, and data that is accessed exclusively on-demand during
execution of a service process is placed in dynamic shared memory.

When the buffer area of the shared memory is specified to be shared between the user
servers, the amount of shared memory will be saved. For sharing the buffer table, see
Section 3.4.4 Saving shared memory in sharing a buffer area.

(2) Displaying status of shared memory
You can use the dcshmls command to find out the status of shared memory which is
being used during OpenTP1 execution. This command displays the total amount and
the usage rate of shared memory. Command options enable you to separately display
the status of static shared memory and dynamic shared memory.

(3) Shared memory used by DAM service, TAM service, and IST service
Part of dynamic shared memory is used to update DAM files. To use dynamic shared
memory more efficiently, in the DAM service definition specify how many transaction
branches for updating DAM files are to be activated concurrently. When the number
of transaction branches is specified, dynamic shared memory for updating a DAM file
is allocated at the start of OpenTP1. If more transaction branches than you specified
try to update a DAM file concurrently, more dynamic shared memory is newly

7. System Resources

385

allocated at execution of the transaction. The dynamic shared memory which has been
allocated temporarily is released when the transaction terminates.

When the DAM service is used, the DAM service allocates shared memory for the
buffer area in which DAM blocks are saved. You can specify the memory size of this
area in the DAM service definition. This area is separate from the shared memory that
OpenTP1 allocates according to what was specified in the system environment
definition.

When a TAM service is used, the TAM service allocates shared memory for TAM
tables. You can specify the size of this area in the TAM service definition. This area is
separate from the shared memory that OpenTP1 allocates according to the system
environment definition.

The IST service, when used, allocates shared memory for internode shared tables. You
can specify the size of this area in the IST service definition. This area is separate from
the shared memory that OpenTP1 allocates according to the system environment
definition.

(4) Shared memory used by MCF service
The MCF service uses both static and dynamic shared memory.

To allocate static shared memory, perform both of the following settings:

• Specify the static shared memory size in the -p option of the MCF manager
common definition.

• Specify the static_shmpool_size operand of the system environment
definition, as the total of the following values:
value-specified-in-the--p-option-of-the-MCF-manager-common-definition
+ MCF-trace-buffer-size#-of-all-MCF-communication-services
+ MCF-trace-buffer-size#-of-all-application-startup-services

#

Calculate the MCF trace buffer size as follows:
value-specified-in-the-size-operand-of-the--t-option-in-the-mcfttrc-definition-co
mmand x 2

If a shortage of MCF static shared memory occurs, the MCF service automatically
allocates an amount of space equal to half the size of the static shared memory
(static_shmpool_size operand value in the system environment definition) that is
specified in the -p option in the MCF manager common definition (mcfmcomn). This
automatic memory allocation can be performed a maximum of 254 times. If a memory
shortage occurs thereafter, the MCF service issues the KFCA10230-E log message and
outputs error information. Note that if a shortage of static common memory is detected
during automatic memory allocation before the allocation count reaches 254, the MCF

7. System Resources

386

service immediately issues the KFCA10240-E log message and outputs error
information.

Use the -i option in the MCF manager common definition (mcfmcomn) to specify
whether the KFCA10242-I log message is to be issued during additional memory
allocation. If you want to be notified of a shortage of static common memory, specify
msg in the -i option to enable message display.

(5) Shared memory used by real-time statistics service
In addition to the shared memory defined in the system environment definition, the
real-time statistics service uses the shared memory for the RTS service in order to store
acquired statistics.

The size of the shared memory for the RTS service is determined by the values
specified in the rts_service_max and rts_item_max operands in the real-time
statistics service definition.

7. System Resources

387

7.3 TCP/IP resources that OpenTP1 uses

If you create a large-scale system using RPCs (the dc_rpc_call function, the
dc_rpc_call_to function, and the XATMI interface that uses TCP/IP) of OpenTP1,
the number of TCP/IP ports may run short or a communication error may occur.

This section describes how to restrict the number of ports that OpenTP1 uses and how
to tune the network environment.

7.3.1 Port numbers used in OpenTP1
When you execute the inter-process communications using TCP/IP, you need to
establish a connection between processes before transmitting data. Port numbers are
assigned to both ends of the connection.

The send port is allocated by the OS within the range of port numbers available for
automatic allocation by the OS (short-lived ports). The receive port is also allocated
by the OS within the range of port numbers available for automatic allocation by the
OS (short-lived ports). Note, however, that some OpenTP1 system services enable you
to specify any desired receive port number.

OpenTP1 uses the following port numbers:

Port numbers that are automatically allocated by the operating system

The operating system determines these numbers and you cannot change them.

Port numbers that are specified individually

For example, port numbers that are specified by the following operands are
applicable.

• name_port and prc_port operands in the system common definition

• scd_port operand in the schedule service definition

• rap_listen_port operand in the RAP-processing listener service
definition

Port numbers starting from the value specified in the rpc_port_base operand
in the system common definition up to the value specified in the
rpc_port_base operand + prc_process_count in the process service
definition + 129

The following table shows the system definition operands that enable you to specify a
receive port number.

7. System Resources

388

Table 7-2: System definition operands that enable you to specify a receive port
number

For details about the operands, see the manual OpenTP1 System Definition.

7.3.2 How RPCs use ports
The following figure shows how RPCs use ports.

Definition name Operand Permitted
range

Default value Applicable
system service

System common
definition

name_port 5001 to
65535

10000 Name service

domain_masters_port 5001 to
65535

Range of ports
available for
automatic
allocation

Domain
representative
schedule service

prc_port 5001 to
49999

Range of ports
available for
automatic
allocation

Process service

Schedule service
definition

scd_port 5001 to
65535

Range of ports
available for
automatic
allocation

Schedule service

Client service definition clt_port 5001 to
65535

Range of ports
available for
automatic
allocation

Client extended
service

cltcon_port 5001 to
65535

Range of ports
available for
automatic
allocation

Transactional
RPC executing
process

RAP-processing listener
service definition

rap_listen_port 5001 to
65535

Range of ports
available for
automatic
allocation

RAP-processing
listener

RAP-processing client
manager service
definition

rap_client_manager_
port

5001 to
65535

Range of ports
available for
automatic
allocation

RAP-processing
client manager

7. System Resources

389

Figure 7-1: How RPCs use ports

1. Each OpenTP1 process (system process or user process) secures a receive port
during process initialization.

2. To issue an RPC, the client UAP process secures a send port, establishes a
connection with the receive port of the scheduler daemon, and sends the RPC. If
a connection is already established, it is used. Each send port is assigned with a
different number for each destination process (scheduler daemon of each node).

3. The message queue facility of the operating system is used to contact the server
UAP.

4. To return a response to the RPC, the server UAP process secures a send port,
establishes a connection with the receive port of the client UAP, and sends the
response. If a connection is already established, it is used. Each send port is
assigned with a different number for each destination process (client UAP
process).

For the subsequent transmission during commitment, the connection that is
already established between the client UAP and the server UAP is used.

7.3.3 Calculating the number of ports
Table 7-3 describes how to calculate the number of ports used by OpenTP1.

7. System Resources

390

Table 7-3: Formulas for calculating the number of ports that OpenTP1 uses

#

Total number of the following processes:

Number of namds

+ Number of istds (when TP1/Shared Table Access is used)

+ Number of trnrmds

+ Number of trnrvds (Value specified in the
trn_recovery_process_count operand in the transaction service definition)

7.3.4 Restricting the number of ports
If you create a large-scale system using OpenTP1, the number of ports that TCP/IP
manages may run short. To prevent this, this appendix describes how to restrict the
number of ports that OpenTP1 uses.

To reduce the overhead of establishing connections, OpenTP1 maintains the
connections that are established and reuses them for the communications between the
same processes. When the number of maintained connections reaches the limit,
connections will be disconnected if the processes that established the connections
agree with each other. This is temporary closing.

The user can specify the following operands in the system common definition, the user
service definition, and the user service default definition.
set ipc_sockctl_highwater=a,b
set ipc_sockctl_watchtime=length-of-time-to-wait-until-the-
sockets-are-reusable

a
Percentage of sockets at which temporary closing starts

b

Purpose Formula

Accepting TCP/IP communications (receive port) Number of OpenTP1 system processes + Number of
user processes

Communications between system processes (send port) Number of system processes that communicate with
other nodes# Number of other nodes

Sending RPCs (send port) Number of target nodes which the applicable UAP
process sends RPCs to (per UAP process)

Responding to RPCs (send port) Number of target client processes which the applicable
UAP process issues RPCs to (per UAP process)

7. System Resources

391

Percentage of sockets for which temporary closing is not performed

Specifying the percentage of sockets at which temporary closing starts

OpenTP1 starts temporary closing when the number of file descriptors used for
the sockets in the process exceeds the following value:

Value specified in the max_socket_descriptors operand (Value a
specified in the ipc_sockctl_highwater operand/100)

Specifying the percentage of sockets for which temporary closing is not
performed

You can specify the percentage of the number of connections that are not
temporarily closed. Calculate the number of connections that are not temporarily
closed as follows:

Value specified in the max_socket_descriptors operand (Value b
specified in the ipc_sockctl_highwater operand/100)

Specifying the length of time to wait until the sockets are reusable

In the ipc_sockctl_watchtime operand, specify the length of time (seconds)
to wait from the moment the number of file descriptors used for the sockets in the
process reaches the value specified in the max_socket_descriptors operand
until the sockets become reusable due to temporary closing.

In the operation where communications between the same processes are infrequent or
in a system that communicates with many remote processes, use temporary closing and
release some connections when the number of maintained connections becomes great.
This allows you to adjust the number of sockets that are used in a process and reuse the
sockets.

When an OpenTP1 process sends data, it secures a send port before it establishes a
connection. Since each computer has a limited number of send ports, you need to
adjust the number of connections maintained by the UAP processes. Make this
adjustment so the total number of send ports in the entire system does not exceed its
limit.

If the values specified in these operands are inadequate, the number of sockets that can
be used in a process reaches the upper limit. This causes new requests for establishing
connections to overwhelm the number of sockets that become reusable by temporary
closing. Alternatively, the process may terminate abnormally since the number of ports
used in the entire system exceeds the limit of TCP/IP.

7.3.5 Temporary closing and user tasks
Only one request for temporary closing can be sent per connection.

Sending the request for temporary closing and receiving the response are handled
asynchronously. UAPs can accept new RPCs and send responses to RPCs even though

7. System Resources

392

the responses are not returned to some temporary closing requests for a while.
Therefore, temporary closing does not affect user tasks.

7.3.6 Monitoring a temporary closing request
The temporary closing request monitoring facility lets you regularly check whether or
not a temporary closing request has been received. This facility allows reception of a
temporary closing request even when the SPP or MHP of OpenTP1 is waiting to
receive a service request.

In temporary closing, a connection established between processes is closed after a
necessary interaction between the processes is complete. The interaction consists of
one process sending a temporary closing request, and another process receiving the
request and returning a response.

That is, when the number of sockets used by a process has reached the maximum#, if
the process sends a temporary closing request, the connection cannot be closed until
the other process receives the request and returns a response.

SPPs and MHPs of OpenTP1 use a msgrcv system call while waiting for an incoming
service request. Once an SPP or MHP begins to wait as the result of the system call,
the connection with the other process cannot be closed because the SPP or MHP cannot
receive a temporary closing request from the other process.

The temporary closing request monitoring facility is effective when the number of
sockets used by a process has reached the maximum# and the process has sent a
temporary closing request. In this situation, the facility allows the other process to
receive the request and to return a response, even if the other process is waiting for a
service request as the result of an msgrcv system call.

You can specify the following operands in the user service definition and user service
default definition:

set polling_control_data = Whether to check the arrival of a socket reuse
instruction (temporary closing request)

set thread_yield_interval = Interval time to wait for a trigger to receive a socket
reuse instruction

#

The maximum number of file descriptors for sockets is specified in the
max_socket_descriptors operand.

7.3.7 Checking an execution status of temporary closing
By obtaining information on the execution status of temporary closing, you can check
whether temporary closing executed appropriately while reusing the sockets. Based on
this information, you can reduce overhead by specifying optimal values for the
max_socket_descriptors and ipc_socketl_highwater operands according to

7. System Resources

393

the scale and environment of the system.

To obtain information on the execution status of temporary closing, use the rpcstat
command. This command, when executed, obtains information on the execution status
of temporary closing after sending or receiving data for predetermined times.

Table 7-4 lists the information obtained by the rpcstat command.

Note

Information on the execution status of temporary closing is not obtained every
time data is sent or received. Once every 10 times data is sent or received, this
information is obtained.

Table 7-4: Information obtainable using the command to check the execution
status of temporary closing

Information item Description

Value specified in the max_socket_descriptions
operand

Maximum number of file descriptors for sockets

Value a specified in ipc_sockctl_highwater=a,b Percentage of sockets at which temporary closing
starts

Value b specified in ipc_sockctl_highwater=a,b Percentage of sockets for which temporary closing is
not performed

Number of sockets being used in inter-process
communications

Total number of sockets being used in the
inter-process communications for reception, in the
connecting status and in the connected status

Number of sockets requesting temporary closing Number of sockets waiting for the process which
established the connection to agree to the temporary
closing request, because the number of sockets used
by the process concerned has exceeded the percentage
of sockets at which temporary closing starts

Number of sockets for which temporary closing has been
performed

Number of sockets for which temporary closing has
completed by agreement with the process that
established the connection, because the number of
sockets used by the process concerned and the process
that established the connection has exceeded the
percentage of sockets at which temporary closing
starts

Number of sockets for which temporary closing is
rejected

Number of sockets for which the process that
established the connection does not agree to the
temporary closing request

Receive port number Receive port number used by the applicable process

7. System Resources

394

7.3.8 Changes in the size of a resource when the number of sockets
increases

OpenTP1 secures the internal management table according to the value specified in the
max_socket_descriptors operand. Specifying a larger value in the
max_socket_descriptors operand causes OpenTP1 to secure a larger malloc
area.

Also, when temporary closing is started, the malloc area is secured for managing the
sockets that are being temporarily closed. After a response to the temporary closing
request is received and the socket is closed, the malloc area is released when the
socket is reused by another connection.

7.3.9 Tuning the network environment
This subsection describes how to prevent the errors that might occur when you create
a large-scale system depending on the network environment.

You should control RPCs of OpenTP1 using a smaller value for the timer monitoring
value of TCP/IP than the timer value set in the operating system. If you use a network
with a low transmission efficiency, such as communication with a remote site via a
WAN, a communication failure may occur.

In this case, the user can prevent this problem by specifying the following operands in
the system common definition, the user service definition, and the user service default
definition.
set
ipc_conn_interval=length-of-time-to-wait-until-the-connection-is-established
set ipc_send_interval=interval-of-data-transmission-monitoring
set ipc_send_count=number-of-times-of-data-transmission-monitoring
set ipc_header_recv_time=length-of-time-to-wait-until-the-
communication-control-data-is-received
set
ipc_backlog_count=length-of-queue-storing-connection-establishment-requests

Specifying the length of time to wait until the connection is established

When a connection with the send destination process is not established, OpenTP1
calls the connect() system call of TCP/IP. If the connection cannot be
established immediately and the socket is in the nonblocking mode, OpenTP1
uses the select() system call to monitor the connection until it receives the
event of connection establishment completion from TCP/IP.

By specifying the ipc_conn_interval operand, you can specify the length of
the monitoring time until OpenTP1 receives the event of connection
establishment completion from TCP/IP.

Specifying the interval of data transmission monitoring and the number of times

7. System Resources

395

of data transmission monitoring

After the connection is established, OpenTP1 uses the write() system call to
write send data into the TCP/IP communication buffer.

The system may not be able to write data into the TCP/IP communication buffer
and the write() system call may be retried if:

• Packets are frequently lost because of poor transmission quality of the
network using a WAN.

• You send data larger than the TCP/IP communication buffer.

By specifying the ipc_send_interval operand, you can specify the interval of
monitoring data transmission of the write() system call.

By specifying the ipc_send_count operand, you can specify the number of
times data transmission is to be monitored for the write() system call.

Specifying the length of time to wait until the communication control data is
received

If you cannot receive the communication control data of OpenTP1 due to an error
in the network after you start to receive data, you cannot start the connection
setting requests from other processes or start to receive new data for a while.

By specifying the ipc_header_recv_time operand, you can check the time
until the communication control data is received.

Specifying the length of queue storing connection establishment requests (listen
queue)

OpenTP1 issues the listen() system call to a socket which receives a
connection establishment request. In the listen() system call, SOMAXCONN
defined by the OS in which OpenTP1 was compiled is specified as the listen
queue length. For details about the SOMAXCONN value, see the Release Notes. If a
large number of connection establishment requests are received at the same time,
the listen queue may run short and the connection establishment requests may
return errors. By specifying the ipc_backlog_count operand in the system
common definition, you can change the length of the listen queue. The maximum
value that can be specified as the listen queue length and the SOMAXCONN value
depend on the OS. If you want to specify a value greater than the value of
SOMAXCONN for the OS in the ipc_backlog_count operand, check these values
in the OS documentation, and make sure that the values you specify are
appropriate.

7.3.10 Cautions required when using DNS and NIS
OpenTP1 may use DNS or NIS to translate an IP address or obtain an RPC
transmission target from a defined host name. Whether these facilities are used

7. System Resources

396

depends on the operating system environment that OpenTP1 uses.

If a failure occurs in DNS or NIS, the transaction processing time may become longer
or OpenTP1 or UAP may not be able to start.

To prevent this, design the system taking the following points into account:

• High reliability

Improve the reliability considering the design of an alternative server or
resolution within the local server if a failure occurs in the DNS or NIS server.

• Performance

If OpenTP1 uses DNS or NIS, communication may occur when it obtains an
address from the host name. Design the system considering this overhead.

397

Appendixes

A. Communication Protocol Products for Use with TP1/Message Control
B. Library Functions and Commands
C. Version Changes
D. Overview of Remote Procedure Call Processing
E. Glossary

A. Communication Protocol Products for Use with TP1/Message Control

398

A. Communication Protocol Products for Use with TP1/Message
Control

This appendix describes the OpenTP1 products that correspond to the communication
protocols. To use these products, TP1/Message Control and TP1/NET/Library are
required.

A.1 OpenTP1 communication protocol products
The following describes the OpenTP1 program products that support a specific
communication protocol.

(1) Product for networks using the OSI Reference Model
• TP1/NET/OSI-TP

Enables communication compatible with the OSI TP protocol.

(2) Product for networks using the TCP/IP protocol
• TP1/NET/TCP/IP

Enables message communication between systems that are connected with the
TCP/IP protocol.

(3) Product for GUIs
• TP1/NET/XMAP3

Enables communication with clients that use XMAP3, and allows clients to use
XMAP3.

(4) Product for conventional networks
• TP1/NET/HDLC

Enables communication compatible with the HDLC procedure.

• TP1/NET/X25

Enables communication that conforms to the X.25 standard (a packet protocol
standard for digital transmission).

(5) Product for HNA networks
• TP1/NET/HNA-NIF

Enables communication compatible with the NIF/HNA protocol.

(6) Product for SNA networks
• TP1/NET/Secondary Logical Unit - TypeP1

A. Communication Protocol Products for Use with TP1/Message Control

399

Enables communication compatible with the SNA SLU-TypeP protocol.

This product is used for the primary station.

• TP1/NET/Secondary Logical Unit - TypeP2

Enables communication compatible with the SNA SLU-TypeP protocol.

This product is used for the secondary station.

(7) Product for User Datagram Protocol
• TP1/NET/User Datagram Protocol

Enables message communication between systems that are connected with the
User Datagram Protocol.

A.2 Systems connected to protocol products
Table A-1 shows systems that can be connected to the various OpenTP1
communication-protocol products, and communications lines that can be established
between the systems and the OpenTP1 products.

Table A-1: Systems that can be connected to OpenTP1 products that correspond
to various communication protocols

OpenTP1 product Protocol Target system Communications line

TP1/NET/OSI-TP OSI TP protocol VOS3 TMS-4V/SP (OSAS/TP/
4VSP)
VOS3 XDM/DCCM3 (OSAS/TP/
DCCM3)
System that uses OSI TP protocol

Leased line (V.24/X.21)
Packet network (X.25 (80/
84) VC)
LAN (CD105/CD10T),
other

TP1/NET/OSAS-NIF NIF/OSI protocol VOS3 TMS-4V/SP (OSAS/NF/
4VSP)
VOS3 XDM/DCCM3 (OSAS/
UA2/DCCM3)

Leased line (V.24/X.21)
Packet network (X.25 (80/
84) VC)
LAN (CD105/CD10T),
other

TP1/NET/User Agent OSAS/UA
protocol

VOS3 TMS-4V/SP (OSAS/UA/
4VSP)
VOS3 XDM/DCCM3 (OSAS/UA/
DCCM3) , other

Leased line (V.24/X.21)
Packet network (X.25 (80/
84) VC) , LAN (CD105/
CD10T), other

TP1/NET/TCP/IP TCP/IP protocol Systems providing TCP/IP
protocol

LAN (CD105/CD10T),
LAN (FDDI), other

TP1/NET/C/S560 C/S560 protocol CommuniNet LAN (CD105/CD10T),
LAN (FDDI), other

TP1/NET/XMAP3 TCP/IP protocol XMAP3 LAN (CD105/CD10T)
LAN (FDDI), other

A. Communication Protocol Products for Use with TP1/Message Control

400

TP1/NET/HSC HSC1, HSC2
procedures

HSC1, HSC2systems HSC1: Leased line
HSC2: Telephone network

TP1/NET/HDLC HDLC procedure Systems providing HDLC
procedure

NRM-slave: Leased line
ABM: Leased line
ARM: Leased line
other

TP1/NET/X25 Packet switching
communication
(PVC, VC)

System providing X.25 (PVC, VC) Packet network (X.25 (80/
84) PVC, VC), other

TP1/NET/
X25-Extended

X25 (VC)
communication

X25 (VC) ANSER center system Packet network (X.25 (80/
84) VC) , other

TP1/NET/NCSB Joint bank system
procedures

NCSBsystem NCSB: Leased line

TP1/NET/HNA-NIF HNA/NIF protocol
(secondary station)

Systems providing HNA/NIF
protocol

Leased line (HDLC-NRM
secondary station)
Packet network (X.25 (80/
84) VC)
Packet network (X.25 (80/
84) PVC), other

TP1/NET/Secondary
Logical Unit - TypeP1

SNA protocol
(primary station)

Systems providing SNA
(SLU-TypeP) protocol

Leased line (HDLC-NRM
primary station)
Packet network (X.25 (80/
84) PVC, VC), other

TP1/NET/Secondary
Logical Unit - TypeP2

SNA protocol
(secondary station)

Systems providing SNA
(SLU-TypeP) protocol

Leased line (HDLC-NRM
secondary station)
Packet network (X.25 (80/
84) VC) ,
Packet network (X.25 (80/
84) PVC), other

TP1/NET/User
Datagram Protocol

User Datagram
Protocol

User Datagram Protocol system LAN (CD105/CD10T),
LAN (FDDI), other

OpenTP1 product Protocol Target system Communications line

B. Library Functions and Commands

401

B. Library Functions and Commands

The library functions that can be used in OpenTP1 are listed below. For details about
library functions related to the message queuing facility (TP1/Message Queue), see the
TP1/Message Queue User's Guide.

Table B-1: OpenTP1 library functions

Library function name

Purpose C library COBOL-UAP creation program

Remote
procedure call

Starts a UAP dc_rpc_open CBLDCRPC('OPEN ')

Starts an SPP service dc_rpc_mainloop CBLDCRSV('MAINLOOP')

Requests a remote service dc_rpc_call CBLDCRPC('CALL ')

Invokes a remote service
with a communication
destination specified#1

dc_rpc_call_to None

Receives asynchronous
processing results

dc_rpc_poll_any_r
eplies

CBLDCRPC('POLLANYR')

Obtains the descriptor of an
asynchronous-response RPC
request where an error
occurred

dc_rpc_get_error_
descriptor

CBLDCRPC('GETERDES')

Stops receiving processing
results

dc_rpc_discard_fu
rther_replies

CBLDCRPC('DISCARDF')

Refuses to receive the result
of specific processing

dc_rpc_discard_sp
ecific_reply

CBLDCRPC('DISCARDS')

Retries a service function dc_rpc_service_re
try

CBLDCRPC('SVRETRY')

Assigns schedule priorities
to requests for a service

dc_rpc_set_servic
e_prio

CBLDCRPC('SETSVPRI')

References schedule priority
of requests for a service

dc_rpc_get_servic
e_prio

CBLDCRPC('GETSVPRI')

References response-wait
time for a service

dc_rpc_get_watch_
time

CBLDCRPC('GETWATCH')

B. Library Functions and Commands

402

Renews response-wait time
for a service

dc_rpc_set_watch_
time

CBLDCRPC('SETWATCH')

Obtains a node address of a
client UAP

dc_rpc_get_caller
s_address

CBLDCRPC('GETCLADR')

Obtains a node address of a
gateway

dc_rpc_get_gatewa
y_address

CBLDCRPC('GETGWADR')

Sends data to a CUP dc_rpc_cltsend CBLDCRPC('CLTSEND ')

Terminates a UAP dc_rpc_close CBLDCRPC('CLOSE ')

Remote API
facility

Establishes a connection
with a rap listener

dc_rap_connect CBLDCRAP('CONNECT ')

CBLDCRAP('CONNECTX')

Disconnects rap listeners dc_rap_disconnect CBLDCRAP('DISCNCT ')

Transaction
Control

Starts a transaction dc_trn_begin CBLDCTRN('BEGIN ')

Executes a chained commit
operation

dc_trn_chained_co
mmit

CBLDCTRN('C-COMMIT')

Executes a chained rollback
operation

dc_trn_chained_ro
llback

CBLDCTRN('C-ROLL ')

Executes an unchained
commit operation

dc_trn_unchained_
commit

CBLDCTRN('U-COMMIT')

Executes an unchained
rollback operation

dc_trn_unchained_
rollback

CBLDCTRN('U-ROLL ')

Displays present transaction
information

dc_trn_info CBLDCTRN('INFO ')

System
Management

Executes a command dc_adm_call_comma
nd

CBLDCADM('COMMAND ')

Reports completion of
user-server startup

dc_adm_complete CBLDCADM('COMPLETE')

Reports user server status dc_adm_status CBLDCADM('STATUS ')

Audit log
output

Outputs an audit log dc_log_audit_prin
t

CBLDCADT('PRINT ')

Message Log
Management

Outputs the message log dc_logprint CBLDCLOG('PRINT ')

Library function name

Purpose C library COBOL-UAP creation program

B. Library Functions and Commands

403

Obtaining
User Journal

Obtains user journals dc_jnl_ujput CBLDCJNL('UJPUT ')

Journal data
editing#2

Closes a jnlrput output
file

None CBLDCJUP('CLOSERPT')

Opens a jnlrput output file None CBLDCJUP('OPENRPT ')

Inputs journal data from a
jnlrput output file

None CBLDCJUP('RDGETRPT')

Message
control
facility

Opens an MCF environment dc_mcf_open CBLDCMCF('OPEN ')

Starts the MCF service dc_mcf_mainloop CBLDCMCF('MAINLOOP')

Receives messages dc_mcf_receive CBLDCMCF('RECEIVE ')

Sends a response message dc_mcf_reply CBLDCMCF('REPLY ')

Sends a message dc_mcf_send CBLDCMCF('SEND ')

Resends a message dc_mcf_resend CBLDCMCF('RESEND ')

Receives a synchronous
message

dc_mcf_recvsync CBLDCMCF('RECVSYNC')

Sends a synchronous
message

dc_mcf_sendsync CBLDCMCF('SENDSYNC')

Sends and receives
synchronous messages

dc_mcf_sendrecv CBLDCMCF('SENDRECV')

Receives temporary stored
data

dc_mcf_tempget CBLDCMCF('TEMPGET ')

Modifies temporary stored
data

dc_mcf_tempput CBLDCMCF('TEMPPUT ')

Stops continuous
inquiry-response

dc_mcf_contend CBLDCMCF('CONTEND ')

Starts an application
program

dc_mcf_execap CBLDCMCF('EXECAP ')

Reports the application
information

dc_mcf_ap_info CBLDCMCF('APINFO ')

Library function name

Purpose C library COBOL-UAP creation program

B. Library Functions and Commands

404

Reports the application
information to user exit
routines

dc_mcf_ap_info_uo
c

None

Sets user timer monitoring dc_mcf_timer_set CBLDCMCF('TIMERSET')

Cancels user timer
monitoring

dc_mcf_timer_canc
el

CBLDCMCF('TIMERCAN')

Executes a commit operation
on an MHP

dc_mcf_commit CBLDCMCF('COMMIT ')

Executes a rollback
operation on an MHP

dc_mcf_rollback CBLDCMCF('ROLLBACK')

Closes an MCF environment dc_mcf_close CBLDCMCF('CLOSE ')

Acquires the status of the
MCF communication
service

dc_mcf_tlscom CBLDCMCF('TLSCOM ')

Acquires the connection
status

dc_mcf_tlscn CBLDCMCF('TLSCN ')

Establishes connection dc_mcf_tactcn CBLDCMCF('TACTCN ')

Releases connection dc_mcf_tdctcn CBLDCMCF('TDCTCN ')

Acquires the acceptance
status for a server-type
connection establishment
request

dc_mcf_tlsln CBLDCMCF('TLSLN ')

Starts accepting a
server-type connection
establishment request

dc_mcf_tonln CBLDCMCF('TONLN ')

Stops accepting a
server-type connection
establishment request

dc_mcf_tofln CBLDCMCF('TOFLN ')

Deletes application timer
start requests

dc_mcf_adltap CBLDCMCF('ADLTAP ')

Acquires the status of a
logical terminal

dc_mcf_tlsle CBLDCMCF('TLSLE ')

Shuts down a logical
terminal

dc_mcf_tdctle CBLDCMCF('TDCTLE ')

Library function name

Purpose C library COBOL-UAP creation program

B. Library Functions and Commands

405

Releases a logical terminal
from shutdown status

dc_mcf_tactle CBLDCMCF('TACTLE ')

Deletes a logical terminal's
output queue

dc_mcf_tdlqle CBLDCMCF('TDLQLE ')

DAM File
Service

Opens a logical file dc_dam_open CBLDCDAM('DCDAMSVC','OPEN')

Reads a logical file block dc_dam_read CBLDCDAM('DCDAMSVC','READ')

Rewrites a logical file block dc_dam_rewrite CBLDCDAM('DCDAMSVC','REWT')

Writes a logical file block dc_dam_write CBLDCDAM('DCDAMSVC','WRIT')

Closes a logical file dc_dam_close CBLDCDAM('DCDAMSVC','CLOS')

Shuts down a logical file dc_dam_hold CBLDCDAM('DCDAMSVC','HOLD')

Releases a logical file
shutdown

dc_dam_release CBLDCDAM('DCDAMSVC','RLES')

References logical file status dc_dam_status CBLDCDAM('DCDAMSVC','STAT')

Starts the use of an
unrecoverable DAM file

dc_dam_start CBLDCDAM('DCDAMSVC','STRT')

Terminates the use of an
unrecoverable DAM file

dc_dam_end CBLDCDAM('DCDAMSVC','END ')

Assigns a physical file dc_dam_create CBLDCDMB('DCDAMINT','CRAT')

Opens a physical file dc_dam_iopen CBLDCDMB('DCDAMINT','OPEN')

Reads a physical file block dc_dam_get CBLDCDMB('DCDAMINT','GET ')

Writes a physical file block dc_dam_put CBLDCDMB('DCDAMINT','PUT ')

Searches for a physical file
block

dc_dam_bseek CBLDCDMB('DCDAMINT','BSEK')

Directly inputs a block from
a physical file

dc_dam_dget CBLDCDMB('DCDAMINT','DGET')

Directly outputs a block to a
physical file

dc_dam_dput CBLDCDMB('DCDAMINT','DPUT')

Closes a physical file block dc_dam_iclose CBLDCDMB('DCDAMINT','CLOS')

Library function name

Purpose C library COBOL-UAP creation program

B. Library Functions and Commands

406

TAM File
Service

Obtains TAM table status#1 dc_tam_open None

Reads a TAM table record dc_tam_read CBLDCTAM('FxxR')('FxxU')

Overwrites a TAM table
record

dc_tam_rewrite CBLDCTAM('MFY
')('MFYS')('STR ')

Modifies or adds a TAM
table record

dc_tam_write CBLDCTAM('MFY
')('MFYS')('STR ')

Deletes a TAM table record dc_tam_delete CBLDCTAM('ERS ')('ERSR')

Cancels reading a TAM table
record#1

dc_tam_read_cance
l

None

Obtains TAM table status dc_tam_get_inf CBLDCTAM('GST ')

Obtains TAM table
information

dc_tam_status CBLDCTAM('INFO')

Closes a TAM table#1 dc_tam_close None

IST Service Opens an internode shared
table

dc_ist_open CBLDCIST('DCISTSVC','OPEN')

Inputs a record from the
internode shared table

dc_ist_read CBLDCIST('DCISTSVC','READ')

Inputs an internode shared
table record

dc_ist_write CBLDCIST('DCISTSVC','WRIT')

Deletes an internode shared
table record

dc_ist_close CBLDCIST('DCISTSVC','CLOS')

Resource
Locking

Locks resources dc_lck_get CBLDCLCK('GET ')

Releases all resource locks dc_lck_release_al
l

CBLDCLCK('RELALL ')

Releases a specified
resource lock

dc_lck_release_by
name

CBLDCLCK('RELNAME ')

XATMI
Interface

Calls a request/response
service and receives its
response

tpcall() TPCALL

Library function name

Purpose C library COBOL-UAP creation program

B. Library Functions and Commands

407

Calls a request/response
service

tpacall() TPACALL

Receives asynchronous
responses from a request/
response service

tpgetrply() TPGETRPLY

Cancels a request/response
service

tpcancel() TPCANCEL

Establishes a connection
with a conversational service

tpconnect() TPCONNECT

Disconnects conversational
services

tpdiscon() TPDISCON

Receives a message from
conversational services

tprecv() TPRECV

Sends a messages to
conversational services

tpsend() TPSEND

Allocates a typed buffer tpalloc() None#3

Releases a typed buffer tpfree() None#3

Changes a typed buffer size tprealloc() None#3

Obtains typed buffer
information

tptypes() None#3

Propagates a service name tpadvertise() TPADVERTISE

Cancels propagating a
service name

tpunadvertise() TPUNADVERTISE

A template for service
functions

tpservice() TPSVCSTART

Returns from a service
function

tpreturn() TPRETURN

TX interface Starts a transaction tx_begin() TXBEGIN

Executes a commit operation tx_commit() TXCOMMIT

Returns information about
the present transaction

tx_info() TXINFORM

Library function name

Purpose C library COBOL-UAP creation program

B. Library Functions and Commands

408

Opens a resource managers
group

tx_open() TXOPEN

Executes a rollback
operation

tx_rollback() TXROLLBACK

Closes a resource managers
group

tx_close() TXCLOSE

Sets commit_return tx_set_commit_ret
urn()

TXSETCOMMITRET

Sets transaction_control tx_set_transactio
n_control()

TXSETTRANCTL

Sets transaction_timeout tx_set_transactio
n_timeout()

TXSETTIMEOUT

Multinode
Facility#1

Starts obtaining OpenTP1
node status

dc_adm_get_nd_sta
tus_begin

None

Obtains OpenTP1 node
status

dc_adm_get_nd_sta
tus_next

None

Obtains specified OpenTP1
node status

dc_adm_get_nd_sta
tus

None

Stops obtaining OpenTP1
node status

dc_adm_get_nd_sta
tus_done

None

Starts obtaining a node
identifier

dc_adm_get_nodeco
nf_begin

None

Obtains a node identifier dc_adm_get_nodeco
nf_next

None

Stops obtaining a node
identifier

dc_adm_get_nodeco
nf_done

None

Obtains the local node
identifier

dc_adm_get_node_i
d

None

Starts obtaining user server
status

dc_adm_get_sv_sta
tus_begin

None

Obtains user server status dc_adm_get_sv_sta
tus_next

None

Obtains specified user server
status

dc_adm_get_sv_sta
tus

None

Library function name

Purpose C library COBOL-UAP creation program

B. Library Functions and Commands

409

#1

Cannot be used in a program used for creating a COBOL UAP.

#2

Journal data cannot be edited using an API written in C.

#3

No COBOL API exists for the XATMI interface.

OpenTP1 commands are listed below. For details about commands related to the
message queuing facility (TP1/Message Queue), see the TP1/Message Queue User's
Guide.

Table B-2: OpenTP1 commands

Exits obtaining user server
status

dc_adm_get_sv_sta
tus_done

None

Online Tester
Control

Reports user server test
status

dc_uto_test_statu
s

CBLDCUTO('T-STATUS')

Performance
Verification
Trace

Acquires user-specific
performance verification
traces

dc_prf_utrace_put CBLDCPRF('PRFPUT ')

Acquires the sequential
number for an acquired
performance verification
trace

dc_prf_get_trace_
num

CBLDCPRF('PRFGETN ')

Real-time
statistics
service

Acquires real-time statistics
on a specific section

dc_rts_utrace_put CBLDCRTS('RTSPUT ')

Purpose Command
name

Access right

System management Registers or deletes OpenTP1 in the OS dcsetup Superuser

Redefines and restarts process service dcreset OpenTP1
administrator

Sets up the environment for OpenTP1
startup

dcmakeup OpenTP1
administrator

Starts an OpenTP1 system dcstart OpenTP1
administrator

Library function name

Purpose C library COBOL-UAP creation program

B. Library Functions and Commands

410

Terminates an OpenTP1 system
(Note: To execute the dcstop
command from a UAP, execute the
command in the background.)

dcstop OpenTP1
administrator#

Outputs system statistics dcstats OpenTP1
administrator

Starts nodes in a cluster system or
parallel-processing system

dcmstart OpenTP1
administrator

Stops nodes in a cluster system or
parallel-processing system

dcmstop OpenTP1
administrator

Executes an OpenTP1 command from a
scenario template

dcjcmdex OpenTP1
administrator

Specifies operands in the system
definition

dcjchconf OpenTP1
administrator

Updates the domain definition file dcjnamch OpenTP1
administrator

Displays OpenTP1 node status dcndls General user

Displays shared memory use dcshmls General user

Displays the execution status of
temporary closing

rpcstat General user

Redirects the standard output and
standard error output of OpenTP1

prctee OpenTP1
administrator

Terminates and restarts the prctee
process

prctctrl Superuser

Acquires maintenance information dcrasget OpenTP1
administrator

Edits and outputs real-time system
statistics to the standard output

dcreport OpenTP1
administrator

Deletes troubleshooting information dccspool OpenTP1
administrator

Checks system definitions dcdefchk OpenTP1
administrator

Displays product information dcpplist OpenTP1
administrator

Purpose Command
name

Access right

B. Library Functions and Commands

411

Server management Starts a server dcsvstart OpenTP1
administrator

Terminates a server dcsvstop OpenTP1
administrator

Displays server status prcls General user

Displays a search pathname for a user
server and for a command invoked
from the user server

prcpathls General user

Modifies a search pathname for a user
server and for a command invoked
from the user server

prcpath OpenTP1
administrator

Terminates OpenTP1 process forcibly prckill OpenTP1
administrator

Schedule management Displays schedule status scdls General user

Shuts down scheduling scdhold OpenTP1
administrator

Releases scheduling shutdown scdrles OpenTP1
administrator

Changes the number of processes scdchprc OpenTP1
administrator

Stops and restarts a process scdrsprc OpenTP1
administrator

Transaction management Displays transaction status trnls General user

Executes a commit operation on a
transaction

trncmt OpenTP1
administrator

Executes a rollback operation on a
transaction

trnrbk OpenTP1
administrator

Forcibly terminates a transaction trnfgt OpenTP1
administrator

Starts and stops obtaining transaction
statistics

trnstics OpenTP1
administrator

Deletes the undecided transaction
information file

trndlinf OpenTP1
administrator

Purpose Command
name

Access right

B. Library Functions and Commands

412

Displays the undecided transaction
information of OSI TP communication

tptrnls General user

XA resource management Displays the XAR event trace
information

xarevtr General user

Displays the status of an XAR file xarfills General user

Changes the status of an XAR
transaction

xarforce OpenTP1
administrator

Shuts down the XAR resource service xarhold OpenTP1
administrator

Creates an XAR file xarinit OpenTP1
administrator

Displays the XAR transaction
information

xarls General user

Releases the XA resource service from
the shutdown status

xarrles OpenTP1
administrator

Deletes an XAR file xarrm OpenTP1
administrator

Lock management Displays lock information lckls General user

Displays pool information of tables
used for locks

lckpool General user

Deletes a deadlock information file and
timeout information file

lckrminf OpenTP1
administrator

Name management Checks the startup of OpenTP1 and
deletes cache

namalivechk OpenTP1
administrator

Registers or deletes the
domain-alternate schedule service

namdomainsetu
p

Superuser

Checks the domain configuration (by
using the system common definition)

namndchg OpenTP1
administrator

Checks the domain configuration (by
using the domain definition file)

namchgfl OpenTP1
administrator

Forcibly invalidates the startup
notification information

namunavl OpenTP1
administrator

Displays OpenTP1 server information namsvinf OpenTP1
administrator

Purpose Command
name

Access right

B. Library Functions and Commands

413

Operates the RPC control list namblad OpenTP1
administrator

Message log management Displays contents of message log logcat General user

Switches real-time output function of
message log files

logcon OpenTP1
administrator

Audit log management Sets the environment for audit logging dcauditsetup Superuser

OpenTP1 file management Initializes OpenTP1 file system filmkfs OpenTP1
administrator

Displays OpenTP1 file system status filstatfs General user

Displays contents of OpenTP1 file
system

fills General user

Backs up OpenTP1 file system filbkup OpenTP1
administrator

Recovers OpenTP1 file system filrstr OpenTP1
administrator

Changes OpenTP1 file group filchgrp OpenTP1
administrator

Changes access permission for an
OpenTP1 file

filchmod OpenTP1
administrator

Changes OpenTP1 file owner filchown OpenTP1
administrator

Status file management Creates and initializes a status file stsinit OpenTP1
administrator

Displays status file status stsls General user

Displays contents of a status file stsfills General user

Opens a status file stsopen OpenTP1
administrator

Closes a status file stsclose OpenTP1
administrator

Deletes a status file stsrm OpenTP1
administrator

Swaps status files stsswap OpenTP1
administrator

Purpose Command
name

Access right

B. Library Functions and Commands

414

Journal file management Initializes journal files jnlinit OpenTP1
administrator

Displays journal file information jnlls General user

Displays journal information read
during a restart

jnlrinf OpenTP1
administrator

Opens journal files jnlopnfg OpenTP1
administrator

Closes journal files jnlclsfg OpenTP1
administrator

Allocates physical journal files jnladdpf OpenTP1
administrator

Deletes physical journal files jnldelpf OpenTP1
administrator

Swaps journal files jnlswpfg OpenTP1
administrator

Deletes journal files jnlrm OpenTP1
administrator

Modifies journal file status jnlchgfg OpenTP1
administrator

Unloads journal files jnlunlfg OpenTP1
administrator

Controls the automatic unloading
facility

jnlatunl OpenTP1
administrator

Recovers journal files jnlmkrf OpenTP1
administrator

Integrates journals used for file
restoration

jnlcolc OpenTP1
administrator

Copies an unloaded-journals file jnlcopy OpenTP1
administrator

Displays archive status jnlarls General user

Displays edited unloaded-journals files
or global archive unloaded-journals
files

jnledit OpenTP1
administrator

Purpose Command
name

Access right

B. Library Functions and Commands

415

Outputs unloaded-journals file records
or global archive unloaded-journals file
records

jnlrput OpenTP1
administrator

Chronologically sorts and merges
unloaded-journals files and global
archive unloaded-journals files

jnlsort OpenTP1
administrator

Outputs statistics on about operations jnlstts OpenTP1
administrator

Outputs statistics about MCF
operations

jnlmcst OpenTP1
administrator

Forcibly releases resource group
connection

jnlardis OpenTP1
administrator

DAM file management Initializes a physical file damload OpenTP1
administrator

Displays logical file status damls General user

Adds a logical file damadd OpenTP1
administrator

Separates a logical file from online
processing

damrm OpenTP1
administrator

Logically shuts down a logical file damhold OpenTP1
administrator

Releases logical file shutdown damrles OpenTP1
administrator

Deletes a physical file damdel OpenTP1
administrator

Backs up a physical file dambkup OpenTP1
administrator

Recovers a physical file damrstr OpenTP1
administrator

Recovers a logical file damfrc OpenTP1
administrator

Sets a threshold for the number of cache
blocks

damchdef OpenTP1
administrator

Acquires the number of cache blocks damchinf General user

Purpose Command
name

Access right

B. Library Functions and Commands

416

TAM file management Initializes a TAM file tamcre OpenTP1
administrator

Displays TAM table status tamls General user

Adds a TAM table tamadd OpenTP1
administrator

Separates a TAM table from online
processing

tamrm OpenTP1
administrator

Logically shuts down a TAM table tamhold OpenTP1
administrator

Releases TAM table logical shutdown tamrles OpenTP1
administrator

Loads a TAM table tamload OpenTP1
administrator

Unloads a TAM table tamunload OpenTP1
administrator

Deletes a TAM file tamdel OpenTP1
administrator

Backs up a TAM file tambkup OpenTP1
administrator

Recovers a TAM file tamrstr OpenTP1
administrator

Recovers a TAM file tamfrc OpenTP1
administrator

Converts the TAM locked resource
name

tamlckls General user

Displays the synonym information for a
hash-format TAM file and TAM table

tamhsls OpenTP1
administrator

MCF Message queue file
management

Displays queue group status quels General user

Allocates an MCF message queue
physical file

queinit OpenTP1
administrator

Deletes an MCF message queue
physical file

querm OpenTP1
administrator

Purpose Command
name

Access right

B. Library Functions and Commands

417

Resource manager
management

Displays resource manager information trnlsrm General user

Registers a resource manager trnlnkrm OpenTP1
administrator

Creates a transaction control object file trnmkobj OpenTP1
administrator

Trace management Outputs UAP trace uatdump General user

Merges RPC trace rpcmrg General user

Outputs RPC trace rpcdump General user

Outputs the shared memory dump usmdump OpenTP1
administrator

Remote API management Sets up the execution environment of
the remote API facility

rapsetup OpenTP1
administrator

Automatically creates definitions to be
used for the remote API facility

rapdfgen OpenTP1
administrator

Displays the status of a
RAP-processing listener or a
RAP-processing server

rapls OpenTP1
administrator

Management of
performance verification
traces

Edits and outputs prf trace information
files

prfed OpenTP1
administrator

Gets prf trace information files prfget OpenTP1
administrator

Real-time statistics service
management

Edits and outputs information in RTS
log files

rtsedit General user

Outputs real-time statistics to the
standard output

rtsls General user

Sets up the execution environment for
the real-time statistics service

rtssetup OpenTP1
administrator

Changes the settings for real-time
statistics

rtsstats OpenTP1
administrator

Connection management Displays connection status mcftlscn General user

Establishes a connection mcftactcn OpenTP1
administrator

Purpose Command
name

Access right

B. Library Functions and Commands

418

Releases a connection mcftdctcn OpenTP1
administrator

Switches connections mcftchcn OpenTP1
administrator

Displays the network status mcftlsln General user

Starts accepting server-type connection
establishment requests

mcftonln OpenTP1
administrator

Stops accepting server-type connection
establishment requests

mcftofln OpenTP1
administrator

Displays the status of multi-processing
of messages

mcftlstrd OpenTP1
administrator

Application management Displays application status mcfalsap General user

Shuts down an application program mcfadctap OpenTP1
administrator

Releases application program
shutdown

mcfaactap OpenTP1
administrator

Resets the number for abnormal
terminations

mcfaclcap OpenTP1
administrator

Displays application timer start
requests

mcfalstap General user

Deletes a start request to the timer
associated with an application program

mcfadltap OpenTP1
administrator

Application program
operation support

Starts an application program mcfuevt General user

Logical terminal
management

Displays logical terminal status mcftlsle General user

Shuts down a logical terminal mcftdctle OpenTP1
administrator

Releases logical terminal shutdown mcftactle OpenTP1
administrator

Skips the first item in a logical terminal
message queue

mcftspqle OpenTP1
administrator

Holds messages in a logical terminal
output queue

mcfthldoq OpenTP1
administrator

Purpose Command
name

Access right

B. Library Functions and Commands

419

Releases the hold on messages in an
output queue

mcftrlsoq OpenTP1
administrator

Deletes a logical terminal output queue mcftdlqle OpenTP1
administrator

Starts obtaining a logical-terminal
message journal

mcftactmj OpenTP1
administrator

Stops obtaining the logical-terminal
message journal

mcftdctmj OpenTP1
administrator

Forcibly terminates continuous
inquiry-response processing for a
logical terminal

mcftendct OpenTP1
administrator

Starts a proxy terminal mcftstalt OpenTP1
administrator

Stops a proxy terminal mcftedalt OpenTP1
administrator

Service group management Displays service group status mcftlssg General user

Shuts down a service group mcftdctsg OpenTP1
administrator

Releases shutdown of a service group mcftactsg OpenTP1
administrator

Holds messages in an input queue for a
service group

mcfthldiq OpenTP1
administrator

Releases the hold on messages in an
input queue

mcftrlsiq OpenTP1
administrator

Deletes an input queue of a service
group

mcftdlqsg OpenTP1
administrator

Service management Displays service status mcftlssv General user

Shuts down a service mcftdctsv OpenTP1
administrator

Releases shutdown of a service mcftactsv OpenTP1
administrator

Session management Starts a session mcftactss OpenTP1
administrator

Purpose Command
name

Access right

B. Library Functions and Commands

420

Note

There are also commands specific to the particular protocol. For protocol-specific
commands, see the applicable OpenTP1 Protocol manual.

#

When executing the dcstop command from a UAP, execute the command in the
background.

Exits a session mcftdctss OpenTP1
administrator

Buffer management Displays buffer group use mcftlsbuf General user

Mapping management Changes map file pathnames dcmapchg OpenTP1
administrator

Displays loaded-resources of map file dcmapls OpenTP1
administrator

MCF queue management Copies contents of input or output
queues

mcftdmpqu General user

MCF trace management Forcibly swaps MCF trace files mcftswptr OpenTP1
administrator

Starts acquiring MCF trace information mcftstrtr OpenTP1
administrator

Stops acquiring MCF trace information mcftstptr OpenTP1
administrator

MCF statistics management Edits MCF statistics mcfreport OpenTP1
administrator

Outputs MCF statistics mcfstats OpenTP1
administrator

MCF communication
service management

Partially stops the MCF
communication service

mcftstop OpenTP1
administrator

Partially starts the MCF
communication service

mcftstart OpenTP1
administrator

References the status of the MCF
communication service

mcftlscom OpenTP1
administrator

User timer management Displays the user timer monitoring
status

mcftlsutm General user

Purpose Command
name

Access right

C. Version Changes

421

C. Version Changes

This appendix describes the changes between versions under the following categories:

• Additions and deletions to functions, definitions, and commands

• Operational changes

• Changes to defaults for functions, definitions, and commands

C.1 Changes in 07-03
The following table lists the additions and deletions to functions, definitions, and
commands in TP1/Server Base 07-03.

Table C-1: Additions and deletions to functions, definitions, and commands in
TP1/Server Base 07-03

Change Category Item added or deleted

Addition Function None

Definition System common definition
• fil_prf_trace_delay_time operand
• fil_prf_trace_option operand
• jnl_prf_event_trace_level operand
• uap_trace_file_put operand

Lock service definition
• lck_prf_trace_level operand

Name service definition
• name_cache_validity_time operand

RAP-processing listener service definition
• ipc_sockctl_highwater

• ipc_sockctl_watchtime

JNL performance verification trace definition

LCK performance verification trace definition

C. Version Changes

422

The following table lists the additions and deletions to functions, definitions, and
commands in TP1/Message Control 07-03 and TP1/NET/Library 07-04.

Table C-2: Additions and deletions to functions, definitions, and commands in
TP1/Message Control 07-03 and TP1/NET/Library 07-04

Real-time acquisition item definition
• rts_mcf_ap_scd_stay operand
• rts_mcf_ap_usr_srvc operand
• rts_mcf_in_msg_scd_wait operand
• rts_mcf_out_msg_norm_scd_wait operand
• rts_mcf_out_msg_prio_scd_wait operand
• rts_mcf_out_msg_resp_scd_wait operand
• rts_mcf_out_msg_sync_scd_wait operand
• rts_mcf_que_scd_wait_num operand

User service default definition
• uap_trace_file_put operand

User service definition
• uap_trace_file_put operand

Command filstatfs command
• -S option

prctctrl command

prfed command
• -v option

prfget command
• _mc, _fl, _jl, and _lk have been added as -f option values.

uatdump command
• -f option

Deletion None

Change Category Item added or deleted

Addition Function None

Definition None

Command mcfalstap command

mcftlsutm command

Deletion None

Change Category Item added or deleted

C. Version Changes

423

The following table lists the operational changes in TP1/Server Base 07-03.

Table C-3: Operational changes in TP1/Server Base 07-03

The following table lists the operational changes in TP1/Message Control 07-03 and

Category Operational change

Definition System common definition
• The service information prioritizing function can now be specified in the

all_node operand.
• A priority selection node definition file has been added to the domain definition file

whose usage is determined by the name_domain_file_use operand.

The number of performance verification trace acquisition services that can run and the
related definitions have been changed.

Command The prctee process that redirects OpenTP1's standard output and standard error
output can now be terminated and restarted.

The output format of the following command has been changed:
• namsvinf

Areas in use and unused areas (available areas) can now be listed as user area
information for the OpenTP1 file system.

The results of editing trace information files can now be output as CSV files.

Message KFCA26954-W, KFCA26956-W, KFCA26965-E, and KFCA27790-W
• The sender's IP address and port number have been added to the output

information.

Other The following event trace information is now collected:
• FIL event trace
• JNL performance verification trace
• LCK performance verification trace

A UAP trace can now be collected without having to abort a process.

The formula for estimating the static common memory has been changed.

The formula for estimating the size of the shared memory pool has been changed.

The following monitored events have been added:
• Start of OpenTP1 service
• Stop of OpenTP1 service

In the formula for estimating the resources required for the UNIX message
transmission functions, the formula for estimating the archive source node for the
following resources has been changed:
• Message ID
• Maximum number of queued messages in all OpenTP1 messages

C. Version Changes

424

TP1/NET/Library 07-04.

Table C-4: Operational changes in TP1/Message Control 07-03 and TP1/NET/
Library 07-04

The following table lists the changes to defaults in TP1/Server Base 07-03.

Table C-5: Changes to defaults in TP1/Server Base 07-03

There are no changes to defaults for functions, definitions, and commands in TP1/
Message Control 07-03 or TP1/NET/Library 07-04.

C.2 Changes in 07-02
The following table lists the additions and deletions to functions, definitions, and
commands in TP1/Server Base 07-02.

Table C-6: Additions and deletions to functions, definitions, and commands in
TP1/Server Base 07-02

Category Operational change

Definition The default value that is assumed when 0 or nothing is specified in the -m option of the
mcftalcle definition command has been changed from unlimited to 65535.

The maximum value of the -j option has been changed from 131072 to 4000000 in the
following definition commands:
• mcfmcomn

• mcfmuap

• mcftcomn

Other The maximum number of MCF dump files that can be output has been changed from
99 to 3.

The status of application timer start requests can now be displayed.

The status of user timer monitoring can now be displayed.

Category Changed default

Definition Transaction service definition
• For the AIX version of uCosminexus TP1/Server Base(64), the default value of the

thread_stack_size operand has been changed to 65536.

TAM service definition
• The default value of the tam_pool_attri operand has been changed as follows:

 In HP-UX or Solaris: fixed
 In AIX, Linux, or Windows: free

Change Category Item added or deleted

Addition Function dc_log_audit_print

C. Version Changes

425

CBLDCADT('PRINT')

Definition System common definition
• nam_prf_trace_level operand
• jnl_fileless_option operand

XA resource service definition
• xar_prf_trace_level operand

System journal service definition
• jnl_max_file_dispersion operand
• jnl_min_file_dispersion operand
• -e option of the jnladdpf definition command

Log service definition
• log_audit_out operand
• log_audit_path operand
• log_audit_size operand
• log_audit_count operand
• log_audit_message operand

RAP-processing listener service definition
• rap_term_disconnect_time operand
• rap_stay_watch_time operand
• rap_stay_warning_interval operand
• log_audit_out_suppress operand
• log_audit_message operand
• watch_time operand

RAP-processing client manager service definition
• log_audit_out_suppress operand
• log_audit_message operand

Performance verification trace definition
• prf_trace_backup operand

XAR performance verification trace definition

Real-time statistics service definition
• rts_log_file_backup operand

Definition of items logged in real-time
• rts_scd_svc_scd_wait operand
• rts_scd_svc_using_buf operand
• rts_scd_parallel operand

Change Category Item added or deleted

C. Version Changes

426

The following table lists the additions and deletions to functions, definitions, and
commands in TP1/Message Control 07-02 and TP1/NET/Library 07-03.

Table C-7: Additions and deletions to functions, definitions, and commands in
TP1/Message Control 07-02 and TP1/NET/Library 07-03

User service default definition
• log_audit_out_suppress operand
• log_audit_message operand
• scdsvcdef definition command

User service definition
• log_audit_out_suppress operand
• log_audit_message operand
• UAP-shared-library-name was added to the value specified in the service

operand
• scdsvcdef definition command

Command dcauditsetup command

dcsetup command
• -j option

prfget command
• _nm, _xr, and _pr were added to the values that can be specified in the -f

option

scdls command
• -ae option
• -e option
• -t option

Deletion Definition User service default definition
• thdlock_sleep_time operand

User service definition
• thdlock_sleep_time operand

Change Category Item added or deleted

Addition Function dc_mcf_adltap

dc_mcf_tactcn

dc_mcf_tactle

dc_mcf_tdctcn

dc_mcf_tdctle

Change Category Item added or deleted

C. Version Changes

427

The following table lists the operational changes in TP1/Server Base 07-02.

dc_mcf_tdlqle

dc_mcf_tlscn

dc_mcf_tlscom

dc_mcf_tlsle

dc_mcf_tlsln

dc_mcf_tofln

dc_mcf_tonln

CBLDCMCF('ADLTAP ')

CBLDCMCF('TACTCN ')

CBLDCMCF('TACTLE ')

CBLDCMCF('TDCTCN ')

CBLDCMCF('TDCTLE ')

CBLDCMCF('TDLQLE ')

CBLDCMCF('TLSCOM ')

CBLDCMCF('TLSCN ')

CBLDCMCF('TLSLE ')

CBLDCMCF('TLSLN ')

CBLDCMCF('TOFLN ')

CBLDCMCF('TONLN ')

Definition MCF manager common definition
• -i option in the mcfmcomn definition command

Command mcftlssg command
• -m option

Deletion None

Change Category Item added or deleted

C. Version Changes

428

Table C-8: Operational changes in TP1/Server Base 07-02

Category Operational change

Definition System common definition and system service common information definition
• The minimum value of the thdlock_sleep_time operand was changed from 15

to 1.

System common definition and system service common information definition
• The minimum value of the thdlock_sleep_time operand was changed from 15

to 1.

Process service definition
• Additional events are acquired when Y (default) is specified in the

prc_prf_trace operand.

Transaction service definition
• When using the MCF service, the range of values that can be specified in the

trn_tran_process_count operand (1-8192) becomes 1-7484 for the 32-bit
version, or 1-6893 for the 64-bit version.

Command dcdefchk command
• The logic check (LOG-0011) was changed for the log_syslog_elist operand

and log_syslog_elist_rint operand.
• A logic check (LOG-0011) was added to DCSYSLOGCTYPE.
• Logic checks (LOG-0013 and LOG-0014) were added to operands related to audit

logs.

dcrasget command
• In Linux, the file extension of files acquired with the -c option specified was

changed from .Z to .gz.

Message KFCA01141-E is output when any of the following commands is executed in
non-journal operation mode:
• jnlls

• jnlunlfg

• jnlchgfg

• jnlopnfg

• jnlclsfg

• jnlswpfg

• jnlrinf

• jnlarls

• jnlatunl

• jnladdpf

• jnldelpf

usmdump command
• In Linux, the file extension of the shared memory dump file was changed from .Z

to .gz.

Other Message KFCA02512-E is output if the size of the backup file specified in the
damrstr command is found to be invalid.

C. Version Changes

429

The following table lists the operational changes in TP1/Message Control 07-02 and
TP1/NET/Library 07-03.

Table C-9: Operational changes in TP1/Message Control 07-02 and TP1/NET/
Library 07-03

Message KFCA26209-E is output if the size of the restore source file specified in the
tamrstr command is found to be invalid.

In Linux (IPF), the system retries if message output to syslog fails.

In Linux, the file extension of the shared memory dump file was changed from .Z to
.gz.

The following event trace information can be obtained:
• XAR performance verification trace
• NAM event trace
• Process service event trace

Message KFCA27764-W is output when the number of requests from RAP-processing
clients that are waiting for allocation to a RAP-processing server exceeds the value
specified in the rap_stay_warning_interval operand in the RAP-processing
listener service definition.

A backup of the RTS log file is created when the real-time statistics service starts.

Category Operational change

Other If the input queue still contains messages after a specific period of time has elapsed
during OpenTP1 termination processing, the KFCA16532-I message is now displayed
for each service group and then the KFCA16533-I message is displayed when
processing of the remaining messages is completed.

If the input queue still contains messages after a specific period of time has elapsed
during OpenTP1 termination processing, the KFCA16534-I message is now displayed
for each logical terminal and then the KFCA16535-I message is displayed when
processing of the remaining messages is completed.

If protocol control is still not ready to be terminated after a specific period of time has
elapsed during OpenTP1 termination processing, the KFCA16536-I message is now
displayed for each MCF communication service and then the KFCA16537-I message
is displayed when protocol control is ready to be terminated.

MHP dynamic loading of service functions is now supported.

When a queue is monitored or when the system is waiting for a response message from
the remote system, the processing status can now be obtained from the log messages
issued during monitoring processing and upon completion of the processing.

Category Operational change

C. Version Changes

430

The following table lists the changes to defaults in TP1/Server Base 07-02.

Table C-10: Changes to defaults in TP1/Server Base 07-02

There are no changes to defaults for functions, definitions, and commands in TP1/
Message Control 07-02 or TP1/NET/Library 07-03.

C.3 Changes in 07-01
The following table lists the additions and deletions to functions, definitions, and
commands in TP1/Server Base 07-01.

Table C-11: Additions and deletions to functions, definitions, and commands in
TP1/Server Base 07-01

The following operations can now be achieved by using library functions:
• Displaying the connection status and establishing and releasing connection
• Displaying the status of server-type connection establishment requests, and starting

and stopping request acceptance
• Deleting application timer start requests
• Displaying the status of a logical terminal, shutting down a logical terminal,

releasing a logical terminal from shutdown status, and deleting an output queue
• Acquiring the status of the MCF communication service

The maximum number of unprocessed receive messages can now be displayed.

Category Changed default

Definition System common definition
• The default value of the client_uid_check operand has been changed from Y to

N in AIX, Linux, and Solaris (the default value is Y in HP-UX and Windows).

Change Category Item added or deleted

Addition Function None

Definition Name service definition
• name_nodeid_check_message operand

XA resource service definition
• xar_msdtc_use operand

Command dcpplist command

dcdefchk command
• -l option
• -c option
• -w option
• -e option

Category Operational change

C. Version Changes

431

The following table lists the additions and deletions to functions, definitions, and
commands in TP1/Message Control 07-01 and TP1/NET/Library 07-01.

Table C-12: Additions and deletions to functions, definitions, and commands in
TP1/Message Control 07-01 and TP1/NET/Library 07-01

The following table lists the operational changes in TP1/Server Base 07-01.

xarinit command
• -s option

xarls command
• -r option

Deletion None

Change Category Item added or deleted

Addition Function None

Definition User service definition
• mcf_prf_trace operand

MCF manager definition
• mcfmsvg definition command

MCF application definition
• -N option of the modelname operand in the mcfaalcap definition command

MCF performance verification trace definition
• prf_file_size operand
• prf_file_count operand

Definition of system service information
• mcf_prf_trace operand

System service common information definition
• mcf_prf_trace_level operand

Command mcftlsln command

mcftofln command

mcftonln command

Deletion None

Change Category Item added or deleted

C. Version Changes

432

Table C-13: Operational changes in TP1/Server Base 07-01

The following table lists the operational changes in TP1/Message Control 07-01 and
TP1/NET/Library 07-01.

Category Operational change

Definition Definition of items logged in real-time
• The information acquired by the rts_jnl_read operand (number of times) was

changed to number of times, maximum time, minimum time, and average time.
• The information acquired by the rts_jnl_write operand (number of times) was

changed to number of times, maximum time, minimum time, and average time.

Command xarevtr command
• The application server name is displayed for a connection from .NET Framework.
• The displayed application server XID information (the first 28 bytes or less of

GTRID) was increased to a maximum of 64 bytes.
• The displayed application server XID information (the first 28 bytes or less of

BQUAL) was increased to a maximum of 64 bytes.

xarforce command
• The maximum number of characters that can be specified as the OpenTP1

transaction ID in the -t option was increased from 56 to 80.
• The maximum number of characters that can be specified as the client transaction

ID in the -u option was increased from 256 to 280.

xarls command
• The maximum number of characters that can be displayed as the OpenTP1

transaction ID was increased from 56 to 80.
• The maximum number of characters that can be displayed as the client transaction

ID was increased from 256 to 280.

rtsedit command
• The version of the RTS log file was added to the information output by the -m

option.

xarfills command
• The size of the recovery information that can be stored was added to the output

result.

xarls command
• DID information, node ID information, and recovery information used by MSDTC

linkage was added to the output result of the -c option.

Other The following commands are no longer valid when specifying a RAP-processing
listener or the RTSSPP (extended real-time statistics service):
scdchprc, scdhold, scdrles, and scdrsprc

Data compression was added to remote procedure calls using the XA resource service.

C. Version Changes

433

Table C-14: Operational changes in TP1/Message Control 07-01 and TP1/NET/
Library 07-01

There are no changes to defaults for functions, definitions, and commands in TP1/
Server Base 07-01, TP1/Message Control 07-01, or TP1/NET/Library 07-01.

C.4 Changes in 07-00
The following table lists the additions and deletions to functions, definitions, and
commands in TP1/Server Base 07-00.

Table C-15: Additions and deletions to functions, definitions, and commands in
TP1/Server Base 07-00

Category Operational change

Other An MCF performance verification trace information file is now collected in the
following cases:
• Y is specified in the prf_trace operand in the system common definition, or this

specification is omitted
• 00000001 is specified in the mcf_prf_trace_level operand in the system

service common information definition

MCF communication process identifiers can now be displayed.

Server-type connection establishment requests can now be started or stopped manually.

Change Category Item added or deleted

Addition Function dc_rts_utrace_put

CBLDCRTS('RTSPUT ')

Definition System environment definition
• user_command_online_tp1mngr_id operand#1

System common definition
• dcstart_wakeup_retry_count operand#2

• ipc_listen_sockbufset operand

User service default definition
• ipc_listen_sockbufset operand

User service definition
• ipc_listen_sockbufset operand

Name service definition
• 2 was added to the values that can be specified in the name_audit_conf

operand
• name_audit_watch_time operand
• name_rpc_control_list operand

C. Version Changes

434

#1

Not supported in Linux or Windows.

#2

Not supported in Windows.

#3

Supported only in Windows 07-00-03 or later. For details about this command,
see the precautions about using the Windows version of OpenTP1, provided in
HTML format with the program product.

The following table lists the additions and deletions to functions, definitions, and
commands in TP1/Message Control 07-00 and TP1/NET/Library 07-00.

Transaction service definition
• trn_completion_limit_time operand

RAP-processing listener service definition
• rap_message_id_change_level operand

Real-time statistics service definition

Definition of items logged in real-time

Command dcdefchk command

dcsvgdef command
• -t option

namblad command

ntbtail command#3

rtsedit command

rtsls command

rtssetup command

rtsstats command

tp1console command#3

Deletion None

Change Category Item added or deleted

C. Version Changes

435

Table C-16: Additions and deletions to functions, definitions, and commands in
TP1/Message Control 07-00 and TP1/NET/Library 07-00

The following table lists the operational changes in TP1/Server Base 07-00.

Table C-17: Operational changes in TP1/Server Base 07-00

Change Category Item added or deleted

Addition Function None

Definition MCF manager definition
• order operand of the -c option in the mcfmuap definition command

DCMCFCMDLOG environment variable

Command None

Deletion Function None

Definition MCF manager definition
• delayed operand of the -t option in the mcfmcomn definition command
• mcfmrclnt definition command
• mcfmrerun definition command

Remote MCF manager definition
• mcfrcomn definition command
• mcfrserv definition command

Definition of system service information
• critical operand

Command None

Category Operational change

Definition System environment definition
• The maximum value of the server_count operand was increased from 2048 to

4096.#1

Command jnlcolc, jnlcopy, jnledit, jnlrput, and jnlsort commands
• The number of unload files that can be specified was increased from 64 to 256.

jnledit command
• The creation date/time of the MCF record and the date/time at which the

transaction branch was started were added to the output result.

prctee command
• The message output destination was changed from /tmp to $DCDIR/spool.
• The output destination for error messages was changed from /tmp/betran.log

to $DCDIR/spool/.prctee.log.

C. Version Changes

436

#1

Not supported in Linux.

#2

Supported in Linux only.

The following table lists the operational changes in TP1/Message Control 07-00 and
TP1/NET/Library 07-00.

Table C-18: Operational changes in TP1/Message Control 07-00 and TP1/NET/
Library 07-00

There are no changes to defaults for functions, definitions, and commands in TP1/

xarevtr command
• The application server name is displayed in the output result for a connection from

Cosminexus V6.5 or later.

Message KFCA00107-E
• The information indicated in the message details was changed from the module

name to the OpenTP1 file system name.

KFCA00854-E
• Information about the message size that could not be stored was added.

Other The number of characters that can be specified in a host name was increased from 63
to 255.

The command priority in the sample scenario template for JP1/AJS2-SO was changed
from None to 3.

The access mode setting for UNIX domain communication files was changed from 755
to 777.#2

Japanese messages in UTF-8 (LANG ja_JP.UTF-8) are supported.#2

Category Operational change

Definition MCF communication configuration definition
• The syntax element of the -a option in the mcftenv definition command was

changed from an identifier of 1-8 characters to 1-8 alphanumeric characters.

Command A facility for collecting command logs was added to the following commands:
mcfaactap, mcfaclcap, mcfadctap, mcfadltap, mcfstats, mcftactcn,
mcftactle, mcftactmj, mcftactsg, mcftactsv, mcftchcn, mcftdctcn,
mcftdctle, mcftdctmj, mcftdctsg, mcftdctsv, mcftdlqle, mcftdlqsg,
mcftdmpqu, mcfthldiq, mcfthldoq, mcftrlsiq, mcftrlsoq, mcftspqle,
mcftstart, mcftstop, and mcfuevt

Category Operational change

C. Version Changes

437

Server Base 07-00.

The following table lists the changes to defaults in TP1/Message Control 07-00 and
TP1/NET/Library 07-00.

Table C-19: Changes to defaults in TP1/Message Control 07-00 and TP1/NET/
Library 07-00

Category Changed default

Definition MCF communication configuration definition
• The default for the disk operand in the mcfttrc definition command was changed

from no to yes.

D. Overview of Remote Procedure Call Processing

438

D. Overview of Remote Procedure Call Processing

This appendix provides an overview of remote procedure calls for each function and
each status. All the information provided in this appendix relates to queue-receiving
remote procedure calls.

In this appendix, local cache refers to an area used to manage service information for
the server that is run on the local OpenTP1 system by the name service; global cache
refers to an area used to manage service information for the servers that are run at the
remote nodes by the name service.

For details about how to create application programs, see the OpenTP1 Programming
Guide. For details about the syntax for the functions, see the manual OpenTP1
Programming Reference C Language or OpenTP1 Programming Reference COBOL
Language.

D.1 Overview of processing a remote procedure call to the local
node

The following figure provides an overview of processing a remote procedure call to
the local node.

D. Overview of Remote Procedure Call Processing

439

Figure D-1: Overview of processing a remote procedure call to the local node

The flow of TP1-X processing shown in the figure is described below. The numbers
correspond to the circled numbers in the figure.

D. Overview of Remote Procedure Call Processing

440

1. Checks whether the corresponding service information has been registered in the
local and global caches, using as the search key the service group name that was
specified in an argument of the dc_rpc_call function.

2. Because the corresponding service information was found only in the local cache,
only the service information in the local cache is returned to the UAP requesting
the service.

3. Because only the service information for the UAP running at the local node was
obtained, TP1-X selects the UAP (server UAP1) running at the local node as the
target to which the service is requested.

4. In the case of a service request to the UAP in the local OpenTP1system, the
service request is placed directly in the message queue without going through the
schedule service.

5. The target UAP (server UAP1) for which the service request was registered
retrieves the service request from the message queue.

6. Executes the service function.

7. After executing the service function, the target UAP (server UAP1) directly sends
a response message to the UAP that issued the service request.

D.2 Overview of processing a remote procedure call to remote
nodes

The following figure provides an overview of processing a remote procedure call to
remote nodes.

D. Overview of Remote Procedure Call Processing

441

Figure D-2: Overview of processing a remote procedure call to remote nodes

D. Overview of Remote Procedure Call Processing

442

The flow of processing shown in the figure is described below. The numbers
correspond to the circled numbers in the figure. Numbers 1-3 and 5-8 describe TP1-X
processing, number 4 describes TP1-A, TP1-B, and TP1-C processing, and numbers

D. Overview of Remote Procedure Call Processing

443

9-12 describe TP1-C processing.

1. Checks whether the corresponding service information has been registered in the
local and global caches by using as the search key the service group name that was
specified in an argument of the dc_rpc_call function.

2. If there is no corresponding service information, a service information search
request is sent to the name service.

If the local or global cache contains the corresponding service information, but
the conditions listed below are met, the system deletes the service information
from the global cache and then sends a service information search request to the
name service:

• The global cache contains the corresponding service information, but that
service information has expired.#1

• This is the first service information search request issued from a UAP to the
corresponding service after the UAP was started at the local node.

3. The name service of TP1-X that receives the service information search request
sends out the request to the nodes (TP1-A, TP1-B, and TP1-C) specified in the
all_node operand in the system common definition.

Note that if the all_node operand is omitted, the name service does not send the
service information search request. If any of the target nodes specified in the
all_node operand are registered in the RPC suppression list,#2 the service
information search request is not sent to those nodes.

4. The name services of TP1-A, TP1-B, and TP1-C that receive the service
information search request search their local caches for the corresponding service
group and then send the results back to the name service of TP1-X.

5. Upon receiving from the other nodes the responses to the service request, the
name service of TP1-X registers the received service information in the global
cache.

6. The name service of TP1-X returns the service information obtained from the
searches to the UAP that issued the service request.

7. If multiple UAPs with the same service group name are running, one of the UAPs
(server UAP2) is selected as the recipient of the service request by TP1's internal
processing. In this example, TP1-C is selected as the recipient.

8. A service execution request is sent to the schedule service of TP1-C that was
selected in 7.

9. The schedule service that receives the service request registers the service request
in the message queue for the target UAP (server UAP2) in the corresponding
service group.

D. Overview of Remote Procedure Call Processing

444

10. The target UAP (server UAP2) for which the service request has been registered
retrieves the service request from the message queue.

11. Executes the service function.

12. After the service function has executed, the UAP (server UAP2) that received the
service request sends a response message directly to the UAP that issued the
service request.

#1

This is the amount of elapsed time from when the service information was
acquired to the time specified in the name_cache_validity_time operand in
the name service definition.

For details about the name_cache_validity_time operand, see the manual
OpenTP1 System Definition.

#2

This list contains information about inactive nodes.

If communication with another node's name server fails, that node is registered in
the RPC suppression list. Once a node is registered in the RPC suppression list,
all service information for that node is deleted from the global cache. If the node
monitoring function detects that a node's status has changed from inactive to
active, the information about that node is then deleted from the RPC suppression
list.

For details, see 3.2.3(3) Facility for monitoring nodes registered in the RPC
suppression list.

D.3 Overview of global search processing
Global search is a service search method employed at the local OpenTP1 system to
search the nodes specified in the all_node operand and the nodes specified in the
all_node operands at the corresponding nodes. For details about the global search
facility, see 3.2.2(1) Global search facility.

The figure below provides an overview of global search processing. For details about
the service information search conditions, see D.2 Overview of processing a remote
procedure call to remote nodes.

D. Overview of Remote Procedure Call Processing

445

Figure D-3: Overview of global search processing

D. Overview of Remote Procedure Call Processing

446

D. Overview of Remote Procedure Call Processing

447

The flow of processing shown in the figure is described below. The numbers
correspond to the circled numbers in the figure. Numbers 1-3 and 9-12 describe TP1-X
processing, numbers 4, 5, 7, and 8 describe TP1-A processing, number 6 describes
TP1-B, TP1-C, and TP1-D processing, and numbers 13-16 describe TP1-D
processing.

1. Checks whether the corresponding service information has been registered in the
local and global caches by using as the search key the service group name that was
specified in an argument of the dc_rpc_call function.

2. If there is no corresponding service information, a service information search
request is sent to the name service.

3. TP1-X sends a service information global search request to the node (TP1-A) that
was specified in the all_node operand in the system common definition.

4. The name service of TP1-A that receives the global search request searches its
local and global caches for the corresponding service group.

5. If no applicable service information is found in the caches, TP1-A sends a service
information search request to the nodes (TP1-B, TP1-C, and TP1-D) specified in
the all_node operand in the system common definition.

6. The name services of TP1-B, TP1-C, and TP1-D that receive the service
information search request search their local caches for the corresponding service
group and then send the results back to the name service of TP1-A.

7. Upon receiving from the other nodes the responses to the service request, the
name service of TP1-A registers the received service information in the global
cache.

8. The name service of TP1-A sends the service information obtained from the
searches to the name service of the TP1-X node that issued the service request.

9. Upon receiving the responses to the global service search request from TP1-A, the
name service of TP1-X registers the received service information in the global
cache.

10. The name service of TP1-X returns the service information obtained from the
searches to the UAP that issued the service request.

11. If multiple UAPs with the same service group name are running, one of the UAPs

D. Overview of Remote Procedure Call Processing

448

(server UAP1) is selected as the recipient of the service request. In this example,
TP1-D is selected as the recipient.

12. A service execution request is sent to the schedule service of TP1-D that was
selected in 11.

13. The schedule service that receives the service request registers it in the message
queue for the target UAP (server UAP1) in the corresponding service group.

14. The target UAP (server UAP1) for which the service request has been registered
retrieves the service request from the message queue.

15. Executes the service function.

16. After the service function has executed, the UAP (server UAP1) that received the
service request sends a response message directly to the UAP that issued the
service request.

D.4 Overview of service information registration and deletion
processing

This section provides an overview of the processing for service information
registration and deletion.

The following figure provides an overview of service information registration
processing.

D. Overview of Remote Procedure Call Processing

449

Figure D-4: Overview of service information registration processing

The flow of processing shown in the figure is described below. The numbers
correspond to the circled numbers in the figure. Numbers 1-3 describe TP1-X
processing, and number 4 describes TP1-A processing.

1. When the server UAP1 starts, the service information for UAP1 is registered in the
local cache in the local OpenTP1 system (TP1-X).

2. A service information registration request is sent to the name service of TP1-X.

3. Upon receiving the service information registration request, the name service
sends the service information registration request to the name service of TP1-A
that is specified in the all_node operand in the system common definition.

4. Upon receiving the service information registration request, the name service of
TP1-A checks the all_node operand in the system common definition for the
transmission source.

If the transmission source is specified in the all_node operand, the name service
of TP1-A registers in the global cache the service information for the server UAP1
as requested.

If the transmission source is not specified in the all_node operand, the name

D. Overview of Remote Procedure Call Processing

450

service of TP1-A does not register the service information.

In this figure, service information for the server UAP1 is registered in the global
cache because the transmission source TP1-X is specified in the all_node
operand.

The following figure provides an overview of service information deletion processing.

Figure D-5: Overview of service information deletion processing

The flow of processing shown in the figure is described below. The numbers
correspond to the circled numbers in the figure. Numbers 1-3 describe TP1-X
processing, and number 4 describes TP1-A processing.

1. When the server UAP1 is terminated, its service information is deleted from the
local cache in the local OpenTP1 (TP1-X) system.

2. A service information deletion request is sent to the name service of TP1-X.

3. Upon receiving the service information deletion request, the name service sends
it to the name service of TP1-A, which is specified in the all_node operand in
the system common definition.

4. Upon receiving the service information deletion request, the name service of

D. Overview of Remote Procedure Call Processing

451

TP1-A checks the all_node operand in the system common definition for the
transmission source.

If the transmission source is specified in the all_node operand, the name service
of TP1-A deletes from the global cache the service information for the server UAP
as requested.

If the transmission source is not specified in the all_node operand, the name
service of TP1-A does not delete the service information.

In this figure, service information for the server UAP1 is deleted from the global
cache because the transmission source TP1-X is specified in the all_node
operand.

D.5 Overview of node-to-node forwarding processing
The following figure provides an overview of node-to-node forwarding processing.

D. Overview of Remote Procedure Call Processing

452

Figure D-6: Overview of node-to-node forwarding processing

D. Overview of Remote Procedure Call Processing

453

The flow of processing shown in the figure is described below. The numbers
correspond to the circled numbers in the figure. Number 1 describes TP1-X
processing, and numbers 2-10 describe TP1-A, TP1-B, and TP1-C processing.

1. As a result of a name service search, TP1-X sends a service request to the
schedule service of node TP1-A.

2. This service request is not queued because the server of TP1-A was shut down
when the schedule service of TP1-A attempted to issue the service request.

3. The schedule service searches the name service for a forwarding destination.

If the RPC request of the program that issued the service request is using the
scheduler direct facility with the dc_rpc_call_to function, the schedule
service returns an error to that program without forwarding the request.

4. The service request is forwarded to the schedule service of TP1-B.

5. The service request is not queued because this server's load level is high (2).

6. The schedule service searches the name service for another forwarding
destination.

7. The schedule service forwards the service request to the schedule service of
TP1-C.

8. The service request is registered in the message queue because this server is not
shut down nor is its load level high.

9. Executes the service function.

10. After the service function has executed, the UAP (server UAP1) that received the
service request sends a response message directly to the UAP that issued the
service request.

D.6 Overview of remote procedure call processing using the
dcsvgdef definition command

The following figure provides an overview of remote procedure call processing using
the dcsvgdef definition command in the user service network definition.

D. Overview of Remote Procedure Call Processing

454

Figure D-7: Overview of remote procedure call processing using the dcsvgdef
definition command

D. Overview of Remote Procedure Call Processing

455

The flow of processing shown in the figure is described below. The numbers
correspond to the circled numbers in the figure. Numbers 1 and 2 describe TP1-X
processing, numbers 3 and 4 describe TP1-B processing, and numbers 5-7 describe
TP1-C processing.

1. TP1-X obtains the recipient of a service request (TP1-B) from the user service
network definition without searching the name service.

2. The request is sent to the schedule service of TP1-B.

3. The schedule service running at TP1-B searches the name service and then returns
a result indicating that the UAP exists at TP1-B and TP1-C.

4. The service request is forwarded to TP1-C, which is selected randomly.

5. The schedule service of TP1-C places the service request in the message queue.

6. Executes the service function.

7. After the service function has executed, the UAP (UAP1) that received the service
request sends a response message directly to the UAP that issued the service
request.

E. Glossary

456

E. Glossary

application
A general name for a user-created program that is executed in an OpenTP1 system. An
application that carries out user tasks is called a user application program. An
application that registers a UAP in OpenTP1 and performs as a server is called a user
server.

archived-journals file (or archive journal file)
A file that contains the system journals from OpenTP1 nodes. In a cluster system or
parallel-processing system, the Global Archive Journal facility is used to archive the
system journals from multiple OpenTP1 nodes into a single archived-journals file.
This simplifies management of the nodes because the OpenTP1 administrator needs to
unload this single file only, rather than each of the system journal files on each node.

See also global archive journal service.

audit log
A file containing historical information about the operations performed on OpenTP1
programs by system developers, operators, and users, together with the program
behavior triggered by those operations. An audit log contains information such as what
was done, when, and by whom. Thus, they can serve as reference material for auditing
system usage, unauthorized access, and other such matters.

checkpoint dump
Journals periodically collected into a file during OpenTP1 operations and used to
reduce recovery time. Checkpoint dumps are taken at various checkpoints. At each
checkpoint, OpenTP1 saves the status of various system tables that are needed in
recovery. During recovery, the information in a checkpoint dump can replace all the
recovery journals from the start of online processing to the most recent checkpoint.
Using a checkpoint dump and only the most recent recovery journals reduces recovery
time.

client gateway program (CGW)
A program to enable OpenTP1 to access other open systems such as DCE. A CGW
receives a request for a service from a UAP in OpenTP1, and it requests the same
service from an open system. In an OpenTP1 system, a client gateway program is
regarded as a service-providing program.

client UAP/server UAP
A client UAP requests a service, and a server UAP carries out the requested service. A
client UAP can be a service-using program, service-providing program, or
message-handling program. A server UAP is a service-providing program.

E. Glossary

457

client user program (CUP)
A client UAP that uses the OpenTP1 client facilities provided by the product TP1/
Client. These facilities include useful troubleshooting facilities: the error log facility
and the UAP trace facility.

client/server
A term describing a relationship between programs. A client is a program that requests
a service; a server is a program that carries out the requested service. Whether a
program is functioning as a client or a server is determined by its relationship to
another program.

cluster system or parallel-processing system
A system in which multiple processors, perhaps on different machines, are so
connected that they can work together to provide a single service. In such a system,
one logical task might be broken down into different fragments and all the fragments
might be processed simultaneously on different processors. Such system
configurations can provide very high performance. The product TP1/Multi supports
OpenTP1 operations in a cluster system or parallel-processing system.

commit
A commit operation ensures successful completion of a transaction at a
synchronization point. When a commit operation is complete (i.e., when a transaction
completes synchronization point processing), the results of the transaction take effect.
See also transaction and rollback.

complete recovery
Returning an entire OpenTP1 system to its former state after a system failure.

connection
A logical communication path established between an OpenTP1 system and another
system. Note that some communication protocols also use the term "association" with
the same meaning. In this manual, a connection is named consistently as long as the
message exchange is described.

CUP
See client user program (CUP).

DAM
See direct access method file (DAM file).

deadlock
Conflict situation in which more than one UAP tries to reserve more than one resource
at the same time, and each UAP continues to wait for another to release one of the
resources.

E. Glossary

458

direct access method file (DAM file)
OpenTP1 file accessible by the direct access method. A file can be referenced and
modified using a relative block number as an access key to the data. The sequential
access method can be used to reference data only.

domain
A logical division of a network. Domain management uses the domain name service
(DNS) or the network information service (NIS). When performing client/server
communications in a large-scale network, you can improve the efficiency of
scheduling by making a domain modification to remote procedure calls of OpenTP1.

DTP
See X/Open Distributed Transaction Processing (DTP) model.

dynamic loading of service functions
A facility that dynamically loads (reads) the service functions contained in a UAP
shared library. A UAP shared library is created by linking the set of UAP object files
generated by compiling the UAP source files. Use of this facility enables you to add
and delete service functions simply by changing the service operand of the user
service definition. There is no need to change the stub or re-create the UAP executable
file. Because the service functions are loaded when the UAP starts, no stub or service
functions are needed to create the UAP executable file.

global archive journal service
A facility to collect system journals from OpenTP1 nodes that are used in a cluster
system or parallel-processing system. This facility makes it unnecessary to unload
system journals from each OpenTP1 node.

See also archived-journals file (or archive journal file).
global cache

An area used by the name service to manage service information for servers running
at other nodes.

global transaction
A UAP process that performs transaction processing is called a transaction branch. Use
of RPCs enables you to perform transaction processing that consists of multiple UAP
processes. A set of transaction branches that consists of multiple UAP processes is
called a global transaction.

A transaction branch that starts a transaction is called a root transaction branch.

host
A machine that is connected to a network and on which OpenTP1 runs. If the
MultiOpenTP1 configuration is used, a host contains more than one OpenTP1

E. Glossary

459

instance.

import
An operation for registering an OpenTP1 scenario template definition file in JP1/AJS2
- Scenario Operation as a scenario template.

input queue
An ordered group of MCF messages that came from other systems and that are waiting
to be processed.

The TP1/Message Control product manages input queues.

inquiry-response message
A message that requires a response. See also send-only message.

The TP1/Message Control product manages inquiry-response messages.

Internode Load-Balancing facility
A facility that balances the load between nodes by placing user servers of the same
service group on multiple nodes. When a service is requested, it is allocated to one of
the user servers of the service group. The least-loaded node can be selected according
to the scheduling of nodes.

internode shared table (IST)
A data table managed by the IST service, a facility provided by the product TP1/
Shared Table Access. When the IST service is used, the user should set the name of the
table in the function of the IST service. Because the internode shared table is managed
by the TP1/Shared Table Access of each system, the UAP does not need to manage the
node location of the internode shared table.

journal
Information about system operations. OpenTP1 obtains such information to check and
record the operating status of the system, and to recover after a failure. The following
journals can be obtained using OpenTP1:

• journals used for a complete or partial recovery

• system trace information

• user-specified journals

local cache
An area used by the name service to manage service information for the servers
running at the local OpenTP1 system.

logical message
A unit for messages sent between two systems. A logical message contains a set of

E. Glossary

460

related tasks, and consists of one or more segments.

The TP1/Message Control product manages logical messages.

logical terminal
A logical name of a communication target in a remote system. The logical name is used
when a UAP sends or receives messages.

The TP1/Message Control product manages logical names.

MCF
See message control facilities (MCF).

MCF main function
A user-created main function for use with TP1/Message Control, an OpenTP1 resource
manager. The main and dc_mcf_svstart() functions (described in the manual
OpenTP1 Operation) are issued from the MCF main function. If a user-exit routine is
included in the system, the routine's address must be set in the MCF main function. The
MCF main function is written for a communication protocol, or for a service that starts
applications. The main function for each MCF main function needs to be written
independently.

The TP1/Message Control product manages MCF main functions.

MCF message queue
There are two kinds of MCF message queues: an input queue that stores MCF
messages received via TP1/Message Control, and an output queue that stores MCF
messages to be sent to other systems.

The TP1/Message Control product manages MCF message queues.

message control facilities (MCF)
The OpenTP1 facilities provided by the products TP1/Message Control, TP1/NET/
Library, and the products that correspond to the relevant communication protocol.
These products provide the MCF message-exchange capabilities of OpenTP1.

message handling program (MHP)
One of the OpenTP1 UAPs that is used for MCF message communication. This
program is made up of service functions that receive MCF messages from other
systems and a main function that organizes the service functions.

The TP1/Message Control product manages message handling programs.

message log
System management information output by OpenTP1. An MCF message log is
displayed on a screen and is also written into a specified file. You can use the logcat
command to edit and display the stored message log.

E. Glossary

461

The message log of OpenTP1 can be reported to the application programs exclusively
created in a system. The application program that has received a report can report the
status of OpenTP1 to other vendors' network management systems. If a message log is
reported, specify Y in the log_notify_out operand in the log service definition of
OpenTP1.

message queue
See MCF message queue or MQA message queue.

message queue access (MQA)
The OpenTP1 facility provided by the product TP1/Message Queue. This product
provides the MQA message-queuing capabilities of OpenTP1.

message queue interface (MQI)
An API consisting of instructions used by UAP when performing communication
using message queuing. MQI is a standard API of the WebSphere MQ.

message queuing
See MQA message queuing.

message sequential number
A number assigned to each MCF message. These numbers are used to avoid resending
the same MCF message or omitting messages.

The TP1/Message Control product manages message sequential numbers.

MHP
See message handling program (MHP).

MQA
See message queue access (MQA).

MQA message queue
A message-putting queue for communication using MQA message queuing. The
messages put in an MQA message queue are sent by the queue manager. Depending
on the MQA service definition and the argument of MQI, desired messages can be
gotten regardless of the order in which they were put.

MQA message queue file
A file that stores the message queues for communication using MQA message
queuing. For OpenTP1, a user should create the queue file in the OpenTP1 file system
by using commands.

MQA message queuing
A message-queuing communication procedure developed by the IBM Corp. In

E. Glossary

462

communication using message queuing, the queue manager puts or gets the messages
queued by UAPs. Therefore, UAPs are free from processing inter-system
communication and handling communication errors. Since UAPs can put messages at
any time, they can be used like e-mail. Access from a UAP to a queue uses Message
Queue Interface (MQI), the standard application programming interface of the
WebSphere MQ.

MQA service
OpenTP1 system's services necessary for communication using message queuing. The
MQA service manages the message queues and UAP processes.

MQ system
A system (node) where the queue manager of message queuing exists

MQT service (message queue transfer service)
OpenTP1 system's services necessary for communication using message queuing. The
MQT service manages inter-system communication by using TCP/IP protocol.

MultiOpenTP1
Enables configurations in which two OpenTP1 instances are running on one host. Each
OpenTP1 is operated independently so, for example, one OpenTP1 instance can be
used for actual processing and the other can be used for testing new applications.

Multiserver facility
A facility for handling more than one service request at the same time by processing
the requests on more than one server process. The Multiserver facility improves the
efficiency of UAP processing.

node
A host or an OpenTP1 node. See also host and OpenTP1 node.

OpenTP1 administrator
A UNIX user who administers the OpenTP1 system. An OpenTP1 administrator has
the privileges required to perform important operations on OpenTP1. The user name
for the OpenTP1 administrator is determined by a superuser. The user name must be
password-protected.

OpenTP1 file system
The file system provided by OpenTP1. Each file in an OpenTP1 file system is called
an OpenTP1 file. Data requiring a high degree of reliability can be stored in this
OpenTP1 file system: for example, important user data or system journals used at
recovery.

E. Glossary

463

OpenTP1 home directory
The directory that stores files and directories used by OpenTP1.

In OpenTP1, the OpenTP1 home directory is managed using the DCDIR environment
variable. On a machine on which OpenTP1 is installed, you can move from any
directory to the OpenTP1 home directory by specifying $DCDIR.

In OpenTP1 manuals, the keyword $DCDIR/ is used to represent the OpenTP1 home
directory.

OpenTP1 installation directory
The directory in which OpenTP1 is installed. The path of the OpenTP1 installation
directory differs depending on the OS, as shown below.

AIX, HP-UX, and Solaris

/BeTRAN

Linux

/opt/OpenTP1

Windows

C:\OpenTP1

Note that the C:\ part may be different depending on your environment.

OpenTP1 node
OpenTP1 systems that make up a multinode area or a multinode subarea. Each
OpenTP1 node is distinguished by its node identifier which is specified in the system
common definition. The two OpenTP1 systems in a System Exchange configuration
are regarded as one OpenTP1 node.

output queue
An ordered group of MCF messages that are waiting to be sent to other systems.

The TP1/Message Control product manages output queues.

parallel-processing system

See cluster system or parallel-processing system.

partial recovery
The process in which, when an error occurs in a UAP, the transaction being executed
is canceled and all the resources related to the transaction are returned to their previous
states.

process
The in-memory processing created when user servers or OpenTP1 use OS memory. To

E. Glossary

464

maintain performance OpenTP1 controls the number of processes.

queue group ID
An identifier for a message queue file that is used for message exchange. This ID is
used with OpenTP1 commands to display the status of a queue group.

The TP1/Message Control product manages queue group IDs.

queue manager
A software product that manages MQA message queuing. A queue manager is
required in a system that uses MQA message queuing to communicate. For OpenTP1,
TP1/Message Queue serves as a queue manager.

real-time statistics
The statistics that can be output in real time for the entire system, for each server, and
for each service are called real-time statistics. By outputting real-time statistics, you
can check the operating status of the OpenTP1 system in real time, and quickly
perform system operation management and error recovery.

real-time statistics service
An OpenTP1 facility for managing real-time statistics in order to check the operating
status of the OpenTP1 system in real time.

remote procedure call (RPC)
A method of communicating between processes that are executing UAPs. OpenTP1
UAPs use RPCs to communicate with UAPs on other systems. When using RPCs,
programmers do not need to know the network address of the target UAP.

resource manager
A generic name for facilities that manage resources. A DBMS is a resource manager.

response message

See inquiry-response message.

rollback
An operation at a synchronization point to cancel a transaction. A transaction can be
rolled back in two ways: a user issues a function from an application program, or
OpenTP1 stops the application that carries out the transaction.

root transaction branch
A transaction branch, which is a UAP process, that belongs to a global transaction and
is where the transaction starts.

RPC
See remote procedure call (RPC).

E. Glossary

465

RPC suppression list
A list containing information about the OpenTP1 nodes that have not started. This list
is owned by each OpenTP1 system.

scenario
An object that associates scenario templates with jobs to execute a sequence of jobs as
defined. JP1/AJS2 - Scenario Operation registers scenario templates in JP1/AJS2 as a
scenario, and JP1/AJS2 executes the scenario.

scenario job
An object that associates scenario job templates with jobs to execute a sequence of jobs
as defined. JP1/AJS2 - Scenario Operation uses scenario jobs. A scenario job is an
object for executing the commands, shell scripts, Windows executable files, and other
items defined in a scenario.

scenario job template
A part of a scenario template used by JP1/AJS2 - Scenario Operation. A scenario job
template defines the commands, shell scripts, Windows executable files, and other
items defined in a scenario template. In OpenTP1, scenario job templates are used
when the scenario template functionality of JP1/AJS2 - Scenario Operation is used.

scenario library
A folder for managing scenario templates in JP1/AJS2 - Scenario Operation.

scenario template
A component that defines a job sequence and that can be used as a boilerplate. JP1/
AJS2 - Scenario Operation uses scenario templates. In OpenTP1, scenario templates
are used when the scenario template functionality of JP1/AJS2 - Scenario Operation is
used.

scenario variable
A variable that is preset in a scenario and that can be changed according to the
operating environment. For example, information about OpenTP1 directories may be
set in scenario variables.

scheduler
One of the OpenTP1 facilities that starts and stops user servers according to changes
in the load on each node. This facility improves system performance by dispersing
loads across different nodes and controlling the number of processes.

send-only message
An MCF message that does not require any response. You can assign priorities to each
send-only message. See also inquiry-response message.

E. Glossary

466

The TP1/Message Control product manages send-only messages.

server gateway program (SGW)
A gateway program that enables OpenTP1 to access other open systems. An SGW
receives requests for services from an application in an open system other than
OpenTP1, and it requests the same service from OpenTP1 service-providing
programs. The dc_rpc_call() function provided by TP1/Client is used to request a
service. In an OpenTP1 system a server gateway program is regarded as a client user
program.

server UAP
See client UAP/server UAP.

service
Procedure required to be carried out for clients in a client/server system. In C, a service
is coded as C functions and the completed functions are called service functions. In
COBOL, a service is coded as a subroutine and is called a service program.

service group
An OpenTP1 server UAP that provides a set of services to process requests from
clients. To request a service, a service group name and a service name are specified as
arguments of dc_rpc_call(). The OpenTP1 dc_rpc_call() function is used for
making remote procedure calls in OpenTP1 systems.

service information prioritizing function
A function for returning service information for a specific node preferentially when the
name service returns service information to the client UAP that issued a service
request. The node chosen by this function for return of service information is called the
priority selection node.

This function enables you to normally use the server UAP at the priority selection node
and to use a different node only in the event of a failure. You can treat one server UAP
as the running system and another as a standby system.

service-providing program (SPP)
An OpenTP1 UAP that can perform as a server. This program consists of service
functions that provide the service requested by a client UAP, and a main function to
organize the service functions.

service-using program (SUP)
An OpenTP1 UAP designed to perform as a client only. It does not contain any
functions to provide services for other UAPs and it only requests services from a
service-providing program.

E. Glossary

467

SPP
See service-providing program (SPP).

status service
An OpenTP1 facility that manages system information, such as the operation status of
UAPs.

Structured Transaction Definition Language (STDL)
A high-level language used by a UAP when performing distributed transactional
communication that conforms with the Multivendor Integration Architecture (MIA)
standard. The STDL specification is defined by the MIA consortium. A program coded
using STDL is known as an STDL task.

stub
A program that functions as a library to support RPCs in client/server communications,
which connects requests for services with the services provided by server UAPs. The
stbmake command or tpstbmk command creates a stub from a RPC interface
definition file that is made by a user. The stub is created as a C program. To link the
stub to an executable UAP file, the stub must be compiled. The following UAPs need
stubs: service-providing programs when an RPC or the XATMI interface is used,
service-using programs when the XATMI interface is used, and message-handling
programs. However, no stub is required if all the service functions are rolled into a
UAP shared library and are loaded dynamically. A UAP shared library is created by
linking the set of UAP object files generated by compiling the UAP source files.

For more details on stubs, see the OpenTP1 Programming Guide.

SUP
See service-using program (SUP).

superuser
A user with UNIX OS privilege. A superuser has access permission to all files in the
UNIX file system. The user login name of a superuser is root.

synchronization point
A breakpoint between transactions. In a commit operation on a transaction; the effects
of a transaction up to a synchronization point are implemented. In a rollback operation
on a transaction, a transaction cannot be completed and the status of resources is
returned to the same status as at the previous synchronization point.

system service
Another name for an OpenTP1 facility; a user server is another name for an OpenTP1
UAP.

table access method file (TAM file)

E. Glossary

468

A file accessed by using a simple structure table that is specially created for use in
OpenTP1. A table name and a key value are used to access the simple structure table.
Accessing the table enables fast access for such tasks as retrieving, cancellation of
retrieving, modifying, adding and deleting of records, and obtaining table information.

TAM
See table access method file (TAM file).

TCP/IP (Transmission Control Protocol/Internet Protocol)
A protocol developed by ARPANET in the Defense Advanced Research Project
Agency (DARPA) project. The TCP/IP protocol is mainly used for LAN.

TP monitor
See transaction processing monitor (TP monitor).

transaction
A logical unit of operation that is regarded as a single operation. In transaction
processing, each transaction ends in complete success or complete failure. For
example, after a transaction, a commit operation ensures that all the file modifications
required by a transaction are completed, or a rollback operation ensures that none of
the file modifications are completed.

transaction branch
Each UAP process that is part of a global transaction. The transaction branch in which
the global transaction starts is called a root transaction branch. See also global
transaction and root transaction branch.

transactional RPC
An RPC that OpenTP1 handles as a transaction. For example, coding
dc_trn_begin() before dc_rpc_call() will cause OpenTP1 to handle the
dc_rpc_call() call as a transaction: the dc_rpc_call() is the transactional RPC.
To become part of the transaction of a transactional RPC, a UAP process that is
requested for a service must have the transaction attribute (atomic_update = Y)
specified in the user service definition.

transaction manager
The OpenTP1 facility that manages and executes transactions.

transaction processing monitor (TP monitor)

Software that monitors and controls transactions. This software provides the
infrastructure for constructing an online system. Major features include the
communication facility for transferring data among terminals and other machines, and
the recovery facility to prevent loss or mismatch of data in case of a failure.

E. Glossary

469

trigger facility
A facility that notifies the local system's UAP that a message has arrived at the
message queue when performing communication using MQA message queuing. The
UAP assigned to receive trigger events is called a trigger monitor application.

UAP
See user application program (UAP).

uptime statistics
Information about the operation of OpenTP1 system services and user servers. Uptime
statistics are used to monitor the operational status of the entire OpenTP1 system.

user application program (UAP)
A program that carries out user tasks. An OpenTP1 user server is an example of a UAP.
In non-OpenTP1 systems, a UAP is often called an application program.

user exit routine
A user-coded program for making a message-exchange UAP applicable to a wider
range of tasks. For example, a user exit routine can be used to determine what
application to launch, or to edit a message before the UAP sends it to another system.

user journal
Any information specified by a user to be stored in a system journal file. User journals
are collected during UAP processing.

user server
A generic name for processes that execute OpenTP1 UAPs that function as
user-created servers in OpenTP1 systems, or for those OpenTP1 UAPs themselves.

WebSphere MQ
A generic name of the products for MQA message-queuing-type communication
developed by the IBM Corp. OpenTP1 allows message-queuing-type communication,
using TP1/Message Queue.

X/Open Distributed Transaction Processing (DTP) model
A distributed processing system model defined by X/Open: an organization for the
standardization of open systems. The DTP model consists of a transaction manager
that manages and executes transactions; a resource manager, which manages system
resources; and application programs.

471

Index

A
abbreviations for products iv
abnormal termination 142

from status file error 247
no swappable file 266
recovering from UAP 325

access mode for TAM table 297
acronyms ix
ans-type 123
Application Activate facility 127, 140
Application Program 17
application startup 127
application startup process 128
archive journal file 267

available status of 270
available/current status of 270
available/standby status of 270
creating 268
duplicating 269
element file name in 268
filegroup name in 268
numbers of parallel accesses 269
parallel access facility for 268
physical file name in 268
purpose of 267
recovering from error 328
status of 270
structure of 267
unavailable status of 270
unloading 271, 370
with Global Archive Journal facility 367

archive-journal source node 367
archive-journal target node 367
association 190
asynchronous-response RPC 84
automatic connection mode 202
automatic system switchover 350

B
backing up

DAM and TAM 318
DAM file online 280
OpenTP1 file system 243

balancing load
among nodes 166
with Multiserver facility 163

block in deferred update 279
block length extension facility 280
branch, specifying 67
buffer area, saving shared memory in 177

C
C function for DAM file 278
C++ 7, 44
cache block 283
cache block securing 283
cacheless access 293
called 190
calling 190
chained RPC 84
changing

definitions 318
file capacity 319
network configuration while online 319
replacing UAPs online 319
SPP online 149

checkpoint 259
checkpoint dump file 259

adding physical file for 261
duplicated 259
fallback facility for 263
operation when, is duplicated 264
purpose of 259
recovering from error 327
structure of 259

clean-up processing 283

Index

472

client
service-using program used as 46
software, using 32

Client .NET 75
client facility 182
client gateway program 45
client service 185

definition of 185
client UAP 31
client user program 45
client/server configuration 28, 81

communication protocol 31
CLTIN 182
CLTOUT 182
cluster system with Multinode facility 363
command used to start UAP 133
commit 60, 62

heuristic 66
heuristic decision 65
two-phase 63

commit processing 64
communication

in client/server configuration 81
via RPC 81
via RPC that uses TxRPC interface 116
via RPC that uses XATMI interface 113
with TP1/Client 32
with XDM/DCCM3 188

communication functions
asynchronous 122
synchronous 122

communication protocol
client/server configuration 31
product 398

communication resource manager 16
compatibility with ORACLE 307
complete recovery 321

opening reserved filegroup at 258
service recovery in 322
system recovery in 321
transaction recovery in 322

configuration example 8
connection 136
connection mode 202

Connector .NET 76
cont-type 124
continuous inquiry response type 124
conventions

abbreviations for products iv
acronyms ix
diagrams xii
fonts and symbols xiii
KB, MB, GB, and TB xiv
version numbers xiv

Cosminexus TP1 Connector 76
creating

archive journal file 268
checkpoint dump file 240
DAM file 240, 278
MCF message queue file 240
MQA message queue file 240
OpenTP1 file system 240
server recovery journal file 267
status file 240
system journal file 240
TAM file 240, 297

CRM 17
CUP 45
current status of

archive journal file 270
status file 247
system journal file 256, 271

D
DAM 13
DAM file

access to unrecoverable 282
compared to TAM file 294
creating 278
deadlock in 299
deferred update of 279
description of 276
FRC (file recovery) facility 243
I/O function for 278
lock on 278
offline backup of 280
online backup of 280
recovering from error 329

Index

473

dambkup 280
damfrc 328
damhold 280
damload 241, 278
damrm 280
data operations using extended presentation
facility 35
database management system, accessing 307
DBMS 307
dc_clt_cltin_s() 182
dc_clt_cltout_s() 182
dc_dam_create() 278
dc_dam_put() 278
dc_jnl_ujput() 256
dc_lck_release_all() 212
dc_lck_release_byname() 212
dc_mcf_execap() 127, 140
dc_mcf_receive() 34, 137
dc_mcf_recvsync 125
dc_mcf_reply() 34
dc_mcf_rollback() 127
dc_mcf_send function 124
dc_mcf_send() 138
dc_mcf_sendrecv 125
dc_mcf_sendsync 125
dc_rpc_call() 82
dc_rpc_cltsend() 186
dc_rpc_set_service_prio() 147
dc_tam_close() 298
dc_tam_open() 298
dc_tam_read() 298, 299
dc_trn_begin() 31, 68, 69, 308
dc_trn_chained_commit() 68
dc_trn_chained_rollback() 63, 68
dc_trn_unchained_commit() 308
dc_trn_unchained_rollback() 63
dclog1 218
dclog2 218
dcmstart 366
dcmstop 366
dcndls 366
dcreset 318
dcsetup 315, 318
dcshmls 384

dcstart 317, 357
dcstop 317, 360, 361
dcsvstart 46
deadlock 214, 299

recovering from 326
debugging 55
deferred update of DAM file 279
definitions

changing 318
necessary for using remote API facility 203
with DBMS 309

delvcmd 373
diagram conventions xii
disk

mirroring 356
partitioning for file system 234

disk queue 134
processing when, is full 136

distributed transaction processing 60
distributed transactions 60
distributions

maximum number of 269
minimum number of 269

domain name system 86
DTP model 16

configuration of 17
duplicated system 350
duplicating

archive journal file 269
checkpoint dump file 264
journals 216

dynamic connection schedule mode 201

E
element file name 268
entity, terminal 138
environment

setting up 312
setup tasks performed by OpenTP1
administrator 315
setup tasks performed by superuser 314
variables, setting 309

error recovery 321
EX lock mode 211

Index

474

example of
possible configuration 8
process control with Multiserver facility 179
using remote API facility 199

extended internode load-balancing facility 172
extended presentation facility 35

Microsoft Windows with 35
X/P system with 35
X/W system with 35

extended RM registration definition 308

F
facilities

application activate 127, 140
DAM FRC (file recovery) 243
extended presentation 35
file recovery journal integration 217
for monitoring node registered in RPC
suppression list 112
for obtaining message log 217
global archive journal 367
integrated system management 41
journal duplicating 216
journal editing 217
journal maintenance 216
locking 211
multinode 363
multiserver 55, 84, 162
statistics output 222
System Switchover 350
testing and debugging 55

fail-safe system 350
failure recovery 321
fallback facility

for checkpoint dump 263
guaranteed-valid generation when using 263

fallback using memory queue 136
FIFO

when scheduling messages to MHP 157
when scheduling service requests 147

FIL event trace 347
FIL event trace information file 347
filchmod 244
filchown 244

file capacity, changing 319
file error 327
file recovery journal integrating facility 217
file recovery journal, integrating 216
file system 233

assigning 244
backing up/restoring 243

filegroup
in archive journal file 267
in checkpoint dump file 259
in status file 246
in system journal file 249

filegroup name 268
files

archive journal 367
changing capacity of 319
creating OpenTP1 file system 240
DAM file 276
element file name 268
message log 218
physical file name 268
status 246
system journal 249
TAM file 293

filmkfs 315
font conventions xiii
forced normal termination 317
forced termination 142
FRC (file recovery) facility 243
front-end processor 9

G
GB meaning xiv
generation, guaranteed-valid 262
Global Archive Journal facility 267, 367
global archive unloaded-journals file 370
global cache 458
global search facility 90
global transaction 62
grouped system switchover 350
guaranteed-valid generation 262

when using fallback facility 263

Index

475

H
HAmonitor 16, 353
heuristic decision 65

heuristic mix 66
processing in 67
transaction determination 65

heuristic hazard 65
heuristic mix 66
hold message 136
host, multi-homed 374
hot-standby system 350

I
I/O function for DAM file 278
IDL compiler with TxRPC interface 116
IDL-only TxRPC 116
infinite loop, recovering from 324
input function for DAM file 278
input queue 34, 134

description of 134
inquiry-response communication 123
integrated journal file 216
integrated system management facility 41
interface definition language file 117
interfaces among UAP, TM, RM, and CRM 16
internal channel 127
internode load-balancing facility 166, 167
internode shared table 301

access environment for 303
accessing 303
overview of 13
structure of 303

IP address, correspondence between OpenTP1
instance and 374
ISAM file 16, 306

recovering from error 329
IST service 301

configuration of 301

J
J2EE Connector Architecture 73
JNL performance verification trace 338

JNL performance verification trace information
file 338
jnlcolc 216
jnlcopy 216
jnldelpf 261
jnledit 216
jnlinit 240, 315
jnlls 268
jnlmcst 216
jnlmkrf 267, 328
jnlopnfg 268
jnlrput 217
jnlstts 216
jnlunlfg 259, 267, 271, 318
journal block 264
journal duplicating facility 216
journal editing facility 217
journal maintenance facility 216
journals

editing 217
integrating file recovery 216
recovery journal 254
size of 264
statistical journal 255
synchronization point journal 254
user journal 256

K
KB meaning xiv

L
LAN

component to be used 356
maintenance 353, 356, 364
monitoring 353
that uses client/server processing 8

language for message log, specifying 219
large-scale computer 10
LCK performance verification trace 339
LCK performance verification trace information
file 339
lckrminf 215
link

monitoring 353

Index

476

with DBMS 309
load balancing

among nodes 166
with Multiserver facility 163

loading opportunity 298
local cache 459
local memory 384
lock monitoring time 299
lock on TAM table 299
locking

deadlock 214
EX mode 211
on DAM file 278
PR mode 211
releasing 212
resource 211
specifying whether to wait 212
units 211

logcat 218
logical channel 137
logical file

in DAM file 276
in TAM file 293

logical filegroup
in archive journal file 267
in checkpoint dump file 259
in status file 246
in system journal file 249
unload check on 257

logical message 121
logical terminal 138
logical terminal name 138

M
mainframe 10
maintenance LAN 353, 356, 364
maximum dispersed files for parallel access 254
MB meaning xiv
MCF

applications in MHP scheduling 157
starting 126

MCF application 51
MCF application definition 121
MCF communication events 128

MCF communication process 128, 137
MCF error events 128
MCF events 128
MCF message exchange 120, 122

configuration of 34
configuration using extended presentation
facility 35
description of 34
input queue 34
network that can use 35
output queue 34
overview of 34
supported protocols for 398
using TCP/IP protocol 187

MCF message queue 34, 134
MCF message queue file 137, 138, 273

purpose of 273
recovering from error 329
structure of 273

MCF online tester 56
MCF performance verification trace 341
MCF system statistics 222
MCF trace 332
mcfadctap 158
mcftdcstv 159
mcftdctsg 158, 160
mcfthldiq 135
mcfthldoq 135
mcftrlsiq 135
mcfuevt 133
memory

local 384
shared 384
structure of 384

memory queue 134
fallback using 136

message control 120
message control facility 13
message exchange 34

screen data operations using 35
message exchange facility 34
message log

obtaining 217
specifying language for output 219

Index

477

suppressing 219
message log file 218

recovering 328
message queue 38
message queue access 14
message queue file 329
message queue interface 39
message sequence numbers 219
message sequential number 139
message-handling program 34, 51
message-storing buffer pool 177
messages

getting 40
handing, when OpenTP1 terminates 141
hold 136
order of sending 143
putting 39
receiving 120, 136
sending 120, 138
sending and receiving 134
sequence numbers of 219
unprocessed 142

MHP 34, 51, 52, 120
automatic shutdown of scheduling 161
client user program 45
overview of 45
scheduling requests to 156
shutdown scheduling for 157
starting, by issung UAP function 127
starting, by MCF event 128
transaction 69

minimum dispersed files for parallel access 254
mirrored disk 356
modifying 319
monitor 330
monitored RM definition 221
monitoring

output queue 141
status 320
temporary closing request 392
to detect infinite loop 324
TP monitor 7

monitoring LAN 353
monitoring link 353

monitoring path 353
monsbystp 361
monswap 361
MQA message

getting 40
putting 39

MQA message queue 38, 39
queue manager 38
transaction processing 40

MQA message queue file 274
description of 274
purpose of 274
recovering from error 329

MQA message queuing 274
queue manager 28

mqainit 240
MQI 39
MSDTC linkage 71
multi-homed host 374
multi-node area 365
multi-node subarea 366
multi-scheduler facility 175
Multigeneration Guarantee facility 262

recovering, when using 262
Multinode facility 363

available operations 366
Global Archive Journal facility 367
overview of 363

MultiOpenTP1
commands, distributing 372
configuration of 372
description of 372
using 320

multiple instances, using 349
Multiserver facility

balancing load in 163
overview of 162
process control with 179

multiserver facility 55
drawback 84

N
NAM event trace 346
NAM event trace information file 346

Index

478

namdomainsetup 89
name service 82
namndchg 319
network configuration, changing 319
network error, recovering from 329
network that can use MCF message exchange 35
network transparency 82
no-wait RPC 84
noans-type 124
node

balancing loads among nodes 166
containing two OpenTP1 instances 372
internode locking 211
OpenTP1 366
with Global Archive Journal facility 267

node management 81, 105
node monitoring facility 108
non-automatic connection mode 202
non-resident process 163
non-response 124
normal termination 142
number of ports, restricting 390
numbered messages, requesting 219

O
offline tester 55
one-system operation

for status file 247
for system journal file 250
of checkpoint dump file 264

online
backing up DAM file 280
changing network configuration while 319
changing SPP 149

online tester 56
OpenTP1 administrator

operation tasks performed by 317
tasks for setup 312

OpenTP1 file 234
protecting 243, 244

OpenTP1 file system 234
assigning 244
backing up 243
difference from OS file system 236

restoring 243
selection of files to create 238

OpenTP1 instance 372
correspondence between IP address and 374

OpenTP1 node 366
OpenTP1 process, recovering 243
OpenTP1 services 20

types of 20
OpenTP1 software products 12

list of 12
OpenTP1 system

operating 317
setting up 312

OpenTP1 system definition 23
OpenTP1 system service 20
OpenTP1 termination mode 142
operation 317

routine 317
with System Switchover facility 357

operations by users
for backing up DAM and TAM 318
for changing file capacity 319
for modifying definitions 318
for outputting message log to file 318
for replacing UAP 319
for starting OpenTP1 317
for starting UAP 318
for terminating UAP 318
for unloading journal 318

ORACLE 307
OS file system, difference from OpenTP1 file
system 236
output function for DAM file 278
output queue 34, 134

description of 134
monitoring message in 141

outputting
message log to file 318
statistics 222

overwrite check 262

P
parallel access facility 268

for system journal file 251

Index

479

parallel accesses guaranteed, minimum number
of 269
parallel processing

of services 162
with Multinode facility 363

partial recovery 321, 324
of transaction 326
using system journal file 249

performance verification trace 334
permanent connection 201
physical file

adding, for checkpoint dump file 261
in archive journal file 267
in checkpoint dump file 259
in DAM file 276
in MCF message queue file 273
in status file 246
in system journal file 249
in TAM file 293
operating with one, in status file 247
operating with one, in system journal file 250

physical file name 268
planned system switchover 350
planned termination 142
PR lock mode 211
prepare processing 64
primary system 351
priority selection node 93
process

control 162
control, example of 179
resident and non-resident 163

process service event trace 347
process service event trace information file 347
protecting file system 243
protocol product, system connected to 399
purpose of

archive journal file 267
checkpoint dump file 259
MCF message queue file 273
message queue file 273
transaction recovery journal file 266
server recovery journal file 267
status file 246

system journal file 249

Q
queinit 240
queue

schedule queue for MHP 156
schedule queue for SPP 147
server that receives request from 152

queue file 273
dc_mcf_execap() 140

queue group 273
queue manager 28, 38, 40

R
rap-processing client manager 203
real-time statistics service 22, 224
received message lifetime 142
received messages 137
receiving message 136
record-based lock 299
recovering 321

archive journal file 328
checkpoint dump file 327
DAM file 329
from deadlock 326
from error in transaction recovery journal
file 266
from inability to start UAP 324
from infinite loop 324
from network error 329
from system failure 321
from UAP abnormal termination 325
from UAP failure 321, 324
ISAM file 329
MCF message queue file 329
message log file 328
MQA message queue file 329
server recovery journal file 267, 328
status file 327
system journal file 327
TAM file 329
transaction partially 326
transaction recovery journal file 328
using Multigeneration Guarantee facility 262

Index

480

using system journal file 249
recovery journal, contents of 254
reference-only TAM table 298
regular file 238
releasing

lock 212
scheduling shutdown by command 149

remote API facility 74, 196
remote procedure call 29

compressing send data for 86
of TP1/Client 183

replacing UAP 319
reporting

communication event failure 132
server startup to TP1/Client 185

requests, setting scheduling priorities for service 147
reserved filegroup, opening 258
reserved status of

archive journal file 270
status file 247
system journal file 256, 271

resident process 163
resource

consistency in transaction processing 60
locking 211
waiting to use 212

resource group 268, 369
resource manager 16
resource manager monitor service 220
response-type 123
restart 321

in complete recovery 321
restoring 321
return 34
RI 71
RM 17
rollback 60, 62

heuristic 66
rolling update 228
root transaction branch 62
round-robin scheduling 218
RPC 29

asynchronous-response 84
chaining 84

compressing data 86
no-response 82
non-response 84
relationship with SPP 50
response 82
synchronous-response 83
used to request service 82
using OpenTP1 library 81

RPC trace 333
RPC TxRPC 116
rpcdump 333
rpcmrg 334
rts 22
RTSSPP 224
RTSSUP 224

S
scale in 227
scale out 227
scdhold 149
scdrles 149
scenario

rolling update 228
scale in 227
scale out 227

scenario template for system operation, using 227
schedule buffer group name 177
scheduling

automatic shutdown 161
priority for user servers 165
queue for MHP 147, 156
release scheduling shutdown 149
requests to MHP 156
requests to SPP 147
requests to UAP 147
setting priority for MHP 156
setting priority for SPP 147
shutdown for MHP 157
shutdown for SPP 148, 149

scheduling facility 147
secondary system 351
segment 121

in logical message 121
segment-receiving function 137

Index

481

send data, compressing 86
send message lifetime 141
sending messages 138
sending priority 144
server

scheduling priority for user 165
service-providing program 46
that receives request from queue 152
that receives request from socket 151

server recovery journal file 267
creating 267
purpose of 267
recovering from error 328
recovering from error in 267

server UAP 31
service

executing in parallel 162
group in MHP scheduling 157
how RPC is used to request 82
in MHP scheduling 157
requests, setting scheduling priorities for 147

service group 82
service information prioritizing function 93, 466

notes about using 105
service information searches, optional function for 90
service recovery 322
service request method 87
service requests, setting scheduling priority for 147
service-group name 50
service-providing program 46
service-using program 45, 46
setting

OpenTP1 system 312
scheduling priorities for service requests 147

setup, use, and error recovery, overview of 311
SEWB3 43
SGW

client user program 45
overview of 45

shared memory 384
shutdown

by command 149
of scheduling automatically 161
of scheduling for MHP 157

of scheduling for SPP 148
release of 149

simple structure table 294
single

physical file in status file 247
physical file in system journal file 250

single-system operation 269
socket, server that receives request from 151
software products

HAmonitor 16
ISAM 16
Job Management Partner 1 41
overview of 12
SEWB3 43
TP1/Client/P 15
TP1/Client/W 15
TP1/FS/Direct Access 13
TP1/FS/Table Access 13
TP1/High Availability 14
TP1/LiNK 15
TP1/Message Control 13
TP1/Message Control/Tester 15
TP1/Message Queue 14, 38, 274
TP1/Multi 15
TP1/NET/HDLC 398
TP1/NET/High Availability 14
TP1/NET/HNA-NIF 398
TP1/NET/Library 14
TP1/NET/OSI-TP 398
TP1/NET/TCP/IP 398
TP1/NET/X25 398
TP1/NET/XMAP3 398
TP1/Offline Tester 14
TP1/Online Tester 15
TP1/Resource Manager Monitor 16
TP1/Server Base 13
TP1/Shared Table Access 13

SPP 46
client user program 45
overview of 45
release scheduling shutdown 149
scheduling requests to 147
setting scheduling priority 147
shutdown scheduling for 148

Index

482

starting, by issung UAP function 127
that can use Multiserver facility 163
transaction 68

standby status of
archive journal file 270
status file 247
system journal file 256, 271

standby system
starting, to complete postprocessing of running
system 356
starting, to replace running system 356

starting
OpenTP1 317
OpenTP1 with Multinode facility 366
OpenTP1 with System Switchover
facility 357
recovering from inability to start UAP 324
transaction 68
UAP 318
UAP by issung function 127
UAP by MCF event 128
UAP by using command 133

startup notification facility 106
static connection schedule mode 201
statistical journal information 222
statistical journal, contents of 255
statistics output facility 222
status

archived/not archived 371
available 256, 270
available/current 256, 270
available/standby 256, 270
monitoring output 320
of archive journal file 270
of OpenTP1 node 366
of status file 247
of system journal file 256, 271, 371
of TAM table 298
reserved 256
unavailable 256, 270

status file
description of 246
operating with one physical file in 247
purpose of 246

recovering from error 327
shutdown status of 247
status of 247
structure of 246
swapping 248

stbmake 52
structure of

archive journal 267
checkpoint dump file 259
MCF message queue file 273
memory 384
processes 378
status file 246
system journal file 249

stsinit 240, 315
stsrm 248
stub 47
SUP 46

transaction 68
superuser 312
suppressing message log 219
swappable file 258
swapping

status files 248
system journal files 258

symbol conventions xiii
synchronization point 62

setting with MHP 69
setting with SUP or SPP 68

synchronization point journal, contents of 254
synchronous communication functions

receive 125
send 125
send/receive 125

synchronous-response RPC 83
system configuration using JP1 41
system control information 321
system definition 23

editing 23
system journal file

available status of 256
available/current status of 256
available/standby status of 256
checking 262

Index

483

copying 257
description of 249
operating with one physical file in 250
purpose of 249
recovering from error 327
reserved status of 256
status of 256, 271
structure of 249
swapping 258
unavailable status of 256
unloading 257

system monitoring using audit logs 229
system recovery 321
system service 20

process 378
system service definition 23
system switching, procedure for 354
System Switchover facility 350, 353

monitoring LAN 353
monitoring link 353
operating with 357
overview of 350

system-switch system 350

T
table-based lock 299
TAM 13
TAM data file 297
TAM file 294

compared to DAM file 294
creating 297
data file 297
deadlock in 299
description of 293
loading 298
online backup for 300
recovering from error 329
unloading 298

TAM table 293, 298
access mode for 297
internal functioning of 295
lock on 299
updatable but permits addition and
deletion 298

updatable but prohibits addition and
deletion 298

tamadd 295
tambkup 295
tamcre 241, 297
tamdel 295
tamfrc 328
tamload 298
tamrles 295
tamrm 295
tamunload 298
tasks

for backing up DAM and TAM 318
for modifying definition 318
for outputting messages log to file 318
for replacing UAP 319
for routine OpenTP1 operation 317
for starting OpenTP1 317
for starting UAP 318
for terminating UAP 318
for unloading journal 318
performed by OpenTP1 administrator 312
performed by superuser 312

TB meaning xiv
TCP/IP

protocol 35
TCP_NODELAY 31
temporary closing 390

checking execution status of 392
information obtainable using command to
check execution status of 393
request, monitoring 392

terminal entity 138
terminating

modes 142
OpenTP1 with Multinode facility 366
OpenTP1 with System Switchover
facility 360
recovering from UAP abnormal
termination 325
UAP 318

termination
normal 142
planned 142

Index

484

testing
UAP 55
with MultiOpenTP1 320

TP monitor 7
TP1/Client

facilities that need to be defined 185
preparing to request service from 182

TP1/Client communication 182
TP1/Client/J 15, 75
TP1/Client/P 15, 32
TP1/Client/W 15, 32
TP1/FS/Direct Access 13

DAM file 276
TP1/FS/Table Access 13

TAM file 293
TP1/High Availability 14, 353
TP1/LiNK 15
TP1/Message Control 13, 120

MCF online tester 56
TP1/Message Control/Tester 15
TP1/Message Queue 14, 38, 274
TP1/Multi 15, 364
TP1/NET/HDLC 398
TP1/NET/High Availability 14, 353
TP1/NET/HNA-NIF 398
TP1/NET/Library 14, 120
TP1/NET/OSI-TP 398
TP1/NET/TCP/IP 398
TP1/NET/X25 398
TP1/NET/XMAP3 35, 398
TP1/Offline Tester 14, 55
TP1/Online Tester 15, 56
TP1/Resource Manager Monitor 16, 220
TP1/Server Base 13

service-using program 45
TP1/Shared Table Access 13, 301
transaction

attribute 68
branch 62
branch, specifying 67
commit and rollback 62
determining 62
processing in MQA message queuing 40
root transaction branch 62

TP1/Client 185
UAP 67
with MHP 69
with SPP 68
with SUP 68

transaction manager 16, 17
transaction partial recovery 326
transaction processing, relation to 307
transaction recovery 322
transaction recovery journal file 266

purpose of 266
recovering from error 328
recovering from error in 266

trigger event 40
trigger facility 40
trigger monitor application 40
trncmt 65
trnfgt 65
trnlnkrm 308, 355
trnls 66
trnmkobj 309
trnrbk 65
trnrmid 309
trnstring 309
two-phase commit 63
tx_begin() 308
tx_commit() 308
TxRPC communication, creating UAP for 117
TxRPC interface

communication mode 116
communication via RPC that uses 116

typed buffer 116
typed record 116

U
UAP

changing online 319
creating, for TxRPC communication 117
failure, recovering from 324
overview of 45
process control 162
scheduling 147
scheduling request to MHP 156
scheduling request to SPP 147

Index

485

starting 126
starting application from 140
testing and debugging facilities 55
that handles offline work 55
transactions 67

UAP shared library 205
UAP trace 333
UAP trace information 333
uCosminexus TP1 Connector 76
unload check 257

restraining 257
unload check restraint 257
unload journal file 257
unload-journals file 257
unloading

archive journal file 271, 370
journal 318
system journal file 257
TAM file 298

unprocessed message, monitoring 141
unprocessed receive messages, lifetime for 142
unprocessed send message, lifetime for 141
unrecoverable DAM file, access to 282
unrestricted to database 7
update, deferred 279
uptime statistics 222, 371
user application program 45
user exit routine for determining application
name 126
user journal 256

contents of 256
user server 20

assigning scheduling priority 165
process 162
providing OpenTP1 services 20

user service definition 121

V
valid guarantee generation 262
version number conventions xiv

W
WAN 10

X
X/Open DTP model 16, 307

transaction processing in 16
XA interface 79

supported by DBMS 307
XA resource service, transaction control based on 70
XAR performance verification trace 335
XAR performance verification trace information
file 335
XATMI communication service 189
XATMI interface

communication mode 114
communication via RPC that uses 113

XDM/DCCM3, communication with 188
XID 71

Reader’s Comment Form

We would appreciate your comments and suggestions on this manual. We will use
these comments to improve our manuals. When you send a comment or suggestion,
please include the manual name and manual number. You can send your comments
by any of the following methods:

• Send email to your local Hitachi representative.
• Send email to the following address:

 WWW-mk@itg.hitachi.co.jp
• If you do not have access to email, please fill out the following information

and submit this form to your Hitachi representative:

Manual name:

Manual number:

Your name:

Company or
organization:

Street address:

Comment:

(For Hitachi use)

